WorldWideScience

Sample records for solution gold nanoplates

  1. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings.

    Science.gov (United States)

    Jiang, Li-Ping; Xu, Shu; Zhu, Jian-Min; Zhang, Jian-Rong; Zhu, Jun-Jie; Chen, Hong-Yuan

    2004-09-20

    A simple sonochemical route was developed for the crystal growth of uniform silver nanoplates and ringlike gold nanocrystals in a N,N-dimethylformamide solution. The platelike structures were generated from the selective growth on different crystal planes in the presence of poly(vinylpyrrolidone) and the ultrasonic-assisted Ostwald ripening processes. The silver nanoplates in solution served as the templates for the synthesis of ringlike gold crystals via a displacement reaction. Both the silver nanoplates and gold nanorings were highly oriented single crystals with (111) planes as the basal planes. Copyright 2004 American Chemical Society

  3. Light-induced reversible expansion of individual gold nanoplates

    Directory of Open Access Journals (Sweden)

    Jinsheng Lu

    2017-10-01

    Full Text Available Light-induced mechanical response of materials has been extensively investigated and widely utilized to convert light energy into mechanical energy directly. The metallic nanomaterials have excellent photothermal properties and show enormous potential in micromechanical actuators, etc. However, the photo-thermo-mechanical properties of individual metallic nanostructures have yet to be well investigated. Here, we experimentally demonstrate a way to realize light-induced reversible expansion of individual gold nanoplates on optical microfibers. The light-induced thermal expansion coefficient is obtained as 21.4 ± 4.6 ∼ 31.5 ± 4.2 μ·K-1 when the light-induced heating temperature of the gold nanoplates is 240 ∼ 490 °C. The photo-thermo-mechanical response time of the gold nanoplates is about 0.3 ± 0.1 s. This insight into the photo-thermo-mechanical properties of the gold nanoplates could deepen the understanding of the light-induced reversible expansion behavior in nanoscale and pave the way for applications based on this piezoelectric-like response, such as light-driven metallic micromotors.

  4. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    International Nuclear Information System (INIS)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro

    2010-01-01

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m 3 aqueous AuCl 4 - ions into elemental gold within 10 min when H 2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  5. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro, E-mail: yasuhiro@chemeng.osakafu-u.ac.j [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2010-09-15

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m{sup 3} aqueous AuCl{sub 4}{sup -} ions into elemental gold within 10 min when H{sub 2} gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  6. Compressive buckling of a rectangular nanoplate

    Science.gov (United States)

    Bochkarev, A. O.

    2018-05-01

    This paper considers the constitutive relations of the nanoplate theory with surface stresses taken into account according to the original or complete Gurtin-Murdoch (GM) model and according to the simplified strain-consistent GM model (which does not include any non-strain terms in the surface stress-strain relation). It is shown that the potential energy of a deformed nanoplate according to both GM models preserves the classical structure using the redefined elastic moduli (effective tangential and flexural elastic properties, which contain the characteristics of bulk phase and a surface). This allows to apply the known solutions and methods from macroplates to nanoplates. As example, it is shown that the critical load of the compressive buckling of a nanoplate according to the complete and strain-consistent GM models has the difference between two solutions no more than 1.5%.

  7. Statistical optimization of synthesis procedure and characterization of europium (III) molybdate nano-plates

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi [Malek Ashtar University of Technology, Faculty of Material and Manufacturing Technologies, P. O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi [Imam Hossein University, Nano Science Center, Tehran (Iran, Islamic Republic of); Fazli, Yousef [Islamic Azad University, Department of Chemistry, Faculty of Science, Arak Branch, Arak (Iran, Islamic Republic of); Mohammad-Zadeh, Mohammad [Sabzevar University of Medical Sciences, Department of Physiology and Pharmacology, School of Medicine, Sabzevar (Iran, Islamic Republic of)

    2015-06-15

    Europium (III) molybdate nano-plates were synthesized in this work via chemical precipitation route involving adding of europium (III) ion solution to the aqueous solution of molybdate reagent. Effects of some reaction variables such as concentrations of europium and molybdate ions, flow rate of europium reagent, and reactor temperature on the diameter of the synthesized europium (III) molybdate nano-plates were experimentally investigated by orthogonal array design. The results showed that the size of europium (III) molybdate nano-plates can be optimized by adjusting the concentrations of europium (III) and molybdate ions, as well as the reactional temperature. Europium (III) molybdate nano-plates prepared under the optimum conditions were characterized by X-ray powder diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. (orig.)

  8. Synthesis and electrical properties of silver nanoplates for electronic applications

    Directory of Open Access Journals (Sweden)

    Xiong Nana

    2015-06-01

    Full Text Available In this paper, silver nanoplates of 100 to 500 nm size were synthesized by reduction of silver nitrate with N,Ndimethylformamide, using poly(vinylpyrolidone as a surfactant and ferric chloride as a controlling agent, at 120 to 160 °C for 5 to 24 hours. The influence of the concentration of ferric chloride, the reaction temperature and reaction time on the morphology of the product has been investigated by transmission electron microscopy, scanning electron microscopy and UV-Vis spectroscopy. The results indicated that the products obtained at the low reaction temperature and short reaction time in the presence of FeCl3 in the reaction solution were in the form of silver nanoplates, whose morphology was mainly triangular and hexagonal. In addition, the size and thickness of the nanoplates increased with increasing of the FeCl3 concentration. At a high reaction temperature and long reaction time, the truncated triangle and hexagonal nanoplates were mainly produced. Furthermore, the sintering behavior of nanoplates was studied and the results showed that sintering of the silver nanoplates started at 180 °C, and a typical sintering behavior was observed at higher temperatures. The incorporation of the silver nanoplates into the polymer matrix with micro-sized silver flakes led to an increase in the matrix resistivity in almost all cases, especially at high fractions and low curing temperatures. The curing temperature had an influence on the resistivity of the conductive adhesives filled with micro-sized silver flakes and silver nanoplates due to sintering of the silver nanoplates.

  9. Solution-processed n-ZnO nanorod/p-Co_3O_4 nanoplate heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab; Lee, Tae Il; Myoung, Jae-Min

    2017-01-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co_3O_4 nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co_3O_4 nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co_3O_4) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co_3O_4 NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn_i) to oxygen interstitials (O_i) or conduction-band minimum (CBM) to oxygen vacancies (V_O), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn_i to zinc vacancies (V_Z_n).

  10. Poly(vinylpyrrolidone)-Free Multistep Synthesis of Silver Nanoplates with Plasmon Resonance in the Near Infrared Range.

    Science.gov (United States)

    Khan, Assad U; Zhou, Zhengping; Krause, Joseph; Liu, Guoliang

    2017-11-01

    Herein, a poly(vinylpyrrolidone) (PVP)-free method is described for synthesizing Ag nanoplates that have localized surface plasmon resonance in the near-infrared (NIR) range. Citrate-capped Ag spherical nanoparticles are first grown into small Ag nanoplates that resonate in the range of 500-800 nm. The small Ag nanoplates are used as seeds to further grow into large Ag nanoplates with a lateral dimension of 100-600 nm and a plasmon resonance wavelength of 800-1660 nm and above. The number of growth steps can be increased as desired. Without introducing additional citrate into the solutions of small Ag nanoplate seeds, large Ag nanoplates can be synthesized within minutes. The entire synthesis is completely PVP free, which promotes the nanoparticle growth along the lateral direction to form large Ag nanoplates. The multistep growth and the minimum usage of citrate are essential for the fast growth of high-aspect-ratio Ag nanoplates resonating in the NIR range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. One-Pot Synthesis of Cu2ZnSnSe4 Nanoplates and their Visible-Light-Driven Photocatalytic Activity

    Science.gov (United States)

    Han, Zhenzhen; Li, Nan; Shi, Aihua; Wang, Haohua; Ma, Feng; Lv, Yi; Wu, Rongqian

    2018-01-01

    A SeO2 ethanol solution as the facile precursor has been used for the preparation of quaternary Cu2ZnSnSe4 (CZTSe) nanoplates. Monodispersed single-phase CZTSe nanoplates have been prepared successfully by a facile one-pot thermal chemical method. The as-prepared CZTSe nanoplates show uniform morphology with a bandgap of 1.4 eV. As a proof of concept, the CZTSe nanoplates have been used as a visible-light-driven photocatalyst for Rhodamine B dye degradation and show high photocatalytic activity and stability. The excellent dye removal is mainly ascribed to the efficient light utilization of CZTSe nanoplates.

  12. The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB

    International Nuclear Information System (INIS)

    He Xin; Zhao Xiujian; Chen Yunxia; Feng Jinyang

    2008-01-01

    Truncated triangular silver nanoplates were prepared by a solution-phase approach, which involved the seed-mediated growth of silver nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) at 40 deg. C. The result of X-ray diffraction indicates that the as-prepared nanoparticles are made of pure face centered cubic silver. Transmission electron microscopy and atomic force microscopy studies show that the truncated triangular silver nanoplates, with edge lengths of 50 ± 5 nm and thicknesses of 27 ± 3 nm, are oriented differently on substrates of a copper grid and a fresh mica flake. The corners of these nanoplates are round. The selected area electron diffraction analysis reveals that the silver nanoplates are single crystals with an atomically flat surface. We determine the holistic morphology of truncated triangular silver nanoplates through the above measurements with the aid of computer-aided 3D perspective images

  13. The synthesis of high yield Au nanoplate and optimized optical properties

    Science.gov (United States)

    Ni, Yuan; Kan, Caixia; Xu, Juan; Liu, Yang

    2018-02-01

    The applications of Au nanoplates based on the tunable plasmon properties and enhanced electromagnetic field at the sharp tip and straight edges, have generated a great deal of interest in recent years, especially in the fields of the bio-chemical sensing and imaging. In this review, we focus on the synthesis of nanoscale platelike structures by multiple synthetic strategies (such as thermal solution method, seed-mediated method, seedless method, and some greener methods), and explore corresponding growth mechanism in different synthetic approaches. Other than to review the fabrication of Au nanoplates, the purification strategies are also discussed in order to support the applications in various fields. Modifying synthetic method to obtain well-defined nanoplates can tuned optical absorption from visible to near-infrared region. Moreover, the Au nanoplate dimers (vertex-to-vertex and edge-by-edge assemblies) can induce more specific plasmon properties and stronger localized field due to coupling of interparticles. Compared with 0D quasi-spherical nanoparticles and 1D nanorods, the 2D nanoplates can be applied as a good surface-enhanced Raman scattering (SERS) substrate because of the sharp corners and straight edges. This review will provide background information for the controllable synthesis of anisotropic nanoparticles and advance the application of coupled nanostructures.

  14. Polyol synthesis of silver nanoplates: The crystal growth mechanism based on a rivalrous adsorption

    International Nuclear Information System (INIS)

    Luo Xiaolin; Li Zongxiao; Yuan Chunlan; Chen Yashao

    2011-01-01

    Highlights: → Silver nanoplates have been successfully synthesized by polyol reduction in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . → Due to the discovery of CN - ions in the solution, a mechanism for the anisotropic growth of silver nanoplates is systematically discussed. → TG, FT-IR and SERS were used to provide some direct evidences of rivalrous adsorption between PVP and CN - ions on the surface of the silver crystals. - Abstract: A polyol reducing approach has been applied to synthesize silver nanoplates with an average thickness of 50 nm and edge length of 3 μm in the presence of poly (vinylpyrrolidone) (PVP) and HNO 3 . X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscropy (TEM), and electron diffraction are used to characterize these silver nanoplates. Findings indicate that the nanoplates are single crystals and with their basal plane as (1 1 1) lattice plane. On the basis of the results from thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, a crystal growth mechanism based on the rivalrous adsorption between PVP and CN - ions on the surface of silver nanoplates is supposed to explain the crystal anisotropic growth.

  15. Formation of Silver Nanoplates Layer on Amino Group Grafted Silica Coatings

    Directory of Open Access Journals (Sweden)

    Jurgis PILIPAVICIUS

    2016-05-01

    Full Text Available In this study the self-arrangement of Ag nanoplates on (3-Aminopropyltriethoxysilane (APTES silanized silica coatings was investigated. Silica coatings were made by sol-gel method and silanized in two different ways. The first one includes silanization in acidic 2-propanol solution, the other one – in dry toluene. Coatings were silanized by using different amounts of APTES in case of silanization in 2-propanol. Silver nanoplates layer of functionalized silica coatings was obtained via self-assembly. Coatings were investigated by atomic force microscopy (AFM, water contact angle measurements (CA, FT-IR analysis, and scanning electron microscopy (SEM. Research showed that dense Ag nanoplates arrangement occurs when there is a high amount of amino groups on the surface.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8405

  16. Gold Nanoparticles Obtained by Bio-precipitation from Gold(III) Solutions

    International Nuclear Information System (INIS)

    Gardea-Torresdey, J.L.; Tiemann, K.J.; Gamez, G.; Dokken, K.; Tehuacanero, S.; Jose-Yacaman, M.

    1999-01-01

    The use of metal nanoparticles has shown to be very important in recent industrial applications. Currently gold nanoparticles are being produced by physical methods such as evaporation. Biological processes may be an alternative to physical methods for the production of gold nanoparticles. Alfalfa biomass has shown to be effective at passively binding and reducing gold from solutions containing gold(III) ions and resulting in the formation of gold(0) nanoparticles. High resolution microscopy has shown that five different types of gold particles are present after reaction with gold(III) ions with alfalfa biomass. These particles include: fcc tetrahedral, hexagonal platelet, icosahedral multiple twinned, decahedral multiple twinned, and irregular shaped particles. Further analysis on the frequency of distribution has shown that icosahedral and irregular particles are more frequently formed. In addition, the larger particles observed may be formed through the coalescence of smaller particles. Through modification of the chemical parameters, more uniform particle size distribution may be obtained by the alfalfa bio-reduction of gold(III) from solution

  17. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  18. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  19. Solution-processed n-ZnO nanorod/p-Co{sub 3}O{sub 4} nanoplate heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Woo; Lee, Su Jeong; Biswas, Pranab [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Tae Il [Department of BioNano Technology, Gachon University, 1342 Seongnam Daero, Seongnam 13120 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of)

    2017-06-01

    Highlights: • The n-ZnO nanorods were epitaxially grown on p-Co{sub 3}O{sub 4} nanoplates. • The heteroepitaxial p-n junction was fabricated by using hydrothermal process. • The LEDs emitted reddish-orange and violet light related to ZnO point defects. • The Co{sub 3}O{sub 4} nanoplates function as a hole injection layer. • Junction between 1D NRs and 2D NPs provides a new approach to design nanostructures. - Abstract: A heterojunction light-emitting diode (LED) based on p-type cobalt oxide (Co{sub 3}O{sub 4}) nanoplates (NPs)/n-type zinc oxide (ZnO) nanorods (NRs) is demonstrated. Using a low-temperature aqueous solution process, the n-type ZnO NRs were epitaxially grown on Co{sub 3}O{sub 4} NPs which were two-dimensionally assembled by a modified Langmuir-Blodgett process. The heterojunction LEDs exhibited a typical rectifying behavior with a turn-on voltage of about 2 V and emitted not only reddish-orange light at 610 nm but also violet light at about 400 nm. From the comparative analyses of electroluminescence and photoluminescence, it was determined that the reddish-orange light emission was related to the electronic transitions from zinc interstitials (Zn{sub i}) to oxygen interstitials (O{sub i}) or conduction-band minimum (CBM) to oxygen vacancies (V{sub O}), and the violet light emission was attribute to the transition from CBM to valence-band maximum (VBM) or Zn{sub i} to zinc vacancies (V{sub Zn}).

  20. Growth of anisotropic gold nanostructures on conducting glass ...

    Indian Academy of Sciences (India)

    In this paper, we describe a method for the growth of gold nanowires and nanoplates starting from a bilayer array of gold seeds, anchored on electrically conducting indium tin oxide (ITO) substrates. This is based on a seed-mediated growth approach, where the nanoparticles attached on the substrate through molecular ...

  1. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  2. Sorption of Triangular Silver Nanoplates on Polyurethane Foam

    Science.gov (United States)

    Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.

    2018-02-01

    The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.

  3. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  4. Facile synthesis and characterization of hexagonal NbSe2 nanoplates

    International Nuclear Information System (INIS)

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-01-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe 2 nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe 2 nanoplates was discussed. • The formation of NbSe 2 nanoplates undergoes a series of phase transition. - Abstract: The NbSe 2 nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe 2 nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe 2 nanoplates with uniform sizes and the formation of NbSe 2 nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates

  5. Driven self-assembly of hard nanoplates on soft elastic shells

    International Nuclear Information System (INIS)

    Zhang Yao-Yang; Hua Yun-Feng; Deng Zhen-Yu

    2015-01-01

    The driven self-assembly behaviors of hard nanoplates on soft elastic shells are investigated by using molecular dynamics (MD) simulation method, and the driven self-assembly structures of adsorbed hard nanoplates depend on the shape of hard nanoplates and the bending energy of soft elastic shells. Three main structures for adsorbed hard nanoplates, including the ordered aggregation structures of hard nanoplates for elastic shells with a moderate bending energy, the collapsed structures for elastic shells with a low bending energy, and the disordered aggregation structures for hard shells, are observed. The self-assembly process of adsorbed hard nanoplates is driven by the surface tension of the elastic shell, and the shape of driven self-assembly structures is determined on the basis of the minimization of the second moment of mass distribution. Meanwhile, the deformations of elastic shells can be controlled by the number of adsorbed rods as well as the length of adsorbed rods. This investigation can help us understand the complexity of the driven self-assembly of hard nanoplates on elastic shells. (paper)

  6. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates

    International Nuclear Information System (INIS)

    Chen Deliang; Hou Xianxiang; Wen Hejing; Wang Yu; Wang Hailong; Zhang Rui; Lu Hongxia; Xu Hongliang; Guan Shaokang; Li Xinjian; Sun Jing; Gao Lian

    2010-01-01

    Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO 3 nanoplates as active elements have been investigated in this paper. Single-crystalline WO 3 nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO 3 nanoplate pastes were coated on the surface of an Al 2 O 3 ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO 3 nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 deg. C). For butanol, the WO 3 nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 deg. C. For other alcohols, WO 3 nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO 3 nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO 3 nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO 3 nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO 3 nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.

  7. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2017-02-01

    Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.

  8. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  9. Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.

    Science.gov (United States)

    Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun

    2018-01-01

    Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultraflat Au nanoplates as a new building block for molecular electronics.

    Science.gov (United States)

    Jeong, Wooseok; Lee, Miyeon; Lee, Hyunsoo; Lee, Hyoban; Kim, Bongsoo; Park, Jeong Young

    2016-05-27

    We demonstrate the charge transport properties of a self-assembled organic monolayer on Au nanoplates with conductive probe atomic force microscopy (CP-AFM). Atomically flat Au nanoplates, a few hundred micrometers on each side, that have only (111) surfaces, were synthesized using the chemical vapor transport method; these nanoplates were employed as the substrates for hexadecanethiol (HDT) self-assembled monolayers (SAMs). Atomic-scale high-resolution images show (√3 x √3) R30° molecular periodicity, indicating a well-ordered structure of the HDT on the Au nanoplates. We observed reduced friction and adhesion forces on the HDT SAMs on Au nanoplates, compared with Si substrates, which is consistent with the lubricating nature of HDT SAMs. The electrical properties, such as I-V characteristics and current as a function of load, were measured using CP-AFM. We obtained a tunneling decay constant (β) of 0.57 Å(-1), including through-bond (βtb = 0.99 Å(-1)) and through-space (βts = 1.36 Å(-1)) decay constants for the two-pathway model. This indicates that the charge transport properties of HDT SAMs on Au nanoplates are consistent with those on a Au (111) film, suggesting that SAMs on nanoplates can provide a new building block for molecular electronics.

  11. Spectroscopic properties of triangular silver nanoplates immobilized on polyelectrolyte multilayer-modified glass substrates

    Science.gov (United States)

    Rabor, Janice B.; Kawamura, Koki; Muko, Daiki; Kurawaki, Junichi; Niidome, Yasuro

    2017-07-01

    Fabrication of surface-immobilized silver nanostructures with reproducible plasmonic properties by dip-coating technique is difficult due to shape alteration. To address this challenge, we used a polyelectrolyte multilayer to promote immobilization of as-received triangular silver nanoplates (TSNP) on a glass substrate through electrostatic interaction. The substrate-immobilized TSNP were characterized by absorption spectrophotometry and scanning electron microscopy. The bandwidth and peak position of localized surface plasmon resonance (LSPR) bands can be tuned by simply varying the concentration of the colloidal solution and immersion time. TSNP immobilized from a higher concentration of colloidal solution with longer immersion time produced broadened LSPR bands in the near-IR region, while a lower concentration with shorter immersion time produced narrower bands in the visible region. The shape of the nanoplates was retained even at long immersion time. Analysis of peak positions and bandwidths also revealed the point at which the main species of the immobilization had been changed from isolates to aggregates.

  12. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  13. Facile synthesis of porous Co3O4 nanoplates for supercapacitor ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Porous tricobalt tetraoxide (Co3O4) nanoplates with large aspect ratio have been obtained by annealing Co(OH)2 precursor nanoplates synthesized by a facile reflux method without the need for any template or surfactant. After the heat treatment, the as-obtained phase-pure Co3O4 nanoplates with a well- retained ...

  14. A nonlocal continuum model for the biaxial buckling analysis of composite nanoplates with shape memory alloy nanowires

    Science.gov (United States)

    Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.

    2018-03-01

    In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.

  15. CuS nanoplates from ionic liquid precursors—Application in organic photovoltaic cells

    Science.gov (United States)

    Kim, Yohan; Heyne, Benjamin; Abouserie, Ahed; Pries, Christopher; Ippen, Christian; Günter, Christina; Taubert, Andreas; Wedel, Armin

    2018-05-01

    Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

  16. The influence of magnetic interactions and shape anisotropy on the alignment and assembly of BaFe{sub 12}O{sub 19} and Er{sub 2}O{sub 3} nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Lisjak, Darja, E-mail: darja.lisjak@ijs.si

    2014-11-14

    Magnetically anisotropic material with useful properties can be obtained when the barium ferrite (BaFe{sub 12}O{sub 19}) plates are aligned in a single plane. We studied the influence of the magnetic forces and the shape anisotropy on the alignment of barium ferrite nanoparticles. Nanoplates with diameters of 10–350 nm and diameter-to-thickness ratios of 3–30 were synthesized hydrothermally and stabilized in 1-butanol with dodecylbenzene sulphonic acid. The nanoplates were then deposited from the suspension on gold-coated substrates and dried with or without an applied magnetic field. In both cases the nanoplates aligned preferentially in the plane of the substrate, as evidenced by the scanning electron microscopy observations. To compare the influence of the magnetic field and the magnetic dipole–dipole interactions with that of the nanoparticle shape anisotropy, the alignment of paramagnetic erbium oxide (Er{sub 2}O{sub 3}) nanoplates was also studied. A lower degree of alignment was obtained with the erbium oxide than with the barium ferrite nanoplates. Barium ferrite films with a minimum orientation of 90% were prepared from the deposits after sintering at 1150 °C for 5 h. A comparable alignment of the erbium oxide films was induced hydrodynamically during the electrophoretic deposition. - Highlights: • Aligned deposits from BaFe{sub 12}O{sub 19} and Er{sub 2}O{sub 3} were prepared. • The magnetic interactions prevail over the shape anisotropy effect. • The alignment of the BaFe{sub 12}O{sub 19} nanoplates was obtained by drying a suspension. • The alignment of Er{sub 2}O{sub 3} nanoplates was obtained only by electrophoretic deposition.

  17. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  18. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  19. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    Science.gov (United States)

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  20. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying

    2012-08-15

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single-domain structures, whose polarization areas can be manipulated by writing and reading. The nanoplates are also effective catalysts for the oxidation of carbon monoxide. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy

    International Nuclear Information System (INIS)

    Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi

    2015-01-01

    In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain

  3. A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lisjak, Darja, E-mail: darja.lisjak@ijs.si [Jožef Stefan Institute, Ljubljana (Slovenia); Ovtar, Simona; Kovač, Janez [Jožef Stefan Institute, Ljubljana (Slovenia); Gregoratti, Luca; Aleman, Belen; Amati, Matteo [Elettra – Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste (Italy); Fanetti, Mattia [University of Nova Gorica, Nova Gorica (Slovenia); Istituto Officina dei Materiali CNR, Area Science Park, Trieste (Italy); Makovec, Darko [Jožef Stefan Institute, Ljubljana (Slovenia)

    2014-06-01

    Barium ferrite (BaFe{sub 12}O{sub 19}) is a ferrimagnetic oxide with a high magnetocrystalline anisotropy that can be exploited in magnetically aligned ceramics or films for self-biased magnetic applications. Magnetic alignment of the films can be achieved by the directed assembly of barium ferrite nanoplates. In this investigation the nanoplates were synthesized hydrothermally and suspended in 1-butanol using dodecylbenzene sulphonic acid (DBSa) as a surfactant. They were then deposited in an electric or magnetic field on flat substrates and exhibited a significant preferential alignment in the plane of the substrate, allowing a differentiation between the analysis of their basal and side planes using scanning photoelectron microscopy with a lateral resolution down to 100 nm. The surface chemistry of the nanoplates was additionally studied with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. For a comparison, bare barium ferrite nanoplates were also analyzed after decomposing the DBSa at 460 °C. The deviation of the surface chemistry from the stoichiometric composition was observed and the adsorption of the DBSa molecules on the nanoplates was confirmed with all three methods. Different types of bonding (physi- or chemisorption) were possible and considered with respect to the assembly of the barium ferrite nanoplates into anisotropic magnetic films.

  4. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates

    KAUST Repository

    Chao, Chunying; Ren, Zhaohui; Zhu, Yihan; Xiao, Zhen; Liu, Zhenya; Xú , Gang; Mai, Jiangquan; Li, Xiang; Shen, Ge; Han, Gaorong

    2012-01-01

    Free-standing single-crystal PbTiO 3 nanoplates (see picture) were synthesized by a facile hydrothermal method. A "self-templated" crystal growth is presumed to lead to the formation of the PbTiO 3 nanoplates, which have ferroelectric single

  5. Ligands Exchange Process on Gold Nanoparticles in Acetone Solution

    Science.gov (United States)

    Hu, C. L.; Mu, Y. Y.; Bian, Z. C.; Luo, Z. H.; Luo, K.; Huang, A. Z.

    2018-05-01

    The ligands exchange process on gold nanoparticles (GNPs) was proceeded by using hydrophobic group (PPh3) and hydrophilic group (THPO) in acetone solution. The FTIR and XPS results demonstrated that part of THPO was replaced by PPh3 which was dissolved in polar solution (acetone); the results were in accordance with the electrochemical analysis where the differential capacity decreased with increasing exchange time. After 12 h, the exchange process terminated and the final ratio of PPh3 and THPO was about 1.4: 1. This ratio remained unchanged although the PPh3 and THPO modified GNPs re-dispersed in the PPh3 acetone solution demonstrating the stable adsorption of both ligands after exchanging for 12 h. The TEM images showed that the gold nanoparticles were self-assembled from scattered to arranged morphology due to the existence of hydrophilic and hydrophobic ligands and led to Janus gold nanoparticles.

  6. An experimental study on gold precipitation from leach solutions of ...

    African Journals Online (AJOL)

    This paper presents the results of the study dedicated to the determination of the optimum parameters for the electrolytic gold precipitation from thiourea leach solutions. The leaching was carried out using technogenic gold-bearing raw materials (gold-bearing sands) of the Far East of the Russian Federation. The study ...

  7. Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein.

    Science.gov (United States)

    Wang, Huan; Li, He; Zhang, Yihe; Wei, Qin; Ma, Hongmin; Wu, Dan; Li, Yan; Zhang, Yong; Du, Bin

    2014-03-15

    In this paper, Pd nanoplates were used as a kind of electrode materials for fabrication of an electrochemical immunosensor, which was applied for detection of cancer biomarker alpha-fetoprotein (AFP). Thanks to the unique structure and properties of Pd nanoplates, the antibody of AFP (Ab) was effectively immobilized onto the surface of the Pd nanoplates modified glassy carbon electrode (GCE). Moreover, the good electrochemical properties of Pd nanoplates greatly improved the electronic transmission rate and enhanced the electrochemical signal, which led to an increase of the detection sensitivity. Based on the specific antibody-antigen interaction, a label-free immunosensor based on Pd nanoplates was developed for sensing of AFP. The current method allows us to detect AFP over a wide concentration range from 0.01 to 75.0 ng/mL with a detection limit of 4 pg/mL. The proposed immunosensor has been used to determine AFP in human serum with satisfactory results. © 2013 Elsevier B.V. All rights reserved.

  8. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  9. Adsorption of gold (III) from aqueous solutions on bagasse ash

    International Nuclear Information System (INIS)

    Hussain, G.; Khan, M.A.

    2011-01-01

    To assess the potential of cheap biomass materials for the recovery of gold from industrial, and electroplating waste water effluents, adsorption of gold (III) from dilute solutions of hydrochloric acid on bagasse ash has been studied under various experimental conditions by using batch technique. Percentage extraction of gold (III) on bagasse ash was determined from its distribution coefficients as a function of contact time, pH, adsorbent, adsorbate concentrations, and temperature. The uptake of gold (III) by bagasse ash is time, pH, metal concentration, amount of adsorbate, and temperature dependent. Adsorption data have been interpreted in terms of Langmuir, and the Freundlich equations. Thermodynamic parameters for the adsorption of gold (III) on bagasse ash have been determined at three different temperatures. The positive value of heat of adsorption; delta H 44.52 kJ/mol shows that the adsorption of gold (III) on bagasse ash is endothermic where as the negative value of delta G = -0.5303 kJ/mol at 318 K shows the spontaneity of the process. Delta G becomes more negative with increase in temperature which shows that the adsorption is more favorable at higher temperatures. Under the optimal adsorption conditions the adsorption capacity of gold is 0.70 mg /g of the adsorbent out of which 0.65 mg of gold gets desorbed with 0.1 % thiourea solution. (author)

  10. Enhanced photoactivity from single-crystalline SrTaO2N nanoplates synthesized by topotactic nitridation

    International Nuclear Information System (INIS)

    Fu, Jie; Skrabalak, Sara E.

    2017-01-01

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO 2 N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO 2 N nanoplates form by topotactic nitridation of aerosol-prepared Sr 2 Ta 2 O 7 nanoplates and SrTaO 2 N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO 2 N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO 2 N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Enhanced Photoactivity from Single-Crystalline SrTaO2 N Nanoplates Synthesized by Topotactic Nitridation.

    Science.gov (United States)

    Fu, Jie; Skrabalak, Sara E

    2017-11-06

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO 2 N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO 2 N nanoplates form by topotactic nitridation of aerosol-prepared Sr 2 Ta 2 O 7 nanoplates and SrTaO 2 N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO 2 N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO 2 N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-10-01

    Based on the generalized nonlocal strain gradient theory (NSGT), dynamic modeling and analysis of nanoporous inhomogeneous nanoplates is presented. Therefore, it is possible to capture both stiffness-softening and stiffness-hardening effects for a more accurate dynamic analysis of nanoplates. The nanoplate is in hygro-thermal environments and is subjected to an in-plane harmonic load. Porosities are incorporated to the model based on a modified rule of mixture. Modeling of the porous nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than in the first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, moisture rise, temperature rise, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and uniform dynamic load have a remarkable influence on the dynamic behavior of nanoscale plates.

  13. Synthesis of α-MoO3 nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes

    International Nuclear Information System (INIS)

    Kumar, V. Vinod; Gayathri, K.; Anthony, Savarimuthu Philip

    2016-01-01

    Graphical abstract: Thermodynamically stable α-MoO 3 nanoplates and nanorods were synthesized using organic structure controlling agents and demonstrated sun light enhanced photocatalytic degradation of methylene blue (MB) and rhodamine blue (Rh-B) dyes in aqueous solution. - Highlights: • α-MoO 3 hexagonal nanoplates using organic structure controlling agents. • Tunable optical band gap of MoO 3 . • Demonstrated strong sun light mediated enhanced photodegradation of methylene blue and rhodamine blue. • Photodegradation did not use any other external oxidizing agents. - Abstract: Thermodynamically stable α-MoO 3 nanoplates were synthesized using organic aliphatic acids as structure controlling agents and investigated photocatalytic degradation of methylene blue (MB) and rhodamine blue (Rh-B) in presence of sun light. Three different organic aliphatic acids, citric acid (CA), tartaric acid (TA) and ethylene diamine tetra-acetic acid (EDTA), were employed to control morphologies. CA and TA predominantly produced extended hexagonal plates where EDTA gave nanorods as well as nanoplates. PXRD studies confirmed the formation of α-MoO 3 nanoparticles. HR-TEM and FE-SEM reveal the formation of plate morphologies with 20–40 nm thickness, 50–100 nm diameter and 600 nm lengths. The different morphologies of α-MoO 3 nanoparticles lead to the tunable optical band gap between 2.80 and 2.98 eV which was obtained from diffused reflectance spectra (DRS). Interestingly, the synthesized α-MoO 3 nanoplates exhibited strong photocatalytic degradation of MB and Rh-B up to 99% in presence of sun light without using any oxidizing agents.

  14. Liquid-liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates

    International Nuclear Information System (INIS)

    Jin Mingshang; Kuang Qin; Han Xiguang; Xie Shuifen; Xie Zhaoxiong; Zheng Lansun

    2010-01-01

    Here we proposed a synthetic method of high-purity Ag nanoplates by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene. We demonstrated that the as-prepared Ag nanoplates can be widely tunable from 600 nm to 7 μm in size and from 10 to 35 nm in thickness, simply by adjusting the component of organic phase. To our knowledge, there are few methods to tailor the size and the thickness of metal nanoplates in such a large range although many efforts have been made aiming to realize it. Our proposed synthetic strategy is rapid, template-free, seed-less, and high-yield, and could be applied to synthesize analogous two-dimensional nanostructures of other noble metals, such as Pt, Au, and Pd. - Graphical abstract: High-purity Ag nanoplates were synthesized by the reduction of aqueous Ag + ions at the aqueous-organic interface with the reductant ferrocene, the size and thickness of which were widely tunable.

  15. Fabrication of Self-Standing Silver Nanoplate Arrays by Seed-Decorated Electrochemical Route and Their Structure-Induced Properties

    Directory of Open Access Journals (Sweden)

    Guangqiang Liu

    2013-01-01

    Full Text Available We present an electrochemical route to synthesize silver nanoplates on seed-decorated Indium tin oxide (ITO glass substrate. The nanoplates are several tens of to several hundred nanometers in dimension. The density of nanoplates covered on the substrate can be controlled well by adjusting the amounts of seed. All the nanoplates are standing on the substrate uniformly even at very high density. Silver nanoplate arrays displayed an extraordinary superhydrophobicity after chemical modification and can serve as highly active surface-enhanced Raman scattering (SERS substrates for microdetection. The arrays can also be used as electrodes for electrochemical capacitor with high power density.

  16. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  17. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S. [Army Research Laboratory, 2800 Adelphi, Maryland 20783 (United States)

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  18. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  19. Recovery of cyanide in gold leach waste solution by volatilization and absorption.

    Science.gov (United States)

    Gönen, N; Kabasakal, O S; Ozdil, G

    2004-09-10

    In this study, the effects of pH, time and temperature in regeneration of cyanide in the leaching waste solution of gold production from disseminated gold ore by cyanidation process were investigated and the optimum conditions, consumptions and cyanide recovery values were determined. The sample of waste solution containing 156 mg/l free CN- and 358 mg/l total CN-, that was obtained from Gümüşhane-Mastra/Turkey disseminated gold ores by cyanidation and carbon-in-pulp (CIP) process under laboratory conditions was used in the experiments. Acidification with H2SO4, volatilization of hydrogen cyanide (HCN) with air stripping and absorption of HCN in a basic solution stages were applied and under optimum conditions, 100% of free cyanide and 48% of complex cyanide and consequently 70% of the total cyanide in the liquid phase of gold leach effluent are recovered.

  20. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach

    Science.gov (United States)

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j

  1. Enhanced photoactivity from single-crystalline SrTaO{sub 2}N nanoplates synthesized by topotactic nitridation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie; Skrabalak, Sara E. [Department of Chemistry, Indiana University, Bloomington, IN (United States)

    2017-11-06

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO{sub 2}N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO{sub 2}N nanoplates form by topotactic nitridation of aerosol-prepared Sr{sub 2}Ta{sub 2}O{sub 7} nanoplates and SrTaO{sub 2}N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO{sub 2}N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO{sub 2}N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    Science.gov (United States)

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  3. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  4. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  5. Separation of polythionates and the gold thiosulfate complex in gold thiosulfate leach solutions by ion-interaction chromatography.

    Science.gov (United States)

    O'Reilly, John W; Shaw, Matthew J; Dicinoski, Greg W; Grosse, Andrew C; Miura, Yasuyuki; Haddad, Paul R

    2002-07-01

    A method for the separation of the polythionates (SxO6(2-), x = 3-5) in gold thiosulfate leach solutions using ion-interaction chromatography with conductivity and ultraviolet (UV) detection is described. Polythionates were eluted within 18 min using an eluent comprising an acetonitrile step gradient at 0.0 min from 15% v/v to 28% v/v, 3 mM TBAOH, and 2.5 mM sodium carbonate, operated using a Dionex NS1-5 micron column with guard. The developed method was capable of separating the gold thiosulfate complex ion in standard solutions, but quantification of this species in realistic leach solutions proved impractical due to a self-elution effect that caused the gold peak to be eluted as a broad band. Detection limits for polythionates using a 10 microL injection volume ranged between 1-6 mg L(-1) (5-23 microM) for conductivity and 0.8-13 mg L(-1) (4-68 microM) for UV detection, based on a signal-to-noise ratio of 2. Calibration was linear over the ranges 5-2000, 10-2000 and 25-2500 mg L(-1) for trithionate, tetrathionate and pentathionate, respectively. The technique was applied successfully to leach liquors containing 0.5 M ammonium thiosulfate, 2 M ammonia, 0.05 M copper sulfate and 20 % m/v gold ore.

  6. Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xinde; Sun Daohua, E-mail: sdaohua@xmu.edu.cn; Zhang Genlei; He Ning; Liu Hongyu; Huang Jiale; Odoom-Wubah, Tareque; Li Qingbiao, E-mail: kelqb@xmu.edu.cn [Xiamen University, Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology (China)

    2013-06-15

    The effects of different biomolecules in Artocarpus heterophyllus Lam leaf extract on the morphology of obtained gold nanoparticles were investigated in this study. The results indicated that reducing sugars, flavones, and polyphenols consisting of about 79.8 % dry weight of the leaf extract were mainly involved in providing the dual function of reduction and the size/shape control during the biosynthesis. The gold nanoparticles present included 64 {+-} 10 nm nanospheres, 131 {+-} 18 nm nanoflowers, and 347 {+-} 136 nm (edge length) nanoplates and they were synthesized using the main content of reducing sugars, flavones, and polyphenols, respectively, after they were desorbed by the AB-8 macroporous adsorption resin column. Particularly, flower-like and triangular/hexagonal gold nanoparticles with a yield more than 80 % were obtained. Possible shape-directed agents for the nucleation and growth were characterized by FTIR, it can be seen that ketones were bound on the surface of the spherical and flower-like GNPs, while both the ketones and carbonyls bound on the Au {l_brace}111{r_brace} plane this may have favored the formation of the twin defects, which are very essential for nanoplates' formation.

  7. Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract

    Science.gov (United States)

    Jiang, Xinde; Sun, Daohua; Zhang, Genlei; He, Ning; Liu, Hongyu; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2013-06-01

    The effects of different biomolecules in Artocarpus heterophyllus Lam leaf extract on the morphology of obtained gold nanoparticles were investigated in this study. The results indicated that reducing sugars, flavones, and polyphenols consisting of about 79.8 % dry weight of the leaf extract were mainly involved in providing the dual function of reduction and the size/shape control during the biosynthesis. The gold nanoparticles present included 64 ± 10 nm nanospheres, 131 ± 18 nm nanoflowers, and 347 ± 136 nm (edge length) nanoplates and they were synthesized using the main content of reducing sugars, flavones, and polyphenols, respectively, after they were desorbed by the AB-8 macroporous adsorption resin column. Particularly, flower-like and triangular/hexagonal gold nanoparticles with a yield more than 80 % were obtained. Possible shape-directed agents for the nucleation and growth were characterized by FTIR, it can be seen that ketones were bound on the surface of the spherical and flower-like GNPs, while both the ketones and carbonyls bound on the Au {111} plane this may have favored the formation of the twin defects, which are very essential for nanoplates' formation.

  8. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates

    International Nuclear Information System (INIS)

    Wu, Bin; Zhang, Chunli; Chen, Weiqiu; Zhang, Chuanzeng

    2015-01-01

    Material surfaces may have a remarkable effect on the mechanical behavior of magneto-electro-elastic (or multiferroic) structures at nanoscale. In this paper, a surface magneto-electro-elasticity theory (or effective boundary condition formulation), which governs the motion of the material surface of magneto-electro-elastic nanoplates, is established by employing the state-space formalism. The properties of anti-plane shear (SH) waves propagating in a transversely isotropic magneto-electro-elastic plate with nanothickness are investigated by taking surface effects into account. The size-dependent dispersion relations of both antisymmetric and symmetric SH waves are presented. The thickness-shear frequencies and the asymptotic characteristics of the dispersion relations considering surface effects are determined analytically as well. Numerical results show that surface effects play a very pronounced role in elastic wave propagation in magneto-electro-elastic nanoplates, and the dispersion properties depend strongly on the chosen surface material parameters of magneto-electro-elastic nanoplates. As a consequence, it is possible to modulate the waves in magneto-electro-elastic nanoplates through surface engineering. (paper)

  9. Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances

    Science.gov (United States)

    Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng

    2015-01-01

    Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

  10. Synthesis and optical properties of CuS nanoplate-based architectures by a solvothermal method

    International Nuclear Information System (INIS)

    Li Fei; Kong Tao; Bi Wentuan; Li Dachang; Li Zhen; Huang Xintang

    2009-01-01

    The controlled synthesis of copper sulfide (CuS) nanoplate-based architectures in different solvents has been realized at low cost by simply reaction of Cu(NO 3 ) 2 .3H 2 O and S under solvothermal conditions without the use of any template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectrometer and fluorescence measurement were used to characterize the products. The products were all in hexagonal phase with high crystallinity and the morphology was significantly influenced by the solvents. The CuS products synthesized in dimethylformamide (DMF) were nanoplates and the samples prepared in ethanol were flower-like morphology composed of large numbers of nanoplates, but those synthesized in ethylene glycol (EG) were CuS architectures with high symmetry made up of several nanoplates arranged in a certain mode. The optical properties were investigated and the growth mechanisms of these CuS crystals were also proposed.

