WorldWideScience

Sample records for solution combustion method

  1. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhang, Yao; Sun, Yue [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2014-09-30

    Highlights: • We report a synthesis of HA, Fap and Clap vio a modified solution combustion method. The nucleation of β-TCP was inhibited in the abundant-calcium system (Ca/P = 2.3>>1.67) in this study. F{sup −} brushed into the structure of HA and replace the position of OH{sup −} is easier than that of Cl{sup −}. - Abstract: Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH{sup −} in the HAP lattice were gradually substituted with the increase of F{sup −} and Cl{sup −} content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  2. Evaluation of solution combustion method in the synthesis of Fe-ZrSiO4 based coral pigment

    International Nuclear Information System (INIS)

    Moosavi, A.; Aghaei, A.

    2008-01-01

    Auto-ignited gel combustion process has been used for producing a red hematite-zircon based pigment. The combustible mixtures contained the metal nitrates and citric acid as oxidizers and fuel, respectively. Sodium silicate (water glass) was used as silica source for producing zircon phase. X-Ray Diffractometry, Electron Microscopy and Simultaneous Thermal Analysis were used for characterization of reactions happened in the resulted dried gel during its heat-treatment. L*a*b* color parameters were measured by the CIE (Commission International de I'Eclairage) colorimetric method. This research has showed that solution combustion was unable 10 produce coral pigment as the end product of combustion without the need for any further heat treatment process

  3. Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite

    Science.gov (United States)

    Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong

    2014-09-01

    Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.

  4. Mechanical properties of calcium phosphate cements obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Volkmer, Tiago M.; Barreiro, Oscar; Souza, Vania Caldas; Santos, Luis Alberto dos, E-mail: tiagovolkmer@gmail.com, E-mail: oscarbafer@hotmail.com, E-mail: vania.souza@ufrgs.br, E-mail: luis.santos@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Laboratorio de Biomateriais

    2009-07-01

    Bioceramics based on calcium phosphates, especially hydroxyapatite and tricalcium phosphates (TCP) are the most used biomaterials as bone substitutes. The objective of this work is to evaluate the mechanical properties of α-tricalcium phosphate (α-TCP) synthesized by the solution combustion method. The solution combustion synthesis (SCS) can be considered as faster and simpler as other methods, furthermore it allows the obtainment of high purity α-TCP. In the calcium phosphates (CPC), α-TCP reacts with water forming needle like HA, which restrain the movement of grains, increasing mechanical resistance. In the present paper the influence of particle size on mechanical properties of α-TCP cements were evaluated. The α-TCP powder were characterized by XRD, TEM, BET and laser diffraction to asses particle size while the CPC bodies by SEM, Arquimedes method and compression tests. Increasing the milling time, the particle size decreases, resulting in samples with less porosity and consequently with higher compression resistance. (author)

  5. Synthesis and characterization of BaxMgyAl2O4: Eu,Dy nanophosphors prepared using solution-combustion method

    CSIR Research Space (South Africa)

    Kebede, MA

    2011-07-01

    Full Text Available Europium-doped barium magnesium aluminate (BaxMgyAl2O4:Eu) phosphors were obtained at low temperature using the solution-combustion of corresponding metal nitrate-urea solution mixtures. The particle sizes, morphology, structural and luminescent...

  6. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  7. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  8. Manifold methods for methane combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

    1995-10-01

    Great progresses have been made in combustion research, especially, the computation of laminar flames and the probability density function (PDF) method in turbulent combustion. For one-dimensional laminar flames, by considering the transport mechanism, the detailed chemical kinetic mechanism and the interactions between these two basic processes, today it is a routine matter to calculate flame velocities, extinction, ignition, temperature, and species distributions from the governing equations. Results are in good agreement with those obtained for experiments. However, for turbulent combustion, because of the complexities of turbulent flow, chemical reactions, and the interaction between them, in the foreseeable future, it is impossible to calculate the combustion flow field by directly integrating the basic governing equations. So averaging and modeling are necessary in turbulent combustion studies. Averaging, on one hand, simplifies turbulent combustion calculations, on the other hand, it introduces the infamous closure problems, especially the closure problem with chemical reaction terms. Since in PDF calculations of turbulent combustion, the averages of the chemical reaction terms can be calculated, PDF methods overcome the closure problem with the reaction terms. It has been shown that the PDF method is a most promising method to calculate turbulent combustion. PDF methods have been successfully employed to calculate laboratory turbulent flames: they can predict phenomena such as super equilibrium radical levels, and local extinction. Because of these advantages, PDF methods are becoming used increasingly in industry combustor codes.

  9. Synthesis and photoluminescence properties of CaSixOy:Tb3+ phosphors prepared using solution-combustion method

    CSIR Research Space (South Africa)

    Dejene, FB

    2011-07-01

    Full Text Available Effect of Tb3+ ion concentrations on the structural and persistence luminescence properties of CaSixOy:Tb3+ crystals were evaluated using powders grown by the solution combustion technique. The XRD study indicates the change of phase from CaSiO3...

  10. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    Science.gov (United States)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  11. Investigation on structural and electrical properties of Fe doped ZnO nanoparticles synthesized by solution combustion method

    International Nuclear Information System (INIS)

    Ram, Mast; Bala, Kanchan; Sharma, Hakikat; Kumar, Arun; Negi, N. S.

    2016-01-01

    In the present study, nanoparticles of Fe doped zinc oxide (ZnO) [Zn_1_-_xFe_xO where x=0.0, 0.01, 0.02, 0.03 and 0.05] were prepared by cost effective solution combustion method. The powder X-ray diffractometry confirms the formation of single phase wurtzite structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the micrsostructure of Fe-doped ZnO nanoparticles. The DC electrical conductivity was found to increase with temperature and measurement was carried out in the temperature range of 300-473K. DC electrical conductivity increases with temperature and decreases with Fe doping concentration.

  12. Combustible structural composites and methods of forming combustible structural composites

    Science.gov (United States)

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  13. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  14. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    Science.gov (United States)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  15. Multiscale methods in turbulent combustion: strategies and computational challenges

    International Nuclear Information System (INIS)

    Echekki, Tarek

    2009-01-01

    A principal challenge in modeling turbulent combustion flows is associated with their complex, multiscale nature. Traditional paradigms in the modeling of these flows have attempted to address this nature through different strategies, including exploiting the separation of turbulence and combustion scales and a reduced description of the composition space. The resulting moment-based methods often yield reasonable predictions of flow and reactive scalars' statistics under certain conditions. However, these methods must constantly evolve to address combustion at different regimes, modes or with dominant chemistries. In recent years, alternative multiscale strategies have emerged, which although in part inspired by the traditional approaches, also draw upon basic tools from computational science, applied mathematics and the increasing availability of powerful computational resources. This review presents a general overview of different strategies adopted for multiscale solutions of turbulent combustion flows. Within these strategies, some specific models are discussed or outlined to illustrate their capabilities and underlying assumptions. These strategies may be classified under four different classes, including (i) closure models for atomistic processes, (ii) multigrid and multiresolution strategies, (iii) flame-embedding strategies and (iv) hybrid large-eddy simulation-low-dimensional strategies. A combination of these strategies and models can potentially represent a robust alternative strategy to moment-based models; but a significant challenge remains in the development of computational frameworks for these approaches as well as their underlying theories. (topical review)

  16. Systems and methods of storing combustion waste products

    Science.gov (United States)

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  17. Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion

    CERN Document Server

    Lakkis, I

    2003-01-01

    A grid-free, Lagrangian method for the accurate simulation of low-Mach number, variable-density, diffusion-controlled reacting flow is presented. A fast-chemistry model in which the conversion rate of reactants to products is limited by the local mixing rate is assumed in order to reduce the combustion problem to the solution of a convection-diffusion-generation equation with volumetric expansion and vorticity generation at the reaction fronts. The solutions of the continuity and vorticity equations, and the equations governing the transport of species and energy, are obtained using a formulation in which particles transport conserved quantities by convection and diffusion. The dynamic impact of exothermic combustion is captured through accurate integration of source terms in the vorticity transport equations at the location of the particles, and the extra velocity field associated with volumetric expansion at low Mach number computed to enforced mass conservation. The formulation is obtained for an axisymmet...

  18. Synthesis of lithium silicates by the modified method of combustion. XRD and IR

    International Nuclear Information System (INIS)

    Cruz, D.; Bulbulian, S.

    2002-01-01

    The combustion method is fixed in exothermic reactions for producing ceramic compounds. The precursor solutions are mixtures of metal nitrates and the fuels. This method was modified using non-oxidant compounds as lithium hydroxide and silicide acid and urea as fuel. The precursors were heated during 5 minutes at temperatures between 250 C and 550 C allowing so the mixture combustion. The obtained ceramics were characterized by X-ray diffraction and IR spectroscopy. The sample pollution with carbonates was evaluated and it was found that the presence of these diminish according as increase the calcination temperature. (Author)

  19. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    Science.gov (United States)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  20. FC and ZFC magnetic properties of ferro-spinels (MFe2O4) prepared by solution-combustion method

    Science.gov (United States)

    Aravind, G.; Kumar, R. Vijaya; Nathaniyal, V.; Rambabu, T.; Ravinder, D.

    2017-07-01

    Magnetic ferro-spinels MFe2O4 (M= Co and Ni) prepared by citrate-gel solution combustion method using metal nitrates with low sintering temperature (500°C). From the XRD and TEM studies confirm that a nano crystalline nature of the prepared samples. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the prepared ferro-spinels are measured by using vibrating sample magnetometer (VSM). The resultant magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5-375 K were carried out, which shows the blocking temperature of these two samples at around 350 K.

  1. Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses

    Science.gov (United States)

    Habibi, Amirhosein; Jalaly, Maisam; Rahmanifard, Roohollah; Ghorbanzadeh, Milad

    2018-02-01

    In this study, the NCM cathode with a chemical composition of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 were synthesized through a solution combustion method. In this method, metal nitrates and urea were used as precursors and fuel, respectively. The powder obtained from combustion were transferred into a alumina crucible and insert to the muffle furnace and calcined at 750 °C for 15 h. The crystallite size of the sample was calculated with sherer equation to be about 41 nm. The prepared cathode were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC) and battery charge-discharge test. The initial charge and discharge capacities of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 electrode containing 94% active material at a rate of 0.05 C in voltage window of 2.5-4.3 V at room temperature was obtained 168.03 and 150.01 mAh g-1, respectively.

  2. Method for storing radioactive combustible waste

    Science.gov (United States)

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  3. Obtaining ZnO nanocrystalline through methods of combustion and precipitation

    International Nuclear Information System (INIS)

    Garcia, A.P.; Guaglianoni, W.C.; Cunha, M.A.; Basegio, T.M.; Bergmann, C.P.

    2012-01-01

    Zinc oxide is important technological applications in rubber and industrial paints. The chemical properties and microstructure of ZnO powder depends on the synthesis method employed. In this work, it was obtained nanosized ZnO using different synthesis processes, such as solution combustion and precipitation, varying the concentrations of reactants and the working temperature. The obtained powders were characterized by SEM, BET, XRD, crystallite size determination and thermal analysis (TGA and DTA). It was possible to obtain nanosized ZnO with the methods used. (author)

  4. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    Science.gov (United States)

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  5. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen Wei; Wu Jinming; Tu Jiangping

    2012-01-01

    Highlights: ► We examine the electrochemical performance of cobalt oxides fabricated by solution combustion synthesis for rechargeable lithium-ion battery applications. ► The additive of NaF in precursor results in an eruption combustion mode. ► The eruption combustion leads to fluffy networks with smaller grains and more macroporous voids. ► The network contributes to higher discharge capacity, higher initial coulombic efficiency, and better cycling performance for rechargeable lithium-ion batteries. - Abstract: Low cost mass production of cobalt oxide nanoparticles with high electrochemical performance is of practical interest for rechargeable lithium-ion batteries. In this report, cobalt oxide nanoparticles were fabricated by solution combustion synthesis, with the introduction of NaF into the precursor to alter the combustion mode. The novel eruption combustion resulted in fluffy networks with smaller particles and more macroporous voids, which contributed to the higher discharge capacity, higher initial coulombic efficiency, and better cycling performance when compared with that achieved by the conventional combustion mode.