  11. Designing Tripodal and Triangular Gadolinium Oxide Nanoplates and Self-Assembled Nanofibrils as Potential Multimodal Bioimaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    Paik, T; Gordon, TR; Prantner, AM; Yun, H; Murray, CB

    2013-03-01

    Here, we report the shape-controlled synthesis of tripodal and triangular gadolinium oxide (Gd2O3) nanoplates. In the presence of lithium ions, the shape of the nanocrystals is readily controlled by tailoring reaction parameters such as temperature and time. We observe that the morphology transforms from an initial tripodal shape to a triangular shape with increasing reaction time or elevated temperatures. Highly uniform Gd2O3 nanoplates are self-assembled into nanofibril-like liquid-crystalline superlattices with long-range orientational and positional order. In addition, shape-directed self-assemblies are investigated by tailoring the aspect ratio of the arms of the Gd2O3 nanoplates. Due to a strong paramagnetic response, Gd2O3 nanocrystals are excellent candidates for MRI contrast agents and also can be doped with rare-earth ions to form nanophosphors, pointing to their potential in multimodal imaging. In this work, we investigate the MR relaxometry at high magnetic fields (9,4 and 14.1 T) and the optical properties including near-IR to visible upconversion luminescence and X-ray excited optical luminescence of doped Gd2O3 nanoplates. The complex shape of Gd2O3 nanoplates, coupled with their magnetic properties and their ability to phosphoresce under NIR or X-ray excitation which penetrate deep into tissue, makes these nanoplates a promising platform for multimodal imaging in biomedical applications.

  12. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  13. Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-09-01

    In this paper, size-dependent free vibration analysis of a sandwich nanoplate is presented. The sandwich nanoplate is including an elastic nano core and two piezo-electro-magnetic face-sheets as sensor and actuator actuated by electric and magnetic potentials. The sandwich nanoplate is resting on visco-Pasternak's foundation. Hamilton's principle is employed to derive the governing equations of motion based on Kirchhoff plate and nonlocal elasticity theory. The numerical results are presented to study the influence of important parameters of the problem such as applied electric and magnetic potentials, nonlocal parameter and visco-Pasternak's parameters. Furthermore, the influence of various boundary conditions is discussed on the vibration characteristics of the sandwich nanoplate.

  14. Facile Br- assisted hydrothermal synthesis of Bi2MoO6 nanoplates with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Peng; Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin; Zhang, Guoqing; Ding, Shimin

    2017-01-01

    Bi 2 MoO 6 nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br - containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi 2 MoO 6 nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi 2 MoO 6 nanoplates. KBr-templated Bi 2 MoO 6 nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi 2 MoO 6 but inferior to that of CTAB-templated Bi 2 MoO 6 nanoplates. (orig.)

  15. 197 Au Mössbauer study of the gold species adsorbed on carbon from cyanide solutions

    Science.gov (United States)

    Kongolo, K.; Bahr, A.; Friedl, J.; Wagner, F. E.

    1990-04-01

    The gold species present on activated carbon after adsorption from solutions of Au(CN)2 - have been studied by197Au Mössbauer spectroscopy as a function of the pH value of the solution, the loading of the carbon, the coadsorption of polyvalent cations, and the treatment of the samples after adsorption. The gold was found to be adsorbed mainly as Au(CN)2 -. Coadsorbed polyvalent cations (Ca²+, Gd³+) have no influence on the Mössbauer parameters of the adsorbed gold complex. After adsorption from acidic solutions (pH ≲ 4), one finds a substantial amount of adsorbed gold with Mössbauer parameters similar to those of crystalline AuCN. Presumably, this gold is bound in Aux(CN)x+1 oligomers which form during drying. An additional product with Mössbauer parameters close to those of KAu(CN)2Cl2 was observed on dried samples after adsorption at pH 1. A minor gold species with an uncommonly small electric quadrupole splitting was found on wet carbons but disappeared on drying.

  16. Synthesis of anisotropic gold nanoparticles using xylitol as a dual functional reductant and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinmiao; Yao, Chengli; Yuan, Xinsong; Chen, Chen; Qi, Chunxia; Xia, Yuehua; Dong, Lin [Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei (China)

    2010-08-15

    The morphology of gold nanoparticles was controlled with hydrogentetrachloroaurate (HAuCl{sub 4}) and xylitol through a hydrothermal process using xylitol as reducing agent and controlled reagent. The molar ratio of xylitol relative to HAuCl{sub 4}, reaction time and temperature played important roles in determining the geometric shape and size of the product. These nanoplates were single crystals with planar width of 80-500 nm. The formation of nanobelts and two-dimensional single-crystal nanosheets is explained by the preferential adsorption of xylitol molecules from the solution onto the {l_brace}111{r_brace} planes of Au nuclei. These nanosheets could be used, for example, in gas sensors, in the fabrication of nanodevices and substrate materials, in property studies, and also for inducing hypothermia in tumors. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon

    OpenAIRE

    Vargas, C.; Navarro, Patricio; Araya, Eyleen; Pávez, F.; Alguacil, Francisco José

    2006-01-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied, evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. During elution, ammonia and t...

  18. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  19. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: a field study from an active gold mine in Peru.

    Science.gov (United States)

    Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A

    2002-04-01

    Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.

  20. High temperature creep of single crystals of gold, silver and solid solution gold silver 50-50

    International Nuclear Information System (INIS)

    Dorizzi, Paul

    1973-01-01

    We have studied in compression creep along a direction, single crystals of gold, silver and a 50-50 gold-silver solid solution. The experiments were made at temperatures above 0.7 Tf. We have shown that under these conditions and for these three metals a new slip system is operating: the deformation is due to the slip of dislocations having a 1/2 burgers vector on the {110} planes. For gold the activation energy for creep is equal to the self-diffusion energy. We found the same result for silver when the contribution of divacancies to the self-diffusion energy is taken into account. For the alloy the activation energy for creep is very close to the self-diffusion energy of gold in a 50-50 gold-silver alloy, gold being the slower diffusing species in the alloy. The curves giving the creep rate versus the stress can be fitted with the following laws: ε 0 = σ 5 for gold; ε 0 = σ 2,2 for silver and ε 0 = σ 2,5 for the alloy. The dislocation substructure was studied using the crystalline contrast given by the electron microprobe. This new method gives images which are very sensitive to the sub-grains misorientation. The substructure is made of parallelepipedic cells divided by tilt boundaries that are perpendicular to the {110} slip planes. (author) [fr

  1. Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2018-03-01

    In this paper, a three-variable plate model is utilized to explore the wave propagation problem of smart sandwich nanoplates made of a magnetostrictive core and ceramic face sheets while subjected to thermo-magnetic loading. Herein, the magnetostriction effect is considered and controlled via a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak elastic substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small-scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations are derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of the propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of the presented model are verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

  2. Examples of possible movement of gold in solution in the Witwatersrand, Ventersdorp, and Transvaal systems

    International Nuclear Information System (INIS)

    Whiteside, H.C.M.

    1981-01-01

    Many South African geologists consider that gold especially, and probably uraninite, as well as other heavy minerals such as zircon, chromite, and diamond, are detrital in the Precambrian quartz-pebble conglomerates of South Africa. It is suggested here that solution of gold and its redeposition elsewhere may have played a part in its enrichment or impoverishment. Two examples of possible solution of gold are cited, and the lack of modern placers associated with auriferous Witwatersrand is briefly discussed

  3. Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH

    International Nuclear Information System (INIS)

    Liang Yujie; Wang Wenzhong; Zeng Baoqing; Zhang Guling; Huang Jing; Li Jin; Li Te; Song Yangyang; Zhang Xiuyu

    2011-01-01

    Research highlights: → Hexagonal Bi 2 Te 3 thin nanoplates were synthesized by a simple solvothermal method. → Optical properties of the nanoplates were investigated by micro-Raman spectroscopy. → Infrared (IR) active mode (A 1u ) is greatly activated in Raman scattering spectrum. → Infrared (IR) active mode (A 1u ) shows up in Raman spectrum of hexagonal nanoplates. → Raman spectrum clearly shows crystal symmetry breaking of hexagonal nanoplates. - Abstract: Hexagonal Bi 2 Te 3 nanoplates were synthesized by a simple solvothermal process in the absence of NaOH. The composition, morphology and size of the as-prepared products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman scattering optical properties of the as-prepared Bi 2 Te 3 nanoplates were investigated by micro-Raman spectroscopy. The Raman spectrum shows that infrared (IR) active mode (A 1u ), which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shown up clearly in Raman scattering spectrum. We attribute the appearance of infrared active (A 1u ) in Raman spectrum to crystal symmetry breaking of Bi 2 Te 3 hexagonal nanoplates. The as-grown Bi 2 Te 3 hexagonal nanoplates, exhibiting novel Raman optical properties compared with bulk crystals, may find potential applications in thermoelectric devices.

  4. A Study on the Copper Effect on gold leaching in copper-ethanediamine-thiosulphate solutions

    Science.gov (United States)

    Liu, Qiong; Xiang, Pengzhi; Huang, Yao

    2018-01-01

    A simple, fast and sensitive square-wave voltammetry (SWV), cyclic voltammetry(CV) and tafel method for the determination of various factors of gold in thiosulphate solution in this paper. We present our study on the effect of copper(II) on the leaching of gold in thiosulphate solutions. The current study aims to establish the interaction of copper in the leaching process by electrochemical method.

  5. Electrical transport properties of large, individual NiCo{sub 2}O{sub 4} nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Linfeng; Wu, Limin; Hu, Xinhua; Fang, Xiaosheng [Department of Materials Science, Fudan University, Shanghai (China); Liao, Meiyong [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki (Japan)

    2012-03-07

    Understanding the electrical transport properties of individual semiconductor nanostructures is crucial to advancing their practical applications in high-performance nanodevices. Large-sized individual nanostructures with smooth surfaces are preferred because they can be easily made into nanodevices using conventional photolithography procedures rather than having to rely on costly and complex electron-beam lithography techniques. In this study, micrometer-sized NiCo{sub 2}O{sub 4} nanoplates are successfully prepared from their corresponding hydroxide precursor using a quasi-topotactic transformation. The Co/Ni atomic arrangement shows no changes during the transformation from the rhombohedral LDH precursor (space group R anti 3 m) to the cubic NiCo{sub 2}O{sub 4} spinel (space group Fd anti 3 m), and the nanoplate retains its initial morphology during the conversion process. In particular, electrical transport within an individual NiCo{sub 2}O{sub 4} nanoplate is further investigated. The mechanisms of electrical conduction in the low-temperature range (T < 100 K) can be explained in terms of the Mott's variable-range hopping model. At high temperatures (T > 100 K), both the variable-range hopping and nearest-neighbor hopping mechanisms contribute to the electrical transport properties of the NiCo{sub 2}O{sub 4} nanoplate. These initial results will be useful to understanding the fundamental characteristics of these nanoplates and to designing functional nanodevices from NiCo{sub 2}O{sub 4} nanostructures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    This paper investigates the thermal stability of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates based on the nonlocal theory and a refined plate model. The METE-FG nanoplate is subjected to the external electric potential, magnetic potential and different temperature rises. Interaction of elastic medium with the METE-FG nanoplate is modeled via Winkler-Pasternak foundation model. The governing equations are derived by using the Hamilton principle and solved by using an analytical method to determine the critical buckling temperatures. To verify the validity of the developed model, the results of the present work are compared with those available in the literature. A detailed parametric study is conducted to study the influences of the nonlocal parameter, foundation parameters, temperature rise, external electric and magnetic potentials on the size-dependent thermal buckling characteristics of METE-FG nanoplates.

  7. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G].

    Science.gov (United States)

    Zhang, Xiu-qing; Peng, Jun; Ling, Jian; Liu, Chao-juan; Cao, Qiu-e; Ding, Zhong-tao

    2015-04-01

    In the present paper, the authors studied fluorescence resonance energy transfer (FRET) phenomenon between silver triangular nanoplates and bovine serum albumin (BSA)/Rhodamine 6G fluorescence complex, and established a fluorescence method for the detection of cobalt ions. We found that when increasing the silver triangular nanoplates added to certain concentrations of fluorescent bovine serum albumin (BSA)/Rhodamine 6G complex, the fluorescence of Rhodamine 6G would be quenched up to 80% due to the FRET between the quencher and donor. However, in the presence of cobalt ions, the disassociation of the fluorescent complex from silver triangular nanoplates occurred and the fluorescence of the Rhodamine 6G recovered. The recovery of fluorescence intensity rate (I/I0) has a good relationship with the cobalt ion concentration (cCO2+) added. Thus, the authors developed a fluorescence method for the detection of cobalt ions based on the FRET of silver triangular nanoplates and Rhodamine 6G.

  8. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    Science.gov (United States)

    Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong

    2018-05-14

    Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.

  9. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    Science.gov (United States)

    Montes Castillo, Milka Odemariz

    solved. In this work, secondary metabolites were extracted from alfalfa biomass in liquid phase by hot water, isopropanol, and methanol, and used to reduce tetrachloroaurate ion (AuCl4-) for the synthesis of gold nanoparticles. Biosyntheses of gold nanoparticles were performed by mixing 0.75, 1.5 and 3.0 mM Au3+ solutions with each one of the extracts at a ratio of 3:1 respectively, and shaken at room temperature for 1h. Resulting gold colloids were characterized by UV-Vis spectrophotometry and electron microscopy techniques, showing size and morphology dependency on the reaction conditions. Isopropanol alfalfa extracts reacted with Au 3+ produced gold nanoparticles with a size range of 15-60 nm. The most abundant were from 40-50 nm, and the morphologies found were polygons, decahedra and icosahedra. Methanol alfalfa extracts produced monodisperse 50 nm decahedral and icosahedral gold nanoparticles. Lastly, water alfalfa extracts reacted with Au3+ produced triangular, truncated triangular and hexagonal nanoplates with diameters ranging from 500 nm to 4 mum and thicknesses of ˜15-40 nm. The production of gold nanoplates by alfalfa extracts has never been reported before. In order to extract the formed gold nanoparticles from the biomass, physical and chemical extractions were used. For the chemical extraction, NaCl, dilute H2SO4, Triton X and DI water were tested. In these cases, the best results were obtained with DI water, followed by NaCl. The extracted nanoparticles had an absorption band at about 539 nm. For the physical extractions, alfalfa biomass containing gold nanoparticles were exposed to 400°C, 500°C, 550°C and 600°C to recover the gold nanoparticles. X-ray diffractograms taken after pyrolysis of the biomass showed that the recovered nanoparticles kept their crystal structure.

  10. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Selective Magnetic Evolution of MnxFe1-xO Nanoplates

    KAUST Repository

    Song, Hyon-Min

    2015-04-27

    Iron-manganese oxide (MnxFe1-xO) nanoplates were prepared by thermal decomposition method. Irregular development of crystalline phases was observed with the increase of annealing temperature. Magnetic properties are in accordance with their respective crystalline phases, and the selective magnetic evolution from their rich magnetism of MnxFe1-xO and MnFe2O4 is achieved by controlling the annealing conditions. Rock-salt structure of MnxFe1-xO (space group Fm-3m) is observed in as-synthesized nanoplates, while MnFe2O4 and MnxFe1-xO with significant magnetic interactions between them are observed at 380 °C. In nanoplates annealed at 450 °C, soft ferrites of Mn0.48Fe2.52O4 with MnxFe1-xO are observed. It is assumed that the differential and early development of crystalline phase of MnxFe1-xO, and the inhomogeneous cation mixing between Mn and Fe cause this rather extraordinary magnetic development. In particular, the prone nature of divalent metal oxides to cation vacancy and the prolonged annealing time of 15 hours which enables ordering are also thought to contribute to these irregularities.

  12. Selective Magnetic Evolution of MnxFe1-xO Nanoplates

    KAUST Repository

    Song, Hyon-Min; Zink, Jeffrey I.; Khashab, Niveen M.

    2015-01-01

    Iron-manganese oxide (MnxFe1-xO) nanoplates were prepared by thermal decomposition method. Irregular development of crystalline phases was observed with the increase of annealing temperature. Magnetic properties are in accordance with their respective crystalline phases, and the selective magnetic evolution from their rich magnetism of MnxFe1-xO and MnFe2O4 is achieved by controlling the annealing conditions. Rock-salt structure of MnxFe1-xO (space group Fm-3m) is observed in as-synthesized nanoplates, while MnFe2O4 and MnxFe1-xO with significant magnetic interactions between them are observed at 380 °C. In nanoplates annealed at 450 °C, soft ferrites of Mn0.48Fe2.52O4 with MnxFe1-xO are observed. It is assumed that the differential and early development of crystalline phase of MnxFe1-xO, and the inhomogeneous cation mixing between Mn and Fe cause this rather extraordinary magnetic development. In particular, the prone nature of divalent metal oxides to cation vacancy and the prolonged annealing time of 15 hours which enables ordering are also thought to contribute to these irregularities.

  13. Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory

    Energy Technology Data Exchange (ETDEWEB)

    Nami, Mohammad Rahim [Shiraz University, Shiraz, Iran (Iran, Islamic Republic of); Janghorban, Maziar [Islamic Azad University, Marvdash (Iran, Islamic Republic of)

    2015-06-15

    In this work, dynamic analysis of rectangular nanoplates subjected to moving load is presented. In order to derive the governing equations of motion, second order plate theory is used. To capture the small scale effects, the nonlocal elasticity theory is adopted. It is assumed that the nanoplate is subjected to a moving concentrated load with the constant velocity V in the x direction. To solve the governing equations, state-space method is used to find the deflections of rectangular nanoplate under moving load. The results obtained here reveal that the nonlocality has significant effect on the deflection of rectangular nanoplate subjected to moving load.

  14. Characterization and supercapacitor application of coin-like β-nickel hydroxide nanoplates

    International Nuclear Information System (INIS)

    Li Hongliang; Liu Suqin; Huang Chenghuan; Zhou Zhi; Li Yanhua; Fang Dong

    2011-01-01

    Coin-like nickel hydroxide nanoplates are synthesized via a simple coordination homogeneous precipitation method. The structure and morphology of as-prepared products are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. It is demonstrated that the products are typical β-nickel hydroxide with bunches coin-like nanoplates morphology. The electrochemical properties of coin-like β-Ni(OH) 2 are examined by cyclic voltammetric, chronopotentiometry and electrochemical impedance spectroscope. Cyclic voltammetric studies show that the electrodes have good reversibility. A specific capacitance of 1532 F g −1 is obtained at a charge/discharge current density of 0.2 A g −1 .

  15. Solvothermal synthesis of LiFePO4 nanoplates with (010) plane and the uniform carbon coated on their surface by esterification reaction

    International Nuclear Information System (INIS)

    Ma, Zhipeng; Shao, Guangjie; Wang, Xu; Song, Jianjun; Wang, Guiling; Liu, Tingting

    2014-01-01

    A facile solvothermal synthesis and esterification reaction combined with a high temperature calcination technique has been developed to prepare the uniform carbon coating LiFePO 4 nanoplates. The carbon coating LiFePO 4 nanoplates are investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), galvanostatic intermittent titration technique (GITT) and galvanostatic charge–discharge test. A reasonable growth mechanism of LiFePO 4 nanoplates is proposed on the basis of time dependent experimental results. The results show that each nanoplate is a LiFePO 4 single crystal with the large (010) plane. According to Raman spectroscopy analysis, carbon is uniformly coated on the surface of LiFePO 4 nanoplates. Electrochemical test results also indicate that the carbon coating LiFePO 4 nanoplates exhibit a high reversible specific capacity of 144.8 mAh g −1 at 0.5 C and 116.9 mAh g −1 under lower discharging rate at −20 °C. - Highlights: • LiFePO 4 nanoplates prepared by facile solvothermal synthesis expose large (010) plane. • The polyester network formed by the esterification reaction could entirely wrap LiFePO 4 . • The polyester wrapped on the surface of LiFePO 4 transformed into the uniform carbon layer after calcination. • LiFePO 4 /C nanoplates have good high-rate and low-temperature performance

  16. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  17. Recovery of gold from hydrometallurgical leaching solution of electronic waste via spontaneous reduction by polyaniline

    Directory of Open Access Journals (Sweden)

    Yuanzhao Wu

    2017-08-01

    Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.

  18. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    Science.gov (United States)

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  19. Facile Br{sup -} assisted hydrothermal synthesis of Bi{sub 2}MoO{sub 6} nanoplates with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin [Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Zhang, Guoqing [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Ding, Shimin [Yangtze Normal University, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Chongqing (China)

    2017-10-15

    Bi{sub 2}MoO{sub 6} nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br{sup -} containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi{sub 2}MoO{sub 6} nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi{sub 2}MoO{sub 6} nanoplates. KBr-templated Bi{sub 2}MoO{sub 6} nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi{sub 2}MoO{sub 6} but inferior to that of CTAB-templated Bi{sub 2}MoO{sub 6} nanoplates. (orig.)

  20. Anisotropic localized surface plasmon resonances in CuS nanoplates prepared by size-selective precipitation

    Science.gov (United States)

    Hamanaka, Yasushi; Yamada, Kaoru; Hirose, Tatsunori; Kuzuya, Toshihiro

    2018-05-01

    CuS nanoplates were synthesized by a colloidal method and separated into four fractions of nanoplates with different aspect ratios by a size-selective precipitation. In addition to a strong near infrared absorption band ascribed to the in-plane mode of the localized surface plasmon resonance (LSPR), we found a weak absorption band on the high frequency tail of the in-plane LSPR band. The frequency of the weak absorption band was almost constant and independent of the aspect ratio, while the in-plane LSPR band exhibited a strong aspect ratio dependence. These characteristics suggested that the weak absorption band is ascribed to the out-of-plane LSPR. Although the out-of-plane LSPR was expected to be difficult to observe for CuS nanoplates due to its low intensity and overlap with the strong in-plane resonance, we could successfully identify the out-of-plane mode by reducing the width of the size distribution and spectral broadening caused thereby.

  1. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  2. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    International Nuclear Information System (INIS)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-01-01

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH

  3. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T

    2004-10-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am{sup -2}) conditions in the FM-01 LC flow cell.

  4. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor

    International Nuclear Information System (INIS)

    Reyes-Cruz, V.; Gonzalez, I.; Oropeza, M.T.

    2004-01-01

    The selective electro-recovery of gold and silver values from cyanide leaching solutions containing copper was accomplished in a three-dimensional (3D) electrochemical reactor. This case let to contrast three different points of view when dealing with a composed metallic solution: First, the thermodynamic predictions; second, the microelectrolysis approach and finally, the macroelectrolysis experiments. Standard electrode potentials for the study solution would indicate a tendency for gold to deposit first. However, microelectrolysis studies of the three-metallic solution indicated that gold and silver are co-deposited onto a Vitreous carbon (VC) electrode without copper interference in a narrow potential range. Mass balances during the macroelectrolysis experiments (batch model assuming mass transfer control) indicated a preferential deposition of silver during the first ten minutes, even if gold deposition also occurred. On the other hand, values of Stanton (St) for different linear flow velocity corroborated that metals concentration gradients may establish a limit to make profitable the fluid velocity increase in an electrochemical flow cell. Electrolysis experiments were carried out under potentiostatic (at -1400 mV versus SCE) and galvanostatic (at -3.9 Am -2 ) conditions in the FM-01 LC flow cell

  5. Selenium-assisted controlled growth of graphene–Bi_2Se_3 nanoplates hybrid Dirac materials by chemical vapor deposition

    International Nuclear Information System (INIS)

    Sun, Zhencui; Man, Baoyuan; Yang, Cheng; Liu, Mei; Jiang, Shouzhen; Zhang, Chao; Zhang, Jiaxin; Liu, Fuyan; Xu, Yuanyuan

    2016-01-01

    Graphical abstract: - Highlights: • We synthesize the graphene–Bi_2Se_3 nanoplates hybrid Dirac materials via CVD. • The Se seed layer impels the Bi_2Se_3 plates growing along the lateral direction. • The Se seed layer can supply enough Se atoms to fill the Se vacancies. • The Se seed layer can effectively avoid the interaction of Bi_2Se_3 and the graphene. • The Se seed layer can be used to control the density of the Bi_2Se_3 nanoplates. - Abstract: Se seed layers were used to synthesize the high-quality graphene–Bi_2Se_3 nanoplates hybrid Dirac materials via chemical vapor deposition (CVD) method. The morphology, crystallization and structural properties of the hybrid Dirac materials were characterized by SEM, EDS, Raman, XRD, AFM and HRTEM. The measurement results verify that the Se seed layer on the graphene surface can effectively saturate the surface dangling bonds of the graphene, which not only impel the uniform Bi_2Se_3 nanoplates growing along the horizontal direction but also can supply enough Se atoms to fill the Se vacancies. We also demonstrate the Se seed layer can effectively avoid the interaction of Bi_2Se_3 and the graphene. Further experiments testify the different Se seed layer on the graphene surface can be used to control the density of the Bi_2Se_3 nanoplates.

  6. Study of Structural, Morphological and Optical Properties of Magnesium Hydroxide Nanoplates Synthesized by Precipitation Route

    Directory of Open Access Journals (Sweden)

    S. yousefi

    2018-03-01

    Full Text Available In this paper, high purity magnesium hydroxide nanoplates were successfully synthesized by using brine rich in magnesium ions as precursor and NaOH as precipitating agent without using dispersant agent in the room temoerature. The study and characterization of various properties of obtained nanopowder was carried out by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM, Energy Dispersive X-ray Fluorescence Spectrometer (EDX, Fourier Transform Infrared Spectrophotometer (FTIR and Ultraviolet–visible spectroscopy (UV-Vis. The FESEM and XRD analysis results showed that magnesium hydroxide powder had nanoplates with the average crystallite size 17.1nm and no impurity; that was in agreement with the result of EDX and FTIR perfectly. Furthermore, optical characteristics of magnesium hydroxide nanoplates by UV-Vis spectroscopy showed an optical band gap of 5.5 eV. This wide band gap can be a useful innovation in optoelectronic sub-micron devices.

  7. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  8. Evaluation of Acoustic Cavitation in Terephthalic Acid Solutions Containing Gold Nanoparticles by the Spectrofluorometry Method

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2012-01-01

    Full Text Available Background. When a liquid is irradiated with high intensity and low-frequency ultrasound, acoustic cavitation occurs. The existence of particles in a liquid provides nucleation sites for cavitation bubbles and leads to a decrease in the ultrasonic intensity threshold needed for cavitation onset. Materials and Methods. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Results. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Conclusion. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors in sonodynamic therapy. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a certain range of conditions in medical ultrasound fields.

  9. High Curie temperature Bi(1.85)Mn(0.15)Te3 nanoplates.

    Science.gov (United States)

    Cheng, Lina; Chen, Zhi-Gang; Ma, Song; Zhang, Zhi-dong; Wang, Yong; Xu, Hong-Yi; Yang, Lei; Han, Guang; Jack, Kevin; Lu, Gaoqing Max; Zou, Jin

    2012-11-21

    Bi(1.85)Mn(0.15)Te(3) hexagonal nanoplates with a width of ~200 nm and a thickness of ~20 nm were synthesized using a solvothermal method. According to the structural characterization and compositional analysis, the Mn(2+) and Mn(3+) ions were found to substitute Bi(3+) ions in the lattice. High-level Mn doping induces significant lattice distortion and decreases the crystal lattice by 1.07% in the a axis and 3.18% in the c axis. A high ferromagnetic state with a Curie temperature of ~45 K is observed in these nanoplates due to Mn(2+) and Mn(3+) ion doping, which is a significant progress in the field of electronics and spintronics.

  10. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Jun; Hou, Wenhua; Wang, Jiulin; Nuli, Yanna

    2015-08-24

    Herein, MoO2 nanoplates have been facilely prepared through a hydrothermal process by using MoO3 microbelts as the intercalation host. The obtained MoO2 nanoplates manifest excellent electrochemical properties when the discharge cutoff voltage is simply set at 1.0 V to preclude the occurrence of conversion reactions. Its initial reversible capacity reaches 251 mAh g(-1), which is larger than that of Li4Ti5O12 , at a current rate of 0.2 C. The average capacity decay is only 0.0465 mAh g(-1) per cycle, with a coulombic efficiency of 99.5% (from the 50th cycle onward) for 2000 cycles at 1 C. Moreover, this MoO2 electrode demonstrates an outstanding high power performance. When the current rate is increased from 0.2 to 50 C, about 54% of the capacity is retained. The superior electrochemical performance can be attributed to the metallic conductivity of MoO2, short Li(+) diffusion distance in the nanoplates, and reversible crystalline phase conversion of the addition-type reaction of MoO2. The prepared MoO2 nanoplates may hopefully replace their currently used analogues, such as Li4Ti5O12 , in high power lithium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  12. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    Science.gov (United States)

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  13. The determination of total cyanide in solutions containing uranium and gold

    International Nuclear Information System (INIS)

    Solomons, M.; Dixon, K.

    1983-01-01

    This report gives the results of a limited investigation of three distillation procedures and their variants for the separation of cyanide. The spectrophotometric measurement, which follows the distillation, uses either a mixture of pyridine and pyrazolone, or a mixture of pyridine and barbituric acid. It was found that the method published in the South Africa Government Gazette in 1969 gives quantitative recoveries from potassium cyanide solutions but not in the presence of gold. The ligand-displacement method did not give quantitative recoveries in the presence of gold, except when zinc was added to the distilland, and it then failed to give a quantitative recovery of cyanide from ferrocyanide. These two methods were therefore rejected as unsuitable for the determination of cyanide in solutions containing small amounts of uranium and gold. The procedure of the American Public Health Association (APHA) was found to give quantitative recoveries in the presence of gold, uranium, thiocyanate, and ferrocyanide when cuprous chloride, or cuprous chloride with magnesium chloride, are added to the distilland. The spectrophotometric measurement using a mixture of pyridine and barbituric acid is preferred. The calibration range of the method is 0,5 to 6μg of cyanide, and the limit of determination is 0,04μg/cm 3 . (The relative standard deviation of the method is 0,05.) The distillation time in the APHA method is approximately two and a half hours; with 3 distillation trains, up to 9 distillations can be made per day, plus a further 2 hours for the spectrophotometric determination. The preferred laboratory method is detailed in an appendix

  14. ZnO nanorods/ZnS.(1,6-hexanediamine)0.5 hybrid nanoplates hierarchical heteroarchitecture with improved electrochemical catalytic properties for hydrazine

    Science.gov (United States)

    Wu, Zhengcui; Wu, Yaqin; Pei, Tonghui; Wang, Huan; Geng, Baoyou

    2014-02-01

    Novel hierarchical heteronanostructures of ZnO nanorods/ZnS.(HDA)0.5 (HDA = 1,6-hexanediamine) hybrid nanoplates on a zinc substrate are successfully synthesized on a large scale by combining hydrothermal growth (for ZnO nanorods) and liquid chemical conversion (for ZnS.(HDA)0.5 nanoplates) techniques. The formation of ZnS.(HDA)0.5 hybrid nanoplates branches takes advantage of the preferential binding of 1,6-hexanediamine on specific facets of ZnS, which makes the thickening rate much lower than the lateral growth rate. The ZnS.(HDA)0.5 hybrid nanoplates have a layered structure with 1,6-hexanediamine inserted into interlayers of wurtzite ZnS through the bonding of nitrogen. The number density and thickness of the secondary ZnS.(HDA)0.5 nanoplates can be conveniently engineered by variation of the sulfur source and straightforward adjustment of reactant concentrations such as 1,6-hexanediamine and the sulfur source. The fabricated ZnO/ZnS.(HDA)0.5 heteronanostructures show improved electrochemical catalytic properties for hydrazine compared with the primary ZnO nanorods. Due to its simplicity and efficiency, this approach could be similarly used to fabricate varieties of hybrid heterostructures made of materials with an intrinsic large lattice mismatch.Novel hierarchical heteronanostructures of ZnO nanorods/ZnS.(HDA)0.5 (HDA = 1,6-hexanediamine) hybrid nanoplates on a zinc substrate are successfully synthesized on a large scale by combining hydrothermal growth (for ZnO nanorods) and liquid chemical conversion (for ZnS.(HDA)0.5 nanoplates) techniques. The formation of ZnS.(HDA)0.5 hybrid nanoplates branches takes advantage of the preferential binding of 1,6-hexanediamine on specific facets of ZnS, which makes the thickening rate much lower than the lateral growth rate. The ZnS.(HDA)0.5 hybrid nanoplates have a layered structure with 1,6-hexanediamine inserted into interlayers of wurtzite ZnS through the bonding of nitrogen. The number density and thickness of the

  15. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    International Nuclear Information System (INIS)

    Mishra, Vijay Kumar; Bhattacharjee, Birendra Nath; Parkash, Om; Kumar, Devendra; Rai, Shyam Bahadur

    2014-01-01

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO 3 ) 2 ⋅4H 2 O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO 3 ) 2 ⋅6H 2 O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH 2 PO 4 ⋅2H 2 O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized structurally using X-ray diffraction and

  16. Mg-doped hydroxyapatite nanoplates for biomedical applications: A surfactant assisted microwave synthesis and spectroscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Vijay Kumar [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Bhattacharjee, Birendra Nath; Parkash, Om [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Kumar, Devendra, E-mail: devendra.cer@iitbhu.ac.in [Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Rai, Shyam Bahadur, E-mail: sbrai49@yahoo.co.in [Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-11-25

    Highlights: • Microwave irradiation technique: employed for the synthesis of Mg-HAp nanoplates. • Surfactant (EDTA) assisted synthesis of Mg-HAp. • FT-IR and Raman analysis of functional groups of Mg-HAp. - Abstract: Nanoplates of Mg doped hydroxyapatite (Mg-HAp) were derived successfully and rapidly via microwave irradiation technique. Hydroxyapatite (HAp) is the hard tissues and main inorganic component in mammals. Different nanostructures of HAp exist in different parts of human bone but nanorods are very common due to its intrinsic nature to grow in rode-like structure under physiological as well as under applied ambient conditions in laboratory. On the addition of Mg at very low level (0.06 mol%) in pure HAp results the formation of 2-D plate-like nanostructures rather than rod-like which is the matter of interest. In this attempt our efforts have been focused on the study of effect of Mg incorporation on structural and spectroscopic properties of HAp prepared via microwave irradiation technique. This technique is preferred due to several advantages viz. very fast as well as homogeneous heating, time/energy saving and eco-friendliness. The calcium nitrate tetrahydrate (Ca(NO{sub 3}){sub 2}⋅4H{sub 2}O)) as a source of calcium, magnesium nitrate hexahydrate (Mg(NO{sub 3}){sub 2}⋅6H{sub 2}O) as a source of magnesium, disodium hydrogen phosphate dihydrate (NaH{sub 2}PO{sub 4}⋅2H{sub 2}O) as a source of phosphorous and sodium ethylene diamine tetra acetate (NaEDTA) as a surfactant were used as starting reagents. Sodium hydroxide (NaOH) pellets were employed to adjust the pH value of final solution. The solution of fixed pH value was kept into the microwave oven generating waves of frequency 2.45 GHz (water absorption frequency) and power 750 W for 8 min. The precipitate thus obtained was washed, centrifuged and then dried at 100 °C for 2 h. Dried powder was then calcined at 700 °C for 2 h. The bright white powder thus obtained was characterized

  17. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Tian, Bo [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Lei, Yong; Ke, Qin-Fei [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China); Zhu, Zhen-An, E-mail: zhuzhenan2006@126.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Guo, Ya-Ping, E-mail: ypguo@shnu.edu.cn [The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234 (China)

    2016-10-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  18. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: Fabrication, morphology, cytocompatibility and osteogenic differentiation

    International Nuclear Information System (INIS)

    Chen, Wei; Tian, Bo; Lei, Yong; Ke, Qin-Fei; Zhu, Zhen-An; Guo, Ya-Ping

    2016-01-01

    Hydroxyapatite (HA) crystals exhibit rod-like shape with c-axis orientation and plate-like shape with a(b)-axis orientation in vertebrate bones and tooth enamel surfaces, respectively. Herein, we report the synthesis of HA coatings with the oriented nanorod arrays (RHACs) and HA coatings with oriented nanoplate arrays (PHACs) by using bioglass coatings as sacrificial templates. After soaking in simulated body fluid (SBF) at 120 °C, the bioglass coatings are hydrothermally converted into the HA coatings via a dissolution-precipitation reaction. If the Ca/P ratios in SBF are 2.50 and 1.25, the HA crystals on the coatings are oriented nanorod arrays and oriented nanoplate arrays, respectively. Moreover, the bioglass coatings are treated with SBF at 37 °C, plate-like HA coatings with a low crystallinity (SHACs) are prepared. As compared with the Ti6Al4V and SHACs, the human bone marrow stromal cells (hBMSCs) on the RHACs and PHACs have better cell adhesion, spreading, proliferation and osteogenic differentiation because of their moderately hydrophilic surfaces and similar chemical composition, morphology and crystal orientation to human hard tissues. Notably, the morphologies of HA crystals have no obvious effects on cytocompatibility and osteogenic differentiation. Hence, the HA coatings with oriented nanoplate arrays or oriented nanorod arrays have a great potential for orthopedic applications. - Highlights: • We prepare hydroxyapatite coatings with oriented nanoplate and nanorod arrays. • Hydroxyapatite coatings are in situ converted from bioglass coatings. • Hydroxyapatite coatings have good cytocompatibility and osteogenic differentiation. • Oriented hydroxyapatite coatings are used for orthopedic implants.

  19. Nonlocal free vibration in the pre- and post-buckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions

    Science.gov (United States)

    Ansari, R.; Gholami, R.

    2016-09-01

    Considering the small scale effect together with the influences of transverse shear deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free vibration of magneto-electro-thermo-elastic (METE) rectangular nanoplates with various edge supports in pre- and post-buckled states is investigated herein. It is assumed that the METE nanoplate is subjected to the external in-plane compressive loads in combination with magnetic, electric and thermal loads. The Mindlin plate theory, von Kármán hypothesis and the nonlocal theory are utilized to develop a size-dependent geometrically nonlinear plate model for describing the size-dependent linear and nonlinear mechanical characteristics of moderately thick METE rectangular nanoplates. The nonlinear governing equations and the corresponding boundary conditions are derived using Hamilton’s principle which are then discretized via the generalized differential quadrature method. The pseudo-arc length continuation approach is used to obtain the equilibrium postbuckling path of METE nanoplates. By the obtained postbuckling response, and taking a time-dependent small disturbance around the buckled configuration, and inserting them into the nonlinear governing equations, an eigenvalue problem is achieved from which the frequencies of pre- and post-buckled METE nanoplates can be calculated. The effects of nonlocal parameter, electric, magnetic and thermal loadings, length-to-thickness ratio and different boundary conditions on the free vibration response of METE rectangular nanoplates in the pre- and post-buckled states are highlighted.

  20. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  1. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H. [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Physics Department, National Research Center, Elbehoos st., 12622, Dokki, Giza (Egypt); Salerno, M., E-mail: marco.salerno@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Polovitsyn, Anatolii [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Dipartimentodi Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy); Marras, Sergio [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); De Angelis, Francesco [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-05-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  2. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    International Nuclear Information System (INIS)

    Abdellatif, M.H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco

    2017-01-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  3. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi; Zhu, Yihan; Huang, Xiao; Han, Yu; Wang, Qingxiao; Liu, Qing; Huang, Ying; Gan, Chee Lip; Zhang, Hua

    2015-01-01

    @Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase

  4. Hydrothermal synthesis of p-type nanocrystalline NiO nanoplates for high response and low concentration hydrogen gas sensor application

    KAUST Repository

    Nakate, Umesh T.; Lee, Gun Hee; Ahmad, Rafiq; Patil, Pramila; Bhopate, Dhanaji P.; Hahn, Y.B.; Yu, Y.T.; Suh, Eun-kyung

    2018-01-01

    High quality nanocrystalline NiO nanoplates were synthesized using surfactant and template free hydrothermal route. The gas sensing properties of NiO nanoplates were investigated. The nanoplates morphology of NiO with average thickness ~20 nm and diameter ~100 nm has been confirmed by FE-SEM and TEM. Crystalline quality of NiO has been studied using HRTEM and SAED techniques. Structural properties and elemental compositions have been analysed by XRD and energy dispersive spectrometer (EDS) respectively. The detailed investigation of structural parameters has been carried out. The optical properties of NiO were analyzed from UV-Visible and photoluminescence spectra. NiO nanoplates have good selectivity towards hydrogen (H2) gas. The lowest H2 response of 3% was observed at 2 ppm, whereas 90% response was noted for 100 ppm at optimized temperature of 200 °C with response time 180 s. The H2 responses as functions of different operating temperature as well as gas concentrations have been studied along with sensor stability. The hydrogen sensing mechanism was also elucidated.

  5. Hydrothermal synthesis of p-type nanocrystalline NiO nanoplates for high response and low concentration hydrogen gas sensor application

    KAUST Repository

    Nakate, Umesh T.

    2018-05-30

    High quality nanocrystalline NiO nanoplates were synthesized using surfactant and template free hydrothermal route. The gas sensing properties of NiO nanoplates were investigated. The nanoplates morphology of NiO with average thickness ~20 nm and diameter ~100 nm has been confirmed by FE-SEM and TEM. Crystalline quality of NiO has been studied using HRTEM and SAED techniques. Structural properties and elemental compositions have been analysed by XRD and energy dispersive spectrometer (EDS) respectively. The detailed investigation of structural parameters has been carried out. The optical properties of NiO were analyzed from UV-Visible and photoluminescence spectra. NiO nanoplates have good selectivity towards hydrogen (H2) gas. The lowest H2 response of 3% was observed at 2 ppm, whereas 90% response was noted for 100 ppm at optimized temperature of 200 °C with response time 180 s. The H2 responses as functions of different operating temperature as well as gas concentrations have been studied along with sensor stability. The hydrogen sensing mechanism was also elucidated.

  6. Synthesis and characterization of NiCo_2O_4 nanoplates as efficient electrode materials for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Kim, Taehyun; Ramadoss, Ananthakumar; Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-01-01

    Highlights: • NiCo_2O_4 nanoplates were synthesized through a facile approach. • The NiCo_2O_4 nanoplates electrode material exhibit a specific capacitance of 332 F g"−"1 at 5 mV s"−"1. • The fabricated NiCo_2O_4 electrode reveals 86% retention of initial capacitance after 2000 cycles. - Abstract: In the present work, NiCo_2O_4 nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo_2O_4 nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g"−"1 at a scan rate of 5 mV s"−"1 and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g"−"1. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  7. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    OpenAIRE

    Schröfel, Adam; Kratošová, Gabriela; Bohunická, Markéta; Dobročka, Edmund; Vávra, Ivo

    2011-01-01

    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron m...

  8. Inhibition of growth of S. epidermidis by hydrothermally synthesized ZnO nanoplates

    Science.gov (United States)

    Abinaya, C.; Mayandi, J.; Osborne, J.; Frost, M.; Ekstrum, C.; Pearce, J. M.

    2017-07-01

    The antibacterial effect of zinc oxide (ZnO#1) as prepared and annealed (ZnO#2) at 400 °C, Cu doped ZnO (CuZnO), and Ag doped ZnO (AgZnO) nanoplates on Staphylococcus epidermidis was investigated for the inhibition and inactivation of cell growth. The results shows that pure ZnO and doped ZnO samples exhibited antibacterial activity against Staphylococcus epidermidis (S. epidermidis) as compared to tryptic soy broth (TSB). Also it is observed that S. epidermidis was extremely sensitive to treatment with ZnO nanoplates and it is clear that the effect is not purely depend on Cu/Ag. Phase identification of a crystalline material and unit cell dimensions were studied by x-ray powder diffraction (XRD). The scanning electron microscopy (SEM) provides information on sample’s surface topography and the EDX confirms the presence of Zn, O, Cu and Ag. X-ray photo-electron spectroscopy (XPS) was used to analyze the elemental composition and electronic state of the elements that exist within the samples. These studies confirms the formation of nanoplates and the presence of Zn, O, Ag, Cu with the oxidation states  +2, -2, 0 and  +2 respectively. These results indicates promising antibacterial applications of these ZnO-based nanoparticles synthesized with low-cost hydrothermal methods.

  9. Rapid adsorption properties of flower-like BiOI nanoplates synthesized via a simple EG-assisted solvothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Ji, Guangbin, E-mail: gbji@nuaa.edu.cn [Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology (China); Gondal, M. A. [King Fahd University of Petroleum and Minerals, Physics Department (Saudi Arabia); Liu, Yousong; Zhang, Xingmiao; Chang, Xiaofeng; Li, Nianwu [Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology (China)

    2013-07-15

    Uniform well-crystallized flower-like BiOI nanoplates contained 3.7 nm mesopores, which may be attributed to the internanosheet spaces of BiOI with maximum pore diameters of about 30 nm, were successfully synthesized via a simple ethylene glycol-assisted solvothermal method. The as-prepared porous BiOI nanoplates exhibited excellent adsorption ability, and the saturated extent of adsorption of BiOI over an RhB solution was as high as 197 mg/g, which is much higher than those for BiOCl and BiOBr prepared via the same method and with a similar surface area. The probable adsorption mechanism could have originated from the interaction between the I atom in BiOI and a proton in RhB at different pH values and temperatures. With visible light irradiation ({lambda} > 420 nm), 80 % of the RhB was degraded in 4 h, while BiOI still demonstrated reasonably outstanding photocatalytic ability under green light ({lambda} = 550 {+-} 15 nm) because of its low-energy gap (1.72 eV). The degradation test for BiOI under irradiation at {lambda} = 550 {+-} 15 nm is an excellent achievement for field applications because the catalyst can be applied in solar irradiation to remove organic pollutants, which may be of great value BiOI complex.

  10. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family.

    Science.gov (United States)

    Roberts, Jenny R; Mercer, Robert R; Stefaniak, Aleksandr B; Seehra, Mohindar S; Geddam, Usha K; Chaudhuri, Ishrat S; Kyrlidis, Angelos; Kodali, Vamsi K; Sager, Tina; Kenyon, Allison; Bilgesu, Suzan A; Eye, Tracy; Scabilloni, James F; Leonard, Stephen S; Fix, Natalie R; Schwegler-Berry, Diane; Farris, Breanne Y; Wolfarth, Michael G; Porter, Dale W; Castranova, Vincent; Erdely, Aaron

    2016-06-21

    Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size. Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and m(2). At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1. Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates > 5 μm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1-2 μm graphite nanoplate.

  11. ZnO nanorods/ZnS·(1,6-hexanediamine)(0.5) hybrid nanoplates hierarchical heteroarchitecture with improved electrochemical catalytic properties for hydrazine.

    Science.gov (United States)

    Wu, Zhengcui; Wu, Yaqin; Pei, Tonghui; Wang, Huan; Geng, Baoyou

    2014-03-07

    Novel hierarchical heteronanostructures of ZnO nanorods/ZnS·(HDA)0.5 (HDA = 1,6-hexanediamine) hybrid nanoplates on a zinc substrate are successfully synthesized on a large scale by combining hydrothermal growth (for ZnO nanorods) and liquid chemical conversion (for ZnS·(HDA)0.5 nanoplates) techniques. The formation of ZnS·(HDA)0.5 hybrid nanoplates branches takes advantage of the preferential binding of 1,6-hexanediamine on specific facets of ZnS, which makes the thickening rate much lower than the lateral growth rate. The ZnS·(HDA)0.5 hybrid nanoplates have a layered structure with 1,6-hexanediamine inserted into interlayers of wurtzite ZnS through the bonding of nitrogen. The number density and thickness of the secondary ZnS·(HDA)0.5 nanoplates can be conveniently engineered by variation of the sulfur source and straightforward adjustment of reactant concentrations such as 1,6-hexanediamine and the sulfur source. The fabricated ZnO/ZnS·(HDA)0.5 heteronanostructures show improved electrochemical catalytic properties for hydrazine compared with the primary ZnO nanorods. Due to its simplicity and efficiency, this approach could be similarly used to fabricate varieties of hybrid heterostructures made of materials with an intrinsic large lattice mismatch.

  12. Precipitation of gold and silver from cyanide solutions by hydrated electrons generated by ionizing radiation

    International Nuclear Information System (INIS)

    Chernyak, A.S.; Zhigunov, V.A.; Shepot'ko, M.L.; Smirnov, G.I.; Dolin, P.I.; Bobrova, A.S.; Khikin, G.I.

    1981-01-01

    Redox reactions are widely used in chemistry and chemical engineering for the precipitation of noble metals, since this general class of reactions offers the possibility of selective recovery of these metals from solutions that are complex in composition. The classical method for precipitation of gold and silver from cyanide process solutions is reduction by metallic zinc. This process has certain advantages, and it is easy to carry out under plant conditions with high indices of efficiency. However, the precipitation of gold and silver is accompanied by contamination of the solutions with zinc ions, which makes it difficult to recycle the cyanide solutions; also, additional treatment of the precipitates is required before they are directed to the refining process. Hence, greater quantities of reagents are required, the process conversion becomes more complicated, and the cost of producing the metals is higher. All of these factors make it attractive to seek new methods for processing cyanide solutions that do not have these shortcomings. An interesting approach to the solution of this problem is the use of so-called ''reagentless'' precipitation methods, among which we may class the reduction of gold and silver to the metallic state in cyanide solutions by hydrated electrons generated by ionizing radiation. The significant advances that have been made in research on the hydrated electron, along with data indicating that it is feasible, at least in principle, to use the hydrated electron for industrial purposes, have been the stiumlus for setting up the studies that are reported here

  13. Fabrication of nanoplate resonating structures via micro-masonry

    International Nuclear Information System (INIS)

    Bhaswara, A; Legrand, B; Mathieu, F; Nicu, L; Leichle, T; Keum, H; Rhee, S; Kim, S

    2014-01-01

    Advantages of using nanoscale membrane and plate resonators over more common cantilever shapes include higher quality factor (Q factor) for an equivalent mass and better suitability to mass sensing applications in fluid. Unfortunately, the current fabrication methods used to obtain such membranes and plates are limited in terms of materials and thickness range, and can potentially cause stiction. This study presents a new method to fabricate nanoplate resonating structures based on micro-masonry, which is the advanced form of the transfer printing technique. Nanoplate resonators were fabricated by transfer printing 0.34 µm thick square-shaped silicon plates by means of polydimethylsiloxane microtip stamps on top of silicon oxide base structures displaying 20 µm diameter cavities, followed by a thermal annealing step to create a rigid bond. Typical resulting suspended structures display vibration characteristics, i.e. a resonance frequency of a few MHz and Q factors above 10 in air at atmospheric pressure, which are in accordance with theory. Moreover, the presented fabrication method enables the realization of multiple suspended structures in a single step and on the same single base, without mechanical crosstalk between the resonators. This work thus demonstrates the suitability and the advantages of the micro-masonry technique for the fabrication of plate resonators for mass sensing purpose. (paper)

  14. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiu-Hua; Ling, Jian, E-mail: lingjian@ynu.edu.cn; Peng, Jun; Cao, Qiu-E., E-mail: qecao@ynu.edu.cn; Ding, Zhong-Tao; Bian, Long-Chun

    2013-10-10

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis.

  15. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates

    International Nuclear Information System (INIS)

    Yang, Xiu-Hua; Ling, Jian; Peng, Jun; Cao, Qiu-E.; Ding, Zhong-Tao; Bian, Long-Chun

    2013-01-01

    Graphical abstract: -- Highlights: •Demonstrated a new colorimetric strategy for iodide detection by silver nanoplates. •The colorimetric strategy is to find the critical color in a color change process. •The colorimetric strategy is more accurate and sensitive than common colorimetry. •Discovered a new morphological transformation phenomenon of silver nanoplates. -- Abstract: In this contribution, we demonstrated a novel colorimetric method for highly sensitive and accurate detection of iodide using citrate-stabilized silver triangular nanoplates (silver TNPs). Very lower concentration of iodide can induce an appreciable color change of silver TNPs solution from blue to yellow by fusing of silver TNPs to nanoparticles, as confirmed by UV–vis absorption spectroscopy and transmission electron microscopy (TEM). The principle of this colorimetric assay is not an ordinary colorimetry, but a new colorimetric strategy by finding the critical color in a color change process. With this strategy, 0.1 μM of iodide can be recognized within 30 min by naked-eyes observation, and lower concentration of iodide down to 8.8 nM can be detected using a spectrophotometer. Furthermore, this high sensitive colorimetric assay has good accuracy, stability and reproducibility comparing with other ordinary colorimetry. We believe this new colorimetric method will open up a fresh insight of simple, rapid and reliable detection of iodide and can find its future application in the biochemical analysis or clinical diagnosis

  16. Facile design and synthesis of Li-rich nanoplates cathodes with habit-tuned crystal for lithium ion batteries

    Science.gov (United States)

    Li, Jili; Jia, Tiekun; Liu, Kai; Zhao, Junwei; Chen, Jian; Cao, Chuanbao

    2016-11-01

    Li-ion batteries with high-energy and high-power density are pursued to apply in the electronic vehicles and renewable energy storage systems. In this work, layered Li-rich transition-metal oxide cathode Li1.2Ni0.2Mn0.6O2 nanoplates with enhanced growth of {010} planes (LNMO-NP) is successfully synthesized through a facile and versatile strategy. Ethylene glycol plays an important role in the formation of LNMO-NP nanoplates with {010} electrochemically active surface planes exposure. As cathode for Li-ion batteries, LNMO-NP demonstrates a high specific discharge capacity of 270.2 mAh g-1 at 0.1 C (1 C = 300 mA g-1) and an excellent rate capability. The good electrochemical performance can be attributed to the nanoplates with the growth of {010} electrochemically active planes which is in favor of Li+ intercalation/deintercalation.

  17. A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2017-06-01

    Full Text Available Thiosulfate leaching is a promising alternative to cyanidation, and the main hindrances for its wide commercial application are the high thiosulfate consumption and the difficult recovery of dissolved gold. In this review, the four solutions to reduce the consumption of thiosulfate, including the control of reaction conditions, the use of additives, the generation of thiosulfate in situ, and the replacement of traditional cupric-ammonia catalysis, are introduced and evaluated after the presentation of background knowledge about thiosulfate consumption. The replacement of cupric-ammonia catalysis with other metals, such as nickel- and cobalt-based catalysts, is proposed. The reason is that it not only reduces thiosulfate consumption observably via decreasing the redox potential of leach solution significantly but also is beneficial to gold recovery mainly owing to eliminating the interference of cuprous thiosulfate [Cu(S2O33]5−. Based on the comparative analysis for five common recovery techniques of rare-noble metals from pregnant leach solution, ion-exchange resin adsorption is considered to be the most appropriate to recover aurothiosulfate [Au(S2O32]3− because the resin can be employed in the form of resin-in-leach/pulp and, furthermore, is able to be eluted and regenerated simultaneously at ambient temperature. At last, how to reduce the process cost of the resin adsorption technique is discussed. In order to simplify the complex two-stage elution process for loaded resins, the traditional catalysis is suggested to be replaced.

  18. Synthesis and pH-dependent assembly of isotropic and anisotropic gold nanoparticles functionalized with hydroxyl-bearing amino acids

    Science.gov (United States)

    Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima

    2018-03-01

    In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.

  19. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon

    International Nuclear Information System (INIS)

    Vargas, C.; Navarro, P.; Araya, E.; Pavez, F.; Alguacil, F. J.

    2006-01-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied,evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. during elution, ammonia and thiosulfate concentration, pH regulator and temperature were evaluated. Ammonia favored the process as long as thiosulfate showed a maximum starting from which the elution diminishes. The effect of the pH regulator was very important; If was revealed that when the pH was regulated with caustic ammonia, a synergic effect appeared which favored the elution. Temperature favored the elution process, with activation energy of 9.13 kJ/mol. (Author) 25 refs

  20. Synthesis of a mesoporous single crystal Ga2O3 nanoplate with improved photoluminescence and high sensitivity in detecting CO.

    Science.gov (United States)

    Yan, Shicheng; Wan, Lijuan; Li, Zhaosheng; Zhou, Yong; Zou, Zhigang

    2010-09-14

    A new approach is proposed to synthesize a mesoporous single crystal Ga(2)O(3) nanoplate by heating a single crystal nanoplate of GaOOH, which involves an ion exchange between KGaO(2) and CH(3)COOH at room temperature for the formation of GaOOH and pseudomorphic and topotactic phase transformation from GaOOH to Ga(2)O(3).

  1. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-01-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs

  2. Electrochemical Corrosion of Stainless Steel in Thiosulfate Solutions Relevant to Gold Leaching

    Science.gov (United States)

    Choudhary, Lokesh; Wang, Wei; Alfantazi, Akram

    2016-01-01

    This study aims to characterize the electrochemical corrosion behavior of stainless steel in the ammoniacal thiosulfate gold leaching solutions. Electrochemical corrosion response was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy, while the semi-conductive properties and the chemical composition of the surface film were characterized using Mott-Schottky analysis and X-ray photoelectron spectroscopy, respectively. The morphology of the corroded specimens was analyzed using scanning electron microscopy. The stainless steel 316L showed no signs of pitting in the ammoniacal thiosulfate solutions.

  3. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    Science.gov (United States)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  4. Ultrathin NiO/NiFe2O4 Nanoplates Decorated Graphene Nanosheets with Enhanced Lithium Storage Properties

    International Nuclear Information System (INIS)

    Du, Dejian; Yue, Wenbo; Fan, Xialu; Tang, Kun; Yang, Xiaojing

    2016-01-01

    Highlights: • Ultrathin NiO/NiFe 2 O 4 nanoplates derived from NiFe layered double hydroxides are fabricated on the graphene. • NiO/NiFe 2 O 4 nanoplates on the graphene show superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates. • The effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are studied. • Graphene-encapsulated NiO/NiFe 2 O 4 is prepared and shows slightly decreased performance compared to graphene-based composite. - Abstract: As anode materials for lithium-ion batteries, bicomponent metal oxide composites show high reversible capacities; but the morphology and particle size of the composites are hardly controllable, which may reduce their electrochemical properties. In this work, ultrathin NiO/NiFe 2 O 4 nanoplates with a diameter of 5 ∼ 7 nm and a thickness of ∼2 nm are controllably fabricated on the graphene derived from NiFe layered double hydroxides (NiFe-LDHs), and exhibit superior electrochemical performance compared to pure NiO/NiFe 2 O 4 aggregates without graphene. The nanosized NiO and NiFe 2 O 4 plates are separated from each other and the graphene substrate can prevent the aggregation of NiO/NiFe 2 O 4 as well as enhance the electronic conductivity of the composite, which is beneficial to improving the electrochemical performance. Moreover, the effects of the content and the particle size/component of NiO/NiFe 2 O 4 on the electrochemical performances are also studied in order to achieve optimal performance. Ultrathin NiO/NiFe 2 O 4 nanoplates are further encapsulated by graphene nanosheets and show slightly decreased performance compared to those supported by graphene nanosheets. The different electrochemical behaviors of graphene-containing composites may be attributed to the different interactions between graphene nanosheets and NiO/NiFe 2 O 4 nanoplates.

  5. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation

    DEFF Research Database (Denmark)

    Sendroiu, I.E.; Mertens, Stijn; Schiffrin, D.J.

    2006-01-01

    The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface....... Variation of the ligand chain length provides control over the interparticle separation in the aggregates. The UV-visible spectra consist typically of a single particle band and a secondary band at higher wavelengths associated with the formation of aggregates in solution. The position of the latter depends...

  6. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  7. Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase TiO2 and mechanism

    International Nuclear Information System (INIS)

    Li, Zhijun; Qu, Yang; He, Guangwen; Humayun, Muhammad; Chen, Shuangying; Jing, Liqiang

    2015-01-01

    Graphical abstract: - Highlights: • CuO nanoplates were successfully prepared as photocathodes for PEC water reduction. • Visible-light activity for PEC water reduction is improved after coupling with TiO 2 . • Improved PEC performance is attributed to the enhanced visible-excited charge separation. • Enhanced charge separation results from high-energy electron transfer from CuO to TiO 2 . - Abstract: CuO nanoplates were prepared by a feasible hydrothermal method, and then utilized as photocathodes for photoelectrochemical (PEC) water reduction in a neutral medium under visible-light irradiation. It is clearly demonstrated that the visible-light activities of the resulting nanoplates for PEC water reduction could be greatly improved after coupling with a proper amount of nanocrystalline anatase TiO 2 . This is attributed to the enhanced charge separation in the fabricated TiO 2 /CuO nanoplate composites mainly based on the atmosphere-controlled steady-state surface photovoltage spectra. Moreover, it is suggested that the enhanced charge separation resulted from the transfer of visible-light-excited high-energy electrons from CuO to TiO 2 as confirmed from the single-wavelength PEC behavior

  8. Shape transformation of silver nanospheres to silver nanoplates induced by redox reaction of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Parnklang, Tewarak; Lamlua, Banjongsak; Gatemala, Harnchana; Thammacharoen, Chuchaat [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Kuimalee, Surasak [Industrial Chemistry and Textile Technology Programme, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Lohwongwatana, Boonrat [Metallurgical Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand); Ekgasit, Sanong, E-mail: sanong.e@chula.ac.th [Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Patumwan, Bangkok 10330 (Thailand)

    2015-03-01

    In this paper we demonstrate a simple and rapid shape transformation of silver nanospheres (AgNSs) to silver nanoplates (AgNPls) using the oxidation and reduction capabilities of hydrogen peroxide. AgNPls having tunable surface plasmon resonance across the visible region with average size of 40–100 nm and thickness of 10–15 nm can be fabricated within 2 min simply by adding H{sub 2}O{sub 2} into a colloid of AgNSs with average particle size of 7 nm. The efficiency of H{sub 2}O{sub 2} as a shape-transforming agent depends strongly on its concentration, pH of the AgNS colloid, and the employed stabilizers. H{sub 2}O{sub 2} oxidizes AgNSs to silver ions while concertedly reduces silver ions to silver atom necessary for the growth of AgNPls. The shape transformation reaction was conducted at a relatively low concentration of H{sub 2}O{sub 2} in order to minimize the oxidative dissolution while facilitating kinetically controlled growth of AgNPls under a near neutral pH. Polyvinyl-pyrrolidone is an effective steric stabilizer preventing aggregation while assisting the growth of AgNPls. Trisodium citrate inhibits the formation of AgNPls under the H{sub 2}O{sub 2} reduction as it forms a stable complex with silver ions capable of withstanding the weakly reducing power of H{sub 2}O{sub 2}. After a complete consumption of AgNSs, large nanoplates grows with an expense of smaller nanoplates. The growth continues until H{sub 2}O{sub 2} is exhausted. A high concentration H{sub 2}O{sub 2} promotes catalytic decomposition of H{sub 2}O{sub 2} on the surface of AgNSs and oxidative dissolution of AgNSs without a formation of AgNPls. - Graphical abstract: Proposed mechanism for the shape transformation of AgNSs to AgNPls induced by the oxidation/reduction of H{sub 2}O{sub 2}. - Highlights: • Rapid shape transformation of silver nanospheres to nanoplates by H{sub 2}O{sub 2}. • Structural change completes in 2 min with a yellow-to-blue color change. • Selective fabrication of

  9. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  10. Few-Layer Nanoplates of Bi 2 Se 3 and Bi 2 Te 3 with Highly Tunable Chemical Potential

    KAUST Repository

    Kong, Desheng

    2010-06-09

    A topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk band gap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that group V-VI materials Bi2Se3, Bi2Te3, and Sb2Te3 are TIs with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependent color and contrast for nanoplates grown on oxidized silicon (300 nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface state effects in transport measurements. Low-temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential. © 2010 American Chemical Society.

  11. Synthesis and characterization of NiCo{sub 2}O{sub 4} nanoplates as efficient electrode materials for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyun [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Ramadoss, Ananthakumar [Nanomaterials and System Lab, Faculty of Applied Energy System, Science and Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Kim, Sang Jae, E-mail: kimsangj@jejunu.ac.kr [Nanomaterials and System Lab, Department of Mechatronics Engineering, Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of); Nanomaterials and System Lab, Faculty of Applied Energy System, Science and Engineering College, Jeju National University, Jeju 690-756 (Korea, Republic of)

    2016-05-01

    Highlights: • NiCo{sub 2}O{sub 4} nanoplates were synthesized through a facile approach. • The NiCo{sub 2}O{sub 4} nanoplates electrode material exhibit a specific capacitance of 332 F g{sup −1} at 5 mV s{sup −1}. • The fabricated NiCo{sub 2}O{sub 4} electrode reveals 86% retention of initial capacitance after 2000 cycles. - Abstract: In the present work, NiCo{sub 2}O{sub 4} nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo{sub 2}O{sub 4} nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g{sup −1} at a scan rate of 5 mV s{sup −1} and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g{sup −1}. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  12. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C

    Science.gov (United States)

    Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.

    2018-04-01

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  13. The fabrication of highly conductive and flexible Ag pattern through baking Ag nanospheres - nanoplates hybrid ink at a low temperature of 100°C.

    Science.gov (United States)

    Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y

    2018-01-24

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.

  14. CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor

    Science.gov (United States)

    Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.

    2018-02-01

    Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.

  15. Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2011-12-01

    Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

  16. The Voltammetric Analysis of Selenium Electrodeposition from H2SeO3 Solution on Gold Electrode

    OpenAIRE

    Kowalik R.

    2015-01-01

    The different voltammetry techniques were applied to understand the process of selenium deposition from sulfate solution on gold polycrystalline electrode. By applying the cycling voltammetry with different scan limits as well as the chronoamper-ometry combined with the cathodic and anodic linear stripping voltammetry, the different stages of the deposition of selenium were revealed. It was found that the process of reduction of selenous acid on gold surface exhibits a multistage character. T...

  17. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.

    Science.gov (United States)

    Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y

    2018-02-12

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  18. Formation Mechanism and Gas-Sensing Performance of La/ZnO Nanoplates Synthesized by a Facile Hydrothermal Method

    Science.gov (United States)

    Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao

    2018-03-01

    La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.

  19. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    International Nuclear Information System (INIS)

    Vila, M; Díaz-Guerra, C; Jerez, D; Piqueras, J; Lorenz, K; Alves, E

    2014-01-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO 3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO 3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed. (paper)

  20. Gold and uranium extraction

    International Nuclear Information System (INIS)

    James, G.S.; Davidson, R.J.

    1977-01-01

    A process for extracting gold and uranium from an ore containing them both comprising the steps of pulping the finely comminuted ore with a suitable cyanide solution at an alkaline pH, acidifying the pulp for uranium dissolution, adding carbon activated for gold recovery to the pulp at a suitable stage, separating the loaded activated carbon from the pulp, and recovering gold from the activated carbon and uranium from solution

  1. 2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate

    International Nuclear Information System (INIS)

    Tai, Po-Tse; Yu, Pyng; Tang, Jau

    2010-01-01

    Graphical abstract: Modeling the lattice dynamics of a triangular plate with the arrows indicating the direction of impulsive thermal stress. We investigated ultrafast structural dynamics of triangular nanoplates based on 2-D Fermi-Pasta-Ulam model to explain coherent acoustic phonon excitation in nanoprisms. - Abstract: In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.

  2. Dynamic microscale temperature gradient in a gold nanorod solution measured by diffraction-limited nanothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengmingyue; Gan, Xiaosong; Li, Xiangping; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-09-21

    We quantify the dynamic microscale temperature gradient in a gold nanorod solution using quantum-dot-based microscopic fluorescence nanothermometry. By incorporating CdSe quantum dots into the solution as a nanothermometer, precise temperature mapping with diffraction-limited spatial resolution and sub-degree temperature resolution is achieved. The acquired data on heat generation and dissipation show an excellent agreement with theoretical simulations. This work reveals an effective approach for noninvasive temperature regulation with localized nanoheaters in microfluidic environment.

  3. 3D hierarchical porous cobalt monoxide nanoplates with a book-like structure derived from Co(CO3)0.5(OH)·0.11H2O: two-steps oriented attachment and high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xiao, Yuanhua; Zhao, Xiaobing; Jin, Qingxian; Su, Dangcheng; Wang, Xuezhao; Wu, Shide; Zhou, Liming; Fang, Shaoming

    2017-10-01

    3D Hierarchical porous cobalt monoxide (CoO) nanoplates with a book-like structure derive from Co(CO3)0.5(OH)·0.11H2O by a two-steps oriented attachment mechanism in the solvothermal process. Firstly, nanoplates are formed by oriented attachment of nanorods. Secondly, new nanoplates could be generated on the old nanoplates by a sloped oriented attachment of nanorods with the based nanoplates shape into a 3D hierarchical book-like structure. The CoO nanoplates show superior specific capacitance about 1221.7 F g-1 at 1 A g-1 to most of the Co-based supercapacitor materials up to date. An asymmetric supercapacitor (ASC) based on positive electrode CoO and negative electrode active carbon (AC) exhibits an excellent energy density of 50.1 Wh kg-1 at a power density of 589 W kg-1 and gets a satisfactory cycling stability (86.3% of its initial capacitance retention at 10 A g-1 over 10 000 cycles).

  4. Recovery of carrier-free gold-195

    International Nuclear Information System (INIS)

    Iofa, B.Z.; Ivanova, N.A.

    1995-01-01

    It is known that gold(III) is readily extracted from nitric acid solutions with ethers. The authors have studied extraction of trace amounts of gold(III) from nitric acid solutions with diethyl and diisopropyl ethers in the presence of significant excess of Pt(IV). Distribution coefficients of gold(III) were measured radiometrically using carrier-free gold-195 or spectrophotometrically in the presence of platinum(IV). Very high coefficients of gold separation from platinum may be achieved. Preliminary experiments have shown that zinc-65 was not extracted with ethers from nitric acid solutions. As an extraction system, the authors have chosen the system 10 M HNO 3 -diisopropyl ether. After model experiments, the authors have performed recovery of carrier-free gold-195 from a real platinum target irradiated with protons in a cyclotron

  5. Gold nanoparticles produced in a microalga

    International Nuclear Information System (INIS)

    Luangpipat, Tiyaporn; Beattie, Isabel R.; Chisti, Yusuf; Haverkamp, Richard G.

    2011-01-01

    An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.

  6. Conformal spinel/layered heterostructures of Co3O4 shells grown on single-crystal Li-rich nanoplates for high-performance lithium-ion batteries

    Science.gov (United States)

    Xin, Yue; Lan, Xiwei; Chang, Peng; Huang, Yaqun; Wang, Libin; Hu, Xianluo

    2018-07-01

    Lithium-rich layered materials have received much attention because of their high specific capacity and high energy density. Unfortunately, they suffer from irreversible capacity loss, low initial Coulombic efficiency and poor cyclability. Here we report a facile co-precipitation method to synthesize uniform single-crystal Li-rich Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoplates without using any template. Subsequently, a Co3O4 shell is in situ grown on the Li-rich nanoplates through a hydrothermal method, leading to spinel/layered heterostructures. The electrode made of conformal heterostructured Li-rich/Co3O4 nanoplates delivers a high discharge capacity of 296 mA h g-1 at 0.1 C with an initial Coulombic efficiency of 84%. The capacity retention reaches 83.2% with a discharge capacity of 223 mA h g-1 after 160 cycles at 0.2 C during the potential window ranging from 2.0 to 4.8 V. The enhanced electrochemical performance of the resulting Li-rich/Co3O4 nanoplates benefits from the unique conformal heterostructure as well as the electrochemically active LixCoOy generated between the reaction of Co3O4 shells and the extracted Li2O during charging/discharging processes.

  7. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  8. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  9. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  10. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xinyan; Chen, Shu, E-mail: chenshumail@gmail.com; Tang, Jian; Xiong, Yuan; Long, Yunfei, E-mail: l_yunfei927@163.com

    2014-05-01

    Highlights: • A new colorimetric iodide detection strategy based on triangular Ag nanoplate. • Sodium thiosulfate performed as a sensitizer. • Formation of insoluble AgI on the surface of Ag nanoplate. • This method has the advantages of good selectivity and high sensitivity. Abstract: A colorimetric method for the recognition and sensing of iodide ions (I⁻) has been developed by utilizing the reactions between triangular silver nanoplates (TAg-NPs) and I⁻ in the presence of sodium thiosulfate (Na₂S₂O₃). Specifically, I⁻ together with Na₂S₂O₃ can induce protection of TAg-NPs owing to the formation of insoluble AgI, as confirmed by the high-resolution transmission electron microscopy (HRTEM). In the absence of Na₂S₂O₃, the etching reactions on TAg-NPs were observed not only by I⁻ but also other halides ions. The Na₂S₂O₃ plays as a sensitizer in this system, which improved the selectivity and sensitivity. The desired colorimetric detection can be achieved by measuring the change of the absorption peak wavelength corresponding to localized surface plasmon resonance (LSPR) with UV–vis spectrophotometer or recognized by naked eye observation. The results show that the shift of the maximum absorption wavelength (Δλ) of the TAg-NPs/Na₂S₂O₃/I⁻ mixture was proportional to the concentration of I⁻ in the range 1.0 × 10⁻⁹–1.0 × 10⁻⁶ mol L⁻¹. Moreover, no other ions besides I⁻ can induce an eye discernible color change as low as 1.0 × 10⁻⁷ mol L⁻¹. Finally, this method was successfully applied for I⁻ determination in kelp samples.

  11. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Linhong [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Hou, Keyu; Jia, Xiao [Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Pan, Haibo, E-mail: hbpan@fzu.edu.cn [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Fuzhou University, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Du, Min [Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2014-05-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ∼ 4 nm and the length is 18–66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R{sup 2} = 0.998), and the detection limit is 3.32 × 10{sup −7} M (S/N = 3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. - Highlights: • Hexagonal Ag nanoplates were synthesized by controlling of PVP and trisodium citrate. • Ag nanoplates/GN composite allowed adsorption and electron transfer of vanillin. • The composite with good dispersion exhibits enhanced surface area and good catalysis. • Vanillin on the Ag NPs/GN/GCE shows high sensitivity and selectivity.

  12. Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection

    International Nuclear Information System (INIS)

    Huang, Linhong; Hou, Keyu; Jia, Xiao; Pan, Haibo; Du, Min

    2014-01-01

    Hexagonal Ag nanoplates (NPs) were synthesized by polyvinylpyrrolidone (PVP) and trisodium citrate (TSC) which selectively absorbed to Ag (100) and Ag (111) surfaces, then were anchored to graphene (GN) to form novel Ag NPs/GN composite. The thickness of Ag NPs is ∼ 4 nm and the length is 18–66 nm. Transmission electron microscopy (TEM) image shows that the plates are f-c-c crystals containing {111} facets on their two planar surfaces. Zeta potential indicated that the surface of Ag NPs/GN is negatively charged while vanillin is positively charged. Thus Ag NPs/GN modified on glass carbon electrodes (GCE) allowed abundant adsorption for vanillin and electron transfer between vanillin and Ag NPs/GN/GCE. Square wave voltammetry (SWV) results indicated that the over potential on Ag NPs/GN/GCE negatively shifts 52 mV than that on Ag NPs/GCE. Ag NPs/GN with enhanced surface area and good conductivity exhibited an excellent electrocatalytic activity toward the oxidation of vanillin. The corresponding linear range was estimated to be from 2 to 100 μM (R 2 = 0.998), and the detection limit is 3.32 × 10 −7 M (S/N = 3). The as-prepared vanillin sensor exhibits good selectivity and potential application in practical vanillin determination. - Highlights: • Hexagonal Ag nanoplates were synthesized by controlling of PVP and trisodium citrate. • Ag nanoplates/GN composite allowed adsorption and electron transfer of vanillin. • The composite with good dispersion exhibits enhanced surface area and good catalysis. • Vanillin on the Ag NPs/GN/GCE shows high sensitivity and selectivity

  13. Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method

    Science.gov (United States)

    Ansari, R.; Torabi, J.; Norouzzadeh, A.

    2018-04-01

    Due to the capability of Eringen's nonlocal elasticity theory to capture the small length scale effect, it is widely used to study the mechanical behaviors of nanostructures. Previous studies have indicated that in some cases, the differential form of this theory cannot correctly predict the behavior of structure, and the integral form should be employed to avoid obtaining inconsistent results. The present study deals with the bending analysis of nanoplates resting on elastic foundation based on the integral formulation of Eringen's nonlocal theory. Since the formulation is presented in a general form, arbitrary kernel functions can be used. The first order shear deformation plate theory is considered to model the nanoplates, and the governing equations for both integral and differential forms are presented. Finally, the finite element method is applied to solve the problem. Selected results are given to investigate the effects of elastic foundation and to compare the predictions of integral nonlocal model with those of its differential nonlocal and local counterparts. It is found that by the use of proposed integral formulation of Eringen's nonlocal model, the paradox observed for the cantilever nanoplate is resolved.

  14. Hydrogen oxidation on gold electrode in perchloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sustersic, M.G.; Almeida, N.V.; Von Mengershausen, A.E. [Facultad de Ingenieria y Ciencias Economico Sociales, Universidad Nacional de San Luis, 25 de Mayo N 384, 5730 Villa Mercedes, San Luis (Argentina)

    2010-06-15

    The aim of this research is to study the interface gold/perchloric acid solution in presence of hydrogen. The reactive is generated by H{sup +} ion reduction and by saturating the electrolyte with the gaseous H{sub 2}. No evidence of H{sub 2} dissociative adsorption is found. In special conditions, a strongly adsorbed layer is formed from the atoms diffusing from inside of the metal. The mass transport occurs in three ways: the diffusion of H atoms inwards, the diffusion of H atoms back to the surface and the dissolved H{sub 2} diffusion from the bulk electrolyte to the surface. When dissolved H{sub 2} reacts, the reaction is kinetically controlled when the H{sub 2} partial pressure is high, and it is diffusionally controlled when the reactive partial pressure is low. Above 0.7 V, (measured vs. RHE), the (100) plane surface reconstruction lifts, and the rate determining step is the H diffusion towards inside of the metal, and the current suddenly falls. The Hydrogen redox reaction on gold shows reversibility with respect to the potential when the reactives are the H diffusing outwards of the metal and the H{sup +} ion present in the electrolyte. However, the absolute current values of oxidation and reduction are different because the reactive sources are different. (author)

  15. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    International Nuclear Information System (INIS)

    Binupriya, A.R.; Sathishkumar, M.; Vijayaraghavan, K.; Yun, S.-I.

    2010-01-01

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  16. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis

    Energy Technology Data Exchange (ETDEWEB)

    Binupriya, A.R. [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Sathishkumar, M., E-mail: cvemuthu@nus.edu.sg [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Vijayaraghavan, K. [Singapore-Delft Water Alliance, National University of Singapore, 2 Engineering Drive 2, Singapore 117577 (Singapore); Yun, S.-I., E-mail: siyun@chonbuk.ac.kr [Department of Food Science and Technology, College of Agriculture and Life Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2010-05-15

    Bioreduction efficacy of both active (AB) and inactive (IB) cells/biomass of Aspergillus oryzae var. viridis and their respective cell-free extracts (ACE and ICE) to convert trivalent aurum to gold nanoparticles were tested in the present study. Strong plasmon resonance of gold nanoparticles was observed between 540 and 560 nm in the samples obtained from AB, IB, ACE and ICE. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were performed to examine the formation of gold nanoparticles. Comparing all four forms of A. oryzae var. viridis, ICE showed high gold nanoparticle productivity. The nanoparticles formed were quite uniform in shape and ranged in size from 10 to 60 nm. In addition some triangle, pentagon and hexagon-shaped nanoplates with size range of 30-400 nm were also synthesized especially at lower pH. Organics from the inactive cells are believed to be responsible for reduction of trivalent aurum to nano-sized gold particles. Organic content of the ICE was found to be double the amount of ACE. High productivity of gold nanoparticles by metabolic-independent process opens up an interesting area of nanoparticle synthesis using waste fungal biomass from industries.

  17. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  18. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  19. Crystallographic Habit Tuning of Li2MnSiO4 Nanoplates for High-Capacity Lithium Battery Cathodes.

    Science.gov (United States)

    Ding, Zhengping; Feng, Yiming; Zhang, Datong; Ji, Ran; Chen, Libao; Ivey, Douglas G; Wei, Weifeng

    2018-02-21

    Li 2 MnSiO 4 has attracted significant attention as a cathode material for lithium ion batteries because of its high theoretical capacity (330 mA h g -1 with two Li + ions per formula unit), low cost, and environmentally friendly nature. However, its intrinsically poor Li diffusion, low electronic conductivity, and structural instability preclude its use in practical applications. Herein, elongated hexagonal prism-shaped Li 2 MnSiO 4 nanoplates with preferentially exposed {001} and {210} facets have been successfully synthesized via a solvothermal method. Density functional theory calculations and experimental characterization reveal that the formation mechanism involves the decomposition of solid precursors to nanosheets, self-assembly into nanoplates, and Ostwald ripening. Hydroxyl-containing solvents such as ethylene glycol and diethylene glycol play a crucial role as capping agents in tuning the preferential growth. Li 2 MnSiO 4 @C nanoplates demonstrate a near theoretical discharge capacity of 326.7 mA h g -1 at 0.05 C (1 C = 160 mA h g -1 ), superior rate capability, and good cycling stability. The enhanced electrochemical performance is ascribed to the electrochemically active {001} and {210} exposed facets, which provide short and fast Li + diffusion pathways along the [001] and [100] axes, a conformal carbon nanocoating, and a nanoscaled platelike structure, which offers a large electrode/electrolyte contact interface for Li + extraction/insertion processes.

  20. Adsorption of asparagine on the gold electrode and air/solution interface

    International Nuclear Information System (INIS)

    Slojkowska, R.; Palys, B.; Jurkiewicz-Herbich, M.

    2004-01-01

    The adsorption of asparagine (Asn) on a gold electrode from 0.1 M LiClO 4 aqueous solutions was investigated. The experimental data obtained from ac impedance measurements were analyzed to determine the dependence of adsorption parameters, i.e. the standard Gibbs energy of adsorption (ΔG 0 ), maximal value of surface excess concentration (Γ max ) of Asn and parameter of interactions in the adsorbed layer (A) on the electrode potential. The relatively large value of Gibbs energy of adsorption (∼ -47 kJ mol -1 ) gives the evidence of a very strong adsorption of Asn at the polycrystalline Au electrode. The comparison of the adsorption behavior of Asn at the air/solution and the Au/solution interfaces points out to the significant electronic interactions of adsorbate molecules with the Au electrode, since the adsorption of Asn on a free surface (from the same solutions) is very week. The analysis of the electrochemical data as well as the infrared reflection absorption spectroscopy (IRAS) results reveal that Asn molecules are anchored to the Au surface through oxygen atoms of the carboxylate group COO - and through the amide carbonyl group

  1. Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions

    Directory of Open Access Journals (Sweden)

    Frank Reith

    2013-11-01

    Full Text Available Microbial communities mediating gold cycling occur on gold grains from (sub-tropical, (semi-arid, temperate and subarctic environments. The majority of identified species comprising these biofilms are β-Proteobacteria. Some bacteria, e.g., Cupriavidus metallidurans, Delftia acidovorans and Salmonella typhimurium, have developed biochemical responses to deal with highly toxic gold complexes. These include gold specific sensing and efflux, co-utilization of resistance mechanisms for other metals, and excretion of gold-complex-reducing siderophores that ultimately catalyze the biomineralization of nano-particulate, spheroidal and/or bacteriomorphic gold. In turn, the toxicity of gold complexes fosters the development of specialized biofilms on gold grains, and hence the cycling of gold in surface environments. This was not reported on isoferroplatinum grains under most near-surface environments, due to the lower toxicity of mobile platinum complexes. The discovery of gold-specific microbial responses can now drive the development of geobiological exploration tools, e.g., gold bioindicators and biosensors. Bioindicators employ genetic markers from soils and groundwaters to provide information about gold mineralization processes, while biosensors will allow in-field analyses of gold concentrations in complex sampling media.

  2. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites.

    Science.gov (United States)

    Ferrier, Robert C; Lee, Hyun-Su; Hore, Michael J A; Caporizzo, Matthew; Eckmann, David M; Composto, Russell J

    2014-02-25

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm(2). To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm(2). This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings.

  3. The extraction of trace amounts of gold from different aqueous mineral acid solutions by diphenyl-2-pyridylmethane dissolved in chloroform

    International Nuclear Information System (INIS)

    Iqbal, M.; Ejaz, M.; Chaudhri, S.A.; Zamiruddin

    1978-01-01

    Diphenyl-2-pyridylmethane, a high-molecular-weight substituted pyridine has been examined. Its behaviour is similar to that of amines in that it forms salts with mineral acids. The acid ionization constant (pKsub(BHsup(+)) is 4.4+-0.06 at 25 deg C. A study of the partition behaviour of trace amounts of gold between mineral acid solutions and 0.1 M diphenyl-2-pyridylmethane dissolved in chloroform indicates that the metal can be quantitatively extracted from dilute mineral acid solutions and also from concentrated hydrochloric acid media in a single extraction. Common anions have little effect on extraction in concentrations up to 1 M. Separation factors of a number of metal ions relative to gold are reported for three mineral acid systems. Gold has been estimated in some synthetic samples using a neutron-activation technique by prior extraction with 0.1 M solution of diphenyl-2-pyridylmethane dissolved in chloroform. Distribution of the test elements between aqueous and organic phase was followed radiometrically. The solutions (usually 1 cm 3 ) were shaken in stoppered vials for 5 minutes using a mechanical shaker. After separation of the layers, 500 μl of each phase were taken for radiochemical analysis. The standard deviation did not exceed 1%. (T.G.)

  4. Heat Transfer from Optically Excited Gold Nanostructures into Water, Sugar, and Salt Solutions

    Science.gov (United States)

    Green, Andrew J.

    Nanotechnology has introduced a wide variety of new behaviors to study and understand. Metal nanostructures are of particular interest due to their ability to generate large amounts of heat when irradiated at the plasmon resonance. Furthermore, heat dissipation at the nanoscale becomes exceedingly more complicated with respect to bulk behavior. What are the credentials for a heat carrier to move across an interface? Is it important for both materials to have similar vibrational density of states? What changes if one material is a liquid? All of these questions have open ended answers, each of which hold potential for new technologies to be exploited once understood. This dissertation will discuss topics exploring the transfer of heat from an optically excited gold nanoparticle into a surrounding liquid. Gold nanostructures are created using conventional electron beam lithography with lift-off. The nanostructures are deposited onto a thin film thermal sensor composed of AlGaN:Er3+. Erbium(III) has two thermally coupled excited states that can be excited with a 532nm laser. The relative photoluminescence from these excited states are related by a Boltzmann factor and are thusly temperature dependent. A scanning optical microscope collects an image of Er3+ photoluminescence while simultaneously exciting the gold nanostructure. The nanostructure temperature is imaged which is directly related to the surrounding's heat dissipation properties. The first of two topics discuss the heat dissipation and phase change properties of water. A gold nanostructure is submersed under water and subsequently heated with a 532 nm laser. The water immediately surrounding the nanodot is can be superheated beyond the boiling point up to the spinodal decomposition temperature at 594 +/- 17 K. The spinodal decomposition has been confirmed with the observation of critical opalescence. We characterize the laser scattering that occurs in unison with spinodal decomposition due to an increased

  5. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  6. Direct Vapor Growth of Perovskite CsPbBr3 Nanoplate Electroluminescence Devices.