  6. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  7. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  8. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    Science.gov (United States)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  9. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  10. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce 3+ , Li + phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO 2 for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce 3+ peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce 3+ , Li + powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  11. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  12. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  13. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  14. Mixture of fuels for solution combustion synthesis of porous Fe3O4 powders

    Science.gov (United States)

    Parnianfar, H.; Masoudpanah, S. M.; Alamolhoda, S.; Fathi, H.

    2017-06-01

    The solution combustion synthesis of porous magnetite (Fe3O4) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N2 adsorption-desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe3O4 powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe3O4 powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m2/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  15. Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties

    Science.gov (United States)

    Zhao, Jin-Bao; Li, Xue; Xiao, Qian

    2018-01-01

    In this work, NaFeTi3O8 with three-dimensional porous net-like sheet morphology is firstly prepared by a simple and effective solution combustion method. Encouragingly, when being assessed as an anode electrode for sodium ion batteries, the NaFeTi3O8 net-like sheet composite exhibits superior electrochemical properties. We also study the effect of the combustion fuel glycine. The results indicate that the NaFeTi3O8 composite tends to be porous with glycine as the combustion fuel, which displays more excellent long cyclic stability (discharge capacity of 91 mA h g-1 after 1000 cycles at the current density of 0.5 A g-1) and superior rate performance (84.4 mA h g-1 even at 1.6 A g-1) than that of NaFeTi3O8 without glycine as the combustion agent. The enhanced electrochemical properties could be ascribed to the unique porous morphology, which achieves better electrolyte infiltration and faster ion diffusion. [Figure not available: see fulltext.

  16. Mixture of fuels for solution combustion synthesis of porous Fe{sub 3}O{sub 4} powders

    Energy Technology Data Exchange (ETDEWEB)

    Parnianfar, H.; Masoudpanah, S.M., E-mail: masoodpanah@iust.ac.ir; Alamolhoda, S.; Fathi, H.

    2017-06-15

    Highlights: • Mixture of glycine and urea fuels was applied for solution combustion synthesis of Fe3O4 powders. • The phase and crystallite size of the as-combusted powders depends on the fuel to oxidant ratio (ϕ). • The maximum density (0.033 cm{sup 3}/g) was observed for the as-combusted powders at ϕ = 1. • The highest Ms of 75.5 emu/g and the lowest Hc of 84 Oe were achieved at ϕ = 1. - Abstract: The solution combustion synthesis of porous magnetite (Fe{sub 3}O{sub 4}) powders by a mixture of glycine and urea fuels was investigated concerning the thermodynamic aspects and powder characteristics. The adiabatic combustion temperature and combusted species were thermodynamically calculated as a function of the fuel to oxidant molar ratio (ϕ). The combustion behavior, phase evolution, porous structure and magnetic properties were characterized by thermal analysis, X-ray diffractometry, N{sub 2} adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Nearly single phase Fe{sub 3}O{sub 4} powders were synthesized by the mixture of fuels at ϕ values of 0.75 and 1. The as-combusted Fe{sub 3}O{sub 4} powders at ϕ = 1 exhibited porous structure with the specific surface area of 83.4 m{sup 2}/g. The highest saturation magnetization of 75.5 emu/g and the lowest coercivity of 84 Oe were achieved at ϕ = 1, due to the high purity and large crystallite size, inducing from the highest adiabatic combustion temperature.

  17. Production of nanocrystalline metal powders via combustion reaction synthesis

    Science.gov (United States)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.; Kim, Jin Yong

    2017-10-31

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  18. Thermoluminescence of magnesium oxide doped with cerium and lithium obtained by a glycine-based solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Escobar O, F. M.; Orante B, V. R.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: flor.escobaroc@gmail.com [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: It is well known that glycine, fulfills two principal purposes: first, complexes with metal cations formed, which increases their solubility and prevents selective precipitation as water is evaporated; and second, it serves as fuel for the combustion reaction, being oxidized by the nitrate ions. The glycine molecule has a carboxylic acid group at one end and an amine group at the other end, both of which can participate in the complexation of metal ions. This zwitterionic character allows effective complexation with metal cations of different ionic size. Novel Mg O:Ce{sup 3+}, Li{sup +} phosphor was obtained for the very first time by solution combustion synthesis (Scs) in which a redox combustion process between metallic nitrates and glycine at 500 degrees C was accomplished. The powder samples obtained were annealed at 900 degrees C during 2 h in air. X-ray diffraction (XRD) results showed the face-centered cubic (fcc) phase of Mg O as well as the presence of CeO{sub 2} for the annealed powder samples. Photoluminescence emission spectra showed the characteristic Ce{sup 3+} peak located at 520 nm. The thermoluminescence glow curve obtained after exposure to beta radiation of these samples, displayed three maxima located at ∼ 108 degrees C, ∼ 210 degrees C, and ∼ 310 degrees C. Results from experiments such as dose response and fading showed that annealed Mg O:Ce{sup 3+}, Li{sup +} powder obtained by Scs is a promising material for radiation dosimetry applications. (Author)

  19. The solution combustion synthesis of nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Stephanie C [Los Alamos National Laboratory

    2009-01-01

    Nanophosphors are defined as nano-sized (1-100mn), insulating, inorganic materials that emit light under particle or electromagnetic excitation. Their unique luminescence properties provide an excellent potential for applications in radiation detection and imaging. Herein, solution combustion synthesis (SCS) is presented as a method to prepare nanophosphor powders, while X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL), photoluminescence excitation (PLE), and other techniques were used to characterize their structural and optical properties. The goal of this work is to synthesize bright, high-quality powders of nanophosphors, consolidate them into bulk materials and study their structural and optical properties using XRD, TEM, PL, and PLE. SCS is of interest because it is a robust, inexpensive, and facile technique, which yields a significant amount of a wide variety of oxide materials, in a short amount of time. Several practical nanophosphors were synthesized and investigated in this work, including simple oxides such as Y{sub 2}O{sub 3}:Bi, Y{sub 2}O{sub 3}:Tb, Y{sub 2}O{sub 3}:Eu and Gd{sub 2}O{sub 3}:Eu, complex oxides such as Gd{sub 2}SiO{sub 5}:Ce, Y{sub 2}SiO{sub 5}:Ce, Lu{sub 2}SiO{sub 5}:Ce, Zn{sub 2}SiO{sub 4}:Mn, and Y{sub 3}Al{sub 5}O{sub 12}:Ce. Results demonstrate that altering the processing parameters such as water content of the precursor solution, ignition temperature, fuel type and amount, and post-synthesis annealing can significantly improve light output, and that it is possible to optimize the luminescence output of oxyorthosilicates by reducing the amount of silica in the precursor mixture.

  20. Radiative transfer modelling in combusting systems using discrete ordinates method on three-dimensional unstructured grids; Modelisation des transferts radiatifs en combustion par methode aux ordonnees discretes sur des maillages non structures tridimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, D.

    2004-04-01

    The prediction of pollutant species such as soots and NO{sub x} emissions and lifetime of the walls in a combustion chamber is strongly dependant on heat transfer by radiation at high temperatures. This work deals with the development of a code based on the Discrete Ordinates Method (DOM) aiming at providing radiative source terms and wall fluxes with a good compromise between cpu time and accuracy. Radiative heat transfers are calculated using the unstructured grids defined by the Computational Fluid Dynamics (CFD) codes. The spectral properties of the combustion gases are taken into account by a statistical narrow bands correlated-k model (SNB-ck). Various types of angular quadrature are tested and three different spatial differencing schemes were integrated and compared. The validation tests show the limit at strong optical thicknesses of the finite volume approximation used the Discrete Ordinates Method. The first calculations performed on LES solutions are presented, it provides instantaneous radiative source terms and wall heat fluxes. Those results represent a first step towards radiation/combustion coupling. (author)

  1. Determination of mercury in ash and soil samples by oxygen flask combustion method-Cold vapor atomic fluorescence spectrometry (CVAFS)

    International Nuclear Information System (INIS)

    Geng Wenhua; Nakajima, Tsunenori; Takanashi, Hirokazu; Ohki, Akira

    2008-01-01

    A simple method was developed for the determination of mercury (Hg) in coal fly ash (CFA), waste incineration ash (WIA), and soil by use of oxygen flask combustion (OFC) followed by cold vapor atomic fluorescence spectrometry (CVAFS). A KMnO 4 solution was used as an absorbent in the OFC method, and the sample containing a combustion agent and an ash or soil sample was combusted by the OFC method. By use of Hg-free graphite as the combustion agent, the determination of Hg in ash and soil was successfully carried out; the Hg-free graphite was prepared by use of a mild pyrolysis procedure at 500 deg. C. For six certified reference materials (three CFA samples and three soil samples), the values of Hg obtained by this method were in good agreement with the certified or reference values. In addition, real samples including nine CFAs collected from some coal-fired power plants, five WIAs collected from waste incineration plants, and two soils were analyzed by the present method, and the data were compared to those from microwave-acid digestion (MW-AD) method

  2. Solution-combustion synthesis of Tb3+-doped Y3Al5O12 nanoparticles

    International Nuclear Information System (INIS)

    Fadlalla, H.M.H.; Tang, C.C.; Elsanousi, A.; Ding, X.X.; Qi, S.R.

    2009-01-01

    Nano-sized YAG:Tb powder phosphors were prepared by a solution-combustion method, using the general inorganic salts as starting materials. The X-ray diffraction (XRD) measurements showed that the precursor can be well-crystallized at 900 deg. C. As-prepared particles have sizes mostly in the range between 30 and 100 nm as obtained by scanning electron microscope (SEM) and transition electron microscope (TEM). Selected area electron diffraction (SAED) patterns proved that the larger particles are monocrystalline. The effects of annealing temperature and Tb-doping concentration on the luminescence intensity were studied

  3. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  4. High-performance carbon-coated ZnMn2O4 nanocrystallite supercapacitors with tailored microstructures enabled by a novel solution combustion method

    Science.gov (United States)

    Abdollahifar, Mozaffar; Huang, Sheng-Siang; Lin, Yu-Hsiang; Lin, Yan-Cheng; Shih, Bing-Yi; Sheu, Hwo-Shuenn; Liao, Yen-Fa; Wu, Nae-Lih

    2018-02-01

    Although ZnMn2O4 is widely studied as Li-ion battery anodes, it remains a challenge to tailor suitable microstructures of the oxide for supercapacitor applications. Carbon-coated ZnMn2O4 (C@ZMO) nanocrystallites showing high-performance pseudocapacitor behaviours in neutral aqueous electrolyte are for the first time successfully synthesised via a novel solution combustion process using polyethylene glycol as a multifunctional microstructure-directing agent. Controlling the molecular weight and amount of the polymer in the combustion solution enables the formation of highly-crystalline C@ZMO having substantially higher, by more than 5 folds, specific surface areas with mesoporous structures and conformal carbon coating via the one-pot synthesis process. The resulting C@ZMO supercapacitor electrodes in Na2SO4(aq) electrolyte exhibit ideal capacitive behaviours with specific capacitances up to 150 F g-1 and cycle stability showing no capacitance fade after 10,000 cycles at 60% of full capacity and >99% Coulombic efficiency. This study not only illustrates a new powerful synthesis route capable of producing conductive mesoporous crystalline oxide-based nanomaterials for energy storage applications but also reveals a new class of high-performance pseudocapacitive materials for neutral aqueous electrolytes.

  5. Overview of the EBFGT installation solutions applicable for flue gases from various fuels combustion

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Tyminski, B.; Pawelec, A.; Zimek, Z.; Licki, J.