    Science.gov (United States)

    Hu, Xuelu; Zhou, Hong; Jiang, Zhenyu; Wang, Xiao; Yuan, Shuangping; Lan, Jianyue; Fu, Yongping; Zhang, Xuehong; Zheng, Weihao; Wang, Xiaoxia; Zhu, Xiaoli; Liao, Lei; Xu, Gengzhao; Jin, Song; Pan, Anlian

    2017-10-24

    Metal halide perovskite nanostructures hold great promises as nanoscale light sources for integrated photonics due to their excellent optoelectronic properties. However, it remains a great challenge to fabricate halide perovskite nanodevices using traditional lithographic methods because the halide perovskites can be dissolved in polar solvents that are required in the traditional device fabrication process. Herein, we report single CsPbBr 3 nanoplate electroluminescence (EL) devices fabricated by directly growing CsPbBr 3 nanoplates on prepatterned indium tin oxide (ITO) electrodes via a vapor-phase deposition. Bright EL occurs in the region near the negatively biased contact, with a turn-on voltage of ∼3 V, a narrow full width at half-maximum of 22 nm, and an external quantum efficiency of ∼0.2%. Moreover, through scanning photocurrent microscopy and surface electrostatic potential measurements, we found that the formation of ITO/p-type CsPbBr 3 Schottky barriers with highly efficient carrier injection is essential in realizing the EL. The formation of the ITO/p-type CsPbBr 3 Schottky diode is also confirmed by the corresponding transistor characteristics. The achievement of EL nanodevices enabled by directly grown perovskite nanostructures could find applications in on-chip integrated photonics circuits and systems.

  7. Optical Characterization of the Interaction of Mercury with Nanoparticulate Gold Suspended in Solution

    Directory of Open Access Journals (Sweden)

    Kevin SCALLAN

    2007-11-01

    Full Text Available We have demonstrated that the surface plasmon resonance (SPR wavelength of gold nanoparticles suspended in solution can be modified by exposure to elemental mercury at sub parts per million (ppm concentrations in nitrogen. Ultraviolet-visible (UV-vis absorption spectroscopy was used to monitor the wavelength and maximum absorbance of the colloidal solution during and after the exposure process. Transmission electron microscopy (TEM images revealed modifications to the morphology of the particles (size, shape, and extent of aggregation. The results show that the SPR wavelength is blue-shifted and the absorbance is increased with exposure time. After the exposure, the spectra were observed to relax toward their original position suggesting that the detection medium is regenerative.

  8. Design, fabrication and structural optimization of tubular carbon/Kevlar®/PMMA/graphene nanoplate composite for bone fixation prosthesis.

    Science.gov (United States)

    Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R

    2018-05-02

    The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.

  9. Phospholipid-assisted synthesis of size-controlled gold nanoparticles

    International Nuclear Information System (INIS)

    He Peng; Zhu Xinyuan

    2007-01-01

    Morphology and size control of gold nanoparticles (AuNPs) by phospholipids (PLs) has been reported. It was found that gold entities could form nanostructures with different sizes controlled by PLs in an aqueous solution. During the preparation of 1.5 nm gold seeds, AuNPs were obtained from the reduction of gold complex by sodium borohydride and capped by citrate for stabilization. With the different ratios between seed solution and growth solution, which was composed by gold complex and PLs, gold seeds grew into larger nanoparticles step by step until enough large size up to 30 nm. The main discovery of this work is that common biomolecules, such as PLs can be used to control nanoparticle size. This conclusion has been confirmed by transmission electron micrographs, particle size analysis, and UV-vis spectra

  10. Poly-thiosemicarbazide Membrane for Gold Adsorption and In-situ Growth of Gold Nanoparticles

    KAUST Repository

    Parra, Luis F.

    2012-12-01

    In this work the synergy between a polymer containing chelate sites and gold ions was explored by the fabrication of a polymeric membrane with embedded gold nanoparticles inside its matrix and by developing a process to recover gold from acidic solutions. After realizing that the thiosemicarbazide groups present in the monomeric unit of poly-thiosemicarbazide (PTSC) formed strong complexes with Au ions, membrane technology was used to exploit this property to its maximum. The incorporation of metal nanoparticles into polymeric matrices with current technologies involves either expensive and complicated procedures or leads to poor results in terms of agglomeration, loading, dispersion, stability or efficient use of raw materials. The fabrication procedure described in this thesis solves these problems by fabricating a PTSC membrane containing 33.5 wt% in the form of 2.9 nm gold nanoparticles (AuNPs) by a three step simple and scalable procedure. It showed outstanding results in all of the areas mentioned above and demonstrated catalytic activity for the reduction of 4-Nitrophenol (4−NP) to 4-Aminophenol (4−AP). The current exponential demand of gold for electronics has encouraged the development of efficient processes to recycle it. Several adsorbents used to recover gold from acidic solutions can be found in the literature with outstanding maximum uptakes,yet, poor kinetics leading to an overall inefficient process. The method developed in this dissertation consisted in permeating the gold-containing solution through a PTSC membrane that will capture all the Au ions by forming a metal complex with them. Forcing the ions through the pores of the membrane eliminates the diffusion limitations and the adsorption will only depended on the fast complexation kinetics, resulting in a very efficient process. A flux as high as 1868 L/h m2 was enough to capture >90% of the precious metal present in a solution of 100 ppm Au. The maximum uptake achieved without sacrificing

  11. Detection of hydrogen peroxide and glucose by using Tb2(MoO4)3 nanoplates as peroxidase mimics

    Science.gov (United States)

    Rahimi-Nasrabadi, Mehdi; Mizani, Farhang; Hosseini, Morteza; Keihan, Amir Homayoun; Ganjali, Mohammad Reza

    2017-11-01

    Tb2(MoO4)3 nanostructures are demonstrated for the first time to have an intrinsic peroxidase-like activity. Tb2(MoO4)3 nanoplates could efficiently catalyse the oxidation of 3,3‧,5,5‧-tetramethylbenzidine (TMB) to generate a blue dye (with an absorbance maximum at 652 nm) in the presence of H2O2. Based on the highly efficient catalytic of Tb2(MoO4)3 nanoplates, a novel system for optical determination of H2O2 and glucose was successfully established under optimized conditions. The assay had 0.0.08 μM and 0.1 μM detection limit for H2O2 and glucose, respectively. In our opinion, this enzyme mimetic has a potential to use in other oxidase based assays.

  12. Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate

    Science.gov (United States)

    Mahinzare, Mohammad; Ranjbarpur, Hosein; Ghadiri, Majid

    2018-02-01

    In this article, free vibration of a rotating circular nanoplate made of two directional functionally graded piezo materials (two directional FGPM) is modeled based on the first shear deformation theory (FSDT). Based on the power-law model, electro-elastic properties of two directional FGP rotating circular nanoplates are supposed to change continuously along the thickness and radius. Employing the modified couple stress theory, the small size effect of the equations of the plate is considered. The governing equations of the first shear deformation theory (FSDT) for the studied plate are obtained based on Hamilton's principle; these equations are solved using differential quadrature method (DQM). It is shown that the vibration behavior of the plate is significantly affected by angular velocity, external electric voltage, size dependency and power-law index (thickness and radial directions).

  13. Investigation of active biomolecules involved in the nucleation and growth of gold nanoparticles by Artocarpus heterophyllus Lam leaf extract

    International Nuclear Information System (INIS)

    Jiang Xinde; Sun Daohua; Zhang Genlei; He Ning; Liu Hongyu; Huang Jiale; Odoom-Wubah, Tareque; Li Qingbiao

    2013-01-01

    The effects of different biomolecules in Artocarpus heterophyllus Lam leaf extract on the morphology of obtained gold nanoparticles were investigated in this study. The results indicated that reducing sugars, flavones, and polyphenols consisting of about 79.8 % dry weight of the leaf extract were mainly involved in providing the dual function of reduction and the size/shape control during the biosynthesis. The gold nanoparticles present included 64 ± 10 nm nanospheres, 131 ± 18 nm nanoflowers, and 347 ± 136 nm (edge length) nanoplates and they were synthesized using the main content of reducing sugars, flavones, and polyphenols, respectively, after they were desorbed by the AB-8 macroporous adsorption resin column. Particularly, flower-like and triangular/hexagonal gold nanoparticles with a yield more than 80 % were obtained. Possible shape-directed agents for the nucleation and growth were characterized by FTIR, it can be seen that ketones were bound on the surface of the spherical and flower-like GNPs, while both the ketones and carbonyls bound on the Au {111} plane this may have favored the formation of the twin defects, which are very essential for nanoplates’ formation.

  14. Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides

    Energy Technology Data Exchange (ETDEWEB)

    Abinaya, C.; Marikkannan, M.; Manikandan, M. [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Mayandi, J., E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Suresh, P.; Shanmugaiah, V. [Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Ekstrum, C. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Pearce, J.M. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States)

    2016-12-01

    This study reports on a novel synthesis of pure zinc oxide and both Cu and Ag doped ZnO nanoplates using a simple and low-cost hydrothermal method. The structural and optical properties of the nanoplates were quantified and the materials were tested for antibacterial activity. X-ray diffraction revealed the formation of the wurtzite phase of ZnO and scanning and transmission electron microscopy showed the formation of randomly oriented ZnO nanoplates, having a thickness less than 80 nm and diameter less than 350 nm. The elemental analyses of both the pure and doped samples were evaluated by energy dispersive X-ray spectrometry. The FTIR spectra of ZnO nanomaterials showed the predictable bands at 3385 cm{sup −1} (O−H stretching), 1637 cm{sup −1} (stretching vibration of H{sub 2}O), 400 cm{sup −1}–570 cm{sup −1} (M−O stretching). The as synthesized samples showed a strong absorption peak in the UV region (∼376 nm) and a near band edge emission at 392 nm with some defect peaks in the visible region. From the XPS spectra the oxidation states of Zn, Cu and Ag were found to be +2, +2 and 0 respectively. Escherichia coli, Staphylococcus aureus and Salmonella typhi bacteria were used to evaluate the antibacterial activity of undoped and doped ZnO. Ag doped ZnO exhibited low minimum inhibitory concentration (MIC) values as 40 μg/ml for E. coli and S. aureus and 20 μg/ml for S. typhi, which are comparable to commercial antibiotics without optimization. Further, these chemically modified nanoparticles will be applicable in the development of medicine to control the spread and infection of a variety of bacterial strains. - Highlights: • Distinct ZnO nanoplates were successfully synthesized by facile hydrothermal method. • Cu and Ag doped ZnO exhibits significant destruction of bacteria with low MIC value. • Ag:ZnO has a noteworthy bactericidal effect against E. coli, S. aureus &S. typhi. • It projects that, a feasible low cost industrial process can

  15. Analysis of gold and silver concentration on gold mining tailings by neutron activation analysis

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Salimov, M.I.; Sadykova, Z.O.

    2014-01-01

    Full text: Instrumental neutron-activation analysis without radiochemical separation is one of most applicable and often used methods to analyze the concentration of gold, silver and other rare and noble metals in gold ores. This method is not suitable for analyzing low concentration of gold and silver in gold mining tailings due to rather high concentration of some elements. Samples are dissolved by boiling in a mixture of concentrated hydrochloric and nitric acids to extract gold and silver into the solution. Chemical yield of gold and silver after dissolution of the sample and further chromatographic separation is between 92 and 95 percent respectively

  16. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates

    Science.gov (United States)

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-01

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λmax) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH = 2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH 2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λmax corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL- 1 to 100.0 ng mL- 1 with the correlation coefficient of r = 0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL- 1.

  17. For the love of gold

    International Nuclear Information System (INIS)

    Young, J.E.

    1993-01-01

    Gold is found in minute quantities and gold mining generates enormous amounts of waste materials and long history of environmental destruction: mercury in tailing, eroded land, and acid mine drainage are legacies of the past. The problem has become worse in recent years in North America, Australia, the Amazon basin, Philippines. This paper describes the economics of gold and the changes in the world economy which has precipitated the new gold rushes. Current technology uses a cyanide solution for leaching small amounts of gold from tons of waste, and mercury remains a toxic waste of gold mining. Both short and long term results of gold mining, on the environment and on indiginous populations are described

  18. Electrochemiluminescence of fluorescein in alkaline solution at a polycrystalline gold electrode

    International Nuclear Information System (INIS)

    Shi Mingjuan; Cui Hua

    2007-01-01

    The electrochemiluminescence (ECL) behavior of fluorescein at a polycrystalline gold electrode was studied under conventional cyclic voltammetric conditions. Five ECL peaks were observed at 0.94 (ECL-1), 1.51 (ECL-2), 1.34 (ECL-3), -0.06 (ECL-4), -0.73 to -1.11 V (ECL-5, a broad weak wave) (vs. SCE), respectively, on the curve of ECL intensity versus potential. These ECL peaks were found to depend on the pH of the solution, supporting electrolyte, potential scan ranges and directions. The emitter of ECL peaks was identified as fluorescein or eosin Y produced on the electrode by analyzing the ECL spectra and fluorescence spectra. The mechanisms for ECL peaks have been proposed due to the reactions of fluorescein and the electro-oxidation product of fluorescein with various oxygen-containing species in the solution or electrogenerated at different applied potentials such as O 2 , O 2 .- , HO 2 - , and BrO - . Singlet molecular oxygen was generated during the reactions and transferred its energy to the ECL emitter such as fluorescein or eosin Y, emitting light

  19. NUCLEATION STUDIES OF GOLD ON CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    S. SOBRI

    2008-04-01

    Full Text Available Interest has grown in developing non-toxic electrolytes for gold electrodeposition to replace the conventional cyanide-based bath for long term sustainability of gold electroplating. A solution containing thiosulphate and sulphite has been developed specially for microelectronics applications. However, at the end of the electrodeposition process, the spent electrolyte can contain a significant amount of gold in solution. This study has been initiated to investigate the feasibility of gold recovery from a spent thiosulphate-sulphite electrolyte. We have used flat-plate glassy carbon and graphite electrodes to study the mechanism of nucleation and crystal growth of gold deposition from the spent electrolyte. It was found that at the early stages of reduction process, the deposition of gold on glassy carbon exhibits an instantaneous nucleation of non-overlapping particles. At longer times, the particles begin to overlap and the deposition follows a classic progressive nucleation phenomenon. On the other hand, deposition of gold on graphite does not follow the classical nucleation phenomena.

  20. Critical parameters in the dump and heap leaching of gold, silver, copper and uranium: permeability, solution delivery and solution recovery

    Energy Technology Data Exchange (ETDEWEB)

    Lastra, M.K.; Chase, C.K.

    1984-02-01

    Critical to successful dump and heap leaching for gold, silver, copper and uranium are factors such as permeability, solution delivery to the ore, and solution recovery. This paper deals with possible techniques for successful accomplishment of these three factors. New developments as well as older techniques are discussed, together with rationals for use of some techniques in reference to others. The authors hope to present a checklist so that the ideal application to individual mine situations can be achieved. This involves a discussion of the merits of each different method and the situations for most logical application. It is hoped that such discussion will broaden the geographic areas where dump and heap leaching can be applied to include greater winter cold and tropical regions of large amounts of rainfall.

  1. Critical parameters in the dump and heap leaching of gold, silver, copper and uranium: permeability, solution delivery and solution recovery

    International Nuclear Information System (INIS)

    Lastra, M.K.; Chase, C.K.

    1984-01-01

    Critical to successful dump and heap leaching for gold, silver, copper and uranium are factors such as permeability, solution delivery to the ore, and solution recovery. This paper deals with possible techniques for successful accomplishment of these three factors. New developments as well as older techniques are discussed, together with rationals for use of some techniques in reference to others. The authors hope to present a checklist so that the ideal application to individual mine situations can be achieved. This involves a discussion of the merits of each different method and the situations for most logical application. It is hoped that such discussion will broaden the geographic areas where dump and heap leaching can be applied to include greater winter cold and tropical regions of large amounts of rainfall

  2. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    Science.gov (United States)

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  3. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    Science.gov (United States)

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  4. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  5. Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption

    Science.gov (United States)

    Young, Courtney; Melashvili, Mariam; Gow, Nicholas V

    2013-08-06

    A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.

  6. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  7. CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production

    Science.gov (United States)

    Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao

    2017-07-01

    Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.

  8. Gold recovery from low concentrations using nanoporous silica adsorbent

    Science.gov (United States)

    Aledresse, Adil

    The development of high capacity adsorbents with uniform porosity denoted 5%MP-HMS (5% Mercaptopropyl-Hexagonal Mesoporous Structure) to extract gold from noncyanide solutions is presented. The preliminary studies from laboratory simulated noncyanide gold solutions show that the adsorption capacities of these materials are among the highest reported. The high adsorption saturation level of these materials, up to 1.9 mmol/g (37% of the adsorbent weight) from gold chloride solutions (potassium tetrachloroaurate) and 2.9 mmol/g (57% of the adsorbent weight) from gold bromide solutions (potassium tetrabromoaurate) at pH = 2, is a noteworthy feature of these materials. This gold loading from [AuC4]- and [AuBr4 ]- solutions corresponds to a relative Au:S molar ratio of 2.5:1 and 3.8:1, respectively. These rates are significantly higher than the usual 1:1 (Au:S) ratio expected for metal ion binding with the material. The additional gold ions loaded have been spontaneously reduced to metallic gold in the mesoporous material. Experimental studies indicated high maximum adsorptions of gold as high as 99.9% recovery. Another promising attribute of these materials is their favourable adsorption kinetics. The MP-HMS reaches equilibrium (saturation) in less than 1 minute of exposure in gold bromide and less than 10 minutes in gold chloride. The MP-HMS materials adsorption is significantly improved by agitation and the adsorption capacity of Au (III) ions increases with the decrease in pH. The recovery of adsorbed gold and the regeneration of spent adsorbent were investigated for MP-HMS adsorbent. The regenerated adsorbent (MP-HMS) maintained its adsorption capacity even after repeated use and all the gold was successfully recovered from the spent adsorbent. For the fist time, a promising adsorbent system has been found that is capable of effectively concentrating gold thiosulphate complexes, whereas conventional carbon-inpulp (CIP) and carbon-in-leach (CIL) systems fail. The

  9. Thiosulfate leaching of gold from waste mobile phones.

    Science.gov (United States)

    Ha, Vinh Hung; Lee, Jae-chun; Jeong, Jinki; Hai, Huynh Trung; Jha, Manis K

    2010-06-15

    The present communication deals with the leaching of gold from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a copper-ammonia-thiosulfate solution, as an alternative to the conventional and toxic cyanide leaching of gold. The influence of thiosulfate, ammonia and copper sulfate concentrations on the leaching of gold from PCBs of waste mobile phones was investigated. Gold extraction was found to be enhanced with solutions containing 15-20 mM cupric, 0.1-0.14 M thiosulfate, and 0.2-0.3 M ammonia. Similar trends were obtained for the leaching of gold from two different types of scraps and PCBs of waste mobile phones. From the scrap samples, 98% of the gold was leached out using a solution containing 20 mM copper, 0.12 M thiosulfate and 0.2 M ammonia. Similarly, the leaching of gold from the PCBs samples was also found to be good, but it was lower than that of scrap samples in similar experimental conditions. In this case, only 90% of the gold was leached, even with a contact time of 10h. The obtained data will be useful for the development of processes for the recycling of gold from waste mobile phones. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  11. Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material.

    Science.gov (United States)

    Tang, Wei; Liu, Lili; Tian, Shu; Li, Lei; Yue, Yunbo; Wu, Yuping; Zhu, Kai

    2011-09-28

    MoO(3) nanoplates were prepared as anode material for aqueous supercapacitors. They can deliver a high energy density of 45 W h kg(-1) at 450 W kg(-1) and even maintain 29 W h kg(-1) at 2 kW kg(-1) in 0.5 M Li(2)SO(4) aqueous electrolyte. These results present a new direction to explore non-carbon anode materials.

  12. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Wood; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Nazaratul Ashifa Abd Salim

    2005-01-01

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  13. Gold mineralogy and extraction

    International Nuclear Information System (INIS)

    Cashion, J.D.; Brown, L.J.

    1998-01-01

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed

  14. Gold mineralogy and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, J.D.; Brown, L.J. [Monash University, Physics Department (Australia)

    1998-12-15

    Several examples are examined in which Moessbauer spectroscopic analysis of gold mineral samples, treated concentrates and extracted species has provided information not obtainable by competing techniques. Descriptions are given of current work on bacterial oxidation of pyritic ores and on the adsorbed species from gold extracted from cyanide and chloride solutions onto activated carbon and polyurethane foams. The potential benefits for the gold mining industry from Moessbauer studies and some limitations on the use of the technique are also discussed.

  15. Microstructural characterization of gold nanoparticles synthesized by solution plasma processing

    International Nuclear Information System (INIS)

    Cho, Sung-Pyo; Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2011-01-01

    Microstructural characteristics of gold nanoparticles (Au NPs) fabricated by solution plasma processing (SPP) in reverse micelle solutions have been studied by high-resolution transmission electron microscopy (HRTEM). The synthesized Au NPs, with an average size of 6.3 ± 1.4 nm, have different crystal characteristics; fcc single-crystalline particles, multiply twinned particles (MTPs), and incomplete MTPs (single-nanotwinned fcc configuration). The crystal structure characteristics of the Au NPs synthesized by the SPP method were analyzed and compared with similar-size Au NPs obtained by the conventional chemical reduction synthesis (CRS) method. The TEM analysis results show that the Au NPs synthesized by the CRS method have shapes and crystal structures similar to those nanoparticles obtained by the SPP method. However, from the detailed HRTEM analysis, the relative number of the Au MTPs and incomplete MTPs to the total number of the Au NPs synthesized by the SPP method was observed to be around 94%, whereas the relative number of these kinds of crystal structures fabricated by the CRS method was about 63%. It is most likely that the enhanced formation of the Au MTPs is due to the fact that the SPP method generates highly reaction-activated species under low environmental temperature conditions.

  16. Preparation of functional composite materials based on chemically derived graphene using solution process

    International Nuclear Information System (INIS)

    Kim, M; Hyun, W J; Mun, S C; Park, O O

    2015-01-01

    Chemically derived graphenes were assembled into functional composite materials using solution process from stable solvent dispersion. We have developed foldable electronic circuits on paper substrates using vacuum filtration of graphene nanoplates dispersion and a selective transfer process without need for special equipment. The electronic circuits on paper substrates revealed only a small change in conductance under various folding angles and maintained an electronic path after repetitive folding and unfolding. We also prepared flexible. binder-free graphene paper-like materials by addition of graphene oxide as a film stabilizer. This graphene papers showed outstanding electrical conductivity up to 26,000 S/m and high charge capacity as an anode in lithium-ion battery without any post-treatments. For last case, multi-functional thin film structures of graphene nanoplates were fabricated by using layer-by-layer assembly technique, showing optical transparency, electrical conductivity and enhanced gas barrier property. (paper)

  17. Precipitation of gold by the reaction of aqueous gold(III)-chloride with cyanobacteria at 25-80 C -- Studied by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Lengke, M. F.; Ravel, B.; Fleet, M. E.; Wanger, G.; Gordon, R. A.; Southam, G.

    2007-01-01

    The mechanisms of gold precipitation by the interaction of cyanobacteria (Plectonema boryanum UTEX 485) and gold(III) chloride aqueous solutions (7.6 mmol/L final gold) have been studied at 25, 60, and 80 C, using both laboratory and real-time synchrotron radiation absorption spectroscopy experiments. Addition of aqueous gold(III) chloride to the cyanobacterial culture initially promoted the precipitation of amorphous gold(I) sulfide at the cell walls and finally caused the formation of octahedral (111) platelets (<1 to 6 (micro)m) of gold metal near cell surfaces and in solutions. X-ray absorption spectroscopy results confirmed that the reduction mechanism of gold(III) chloride to elemental gold by cyanobacteria involves the formation of an intermediate Au(I) species, gold(I) sulfide, with sulfur originating from cyanobacterial proteins, presumably cysteine or methionine. Although the bioreduction of gold(III) chloride to gold(I) sulfide was relatively rapid at all temperatures, the reaction rate increased with the increase in temperature. At the completion of the experiments, elemental gold was the major species present at all temperatures

  18. Controllable synthesis of Bi{sub 2}WO{sub 6} nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn; Wang, Xuxu

    2017-05-01

    Highlights: • Bi{sub 2}WO{sub 6} hierarchical erythrocyte structure was designed by F{sup −}-assisted one-pot reaction. • Erythrocyte structure enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. • Superoxide radical anions and h{sup +} were the main active species for RhB degradation. - Abstract: This work provides a simple approach of the F{sup −}-assisted one-pot hydrothermal reaction to successfully synthesize Bi{sub 2}WO{sub 6} hierarchical erythrocyte microspheres. The importance role of F{sup −} was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi{sub 2}WO{sub 6} hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi{sub 2}WO{sub 6} nanoplate primary subunits. F{sup −} ions were absorbed on Bi{sub 2}WO{sub 6} nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi{sub 2}WO{sub 6} nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. Moreover, superoxide radical anions and h{sup +} were revealed as the main active species responding for the RhB degradation on Bi{sub 2}WO{sub 6} under visible light irradiation.

  19. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  1. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Torres, E.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2009-01-01

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  2. The Voltammetric Analysis of Selenium Electrodeposition from H2SeO3 Solution on Gold Electrode

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2015-04-01

    Full Text Available The different voltammetry techniques were applied to understand the process of selenium deposition from sulfate solution on gold polycrystalline electrode. By applying the cycling voltammetry with different scan limits as well as the chronoamper-ometry combined with the cathodic and anodic linear stripping voltammetry, the different stages of the deposition of selenium were revealed. It was found that the process of reduction of selenous acid on gold surface exhibits a multistage character. The cyclic voltammetry results showed four cathodic peaks which are related to the surface limited phenomena and which coincide with the bulk deposition process. The fifth cathodic peak is related to the reduction of bulk deposited Se0 to Se-2 ions. Furthermore, the connection of anodic peaks with cathodic ones confirmed the surface limited process of selenium deposition, bulk deposition and reduction to Se-2. Additionally, the cathodic linear stripping voltammetry confirms the process of H2SeO3 adsorption on gold surface. The experiments confirmed that classical voltammetry technique proved to be a very powerful tool for analyzing the electrochemical processes related with interfacial phenomena and electrodeposition.

  3. Ultrathin Layered SnSe Nanoplates for Low Voltage, High-Rate, and Long-Life Alkali-Ion Batteries.

    Science.gov (United States)

    Wang, Wei; Li, Peihao; Zheng, Henry; Liu, Qiao; Lv, Fan; Wu, Jiandong; Wang, Hao; Guo, Shaojun

    2017-12-01

    2D electrode materials with layered structures have shown huge potential in the fields of lithium- and sodium-ion batteries. However, their poor conductivity limits the rate performance and cycle stability of batteries. Herein a new colloid chemistry strategy is reported for making 2D ultrathin layered SnSe nanoplates (SnSe NPs) for achieving more efficient alkali-ion batteries. Due to the effect of weak Van der Waals forces, each semiconductive SnSe nanoplate stacks on top of each other, which can facilitate the ion transfer and accommodate volume expansion during the charge and discharge process. This unique structure as well as the narrow-bandgap semiconductor property of SnSe simultaneously meets the requirements of achieving fast ionic and electronic conductivities for alkali-ion batteries. They exhibit high capacity of 463.6 mAh g -1 at 0.05 A g -1 for Na-ion batteries and 787.9 mAh g -1 at 0.2 A g -1 for Li-ion batteries over 300 cycles, and also high stability for alkali-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  5. Random oriented hexagonal nickel hydroxide nanoplates grown on graphene as binder free anode for lithium ion battery with high capacity

    Science.gov (United States)

    Du, Yingjie; Ma, Hu; Guo, Mingxuan; Gao, Tie; Li, Haibo

    2018-05-01

    In this work, two-step method has been employed to prepare random oriented hexagonal hydroxide nanoplates on graphene (Ni(OH)2@G) as binder free anode for lithium ion battery (LIB) with high capacity. The morphology, microstructure, crystal phase and elemental bonding have been characterized. When evaluated as anode for LIB, the Ni(OH)2@G exhibited high initial discharge capacity of 1318 mAh/g at the current density of 50 mA/g. After 80 cycles, the capacity was maintained at 834 mAh/g, implying 63.3% remaining. Even the charge rate was increased to 2000 mA/g, an impressive capacity of 141 mAh/g can be obtained, indicating good rate capability. The superior LIB behavior of Ni(OH)2@G is ascribed to the excellent combination between Ni(OH)2 nanoplates and graphene via both covalent chemical bonding and van der Waals interactions.

  6. Gold-Decorated Supraspheres of Block Copolymer Micelles

    Science.gov (United States)

    Kim, M. P.; Kang, D. J.; Kannon, A. G.; Jung, D.-W.; Yi, G. R.; Kim, B. J.

    2012-02-01

    Gold-decorated supraspheres displaying various surface morphologies were prepared by infiltration of gold precursor into polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) supraspheres under acidic condition. The supraspheres were fabricated by emulsifying PS-b-P2VP polymer solution into surfactant solution. Selective swelling of P2VP in the suprasphere by gold precursor under acidic condition resulted in the formation of gold-decorated supraspheres with various surface structures. As evidenced by TEM and SEM images, dot pattern was formed in the case of smaller supraspheres than 800 nm; whereas fingerprint-like pattern was observed in larger supraspheres than 800 nm. Gold nanoparticles were located inside P2VP domains near the surface of prepared supraspheres as confirmed by TEM. The optical property of the supraspheres was characterized using UV-vis absorption spectroscopy and the maximum absorption peak at around 580 nm was observed, which means that gold nanoparticles densely packed into P2VP domain on the suprasphere. Our approach to prepare gold-decorated supraspheres can be extended to other metallic particles such as iron oxide or platinum nanoparticles, and those precursors can be also selectively incorporated into the P2VP domain.

  7. Study of Colloidal Gold Synthesis Using Turkevich Method

    Science.gov (United States)

    Rohiman, Asep; Anshori, Isa; Surawijaya, Akhmadi; Idris, Irman

    2011-12-01

    The synthesis of colloidal gold or Au-nanoparticles (Au-NPs) by reduction of chloroauric acid (HAuCl4) with sodium citrate was done using Turkevich method. We prepare HAuCl4 solution by dissolving gold wires (99.99%) into aqua regia solution. To initiate the Au-NPs synthesis 0.17 ml of 1 % chloroauric acid solution was heated to the boiling point and then 10 ml of 1 % sodium citrate was added to the boiling solution with a constant stirring in order to maintain a homogenous solution. A color of faint gray was observed in the solution approximately one minute and in a period of 2-3 minutes later, it further darkened to deep wine and red color. It showed that the gold solution has reduced to Au-NPs. The effect of process temperature on the size of Au-NPs prepared by sodium citrate reduction has also been investigated. With increasing temperature of Au-NPs synthesis, smaller-size Au-NPs were obtained. The higher temperatures shorten the time needed to achieve activation energy for reduction process. The resulting Au-NPs has been characterized by scanning Electron Microscope (SEM), showing the size of Au-NPs average diameter is ˜20-27 nm. The resulting colloidal gold will be used as catalyst for Si nanowires growth using VLS method.

  8. Ag loaded WO_3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    International Nuclear Information System (INIS)

    Zhu, Wenyu; Liu, Jincheng; Yu, Shuyan; Zhou, Yan; Yan, Xiaoli

    2016-01-01

    Highlights: • WO_3/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO_3/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO_3/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO_3 nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO_3 nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO_3 nanoplates using a photo-reduction method to generate WO_3/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO_3 and WO_3/Ag composites was conducted under visible light irradiation. The results show that WO_3/Ag composites performed much better than pure WO_3 where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO_3, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO_3/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO_3/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  9. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    International Nuclear Information System (INIS)

    Matsuoka, T; Nishi, M; Sakakura, M; Shimotsuma, Y; Miura, K; Hirao, K

    2011-01-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl 4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl 4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  10. Gold and gold-copper nanoparticles in 2-propanol: A radiation chemical study

    International Nuclear Information System (INIS)

    Dey, G.R.

    2011-01-01

    The studies on the reduction of Au 3+ to gold nanoparticles in presence and absence of Cu 2+ under deoxygenated conditions in 2-propanol by radiolytic method have been carried out. On γ-radiolysis, preliminary yellow colored solution of Au 3+ changed to purple color owing to gold nanoparticles formation, which exhibits an absorption peak at around 540 nm. In the presence of Cu 2+ , absorption of gold-copper nanoparticles, which was also produced during γ-radiolysis, was red shifted in contrast to the system containing no Cu 2+ . Under DLS studies the sizes of gold nanoparticles in the absence and the presence of Cu 2+ were found to be larger (>400 nm). However, in presence of polyethylene glycol, a stabilizer the nanoparticle sizes became smaller, sizes measured for gold and gold-copper nanoparticles are 40 and 140 nm, respectively. Moreover, the change in UV-vis spectra in the Cu 2+ and Au 3+ mixed system highlights the formation of gold-copper nanoparticles in core-shell type arrangement. - Highlights: → Present radiation chemical study highlights high reactivity of Au ·2+ with Cu 2+ . → Absorption of gold-copper nanoparticles is blue shifted as compared to copper nanoparticles. → Change in UV-vis spectra with dose emphasizes core-shell type arrangement of Au-Cu nanoparticles.

  11. Recovery of gold with ion exchange resin from leaching solution by acidothioureation. Ion kokan jushiho ni yoru ryusan sansei chio nyoso kinshinshutsueki kara no kin no kaishu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakahiro, Y.; Ninae, M.; Kusaka, E.; Wakamatsu, T. (Kyoto University, Kyoto (Japan). Faculty of Engineering); Horio, Y. (Yamaha Co. Ltd., Tokyo (Japan))

    1991-12-25

    Recovery of gold with ion exchange resin from leaching solution by acidothioureation, and elution of gold from ion exchange resin with gold were studied experimentally. As the result of batch adsorption experiments of Au(TU){sub 2}{sup +} into various kinds of ion exchange resins, strong acidic cation exchange resin was most suitable, and gold was fully adsorbed into such resin in the pH range from 1.2 to 2.0 without any effects of thiourea in the leaching solution on adsorption of gold. As the result of batch elution experiments in various kinds of eluates, copper was eluted in HNO{sub 3}(1 N) + H{sub 2}O{sub 2}(1wt%) elute, both iron and zinc in NH{sub 4}NO{sub 3}(0.5 M) elute, and gold in Na{sub 2}S{sub 2} O{sub 3}(0.05 M) elute resulting in the recovery of gold. As the result of column elution experiments, Amberlite 200C was most effective among some ion exchangers used for recovery of Au(CS(NH{sub 2}){sub 2}){sub 2}{sup +}. 16 refs., 15 figs.

  12. Naked Gold Nanoparticles and hot Electrons in Water.

    Science.gov (United States)

    Ghandi, Khashayar; Wang, Furong; Landry, Cody; Mostafavi, Mehran

    2018-05-08

    The ionizing radiation in aqueous solutions of gold nanoparticles, stabilized by electrostatic non-covalent intermolecular forces and steric interactions, with antimicrobial compounds, are investigated with picosecond pulse radiolysis techniques. Upon pulse radiolysis of an aqueous solution containing very low concentrations of gold nanoparticles with naked surfaces available in water (not obstructed by chemical bonds), a change to Cerenkov spectrum over a large range of wavelengths are observed and pre-solvated electrons are captured by gold nanoparticles exclusively (not by ionic liquid surfactants used to stabilize the nanoparticles). The solvated electrons are also found to decay rapidly compared with the decay kinetics in water. These very fast reactions with electrons in water could provide an enhanced oxidizing zone around gold nanoparticles and this could be the reason for radio sensitizing behavior of gold nanoparticles in radiation therapy.

  13. A Straightforward Route to Tetrachloroauric Acid from Gold Metal and Molecular Chlorine for Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Shirin R. King

    2015-08-01

    Full Text Available Aqueous solutions of tetrachloroauric acid of high purity and stability were synthesised using the known reaction of gold metal with chlorine gas. The straightforward procedure developed here allows the resulting solution to be used directly for gold nanoparticle synthesis. The procedure involves bubbling chlorine gas through pure water containing a pellet of gold. The reaction is quantitative and progressed at a satisfactory rate at 50 °C. The gold(III chloride solutions produced by this method show no evidence of returning to metallic gold over at least twelve months. This procedure also provides a straightforward method to determine the concentration of the resulting solution using the initial mass of gold and volume of water.

  14. Extraction X-ray fluorescence determination of gold in natural samples

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Shishkina, T.V.; Zhuravleva, E.L.; Chimehg, Zh.

    1990-01-01

    The behaviour of gold and other elements impeding its X-ray fluorescence (XRF) determination, namely, of zinc, lead, and arsenic, has been studied during their extraction by TBP from hydrochloric, nitric, and aqua regia solutions using solid extractant (SE(TBP)). Gold extraction from pulps after aqua regia leaching, with the gold distribution coefficient (D) being equal to about 10 4 , was observed as the most favourable one for the quantitative and selective recovery of gold. For extraction from hydrochloric solutions the D Au value does not depend on the gold content of initial solutions (10 -8 - 10 -4 M), but it decreases substantially with increasing extraction temperature (from 5x10 5 at 20 deg C to 9x10 3 at 70 deg C). An anomalously high distribution coefficient of lead (D Pb =10 3 ) was observed during extraction from hydrochloric solutions in the presence of chlorine. This fact could be explained by the formation of the chlorocomplexes of lead (IV). The XRF method of gold determination in natural samples has been developed, which includes the aqua regia decomposition of the samples, recovery of gold from the pulp after its leaching by SE(TBP) and back - extraction using a 0.025 M hot thiourea solution providing a thin sample film for secondary XRF spectrometry. For 25 g of the sample material the limit of determination is set at 0.01 g per ton (10 -6 %). The accuracy of the technique has been checked on different reference materials. The results agree within 10%. 16 refs.; 5 figs.; 1 tab

  15. Rapid optical determination of topological insulator nanoplate thickness and oxidation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-01-01

    Full Text Available The stability of 2D antimony telluride (Sb2Te3 nanoplates in ambient conditions is elucidated. These materials exhibit an anisotropic oxidation mode, and CVD synthesized samples oxidize at a much faster rate than exfoliated samples investigated in previous studies. Optical measurement techniques are introduced to rapidly measure the oxidation modes and thickness of 2D materials. Auger characterization were conducted to confirm that oxygen replaces tellurium as opposed to antimony under ambient conditions. No surface morphology evolution was detected in AFM before and after exposure to air. These techniques were employed to determine the origin of the thickness dependent color change effect in Sb2Te3. It is concluded that this effect is a combination of refractive index change due to oxidation and Fresnel effects.

  16. Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2014-12-29

    The optical properties of an ultrathin discontinuous gold film in different dielectric surroundings are investigated experimentally by measuring the polarization-dependent wavelength shifts and amplitudes of the cladding mode resonances of a tilted fiber Bragg grating. The gold film was prepared by electron-beam evaporation and had an average thickness of 5.5 nm ( ± 1 nm). Scanning electron imaging was used to determine that the film is actually formed of individual particles with average lateral dimensions of 28 nm ( ± 8 nm). The complex refractive indices of the equivalent uniform film in air at a wavelength of 1570 nm were calculated from the measurements to be 4.84-i0.74 and 3.97-i0.85 for TM and TE polarizations respectively (compared to the value for bulk gold: 0.54-i10.9). Additionally, changes in the birefringence and dichroism of the films were measured as a function of the surrounding medium, in air, water and a saturated NaCl (salt) solution. These results show that the film has stronger dielectric behavior for TM light than for TE, a trend that increases with increasing surrounding index. Finally, the experimental results are compared to predictions from two widely used effective medium approximations, the generalized Maxwell-Garnett and Bruggeman theories for gold particles in a surrounding matrix. It is found that both of these methods fail to predict the observed behavior for the film considered.

  17. Study on gold concentrate leaching by iodine-iodide

    Science.gov (United States)

    Wang, Hai-xia; Sun, Chun-bao; Li, Shao-ying; Fu, Ping-feng; Song, Yu-guo; Li, Liang; Xie, Wen-qing

    2013-04-01

    Gold extraction by iodine-iodide solution is an effective and environment-friendly method. In this study, the method using iodine-iodide for gold leaching is proved feasible through thermodynamic calculation. At the same time, experiments on flotation gold concentrates were carried out and encouraging results were obtained. Through optimizing the technological conditions, the attained high gold leaching rate is more than 85%. The optimum process conditions at 25°C are shown as follows: the initial iodine concentration is 1.0%, the iodine-to-iodide mole ratio is 1:8, the solution pH value is 7, the liquid-to-solid mass ratio is 4:1, the leaching time is 4 h, the stirring intensity is 200 r/mim, and the hydrogen peroxide consumption is 1%.

  18. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae

    International Nuclear Information System (INIS)

    Konishi, Y.; Tsukiyama, T.; Tachimi, T.; Saitoh, N.; Nomura, T.; Nagamine, S.

    2007-01-01

    Microbial reduction and deposition of gold nanoparticles was achieved at 25 deg. C over the pH range 2.0-7.0 using the mesophilic bacterium Shewanella algae in the presence of H 2 as the electron donor. The reductive deposition of gold by the resting cells of S. algae was a fast process: 1 mM AuCl 4 - ions were completely reduced to elemental gold within 30 min. At a solution pH of 7, gold nanoparticles 10-20 nm in size were deposited in the periplasmic space of S. algae cells. At pH 2.8, gold nanoparticles 15-200 nm in size were deposited on the bacterial cells, and the biogenic nanoparticles exhibited a variety of shapes that included nanotriangles: in particular, single crystalline gold nanotriangles 100-200 nm in size were microbially deposited. At a solution pH of 2.0, gold nanoparticles about 20 nm in size were deposited intracellularly, and larger gold particles approximately 350 nm in size were deposited extracellularly. The solution pH was an important factor in controlling the morphology of the biogenic gold particles and the location of gold deposition. Microbial deposition of gold nanoparticles is potentially attractive as an environmentally friendly alternative to conventional methods

  19. Synthesis of Gold Nanoparticles Stabilized in Dextran Solution by Gamma Co-60 Ray Irradiation and Preparation of Gold Nanoparticles/Dextran Powder

    Directory of Open Access Journals (Sweden)

    Phan Ha Nu Diem

    2017-01-01

    Full Text Available Gold nanoparticles (AuNPs in spherical shape with diameter of 6–35 nm stabilized by dextran were synthesized by γ-irradiation method. The AuNPs were characterized by UV-Vis spectroscopy and transmission electron microscopy. The influence of pH, Au3+ concentration, and dextran concentration on the size of AuNPs was investigated. Results indicated that the smallest AuNPs size (6 nm and the largest AuNPs size (35 nm were obtained for pH of 1 mM Au3+/1% dextran solution of 5.5 and 7.5, respectively. The smaller Au3+ concentration favored smaller size and conversely the smaller dextran concentration favored bigger size of AuNPs. AuNPs powders were prepared by spay drying, coagulation, and centrifugation and their sizes were also evaluated. The purity of prepared AuNPs powders was also examined by energy dispersive X-ray (EDX analysis. Thus, the as-prepared AuNPs stabilized by biocompatible dextran in solution and/or in powder form can be potentially applied in biomedicine and pharmaceutics.

  20. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang Xiaorong; He Xiaoxiao; Wang Kemin; Ren Fang; Qin Zhihe

    2011-01-01

    In this paper, a pH-inductive protein-scaffold biosynthesis of shape-tunable crystalline gold nanoparticles at room temperature has been developed. By simple manipulation of the reaction solution's pH, anisotropic gold nanoparticles including spheres, triangles and cubes could be produced by incubating an aqueous solution of sodium tetrachloroaurate with Dolichomitriopsis diversiformis biomasses after immersion in ultrapure Millipore water overnight. A moss protein with molecular weight of about 71 kDa and pI of 4.9 was the primary biomolecule involved in the biosynthesis of gold nanoparticles. The secondary configuration of the proteins by CD spectrum implied that the moss protein could display different secondary configurations including random coil, α-helix and intermediate conformations between random coil and α-helix for the experimental pH solution. The growth process of gold nanoparticles further showed that the moss protein with different configurations provided the template scaffold for the shape-controlled biosynthesis of gold nanoparticles. The constrained shape of the gold nanoparticles, however, disappeared in boiled moss extract. The gold nanoparticles with designed morphology were successfully reconstructed using the moss protein purified from the gold nanoparticles. Structural characterizations by SEM, TEM and SAED showed that the triangular and cubic gold nanoparticles were single crystalline.

  1. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    Science.gov (United States)

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  2. Pseudo-template synthesis of gold nanoparticles based on polyhydrosilanes

    International Nuclear Information System (INIS)

    Sacarescu, Liviu; Simionescu, Mihaela; Sacarescu, Gabriela

    2011-01-01

    Highly stable colloidal gold nanoparticles are obtained in a pseudo-template system using a specific polyhydrosilane copolymeric structure. This process takes place in situ by microwaves activation of the polymer solution in a non-polar solvent followed by stirring with solid HAuCl 4 in natural light. The experimental procedure is very simple and the resulted colloidal gold solution is indefinitely stable. The specific surface plasmon resonance absorption band of the gold nanoparticles is strongly red shifted and is strictly related to their size. AFM correlated with DLS analysis showed flattened round shaped colloidal polymer-gold nanoparticles with large diameters. SEM-EDX combined analysis reveals that the polysilane-gold nanoparticles show a natural tendency to auto-assemble in close packed structures which form large areas over the polymer film surface.

  3. Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles

    International Nuclear Information System (INIS)

    Karczmarczyk, Aleksandra; Celebanska, Anna; Nogala, Wojciech; Sashuk, Volodymyr; Chernyaeva, Olga; Opallo, Marcin

    2014-01-01

    Graphical abstract: - Highlights: • Gold nanoparticulate film electrodes were prepared by layer-by-layer method from oppositely charged nanoparticles. • Positively charged nanoparticles play dominant role in glucose oxidation in alkaline solution. • Gold and gold-carbon nanoparticulate film electrodes exhibit similar glucose oxidation current and onset potential. - Abstract: Electrocatalytic oxidation of glucose was studied at nanoparticulate gold and gold-carbon film electrodes. These electrodes were prepared by a layer-by-layer method without application of any linker molecules. Gold nanoparticles were stabilized by undecane thiols functionalized by trimethyl ammonium or carboxylate groups, whereas the carbon nanoparticles were covered by phenylsulfonate functionalities. The gold nanoparticulate electrodes were characterized by UV-vis and XPS spectroscopy, atomic force microscopy and voltammetry, before and after heat-treatment. Heat-treatment facilitates the aggregation of the nanoparticles and affects the structure of the film. The comparison of the results obtained with film electrodes prepared from gold nanoparticles with the same charge and with gold-carbon nanoparticulate electrodes, proved that positively charged nanoparticles are responsible for the high electrocatalytic activity, whereas negatively charged ones act rather as a linker of the film

  4. Enhancement of gold recovery using bioleaching from gold concentrate

    Science.gov (United States)

    Choi, S. H.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    The gold in refractory ores is encapsulated as fine particles (sometimes at a molecular level) in the crystal structure of the sulfide (typically pyrite with or without arsenopyrite) matrix. This makes it impossible to extract a significant amount of refractory gold by cyanidation since the cyanide solution cannot penetrate the pyrite/arsenopyrite crystals and dissolve gold particles, even after fine grinding. To effectively extract gold from these ores, an oxidative pretreatment is necessary to break down the sulfide matrix. The most popular methods of pretreatment include nitric acid oxidation, roasting, pressure oxidation and biological oxidation by microorganisms. This study investigated the bioleaching efficiency of Au concentrate under batch experimental conditions (adaptation cycles and chemical composition adaptation) using the indigenous acidophilic bacteria collected from gold mine leachate in Sunsin gold mine, Korea. We conducted the batch experiments at two different chemical composition (CuSO4 and ZnSO4), two different adaptation cycles 1'st (3 weeks) and 2'nd (6 weeks). The results showed that the pH in the bacteria inoculating sample decreased than initial condition and Eh increased. In the chemical composition adaptation case, the leached accumulation content of Fe and Pb was exhibited in CuSO4 adaptation bacteria sample more than in ZnSO4 adaptation bacteria samples, possibly due to pre-adaptation effect on chalcopyrite (CuFeS2) in gold concentrate. And after 21 days on the CuSO4 adaptation cycles case, content of Fe and Pb was appeared at 1'st adaptation bacteria sample(Fe - 1.82 and Pb - 25.81 times per control sample) lower than at 2'nd adaptation bacteria sample(Fe - 2.87 and Pb - 62.05 times per control sample). This study indicates that adaptation chemical composition and adaptation cycles can play an important role in bioleaching of gold concentrate in eco-/economic metallurgy process.

  5. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  6. Recovery of gold from electronic scrap by hydrometallurgical processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Churl Kyoung; Rhee, Kang-In [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of); Sohn, Hun Joon [Seoul National University, Seoul (Korea, Republic of)

    1997-09-30

    A series of processes has been developed to recover the gold from electronic scrap containing about 200{approx}600 ppm Au. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The crushed scrap was leached in 50% aqua regia solution and gold was completely dissolved at 60 deg. C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. The resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour by electrowinning process. (author). 10 refs., 5 tabs., 6 figs.

  7. End-to-end self-assembly of gold nanorods in isopropanol solution: experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Gordel, M., E-mail: marta.gordel@pwr.edu.pl [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Piela, K., E-mail: katarzyna.piela@pwr.edu.pl [Wrocław University of Technology, Department of Physical and Quantum Chemistry (Poland); Kołkowski, R. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland); Koźlecki, T. [Wrocław University of Technology, Department of Chemical Engineering, Faculty of Chemistry (Poland); Buckle, M. [CNRS, École Normale Supérieure de Cachan, Laboratoire de Biologie et Pharmacologie Appliquée (France); Samoć, M. [Wrocław University of Technology, Advanced Materials Engineering and Modelling Group, Faculty of Chemistry (Poland)

    2015-12-15

    We describe here a modification of properties of colloidal gold nanorods (NRs) resulting from the chemical treatment used to carry out their transfer into isopropanol (IPA) solution. The NRs acquire a tendency to attach one to another by their ends (end-to-end assembly). We focus on the investigation of the change in position and shape of the longitudinal surface plasmon (l-SPR) band after self-assembly. The experimental results are supported by a theoretical calculation, which rationalizes the dramatic change in optical properties when the NRs are positioned end-to-end at short distances. The detailed spectroscopic characterization performed at the consecutive stages of transfer of the NRs from water into IPA solution revealed the features of the interaction between the polymers used as ligands and their contribution to the final stage, when the NRs were dispersed in IPA solution. The efficient method of aligning the NRs detailed here may facilitate applications of the self-assembled NRs as building blocks for optical materials and biological sensing.Graphical Abstract.

  8. One-step synthesis of gold bimetallic nanoparticles with various metal-compositions

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoaneta; Takai, Osamu; Saito, Nagahiro

    2013-01-01

    Highlights: ► Synthesis of bimetallic nanoparticles in an aqueous solution discharge. ► Alloying gold with divalent sp metals, trivalent sp metals, 3d or 4d metals. ► Formation mechanism of bimetallic nanoparticles by metal reduction and gold erosion. ► Blue and red shift of surface plasmon resonance. -- Abstract: A rapid, one-step process for the synthesis of bimetallic nanoparticles by simultaneous metal reduction and gold erosion in an aqueous solution discharge was investigated. Gold bimetallic nanoparticles were obtained by alloying gold with various types of metals belonging to one of the following categories: divalent sp metals, trivalent sp metals, 3d or 4d metals. The composition of the various gold bimetallic nanoparticles obtained depends on electrochemical factors, charge transfer between gold and other metal, and initial concentration of metal in solution. Transmission electron microscopy and energy dispersive spectroscopy show that the gold bimetallic nanoparticles were of mixed pattern, with sizes of between 5 and 20 nm. A red-shift of the surface plasmon resonance band in the case of the bimetallic nanoparticles Au–Fe, Au–Ga, and Au–In, and a blue-shift of the plasmon band of the Au–Ag nanoparticles was observed. In addition, the interaction of gold bimetallic nanoparticles with unpaired electrons, provided by a stable free radical molecule, was highest for those NPs obtained by alloying gold with a 3d metal

  9. Ag loaded WO{sub 3} nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenyu [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Liu, Jincheng, E-mail: JCLIU@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510009 (China); Yu, Shuyan; Zhou, Yan [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 (Singapore); Yan, Xiaoli, E-mail: XLYAN@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Current address: Environmental and Water Technology Centre of Innovation, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489 (Singapore)

    2016-11-15

    Highlights: • WO{sub 3}/Ag heterogeneous composites were fabricated with simply photo-reduction method. • Property changes due to Ag loading were systematically studied. • WO{sub 3}/Ag composites efficiently degraded sulfanilamide under visible light irradiation. • WO{sub 3}/Ag composites exhibited bactericidal effectS under visible light irradiation. - Abstract: Sulfonamides (SAs) are extensively used antibiotics and their residues in the water bodies propose potential threat to the public. In this study, degradation efficiency of sulfanilamide (SAM), which is the precursor of SAs, using WO{sub 3} nanoplates and their Ag heterogeneous as photocatalysts was investigated. WO{sub 3} nanoplates with uniform size were synthesized by a facile one step hydrothermal method. Different amount of Ag nanoparticles (Ag NPs) were loaded onto WO{sub 3} nanoplates using a photo-reduction method to generate WO{sub 3}/Ag composites. The physio-chemical properties of synthesized nanomaterials were systematically characterized. Photodegradation of SAM by WO{sub 3} and WO{sub 3}/Ag composites was conducted under visible light irradiation. The results show that WO{sub 3}/Ag composites performed much better than pure WO{sub 3} where the highest removal rate was 96.2% in 5 h. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO{sub 3}, and 100% removal efficiency against Escherichia Coli and Bacillus subtilis could be achieved in 2 h under visible light irradiation for all three WO{sub 3}/Ag composites synthesized. The improved performance in terms of SAM degradation and antibacterial activity of WO{sub 3}/Ag can be attributed to the improved electron-hole pair separation rate where Ag NPs act as effective electron trapper during the photocatalytic process.

  10. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, P K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Gokhale, R [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Subbarao, V V.V.S. [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Vishwanath, A Kasi [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Das, B K [Nanomaterials Laboratory, Centre for Materials for Electronics Technology (C-MET), Panchwati, Off Pashan Road, Pune 411008 (India); Satyanarayana, C V.V. [National Chemical Laboratory, Pashan Road, Pune 41108 (India)

    2005-07-15

    Poly(vinyl alcohol) (PVA) stabilized gold nanoparticles have been prepared in aqueous medium using two different reducing viz.; hydrazine hydrate, a stronger reducing agent and sodium formaldehydesulfoxylate (SFS), a slightly weaker reducing agent. SFS is used for first ever time for reduction of gold metal salt. The PVA stabilized gold nanoparticles solutions are wine red to blood red coloured and are stable over a long period of time with no indication of aggregation. The solution shows strong visible light absorptions in the range of 520-540 nm, characteristics of gold nanoparticles. Powder X-ray diffraction patterns of freshly prepared films containing gold nanoparticles indicated particles size to be about 15 nm. Transmission electron microscopy (TEM) of a more than two-week-old sample revealed well-defined non-agglomerated spherical particles of about 50 nm diameter in solutions.

  11. PVA stabilized gold nanoparticles by use of unexplored albeit conventional reducing agent

    International Nuclear Information System (INIS)

    Khanna, P.K.; Gokhale, R.; Subbarao, V.V.V.S.; Vishwanath, A. Kasi; Das, B.K.; Satyanarayana, C.V.V.

    2005-01-01

    Poly(vinyl alcohol) (PVA) stabilized gold nanoparticles have been prepared in aqueous medium using two different reducing viz.; hydrazine hydrate, a stronger reducing agent and sodium formaldehydesulfoxylate (SFS), a slightly weaker reducing agent. SFS is used for first ever time for reduction of gold metal salt. The PVA stabilized gold nanoparticles solutions are wine red to blood red coloured and are stable over a long period of time with no indication of aggregation. The solution shows strong visible light absorptions in the range of 520-540 nm, characteristics of gold nanoparticles. Powder X-ray diffraction patterns of freshly prepared films containing gold nanoparticles indicated particles size to be about 15 nm. Transmission electron microscopy (TEM) of a more than two-week-old sample revealed well-defined non-agglomerated spherical particles of about 50 nm diameter in solutions

  12. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    2016-06-01

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However, care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.

  13. Spherical aggregates composed of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, C-C; Kuo, P-L; Cheng, Y-C

    2009-01-01

    Alkylated triethylenetetramine (C12E3) was synthesized and used as both a reductant in the preparation of gold nanoparticles by the reduction of HAuCl 4 and a stabilizer in the subsequent self-assembly of the gold nanoparticles. In acidic aqueous solution, spherical aggregates (with a diameter of about 202 ± 22 nm) of gold nanoparticles (with the mean diameter of ∼18.7 nm) were formed. The anion-induced ammonium adsorption of the alkylated amines on the gold nanoparticles was considered to provide the electrostatic repulsion and steric hindrance between the gold nanoparticles, which constituted the barrier that prevented the individual particles from coagulating. However, as the amino groups became deprotonated with increasing pH, the ammonium adsorption was weakened, and the amino groups were desorbed from the gold surface, resulting in discrete gold particles. The results indicate that the morphology of the reduced gold nanoparticles is controllable through pH-'tunable' aggregation under the mediation of the amino groups of alkylated amine to create spherical microstructures.

  14. 2-D modeling of dual-mode acoustic phonon excitation of a triangular nanoplate

    Science.gov (United States)

    Tai, Po-Tse; Yu, Pyng; Tang, Jau

    2010-08-01

    In this theoretical work, we investigated coherent phonon excitation of a triangular nanoplate based on 2-D Fermi-Pasta-Ulam lattice model. Based on the two-temperature model commonly used in description of laser heating of metals, we considered two kinds of forces related to electronic and lattice stresses. Based on extensive simulation and analysis, we identified two major planar phonon modes, namely, a standing wave mode related to the triangle bisector and another mode corresponding to half of the side length. This work elucidates the roles of laser-induced electronic stress and lattice stress in controlling the initial phase and the amplitude ratio between these two phonon modes.

  15. Mercury and Cyanide Contaminations in Gold Mine Environment and Possible Solution of Cleaning Up by Using Phytoextraction

    Directory of Open Access Journals (Sweden)

    NURIL HIDAYATI

    2009-09-01

    Full Text Available Water contamination with heavy metals, mainly mercury and cyanide (CN due to small scale of public mines and large scale of industrial mines have been in concern to residents around the area. Surveys of heavy metal contamination in aquatic environments, such as rivers and paddy fields over two gold mine areas in West Jawa were conducted and possible solution of using indigenous plants for phytoremediation was studied. The results showed that most of the rivers and other aquatic environments were affected by gold mine activities. Rivers, ponds, and paddy fields around illegal public mines were mostly contaminated by mercury in considerably high levels, such as paddy fields in two locations (Nunggul and Leuwijamang, Pongkor were contaminated up to 22.68 and 7.73 ppm of Hg, respectively. Whereas rivers located around large scale industrial mines were contaminated by CN. Possible solution of cleaning up by using green technology of phytoremediation was examined. Some plant species grew in the contaminated sites showed high tolerance and potentially effective in accumulating cyanide or mercury in their roots and above ground portions. Lindernia crustacea (L. F.M., Digitaria radicosa (Presl Miq, Paspalum conjugatum, Cyperus kyllingia accumulated 89.13, 50.93, 1.78, and 0.77 ppm of Hg, respectively. Whereas, Paspalum conjugatum, Cyperus kyllingia accumulated 16.52 and 33. 16 ppm of CN respectively.

  16. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  17. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery.

    Science.gov (United States)

    Li, Jili; Yao, Ruimin; Cao, Chuanbao

    2014-04-09

    As we know, Li(+)-ion transport in layered LiNi1/3Co1/3Mn1/3O2 (NCM) is through two-dimensional channels parallel to the Li(+)-ion layers that are indexed as {010} active planes. In this paper, NCM nanoplates with exposed {010} active facets are synthesized in a polyol medium (ethylene glycol) and characterized by XRD, XPS, SEM, and HR-TEM. In addition, the effects of reaction conditions on the morphologies, structures and electrochemical performances are also evaluated. The results show that more {010} facets can be exposed with the thickness of NCM nanoplates increasing which can lead to more channels for Li(+)-ion migration. However, when the annealing temperatures exceed 900 °C, many new crystal planes grow along the thickness direction covering the {010} facets. In all of the NCM nanoplates obtained at different conditions, the NCM nanoplates calcined at 850 °C for 12 h (NCM-850-12H) display a high initial discharge capacity of 207.6 mAh g(-1) at 0.1 C (1 C = 200 mA g(-1)) between 2.5 and 4.5 V higher than most of NCM materials as cathodes for lithium ion batteries. The discharge capacities of NCM-850-12H are 169.8, 160.5, and 149.3 mAh g(-1) at 2, 5, and 7 C, respectively, illustrating the excellent rate capability. The superior electrochemical performance of NCM-850-12H cathode can be attributed to more {010} active planes exposure.

  18. Self-assembly of palladium nanoparticles: Synthesis of nanobelts, nanoplates and nanotrees using vitamin B1 and their application in carbon-carbon coupling reactions

    Science.gov (United States)

    An environmentally friendly one-step method to synthesize palladium (Pd) nanobelts, nanoplates and nanotrees using vitamin B1 without using any special capping agents at room temperature is described. This greener method, which uses water as benign solvent and vitamin B1 as a red...

  19. Determination of gold accumulation in human tissues caused by gold therapy using x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bacso, J.; Uzonyi, I.; Dezsoe, B.

    1986-08-01

    Human autopsy tissues from five patients with rheumatoid arthritis treated earlier with aqueous solution of gold and those from untreated control with the same disease were analyzed by x-ray fluorescence spectrometry using a conventional Si(Li) detection system. The gold and zinc concentrations of tissues were determined and compared with literature data. Correlation was found between Zn and Au concentrations in heart, lung, kidney and liver tissues. (author)

  20. Solvent extraction of gold(III) with 1-phenyl-3-methyl-4-trifluoroacetylpyrazolone-5

    International Nuclear Information System (INIS)

    Hasany, S.M.; Imtiaz Hanif

    1978-01-01

    A simple, rapid and selective separation procedure of gold based on its extraction with 1-phenyl-3-methyl-4-trifluoroacetylpyrazolone-5 has been developed. The dependence of the distribution ratio of gold on the pH of aqueous solutions, concentration of hydrochloric, nitric and perchloric acids and the organic solvents has been investigated. Decontamination factors for a number of metal ions with respect to gold are reported. Excellent separation of gold is obtained from many elements including noble metals. Citrate, cyanide, iodide, thiosulfate and thiourea completely mask gold, whereas oxalate does not interfere. Solutions of 1M HCl, 0.2M KCN, and the buffer of pH 0.8 readily strip gold from the organic phase. Some useful analytical applications of this procedure are discussed. (author)

  1. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  2. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Linhai Biao

    2018-01-01

    Full Text Available Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution.

  3. Synthesis of porous gold nanoshells by controlled transmetallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pattabi, Manjunatha, E-mail: manjupattabi@yahoo.com; M, Krishnaprabha [Department of Materials Science, Mangalore University, Mangalagangothri-574199 (India)

    2015-06-24

    Aqueous synthesis of porous gold nanoshells in one step is carried out through controlled transmetallation (TM) reaction using a naturally available egg shell membrane (ESM) as a barrier between the sacrificial silver particles (AgNPs) and the gold precursor solution (HAuCl{sub 4}). The formation of porous gold nanoshells via TM reaction is inferred from UV-Vis spectroscopy and the scanning electron microscopic (SEM) studies.

  4. The effect of the oxygen dissolved in the adsorption of gold in activated carbon

    International Nuclear Information System (INIS)

    Navarro, P.; Wilkomirsky, I.

    1999-01-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs

  5. Accumulation of gold using Baker's yeast, Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Roy, Kamalika; Lahiri, Susanta; Sinha, P.

    2006-01-01

    Authors have reported preconcentration of 152 Eu, a long-lived fission product, by yeast cells, Saccharomyces cerevisiae. Gold being a precious metal is used in electroplating, hydrogenation catalyst, etc. Heterogeneous composition of samples and low concentration offers renewed interest in its selective extraction of gold using various extractants. Gold can be recovered from different solutions using various chemical reagents like amines, organophosphorus compounds, and extractants containing sulphur as donor atom, etc. In the present work, two different strains of baker's yeast, Saccharomyces cerevisiae have been used to study the preconcentration of gold at various experimental conditions

  6. Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates

    International Nuclear Information System (INIS)

    Yuan Junhua; Chen Yuanxian; Han Dongxue; Zhang Yuanjian; Shen Yanfei; Wang Zhijuan; Niu Li

    2006-01-01

    A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction

  7. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco

    2014-11-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer that contains one chelate site per monomeric unit, was used to fabricate the membranes. This polymer can be easily processed into membranes by a phase inversion technique, resulting in an open and interconnected porous structure suitable for high flux liquid phase applications. This method overcomes the usual low capacities of membrane adsorbents by selecting a starting material that contains the adsorption sites within it, therefore avoiding the necessity to add an external agent into the membrane matrix. The resulting mechanically stable PTSC membranes can operate in a pressure driven permeation process, which eliminates the diffusion limitations commonly present in packed column adsorption processes. This process can selectively recover 97% of the gold present in a solution containing a 9-fold higher copper concentration, while operating at a flux as high as 1868 L/m2 h. The maximum gold uptake measured without sacrificing the mechanical stability of the membrane was 5.4 mmol Au/g. Furthermore the gold can be easily eluted from the membrane with a 0.1 M thiourea solution and the membrane can be reused for at least three cycles without any decrease in its performance. Finally, the ability of this membrane for recovering metals from real-life samples, like seawater and tap water, was tested with promising results.

  8. Size and shape control in the overgrowth of gold nanorods

    International Nuclear Information System (INIS)

    Ratto, Fulvio; Matteini, Paolo; Rossi, Francesca; Pini, Roberto

    2010-01-01

    We report on a new sustainable approach to manipulate the optical behaviour and geometrical properties of gold nanorods in aqueous solutions by fine control of their overgrowth. In our approach, the overgrowth is realized by modulation of the reduction of the gold ions which are left as Au 1+ after the primary step of the synthesis (typically as much as ∼80% of the gold ions available in the growth solution). The progress of the reduction requires the gradual addition of ascorbic acid, which transforms the Au 1+ into Au 0 and may be performed in the original growth solution with no need for any further manipulation. By control of the total amount and rate of administration of the ascorbic acid, we prove the possibility to realize a systematic modulation of the average lengths, diameters, shapes (rod or dog-bone like), and light extinction of the nanoparticles. A slow overgrowth leads to a gradual enlargement of the lengths and diameters at almost constant shape. In contrast, a faster overgrowth results into a more complex modification of the overall shape of the gold nanorods.

  9. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  10. Gold nanoparticle growth control - Implementing novel wet chemistry method on silicon substrate

    KAUST Repository

    Al-Ameer, Ammar

    2013-04-01

    Controlling particle size, shape, nucleation, and self-assembly on surfaces are some of the main challenges facing electronic device fabrication. In this work, growth of gold nanoparticles over a wide range of sizes was investigated by using a novel wet chemical method, where potassium iodide is used as the reducing solution and gold chloride as the metal precursor, on silicon substrates. Four parameters were studied: soaking time, solution temperature, concentration of the solution of gold chloride, and surface pre-treatment of the substrate. Synthesized nanoparticles were then characterized using scanning electron microscopy (SEM). The precise control of the location and order of the grown gold overlayer was achieved by using focused ion beam (FIB) patterning of a silicon surface, pre-treated with potassium iodide. By varying the soaking time and temperature, different particle sizes and shapes were obtained. Flat geometrical shapes and spherical shapes were observed. We believe, that the method described in this work is potentially a straightforward and efficient way to fabricate gold contacts for microelectronics. © 2013 IEEE.

  11. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  12. Gold sorption from aqueous solutions by hydroxides and oxides at conditions of complex formation and oxidation-reduction

    International Nuclear Information System (INIS)

    Novikov, A.I.; Shekoturova, E.K.; Ribalko, T.A.

    1986-01-01

    With using of radionuclide 198 Au 3+ at initial form 198 AuCl 4 - the sorption of Au 3+ at its concentrations from 1.27·10 3 till 1.9·10 -9 mol/l from solutions of NaClO 4 (0.1 and 1 mol/l), KHO 3 (0.1 and 1 mol/l), NaNO 3 (1 mol/l), NaCl(0.7-3 mol/l), KCl(0.01; 0.1 and 1 mol/l), NH 4 NO 3 (0.1 and 1 mol/l)NH 4 Cl(10 -3 ; 10 -2 ; 10 -1 and 1 mol/l) in a wide ph range (0+14) by hydroxides of Fe(III), Zr, oxides of Fe(III), Ti(IV), Mn(IV) and Sn(IV) is studied. The dependences of sorption value of Au 3+ on ph of medium, composition and concentrations of electrolytes in solution are defined. Calculations on condition of Au 3+ in aqueous solutions are conducted. Optimal conditions of gold concentration (including 198 Au) and its separation from carrier at sorption process are defined as well.

  13. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol

    Science.gov (United States)

    Srivastava, Sarvesh Kumar; Yamada, Ryosuke; Ogino, Chiaki; Kondo, Akihiko

    2013-02-01

    Room-temperature extracellular biosynthesis of gold nanoparticles (Au NPs) was achieved using Escherichia coli K12 cells without the addition of growth media, pH adjustments or inclusion of electron donors/stabilizing agents. The resulting nanoparticles were analysed by ultraviolet-visible (UV-vis) spectrophotometry, atomic force microscopy, transmission electron microscopy and X-ray diffraction. Highly dispersed gold nanoplates were achieved in the order of around 50 nm. Further, the underlying mechanism was found to be controlled by certain extracellular membrane-bound proteins, which was confirmed by Fourier transformation-infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis. We observed that certain membrane-bound peptides are responsible for reduction and subsequent stabilization of Au NPs (confirmed by zeta potential analysis). Upon de-activation of these proteins, no nanoparticle formation was observed. Also, we prepared a novel biocatalyst with Au NPs attached to the membrane-bound fraction of E. coli K12 cells serving as an efficient heterogeneous catalyst in complete reduction of 4-nitrophenol in the presence of NaBH4 which was studied with UV-vis spectroscopy. This is the first report on bacterial membrane-Au NP nanobiocomposite serving as an efficient heterogeneous catalyst in complete reduction of nitroaromatic pollutant in water.

  14. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    International Nuclear Information System (INIS)

    Sebastian, Suneetha; Ajina, C; Vallabhan, C. P. G; Nampoori, V. P. N.; Radhakrishnan, P.; Kailasnath, M.

    2013-01-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber

  15. Biosynthesis of Silver and Gold Crystals Using Grapefruit Extract

    OpenAIRE

    Chen Long; Wang Jianli; Wang Hongfeng; Qi Zhaopeng; Zheng Yuchuan; Wang Junbo; Pan Le; Chang Guanru; Yang Yongmei

    2016-01-01

    In this paper, biological synthesis of silver and gold crystals using grapefruit extract is reported. On treatment of aqueous solutions of silver nitrate and chloroauric acid with grapefruit extract, the formation of stable silver and gold particles at high concentrations is observed to occur. The silver particles formed are quasi-spherical or irregular with sizes ranging from several hundred nanometers to several microns. The gold quasi-spheres with holes on surfaces and with diameters rangi...

  16. Gold recovery from organic solvents using galvanic stripping

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; O`Keefe, T.J. [Univ. of Missouri, Rolla, MO (United States). Dept. of Metallurgical Engineering

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  17. Investigation of Mercury Reduction in Gold Stripping Process at Elevated Temperature

    Science.gov (United States)

    Pramudya, Irawan

    Mercury is present in many gold ores. By processing these ores, there is a potential of emitting mercury to the environment. Carbon regeneration kiln stacks have been observed as one of the primary source of mercury emission into the atmosphere. Before it is recycled back into the carbon in leach (CIL) or carbon in columns (CIC), carbon used in the gold extraction process needs to be reactivated thermally. Emission of mercury can be minimized by keeping the mercury left in the carbon low before it goes to the carbon regeneration kiln stacks. The objective of this study is establishing the optimum elution conditions of mercury cyanide from loaded carbon (which includes the eluent, concentration, temperature and elution time) with respect to gold stripping. Several methods such as acid washing (UNR-100, HCl or ethanol/UNR-100) were investigated prior to the stripping process. Furthermore, conventional pressurized Zadra and modified Zadra were also studied with regards to mercury concentration in the solution and vapor state as well as maximizing the gold stripping from industrial loaded carbon. 7% UNR-100 acid washing of loaded carbon at 80°C was able to wash out approximately 90% of mercury while maintaining the gold adsorption on the carbon (selective washing). The addition of alcohol in the UNR-100 acid washing solution was able to enhance mercury washing from 90% to 97%. Furthermore, mercury stripping using conventional pressurized (cyanide-alkaline) Zadra was best performed at 80°C (minimal amount of mercury reduced and volatilized) whereas using the same process only 40% of gold was stripped, which makes this process not viable. When alcohol was added to the stripping solution, at 80°C, 95% of gold was detected in the solution while keeping the reduction and volatilization of mercury low. The outcome of this study provides a better understanding of mercury behavior during the acid washing and stripping processes so that the risk of mercury exposure and

  18. Adsorption of a linear polyelectrolyte on a gold electrode

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Cohen Stuart, M.A.

    2003-01-01

    The adsorption of quaternized poly-2-vinyl pyridine (PVP+), which has a fixed charge per monomer, onto a gold electrode was investigated using reflectometry. The double layer charge and potential of the gold substrate were controlled by means of either the solution pH or by applying an external

  19. The extraction of low-concentrations of gold(I) with 198Au as a radiotracer

    International Nuclear Information System (INIS)

    Jianzhun Jiang; Chunli Liu; Weijin Zhou; Hongcheng Gao

    2002-01-01

    The solvent extraction of gold from alkaline cyanide solution was studied by using 198 Au as a radiotracer. The influence of several variables on the gold extraction, including the concentration of gold, the molar ratio of extractants to gold(I), the volume percentage of cosolvent and the pH value of the aqueous phase, was investigated. The results indicated that the radioactive tracer technique is a quick, accurate, and convenient tool to investigate the extraction behavior of an element existing in low concentrations. The experimental results indicated that the studied amines, tetradecyldimethylbenzylammonium chloride, N1923 and tri-n-octylamine, could be used as extractants for the recovery of gold from aqueous alkaline cyanide solutions. (author)

  20. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    Science.gov (United States)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  1. Determination of trace gold in rocks and minerals by neutron activation analysis

    International Nuclear Information System (INIS)

    Zhao Yunlong; Zhou Suqing; Liang Yutang

    1988-05-01

    The determination of trace gold in rocks and minerals by neutron activation analysis is described. Two methods are used for pre-separating and concentrating the trace gold in geological samples. one of the methods is that the samples are dissolved in aqua regia solution; activated carbon paper pulp filter is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the activated carbon containing gold was ashed at 650 ∼ 700 deg c. The other method is that the samples are dissolved in aqua regia solution; the polyurethane foam plastic filled with activated carbon is used for pre-separating and concentrating trace gold by dynamic adsorption method; then the foam plastic containing gold was ashed at 650 deg c. The gold in ashes is determinated by neutron activation analysis. The detection limit is 0.004ng/g. The accuracy of the method is examined by gold in reference standard material. The results of this method are in good agreement with the recommended value. For analysis of the trace gold by the methods of instrumental neutron activation analysis and epithermal neutron activation analysis, the interference of 411.8 keV γ-ray from 153 Sm, 152 Eu and fission products of uranium and the correction methods are discussed

  2. Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach

    Directory of Open Access Journals (Sweden)

    Yaser Kianinia

    2018-03-01

    Full Text Available The consumption of cyanide during processing operations is a major economic cost in the extraction of gold from its ores, while the discharge of cyanide wastes may result in significant environmental pollution. Many factors influence the levels of consumption and discharge of cyanide, including ore mineralogy and lixiviant solution chemistry. This paper proposes a robust methodology to estimate leaching cyanide consumption due to oxidation and reactions with gold, chalcopyrite and pyrite minerals forming various cyanide complexes, cyanate, thiocyanate and hydroxide precipitates of copper and iron. The method involves concurrent modelling of both the oxidation and leaching kinetics of minerals and the chemical speciation of the lixiviant solutions. The model was calibrated by conducting cyanide leaching experiments on pyrite, chalcopyrite, pyrite + chalcopyrite, pyrite + chalcopyrite + gold and pyrite + chalcopyrite + gold + quartz systems and determining the total Cu, Fe, Au and CN− concentrations in solution. We show that this model can successfully estimate the formation of cyanide complexes and, hence, the consumption of cyanide.

  3. Lime in gold and uranium mining

    International Nuclear Information System (INIS)

    Van Staden, C.M.

    1979-01-01

    In this article the author discusses the role of lime in gold and uranium extraction and looks more closely at the industry's efforts to improve the environment by vegetation of sand dumps and slimes dams. He then comes to the conclusion that lime has been and still is the most effective, practical and cheapest chemical that can be used in the South African gold and uranium mining industry to settle pulps, protect cyanide solutions, aid the vegetation of dumps and neutralise acidic waters and residues. The gold and uranium industry is very pollution concious, and in South Africa the importance of the role that lime plays in combating air and water pollution cannot be over emphasised

  4. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  5. Single step synthesis and organization of gold colloids assisted by copolymer templates

    Science.gov (United States)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-06-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.

  6. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.

    Science.gov (United States)

    Alkilany, Alaaldin M; Lohse, Samuel E; Murphy, Catherine J

    2013-03-19

    Since the late 1980s, researchers have prepared inorganic nanoparticles of many types--including elemental metals, metal oxides, metal sulfides, metal selenides, and metal tellurides--with excellent control over size and shape. Originally many researchers were primarily interested in exploring the quantum size effects predicted for such materials. Applications of inorganic nanomaterials initially centered on physics, optics, and engineering but have expanded to include biology. Many current nanomaterials can serve as biochemical sensors, contrast agents in cellular or tissue imaging, drug delivery vehicles, or even as therapeutics. In this Account we emphasize that the understanding of how nanomaterials will function in a biological system relies on the knowledge of the interface between biological systems and nanomaterials, the nano-bio interface. Gold nanoparticles can serve as excellent standards to understand more general features of the nano-bio interface because of its many advantages over other inorganic materials. The bulk material is chemically inert, and well-established synthetic methods allow researchers to control its size, shape, and surface chemistry. Gold's background concentration in biological systems is low, which makes it relatively easy to measure it at the part-per-billion level or lower in water. In addition, the large electron density of gold enables relatively simple electron microscopic experiments to localize it within thin sections of cells or tissue. Finally, gold's brilliant optical properties at the nanoscale are tunable with size, shape, and aggregation state and enable many of the promising chemical sensing, imaging, and therapeutic applications. Basic experiments with gold nanoparticles and cells include measuring the toxicity of the particles to cells in in vitro experiments. The species other than gold in the nanoparticle solution can be responsible for the apparent toxicity at a particular dose. Once the identity of the toxic

  7. Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: solution behavior, reactions with model proteins, antiproliferative properties.

    Science.gov (United States)

    Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi

    2012-03-01

    Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    International Nuclear Information System (INIS)

    Song, Y.Z.; Zhou, J.F.; Song, Y.; Cheng, Z.P.; Xu, J.

    2012-01-01

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticle for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.

  9. The recovery of gold from the aqua regia leachate of electronic parts using a core–shell type anion exchange resin

    Directory of Open Access Journals (Sweden)

    P. Cyganowski

    2017-09-01

    The investigated resins revealed great selectivity towards gold. Despite the fact that the obtained solutions contained only 1.5% (CPU or 0.1% (PIN of Au, its removal reached 86% and the logarithms of partition coefficients indicate that affinity of the applied resins to gold is almost ten times greater than the very competitive nickel present in the obtained solutions. Finally, the gold-containing core–shell polymers were effectively eluted, recovering 100% of the taken from the solutions gold.

  10. Recovery of gold from arsenopyrite concentrates by cyanidation-carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, H.J.; McClelland, G.E., Lindstrom, R.E.

    1980-01-01

    The Bureau of Mines, investigated a cyanidation-carbon adsorption technique for extracting gold from arsenopyrite concentrates. Agitation leach experiments were conducted on 85%-minus-35-mesh gravity concentrates containing 21.8 oz gold and 6.4 oz silver per ton. Results obtained in leaching the concentrates showed that 96.9% gold and 90.7% silver extraction could be achieved in 96 hours of agitation. Gold and silver were recovered from the resulting pregnant solution by exposure to granular activated carbon in a countercurrent system. Carbon loadings of 2556 oz of gold and 502 oz of silver per ton were achieved. These loadings are significantly higher than heretofore thought practical.

  11. High-Pressure-Induced Comminution and Recrystallization of CH3 NH3 PbBr3 Nanocrystals as Large Thin Nanoplates.

    Science.gov (United States)

    Yin, Tingting; Fang, Yanan; Chong, Wee Kiang; Ming, Koh Teck; Jiang, Shaojie; Li, Xianglin; Kuo, Jer-Lai; Fang, Jiye; Sum, Tze Chien; White, Timothy J; Yan, Jiaxu; Shen, Ze Xiang

    2018-01-01

    High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (perovskite nanoplates, are retained and these exhibit simultaneous photoluminescence emission enhancing (a 15-fold enhancement in the photoluminescence) and carrier lifetime shortening (from ≈18.3 ± 0.8 to ≈7.6 ± 0.5 ns) after releasing of pressure from 11 GPa. This pressure-induced comminution of hybrid perovskite NCs and a subsequent amorphization-recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization and treatment of artisanal gold mine tailings

    International Nuclear Information System (INIS)

    Andrade Lima, L.R.P. de; Bernardez, L.A.; Barbosa, L.A.D.

    2008-01-01

    The solid waste generated by artisanal gold mining, with high mercury and gold contents, can be found in several areas in the South America. The present study focused on the tailings of an artisanal gold mine area located in the Brazilian northeastern. Samples of the mine tailings were taken and used to perform a physical and chemical characterization study using X-ray diffraction, scanning electron microscopy, neutron activation, X-ray fluorescence, induced coupled plasma-mass spectrometry, among others analytical methods. The results indicate that the material is composed mainly by quartz and goethite, the characteristic size of the particles (d 50 ) is about 150 μm, and the density is close of that of quartz. The main constituents are silicon, iron, and aluminum. The tailings gold content is of about 1.8 mg/kg and the mercury content is of about 10 mg/kg. A remarkable feature of this solid waste is that the gold and mercury are both concentrated in both the fine and the coarse particles, but not in particles of intermediary size. Leaching studies indicated that the tailings are stable in weak organic acids, but soluble in alkaline and aired cyanide solutions, in which 89% of gold and 100% of mercury are extracted in 24 h. Electroleaching experiments, performed using sodium chloride as electrolyte, indicated that mercury and gold are extracted simultaneously and the recovery of both metals can be as high as 70% in 4 h. In addition, chromium, nickel, and lead are found in relatively large amounts in the solution, which indicate an effectively action of the electroleaching method to clean up solid wastes contaminated with metals

  13. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    Science.gov (United States)

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  14. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  15. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp.

    Science.gov (United States)

    Zhang, Xiaorong; He, Xiaoxiao; Wang, Kemin; Wang, Yonghong; Li, Huimin; Tan, Weihong

    2009-10-01

    The unique optoelectronic and physicochemical properties of gold nanoparticles are significantly dependent on the particle size, shape and structure. In this paper, biosynthesis of size-controlled gold nanoparticles using fungus Penicillium sp. is reported. Fungus Penicillium sp. could successfully bioreduce and nucleate AuCl4(-) ions, and lead to the assembly and formation of intracellular Au nanoparticles with spherical morphology and good monodispersity after exposure to HAuCl4 solution. Reaction temperature, as an important physiological parameter for fungus Penicillium sp. growth, could significantly control the size of the biosynthesized Au nanoparticles. The biological compositions and FTIR spectra analysis of fungus Penicillium sp. exposed to HAuCl4 solution indicated the intracellular reducing sugar played an important role in the occurrence of intracellular reduction of AuCl4(-) ions and the growth of gold nanoparticles. Furthermore, the intracellular gold nanoparticles could be easily separated from the fungal cell lysate by ultrasonication and centrifugation.

  16. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves

    International Nuclear Information System (INIS)

    Correa, S N; Naranjo, A M; Herrera, A P

    2016-01-01

    This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au +3 aqueous solutions (HAuCl 4 ) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution. (paper)

  17. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves

    Science.gov (United States)

    Correa, S. N.; Naranjo, A. M.; Herrera, A. P.

    2016-02-01

    This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au+3 aqueous solutions (HAuCl4) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution.

  18. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  19. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  20. Leaching of a gold bearing partially roasted sulphide. Laboratory scale studies

    Directory of Open Access Journals (Sweden)

    M.F. Almeida

    2001-10-01

    Full Text Available This research aimed at defining a route for recovering precious metals from a very heterogeneous gold bearing sulphide and arsenide concentrate that was partially roasted and dumped by the 1960s when Santo António mine closed. Gold occurs in this concentrate as free particles in the range of 10-100 mum, most of them still enclosed in the pyrite and arsenopyrite matrix. Its content varies from 20 to 150 g of Au/ton, being higher at the dump upper levels and in the finer concentrate fractions. Preliminary tests demonstrated the refractoriness of this product, since the leaching with conventional cyanide solutions and with other leaching solutions gave very low recoveries. However, high concentrated cyanide solutions recover more than 60% of Au, although with high NaCN and lime consumptions and poor settling characteristics. Iron was shown to be highly dissolved in these solutions. Some prior treatments clearly favoured the cyanidation process, in particular a roasting step. Thus, a large number of roasting experiments was carried out to define the most favourable conditions for recovering gold. However, no clear relationship between roasting conditions and gold dissolution was found due to the heterogeneity of the product and high variance of gold experimental recoveries. These recoveries were calculated considering gold contained in both the leaching residues and leachates, and uncertainties of these results are relatively high. Roasting the product at 450-700 °C for 1 h guarantees a high probability to dissolve at least 74% Au in a highly concentrated NaCN solution stirred for 24 h. The 600-700 °C roasting range is clearly preferable for consuming less cyanide and lime. Pre-washing the roasted product seems not to reduce the cyanide consumption. Regarding the silver recovery, the NaCN and lime consumption are higher while using the products roasted at the lowest tested temperatures. Products roasted at higher temperatures have better settling

  1. Single step synthesis and organization of gold colloids assisted by copolymer templates

    International Nuclear Information System (INIS)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-01-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future. (papers)

  2. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco; Yapici, Tahir; Peinemann, Klaus-Viktor

    2014-01-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer

  3. Charting the Improvement of Artisanal and Small-Scale Gold Mining ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    AGC

    2014-02-28

    Feb 28, 2014 ... This work is used with the permission of the Artisanal Gold Council ... the problems and solutions surrounding the ASGM sector, improve the .... based on primary research (field measurements, mass balance, ... population, life expectancy at birth, the price of gold, and the price of mercury are automatically.