    2011-01-01

    The overview of the solutions used in EBFGT process and adaptation of process parameters for flue gas from combustion of various fuels was presented. The inlets parameters of flue gas from four fuels with high emission of pollutants, process parameters and process constrain were analysed. Also the main problems of this technology and their solutions were presented. (author)

  6. Overview of the EBFGT installation solutions applicable for flue gases from various fuels combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A. G.; Tyminski, B.; Pawelec, A.; Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, J. [Institute of Atomic Energy, Otwock-Świerk (Poland)

    2011-07-01

    The overview of the solutions used in EBFGT process and adaptation of process parameters for flue gas from combustion of various fuels was presented. The inlets parameters of flue gas from four fuels with high emission of pollutants, process parameters and process constrain were analysed. Also the main problems of this technology and their solutions were presented. (author)

  7. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  8. The PDF method for turbulent combustion

    Science.gov (United States)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  9. Nanocrystals-based Macroporous Materials Synthesized by Freeze-drying Combustion

    International Nuclear Information System (INIS)

    Yan, Ruiqiang; Chen, Yu; Lin, Ye; Chen, Fanglin

    2016-01-01

    We present a novel freeze-drying combustion method for synthesis of macroporous powders with nano-network, using Sm 0.2 Ce 0.8 O 1.9 (SDC) as an example. The metal nitrate salt solution mixed with glycine is frozen to form homogeneous nitrate/glycine mixture and then freeze-dried through sublimation of ice crystals. Upon combustion of the freeze-dried mixture, SDC powders with macroporous microstructure consisting of 10–20 nm nanocrystals, high surface area and excellent sinterability are achieved. High resolution transmission electron microscopy (HRTEM) analysis indicates that nanodomains due to aggregation/segregation of dopants in the SDC powders obtained from freeze-drying combustion are much smaller than those in the SDC powders synthesized by the conventional nitrate solution combustion approach, demonstrating better elemental homogeneity and improved conductivity. Using low cost precursors and simple processing conditions, freeze-drying combustion can be a versatile method to synthesize nanocrystalline powders with excellent composition homogeneity for broad applications.

  10. Evaluation of biological activities of nanocrystalline zirconia synthesis via combustion method

    International Nuclear Information System (INIS)

    Thakare, V.G.; Omanwar, S.K.; Bhatkar, V.B.; Wadegaokar, P.A.

    2016-01-01

    The objective of the following study was synthesis of nanocrystalline zirconia by modified solution combustion synthesis method and evaluation of its structural and biological properties. The sample was characterized by powder X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and evaluated for cytotoxicity study using 3T3 mouse fibroblast cells, the antibacterial property are investigated by spread plate method against E. coli bacterial pathogen and studied for degradation using phosphate buffered saline (PBS) solution. The XRD pattern shows that the monoclinic phase of nanocrystalline zirconia was obtained. The FESEM images showed that the prepared sample consists of particles in the range of 45 nm and homogenous particle size distribution. The sample of zirconia has excellent tissue biocompatibility and does not show any toxicity towards normal 3T3 mouse fibroblast cells. It also inhibited the bacterial growth. The sample shows stability at physiological condition and does not show degradation. (author)

  11. Thermoluminescence of novel MgO–CeO_2 obtained by a glycine-based solution combustion method

    International Nuclear Information System (INIS)

    Barrón, Victor Ramón Orante; Ochoa, Flor María Escobar; Vázquez, Catalina Cruz; Bernal, Rodolfo

    2016-01-01

    Thermoluminescence dosimetry properties of novel MgO–CeO_2 obtained by solution combustion synthesis in a glycine-nitrate process, are presented for the very first time. X-ray diffraction indicates the presence of cubic MgO and cerianite (CeO_2) for the annealed powder samples. Dosimetry features such as linear behaviour of the dose response without saturation in the dose interval studied, as well as asymptotic behaviour of the thermoluminescent signal fading place MgO–CeO_2 phosphor as a promising material for low-dose radiation dosimetry applications. - Highlights: • Thermoluminescence (TL) dosimetry properties of novel MgO–CeO_2 are presented. • TL glow curves display stable and dosimetric components. • Dose response showed a linear trend in the dose interval studied. • TL fading decay curve showed an asymptotic behaviour. • MgO–CeO_2 is suitable for personal, environmental and medical dosimetry.

  12. Comparison methods between methane and hydrogen combustion for useful transfer in furnaces

    International Nuclear Information System (INIS)

    Ghiea, V.V.

    2009-01-01

    The advantages and disadvantages of hydrogen use by industrial combustion are critically presented. Greenhouse effect due natural water vapors from atmosphere and these produced by hydrogen industrial combustion is critically analyzed, together with problems of gas fuels containing hydrogen as the relative largest component. A comparison method between methane and hydrogen combustion for pressure loss in burner feeding pipe, is conceived. It is deduced the ratio of radiation useful heat transfer characteristics and convection heat transfer coefficients from combustion gases at industrial furnaces and heat recuperators for hydrogen and methane combustion, establishing specific comparison methods. Using criterial equations special processed for convection heat transfer determination, a calculation generalizing formula is established. The proposed comparison methods are general valid for different gaseous fuels. (author)

  13. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    Science.gov (United States)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  14. Growth mechanism and magnetism in carbothermal synthesized Fe{sub 3}O{sub 4} nanoparticles from solution combustion precursors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuanli [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Cao, Zhiqin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua, 617000 China (China); Jia, Baorui; Gu, Yueru; Qu, Xuanhui [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083 China (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, 33620 (United States)

    2016-12-15

    Magnetic Fe{sub 3}O{sub 4} nanoparticles were prepared by carbothermal reduction using solution combustion synthesis precursors derived from ferric nitrate (oxidizer), glycine (fuel) and glucose (carbon source) mixed solution. In this paper, the growth mechanism and magnetism in Fe{sub 3}O{sub 4} nanoparticles were investigated by adjusting the glucose content in precursor and the heat temperature in carbothermal process. The products were analyzed by X-ray diffraction, Field emission scanning electron microscopy, Infrared adsorption method and Vibrating sample magnetometry. The results revealed that the more amount of glucose, the earlier Fe{sub 3}O{sub 4} phase generated as temperature increasing. Depending on glucose content and thermal temperature, the average grain size of Fe{sub 3}O{sub 4} nanoparticles varied from 19.9 nm to 48 nm and saturation magnetization changed from 21.2 emu/g to 71.77 emu/g, which indicated that the saturation magnetization of Fe{sub 3}O{sub 4} nanoparticles fell off as the average grain size decreasing. These results were crucial not only from the application stand-point, but more importantly leaded to a new platform for further studies of high quality magnetic Fe{sub 3}O{sub 4} particles at nanoscale. - Highlights: • Solution combustion. • Carbothermal. • Fe{sub 3}O{sub 4} nanoparticles. • Magnetic properties.

  15. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  16. Determination of microamounts of carbon in various metals and alloys by the combustion-nonaqueous titrimetric method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimori, T; Koike, A [Science Univ. of Tokyo (Japan). Faculty of Engineering; Katoh, N

    1977-12-01

    Microamounts of carbon (7 -- 600 ppm) in ferrous and non-ferrous metals and alloys were determined by the combustion-nonaqueous titrimetric method. The carbon dioxide liberated by the combustion of a sample was absorbed with dimethylformamide (DMF) containing monoethanolamine and then the absorbent was titrated with the standard benzene-methanol solution of tetra-n-butylammonium hydroxide (0.007-0.002 M). The end point of the titration was located either visibly by using thymolphthalein as an indicator or potentiometrically by using a couple of platinum and calomel (containing DMF) electrodes. Pure benzoic acid was used as the standard substance for the standardization. Many improvements were given on both the combustion apparatus and the procedure. Microamounts of carbon in various samples were determined by the proposed method. They are : plain carbon and high purity ferritic stainless steels (0.05 -- 0.002% C), Inconel X-750 (0.027% C), copper alloys (20 -- 30 ppm C), tantalum powder (40 ppm C) and high purity metallic uranium (7 ppm C). All results were quite satisfactory and indicate that the proposed method was adaptable for the determination of carbon less than 100 ppm in various samples without use of any standard samples or calibration curves.

  17. Gradual combustion - method for nitrogen oxide suppression during brown coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.P.; Verzakov, V.N.; Lobov, T.V.

    1990-10-01

    Discusses combustion of brown coal in BKZ-500-140-1 boilers and factors that influence emission of nitrogen oxides. Temperature distribution in the furnace was evaluated. Effects of burner position, burner number and burner type as well as air excess ratio on chemical reactions during brown coal combustion, formation of nitrogen oxides and their emission were comparatively evaluated. Analyses showed that by optimum arrangement of burners and selecting the optimum air excess ratio a part of nitrogen oxides formed during the initial phase of combustion was reduced to molecular nitrogen in the second phase. On the basis of evaluations the following recommendations for furnace design are made: use of straight-flow burners characterized by a reduced mixing ratio with secondary air, parallel arrangement of burners which guarantees mixing of the combustion products from the burners with stable and unstable combustion (products of incomplete coal combustion), reducing the air excess ratio to below 1.0. 5 refs.

  18. Synthesis, characterisation, luminescence and defect centres in solution combustion synthesised CaZrO3:Tb3+ phosphor

    International Nuclear Information System (INIS)

    Singh, Vijay; Watanabe, S.; Gundu Rao, T.K.; Al-Shamery, Katharina; Haase, Markus; Jho, Young-Dahl

    2012-01-01

    Tb 3+ doped CaZrO 3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO 3 :Tb 3+ exhibits three thermoluminescence (TL) glow peaks at 126 °C, 200 °C and 480 °C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O − ion. Centre II with an axial symmetric g-tensor with principal values g ⊥ =1.9986 and g ⊥ =2.0023 is assigned to an F + centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F + centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F + centre appear to correlate with the observed high temperature TL peak in CaZrO 3 :Tb 3+ phosphor. - Highlights: ► Powder phosphor of CaZrO 3 :Tb 3+ was prepared by an easy solution combustion synthesis method. ► The phosphor exhibits a bright green emission at 545 nm ( 5 D 4 → 7 F 5 ) of the Tb 3+ ion. ► Electron Spin Resonance studies have been carried out to identify the defect centres responsible for the observed thermoluminescence peaks.

  19. Solution-combustion synthesized aluminium-doped spinel (LiAl(subx)Mn(sub2-x)O(sub4) as a high-performance lithium-ion battery cathode material

    CSIR Research Space (South Africa)

    Kebede, MA

    2015-06-01

    Full Text Available High-performing (LiAl(subx)Mn(sub2-x)O(sub4) (x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure...

  20. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  1. Bifurcation, pattern formation and chaos in combustion

    International Nuclear Information System (INIS)

    Bayliss, A.; Matkowsky, B.J.

    1991-01-01

    In this paper problems in gaseous combustion and in gasless condensed phase combustion are studied both analytically and numerically. In gaseous combustion we consider the problem of a flame stabilized on a line source of fuel. The authors find both stationary and pulsating axisymmetric solutions as well as stationary and pulsating cellular solutions. The pulsating cellular solutions take the form of either traveling waves or standing waves. Transitions between these patterns occur as parameters related to the curvature of the flame front and the Lewis number are varied. In gasless condensed phase combustion both planar and nonplanar problems are studied. For planar condensed phase combustion we consider two models: accounts for melting and does not. Both models are shown to exhibit a transition from uniformly to pulsating propagating combustion when a parameter related to the activation energy is increased. Upon further increasing this parameter both models undergo a transition to chaos: by intermittency and by a period doubling sequence. In nonplanar condensed phase combustion the nonlinear development of a branch of standing wave solutions is studied and is shown to lead to relaxation oscillations and subsequently to a transition to quasi-periodicity

  2. Multi-User Hardware Solutions to Combustion Science ISS Research

    Science.gov (United States)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  3. EXPERIMENTAL INSTALLATION FOR AN ASSESSMENT OF METHODS OF WATER SUPPLY IN AN INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    A. V. Bizhaev

    2015-01-01

    Full Text Available The water additive to fuel became one of effective ways of the solution of the main problems of the piston internal combustion engines (ICE as it reduces thermal factor of the engine, toxic emissions of exhaust products, and also increases efficiency by some operating modes. The way of fuel and air mix with water feeding in the combustion chamber has a great influence on process of combustion. Experimental installation for obtaining comparative characteristics of the main methods of water supply in the ICE combustion chamber was created. It was defined that there are two ways of water supply in the combustion chamber. At the first way water feed is carried out in the form of a water fuel emulsion which moves to the combustion chamber through a nozzle by means of the fuel pump with a high pressure. At the second way water arrives with air through the spraying element - the carburetor or a nozzle. This way is very simple in difference of emulsion feeding. The easiest way is nozzles application. It was established that the emulsion as the non-uniform highly dispersed fluid can be divide into components. Therefore it is necessary to use during the feeding system operation special emulsifiers with air for the uniformity water getting to the cylinder. The system for each nozzle opening at some point was offered. System of feedback with sensors of exhaust gases temperature in a final collector for adjustment of duration of injection was worked out. It was showed that at the developed experimental stand it is possible to carry out tests at various power modes. As result it will be possible to estimate both ways of fuel and air mix with water feeding.