  4. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  5. Biogenic production of cyanide and its application to gold recovery.

    Science.gov (United States)

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  6. A recovery of gold from electronic scrap by mechanical separation, acid leaching and electrowinning

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, K.I.; Lee, J.C.; Lee, C.K.; Joo, K.H.; Yoon, J.K.; Kang, H.R.; Kim, Y.S.; Sohn, H.J.

    1995-12-31

    A series of processes to recover the gold from electronic scrap which contains initially about 200--600 ppm Au have been developed. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The scrap was leached in 50% aqua regia solution and gold was dissolved completely at 60 C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. This resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour in electrowinning process.

  7. Why can a gold salt react as a base?

    Science.gov (United States)

    Anania, Mariarosa; Jašíková, Lucie; Jašík, Juraj; Roithová, Jana

    2017-09-26

    This study shows that gold salts [(L)AuX] (L = PMe 3 , PPh 3 , JohnPhos, IPr; X = SbF 6 , PF 6 , BF 4 , TfO, Tf 2 N) act as bases in aqueous solutions and can transform acetone to digold acetonyl complexes [(L) 2 Au 2 (CH 2 COCH 3 )] + without any additional base present in solution. The key step is the formation of digold hydroxide complexes [(L) 2 Au 2 (OH)] + . The kinetics of the formation of the digold complexes and their mutual transformation is studied by electrospray ionization mass spectrometry and the delayed reactant labelling method. We show that the formation of digold hydroxide is the essential first step towards the formation of the digold acetonyl complex, the reaction is favoured by more polar solvents, and the effect of counter ions is negligible. DFT calculations suggest that digold hydroxide and digold acetonyl complexes can exist in solution only due to the stabilization by the interaction with two gold atoms. The reaction between the digold hydroxide and acetone proceeds towards the dimer {[(L)Au(OH)]·[(L)Au(CH 3 COCH 3 )] + }. The monomeric units interact at the gold atoms in the perpendicular arrangement typical of the gold clusters bound by the aurophilic interaction. The hydrogen is transferred within the dimer and the reaction continues towards the digold acetonyl complex and water.

  8. EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO4 Nanoplates as Cathodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liwei Su

    2015-01-01

    Full Text Available Ultrathin carbon-coated LiMnPO4 (ULMP/C nanoplates were prepared through an ethylene glycol- (EG- assisted pyrolysis method. Different from most of LiMnPO4/C works, the obtained ULMP/C possessed relatively small particle size (less than 50 nm in thickness and preferable carbon coating (~1 nm in thickness, 2 wt.%. As a reference, LiMnPO4/C (LMP/C composites were also fabricated via the traditional hydrothermal method. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, thermogravimetric analysis (TG, galvanostatic charge-discharge, and cyclic voltammetry (CV were performed to characterize the crystalline phase, morphology, structure, carbon content, and electrochemical behaviors of samples. The electrochemical performance of bare and carbon-coated LiMnPO4 was evaluated as cathodes in lithium ion batteries. As a result, the obtained ULMP/C nanoplates demonstrated much higher reversible capacities (110.9 mAh g−1 after 50 cycles at 0.1 C and rate performances than pure LMP and LMP/C composites. This facile and efficient EG-assisted pyrolysis method can enlighten us on exploiting advanced routes to modify active materials with ultrathin and homogeneous carbon layers.

  9. Solution of system of multidimensional differential equations in X for identification of gold nanoparticles on fibers with elimination of uncertainty

    Science.gov (United States)

    Dobrovolskaya, T. A.; Emelyanov, V. M.; Emelyanov, V. V.

    2018-05-01

    There are the results of the compilation and solution of a system of multidimensional differential correlation equations of distribution ellipses in the identification of colloidal gold nanoparticles on polyester fibers with multi-dimensional correlation components of Raman polarization spectra. A proposed method is to increase the accuracy and speed of identification of silver nanoparticles on polyester fibers, taking into account the longitudinal and transverse polarization of laser radiation over the entire spectral range, analyzing in sequence and in order simultaneously two peaks along the X-transverse and along the Y-along the fibers. During a solution of the system using a nonlinear quadratic and differential equation with respect to X, an uncertainty arises, the elimination of which is numerical addition Δ = + 0.02985

  10. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    Science.gov (United States)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  11. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    Science.gov (United States)

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  12. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  13. Seed Mediated Growth of Gold Nanoparticles Based on Liquid Arc Discharge

    International Nuclear Information System (INIS)

    Ashkarran, Ali Akbar

    2013-01-01

    We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthesized gold nanoparticles were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, optical imaging and atomic force microscopy (AFM). Optical absorption spectroscopy of the prepared samples at 15 A arc current in HAuCl 4 solution shows a surface plasmon resonance around 520 nm. It is found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. The intensity of the plasmonic peak of the prepared gold nanoparticles for 1 minute arc duration gradually increases due to seed mediation for up to 6 hours. The formation time of gold nanoparticles at higher seed concentrations is less than that at lower seed concentrations. (plasma technology)

  14. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Cao Zhong; Zhang Ling; Guo Chaoyan; Gong Fuchun; Long Shu; Tan Shuzhen; Xia Changbin; Xu Fen; Sun Lixian

    2009-01-01

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10 -5 ng.cm -2 .s -1 , corresponding to 1.3 x 10 8 Au atoms.cm -2 .s -1 , that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  15. Microbially Induced Precipitation of Gold(0) Nanoparticles.

    Science.gov (United States)

    Roh, Yu; Kang, Serku; Park, Bitna; Kim, Yumi

    2015-01-01

    The objectives of this study were to synthesize gold nanoparticles by biomineralization using metal-reducing bacteria and to characterize their mineralogical properties. The metal-reducing bacteria were able to reduce Au(III) to Au(0) with organic fatty acids as electron donors, as indicated by the color change of the culture solution from colorless gold ions to black precipitates at 25 degrees C. XRD, SEM- and TEM-EDS analyses of the precipitates showed that Au(0) was precipitated and formed at either the cell membrane or extracellularly. The Au(0) nanoparticles were about 200 nm in size and ball-shaped. Biomineralization for elemental Au(0) nanoparticle synthesis may be useful for the recovery of natural gold in natural environments.

  16. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    Science.gov (United States)

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electrochemical extraction of gold from wastes as nanoparticles stabilized by phospholipids.

    Science.gov (United States)

    Moriwaki, Hiroshi; Yamada, Kotaro; Usami, Hisanao

    2017-02-01

    A simple one-step method for the extraction of gold from wastes as nanoparticles stabilized by phospholipids is demonstrated. This is achieved by applying an AC voltage for 5s to the gold-containing wastes, which act as the electrodes in a buffer solution containing a dispersed phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC). This is an environmentally friendly and rapid method for recovering gold from wastes. The extracted gold nanoparticles have significant potential as a catalyst or biomedical material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determination of Au, Pt, Pd in gold ore mineral raw materials by stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Kolpakova N.A.

    2016-01-01

    Full Text Available The paper considers the possibilities of use of the method of stripping voltammetry for finding platinum metals in mineral gold and ore raw material. A review of new options of electro-concentration of platinum metals on the surface of graphite electrode with the following sediment electro-oxidation and receipt of an analytical signal is presented: platinum finding was carried out by picks of selective electro-oxidation of iridium from intermetallic compound with platinum; gold finding was carried out by picks of gold electro-oxidation on the surface of graphite electrode modified by bismuth; palladium finding was performed by picks of palladium electro-oxidation on the surface of graphite electrode. 1M HCL solution was selected as a supporting electrolyte. Gold and hydrogen elimination on the process of palladium electro-oxidation was performed by means of UV irradiation of solution in the process of electro-concentration of palladium sediment. Gold, platinum and palladium determination was carried out in mineral gold and ore raw material of Verkhneamylskiy gold and ore district.

  19. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications

    International Nuclear Information System (INIS)

    Hoa, Nguyen Duc; Duy, Nguyen Van; Hieu, Nguyen Van

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO 3 nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO 3 sensor exhibited a high performance to NO 2 gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO 2 ) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO 2 . In addition, the developed sensor exhibited selective detection of low NO 2 concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  20. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.

    Science.gov (United States)

    Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan

    2010-03-01

    L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.

  1. Determination of gold in natural waters by neutron activation-#betta#-spectrometry after preconcentration on activated charcoal

    International Nuclear Information System (INIS)

    Hamilton, T.W.; Ellis, J.; Florence, T.M.

    1983-01-01

    A method for the determination of gold at very low levels in waters is presented. The method involves batchwise pre-concentration of gold from 1 l of water at pH 3-4 onto 0.1 g of activated charcoal by shaking for 5 min and subsequent treatment of the activated charcoal by instrumental neutron activation-#betta#-spectrometry. Activated charcoal quantitatively adsorbs ionic and colloidal gold from solutions prepared with distilled water and also from natural surface waters spiked and equilibrated with these two forms of gold. Three ion-exchange resins were evaluated for pre-concentration purposes; ionic gold removal was quantitative but colloidal gold removal was incomplete. Electrodeposition at a carbon fibre electrode gave similar results. The charcoal pre-concentration technique was tested on solutions containing 198 Au tracer and a total gold concentration of 1 μg l - 1 . The limit of detection of total gold (ionic and colloidal) for the carbon adsorption/neutron activation-#betta#-spectrometry procedure is 0.3 ng l - 1 . The method was used to determine gold in surface waters from auriferous regions. (Auth.)

  2. Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho{sub 2}Cu{sub 2}O{sub 5} nanoplates prepared with a coordination-complex method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rui [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); School of Metallurgy, Northeastern University, Shenyang 110004 (China); You, Junhua [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); Liu, Xuanwen, E-mail: lxw@mail.neuq.edu.cn [School of Resources and Materials, Northeastern University at Qinhuangdao 066004 (China); School of Metallurgy, Northeastern University, Shenyang 110004 (China)

    2017-02-28

    Highlights: • The crystallization mechanism relies on Ho{sup 3+} and Cu{sup 2+} diffusion. • The Ho{sub 2}Cu{sub 2}O{sub 5} particles are refined by the coordination complex method under N{sub 2} environment. • The catalytic oxidation activity of Ho{sub 2}Cu{sub 2}O{sub 5} samples for carbon is enhanced. - Abstract: Ho{sub 2}Cu{sub 2}O{sub 5} nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc){sub 2}(OAc)(H{sub 2}O){sub 3}]·8H{sub 2}O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N{sub 2} environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho{sub 2}Cu{sub 2}O{sub 5} formed through the diffusion of CuO into Ho{sub 2}O{sub 3} particles. Cu{sup 2+} diffused faster than Ho{sup 3+} during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N{sub 2} atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho{sub 2}Cu{sub 2}O{sub 5} particles. The final Ho{sub 2}Cu{sub 2}O{sub 5} particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N{sub 2} played important roles in determining the morphology of the resulting Ho{sub 2}Cu{sub 2}O{sub 5}. The catalytic oxidation activity of Ho{sub 2}Cu{sub 2}O{sub 5} samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.

  3. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon; Recuperacion de oro a partir de disoluciones de amoniaco y tiosulfato utilizando carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.; Navarro, P.; Araya, E.; Pavez, F.; Alguacil, F. J.

    2006-07-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied,evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. during elution, ammonia and thiosulfate concentration, pH regulator and temperature were evaluated. Ammonia favored the process as long as thiosulfate showed a maximum starting from which the elution diminishes. The effect of the pH regulator was very important; If was revealed that when the pH was regulated with caustic ammonia, a synergic effect appeared which favored the elution. Temperature favored the elution process, with activation energy of 9.13 kJ/mol. (Author) 25 refs.

  4. Determination of gold by neutron activation analysis in some selected precambrian rocks from Eastern India

    International Nuclear Information System (INIS)

    Das, N.R.; Bhattacharyya, S.N.; Chakraborty, P.S.

    1976-01-01

    Gold was determined in epidiorite schist from Kunderkocha, in green phyllite from near Sausel in granodiorite from Kunderkocha and in galena quartz vein from Sausel by neutron activation analysis. The analysis was carried out both in destructive and non-destructive ways followed by γ-ray spectrometry. The process of preconcentration involves digestion of the rock samples with hydrofluoric acid and its dissolution in aqua regia solution, extraction of gold from the aqua regia solution by methylisobutyl ketone, back extraction of gold from the organic to the aqueous layer, and coprecipitation of gold by a known amount (0.7 g) of lead sulphide. The amounts of gold that were determined in the respective rock samples varied in the range 10 -4 -10 -6 %. Besides gold, some other trace constituents such as As, Ag, Sb, W, Se, La, Sn, etc. were also detected and their approximate order of occurence was determined. (T.G.)

  5. Determination of gold in gold ores

    International Nuclear Information System (INIS)

    Keedy, C.R.; Parson, L.; Shen, J.

    1989-01-01

    The gold content of placer gold flakes and gold bearing ores was determined by instrumental and radiochemical neutron activation analysis, respectively. It was discovered that significant errors result in the instrumental method for gold flakes as small as 10 mg due to sample self-absorption of neutrons during irradiation. Reliable results were obtained for both ore samples and gold flakes by dissolving the samples in aqua regia prior to irradiation. (author) 7 refs.; 3 tabs

  6. Analysis and optimization of RC delay in vertical nanoplate FET

    Science.gov (United States)

    Woo, Changbeom; Ko, Kyul; Kim, Jongsu; Kim, Minsoo; Kang, Myounggon; Shin, Hyungcheol

    2017-10-01

    In this paper, we have analyzed short channel effects (SCEs) and RC delay with Vertical nanoplate FET (VNFET) using 3-D Technology computer-aided design (TCAD) simulation. The device is based on International Technology Road-map for Semiconductor (ITRS) 2013 recommendations, and it has initially gate length (LG) of 12.2 nm, channel thickness (Tch) of 4 nm, and spacer length (LSD) of 6 nm. To obtain improved performance by reducing RC delay, each dimension is adjusted (LG = 12.2 nm, Tch = 6 nm, LSD = 11.9 nm). It has each characteristic in this dimension (Ion/Ioff = 1.64 × 105, Subthreshold swing (S.S.) = 73 mV/dec, Drain-induced barrier lowering (DIBL) = 60 mV/V, and RC delay = 0.214 ps). Furthermore, with long shallow trench isolation (STI) length and thick insulator thickness (Ti), we can reduce RC delay from 0.214 ps to 0.163 ps. It is about a 23.8% reduction. Without decreasing drain current, there is a reduction of RC delay as reducing outer fringing capacitance (Cof). Finally, when source/drain spacer length is set to be different, we have verified RC delay to be optimum.

  7. Gold recovery from printed wiring board using bioleaching

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Y. [Faculty of Engineering, Osaka Univ. (Japan); Nishikawa, H. [Center for Advanced Science and Innovation, Osaka Univ. (Japan); Takemoto, T. [Joining and Welding Research Inst., Osaka Univ. (Japan)

    2004-07-01

    In the electronic assembly, gold is frequently used as surface plating and a bonding wire. To recover gold from waste electronics, the dissolution process using cyan is a popular method, however, the solution is highly toxic. Accordingly, the environmentally conscious substitute process is preferable. In this study the possibility of Au dissolution from printed wiring boards using bioleaching has been investigated. Chromobacterium violaceum having ability of cyanide formation was used to dissolve Au. The printed wiring boards with gold plating of 0.07nm in thickness were immersed in synthetic medium with C. violaceum. After immersion test for 480h, the gold plating was completely dissolved. The increase in cyanide concentration gave little effect on the enhancement of dissolution of gold, however, the dissolution rate of Au was increased with increasing of dissolved oxygen in the medium. Chromobacterium violaceum produced 0.8mmol/l cyanide but it also decomposed about 60% of cyanide generated, therefore, this dissolution process could be used as an environmentally conscious method. (orig.)

  8. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  9. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    Science.gov (United States)

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  10. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  11. Preparation of gold ethanol colloid by the arc discharge method

    International Nuclear Information System (INIS)

    Tseng, K.-H.; Huang, J.-C.; Liao, C.-Y.; Tien, D.-C.; Tsung, T.-T.

    2009-01-01

    A new method using the arc discharge method (ADM) to synthesize gold nanoparticles in an anhydrous ethanol was studied. Fabricated gold nanoparticles were characterized by different techniques. Unlike conventional methods for metal nanoparticles synthesis, the ADM method does not require application of chemical surfactants and stabilizers. The microstructure of ADM-produced gold nanoparticles was examined by transmission electron microscope (TEM) and scanning electron microscope (SEM). The particle size was found in the range of 2-40 nm. The chemical composition of gold nanoparticles has been confirmed by the energy dispersive X-ray analysis (EDX). The crystal structure of the nanoscale gold particles was studied using the X-ray diffraction (XRD) method. Images of the gold nanoparticles, Zeta potential, size distribution, and ultraviolet-visible (UV-vis) absorbance were investigated. This innovative approach for gold nanoparticles preparation has been successfully established. The experimental results showed that the ADM technique is easy, cheap and clean method which can be used to manufacture gold nanoparticles suspended in ethanol solution without any surfactant

  12. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  13. Thermal Reshaping of Gold Nanorods in Micellar Solution of Water/Glycerol Mixtures

    Directory of Open Access Journals (Sweden)

    Al Sayed A. Al-Sherbini

    2010-01-01

    Full Text Available Gold nanorods (Nds with aspect ratios of 4, 3.5, and 2.8 were prepared by the electrochemical method. The nanorods were thermally studied in binary solvents of aqueous glycerol at different ratios (25%–75%. The results illustrated that the longitudinal surface plasmon resonance (SPL is strongly dependent on the dielectric constant. The maximum absorption is red shifted with increasing the glycerol/water ratio. This was attributed to the decreasing value of the dielectric constant of the binary solvents. Moreover, by increasing the temperatures, the results showed relative instability of the gold nanorods. This attributed to the relative instability of the micelle capping the nanorods.

  14. Suppression of gold nanoparticle agglomeration and its separation via nylon membranes

    Institute of Scientific and Technical Information of China (English)

    Ayyavoo Jayalakshmi; In-Chul Kim; Young-Nam Kwon

    2017-01-01

    Use of ultraporous nylon membrane is one of the most widely employed techniques for removal of hard and soft nanoparticles in the semiconductor industry,and the accurate determination of membrane pore size is necessary in order to avoid manufacturing defects caused by contamination.The gold nanoparticle has several benefits for the evaluation of polymeric membranes;however,the nanoparticles agglomerate easily on the nylon membrane and make it difficult to evaluate the membrane precisely.The properties of 2-amino-2-hydroxymethyl-1,3-propanediol (ADP) ligand in gold nanoparticle solution were systematically investigated,and ADP was utilized for improved evaluation of the nylon membranes.Nylon membrane used in this study was prepared by phase inversion techniques.Ultrathin dense layer on top of the membrane surface and Darcy structures in the microporous membrane support were observed.The gold particle rejection was carried out at various pH values from 4 to 14 and higher rejection was observed at pH 4 and 8.The suppression of gold colloid agglomeration using ADP and monodispersity of gold colloids was also analyzed by confocal laser scanning microscopy (CLSM),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).van der Waals interaction energy of the particles was reduced in the addition of ADP.The presence ofADP ligand in the gold solutions prevented the agglomeration of gold nanoparticles and reduced the adsorption of the particles on the nylon membrane surface,leading to precise evaluation of membrane pore sizes.

  15. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  16. Spectrophotometric method of the determination of gold (III) by using imipramine hydrochloride and promethazine hydrochloride

    International Nuclear Information System (INIS)

    Dembinski, B.; Kurzawa, M.; Szydlowska-Czerniak, A.

    2003-01-01

    Imipramine hydrochloride (IPM.HCl) and promethazine hydrochloride (PMT-HCl) were used for the spectrophotometric determination of gold (III) in the aqueous solution. The halides complexes of gold (III) created a coloured coupling with the studied drugs which were extractable in chloroform. These new compounds were characterized by IR,UV-VIS spectra and thermal and elemental analysis. Rapid and sensitive spectrophotometric method for the determination of gold (III) in the aqueous solution is described. The absorbance was found to be linear function of the gold (III) concentration in the range from 0.2 to 20 x10/sup -1/ mg. The ratio of complex (AuX/sub 4/) to the organic cation from drug in the obtained compounds was determined as 1:1. The method was satisfactorily applied to the analysis of gold (III). A great advantage of the proposed method is that the trace amounts of gold (III) can also be examined. (author)

  17. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  18. Genesis of uranium-gold pyritic conglomerates

    International Nuclear Information System (INIS)

    Myers, W.B.

    1981-01-01

    The ancient pyritic ore conglomerates have a common origin best exemplified by the Witwatersrand deposits. All contain detrital pyrite and uraninite, which are unstable in modern oxygenated environments and were deposited in a reducing atmosphere. The Rand reefs are not similar to modern gold placers. Placers result from the near incapacity of streams and currents to transport coarse gold. Placers as rich as Rand reef occur only in narrow paystreaks within 15 kilometers of a coarse-gold source. The board dispersion of gold in the reefs is due to solution transport of metal complexed as aurous sulfide, leached anoxygenically from crustal rocks, probably from sea-floor basalt, and precipitated by a slow reaction driven by the radioactive decay of detrital uraninite. Radiolysis of water on shallow marine unconformities resulted in diffusion of hydrogen to the atmosphere and a slight excess of hydroxyl free radical in the reef environment. The mild oxidizing tendency slowly dissolved uranium, precipitated gold, and oxygenated thucholite. These actions define a maturing process. A uraninite placer accumulating on an unconformity becomes progressively converted to a gold reef with little residual uraninite. The most mature reefs tend to grade toward the thucholite-seam type, very thin but exceedingly rich in gold. A combination of chemical attack and physical reworking accounts for the general thinness of mature reefs. Pyrite, like uraninite, decreases in abundance with increasing maturity; buffering by pyrite moderated the oxidative depletion of uranium. Where pyrite was scanty or absent, uraninite was completely dissolved by the effects of radiolysis and no ore formed

  19. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  20. Gold Nanoparticle Microwave Synthesis

    International Nuclear Information System (INIS)

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington II, Aaron L.; Murph, Simona H.

    2016-01-01

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  1. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  2. Radiation-electrochemistry of the colloidal gold micro-electrode: Hydrogen formation by organic free radicals

    International Nuclear Information System (INIS)

    Westerhausen, J.; Henglein, A.; Lilie, J.

    1981-01-01

    Various organic free radicals as well as Ni + ions produce hydrogen in the presence of some 10 -4 M of colloidal gold. The gold catalyst was prepared via the reduction of HAuCl 4 either thermally by citrate or by γ-irradiation. The organic radicals were radiolytically produced. The mechanism of H 2 formation includes electron transfer from the organic radicals to the gold particles, storage of a large number of electrons per gold particle, conversion of the electrons into adsorbed H-atoms and desorption of the latter to form H 2 . - The rates of some of these steps were measured using the method of pulse radiolysis. 1-Hydroxy-1-methyl ethyl radicals, (CH 3 ) 2 COH, react with colloidal gold particles almost diffusion controlled provided that the gold particles are not charged with excess electrons. Charged gold particles react at a substantially lower rate. The stored electrons live seconds or even minutes depending on their number per gold particle. In the stationary state, up to 0.38 Coulomb of electrons could be stored per liter of a 2.9x10 -4 molar gold solution, each gold particle carrying about 39 electrons. A comparison is also made between the catalytic activities of colloidal gold and silver. Due to the relative fast conversion of electrons into adsorbed H-atoms, colloidal gold has less capacity for the storage of electrons than colloidal silver. - The dependence of the hydrogen yield on the pH of the solution, the concentration of gold, the size of the gold particles, the concentration of the polyvinyl alcohol stabilizer, and the intensity of radiation was also investigated. At high intensities, some of the radicals are destroyed in a gold catalysed disproportionation. (orig.)

  3. Extraction of gold(I) cyanide by the methyl tri-n-alkyl ammonium chloride

    International Nuclear Information System (INIS)

    Zhang Tianxi; Yan Wenfei; Wu Jinguang

    2000-01-01

    The solvent extraction of KAu(CN) 2 from alkaline solution by the tri-n-alkyl ammonium chloride (N263) using 198 Au tracer has been investigated. The effects of various parameters, such as gold (I) concentration in aqueous phase, cosolvent, phase ratio on the extraction of gold (I) are studied. The results demonstrate that almost all of gold (I) in aqueous phase can be extracted into the organic phase. Water concentration decreases significantly with the increase of gold (I) concentration in the organic phase. No water molecule could be involved in the extraction of gold (I)

  4. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    Science.gov (United States)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  5. Preparation of colloidal gold for staining proteins electrotransferred onto nitrocellulose membranes.

    Science.gov (United States)

    Yamaguchi, K; Asakawa, H

    1988-07-01

    This paper describes a simple method of preparing colloidal gold for staining protein blots. Colloidal gold was prepared from 0.005 or 0.01% HAuCl4 by the addition of formalin as a reductant and potassium hydroxide. Staining of small cell carcinoma tissue extract blotted onto nitrocellulose membranes with this colloidal gold solution resulted in the appearance of a large number of clear wine-red bands. The sensitivity of gold staining was 60 times higher than that of Coomassie brilliant blue staining and almost comparable to that of silver staining of proteins in polyacrylamide gel. The sensitivity of this method was also satisfactory in comparison with that of enzyme immunoblotting. The colloidal gold prepared by this method is usable for routine work.

  6. Growth Mechanism of Gold Nanorods in Binary Surfactant System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Mi; Seo, Sun-Hwa; Joe, Ara; Shim, Kyu-Dong; Jang, Eue-Soon [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2016-06-15

    In order to reveal the growth mechanism of gold nanorods (GNRs) in a binary surfactant system, we synthesized various GNRs by changing the concentration of the surfactants, AgNO{sub 3}, and HBr in the growth solution. We found that the benzyldime thylhexadecylammoniumchloride surfactant had weak interaction with the gold ions, but it could reduce the membrane fluidity. In addition, we could dramatically decrease the cetyltrimethylammonium bromide concentration required for GNR growth by adding an HBr solution. Notably, Ag{sup +} ions were necessary to break the symmetry of the seed crystals for GNR growth, but increasing the concentration of Ag{sup +} and Br{sup -} ions caused a decrease in the template size.

  7. Selective Etching via Soft Lithography of Conductive Multilayered Gold Films with Analysis of Electrolyte Solutions

    Science.gov (United States)

    Gerber, Ralph W.; Oliver-Hoyo, Maria T.

    2008-01-01

    This experiment is designed to expose undergraduate students to the process of selective etching by using soft lithography and the resulting electrical properties of multilayered films fabricated via self-assembly of gold nanoparticles. Students fabricate a conductive film of gold on glass, apply a patterned resist using a polydimethylsiloxane…

  8. Corrosion of Dental Au-Ag-Cu-Pd Alloys in 0.9 % Sodium Chloride Solution

    International Nuclear Information System (INIS)

    Chiba, Atsushi; Kusayanagi, Yukiharu

    2005-01-01

    Two Au-Ag-Cu-Pd dental casting alloys (Au:12% and 20%) used. The test solutions used 0.9 % NaCl solution (isotonic sodium chloride solution), 0.9 % NaCl solution containing 1 % lactic acid, and 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The surface of two samples in three sample solutions was not natural discoloration during one year. The alloy containing 12 % gold was easily alloyed and the composition was uniform comparing with the alloy containing 20 % gold. The rest potentials have not a little effect after three months. The kinds of metals could not definitely from the oxidation and reduction waves of metal on the cyclic voltammograms. The dissolutions of gold and palladium were 12 % Au sample in the 0.9 % NaCl solution containing 1 % lactic acid and 0.1 mol dm -3 Na 2 S. The pH of solution had an affect on dissolution of copper, and sulfur ion had an affect on dissolution of silver. The copper dissolved amount from 20 % gold sample was about 26 times comparing with that of 12 % gold sample in the 0.9 % solution containing 1 % lactic acid. Corrosion products were silver chloride and copper chloride in NaCl solution, and silver sulfide and copper sulfide in NaCl solution containing Na 2 S

  9. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  10. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate; Cementacion de oro con polvo de cinc en soluciones de lixiviacion coon amoniaco-tiosulfato

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-07-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs.

  11. Self-Assembly of Bi2Te3-Nanoplate/Graphene-Nanosheet Hybrid by One-Pot Route and Its Improved Li-Storage Properties

    Directory of Open Access Journals (Sweden)

    Xinbing Zhao

    2012-07-01

    Full Text Available A sandwich structured Bi2Te3-nanoplates/graphene-nanosheet (Bi2Te3/G hybrid has been synthesized by a facile in situ solvothermal route and has been investigated as a potential anode material for Li-ion batteries. Bi2Te3 grows during the solvothermal process with the simultaneous reduction of graphite oxide into graphene. The in situ formation process of the hybrid has been investigated by X-ray diffraction and X-ray photoelectron spectra. The Li-storage mechanism and performance of Bi2Te3/G and bare Bi2Te3 have been studied by galvanostatic cycling and cyclic voltammetry. The Bi2Te3/G sandwich exhibits an obviously improved cycling stability compared to bare Bi2Te3. The enhancement in electrochemical performance can be attributed to the combined conducting, confining and dispersing effects of graphene for Bi2Te3 nanoplates and to the self-assembled sandwich structure.

  12. Spontaneous formation of gold nanostructures in aqueous microdroplets.

    Science.gov (United States)

    Lee, Jae Kyoo; Samanta, Devleena; Nam, Hong Gil; Zare, Richard N

    2018-04-19

    The synthesis of gold nanostructures has received widespread attention owing to many important applications. We report the accelerated synthesis of gold nanoparticles (AuNPs), as well as the reducing-agent-free and template-free synthesis of gold nanoparticles and nanowires in aerosol microdroplets. At first, the AuNP synthesis are carried out by fusing two aqueous microdroplet streams containing chloroauric acid and sodium borohydride. The AuNPs (~7 nm in diameter) are produced within 60 µs at the rate of 0.24 nm µs -1 . Compared to bulk solution, microdroplets enhance the size and the growth rate of AuNPs by factors of about 2.1 and 1.2 × 10 5 , respectively. Later, we find that gold nanoparticles and nanowires (~7 nm wide and >2000 nm long) are also formed in microdroplets in the absence of any added reducing agent, template, or externally applied charge. Thus, water microdroplets not only accelerate the synthesis of AuNPs by orders of magnitude, but they also cause spontaneous formation of gold nanostructures.

  13. Preparation of gold nanoparticles by γ-ray irradiation method using polyvinyl pyrrolidone (PVP) as stabilizer

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Le Hai; Le Huu Tu; Tran Thu Hong; Tran Thi Tam; Pham Thi Le Ha; Pham Thi Sam

    2011-01-01

    Gold nanoparticles were prepared from (Au 3+ ) aqueous solution by the method of γ-ray irradiation using polyvinylpyrrolidone (PVP) as stabilizer. The saturated conversion dose (Au 3+ --> Au o ) determined by UV-Vis spectroscopy was found to be about 5 kGy. The UV-Vis spectrum showed that an absorption peak at λ max =524 nm due to surface plasmon resonance. The image of transmission electron microscopy (TEM) showed that the gold nanoparticles are mostly spherical in shape and have an average diameter of ≅20 nm. The prepared colloidal gold nanoparticles solution is good stability for 6 months of storage. (author)

  14. A study of the catalytic role of a gold electrode in the electrochemical activation of four macrolide antibiotics in sodium bicarbonate solution

    Directory of Open Access Journals (Sweden)

    Milka L. Avramov Ivić

    2010-07-01

    Full Text Available Using the cyclic voltammetry, it has been shown that hydrogen evolution at a gold electrode is necessary in the electrochemical activation of azithromycin dihydrate and erythromycin A. After four hours of the potential holding at –1.2 V vs. SCE, the pH of the electrolyte has been changed from 8.40 to 8.96; from 8.40 to 8.77 in the presence of erythromycin A, and from 8.40 to 9.18 in the presence of azithromycin, indicating the reaction of the hydrogen species with antibiotics. This effect has been confirmed by using the phenolphthalein indicator and by analysing colours of the solutions by UV-Vis, as well as by FTIR spectroscopy. Under the identical experimental conditions at the gold electrode, in contrast to azithromycin dihydrate and erythromycin A, roxithromycin and midecamycin electroactivity promotion has been obtained during the first forward sweep starting from the area of a double layer region.

  15. The use of fibrous ion exchangers in gold hydrometallurgy

    Science.gov (United States)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  16. Corrosion behavior of novel imitation-gold copper alloy with rare earth in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Chen, J.L.; Li, Z.; Zhu, A.Y.; Luo, L.Y.; Liang, J.

    2012-01-01

    Highlights: → The design alloy has better anti-tarnish property than that of H7211 alloy during salt-spray test. → The corrosion rate of design alloy is much lower than that of H7211 alloy as immersed in NaCl solution. → In the low frequency region, the capacitive behavior normally faded and diffusion process had a key role. → In the medium frequency region, the Bode pattern showed a capacitive behavior. -- Abstract: A novel imitation-gold copper alloy with rare earth was designed and prepared. The corrosion behavior of the alloy immersed in 3.5% NaCl solution and its anti-tarnish property in the salt spray for different days has been studied. The designed alloy (CuZnAlNiMeRe) has more excellent anti-tarnish property and lower corrosion rate than those of currency coinage materials of H7211 alloy (used in China). A uniform and compact of corrosion film has been formed after the designed alloy immersed in 3.5% NaCl solution. The corrosion current densities I corr of the alloy decreased while the polarization resistance R p increased with time. The capacitance of the corrosion product film C film of the alloy decreased while the charge transfer resistance R ct . The Warburg diffusion impedance W R and the resistance of the equivalent circuit R increased with time.

  17. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction.

    Science.gov (United States)

    Kuang, Pan-Yong; Ran, Jing-Run; Liu, Zhao-Qing; Wang, Hong-Juan; Li, Nan; Su, Yu-Zhi; Jin, Yong-Gang; Qiao, Shi-Zhang

    2015-10-19

    The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates

    Science.gov (United States)

    Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho

    2018-05-01

    To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.

  19. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Ali Kamiar

    2013-08-01

    Full Text Available Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains.

  20. Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Liu, Yanguo [School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Arandiyan, Hamidreza [Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Yang, Hongping; Bai, Lu; Mujtaba, Jawayria [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Qingguo; Liu, Shanghe [Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003 (China); Sun, Hongyu, E-mail: hyltsun@gmail.com [Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2016-12-15

    Highlights: • Uniform Fe{sub 3}O{sub 4} microflowers hierarchical structures were successfully prepared. • The Fe{sub 3}O{sub 4} microflowers are assembled with porous nanoplates. • Hollow Fe{sub 3}O{sub 4} microspheres exhibit better lithium storage properties than Fe{sub 3}O{sub 4} microspheres. • The good lithium storage properties are attributed to the special structural nature. - Abstract: Uniform Fe{sub 3}O{sub 4} microflowers assembled with porous nanoplates were successfully synthesized by a solvothermal method and subsequent annealing process. The structural and compositional analysis of the Fe{sub 3}O{sub 4} microflowers were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The Bruauer–Emmett–Teller (BET) specific surface area was calculated by the nitrogen isotherm curve and pore size distribution of Fe{sub 3}O{sub 4} microflowers was determined by the Barret–Joyner–Halenda (BJH) method. When evaluated as anode material for lithium-ion batteries, the as-prepared Fe{sub 3}O{sub 4} microflowers electrodes delivered superior capacity, better cycling stability and rate capability than that of Fe{sub 3}O{sub 4} microspheres electrodes. The improved electrochemical performance was attributed to the microscale flowerlike architecture and the porous sheet structural nature.

  1. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    International Nuclear Information System (INIS)

    Gomes, Inês; Feio, Maria J.; Santos, Nuno C.; Eaton, Peter; Serro, Ana Paula; Saramago, Benilde; Pereira, Eulália; Franco, Ricardo

    2012-01-01

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV– visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  2. Controlled adsorption of cytochrome c to nanostructured gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Ines [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal); Feio, Maria J. [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Santos, Nuno C. [Faculdade de Medicina da Universidade de Lisboa, Instituto de Medicina Molecular (Portugal); Eaton, Peter [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Serro, Ana Paula; Saramago, Benilde [Centro de Quimica Estrutural, Instituto Superior Tecnico (Portugal); Pereira, Eulalia [Faculdade de Ciencias da Universidade do Porto, REQUIMTE, Departamento de Quimica e Bioquimica (Portugal); Franco, Ricardo, E-mail: ricardo.franco@fct.unl.pt [Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, REQUIMTE, Departamento de Quimica (Portugal)

    2012-12-15

    Controlled electrostatic physisorption of horse heart cytochrome c (Cyt c) onto nanostructured gold surfaces was investigated using Quartz-Crystal Microbalance measurements in planar gold surfaces with or without functionalization using a self-assembled monolayer (SAM) of the alkanethiol mercaptoundecanoic acid (MUA). MUA is a useful functionalization ligand for gold surfaces, shedding adsorbed biomolecules from the excessive electron density of the metal. A parallel analysis was conducted in the corresponding curved surfaces of 15 nm gold nanoparticles (AuNPs), using zeta-potential and UV- visible spectroscopy. Atomic Force Microscopy of both types of functionalized gold surfaces with a MUA SAM, allowed for visualization of Cyt c deposits on the nanostructured gold surface. The amount of Cyt c adsorbed onto the gold surface could be controlled by the solution pH. For the assays conducted at pH 4.5, when MUA SAM- functionalized planar gold surfaces are positive or neutral, and Cyt c has a positive net charge, only 13 % of the planar gold surface area was coated with protein. In contrast, at pH 7.4, when MUA SAM-functionalized planar gold surfaces and Cyt c have opposite charges, a protein coverage of 28 % could be observed implying an adsorption process strongly governed by electrostatic forces. Cyt c adsorption on planar and curved gold surfaces are found to be greatly favored by the presence of a MUA-capping layer. In particular, on the AuNPs, the binding constant is three times larger than the binding constant obtained for the original citrate-capped AuNPs.

  3. Recovery of gold as a type of porous fiber by using biosorption followed by incineration.

    Science.gov (United States)

    Park, Seong-In; Kwak, In Seob; Bae, Min A; Mao, Juan; Won, Sung Wook; Han, Do Hyeong; Chung, Yong Sik; Yun, Yeoung-Sang

    2012-01-01

    This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 μm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 μm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles

    Science.gov (United States)

    Ayres, Benjamin Robert

    by high performance liquid chromatography and liquid chromatography-mass spectrometry. However, re-spike of these components into growth solutions did not enhance the growth of gold nanoprisms. Upon separating the shapes of the gold nanoparticles using gel electrophoresis, addition of KCN to the separated gold nanoparticles allowed us to extract the culpable ligands for shape control. Analysis of these ligands by mass spectrometry elucidated the identity of PA and upon re-spike of the PA into a growth solution of PC95, the growth of a near-infrared plasmon absorption was seen. The stability of these gold nanoparticles was tested with and without the addition of decane thiol and it was concluded that addition of the thiol allowed for improved stability of the gold nanoparticles towards cyanide. It was determined that at a concentration of 2 μM decanethiol, spherical gold nanoparticles remained stable to cyanide at the expense of the prismatic gold nanoparticles. However, at 5 μM decanethiol, both spherical and prismatic gold nanoparticles retained stability to cyanide in aqueous conditions.

  5. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.; Kong, Desheng; Hong, Seung-Sae; Analytis, James G.; Lai, Keji; Cui, Yi

    2012-01-01

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  6. Weak Antilocalization in Bi 2 (Se x Te 1– x ) 3 Nanoribbons and Nanoplates

    KAUST Repository

    Cha, Judy J.

    2012-02-08

    Studying the surface states of Bi 2Se 3 and Bi 2Te 3 topological insulators has proven challenging due to the high bulk carrier density that masks the surface states. Ternary compound Bi 2(Se xTe 1-x) 3 may present a solution to the current materials challenge by lowering the bulk carrier mobility significantly. Here, we synthesized Bi 2(Se xTe 1-x) 3 nanoribbons and nanoplates via vapor-liquid-solid and vapor-solid growth methods where the atomic ratio x was controlled by the molecular ratio of Bi 2Se 3 to Bi 2Te 3 in the source mixture and ranged between 0 and 1. For the whole range of x, the ternary nanostructures are single crystalline without phase segregation, and their carrier densities decrease with x. However, the lowest electron density is still high (∼10 19 cm -3) and the mobility low, suggesting that the majority of these carriers may come from impurity states. Despite the high carrier density, weak antilocalization (WAL) is clearly observed. Angle-dependent magnetoconductance study shows that an appropriate magnetic field range is critical to capture a true, two-dimensional (2D) WAL effect, and a fit to the 2D localization theory gives α of -0.97, suggesting its origin may be the topological surface states. The power law dependence of the dephasing length on temperature is ∼T -0.49 within the appropriate field range (∼0.3 T), again reflecting the 2D nature of the WAL. Careful analysis on WAL shows how the surface states and the bulk/impurity states may interact with each other. © 2012 American Chemical Society.

  7. Application of neutron activation analysis to the corrosion study of gold coated studs used for piercing ears

    International Nuclear Information System (INIS)

    Saiki, M.; Rogero, S.O.; Costa, I.; Correa, O.V.; Higa, O.Z.

    1998-01-01

    Complete text of publication follows. Gold is known as a metal having little or no toxicity and it has been widely used for coating studs for ear piercing. However, for some people gold coated studs have caused serious allergy and inflammation problems. After piercing, the studs are usually kept in the ear lobes for at least one week, and during this period the stud surfaces in contact with the body fluids have caused swelling, pain and redness of the skin. Consequently, it is of great interest to evaluate if elements from the metallic substrate underneath the gold coatings migrate to the body fluids due to the corrosion and the presence of defects in gold coatings. The solutions for corrosion test were obtained by placing the gold coated studs in contact with the solutions of NaCl and of culture medium. Elemental analyses of these solutions by radioanalytical method of neutron activation analysis indicated the occurrence of substrate corrosion since the elements Cr, Fe, Ni and Zn were found in these solutions. These elements are substrate material components of alloys used to make the studs and they were quantified by X-ray fluorescence analysis. The defects of the coatings were also detected by scanning electron microscopy and energy dispersive spectroscopy analysis of the gold coated studs before and after the corrosion tests. Cytotoxicity studies indicated that after corrosion test the solution used was toxic in the culture cell assay. Among the elements quantified in the test solutions, Ni is considered responsible for most of allergic reactions. Results obtained in this work indicated the necessity to improve quality control of the coating process of studs and in the appropriate choice of material used as substrate

  8. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    Science.gov (United States)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  9. Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.

  10. Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate

    Science.gov (United States)

    Khanmirza, E.; Jamalpoor, A.; Kiani, A.