  4. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  5. Evaluation of different flamelet tabulation methods for laminar spray combustion

    Science.gov (United States)

    Luo, Yujuan; Wen, Xu; Wang, Haiou; Luo, Kun; Fan, Jianren

    2018-05-01

    In this work, three different flamelet tabulation methods for spray combustion are evaluated. Major differences among these methods lie in the treatment of the temperature boundary conditions of the flamelet equations. Particularly, in the first tabulation method ("M1"), both the fuel and oxidizer temperature boundary conditions are set to be fixed. In the second tabulation method ("M2"), the fuel temperature boundary condition is varied while the oxidizer temperature boundary condition is fixed. In the third tabulation method ("M3"), both the fuel and oxidizer temperature boundary conditions are varied and set to be equal. The focus of this work is to investigate whether the heat transfer between the droplet phase and gas phase can be represented by the studied tabulation methods through a priori analyses. To this end, spray flames stabilized in a three-dimensional counterflow are first simulated with detailed chemistry. Then, the trajectory variables are calculated from the detailed chemistry solutions. Finally, the tabulated thermo-chemical quantities are compared to the corresponding values from the detailed chemistry solutions. The comparisons show that the gas temperature cannot be predicted by "M1" with only a mixture fraction and reaction progress variable being the trajectory variables. The gas temperature can be correctly predicted by both "M2" and "M3," in which the total enthalpy is introduced as an additional manifold. In "M2," variations of the oxidizer temperature are considered with a temperature modification technique, which is not required in "M3." Interestingly, it is found that the mass fractions of the reactants and major products are not sensitive to the representation of the interphase heat transfer in the flamelet chemtables, and they can be correctly predicted by all tabulation methods. By contrast, the intermediate species CO and H2 in the premixed flame reaction zone are over-predicted by all tabulation methods.

  6. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    Science.gov (United States)

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  7. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  8. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  9. Synthesis, characterisation, luminescence and defect centres in solution combustion synthesised CaZrO{sub 3}:Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Watanabe, S.; Gundu Rao, T.K. [Institute of Physics, University of Sao Paulo, 05508-090 Sao Paulo/SP (Brazil); Al-Shamery, Katharina [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science University of Oldenburg, 26129 Oldenburg (Germany); Haase, Markus [Department of Inorganic Chemistry I-Materials Research, Institute of Chemistry, University of Osnabrueck, Barbarastrabe 7, 49069 Osnabrueck (Germany); Jho, Young-Dahl, E-mail: jho@gist.ac.kr [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2012-08-15

    Tb{sup 3+} doped CaZrO{sub 3} has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO{sub 3}:Tb{sup 3+} exhibits three thermoluminescence (TL) glow peaks at 126 Degree-Sign C, 200 Degree-Sign C and 480 Degree-Sign C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O{sup -} ion. Centre II with an axial symmetric g-tensor with principal values g{sub Up-Tack }=1.9986 and g{sub Up-Tack }=2.0023 is assigned to an F{sup +} centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F{sup +} centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F{sup +} centre appear to correlate with the observed high temperature TL peak in CaZrO{sub 3}:Tb{sup 3+} phosphor. - Highlights: Black-Right-Pointing-Pointer Powder phosphor of CaZrO{sub 3}:Tb{sup 3+} was prepared by an easy solution combustion synthesis method. Black-Right-Pointing-Pointer The phosphor exhibits a bright green emission at 545 nm ({sup 5}D{sub 4}{yields}{sup 7}F{sub 5}) of the Tb{sup 3+} ion. Black-Right-Pointing-Pointer Electron Spin Resonance studies have been carried out to identify the defect centres responsible for the observed thermoluminescence peaks.

  10. System and method for engine combustion

    Science.gov (United States)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  11. Synthesis, characterization of nickel aluminate nanoparticles by microwave combustion method and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Ragupathi, C. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Vijaya, J. Judith, E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600034 (India); Kennedy, L. John [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) University, Chennai Campus, Chennai 600127 (India)

    2014-05-01

    Highlights: • Simple route for the preparation of nickel aluminate. • NiAl{sub 2}O{sub 4} microwave absorbent was invented by a simple method. • High specific surface area was obtained at low temperature. • Evaluation of magnetic, optical and catalytic properties. - Abstract: Microwave combustion method (MCM) is a direct method to synthesize NiAl{sub 2}O{sub 4} nanoparticles and for the first time we report the using of Sesame (Sesame indicum L.) plant extract in the present study. Solutions of metal nitrates and plant extract as a gelling agent are subsequently combusted using microwave. The structure and morphology of NiAl{sub 2}O{sub 4} nanoparticles are investigated by X-ray diffraction (XRD), Fourier transforms infrared spectra (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy, Brunauer–Emmett–Teller (BET) analysis and vibrating sample magnetometer (VSM). XRD pattern confirmed the formation of cubic phase NiAl{sub 2}O{sub 4}. The formation of NiAl{sub 2}O{sub 4} is also confirmed by FT-IR. The formation of NiAl{sub 2}O{sub 4} nanoparticles is confirmed by HR-SEM and HR-TEM. Furthermore, the microwave combustion leads to the formation of fine particles with uniform morphology. The magnetic properties of the synthesized NiAl{sub 2}O{sub 4} nano and microstructures were investigated by vibrating sample magnetometer (VSM) and their hysteresis loops were obtained at room temperature. Further, NiAl{sub 2}O{sub 4} prepared by MCM using Sesame (S. indicum L.) plant extract is tested for the catalytic activity toward the oxidation of benzyl alcohol.

  12. Synthesis and characterization of CaTiO3 powder by combustion synthesis process

    International Nuclear Information System (INIS)

    Jung, C. W.; Shin, H. C.; Park, J. Y.; Lee, H. G.; Kim, H. Y.; Hong, K. W.

    2000-01-01

    Synroc is considered as a one of the most promising candidate for HLW solidification. CaTiO 3 , perovskite, which is a component of Synroc, can immobilize lanthanide and actinides by forming solid solutions. Generally most of the radioactive wastes elements were treated as a nitrate form. Therefore, the combustion process using metal nitrates as reactant materials can be easily applied to immobilize the radioactive waste elements. In this study, the feasibility of preparing fine, single-phase powders of multi-component oxide by a combustion process was investigated. Generally, the powder synthesized by combustion process showed different characteristics depending on the type and amount of fuel. And the spherical CaTiO 3 particles were directly prepared from the aqueous solution by an ultrasonic mist combustion process using an ultrasonic nebulizers as mist generators. The particles prepared with simple spray pyrolysis method using nitrate solution without fuel as precursor solution showed porous and hollow morphology, while the particles prepared with precursor solutions containing fuel showed dense solid morphology. Among various kinds of fuel tested, glycine showed the best result in reaction kinetics and crystalline phase purity

  13. Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

    International Nuclear Information System (INIS)

    Ozdemir, A.; Altunal, V.; Kurt, K.; Depci, T.; Yu, Y.; Lawrence, Y.; Nur, N.; Guckan, V.; Yegingil, Z.

    2017-01-01

    To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1–0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li 2 B 4 O 7 :Cu material was prepared by adding B (0.001–0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li 2 B 4 O 7 :Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a “linear” way with the beta-ray exposure between 0.1–20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li 2 B 4 O 7 :Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li 2 B 4 O 7 :Cu, B were found all favorable for dosimetric purposes. - Highlights: • Li 2 B 4 O 7 :Cu, B synthesis using solution combustion method with various concentrations. • Structure analysis of Li 2 B 4 O 7 :Cu, B using XRD, SEM and FTIR methods. • Investigation of thermoluminescent properties of Li 2 B 4 O 7 :Cu, B. • Relatively good

  14. Structural and luminescence properties of Gd{sub 2}Si{sub 2}O{sub 7}:Ce prepared by solution combustion followed by heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Seema; Pitale, Shreyas; Singh, S.G.; Ghosh, M.; Tiwari, B.; Sen, S.; Gadkari, S.C., E-mail: gadkari@barc.gov.in; Gupta, S.K.

    2015-05-05

    Highlights: • Synthesis of triclinic and orthorhombic phases of Gd{sub 2}Si{sub 2}O{sub 7}:Ce by a two step process. • Method involves solution combustion followed by a post heat treatment. • Ce concentration is found to affect the orthorhombic phase formation temperature. • First time reporting a double exponential decay in nano sized Gd{sub 2}Si{sub 2}O{sub 7}:Ce. - Abstract: A method comprising solution combustion followed by a heat treatment has been employed to synthesize cerium doped gadolinium pyrosilicate (Gd{sub 2}Si{sub 2}O{sub 7}:Ce, or GPS:Ce) compounds. The powder obtained after the combustion was annealed at 1200 °C for 4 h and 1600 °C for 3 h to synthesize triclinic and orthorhombic phases of the GPS, respectively. Structural and morphological characterizations of the synthesized compounds were carried out using X-ray diffraction and electron microscopy (SEM, TEM) techniques. A change in the enthalpy was observed in the differential thermal analysis data as a consequence of triclinic to orthorhombic phase transition in the GPS. Luminescence spectra and fluorescence decay time were measured at room temperature to characterize emission centers created in GPS compounds doped with trivalent rare earth ion (Ce{sup 3+}). The triclinic GPS:Ce phase exhibited photoluminescence peaks at 379 nm and 410 nm while for the orthorhombic phase emissions at 353 nm and 380 nm were observed. A multi-component exponential decay pattern of the luminescence is observed for both the GPS:Ce phases. In addition, samples of the orthorhombic GPS:Ce were found to exhibit X-ray excited luminescence (XEL)

  15. Dynamical issues in combustion theory

    International Nuclear Information System (INIS)

    Fife, P.C.; Williams, F.

    1991-01-01

    This book looks at the world of combustion phenomena covering the following topics: modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, devising appropriate asymptotic and computational methods, and developing sound mathematical theories. Papers in this book describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactive shocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants. The types of phenomena examined are also diverse: the stability and other properties of steady structures, the long time dynamics of evolving solutions, properties of interfaces and shocks, including curvature effects, and spatio-temporal patterns

  16. Verification of Conditions for use of Combustion Products‘ Heat

    Directory of Open Access Journals (Sweden)

    Kažimírová Viera

    2015-06-01

    Full Text Available Presented contribution deals with the verification of conditions for use of combustion products‘ heat, generated by combustion of wood in a fireplace used in a household. It is necessary to know the temperature behaviour of the fireplace to determine the adequacy of the technical solution for using combustion products‘ heat. The combustion products‘ temperature at the upper part of the chimney is 80-120 °C. The dew point value was established to be below 51 °C. The average observed value of combustion product velocity is 1.6 m s-1. The volume flow rate of combustion products is 12 m3 h-1. Measured values allow for effective solution of the use of combustion products‘ heat.

  17. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  18. Size-dependent magnetic and structural properties of CoCrFeO4 nano-powder prepared by solution self-combustion

    Science.gov (United States)

    Sijo, A. K.; Dutta, Dimple P.

    2018-04-01

    The study reports the tuning of magnetic and structural properties of nano-sized CoCrFeO4 via post-annealing treatment. CoCrFeO4 nano-powder has been prepared by solution self-combustion method. The structural and magnetic properties have been studied over a range of annealing temperatures (300-900 °C). The formation of the phase pure CoCrFeO4 spinel has been confirmed from powder XRD analysis. The crystallite size is observed to increase with an increase in annealing temperature. On annealing, the value of magnetic parameters-remanence, coercivity and saturation magnetization have enhanced. All the samples exhibit irreversibility at low-temperature measurements.