    2017-10-01

    In this paper, a magneto-electro-elastic nanoplate resting on a visco-Pasternak medium with added concentrated nanoparticles is presented as a mass nanosensor according to the vibration analysis. The MEE nanoplate is supposed to be subject to external electric voltage and magnetic potential. In order to take into account the size effect on the sensitivity of the sensor, the nonlocal elasticity theory in conjunction with the Kirchhoff plate theory is applied. Partial differential equations are derived by implementing Hamilton's variational principle. Equilibrium equations were solved analytically to determine an explicit closed-form statement for both the damped frequency shift and the relative damped frequency shift using Navier's approach. A genetic algorithm (GA) is employed to achieve the optimal added nanoparticle location to gain the most sensitivity performance of the nanosensor. Numerical studies are performed to illustrate the variation of the sensitivity property corresponding to various values of the number of attached nanoparticles, the mass of each nanoparticle, the nonlocal parameter, external electric voltage and magnetic potential, the aspect ratio, and visco-Pasternak parameters. Some numerical outcomes of this paper show that the minimum value of the damped frequency shift occurs for a certain value of the length-to-thickness ratio. Also, it is shown that the external magnetic and external electric potentials have a different effect on the sensitivity property. It is anticipated that the results reported in this work can be considered as a benchmark in future micro-structures issues.

  11. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance

    Science.gov (United States)

    Liu, Canjun; Yang, Yahui; Li, Wenzhang; Li, Jie; Li, Yaomin; Chen, Qiyuan

    2016-03-01

    In this study, Bi2S3 sensitive layer has been grown on the surface of WO3 nanoplate arrays via an in situ approach. The characterization of samples were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The results show that the Bi2S3 layer is uniformly formed on the surface of WO3 nanoplates and less interfacial defects were observed in the interface between the Bi2S3 and WO3. More importantly, the Bi2S3/WO3 films as photoanodes for photoelectrochemical (PEC) cells display the enhanced PEC performance compared with the Bi2S3/WO3 films prepared by a sequential ionic layer adsorption reaction (SILAR) method. In order to understand the reason for the enhanced PEC properties, the electron transport properties of the photoelectrodes were studied by using the transient photocurrent spectroscopy and intensity modulated photocurrent spectroscopy (IMPS). The Bi2S3/WO3 films prepared via an in situ approach have a greater transient time constant and higher electron transit rate. This is most likely due to less interfacial defects for the Bi2S3/WO3 films prepared via an in situ approach, resulting in a lower resistance and faster carrier transport in the interface between WO3 and Bi2S3.

  12. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent

    International Nuclear Information System (INIS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2015-01-01

    Highlights: • Submicron-sized spherical particles of gold were prepared using laser irradiation for the source gold nanoparticles stabilized by NaCl. • The source gold nanoparticles agglomeration was controlled both by the NaCl concentration of and by laser irradiation. • The formation process and the laser-fluence dependence of the particle size of gold nanoparticles in NaCl solutions differs from those in citrate solutions. • We revealed that properties of ligands are significantly important to prepare submicron-sized spherical particles and to control their size. - Abstract: Laser-induced melting in liquids (LIML) was applied to prepare spherical submicron-sized particles of gold (AuSMPs) from gold nanoparticles (AuNPs) stabilized using NaCl. Because undesirable byproducts, which might be generated when organic reagents such as citrate are used as the stabilizing reagent, are not generated from NaCl by laser irradiation, AuSMPs fabricated from AuNPs stabilized by NaCl will be low toxic. The AuSMPs were obtained by laser irradiation of the source AuNPs in NaCl solutions stabilized by NaCl at the proper concentration. Similar to the preparation of AuSMPs from AuNPs stabilized by citrate, the agglomeration of the source AuNPs, which is necessary to obtain AuSMPs, was controlled both by the NaCl concentration and by laser irradiation. However, the formation process and the laser-fluence dependence of the particle size of AuSMPs differed for various NaCl solutions and citrate solutions

  13. Gold recovery from acidic leach solutions using as extractants trialkylamines of N,N'-di-alkyl-aliphatic amides

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Carlini, D.; Gasparini, G.M.; Simonetti, E.

    1988-07-01

    TriOctylAmine (TOA) and a di-substituted aliphatic amide, N,N-Di-N-ButylOctanamide (DBOA), were examined in batch and in mini mixer-settler experiments using leachates of Peruvian and Bolivian concentrates. With these minerals, very rich in sulfur (pyrites, stybine), 90-95% gold recovery in 12-24 hours was reached by leaching with 4M aqua regia (HCl 3M nitric acid 1M) at room temperature and with 1/3 solid/liquid ratio. With these leachate solutions (2-3M total acidity, 10-60 ppm ao Au), the two processes with TOA (GAMEX PROCESS) and with DBOA (AUMIDEX PROCESS) were tested and compared. Experimental results strongly support the possibility of using TOA and DBOA on an industrial scale.

  14. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    International Nuclear Information System (INIS)

    Garabagiu, Sorina

    2011-01-01

    Highlights: ► The interaction was studied using UV–vis and fluorescence spectroscopy. ► Gold nanoparticles quench the fluorescence emission of hemoglobin solution. ► The binding and thermodynamic constants were calculated. ► Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV–vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern–Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  15. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  16. Pulse-voltammetric glucose detection at gold junction electrodes.

    Science.gov (United States)

    Rassaei, Liza; Marken, Frank

    2010-09-01

    A novel glucose sensing concept based on the localized change or "modulation" in pH within a symmetric gold-gold junction electrode is proposed. A paired gold-gold junction electrode (average gap size ca. 500 nm) is prepared by simultaneous bipotentiostatic electrodeposition of gold onto two closely spaced platinum disk electrodes. For glucose detection in neutral aqueous solution, the potential of the "pH-modulator" electrode is set to -1.5 V vs saturated calomel reference electrode (SCE) to locally increase the pH, and simultaneously, either cyclic voltammetry or square wave voltammetry experiments are conducted at the sensor electrode. A considerable improvement in the sensor electrode response is observed when a normal pulse voltammetry sequence is applied to the modulator electrode (to generate "hydroxide pulses") and the glucose sensor electrode is operated with fixed bias at +0.5 V vs SCE (to eliminate capacitive charging currents). Preliminary data suggest good linearity for the glucose response in the medically relevant 1-10 mM concentration range (corresponding to 0.18-1.8 g L(-1)). Future electroanalytical applications of multidimensional pulse voltammetry in junction electrodes are discussed.

  17. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis

    International Nuclear Information System (INIS)

    Kalabegishvili, T.; Kirkesali, E.; Rcheulishvili, A.

    2012-01-01

    The synthesis of gold nanoparticles by one of the many popular microorganisms - blue-green algae Spirulina platensis was studied. The complex of optical and analytical methods was applied for investigation of experimental samples after exposure to chloroaurate (HAuCl 4 ) solution at different doses and for different time intervals. To characterize formed gold nanoparticles UV-vis, TEM, SEM, EDAX, and XRD were used. It was shown that after 1.5-2 days of exposure the extracellular formation of nanoparticles of spherical form and the distribution peak within the interval of 20-30 nm took place. To determine gold concentrations in the Spirulina platensis biomass, neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) were applied. The results obtained evidence that the concentration of gold accumulated by Spirulina biomass is rapidly growing in the beginning, followed by some increase for the next few days. The obtained substance of Spirulina biomass with gold nanoparticles may be used for medical, pharmaceutical, and technological purposes

  18. High photoreactivity in a non-fluorescent photocleavable ligands on gold

    Science.gov (United States)

    Robinson, Hans D.; Daengngam, Chalongrat; Stoianov, Stefan V.; Thorpe, Steven B.; Guo, Xi; Santos, Webster L.; Morris, John R.

    2014-03-01

    We report on the photo-patterning of a gold surface functionalized with a self-assembled monolayer of an o-nitrobenzyl-based photocleavable ligand bound to the gold surface with a thiol anchor. We find that the dose of UV light required to induce the photoreaction on gold is very similar to the dose in an alcohol solution, even though many optical phenomena are strongly suppressed on metal surfaces. We attribute this finding to a combination of the large skin depth in gold at UV wavelengths, the high speed of the photoreaction, and the spatially indirect nature of the lowest excited singlet. Any photoreactive compound where the quantum efficiency of fluorescence is sufficiently low, preferably no larger than about 10-5 in the case of gold surfaces, will show a similarly high photoreactivity in metal-surface monolayers. The implications of this result for optically driven self-assembly in plasmonic systems will be discussed. This work was supported by a grant from the National Science Foundation (DMR-106753).

  19. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    Science.gov (United States)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  20. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process

    International Nuclear Information System (INIS)

    Kim, Eun-young; Kim, Min-seuk; Lee, Jae-chun; Pandey, B.D.

    2011-01-01

    Highlights: ► Selective leaching of Au from scrap mobile phone PCBs by two stage electro-generated chlorine and recovery by ion exchange. ► Copper leaching (97%) by 1st stage electro-generated leaching (ORP value Ag/AgCl ) with a minor gold (5%). ► Gold leaching (93%, ∼67 mg/L) by 2nd leaching (ORP value >1100 mV Ag/AgCl ) in 0.1 mol/L HCl at 25 °C. ► A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained by ion exchange process. - Abstract: The leaching of gold from the scrap mobile phone PCBs by electro-generated chlorine as an oxidant and its recovery by ion exchange process was investigated. The leaching experiments were carried out by employing separate leaching reactor connected with the anode compartment of a Cl 2 gas generator. The leaching of gold increased with increase in temperature and initial concentration of chlorine, and was favorable even at low concentration of acid, whereas copper leaching increased with increase in concentration of acid and decrease in temperature. In a two-stage leaching process, copper was mostly dissolved (97%) in 165 min at 25 °C during the 1st stage leaching in 2.0 mol/L HCl by electro-generated chlorine at a current density of 714 A/m 2 along with a minor recovery of gold (5%). In the 2nd stage gold was mostly leached out (93% recovery, ∼67 mg/L) from the residue of the 1st stage by the electro-generated chlorine in 0.1 mol/L HCl. Gold recovery from the leach liquor by ion exchange using Amberlite XAD-7HP resin was found to be 95% with the maximum amount of gold adsorbed as 46.03 mg/g resin. A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained in the ion exchange process.

  1. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-young [Department of Material Science and Engineering, Penn State, University Park, PA 16802 (United States); Kim, Min-seuk [Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350 (Korea, Republic of); Lee, Jae-chun, E-mail: jclee@kigam.re.kr [Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 305-350 (Korea, Republic of); Pandey, B.D. [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831007 (India)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Selective leaching of Au from scrap mobile phone PCBs by two stage electro-generated chlorine and recovery by ion exchange. Black-Right-Pointing-Pointer Copper leaching (97%) by 1st stage electro-generated leaching (ORP value <350 mV{sub Ag/AgCl}) with a minor gold (5%). Black-Right-Pointing-Pointer Gold leaching (93%, {approx}67 mg/L) by 2nd leaching (ORP value >1100 mV{sub Ag/AgCl}) in 0.1 mol/L HCl at 25 Degree-Sign C. Black-Right-Pointing-Pointer A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained by ion exchange process. - Abstract: The leaching of gold from the scrap mobile phone PCBs by electro-generated chlorine as an oxidant and its recovery by ion exchange process was investigated. The leaching experiments were carried out by employing separate leaching reactor connected with the anode compartment of a Cl{sub 2} gas generator. The leaching of gold increased with increase in temperature and initial concentration of chlorine, and was favorable even at low concentration of acid, whereas copper leaching increased with increase in concentration of acid and decrease in temperature. In a two-stage leaching process, copper was mostly dissolved (97%) in 165 min at 25 Degree-Sign C during the 1st stage leaching in 2.0 mol/L HCl by electro-generated chlorine at a current density of 714 A/m{sup 2} along with a minor recovery of gold (5%). In the 2nd stage gold was mostly leached out (93% recovery, {approx}67 mg/L) from the residue of the 1st stage by the electro-generated chlorine in 0.1 mol/L HCl. Gold recovery from the leach liquor by ion exchange using Amberlite XAD-7HP resin was found to be 95% with the maximum amount of gold adsorbed as 46.03 mg/g resin. A concentrated gold solution, 6034 mg/L with 99.9% purity was obtained in the ion exchange process.

  2. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin

    2012-02-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda\\'s method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  3. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin; Burel, Laurence; Tuel, Alain; Caps, Valerie

    2012-01-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda's method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  4. Effect of surface density silver nanoplate films toward surface-enhanced Raman scattering enhancement for bisphenol A detection

    Science.gov (United States)

    Bakar, N. A.; Salleh, M. M.; Umar, A. A.; Shapter, J. G.

    2018-03-01

    This paper reports a study on surface-enhanced Raman scattering (SERS) phenomenon of triangular silver nanoplate (NP) films towards bisphenol A (BPA) detection. The NP films were prepared using self-assembly technique with four different immersion times; 1 hour, 2 hours, 5 hours, and 8 hours. The SERS measurement was studied by observing the changes in Raman spectra of BPA after BPA absorbed on the NP films. It was found that the Raman intensity of BPA peaks was enhanced by using the prepared SERS substrates. This is clearly indicated that these SERS silver substrates are suitable to sense industrial chemical and potentially used as SERS detector. However, the rate of SERS enhancement is depended on the distribution of NP on the substrate surface.

  5. Facile synthesis of “green” gold nanocrystals using cynarin in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Katircioğlu, Zeynep; Şakalak, Hüseyin [Department of Metallurgical and Materials Engineering, Selcuk University, Konya 42075 (Turkey); Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey); Ulaşan, Mehmet [Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey); Department of Chemistry, Selcuk University, Konya 42075 (Turkey); Gören, Ahmet Ceyhan, E-mail: ahmetceyhan.goren@tubitak.gov.tr [TÜBİTAK UME, Chemistry Group, Organic Chemistry Laboratories, 41470 Gebze, Kocaeli (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Department of Metallurgical and Materials Engineering, Selcuk University, Konya 42075 (Turkey); Nanobiotechnology Laboratory, Advanced Technology Research and Application Center, Selcuk University, Konya 42075 (Turkey)

    2014-11-01

    Highlights: • The first time a remarkably simple, versatile, environmentally friendly, one-pot and biogenic fabrication and aqueous synthesis of monodisperse gold nanoparticles by using cynarin. • Cynarin as a reductant and capping agent. • Exclusion of extra reducing agents or reductant. • Fabrication of Pd and Ag nanoparticles using cynarin in aqueous media. - Abstract: Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from {sup 1}H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au{sup 3+} ions are reduced to its atomic form (Au{sup 0}) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies.

  6. Facile synthesis of “green” gold nanocrystals using cynarin in an aqueous solution

    International Nuclear Information System (INIS)

    Katircioğlu, Zeynep; Şakalak, Hüseyin; Ulaşan, Mehmet; Gören, Ahmet Ceyhan; Yavuz, Mustafa Selman

    2014-01-01

    Highlights: • The first time a remarkably simple, versatile, environmentally friendly, one-pot and biogenic fabrication and aqueous synthesis of monodisperse gold nanoparticles by using cynarin. • Cynarin as a reductant and capping agent. • Exclusion of extra reducing agents or reductant. • Fabrication of Pd and Ag nanoparticles using cynarin in aqueous media. - Abstract: Herein we describe a water-based protocol that generates Au nanoparticles (AuNPs) by mixing aqueous solutions of HAuCl4 and cynarin (a natural product extract from artichoke leaf). Based on the observations from 1 H NMR spectrum of AuNPs, a polyol oxidation mechanism by metal ions which eventually results in AuNPs formation, is proposed. Basically, the aromatic alcohol groups (1,2-benzenediol) of cynarin are oxidized to α-hydroxy ketone intermediate product, and then further oxidized to the vicinal diketone final product while the Au 3+ ions are reduced to its atomic form (Au 0 ) which leads the generation of Au nanoparticles. This new protocol has also been employed to prepare multiply twinned Pd nanoparticles and Ag cubical aggregates. Due to exclusion of organic solvent, surfactant, or stabilizer for all these synthesis, this protocol may provide a simple, versatile, and environmentally benign route to fabricate noble-metal nanoparticles having various compositions and morphologies

  7. Biological synthesis and characterization of intracellular gold ...

    Indian Academy of Sciences (India)

    In the present study, Aspergillus fumigatus was used for the intracellular synthesis of gold nanoparticles. Stable nanoparticles were produced when an aqueous solution of chloroauric acid (HAuCl4) was reduced by A. fumigatus biomass as the reducing agent. Production of nanoparticles was confirmed by the colour ...

  8. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  9. A pre-burial adsorption model for the genesis of gold in the Witwatersrand

    International Nuclear Information System (INIS)

    Davidson, R.J.

    1990-01-01

    The chemistry related to the adsorption of gold and uranium onto algal biomass (activated carbon) is related to the genesis of the Witwatersrand. Detrital gold, together with cyanide solubilized as the stable aurocyanide complex. With the subsequent decomposition of the algal deposits, it is surmized that carbon-rich layers having adsorptive properties formed in the conglomerates. Under these conditions, gold (silver) in solution would be adsorbed selectively as the cyanide complex, together with uranium as the carbonate complex. The subsequent burial and compression of the gold-rich conglomerate with temperatures rising to about 400 degrees C would then have reduced the adsorbed gold to the metal in a single segregated gold-silver metal phase. An adsorption model would explain the very consistent trends in the gold-to-silver ratios of individual reefs in the Witwatersrand, which suggest an extensive hydrothermal system approaching isothermal equilibrium. Also, as gold grades increase, so silver grades generally decrease, indicating the sequential displacement of silver by gold as classically obtained with activated carbon. 11 refs., 2 figs., 1 tab

  10. Gold particle formation via photoenhanced deposition on lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, A.M., E-mail: azaniews@asu.edu; Meeks, V.; Nemanich, R.J.

    2017-05-31

    Highlights: • Gold chloride is reduced into solid gold nanoparticles at the surface of a polarized semiconductor. • Reduction processes are driven by ultraviolet light. • Gold nanoparticle and silver nanoparticle deposition patterns are compared. - Abstract: In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E−8M to 9E−7M) and high (1E−5M to 1E−3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E−8 to 1E−3M).

  11. Neutron activation determination of gold and palladium using extraction by organic sulfides

    International Nuclear Information System (INIS)

    Gil'berg, Eh.N.; Torgov, V.G.; Verevkin, G.V.; AN SSSR, Novosibirsk. Inst. Neorganicheskoj Khimii)

    1978-01-01

    Compared are methods of gold determination in standard rock samples of the USA National Geological Service: a) extraction by solutions of dioctylsulfide and oil sulfides from irradiated samples; b) preliminary extraction by the above solfides with the following extract radiation; c) the method of isotope dilution with substoichiometry extraction. A possibility is studied to determine palladium in the sulfide extract with gold using the NaI(Tl) thin crystal scintillators. It is established that joint palladium and gold extraction permits to determine them in many natural products simultaneously

  12. Gold monetization and gold discipline

    OpenAIRE

    Robert P. Flood; Peter M. Garber

    1981-01-01

    The paper is a study of the price level and relative price effects of a policy to monetize gold and fix its price at a given future time and at the then prevailing nominal price. Price movements are analyzed both during the transition to the gold standard and during the post-monetization period. The paper also explores the adjustments to fiat money which are necessary to ensure that this type of gold monetization is non-inflationary. Finally, some conditions which produce a run on the governm...

  13. Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction

    International Nuclear Information System (INIS)

    Wang, C.-H.; Hua, Tzu-En; Chien, C.-C.; Yu, Y.-L.; Yang, T.-Y.; Liu, C.-J.; Leng, W.-H.; Hwu, Y.; Yang, Y.-C.; Kim, Chong-Cook; Je, Jung-Ho; Chen, C.-H.; Lin, H.-M.; Margaritondo, G.

    2007-01-01

    Reductant, stabilizer-free colloidal gold solutions were fabricated by a new room-temperature synchrotron X-ray irradiation method. The influence of process parameters such as the pH value and the exposure time on the structure of gold nanoparticles was investigated. The mechanisms underlying the X-ray-triggered reduction of gold ions and the formation of gold clusters are discussed in detail. The X-ray irradiation derived highly concentrated gold nanoparticles are readily to be re-dispersed and possess suitable colloidal stability within cellular environment. The characterization included a study of the possible cytotoxicity for the EMT-6 tumor cell line: the negative results indicate that the gold clusters produced with our approach are biocompatible

  14. Adsorption of charged macromolecules at a gold electrode

    NARCIS (Netherlands)

    Kleijn, J.M.; Barten, D.; Cohen Stuart, M.A.

    2004-01-01

    Using an optical reflectometer with impinging-jet system, the adsorption from aqueous solution onto gold of three charged macromolecules has been studied: the strong linear-chain polyelectrolyte polyvinyl pyridine (PVP +), the fifth-generation poly(propylene imine) dendrimer DAB-64, which has a

  15. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    Science.gov (United States)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  16. Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films

    OpenAIRE

    Velichkova, Hristiana; Petrova, Ivanka; Kotsilkov, Stanislav; Ivanov, Evgeni; Vitanov, Nikolay K.; Kotsilkova, Rumiana

    2017-01-01

    The study compared the effects of swelling and dissolution of a matrix polymer by food simulants on the release of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) from poly(lactic) acid (PLA) and polypropylene (PP) composite films. The total migration was determined gravimetrically in the ethanol and acetic acid food simulants at different time and temperature conditions, while migrants were detected by laser diffraction analysis and transmission electron microscopy. Swelli...

  17. Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries.

    Science.gov (United States)

    Chen, Lai; Su, Yuefeng; Chen, Shi; Li, Ning; Bao, Liying; Li, Weikang; Wang, Zhao; Wang, Meng; Wu, Feng

    2014-10-22

    Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed {010} planes are designed and synthesized. In combination with the advantages from the hierarchical archi-tecture and the exposed electrochemically active {010} planes of layered materials, this material satisfies both efficient ion and electron transport and thus shows superior rate capability and excellent cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  19. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Electrochemical supercapacitors of cobalt hydroxide nanoplates grown on conducting cadmium oxide base-electrodes

    Directory of Open Access Journals (Sweden)

    Kailas K. Tehare

    2017-05-01

    Full Text Available Dopant-free and cost-effective sprayed cadmium oxide (CdO conducting base-electrodes, obtained at different concentrations (0.5, 1 and 1.5 M, characterized for their structures, morphologies and conductivities by using X-ray diffraction, scanning electron microscopy and electrical conductivity measurements, respectively, are employed as base-electrodes for growing cobalt hydroxide (Co(OH2 nanoplates using a simple electrodeposition method which further are envisaged for electrochemical supercapacitor application. Polycrystalline nature and mushroom-like plane-views are confirmed from the structure and morphology analyses. Both CdO and CdO–Co(OH2 electrodes reveal specific capacitances as high as 312 F g−1 and 1119 F g−1, respectively, in 0.1 M KOH electrolyte at 10 mV s−1 sweep rate. Optimized Co(OH2–CdO configuration electrode demonstrates energy density of 98.83 W h kg−1 and power density of 0.75 kW kg−1. In order to investigate the charge transfer kinematics electrochemical impedance measurements are carried out and explored.

  1. Fast Synthesis of Gibbsite Nanoplates and Process Optimization using Box-Behnken Experimental Design

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Zhang, Xianwen; Graham, Trenton R.; Pearce, Carolyn I.; Mehdi, Beata L.; N' Diaye, Alpha T.; Kerisit, Sebastien N.; Browning, Nigel D.; Clark, Sue B.; Rosso, Kevin M.

    2017-10-26

    Developing the ability to synthesize compositionally and morphologically well-defined gibbsite particles at the nanoscale with high yield is an ongoing need that has not yet achieved the level of rational design. Here we report optimization of a clean inorganic synthesis route based on statistical experimental design examining the influence of Al(OH)3 gel precursor concentration, pH, and aging time at temperature. At 80 oC, the optimum synthesis conditions of gel concentration at 0.5 M, pH at 9.2, and time at 72 h maximized the reaction yield up to ~87%. The resulting gibbsite product is composed of highly uniform euhedral hexagonal nanoplates within a basal plane diameter range of 200-400 nm. The independent roles of key system variables in the growth mechanism are considered. On the basis of these optimized experimental conditions, the synthesis procedure, which is both cost-effective and environmentally friendly, has the potential for mass production scale-up of high quality gibbsite material for various fundamental research and industrial applications.

  2. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP

    Directory of Open Access Journals (Sweden)

    Xiaoliang Liu

    2017-07-01

    Full Text Available The effect of pyrite and the role of ammonium alcohol polyvinyl phosphate (AAPP during gold leaching in ammoniacal thiosulfate solutions were investigated using pure gold foils. The results showed that pyrite catalyzed the decomposition and also significantly increased the consumption of thiosulfate. This detrimental effect became more severe with increasing pyrite content. Further, the presence of pyrite also substantially slowed the gold leaching kinetics and reduced the overall gold dissolution. The reduction in gold dissolution was found to be caused primarily by the surface passivation of the gold. The negative effects of pyrite, however, can be alleviated by the addition of AAPP. Comparison of zeta potentials of pyrite with and without AAPP suggests that AAPP had adsorbed on the surface of the pyrite and weakened the catalytic effect of pyrite on the thiosulfate decomposition by blocking the contact between the pyrite and thiosulfate anions. AAPP also competed with thiosulfate anions to complex with the cupric ion at the axial coordinate sites, and thus abated the oxidation of thiosulfate by cupric ions. Moreover, the indiscriminate adsorption of AAPP on the surfaces of gold and passivation species prevented the passivation of the gold surface by surface charge and electrostatic repulsion. Therefore, AAPP effectively stabilized the thiosulfate in the solution and facilitated the gold leaching in the presence of pyrite.

  3. Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Matsumoto, Takeshi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan); Okada, Ikuo; Sakurai, Ikuya [Synchrotoron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Utsumi, Yuichi [Laboratory of Advance Science and Technology for Industry, University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205 (Japan)

    2015-06-15

    The deposition of gold nanoparticles in an electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The nanoparticles grew and aggregated into clusters with increasing radiation time. This behavior is explained by evaluating the effect of Derjaguin-Landau-Verweyand-Overbeek (DLVO) interactions combining repulsive electrostatic and attractive van der Waals forces on the particle deposition process. The surface-enhanced Raman scattering (SERS) of 4,4′ -bipyridine (4bpy) in aqueous solution was measured using gold nanoparticles immobilized on silicon substrates under systematically-varied X-ray exposure. The substrates provided an in situ SERS spectrum for 1 nM 4bpy. This demonstration creates new opportunities for chemical and environmental analyses through simple SERS measurements. - Highlights: • Gold nanoparticles were produced by photochemical reaction of synchrotron radiation. • The gold nanoparticles grew and aggregated into the higher-order nanostructure. • The behavior is qualitatively explained by analytical estimation. • The surface-enhanced Raman spectroscopy of 4,4′-bipyridine (4bpy) was demonstrated. • The substrate fabricated in a suitable condition provides in situ SERS for 1 nM 4bpy.

  4. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  5. Controlled fabrication of gold nanoparticles biomediated by glucose oxidase immobilized on chitosan layer-by-layer films

    International Nuclear Information System (INIS)

    Caseli, Luciano; Santos, David S. dos; Aroca, Ricardo F.; Oliveira, Osvaldo N.

    2009-01-01

    The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS) 4 /(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD.

  6. Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.

    Science.gov (United States)

    Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper

    2018-03-07

    The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.

  7. Synthesis of mono-dispersed nanofluids using solution plasma

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Yong Kang, E-mail: yk@rd.numse.nagoya-u.ac.jp [Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); Bratescu, Maria Antoaneta, E-mail: maria@rd.numse.nagoya-u.ac.jp [Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); Knowledge Hub Aichi, Yakusa-cho, Nagakute-ku, Toyota (Japan); Ueno, Tomonaga, E-mail: tomo@rd.numse.nagoya-u.ac.jp [Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); CREST, Japan Science and Technology Agency, Goban-cho, Chiyoda-ku, Tokyo (Japan); Saito, Nagahiro, E-mail: hiro@rd.numse.nagoya-u.ac.jp [Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); Knowledge Hub Aichi, Yakusa-cho, Nagakute-ku, Toyota (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan); CREST, Japan Science and Technology Agency, Goban-cho, Chiyoda-ku, Tokyo (Japan)

    2014-07-14

    Small-sized and well-dispersed gold nanoparticles (NPs) for nanofluidics have been synthesized by electrical discharge in liquid environment using termed solution plasma processing (SPP). Electrons and the hydrogen radicals are reducing the gold ions to the neutral form in plasma gas phase and liquid phase, respectively. The gold NPs have the smallest diameter of 4.9 nm when the solution temperature was kept at 20 °C. Nucleation and growth theory describe the evolution of the NP diameter right after the reduction reaction in function of the system temperature, NP surface energy, dispersion energy barrier, and nucleation rate. Negative charges on the NPs surface during and after SPP generate repulsive forces among the NPs avoiding their agglomeration in solution. Increasing the average energy in the SPP determines a decrease of the zeta potential and an increase of the NPs diameter. An important enhancement of the thermal conductivity of 9.4% was measured for the synthesized nanofluids containing NPs with the smallest size.

  8. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    Science.gov (United States)

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

  9. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  10. SnS{sub 2} nanoplates embedded in 3D interconnected graphene network as anode material with superior lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hongli [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Qi, Xiang, E-mail: xqi@xtu.edu.cn [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Han, Weijia; Ren, Long; Liu, Yundan [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China); Wang, Xingyan, E-mail: xywangxtu@163.com [Department of Environmental Science and Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan 411105 (China); Zhong, Jianxin [Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105 (China)

    2015-11-15

    Graphical abstract: Schematic formation process of 3D interconnected SnS{sub 2}/graphene composite, and its superior lithium storage performance. - Highlights: • 3D graphene network embedded with SnS{sub 2} is synthesized by a facile two-step method. • This structure produces a synergistic effect between graphene and SnS{sub 2} nanoplates. • High capacity, excellent cycle performance and good rate capability are achieved. - Abstract: Three-dimensional (3D) interconnected graphene network embedded with uniformly distributed tin disulfide (SnS{sub 2}) nanoplates was prepared by a facile two-step method. The microstructures and morphologies of the SnS{sub 2}/graphene nanocomposite (SSG) are experimentally confirmed by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using the as-prepared SSG as an anode material for lithium batteries, its electrochemical performances were investigated by cyclic voltammograms (CV), charge/discharge tests, galvanostatic cycling performance and AC impedance spectroscopy. The results demonstrate that the as-prepared SSG exhibits excellent cycling performance with a capacity of 1060 mAh g{sup −1} retained after 200 charge/discharge cycles at a current density of 100 mA g{sup −1}, also a superior rate capability of 670 mAh g{sup −1} even at such a high current density of 2000 mA g{sup −1}. This favorable performance can be attributed to the unique 3D interconnected architecture with great electro-conductivity and its intimate contact with SnS{sub 2}. Our results indicate a potential application of this novel 3D SnS{sub 2}/graphene nanocomposite in lithium-ion battery.

  11. Coal-gold agglomeration: an alternative separation process in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Akcil, A.; Wu, X.Q.; Aksay, E.K. [Suleyman Demirel University, Isparta (Turkey). Dept. of Mining Engineering

    2009-07-01

    Considering the increasing environmental concerns and the potential for small gold deposits to be exploited in the future, the uses of environmentally friendly processes are essential. Recent developments point to the potential for greatly increased plant performance through a separation process that combines the cyanide and flotation processes. In addition, this kind of alternative treatment processes to the traditional gold recovery processes may reduce the environmental risks of present small-scale gold mining. Gold recovery processes that applied to different types of gold bearing ore deposits show that the type of deposits plays an important role for the selection of mineral processing technologies in the production of gold and other precious metals. In the last 25 years, different alternative processes have been investigated on gold deposits located in areas where environmental issues are a great concern. In 1988, gold particles were first recovered by successful pilot trial of coal-gold agglomeration (CGA) process in Australia. The current paper reviews the importance of CGA in the production of gold ore and identifies areas for further development work.

  12. Second harmonic study of acid-base equilibrium at gold nanoparticle/aqueous interface

    Science.gov (United States)

    Ma, Jianqiang; Mandal, Sarthak; Bronsther, Corin; Gao, Zhenghan; Eisenthal, Kenneth B.

    2017-09-01

    Interfacial acid-base equilibrium of the capping molecules is a key factor to stabilize gold nanoparticles (AuNP) in solution. In this study we used Second Harmonic (SH) generation to measure interfacial potential and obtained a surface pKa value of 3.3 ± 0.1 for the carboxyl group in mercaptoundecanoic acid (MUA) molecule at an AuNP/aqueous interface. This pKa value is smaller than its bulk counterpart and indicates that the charged carboxylate group is favored at the AuNP surface. The SH findings are consistent with the effects of the noble metal (gold) surface on a charge in solution, as predicted by the method of images.

  13. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    International Nuclear Information System (INIS)

    Chow, Edith; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech

    2009-01-01

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution

  14. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  15. 31 CFR 100.4 - Gold coin and gold certificates in general.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in... EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general. Gold coins, and gold certificates of the type issued before January 30, 1934, are exchangeable, as provided...

  16. Gold and gold working in Late Bronze Age Northern Greece

    Science.gov (United States)

    Vavelidis, M.; Andreou, S.

    2008-04-01

    Numerous objects of gold displaying an impressive variety of types and manufacturing techniques are known from the Late Bronze Age (LBA) contexts of Mycenaean Greece, but very little is known about the origin and processing of gold during the second millennium b.c. Ancient literature and recent research indicate that northern Greece is probably the richest gold-bearing region in Greece, and yet, very little evidence exists regarding the exploitation of its deposits and the production as well as use of gold in the area during prehistory. The unusual find of a group of small stone crucibles at the prehistoric settlement of Thessaloniki Toumba, one with visible traces of gold melting, proves local production and offers a rare opportunity to examine the process of on-site gold working. Furthermore, the comparison of the chemical composition of prehistoric artefacts from two settlements with those of gold deposits in their immediate areas supports the local extraction of gold and opens up the prospect for some of the Mycenaean gold to have originated in northern Greece. The scarcity of gold items in northern Greek LBA contexts may not represent the actual amount of gold produced and consumed, but could be a result of the local social attitudes towards the circulation and deposition of artefacts from precious metals.

  17. Control of surface quality of sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zheng Wei; Zhang Lin; Sun Jingyuan; Chen Jing

    2010-01-01

    The morphology, composition and causes of defects are analyzed to reduce defects on the gold layer prepared by electrochemical deposition from sulfite solution, and to improve the surface quality of sub-millimeter cylindrical gold targets, by means of SEM and EDS. The effects of current density, metallic impurity, organic pollution, pre-deposition parameters and mandrel quality on the quality of the gold plating are discussed, along with their mechanisms. The result indicates that the current density must be controlled strictly. The optimal current density ranges from 2.4 to 3.2 mA/cm 2 when the concentration of gold ranges from 13 to 22 g/L, and from 2.0 to 2.6 mA/ cm 2 when the concentration of gold ranges from 5 to 13 g/L. The parameters of predeposition must be optimized and the predeposition time should be no longer than 1 minute to improve the surface quality. In addition, organic pollution should be removed from the bath, and the mandrels should be of good quality without oxide on their surfaces. (authors)

  18. Template assisted synthesis and optical properties of gold nanoparticles.

    Science.gov (United States)

    Fodor, Petru; Lasalvia, Vincenzo

    2009-03-01

    A hybrid nanofabrication method (interference lithography + self assembly) was explored for the fabrication of arrays of gold nanoparticles. To ensure the uniformity of the nanoparticles, a template assisted synthesis was used in which the gold is electrodeposited in the pores of anodized aluminum membranes. The spacing between the pores and their ordering is controlled in the first fabrication step of the template in which laser lithography and metal deposition are used to produce aluminum films with controlled strain profiles. The diameter of the pores produced after anodizing the aluminum film in acidic solution determines the diameter of the gold particles, while their aspect ratio is controlled through the deposition time. Optical absorbance spectroscopy is used to evaluate the ability to tune the nanoparticles plasmon resonance spectra through control over their size and aspect ratio.

  19. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: weilixj8510@163.com [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China); Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China)

    2011-02-15

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  20. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Li Wei; Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong

    2011-01-01

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  1. Gold(I)-selenolate complexes: Synthesis, characterization and ...

    Indian Academy of Sciences (India)

    known that the gold(I) drugs rapidly bind to the most abundant plasma protein serum albumin (Alb-SH) after ... Aldrich. The experiments were carried out under dry and oxygen-free nitrogen using standard Schlenk tech- ... To a deoxygenated aqueous solution of the disele- nide 11 (30.0mg, 0.094mmol) was added sodium.

  2. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.

    2002-01-01

      Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  3. Limitations in small artisanal gold mining addressed by educational components paired with alternative mining methods.

    Science.gov (United States)

    Zolnikov, Tara R

    2012-03-01

    Current solutions continue to be inadequate in addressing the longstanding, worldwide problem of mercury emissions from small artisanal gold mining. Mercury, an inexpensive and easily accessible heavy metal, is used in the process of extracting gold from ore. Mercury emissions disperse, affecting human populations by causing adverse health effects and environmental and social ramifications. Many developing nations have sizable gold ore deposits, making small artisanal gold mining a major source of employment in the world. Poverty drives vulnerable, rural populations into gold mining because of social and economic instabilities. Educational programs responding to this environmental hazard have been implemented in the past, but have had low positive results due to lack of governmental support and little economic incentive. Educational and enforced intervention programs must be developed in conjunction with governmental agencies in order to successfully eliminate this ongoing problem. Industry leaders offered hopeful suggestions, but revealed limitations when trying to develop encompassing solutions to halt mercury emissions. This research highlights potential options that have been attempted in the past and suggests alternative solutions to improve upon these methods. Some methods include buyer impact recognition, risk assessment proposals exposing a cost-benefit analysis and toxicokinetic modeling, public health awareness campaigns, and the education of miners, healthcare workers, and locals within hazardous areas of mercury exposure. These methods, paired with the implementation of alternative mining techniques, propose a substantial reduction of mercury emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Effect of the physical properties of activated carbon in the gold adsorption from cyanide media

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.

    2010-01-01

    The effect of the physical properties of an activated carbon such as pore size distribution, specific surface, pore average diameter, in the gold adsorption from cyanide solution with the gold to the Au (CN) - 2 form, was studied. To meet the proposed objectives two carbons were studied: carbon A with specific surface of 985 m 2 / g, 57 % of micropores and 1.85 nm as average diameter of pores and carbon B with specific surface of 786 m 2 / g, 27 % and pores of 2.35 nm as average diameter of pores; both granular carbons made from coconut shell. Batch adsorption tests were performed in a reactor of 500 ml of capacity with mechanical stirring at constant temperature. The effect of cations present in the aqueous solutions such as Ca 2 +, Na+, K+ and Li+, the effect of pore size distribution, the effect of average pore diameter and surface area were evaluated in function of the rate and amount of gold adsorbed on the activated carbons denominated as A and B. The results to indicate that the physical properties of an activated carbon are an important factor in the gold adsorption process in terms of rate and amount of adsorbed gold. The carbon B with 786 m 2 / g of specific surface area reached a higher load per unit area (0.02 mg Au/m 2 ) in relation to the carbon B of 985 m 2 / g which had a load of 0.01 mg Au / m 2 , after 6 h of contact carbon-solution. The rate adsorption of gold in both carbons is controlled by mass transfer in the liquid film surrounding the carbon particles to short times or small loads of gold in the particles, far from equilibrium. Applying a first order kinetic model, it was obtained that the ratio of the kinetic constants for carbons A and B, ie (kB / kA), fluctuates in a value of 3 for the different cations in study. In general it is possible to say that the rate adsorption and the amount of adsorbed gold increased with the increase in macropores and with the increasing pore average diameter. The presence of cations favors the gold

  5. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.).

    Science.gov (United States)

    Anuradha, J; Abbasi, Tasneem; Abbasi, S A

    2015-09-01

    A biomimetic method of gold nanoparticles synthesis utilizing the highly invasive aquatic weed pistia (Pistia stratiotes) is presented. In an attempt to utilize the entire plant, the efficacy of the extracts of all its parts - aerial and submerged - was explored with different proportions of gold (III) solution in generating gold nanoparticles (GNPs). The progress of the synthesis, which occurred at ambient temperature and pressure and commenced soon after mixing the pistia extracts and gold (III) solutions, was tracked using UV-visible spectrophotometry. The electron micrographs of the synthesized GNPs revealed that, depending on the metal-extract concentrations used in the synthesis, GNPs of either monodispersed spherical shape were formed or there was anisotropy resulting in a mixture of triangular, hexagonal, pentagonal, and truncated triangular shaped GNPs. This phenomenon was witnessed with the extracts of aerial parts as well as submerged parts of pistia. The presence of gold atoms in the nanoparticles was confirmed from the EDAX and X-ray diffraction studies. The FT-IR spectral study indicated that the primary and secondary amines associated with the polypeptide biomolecules could have been responsible for the reduction of the gold (III) ions to GNPs and their subsequent stabilization.

  6. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    Directory of Open Access Journals (Sweden)

    Andrew F Taylor

    Full Text Available We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.

  7. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    Science.gov (United States)

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  8. Physico-chemical characteristics of activated carbons based on a copolymer of furfural and mineral raw materials of the Republic of Kazakhstan and their application in extracting gold from industrial solutions

    Directory of Open Access Journals (Sweden)

    Kanagat Kishibayev

    2013-09-01

    Full Text Available Activated carbons are widely used in different industries for cleaning a variety of natural objects from of technogenic pollutants. In the article presents the results of physico-chemical investigations of activated carbons. The investigations on the sorption of gold in cyanide solutions activated sorbent based on furfural and sorbent based on shungit.

  9. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  10. Effect of Gold on the Corrosion Behavior of an Electroless Nickel/Immersion Gold Surface Finish

    Science.gov (United States)

    Bui, Q. V.; Nam, N. D.; Yoon, J. W.; Choi, D. H.; Kar, A.; Kim, J. G.; Jung, S. B.

    2011-09-01

    The performance of surface finishes as a function of the pH of the utilized plating solution was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5 wt.% NaCl solution. In addition, the surface finishes were examined by x-ray diffraction (XRD), and the contact angle of the liquid/solid interface was recorded. NiP films on copper substrates with gold coatings exhibited their highest coating performance at pH 5. This was attributed to the films having the highest protective efficiency and charge transfer resistance, lowest porosity value, and highest contact angle among those examined as a result of the strongly preferred Au(111) orientation and the improved surface wettability.

  11. Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF{sub 4} microwave plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader-Fernández, V.K.; Morales-Lara, F. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Melguizo, M.; García-Gallarín, C.; López-Garzón, R.; Godino-Salido, M.L. [Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén (Spain); López-Garzón, F.J., E-mail: flopez@ugr.es [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Domingo-García, M.; Pérez-Mendoza, M.J. [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2015-12-01

    Highlights: • The surface area of GNPs and MWCNTs determines the degree of fluorination by plasma. • Fluorine is bound to carbon atoms in up to eight chemical environments. • The stability of the fluorine groups varies in a wide range of temperature. • The electronic properties of MWCNTs are changed as a consequence of fluorination. • The textural characteristics of the materials are not changed after fluorination. - Abstract: The fluorination of graphite nanoplates (GNPs) and multi-wall carbon nanotubes (MWCNTs) by CF{sub 4} cold plasma is reported. The aim is to analyze the influence of the textural characteristics in the degree of fluorination and in the thermal stability of the fluorine groups. We have used thermal programmed desorption which clearly discriminates the nature of the desorbing species and their stability. The degree of fluorination of both materials is similar up to 20 min of treatment and then it decreases in GNPs at longer treatments. Nevertheless, the fluorine content in MWCNTs keeps increasing after 45 min. This different evolution of the fluorination degree with the time is related to the surface areas. The fluorine bonding is produced not only in defects and irregularities but also on the external graphene sheets of both materials, and it results in up to eight different chemical environments having different thermal stabilities from 150 °C up to temperatures higher than 900 °C. The fluorination increases the electronic states near the Fermi level of the nanotubes whereas it does not affect the electronic properties of graphite nanoplates. It is shown that no intercalation compounds are formed and that the textural characteristics of the materials remain unchanged after fluorination.

  12. Size fraction assaying of gold bearing rocks (for gold extraction) by ...

    African Journals Online (AJOL)

    A novel method has been developed for processing and extraction of gold from gold bearing rocks for use by small-scale gold miners in Ghana. The methodology involved crushing of gold bearing hard rocks to fine particles to form a composite sample and screening at a range of sizes. Gold distribution in the composite ...

  13. A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qian; Wang Xiaoguang; Qi Zhen [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); Wang Yan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China); School of Materials Science and Engineering, University of Jinan, Jiwei Road 106, Jinan 250022 (China); Zhang Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn

    2009-11-01

    Nanoporous gold (NPG) ribbons have been fabricated through electrochemical dealloying of melt-spun Al-Au alloys with 20-50 at.% Au in a 10 wt.% NaCl aqueous solution under potential control at room temperature. The microstructures of NPG were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDX) analysis. The microstructures of the NPG ribbons strongly depend upon the phase constitutions of the starting Al-Au alloys. The single-phase Al{sub 2}Au or AlAu intermetallic compound can be fully dealloyed, resulting in the formation of NPG with a homogeneous porous structure. The separate dealloying of Al{sub 2}Au and AlAu in the two-phase Al-45 Au alloy leads to the formation of NPG composites (NPGCs). In addition, the dealloying of the Al-20 Au alloy comprising {alpha}-Al and Al{sub 2}Au leads to the formation of NPG with bimodal channel size distributions. According to the ligament size, the surface diffusivity of Au adatoms along the alloy/electrolyte interface has been evaluated and increases with increasing applied potential. The dealloying mechanism in the neutral NaCl solution has been explained based upon pourbaix diagram and chloride ion effect.

  14. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance

    Science.gov (United States)

    Chen, Ying; Li, Hui; Ma, Qian; Che, Quande; Wang, Junpeng; Wang, Gang; Yang, Ping

    2018-05-01

    A series of hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with tunable morphologies and superior ethanol gas-sensing performance were successfully synthesized via the facile multi-step reaction processes. Hexagonal-like α-Fe2O3 nanoplates with uniform size around 150 nm are employed as new sensor substrates for loading the well-distributed ZnO and Au nanoparticles with adjustable size distribution on the different surfaces. Brunauer-EmmeQ-Teller (BET) surface areas of α-Fe2O3 and α-Fe2O3/ZnO samples are evaluated to be 37.94 and 61.27 m2/g, respectively, while α-Fe2O3/ZnO/Au composites present the highest value of 79.08 m2/g. These α-Fe2O3-based functional materials can exhibit outstanding sensing properties to ethanol. When the ethanol concentration is 100 ppm, the response value of α-Fe2O3/ZnO/Au composites can reach up to 170, which is 14.6 and 80.3 times higher than that of α-Fe2O3/ZnO and pure α-Fe2O3, respectively. The recycling stability and long-time effectiveness can be availably maintained within 30 days, as well as the response and recovery times are shortened to 4 and 5 s, respectively. Significantly, the response value of α-Fe2O3/ZnO/Au composite is still up to 63 at an operating temperature of 280 °C even though the ethanol concentration decreases to 10 ppm. The enhanced gas sensing mechanism would be focused on the synergistic effects of phase compositions, surface heterogeneous structures, large specific surface area, and the selective depositions of Au nanoparticles in α-Fe2O3/ZnO/Au sensors. The synergistic effect of different surface heterostructures referring to α-Fe2O3/Au and α-Fe2O3/ZnO/Au and their novel electron transport processes on the surfaces are first investigated and discussed in details. It is expected that hexagonal-like α-Fe2O3/ZnO/Au nanoplate heterostructures with excellent sensing performance can be the promising highly-sensitive materials in the actual application for monitoring and detecting ethanol.

  15. Purification of Gold from Chloride Leach Liquor of Copper Anode Slime by Octanol-Kerosene Organic Extractant

    Directory of Open Access Journals (Sweden)

    N. Sadeghi

    2015-07-01

    Full Text Available In the present study, the copper anode slime was leached in chloride media. Then, pregnant leach solution (PLS was purified using solvent extraction method and Octanol-kerosene solution. HAuCl4.2L was determined as the extracted macromolecule, and separation of impurities, such as copper, iron and selenium was done in the presence of gold. McCabe-Thiele diagram of Au–HCl (3 M– Octanol (40% v/v in O/A=3/4 showed that Au concentration in aqueous phase decreased from the initial value of 200 to 7 mg/L, after 5 stages. Ammonia solution was proposed as the stripper and McCabe-Thiele diagram was presented to obtain the number of gold stripping steps by ammonia solution

  16. Inkjet-printed gold nanoparticle chemiresistors: Influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Edith [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)], E-mail: Edith.Chow@csiro.au; Herrmann, Jan; Barton, Christopher S.; Raguse, Burkhard; Wieczorek, Lech [CSIRO Materials Science and Engineering, PO Box 218, Lindfield, NSW 2070 (Australia)

    2009-01-19

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a 'coffee ring'-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both 'coffee ring' and 'flat' films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the 'coffee ring' film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution.

  17. The effect of the oxygen dissolved in the adsorption of gold in activated carbon; Efecto del oxigeno disuelto en la adsorcion de oro en carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P. [Universidad de Santiago. Chile (Chile); Wilkomirsky, I. [Universidad de Concepcion. Chile (Chile)

    1999-07-01

    The effect of the oxygen dissolved on the adsorption of gold in a activated carbon such as these used for carbon in pulp (CIP) and carbon in leach (CIL) processes were studied. The research was oriented to dilucidate the effect of the oxygen dissolved in the gold solution on the kinetics and distribution of the gold adsorbed in the carbon under different conditions of ionic strength, pH and gold concentration. It was found that the level of the oxygen dissolved influences directly the amount of gold adsorbed on the activated carbon, being this effect more relevant for low ionic strength solutions. The pH and initial gold concentration has no effect on this behavior. (Author) 16 refs.

  18. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    Science.gov (United States)

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  19. Synthesis and characterization of pHLIP® coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Jennifer L. Daniels

    2017-07-01

    Full Text Available Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG and pH Low Insertion Peptide (pHLIP® were introduced. The presence of a tumor-targeting pHLIP® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  20. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  1. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  2. Diffusion of nanoparticles in solution through elastomeric membrane

    International Nuclear Information System (INIS)

    Zemzem, Mohamed; Vinches, Ludwig; Hallé, Stéphane

    2017-01-01

    Diffusion phenomena encountered in mass transfer of liquids play an important role in many technological processes of polymer manufacturing and use. In addition and alongside the notable growth of nanoparticles use, particularly when in suspension in liquid solutions, it has become important to pay some attention to their interactions with polymeric structures. The aim of this work is to evaluate some diffusion parameters of gold nanoparticle solutions as well as of their liquid carrier (water) through elastomeric membranes. Gravimetric method was chosen as the main technique to quantify swelling phenomena and to assess kinetic properties. The dynamic liquid uptake measurements were conducted on gold nanoparticles (5 nm and 50 nm in diameter) in aqueous solutions when brought into contact with two types of nitrile material samples. Results showed that diffusion mechanism of the liquids lies between Fickian and sub-Fickian modes. Slight deviations were noticed with the gold nanoparticle solutions. A growth in liquid interaction with the rubbery structure in presence of the nanoparticles was also observed from comparison of K factor (characteristic of the elastomer-liquid interaction). Difference between the characteristics of the two membranes was also reported using this parameter. Besides, diffusion coefficients testified the impact of the membrane thickness on the penetration process, while no significant effect of the nature of the nanoparticle solution can be seen on this coefficient. (paper)

  3. Diffusion of nanoparticles in solution through elastomeric membrane

    Science.gov (United States)

    Zemzem, Mohamed; Vinches, Ludwig; Hallé, Stéphane

    2017-04-01

    Diffusion phenomena encountered in mass transfer of liquids play an important role in many technological processes of polymer manufacturing and use. In addition and alongside the notable growth of nanoparticles use, particularly when in suspension in liquid solutions, it has become important to pay some attention to their interactions with polymeric structures. The aim of this work is to evaluate some diffusion parameters of gold nanoparticle solutions as well as of their liquid carrier (water) through elastomeric membranes. Gravimetric method was chosen as the main technique to quantify swelling phenomena and to assess kinetic properties. The dynamic liquid uptake measurements were conducted on gold nanoparticles (5 nm and 50 nm in diameter) in aqueous solutions when brought into contact with two types of nitrile material samples. Results showed that diffusion mechanism of the liquids lies between Fickian and sub-Fickian modes. Slight deviations were noticed with the gold nanoparticle solutions. A growth in liquid interaction with the rubbery structure in presence of the nanoparticles was also observed from comparison of K factor (characteristic of the elastomer-liquid interaction). Difference between the characteristics of the two membranes was also reported using this parameter. Besides, diffusion coefficients testified the impact of the membrane thickness on the penetration process, while no significant effect of the nature of the nanoparticle solution can be seen on this coefficient.

  4. Shape-Dependent Electrocatalytic Reduction of CO2 to CO on Triangular Silver Nanoplates.

    Science.gov (United States)

    Liu, Subiao; Tao, Hongbiao; Zeng, Li; Liu, Qi; Xu, Zhenghe; Liu, Qingxia; Luo, Jing-Li

    2017-02-15

    Electrochemical reduction of CO 2 (CO 2 RR) provides great potential for intermittent renewable energy storage. This study demonstrates a predominant shape-dependent electrocatalytic reduction of CO 2 to CO on triangular silver nanoplates (Tri-Ag-NPs) in 0.1 M KHCO 3 . Compared with similarly sized Ag nanoparticles (SS-Ag-NPs) and bulk Ag, Tri-Ag-NPs exhibited an enhanced current density and significantly improved Faradaic efficiency (96.8%) and energy efficiency (61.7%), together with a considerable durability (7 days). Additionally, CO starts to be observed at an ultralow overpotential of 96 mV, further confirming the superiority of Tri-Ag-NPs as a catalyst for CO 2 RR toward CO formation. Density functional theory calculations reveal that the significantly enhanced electrocatalytic activity and selectivity at lowered overpotential originate from the shape-controlled structure. This not only provides the optimum edge-to-corner ratio but also dominates at the facet of Ag(100) where it requires lower energy to initiate the rate-determining step. This study demonstrates a promising approach to tune electrocatalytic activity and selectivity of metal catalysts for CO 2 RR by creating optimal facet and edge site through shape-control synthesis.

  5. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  6. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  7. Preparation and characterization of nano gold supported over montmorillonite clays

    International Nuclear Information System (INIS)

    Suraja, P.V.; Binitha, N.N.; Yaakob, Z.; Silija, P.P.

    2009-01-01

    Full text: The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl 4 ·3H 2 O by deposition-precipitation (DP) methods. However, it is difficult to prepare nano scale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. Here there is no need of increasing the pH of the solution to reduce the Au 3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-Vis Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method. (author)

  8. Preparation and Characterization of Nano Gold Supported over Montmorillonite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Suraja, P V; Binitha, N N; Yaakob, Z; Silija, P P, E-mail: binithann@yahoo.co.in [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-02-15

    The use of montmorillonite clays as a matrix, or as a host, for obtaining intercalated/supported metal particles has potential applications in catalysis and other areas. The gold nanoparticles were obtained from the most common anionic gold precursor HAuCl4{center_dot}3H2O by deposition-precipitation (DP) methods. However, it is difficult to prepare nanoscale gold catalysts supported on silica surfaces with lower isoelectric point (IEP). Homogeneous precipitation method using urea also fails on silica surfaces. Reasons for the inefficiency of these methods are the negative charge of the metal precursor as well as the support surface and the high pH required for depositing gold nanoparticles. In the present work, we use glucose as the reductant in the presence of stabilizer for preparation of nano gold supported on montmorillonite clay. There is no need of increasing the pH of the solution to reduce the Au3+ ions. The prepared systems are characterized using various techniques such as using X-ray fluorescence (XRF), UV-VIS Diffuse reflectance spectra (DRS) and Fourier Transform infra red spectra (FTIR) to prove the efficiency of the present method.

  9. The fate of cyanide in leach wastes at gold mines: An environmental perspective

    International Nuclear Information System (INIS)

    Johnson, Craig A.

    2015-01-01

    Highlights: • This paper reviews the fate of cyanide in mineral processing wastes at gold mines. • Ore leaching produces numerous cyanide-containing species besides the gold complex. • Many cyanide species are eliminated or sequestered naturally over time. • Sequestered cyanide can be remobilized if conditions change. • Toxicity of released solutions can be reduced by photolytic reactions or offgassing. - Abstract: This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN − anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO − ); and thiocyanate (SCN − ). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment. Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by

  10. Leaching of gold from a mechanically and mechanochemically activated waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2010-03-01

    Full Text Available The intensification of leaching of gold from a waste using mechanical activation (milling in water and mechanochemical activation(milling in thiourea solution were studied as the pretreatment steps. The leaching of “as-received“ sample in an acid thiourea solutionresulted in 78 % Au dissolution, after mechanical activation 98 % and mechanochemical activation up to 99 % of the gold was leachedduring 120 min. The mechanochemical activation resulted in an increase of the specific surface area of the waste from 0.6 m2g-1to a maximum value of 20.5 m2g-1. The activation was performed in an attritor using variable milling times. The physico-chemical changesin the waste as a consequence of mechanochemical activation had a pronounced influence on the subsequent gold extraction.

  11. Obtaining and characterization of thin films polyelectrolyte with gold nanoparticles

    International Nuclear Information System (INIS)

    Popiolski, Tatiane M.; Crespo, Janaina S.; Silva, Renato B.

    2011-01-01

    Thin films of polyelectrolytes are manufactured via sequential adsorption of weak polyelectrolytes from aqueous solutions based on electrostatic interaction of oppositely charged polymers. Metal containing polymeric compounds are of particular interest to the production of materials with electrical interface and optical properties. In this sense, the objective of this study was to obtain thin films of weak polyelectrolytes and analyze the distribution of gold nanoparticles stabilized by sodium citrate and by poly (vinylpyrrolidone). The characterization was performed using UV-visible, X-ray diffraction and atomic force microscopy. The techniques of UV-visible and X-ray diffraction was confirmed the presence of gold in the films, the atomic force microscopy images were used to analyze the morphology of the films and check the behavior of the diffusion of gold nanoparticles. (author)

  12. Formation of different gold nanostructures by silk nanofibrils

    International Nuclear Information System (INIS)

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  13. Formation of different gold nanostructures by silk nanofibrils

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guangqiang [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Yang, Yuhong [Research Centre for Analysis and Measurement, Fudan University, Shanghai 200433 (China); Yao, Jinrong; Shao, Zhengzhong [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Chen, Xin, E-mail: chenx@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China)

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. - Highlights: • Different Au nanostructures can be obtained by a facile and green protein reduction method. • Silk nanofibrils serve as both reductant and template in the formation of Au nanostructures. • Different Au nanostructures can be obtained simply by regulating the pH in the medium. • Large Au microplates can be obtained with a cheap, abundant, sustainable silk protein. • Silk/Au hybrid nanocomposites show potential application in SERS and

  14. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  15. Gold prices

    OpenAIRE

    Joseph G. Haubrich

    1998-01-01

    The price of gold commands attention because it serves as an indicator of general price stability or inflation. But gold is also a commodity, used in jewelry and by industry, so demand and supply affect its pricing and need to be considered when gold is a factor in monetary policy decisions.

  16. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    Science.gov (United States)

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  17. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    International Nuclear Information System (INIS)

    Patel, Nimitt G.; Kumar, Ajeet; Jayawardana, Veroni N.; Woodworth, Craig D.; Yuya, Philip A.

    2014-01-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films

  18. Separation of thiosulfate and the polythionates in gold thiosulfate leach solutions by capillary electrophoresis.

    Science.gov (United States)

    O'Reilly, John W; Dicinoski, Greg W; Miura, Yasuyuki; Haddad, Paul R

    2003-06-01

    A technique for the separation of thiosulfate (S(2)O(3) (2-)), polythionates (S(x)O(6) (2-), x = 3 to 5) and the gold(I) thiosulfate complex (Au(S(2)O(3))(2) (3-)) using capillary electrophoresis with simultaneous UV detection at 195 and 214 nm is presented. The five species were separated in under 3 min with a total analysis time of 8 min, using an electrolyte containing 25 mM 2,2-bis(hydroxymethyl)-2,2',2"-nitrilotriethanol (bis-tris) adjusted to pH 6.0 with sulfuric acid and an applied voltage of -30 kV. While the gold(I) thiosulfate complex could be separated from the other analytes of interest under these conditions, the quantification of this complex was not possible due to inconsistent peak areas and peak splitting effects induced by the sulfur-oxygen species in the leach matrix. Detection limits calculated for 3s pressure injection at 50 mbar ranged between 0.5-2 microM. The method was linear over the ranges 40-8000, 10-2000, 10-2000, and 5-2000 microM for thiosulfate, trithionate, tetrathionate, and pentathionate, respectively. The technique was applied successfully to leach liquors containing 0.5 M ammonium thiosulfate, 2 M ammonia, 0.05 M copper sulfate and 20% w/v gold ore, diluted 1:100 prior to analysis.

  19. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones.

    Science.gov (United States)

    Jing-ying, Li; Xiu-li, Xu; Wen-quan, Liu

    2012-06-01

    The present communication deals with the leaching of gold and silver from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a thiourea leaching process as an alternative to the conventional and toxic cyanide leaching of gold. The influence of particle size, thiourea and Fe(3+) concentrations and temperature on the leaching of gold and silver from waste mobile phones was investigated. Gold extraction was found to be enhanced in a PCBs particle size of 100 mesh with the solutions containing 24 g/L thiourea and Fe(3+) concentration of 0.6% under the room temperature. In this case, about 90% of gold and 50% of silver were leached by the reaction of 2h. The obtained data will be useful for the development of processes for the recycling of gold and silver from the PCBs of waste mobile phones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Large-scale, rapid synthesis and application in surface-enhanced Raman spectroscopy of sub-micrometer polyhedral gold nanocrystals

    International Nuclear Information System (INIS)

    Guo Shaojun; Wang Yuling; Wang Erkang

    2007-01-01

    Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl 4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (∼25 nm)

  1. Reducing HAuCl4 by the C60 dianion: C60-directed self-assembly of gold nanoparticles into novel fullerene bound gold nanoassemblies

    International Nuclear Information System (INIS)

    Liu Wei; Gao Xiang

    2008-01-01

    The C 60 dianion is used to reduce tetrachloroauric acid (HAuCl 4 ) for the first time; three-dimensional C 60 bound gold (Au-C 60 ) nanoclusters are obtained from C 60 -directed self-assembly of gold nanoparticles due to the strong affinities of Au-C 60 and C 60 -C 60 . The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C 60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies. TEM demonstrates the formation of 3D nanonetwork aggregates, which are composed of discrete gold nanocores covered with a C 60 monolayer. The SAED and XRD patterns indicate that the gold nanocores inside the capped C 60 molecules belong to the face-centred cubic crystal structure, while the C 60 molecules are amorphous. The EDS and XPS measurements validate that the Au-C 60 nanoclusters contain only Au and C elements and Au 3+ is reduced to Au 0 . FT-IR spectroscopy shows the chemiadsorption of C 60 to the gold nanocores, while Raman spectroscopy demonstrates the electron transfer from the gold nanocores to the chemiadsorbed C 60 molecules. Au-C 60 nanoclusters embedded in tetraoctyl-n-ammonium bromide (TOAB) on glassy carbon electrodes (GCEs) have been fabricated and have shown stable and well-defined electrochemical responses in aqueous solution

  2. Microstructure evolution in nanoporous gold thin films made from sputter-deposited precursors

    International Nuclear Information System (INIS)

    Gwak, Eun-Ji; Kang, Na-Ri; Baek, Un Bong; Lee, Hae Moo; Nahm, Seung Hoon; Kim, Ju-Young

    2013-01-01

    We fabricate almost crack-free 1.5 μm thick nanoporous gold thin films using free-corrosion dealloying and transfer processes from sputter-deposited precursors. By controlling the temperature and the concentration of the nitric acid solution during free-corrosion dealloying, we obtain ligament sizes in nanoporous gold between 22 and 155 nm. We investigate the effects of dissolution rate of Ag atoms, surface diffusivity of Au atoms and formation of Ag oxide on nanoporosity evolution

  3. Green tea induced gold nanostar synthesis mediated by Ag(I) ions

    OpenAIRE

    Chen, Qiang; Kaneko, Toshiro; Hatakeyama, Rikizo

    2014-01-01

    We report a synthesis of tea components conjugated gold nanostars (AuNSs) with strong near infrared absorption by reducing an aqueous solution of chloroauric acid trihydrate via green tea in association with Ag(I) ions. Green tea acts as a reducing agent by providing electrons for the gold (III) reduction as well as a stabilizing agent by conjugating some of its components on the surfaces of AuNSs. Moreover, the Ag(I) ions play an important role in mediating the branched growth of the resulta...

  4. Statistical optimization of gold recovery from difficult leachable sulphide minerals using bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Hussin A.M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Mining Engineering Dept.; El-Midany, Ayman A. [King Saud Univ., Riyadh (Saudi Arabia)

    2012-07-01

    Some of refractory gold ores represent one of the difficult processable ores due to fine dissemination and interlocking of the gold grains with the associated sulphide minerals. This makes it impossible to recover precious metals from sulphide matrices by direct cyanide leaching even at high consumption of cyanide solution. Research to solve this problem is numerous. Application of bacteria shows that, some types of bacteria have great affect on sulphides bio-oxidation and consequently facilitate the leaching process. In this paper, leaching of Saudi gold ore, from Alhura area, containing sulphides before cyanidation is studied to recover gold from such ores applying bacteria. The process is investigated using stirred reactor bio-leaching rather than heap bio-leaching. Using statistical analysis the main affecting variables under studied conditions were identified. The design results indicated that the dose of bacteria, retention time and nutrition K{sub 2}SO{sub 4} are the most significant parameters. The higher the bacterial dose and the bacterial nutrition, the better is the concentrate grade. Results show that the method is technically effective in gold recovery. A gold concentrate containing > 100 g/t gold was obtained at optimum conditions, from an ore containing < 2 g/t gold i.e., 10 ml bacterial dose, 6 days retention time, and 6.5 kg/t K{sub 2}SO{sub 4}as bacteria nutrition. (orig.)

  5. SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics

    Science.gov (United States)

    Dey, Priyanka; Olds, William; Blakey, Idriss; Thurecht, Kristofer J.; Izake, Emad L.; Fredericks, Peter M.

    2014-03-01

    There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

  6. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    International Nuclear Information System (INIS)

    Radhakrishnan, Archana; Murugesan, Dr V.

    2014-01-01

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations

  7. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    from redox potential, pH, conductivity, and turbidity of the solution enables distinct observation of reduction and nucleation/growth of AuNPs phases. The dynamics of the electrochemical potential shows that reduction of gold salt (HAuCl 4 and its hydrolyzed forms) occurs via intermediate [AuCl 2...

  8. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  9. Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis.

    Science.gov (United States)

    Tidke, Pritish R; Gupta, Indarchand; Gade, Aniket K; Rai, Mahendra

    2014-12-01

    We report the extracellular biosynthesis of gold nanoparticles (AuNPs) using a fungus Fusarium acuminatum. Mycosynthesis of Au-NPs was carried out by challenging the fungal cells filtrate with HAuCl 4 solution (1 mM), as nanoparticles synthesizing enzyme secrete extracellularly by the fungi. The AuNPs were characterized with the help of UV-Visible spectrophotometer, Fourier Transform Infrared spectroscopy, Zeta Potential, X-ray diffraction (XRD) and Transmission electron microscopy (TEM). We observed absorbance peak in between 520 nm-550 nm corresponding to the surface plasmon absorbance of the gold nanoparticles. The nanoparticles synthesized in the present investigation were found to be capped by proteins. XRD results showed that the distinctive formation of crystalline gold nanoparticles in the solution. The spherical and polydispersed AuNPs in the range 8 to 28 nm with average size of 17 nm were observed by TEM analysis. We also standardized the parameters like the effect of pH, temperature and salt concentration on the biosynthesis of gold nanoparticles. It was found that acidic pH, 1 mM salt concentration and 37 (°)C temperature were found to be optimum for the synthesis of Au-NPs. Therefore, the present study introduces the easy, better and cheaper method for biosynthesis of AuNPs.

  10. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    Science.gov (United States)

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  11. The development of an on-line gold analyser

    International Nuclear Information System (INIS)

    Robert, R.V.D.; Ormrod, G.T.W.

    1982-01-01

    An on-line analyser to monitor the gold in solutions from the carbon-in-pulp process is described. The automatic system is based on the delivery of filtered samples of the solutions to a distribution valve for measurement by flameless atomic-absorption spectrophotometry. The samples is introduced by the aerosol-deposition method. Operation of the analyser on a pilot plant and on a full-scale carbon-in-pulp plant has shown that the system is economically feasible and capable of providing a continuous indication of the efficiency of the extraction process

  12. Sandwiched gold/PNIPAm/gold microstructures for smart plasmonics application: towards the high detection limit and Raman quantitative measurements.

    Science.gov (United States)

    Elashnikov, R; Mares, D; Podzimek, T; Švorčík, V; Lyutakov, O

    2017-08-07

    A smart plasmonic sensor, comprising a layer of a stimuli-responsive polymer sandwiched between two gold layers, is reported. As a stimuli-responsive material, a monolayer of poly(N-isopropylacrylamide) (PNIPAm) crosslinked globules is used. A quasi-periodic structure of the top gold layer facilitates efficient excitation and serves as a support for plasmon excitation and propagation. The intermediate layer of PNIPAm efficiently entraps targeted molecules from solutions. The sensor structure was optimized for efficient light focusing in the "active" PNIPAm layer. The optimization was based on the time-resolved finite-element simulations, which take into account the thickness of gold layers, size of PNIPAm globules and Raman excitation wavelength (780 nm). The prepared structures were characterized using SEM, AFM, UV-Vis refractometry and goniometry. Additional AFM scans were performed in water at two temperatures corresponding to the collapsed and swollen PNIPAm states. The Raman measurements demonstrate a high detection limit and perfect reproducibility of the Raman scattering signal for the prepared sensor. In addition, the use of created SERS structures for the detection of relevant molecules in the medical, biological and safety fields was demonstrated.

  13. Gold 100: proceedings of the international conference on gold. V. 2

    International Nuclear Information System (INIS)

    Fivaz, C.E.; King, R.P.

    1986-01-01

    The proceedings of Gold 100 have been published in three separate volumes. The first deals with the mining of gold, the second with the extractive metallurgy of gold, and the third with industrial uses of gold. In this second volume, the papers on extractive metallurgy presented at the Conference reflect most of the problems that are currently of significant technical interest to the industry. This volume is divided in six main parts covering plant design, carbon-in-pulp technology, refractory gold, new technology, grinding and concentration, and leaching. The part on new technology includes papers on x-ray fluorescence analyzers, Moessbauer spectroscopy and leaching processes for uranium, while the part on grinding and concentration includes papers on nuclear and radiotracer techniques for the recovery of gold as well as various flotation parameters in the flotation behaviour of gold and uranium

  14. Optimization of components in high-yield synthesis of block copolymer-mediated gold nanoparticles

    International Nuclear Information System (INIS)

    Ray, Debes; Aswal, Vinod Kumar

    2012-01-01

    The optimization to achieve stable and high-yield gold nanoparticles in block copolymer-mediated synthesis has been examined. Gold nanoparticles are synthesized using block copolymer P85 in gold salt HAuCl 4 ·3H 2 O solution. This method usually has a very limited yield which does not simply increase with the increase in the gold salt concentration. We show that the yield can be enhanced by increasing the block copolymer concentration but is limited to the factor by which the concentration is increased. On the other hand, the presence of an additional reductant (trisodium citrate) in 1:1 molar ratio with gold salt enhances the yield by manyfold. In this case (with additional reductant), the stable and high-yield nanoparticles having size about 14 nm can be synthesized at very low block copolymer concentrations. These nanoparticles thus can be efficiently used for their application such as for adsorption of proteins.

  15. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  16. Optimized Method for Generating and Acquiring GPS Gold Codes

    Directory of Open Access Journals (Sweden)

    Khaled Rouabah

    2015-01-01

    Full Text Available We propose a simpler and faster Gold codes generator, which can be efficiently initialized to any desired code, with a minimum delay. Its principle consists of generating only one sequence (code number 1 from which we can produce all the other different signal codes. This is realized by simply shifting this sequence by different delays that are judiciously determined by using the bicorrelation function characteristics. This is in contrast to the classical Linear Feedback Shift Register (LFSR based Gold codes generator that requires, in addition to the shift process, a significant number of logic XOR gates and a phase selector to change the code. The presence of all these logic XOR gates in classical LFSR based Gold codes generator provokes the consumption of an additional time in the generation and acquisition processes. In addition to its simplicity and its rapidity, the proposed architecture, due to the total absence of XOR gates, has fewer resources than the conventional Gold generator and can thus be produced at lower cost. The Digital Signal Processing (DSP implementations have shown that the proposed architecture presents a solution for acquiring Global Positioning System (GPS satellites signals optimally and in a parallel way.

  17. Simple Synthesis and Enhanced Performance of Graphene Oxide-Gold Composites

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available Graphene oxide-gold composites were prepared by one-step reaction in aqueous solution, where the gold nanoparticles were deposited on the graphene oxide during their synthesis process. Transmission electron morphology, X-ray diffraction, Roman spectra, and UV-Vis absorption spectra were used to characterize the obtained composites. Furthermore, based on the BET analysis results, it was found that the surface area of the composite film was obviously enhanced compared with the synthesized graphene oxide. Electrochemical measurements indicated that the modification of the composites on electrode could efficiently enhance the voltammetric response, suggesting the potential application for making electrochemical sensors.

  18. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  19. Paper Money but a Gold Debt. Italy in the Gold Standard

    OpenAIRE

    Giuseppe Tattara; or consequences)

    2002-01-01

    During the 52 years between the Unification of the Kingdom of Italy and World War 1, the lira was legally convertible into metal for a limited period of time. Although not formally committed to gold, the lira exchange towards the gold standard countries proved remarkably stable, \\223shadowing\\224 gold. It is widely claimed that being one of the successful members of the gold standard circle entailed a number of advantages. If the lira was closely linked to gold, suggesting that there was only...

  20. Light-activated microbubbles around gold nanorods for photoacoustic microsurgery

    Science.gov (United States)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2018-02-01

    The increasing interest around imaging and microsurgery techniques based on the photoacoustic effect has boosted active research into the development of exogenous contrast agents that may enhance the potential of this innovative approach. In this context, plasmonic particles as gold nanorods are achieving resounding interest, owing to their efficiency of photothermal conversion, intense optical absorbance in the near infrared region, inertness in the body and convenience for conjugation with ligands of molecular targets. On the other hand, the photoinstability of plasmonic particles remains a remarkable obstacle. In particular, gold nanorods easily reshape into nanospheres and so lose their optical absorbance in the near infrared region, under exposure to few-ns-long laser pulses. This issue is attracting much attention and stimulating ad-hoc solutions, such as the addition of rigid shells and the optimization of multiple parameters. In this contribution, we focus on the influence of the shape of gold nanorods on their photothermal behavior and photostability. We describe the photothermal process in the gold nanorods by modeling their optical absorption and consequent temperature dynamics as a function of their aspect ratio (length / diameter). Our results suggest that increasing the aspect ratio does probably not limit the photostability of gold nanorods, while shifting the plasmonic peak towards wavelengths around 1100 nm, which hold more technological interest.

  1. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  2. Electroplating Gold-Silver Alloys for Spherical Capsules for NIF Double-Shell Targets

    Energy Technology Data Exchange (ETDEWEB)

    Bhandarkar, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Horwood, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stadermann, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-17

    For Inertial Confinement Fusion (ICF) implosions, a design based on gradients of high and mid Z materials could potentially be more robust than single element capsule systems. To that end, gold and silver alloys were electroplated on 2.0 mm diameter surrogate brass spheres using a new flow–based pulsed plating method specifically designed to minimize surface roughness without reducing plating rates. The coatings were analyzed by scanning electron microscope (SEM) and white light interferometry for surface topography, and by energy dispersive x-ray spectroscopy (EDX) to determine near-surface gold and silver compositions. The alloy range attainable was 15 to 85 weight percent gold using 1:1 and 1:3 silver to gold ratio plating baths at applied potentials of -0.7 volts to -1.8 volts. This range was bounded by the open circuit potential of the system and hydrogen evolution, and in theory could be extended by using ionic liquids or aprotic solutions. Preliminary gradient trials proved constant composition alloy data could be translated to smooth gradient plating, albeit at higher gold compositions.

  3. A Study on the Plasmonic Properties of Silver Core Gold Shell Nanoparticles: Optical Assessment of the Particle Structure

    Science.gov (United States)

    Mott, Derrick; Lee, JaeDong; Thi Bich Thuy, Nguyen; Aoki, Yoshiya; Singh, Prerna; Maenosono, Shinya

    2011-06-01

    This paper reports a qualitative comparison between the optical properties of a set of silver core, gold shell nanoparticles with varying composition and structure to those calculated using the Mie solution. To achieve this, silver nanoparticles were synthesized in aqueous phase from a silver hydroxide precursor with sodium acrylate as dual reducing-capping agent. The particles were then coated with a layer of gold with controllable thickness through a reduction-deposition process. The resulting nanoparticles reveal well defined optical properties that make them suitable for comparison to ideal calculated results using the Mie solution. The discussion focuses on the correlation between the synthesized core shell nanoparticles with varying Au shell thickness and the Mie solution results in terms of the optical properties. The results give insight in how to design and synthesize silver core, gold shell nanoparticles with controllable optical properties (e.g., SPR band in terms of intensity and position), and has implications in creating nanoparticle materials to be used as biological probes and sensing elements.

  4. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    Science.gov (United States)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  5. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    Science.gov (United States)

    Johnson, Craig A.

    2015-01-01

    This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN− anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO−); and thiocyanate (SCN−). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment.

  6. Green Synthesis and Biological Activities of Gold Nanoparticles Functionalized with Citrus reticulata, Citrus aurantium, Citrus sinensis and Citrus grandis

    International Nuclear Information System (INIS)

    Islam, N. U.; Shahid, M.; Ahsan, F.; Khan, I.; Shah, M. R.; Khan, M. A.

    2015-01-01

    In the present study, gold nanoparticles (GNPs) were prepared at boiling temperature (90-95 degree C) by treating gold ions with Citrus fruit extracts. The effect of mixing ratios of the reactants and concentration of gold hydrochloride was studied. In the standardization process, 10/sup -3/ M solution of HAuCl/sub 4/.3H/sub 2/O was reacted with fruit extracts for half an hour at 90-95 degree C in different ratios. GNPs were characterized by UV-Vis spectroscopy (UV-Vis) and atomic force microscopy (AFM). Their stability was evaluated against varying pH solutions and volumes of sodium chloride along with metals and antibiotics sensing ability. The gold nanoparticles were tested for antibacterial and antifungal activities against various pathogenic strains. The UV-Vis spectra of gold nanoparticles gave surface plasmon resonance at about 540 nm while the AFM images revealed the particle size within the range of 70-100 nm. GNPs showed remarkable stability in varying pH solutions and salt volumes as well as high detection ability towards cobalt, copper, ceftriaxone and penicillin. Moreover, the GNPs possessed moderate antibacterial and good antifungal activity. These results concluded that the Citrus fruit extracts can be utilized for large scale synthesis of cost-effective nanoparticles which may have compatibility for biomedical and pharmaceutical applications. (author)

  7. Copper leaching from electronic waste for the improvement of gold recycling.

    Science.gov (United States)

    Torres, Robinson; Lapidus, Gretchen T

    2016-11-01

    Gold recovery from electronic waste material with high copper content was investigated at ambient conditions. A chemical preliminary treatment was found necessary to remove the large quantities of copper before the precious metal can be extracted. For this purpose inorganic acids (HCl, HNO 3 and H 2 SO 4 ) and two organic substances EDTA and citrate, were tested. The effect of auxiliary oxidants such as air, ozone and peroxide hydroxide was studied. In pretreatments with peroxide and HCl or citrate, copper extractions greater than 90% were achieved. In the second leaching stage for gold recovery, the solid residue of the copper extraction was contacted with thiourea solutions, resulting in greater than 90% gold removal after only one hour of reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electrolysis of Gold from Filtration Waste by Means of Mechanical Activation

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2012-12-01

    Full Text Available The intensification of the gold thiourea leaching from a filtration waste (Košice, Slovakia using mechanical activationas the pretreatment step has been studied. The leaching of “as-received“ sample in an acid thiourea solution resulted in 65 % Audissolution. However, after mechanical activation in a planetary mill 99 % of the gold was leached. The optimum redox potential forelectrolysis is in the range 500-523 mV for the gold extraction 99.79 % from the mechanically activated sample. The mechanicalactivation resulted in an increase of the specific surface area of the waste from 0.7 m2g-1 to a maximum value of 13.5 m2g-1. The physicochemicalchanges in the filtration waste as a consequence of mechanical activation had a pronounced influence on the subsequent goldextraction.

  9. Seed-mediated shape evolution of gold nanomaterials: from spherical nanoparticles to polycrystalline nanochains and single-crystalline nanowires

    International Nuclear Information System (INIS)

    Qiu Penghe; Mao Chuanbin

    2009-01-01

    We studied the kinetics of the reduction of a gold precursor (HAuCl 4 ) and the effect of the molar ratio (R) of sodium citrate, which was introduced from a seed solution, and the gold precursor on the shape evolution of gold nanomaterials in the presence of preformed 13 nm gold nanoparticles as seeds. The reduction of the gold precursor by sodium citrate was accelerated due to the presence of gold seeds. Nearly single-crystalline gold nanowires were formed at a very low R value (R = 0.16) in the presence of the seeds as a result of the oriented attachment of the growing gold nanoparticles. At a higher R value (R = 0.33), gold nanochains were formed due to the non-oriented attachment of gold nanoparticles. At a much higher R value (R = 1.32), only larger spherical gold nanoparticles grown from the seeds were found. In the absence of gold seeds, no single-crystalline nanowires were formed at the same R value. Our results indicate that the formation of the 1D nanostructures (nanochains and nanowires) at low R values is due to the attachment of gold nanoparticles along one direction, which is driven by the surface energy reduction, nanoparticle attraction, and dipole-dipole interaction between adjacent nanoparticles.

  10. Identification of Paracoccidioides brasiliensis by gold nanoprobes

    Science.gov (United States)

    Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.

  11. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A.; Shcherbina, M.E. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Kirichenko, N.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation)

    2015-05-01

    Highlights: • Pulsed laser irradiation of dense gold nanoparticles colloidal solution can result in their agglomeration. • Gas bubbles in-phase pulsation induced by laser radiation accounts for nanoparticles agglomeration. • Time evolution of the size distribution function proceeds in activation mode. • The electrostatic-like model of nanoparticles agglomeration is in good correspondence with the experimental data. - Abstract: Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 10{sup 14} particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  12. Calculation of the extinction cross section and lifetime of a gold nanoparticle using FDTD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Archana, E-mail: anju.archana@gmail.com [B.Tech, Engineering Physics, National Institute Of Technology, Calicut (India); Murugesan, Dr V., E-mail: murugesh@serc.iisc.in [Assistant Professor, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore (India)

    2014-10-15

    The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.

  13. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Chunsong; Wang, Lu-Ning; Chen, Jitao; Gao, Min

    2017-01-01

    Highlights: •LiFePO 4 precursors were successfully prepared in pure water phase under atmosphere. •LiFePO 4 nanostructures were also regenerated by recycling filtrate. •LiFePO 4 /C delivers high discharge capacity of 160 mAh g −1 at 0.2 C and high rate capacity of 107 mAh g −1 at 20C. •LiFePO 4 /C delivers a capacity retention rate closed to 97% after 240 cycles at 20C. -- Abstract: An economical and scalable synthesis route of LiFePO 4 nanoplate precursors is successfully prepared in pure water phase under atmosphere without employing environmentally toxic surfactants or high temperature and high pressure compared with traditional hydrothermal or solvothermal methods, which also involves recycling the filtrate to regenerate LiFePO 4 nanoplate precursors and collecting by-product Na 2 SO 4 . The LiFePO 4 precursors present a plate-like morphology with mean thickness and length of 50–100 and 100–300 nm, respectively. After carbon coating, the LiFePO 4 /C nanoparticles with particle size around 200 nm can be observed which exhibit a high discharge capacity of 160 mAh g −1 at 0.2 C and 107 mAh g −1 at 20 C. A high capacity retention closed to 91% can be reached after 500 cycles even at a high current rate of 20C with coulombic efficiency of 99.5%. This work suggests a simple, economic and environmentally benign method in preparation of LiFePO 4 /C cathode material for power batteries that would be feasible for large scale industrial production.

  14. Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding

    Directory of Open Access Journals (Sweden)

    Sophia Boden

    2017-12-01

    Full Text Available Glyco-functionalized gold nanoparticles have great potential as biosensors and as inhibitors due to their increased binding to carbohydrate-recognizing receptors such as the lectins. Here we apply previously developed solid phase polymer synthesis to obtain a series of precision glycomacromolecules that allows for straightforward variation of their chemical structure as well as functionalization of gold nanoparticles by ligand exchange. A novel building block is introduced allowing for the change of spacer building blocks within the macromolecular scaffold going from an ethylene glycol unit to an aliphatic spacer. Furthermore, the valency and overall length of the glycomacromolecule is varied. All glyco-functionalized gold nanoparticles show high degree of functionalization along with high stability in buffer solution. Therefore, a series of measurements applying UV-Vis spectroscopy, dynamic light scattering (DLS and surface plasmon resonance (SPR were performed studying the aggregation behavior of the glyco-functionalized gold nanoparticles in presence of model lectin Concanavalin A. While the multivalent presentation of glycomacromolecules on gold nanoparticles (AuNPs showed a strong increase in binding compared to the free ligands, we also observed an influence of the chemical structure of the ligand such as its valency or hydrophobicity on the resulting lectin interactions. The straightforward variation of the chemical structure of the precision glycomacromolecule thus gives access to tailor-made glyco-gold nanoparticles (glyco-AuNPs and fine-tuning of their lectin binding properties.

  15. Uptake, translocation, and toxicity of gold nanorods in maize

    Science.gov (United States)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in

  16. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  17. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    International Nuclear Information System (INIS)

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  18. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  19. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo; Coluccio, Maria Laura; Alabastri, Alessandro; Barberio, Marianna; Causa, Filippo; Netti, Paolo Antonio; Di Fabrizio, Enzo M.; Gentile, Francesco

    2016-01-01

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  20. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo

    2016-12-15

    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.