  19. Solution Combustion Preparation Of Nano-Al2O3: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    M. Farahmandjou

    2015-06-01

    Full Text Available The aluminum oxide materials are widely used in ceramics, refractories and abrasives due to their hardness, chemical inertness, high melting point, non-volatility and resistance to oxidation and corrosion. The paper describes work done on synthesis of α-alumina by using the simple, non-expensive solution combustion method using glycine as fuel.Aluminum oxide (Al2O3 nanoparticles were synthesized by aluminum nitrate 9-hydrate as precursor and glycine as fuel. The samples were characterized by high resolution transmission electron microscopy (HRTEM, field effect scanning electron microscopy (FESEM, X-ray diffraction (XRD and electron dispersive spectroscopy (EDS. As there are many forms of transition aluminas produced during this process, x-ray diffraction (XRD technique was used to identify α-alumina. The diameter of sphere-like as-prepared nanoparticles was about 10 nm as estimated by XRD technique and direct HRTEM observation. The surface morphological studies from SEM depicted the size of alumina decreases with increasing annealing temperature. Absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.65 ev and the bandgap energy increased with increasing annealing temperature because of reducing the size.

  20. Numerical Simulation of Solid Combustion with a Robust Conjugate-Gradient Solution for Pressure

    National Research Council Canada - National Science Library

    Wang, Yi-Zun

    2002-01-01

    A Bi-Conjugate Gradient method (Bi-CGSTAB) is studied and tested for solid combustion in which the gas and solid phases are coupled by a set of conditions describing mass, momentum and heat transport across the interface...

  1. Release of Inorganic Elements during Wood Combustion. Release to the Gas Phase of Inorganic Elements during: Wood Combustion. Part 1: Development and Evaluation of Quantification Methods

    DEFF Research Database (Denmark)

    van Lith, Simone Cornelia; Alonso-Ramírez, Violeta; Jensen, Peter Arendt

    2006-01-01

    During wood combustion, inorganic elements such as alkali metals, sulfur, chlorine, and some heavy metals are partly released to the gas phase, which may cause problems in combustion facilities because of deposit formation and corrosion. Furthermore, it may cause harmful emissions of gases......) in this reactor, whereas methods B and C involved initial pyrolysis and combustion, respectively, of a large fuel sample (~5 kg) in a bench-scale fixed-bed reactor at 500 C. The methods were evaluated by comparing the data on the release of Cl, S, K, Na, Zn, and Pb from fiber board obtained by the three methods...

  2. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    Science.gov (United States)

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  3. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent; Obtencion de un compuesto de bario por combustion quimica y su evaluacion como adsorbente de Co

    Energy Technology Data Exchange (ETDEWEB)

    Rosas G, N [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2008-07-01

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  4. A method for determining the completeness of fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tavger, M.D.; Chepkin, V.M.; Gruzdev, V.N.; Talantov, A.V.

    1982-01-01

    The current of conductivity (ionization) of gaseous combustion products, which forms with feeding of electric voltage to a special probe, is proposed for determining the completeness of fuel combustion. Here, the charged particles are formed from substances which form in the intermediate stages of the combustion reaction. The volume of charged particles is proportional to the volume of the intermediate substances, whose presence attests to the incompleteness of the combustion reaction. The fullness of fuel combustion is determined from a formula which includes the stoichiometric coefficient, a gas constant, the energy of activation, the characteristics of the chemical activity of the intermediate substances, the coefficient of air excess, the temperature of the combustion products and the conductivity current.

  5. Production methods for decreasing nitrous oxide effluents during solid fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    The atmosphere can be protected from toxic NO /SUB x/ effluents during fuel combustion in boilers by reducing the amount of NO /SUB x/ during combustion or by cleaning the smoky gases after they leave the boiler. The second method results from the need to process a large amount of smoky gases with a relatively low concentration of nitrous oxide which is chemically resistant and which is not highly soluble in water. The problem is complicated by the SO /SUB x/ , O/sub 2/ and solid particles in the smoky gaes. The method for cleaning smoky gases is complicated and requires mator capital investments and operating expenses. Laboratory tests in the F. E. Dzerzhinskiy Heat Engineering Institute showed that thermal NO /SUB x/ is formed at combustion temperatures above 1550/sup 0/C, and that the concentration of O/sub 2/ has a significant impact on NO /SUB x/ formation, while temperature has much less effect. On the basis of laboratory and industrial tests, the Institute recommended a method to reduce NO /SUB x/ effluents from large boilers: for Kansk-Achinski coals -- low-temperature combustion. The temperature in the combustion nucleus is maintained at 1290/sup 0/C by using a set of measures individual dust systems with direct intection, grinder-blowers, fuel drying and recirculation of about 20% of the smoky gases with the primary air, tangential direct flow burners in several rows along the top). The effectiveness of this system has been checked on a PK-10Sh boiler at the Krasnoyarsk Thermal Power Plant No. 1 and a BK3-210-140 boiler at the Vladivostok Thermal Power Plant No. 2. Further reduction of NO /SUB x/ (by about 20%) requires redistribution of the secondary air along the row of burners. These measures are suggested for use on the P-67 boiler of the 800 MW unit of the Berezovsk State Regional Power Station No. 1. A brief summary of the design and operating measures are provided.

  6. Temperature prediction in a coal fired boiler with a fixed bed by fuzzy logic based on numerical solution

    International Nuclear Information System (INIS)

    Biyikoglu, A.; Akcayol, M.A.; Oezdemir, V.; Sivrioglu, M.

    2005-01-01

    In this study, steady state combustion in boilers with a fixed bed has been investigated. Temperature distributions in the combustion chamber of a coal fired boiler with a fixed bed are predicted using fuzzy logic based on data obtained from the numerical solution method for various coal and air feeding rates. The numerical solution method and the discretization of the governing equations of two dimensional turbulent flow in the combustion chamber and one dimensional coal combustion in the fixed bed are explained. Control Volume and Finite Difference Methods are used in the discretization of the equations in the combustion chamber and in the fixed bed, respectively. Results are presented as contours within the solution domain and compared with numerical ones. Comparison of the results shows that the difference between the numerical solution and fuzzy logic prediction throughout the computational domain is less than 1.5%. The statistical coefficient of multiple determinations for the investigated cases is about 0.9993 to 0.9998. This accuracy degree is acceptable in predicting the temperature values. So, it can be concluded that fuzzy logic provides a feasible method for defining the system properties

  7. Method to remove NO/sub x/ from combustion exhaust gases. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Iwata, T.

    1975-11-13

    The invention to remove NO/sub x/ from combustion exhaust gases is proposed by means of an example and a drawing. The exhaust gas is washed with an aqueous 30% ammonium sulfite solution (pH = 6.1 - 6-6.5, d = 50 to 55/sup 0/C) and then reduced with waste ammonia in the catalyst bed at 200 to 450/sup 0/C. The total SO/sub 2/ is removed in the prewash procedure and the NH/sub 3/ required for the reduction is transferred from the washing solution to the exhaust gas. The washing solution is regenerated with coke gas containing NH/sub 3/ (150 to 500 ppM NH/sub 3/). Iron ore, tinder, hammer scale, iron-contained dust, copper oxide, chromium oxide, cobalt oxide, and vanadium oxide are suitable as catalyst for the reduction process.

  8. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Manjunath, K.; Ravishankar, T.N. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Kumar, Dhanith [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India); Priyanka, K.P; Varghese, Thomas [Nanoscience Research Centre, Department of Physics, Nirmala College, Muvattupuzha, Kerala (India); Naika, H.Raja [Department of Studies and Research in Environmental Science, Tumkur University, Tumkur (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur (India); Sharma, S.C. [Chattisgarh Swami Vivekananda Technical University, Bhilai (India); Dupont, J. [Institute of Chemistry, Laboratory of Molecular Catalysis, UFRGS, Porto Alegre (Brazil); Ramakrishnappa, T. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Kanakapura Talluk (India); Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Department of Chemistry, B.M.S. Instsitute of Technology, Yelahanka, Bangalore (India)

    2014-09-15

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.

  9. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    International Nuclear Information System (INIS)

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith; Priyanka, K.P; Varghese, Thomas; Naika, H.Raja; Nagabhushana, H.; Sharma, S.C.; Dupont, J.; Ramakrishnappa, T.; Nagaraju, G.

    2014-01-01

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterial and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm −1 associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains

  10. Ultrasonic-assisted solution combustion synthesis of porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C: formation mechanism and sodium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyun; Liu, Qing [Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die and Mould Technology (China); Chu, Xiangcheng; Zhang, Yiling [Tsinghua University, State Key Laboratory of New Ceramic and Fine Processing (China); Yan, Youwei; Xue, Lihong, E-mail: xuelh@hust.edu.cn; Zhang, Wuxing, E-mail: zhangwx@hust.edu.cn [Huazhong University of Science and Technology, State Key Laboratory of Materials Processing and Die and Mould Technology (China)

    2017-04-15

    Solution combustion synthesis (SCS) is an effective and rapid method for synthesizing nanocrystalline materials. However, the control over size, morphology, and microstructure are rather limited in SCS. Here, we develop a novel ultrasonic-assisted solution combustion route to synthesize the porous and nano-sized Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composites, and reveal the effects of ultrasound on the structural evolution of NVP/C. Due to the cavitation effects generated from ultrasonic irradiation, the ultrasonic-assisted SCS can produce honeycomb precursor, which can be further transformed into porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C with reticular and hollow structures after thermal treatment. When used as cathode material for Na-ion batteries, the porous Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C delivers an initial discharge capacity of 118 mAh g{sup −1} at 0.1 C and an initial coulombic efficiency of 85%. It can retain 93.8% of the initial capacity after 120 cycles at 0.2 C. The results demonstrate that ultrasonic-assisted SCS can be a new strategy to design crystalline nanomaterials with tunable microstructures.

  11. Obtaining of a barium compound by combustion chemistry and their evaluation as Co adsorbent

    International Nuclear Information System (INIS)

    Rosas G, N.

    2008-01-01

    In this work, barium carbonate synthesized by chemical combustion method using a chemical precursor prepared by the combination of barium nitrate and urea as a fuel, with a 1:1 molar ratio in aqueous solution, the chemical precursor was heated to evaporate excess water, producing a homogeneous viscous liquid, that when heated to 900 centi grades for 5 minutes an exothermic reaction was produced very quickly and abruptly, forming a white powder final product, fine porous, little spongy, dry and crystalline ready to be used as material adsorbent. Additionally, the effect of water on the synthesis by chemical combustion was studied. Simultaneously, and with the purpose of comparing the advantages and disadvantages of the method by chemical combustion, barium carbonate was synthesized by precipitation method using barium nitrate salts and sodium carbonate. Synthesized barium carbonate, was characterized by X-ray diffraction, thermal gravimetric analysis, infrared spectrometry and scanning electron microscopy. We studied the adsorption capacity of Co present in aqueous solution by static tests on materials synthesized at room temperature using the neutron activation analysis. It was found that the synthesis by chemical combustion provides an interesting alternative compared to the synthesis by precipitation because it offers simplicity of synthesis and speed to have a good adsorbent material. It was found that the barium carbonate synthesized by the chemical combustion method using in their synthesis 1.0 ml of water, was the one who achieved the maximum adsorption capacity of 95.6% compared with the barium carbonate prepared by precipitation, which reached a capacity adsorption of 51.48%. (Author)

  12. Synthesis of Li2MO3 (M = Ti or Zr) by the combustion method

    International Nuclear Information System (INIS)

    Cruza, D.; Bulbuliana, S.; Cruza, D.; Pfeifferc, H.

    2006-01-01

    The advantages and disadvantages of the combustion method to prepare Li 2 TiO 3 and Li 2 ZrO 3 ceramics were studied. Firstly, the ceramic powders were prepared by the combustion process using LiOH, MO 2 (where M=Ti or Zr) and urea in different molar ratios (from 2:1:3 to 3:1:3) at different temperatures for 5 minutes. Li 2 TiO 3 and Li 2 ZrO 3 were also obtained by the solid-state method, and the results were compared with those obtained by the combustion process. The powders were characterized by X-ray diffraction and scanning electron microscopy. It was found that the combustion process reduces the synthesis time of Li 2 TiO 3 (1 minute at 750 C), but it does not have any advantage on producing Li 2 ZrO 3 , due to thermodynamic factors. On the other hand, the combustion process produces carbon contaminants in the solids. It was necessary to add excess of lithium hydroxide, in order to compensate the quantity of Li sublimated during the production of the ceramics. Finally, it seems that both reactions follow the same mechanism, which is determined by the lithium diffusion into the metal oxides. (authors)

  13. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  15. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  16. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  17. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  18. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    Science.gov (United States)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  19. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  20. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  1. Development of plasma melting technology for treatment of low level radioactive waste. Pt. 9. Treatment method for combustible wastes

    International Nuclear Information System (INIS)

    Yasui, Shinji; Adachi, Kazuo; Amakawa, Masashi

    1996-01-01

    This paper describes the incineration method for the miscellaneous solid waste containing the low level radioactive combustibles (wood, PE, PVC) in a plasma furnace. The maximum weights of the respective combustibles to be fed into the plasma furnace and the incineration conditions for continuous feeding of the respective combustibles were examined experimentally. As a result, a experimental equation which expresses the maximum weights of the respective combustibles to be fed in reference to the residence time in the plasma furnace was obtained by using apparent reaction rate constants. Furthermore, a calculation method for the feeding intervals in reference to the weights of the combustibles fed each time was obtained for the continuous feeding in the plasma furnace, and the method was found to be consistent with experimental results. (author)

  2. Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method

    Directory of Open Access Journals (Sweden)

    H.C. Madhusudhana

    2016-09-01

    Full Text Available ZrO2 nanopowders were synthesized by low temperature solution combustion method using two different fuels namely glycine and oxalyldihydrazide (ODH. The phase confirmation was done by powder X-ray diffraction (PXRD and Raman spectral analysis. Use of glycine resulted in ZrO2 with mixture of tetragonal and monoclinic phase with average crystallite size of ∼30 nm. However, ODH as fuel aids in the formation of ZrO2 with mixture of tetragonal and cubic phase with average crystallite size ∼20 nm. Further, in present work we present novel way to tune conductivity property of the nano ZrO2. We show that merely changing the fuel from glycine to ODH, we obtain better DC conductivity and dielectric constant. On the other hand use of glycine leads to the formation of ZrO2 with better AC conductivity and humidity sensing behavior. The dielectric constants calculated for samples prepared with glycine and ODH were found to be 45 and 26 respectively at 10 MHz. The AC and DC conductivity values of the samples prepared with glycine was found to be 9.5 × 10−4 S cm−1, 1.1 × 10−3 S cm−1 and that of ODH was 7.6 × 10−4 S cm−1, 3.6 × 10−3 S cm−1 respectively.

  3. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  4. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  5. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  6. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  7. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  8. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  9. Determination of inorganic pollutants in soil after volatilization using microwave-induced combustion

    Energy Technology Data Exchange (ETDEWEB)

    Picoloto, Rochele S. [Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil and Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil); Wiltsche, Helmar; Knapp, Günter [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz (Austria); Mello, Paola A. [Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil and Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil); Barin, Juliano S. [Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.com [Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil and Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil)

    2013-08-01

    Microwave-induced combustion (MIC) was applied for analyte volatilization from soil and subsequent determination of As, Cd and Pb by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES), and Hg by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Soil samples (up to 300 mg) were mixed with microcrystalline cellulose, pressed as pellets and combusted in closed quartz vessels pressurized with 20 bar O{sub 2}. Analytes were volatilized from soil during combustion and quantitatively absorbed in a suitable solution: nitric acid (1, 2, 4 or 6 mol L{sup −1}) or a solution of nitric (2 mol L{sup −1}) and hydrochloric (1, 2 or 4 mol L{sup −1}) acids. Accuracy was evaluated using certified reference materials of soil (NIST 2709, San Joaquin Soil) and sediment (SUD-1, Sudbury sediment for trace elements). Agreement with certified values was better than 95% (t-test, 95% confidence level) for all analytes when 6 mL of a solution of 2 mol L{sup −1} HNO{sub 3} and 2 mol L{sup −1} HCl was used with a reflux step of 5 min. The limit of detection was 0.010, 0.002, 0.009 and 0.012 μg g{sup −1} for As, Cd, Hg and Pb, respectively using ICP-MS determination. A clear advantage of the proposed method over classical approaches is that only diluted solution is used. Moreover, a complete separation of the analytes from matrix is achieved minimizing potential interferences in ICP-MS or ICP-OES determination. Up to eight samples can be digested in a single run of only 25 min, resulting in a solution suitable for the determination of all analytes by both techniques. - Highlights: ► Microwave-induced combustion method was applied for soil samples. ► Analytes were volatilized during MIC allowing a suitable separation from matrix. ► Matrix interferences during the determination step are minimized. ► As, Cd, Hg and Pb were determined by ICP-MS. ► Diluted acid solutions were

  10. Determination of chlorine in graphite by combustion-ion chromatography

    International Nuclear Information System (INIS)

    Chen Lianzhong; Watanabe, Kazuo; Itoh, Mitsuo.

    1995-09-01

    A combustion/ion chromatographic method has been studied for the sensitive determination of chlorine in graphite. A graphite sample was burnt at 900degC in a silica reaction tube at an oxygen flow rate of 200 ml/min. Chlorine evolved was absorbed in 20 ml of a 0.1 mM sodium carbonate solution. The solution was evaporated to dryness. The residue was dissolved with a small volume of water. Chlorine in the solution was determined using ion chromatography. The method was applied to JAERI graphite certified reference materials and practical graphite materials. The detection limit was about 0.8 μgCl/g for a 2.0 g sample. The precision was about 2.5% (relative standard deviation) for samples with chlorine content of 70 μg/g level. The method is also usable for coal samples. (author)

  11. Synthesis by the Pechini method and reaction combustion for the preparation of TiO2: a comparative analysis

    International Nuclear Information System (INIS)

    Almeida, E.P.; Ribeiro, P.C.; Freitas, N.L.; Lira, H.L.; Costa, A.C.F.M. da; Kiminami, R.H.G.A.

    2009-01-01

    The aim of this work is to prepare TiO 2 powder by Pechini and combustion reaction methods. A comparative analysis between the structural and morphological results obtained by the two methods was investigated. The powders were characterized by X-ray diffractions (XRD), infrared analysis, nitrogen adsorption (BET) and particle size distribution. The results from XRD show that the powders prepared by Pechini method and by combustion reaction using aniline as fuel, present anatase as major phase and traces of rutile phase. The values of crystallite size and surface area from BET were: 30 e 44 nm; 6.2 e 4.4 m 2 /g, for the powders prepared by Pechini and combustion reaction, respectively. The values of particle size were: 21.9 e 5.3 μm, for the powders prepared by Pechini and combustion reaction, respectively. The Pechini method was more suitable to obtain powders with irregular agglomerates, in the block shape with particles bonded softly and small crystallite size. (author)

  12. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    Science.gov (United States)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except

  13. Methods for Characterization of the Diesel Combustion and Emission Formation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Mikael

    2011-07-01

    In this thesis various aspects of the diesel engine fuel injection, combustion and emission formation processes have been evaluated. Several types of evaluation tools and methods have been applied. Fuel spray momentum was used to characterize injection rate and hole-to-hole variations in fuel injectors. Using both instantaneous fuel impulse rates and instantaneous mass flow measurements, spray velocity and nozzle flow parameters were evaluated. Several other hole-to-hole resolved injector characterization methods were used to characterize a set of fuel injectors subjected to long term testing. Fuel injector nozzle hole-to-hole variations were found to have a large influence on engine efficiency and emissions. The degree of hole-to-hole variations for an injector has been shown to correlate well with the performance deterioration of that injector. The formation and atomization of fuel sprays, ignition onset and the development of diffusion flames were studied using an optical engine. Flame temperature evaluations have been made using two different methods. NO-formation depends strongly on flame temperature. By applying a NO-formation evaluation method based on both heat release rate and flame and gas temperature it was possible to achieve a reasonable degree of correlation with measured exhaust emissions for very varying operating conditions. The prediction capability of the NO-formation evaluation method was utilized to evaluate spatially and temporally resolved NO-formation from flame temperature distributions. This made it possible to pinpoint areas with a high degree of NO-formation. It was found that small hot zones in the flames can be responsible for a large part of the total amount of NO that is produced, especially in combustion cases where no EGR is used to lower the flame temperature. By applying optical diagnostics methods the combustion and emission formation phenomena encountered during production engine transients were evaluated. The transient

  14. Method and device for the combustion of pulverised coal

    Energy Technology Data Exchange (ETDEWEB)

    Schoppe, F

    1977-01-13

    Until now, high combustion space loadings in pulverised coal firing were only obtained with melting combustion, where the ash is fluid. The disadvantage of this is that part of the heating surface is covered by liquid slack, and this type of combustion cannot operate in 'on-off operation', as the slack solidifies when the boiler is switched off. According to the invention, however, pulverised coal, which is reluctant to react, can be burnt at high combustion space loadings of over 2000 Mcal/cu. metre. hour. atm. with dry ash extraction, so that its use is possible for the combustion in central heating plants in detached houses and blocks of flats, with 'on-off operation'. For this purpose, the pulverised coal is heated under excess pressure in an atmosphere with a maximum of 10% of oxygen with a speed of heating of 1000/sup 0/C/sec up to 100 to 150/sup 0/C above its ignition temperature, and can be blown into the combustion air. Tangentially to the flame jet, a cold gas flow is guided so that burning particles thrown out at the sides are cooled below the ash melting temperature, before they reach the walls. The burning flame jet is accelerated, by using the excess pressure, via an injector, into a zone at less than the ash melting temperature, so that dry ash extraction is guaranteed.

  15. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  16. Method for conducting underground reverse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jr, F F; Neil, J D; Parrish, D R; Scott, P H

    1965-05-25

    This is a procedure for conducting a reverse-combustion operation in a formation penetrated by an injection well and a producing well which have objectionable fluids between them. The procedure consists of shutting-in the injection well and injecting a sufficient quantity of oxygen-containing gas into the deposit by the producing well to force these undesirable fluids away from the vicinity of the wells. Next, the deposit is ignited in the vicinity of the producing well. In this manner, the producing well is opened to production. At substantially the same time, an oxygen-containing gas is injected into the deposit through the injection well, so that the resulting combustion-front travels countercurrently to the path of the gas. (4 claims)

  17. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  18. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    Science.gov (United States)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  19. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  20. A microwave-assisted solution combustion synthesis to produce europium-doped calcium phosphate nanowhiskers for bioimaging applications.

    Science.gov (United States)

    Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B

    2013-09-01

    Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    International Nuclear Information System (INIS)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an “R” value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U–O bond. - Highlights: • Bulk quantities of nanocrystalline urania were prepared for the first time using citrate gel combustion method. • Volume combustion was observed in mixtures with fuel to nitrate ratio (R) 0.25. • The value of R was found to significantly influence the characteristics of the final product. • Typical exfoliated microstructure and nanopores were observed. • Established correlation between particle size distribution and bulk density, X-ray crystallite size and lattice strain. • Relationship between fuel to nitrate (R) mole ratio and physical characteristics of powders were also established.

  2. Radiative heat transfer in turbulent combustion systems theory and applications

    CERN Document Server

    Modest, Michael F

    2016-01-01

    This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

  3. Method for the combustion of a gas, in fixed bed, with an oxidized solid and associated installation

    OpenAIRE

    Abanades García, Juan Carlos; Fernández García, José Ramón

    2014-01-01

    [EN] The present invention pertains to the field of the generation of energy from combustible gases, incorporating the capture of carbon dioxide for use or permanent storage and, specifically relates to cyclical methods of gas combustion with oxidized solids (chemical looping processes), in fixed bed, for solving the problem of controlling temperature in the combustion of gaseous fuels in fixed beds of metal oxides operating at high pressures, and also the associated installation.

  4. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  5. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  6. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  7. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  8. Using X-ray methods to evaluate the combustion sulfur minerals and graphitic carbon in coals and ashes

    International Nuclear Information System (INIS)

    Wertz, D.L.; Collins, L.W.

    1988-01-01

    Coals are complex mixtures of vastly different materials whose combustion kinetics may well exhibit symbiotic effects. Although the sulfur oxide gases produced during the combustion of coals may have a variety of sources, they are frequently caused by the thermal degradation of inorganic minerals to produce ''acid rain''. Since many of the minerals involved either as reactants or products in coal combustion produce well defined x-ray power diffraction (XRPD) patterns, the fate of these minerals may be followed by measuring the XRPD patterns of combustion products. Coal 1368P, a coal with an unusually high pyrite (FeS/sub 2/) fraction, has been the subject materials in our investigations of the fate of the inorganic minerals during combustion. These studies include measuring the fate of pyrite and of graphitic carbon in coal 1368P under varying combustion conditions. The results discussed in this paper were obtained by standard XRPD methods

  9. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  10. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  11. Use of Thermoanalytic Methods in the Evaluation of Combusted Materials

    Directory of Open Access Journals (Sweden)

    František Krepelka

    2006-12-01

    Full Text Available The paper describes possibilities of using thermoanalytic methods for the evaluation and comparison of materials designed for a direct combustion. Differential thermal analysis (DTA and thermogravimetric analysis (TGA were both used in the evaluation. The paper includes a description of methods of data processing from analyses for the purposes of comparison of used materials regarding their heating values. The following materials were analysed in the experiments: wooden coal of objectional grain size, fly ash from heating plant exhaust funnels, dendromass waste: spruce sawdust, micro-briquettes of spruce sawdust and fly-ash combined.

  12. COMBUSTION HEAT RELEASE RATE ANALYSIS OF C.I. ENGINE WITH SECONDARY CO-INJECTION OF DEE-H2O SOLUTION - A VIBRATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANA MURTHY

    2015-08-01

    Full Text Available This paper discusses the combustion propensity of single cylinder direct injection engine fueled with palm kernel methyl ester (PKME, which is non- edible oil and a secondary co-injection of saturated Diethyl ether (DEE with water. DEE along with water is fumigated through a high pressure nozzle fitted to the inlet manifold of the engine and the flow rate of the secondary injection was electronically controlled. DEE is known to improve the cold starting problem in engines when used in straight diesel fuel. However, its application in emulsion form is little known. Experimental results show that for 5% DEE- H2O solution injection, occurrence of maximum net heat release rate is delayed due to controlled premixed combustion, which normally helped in better torque conversion when the piston is in accelerated mode. Vibration measurements in the frequency range of 900Hz to 1300Hz revealed that a new mode of combustion has taken place with different excitation frequencies.

  13. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    The basis of combustion synthesis technique comes from the ... of oxidizer to fuel is calculated using the total oxidizing ..... +. −. ∑. (4) where S/Nm is the mean S/N ratio of all the experimental ..... Minitab Inc., User manual of MINITAB. TM.

  14. Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions

    International Nuclear Information System (INIS)

    Roberts, Andrew; Brooks, Richard; Shipway, Philip

    2014-01-01

    Highlights: • The sources of I.C. engine cold start efficiency are reviewed and quantified. • Potential solutions are reviewed and the benefit quantified together. • Potential conflicts between different engine sub-systems are discussed. • Fuel consumption benefits of up to 7% are observed during cold start. • Emission reductions of up to 40% during cold start are observed. - Abstract: Legislation on vehicle emissions continues to become more stringent in an effort to minimise the impact of internal combustion engines on the environment. One area of significant concern in this respect is that of the cold-start; the thermal efficiency of the internal combustion engine is significantly lower at cold-start than when the vehicle reaches steady state temperatures owing to sub-optimal lubricant and component temperatures. The drive for thermal efficiency (of both the internal combustion engine and of the vehicle as a whole) has led to a variety of solutions being trialled to assess their merits and effects on other vehicle systems during this warm-up phase (and implemented where appropriate). The approaches have a common theme of attempting to reduce energy losses so that systems and components reach their intended operating temperature range as soon as possible after engine start. In the case of the engine, this is primarily focused on the lubricant system. Lubricant viscosity is highly sensitive to temperature and the increased viscosity at low temperatures results in higher frictional and pumping losses than would be observed at the target operating temperature. The approaches used to tackle the problem include the use of phase change materials (to reduce the cool-down rate during a period following engine running) [1,2] and the use of thermal barrier coatings in an attempt to insulate the cylinder bore and prevent heat loss (thus increasing the amount of energy utilised as brake work [3]). A range of system alterations have also been trialled including

  15. Synthesis of Pr0.70Sr0.30MnO3δ and Nd0.70Sr0.30MnO3δ powders by solution-combustion technique

    Directory of Open Access Journals (Sweden)

    Reinaldo Azevedo Vargas

    2011-01-01

    Full Text Available Powders of Pr0.70Sr0.30MnO3δ (PSM and Nd0.70Sr0.30MnO3δ (NSM compositions are being investigated as alternative cathode materials for Intermediate Temperature Solid Oxide Fuel Cells. The compositions were synthesized by a solution-combustion method using metal nitrates and urea as fuel. Combustion synthesis is a highly suitable synthesis route for achieving fine and homogeneous powders at low temperatures. Single phase pseudo-perovskite was obtained by X-ray diffraction after heat treatment of PSM and NSM powders at 900 ºC. The synthesized and milling powders had an average particle size between 0.27 to 0.07 μm. Chemical analyses of the powders calcined was performed by X-ray fluorescence and morphological analysis by scanning electron microscopy. The results were compared with literature values, indicating characteristics adjusted for preparation of ceramic suspensions.

  16. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  17. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  18. Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

    Directory of Open Access Journals (Sweden)

    Jesús Benajes

    2016-12-01

    Full Text Available Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions.

  19. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  20. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    Science.gov (United States)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  1. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  2. Antitubercular activity of ZnO nanoparticles prepared by solution combustion synthesis using lemon juice as bio-fuel.

    Science.gov (United States)

    Gopala Krishna, Prashanth; Paduvarahalli Ananthaswamy, Prashanth; Trivedi, Priyanka; Chaturvedi, Vinita; Bhangi Mutta, Nagabhushana; Sannaiah, Ananda; Erra, Amani; Yadavalli, Tejabhiram

    2017-06-01

    In this study, we report the synthesis, structural and morphological characteristics of zinc oxide (ZnO) nanoparticles using solution combustion synthesis method where lemon juice was used as the fuel. In vitro anti-tubercular activity of the synthesized ZnO nanoparticles and their biocompatibility studies, both in vitro and in vivo were carried out. The synthesized nanoparticles showed inhibition of Mycobacterium tuberculosis H37Ra strain at concentrations as low as 12.5μg/mL. In vitro cytotoxicity study performed with normal mammalian cells (L929, 3T3-L1) showed that ZnO nanoparticles are non-toxic with a Selectivity Index (SI) >10. Cytotoxicity performed on two human cancer cell lines DU-145 and Calu-6 indicated the anti-cancer activity of ZnO nanoparticles at varied concentrations. Results of blood hemolysis indicated the biocompatibility of ZnO nanoparticles. Furthermore, in vivo toxicity studies of ZnO nanoparticles conducted on Swiss albino mice (for 14days as per the OECD 423 guidelines) showed no evident toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of Mg-containing hydroxyapatites synthesized by combustion method

    Science.gov (United States)

    Kaygili, Omer; Keser, Serhat; Bulut, Niyazi; Ates, Tankut

    2018-05-01

    In the present paper, Mg-substituted hydroxyapatites with the morphology, composed of the stacked plate- and rod-like structures, were prepared at the temperature of 600 °C by combustion method using glycerine as a fuel. A significant decrease in the crystallite size values calculated for both Scherrer and Williamson-Hall methods is found. The crystallinity, lattice parameter of a, stress and anisotropic energy density values decreased by adding of Mg, whereas the lattice strain increased. The amount of HAp phase decreases with increasing amount of Mg and the β-tricalcium phosphate content increases. Mg incorporation the apatitic structure was detected. Depending on the increase in Mg content, Ca-deficiency was observed.

  4. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    Science.gov (United States)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-06-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å3. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn2+ and its surroundings.

  5. Development and characterization of Mn2+-doped MgO nanoparticles by solution combustion synthesis

    International Nuclear Information System (INIS)

    Basha, Md. Hussain; Gopal, N. O.; Rao, J. L.; Nagabhushana, H.; Nagabhushana, B. M.; Chakradhar, R. P. S.

    2015-01-01

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å 3 . SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn 2+ ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn 2+ and its surroundings

  6. The Brief Introduction of Different Laser Diagnostics Methods Used in Aeroengine Combustion Research

    Directory of Open Access Journals (Sweden)

    Fei Xing

    2016-01-01

    Full Text Available Combustion test diagnosis has always been one of the most important technologies for the development of aerospace engineering. The traditional methods of measurement have been unable to meet the requirements of accurate capture of the flow field in the development process of the aeroengine combustor. Therefore, the development of high-precision measurement and diagnostic techniques to meet the needs of the aeroengine combustor design is imperative. Laser diagnostics techniques developed quickly in the past several years. They are used to measure the parameters of the combustion flow field such as velocity, temperature, and components concentration with high space and time resolution and brought no disturbance. Planar laser-induced fluorescence, coherent anti-Stokes Raman scattering, tunable diode laser absorption spectroscopy, and Raman scattering were introduced systemically in this paper. After analysis of their own advantages and disadvantages, the authors considered validated Raman scattering system and Tunable Diode Laser Absorption Tomography are more suitable for research activities on aeroengine combustion systems.

  7. Data for modern boilers used in co-combustion; Moderna panndata inom samfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Ola [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-04-01

    This project is a survey and a description of today's technical status and future development trends in the field of co-combustion. The survey is done from an energy production company's point of view and two technical questions have been studied; the possibilities for high steam data and the possibilities for a wide load range. These parameters are limited by the corrosive properties of the fuel and the environmental requirements in the EU directive for combustion of waste. In the report following issues are discussed: Examples of and experiences from co-combustion plants and plants that combust problematic fuels and have high steam data. A future prospect of high steam data in co-combustion plants by the usage of modern technical solutions and a description of these solutions. Important research and development results from combustion of problematic fuels in combination with high steam data. Choice of firing technology, boiler design and auxiliary systems and its affection on the load range in a boiler for co-combustion. A literature survey has been done to get the latest results from combustion of problematic fuels. Then a number of interesting plants have been identified and facts about them have been collected by contacts with plant owners, suppliers and professional researchers and also through publications. The report shows that Sweden, Finland and Denmark are in the front line of using high steam data for co-combustion of biomass and waste fuels. There are/have been problems with superheater corrosion in many of these plants but a number of ways how to handle high steam data have been identified: Adjust the fuel mix or add additives; Use high alloy materials; Consider the final super heater as a part that is worn out by time; Place the final super heater in the particle loop seal/sand locker; Use an external separate fired super heater; Gasification and then co-combustion of the pyrolysis gas in a conventional existing boiler; Place the

  8. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  9. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  10. Luminescence properties of ZnMoO{sub 4}:Eu{sup 3+}:Y{sup 3+} materials synthesized by solution combustion synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Naveen, E-mail: vermanaveen17@gmail.com; Singh, Krishan Chander; Jindal, Jitender; Yadav, Suprabha [Department of chemistry, Maharshi Dayanand University, Rohtak-124001 – India (India); Mari, Bernabe; Mollar, Miguel [Institut de Disseny per la Fabricació Automatitzada - Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València (Spain)

    2016-04-13

    The Zn{sub (1-x-y)}MoO{sub 4}:Eu{sup 3+}{sub (x)}: Y{sup 3+}{sub (y)} (x = 1 mol% and y = 1 or 2 mol%) compounds were prepared by combustion synthesis method. The crystal structure of the samples was identified by X-ray diffraction (XRD). The photoluminescence properties were investigated and it is observed that the co-doping of Y{sup 3+} enhances the luminescence emission intensity of ZnMoO{sub 4}:Eu{sup 3+} material. The Y{sup 3+} acts as a sensitizer in the ZnMoO{sub 4}:Eu{sup 3+} lattice. The particle size is calculated from XRD data by using Scherer Equation. The particles has been found in the range of 30-40 nm.

  11. Technological methods of reducing the emissions of nitrogen oxides during the combustion of solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1981-01-01

    For protecting the atmosphere from emissions of toxic NO /SUB x/ during combustion of fuel in boilers the amount of NO /SUB x/ can be reduced in the process of combustion, or the flue gases (FG) from the boiler can be cleaned. The latter method is bound up with the necessity for treatment of a large quantity of FG with a comparatively low concentration in them of nitrogen oxides, chemically stable and poorly soluble in water. The problem is complicated by the presence in the FG of SO /SUB x/, O/sub 2/, and solid particles. The method of purifying the FG is complicated and requires large capital investment and operating expenses. By laboratory studies in the All-Union Institute of Heat Engineering im. F.E. Dzerzhinskiy (VTI) it was established that thermal NO /SUB x/ is formed at a combustion temperature greater than or equal to 1550 /sup 0/C and that the 0/sub 2/ concentration and considerably less the temperature strongly affect NO /SUB x/ formation. On the basis of laboratory studies and industrial tests in the VTI, methods of reducing NO /SUB x/ emissions by large-scale boilers are recommended.

  12. Minimal algorithm for running an internal combustion engine

    Science.gov (United States)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  13. A model for steady-state HNF combustion

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    A simple model for the combustion of solid monopropellants is presented. The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: high activation energy, and low activation energy. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of the model are compared with experimental results of Hydrazinium Nitroformate (HNF) combustion.

  14. Methods and systems to thermally protect fuel nozzles in combustion systems

    Science.gov (United States)

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  15. Manufacturing method for fuel assembly

    International Nuclear Information System (INIS)

    Yamaguchi, Takashi.

    1997-01-01

    In an FBR type reactor, uranium/plutonium mixed oxide fuels (MOX fuels) are used. Nuclear fuel materials containing uranium and plutonium are filled to a portion or all of a plurality of fuel rods. In this case, an equivalent fissile coefficient (B) based on a combustion guarantee method defined by the formula: (B) = (M) · (F) is determined. (M) is a combustion matrix constituted based on the solution of equation of combustion which is a differential equation representing change with time of each of nuclear fuel materials during combustion. (F) is an equivalent fissile coefficient based on a reactivity keeping method which is a coefficient representing a reactivity worth equivalent with plutonium-239. The content of each of the nuclear fuel materials is determined so that the effective multiplication factor at the final stage of the operation cycle is substantially constant by using the equivalent fissile coefficient (B) based on the combustion guarantee method. (I.N.)

  16. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  17. Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by combustion and Pechini method for use in nanomedicine: methods evaluation

    International Nuclear Information System (INIS)

    Albuquerque, I.L.T. de; Nascimento, A.L.C.; Costa, A.C.F.M.

    2016-01-01

    The objective of this work was to synthesize the Ni0.5Zn0.5Fe2O3 ferrite by combustion reaction and Pechini method, and to evaluate structural characteristics and magnetic behavior for its use in nanomedicine. The synthesized ferrite was characterized by DRX, BET, TG and magnetic properties. According to the results of XRD, the Ni_0_,_5Zn_0_,_5Fe_2O_3 ferrite synthesized by both methods presented nano crystallite sizes, high crystallinity, surface area, stable at high temperatures and with high saturation magnetization, being higher in the ferrite synthesized by combustion reaction. Both methods produced materials that could be used in nanomedicine

  18. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  19. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  1. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  2. Future combustion methods for biomethane powered tractor engines

    International Nuclear Information System (INIS)

    Prehn, Sascha; Harndorf, Horst; Wichmann, Volker; Beberdick, Wolfgang

    2016-01-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  3. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  4. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2014-08-01

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ c ) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  5. NUMERICAL INVESTIGATION OF THE COUPLED TURBULENT COMBUSTION-RADIATION IN AN

    Directory of Open Access Journals (Sweden)

    BRAHIM ZITOUNI

    2017-06-01

    Full Text Available A turbulent non-premixed methane-air flame was studied in an axisymmetric cylindrical combustion chamber, focusing on thermal radiation effects on temperature and soot concentration fields. The simulation is based on the solution of the mass, energy, momentum and chemical species conservation equations. The turbulence and its interaction with combustion are modelled by the standard k-ε model and eddy dissipation concept, respectively. The semiempirical model of Syed is implemented to deal with soot formation and oxidation and thus ensuring the overall efficiency of the present investigation. The radiative heat transfer is surveyed, for two cases: with and without soot radiation. The numerical resolution has been achieved using the Hottel’s zonal method and the standard weighted-sum-of-gray-gases model, to predict the real gas-soot mixture radiation effect. A new concept of optical exchange gap has been recently proposed and applied here after avoiding the singularities obviously encountered in the calculation of the direct exchange areas of volume zones self-irradiance. The obtained numerical results are compared to experimental data due to Brookes and Moss. Radiation exchange is found to noticeably affect temperature and soot volume fraction predictions and slightly the mixture fraction solutions. The present paper shows that taking into account turbulent combustion-radiation interactions leads to more accurate results by comparison to available experimental data.

  6. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  7. A Radiation Solver for the National Combustion Code

    Science.gov (United States)

    Sockol, Peter M.

    2015-01-01

    A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.

  8. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  9. Development and characterization of Mn{sup 2+}-doped MgO nanoparticles by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Basha, Md. Hussain; Gopal, N. O., E-mail: nogopal@yahoo.com [Department of Physics, Vikrama Simhapuri University Post Graduate Center, Kavali-524201 (India); Rao, J. L. [Department of physics, Sri Venkateswara University, Tirupati-517502 (India); Nagabhushana, H. [Prof. C.N.R. Rao Centre for Nano Research, Tumkur University, Tumkur-572103 (India); Nagabhushana, B. M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore - 560054 (India); Chakradhar, R. P. S. [CSIR- National Aerospace Laboratories, Bangalore -560017 (India)

    2015-06-24

    Mn doped MgO Nanoparticles have been prepared by Solution Combustion Synthesis. The synthesized sample is characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). The prepared MgO:Mn (1 mol%) nano crystals appear to be of simple cubic crystalline phase with lattice parameters a = 4.218(2) Å and cell volume = 74.98 (7) Å{sup 3}. SEM micrograph of powders show highly porous, many agglomerates with irregular morphology, large voids, cracks and pores. EPR spectrum of the sample at room temperature exhibit an isotropic sextet hyperfine pattern, centered at g=1.99, characteristic if Mn{sup 2+} ions with S=I=5/2.The observed g value and the hyperfine value reveal the ionic bonding between Mn{sup 2+} and its surroundings.

  10. Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions

    International Nuclear Information System (INIS)

    Ghosh, Samir Kumar; Roy, Sujit Kumar; Kundu, Biswanath; Datta, Someswar; Basu, Debabrata

    2011-01-01

    Calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 (HAp) was synthesized by combustion in the aqueous system containing calcium nitrate-diammonium hydrogen orthophosphate with urea and glycine as fuels. These ceramics are important materials for biomedical applications. Thermo-gravimetric and differential thermal analysis were employed to understand the nature of synthesis process during combustion. Effects of different process parameters namely, nature of fuel (urea and glycine), fuel to oxidizer ratio (0.6-4.0) and initial furnace temperature (300-700 o C) on the combustion behavior as well as physical properties of as-formed powders were investigated. A series of combustion reactions were carried out to optimize the reaction parameters for synthesis of nano-sized HAp powders. The combustion temperature (T f ) for the oxidant and fuels were calculated to be 896 deg. C and 1035 deg. C for the stoichiometric system of urea and glycine respectively. The stoichiometric glycine-calcium nitrate produced higher flame temperature (both calculated and measured) and powder with lower specific surface area (8.75 m 2 /g) compared to the stoichiometric urea-calcium nitrate system (10.50 m 2 /g). Fuel excess combustion in both glycine and urea produced powders with higher surface area. Nanocrystalline HAp powder could be synthesized in situ with a large span of fuel to oxidizer ratio (φ) in case of urea system (0.8 < φ < 4) and (0.6 < φ < 1.5) for the glycine system. Calcium hydroxyapatite particles having diameters ranging between 20 nm and 120 nm could be successfully synthesized through optimized process variable.

  11. Combustion of Waste Wood. Second phase of the collaboration project on waste wood combustion

    International Nuclear Information System (INIS)

    Andersson, Annika; Andersson, Christer; Eriksson, Jan; Hemstroem, Bengt; Jungstedt, Jenny; Kling, Aasa; Bahr, Bo von; Ekvall, Annika; Eskilsson, David; Tullin, Claes; Harnevie, Henrik; Sieurin, Jan; Keihaes, Juha; Mueller, Christian; Berg, Magnus; Wikman, Karin

    2003-08-01

    Combustion of waste wood has during the last decade increased dramatically and this has resulted in a number of Swedish plants using this fuel, e.g. Handeloe P11 (Norrkoeping) and ldbaecken P3 (Nykoeping), and yet other plants that are under construction (e.g. Nynaeshamn). The experience from these plants are that waste wood combustion results in a number of operational problems. To some extent these problems are different compared with the problems related to combustion of other biofuels but the situation is not directly comparable to waste incinerators. The problems are mainly related to slagging and fouling of heat exchanger surfaces and accelerated corrosion at relatively low temperature compared to the situation for ordinary biofuels. In some cases an increase in the emissions of specific substances can also result in difficulties to fulfil the EC-directive on waste combustion. Within previous projects the main problems related to combustion of waste wood have been identified and to some extent the cause of these problems has been clarified. One result of this reported investigation is a deeper understanding of the actual causes of these problems. However, the most important result is a number of recommendations for different measures on how to achieve disturbance-free combustion of waste wood. These recommendations actually summarises the most important possible solutions on how to achieve a disturbance-free operation and a lower maintenance cost for boilers combusting waste wood and can thereby be regarded as a short summery of the whole project: 1) Improving fuel quality by Improved sorting at the source and Sieving of the fuel -> Reducing the amount of metals and chlorine and Separation of fines and thereby reducing the amount of metals. 2) Combustion modifications by Avoiding reducing conditions at the heat exchanger surfaces -> Minimising slagging, fouling and corrosion. 3) Additives or co-combustion by Addition of sulphur with the fuel; Injection of

  12. Non-Destructive Methods for Determining Burn-Up in Nuclear Fuel; Methodes Non Destructives d'Evaluation du Taux de Combustion dans le Combustible Nucleaire; Metody opredeleniya vygoraniya v yadernom toplive bez razrusheniya obraztsa; Metodos No Destructivos para Determinai el Grado de Combustion de los Elementos Combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    McGonnagle, W. J. [Illinois Institute of Technology, Chicago, IL (United States)

    1966-02-15

    is of secondary importance and the cooling time is unimportant. Also, there is more precise nuclear data for the stable fission products. Of the stable isotopes produced during the fission process, zirconium, molybdenum, ruthenium, and neodymium appear to be the most useful. The proposed non-destructive methods using stable isotopes will be discussed. (author) [French] Il est a la fois utile et souhaitable d'utiliser des methodes non destructives pour proceder a la mesure quantitative du taux de combustion des elements combustibles d'un reacteur nucleaire. L'ideal serait de pouvoir analyser le combustible a l'aide d'une methode ne necessitant pas de renseignements particuliers sur les spectres des neutrons, le schema d'irradiation ou le temps de refroidissement. Les isotopes radioactifs et les isotopes stables resultant du processus de fission qui sont presents dans un element combustible irradie caracterisent son irradiation. Malheureusement, que l'analyse soit effectuee au moyen de methodes destructives ou non destructives, les resultats obtenus varient en fonction du spectre de neutrons, du schema d'irradiation et du temps de refroidissement. Deplus, l'absence de donnees nucleaires precises, comme les valeurs des section efficaces, influe sur tous les calculs qui peuvent etre effectues. L'analyse non destructive est egalement genee par la presence de champs de rayonnements intenses qui augmentent le bruit de fond. Il est difficile d'etablir des normes utiles et realistes. Bien que, dans l'etat actuel de la technique, les methodes non destructives n'aient pas toute la precision et l'exactitude voulues, elles presentent neanmoins un grand interet' notamment dans les cas ou il faut obtenir rapidement et economiquement une valeur approximative du taux de combustion. Plusieurs methodes non destructives d'evaluation du taux de combustion sont actuellement appliquees, a l'etude ou en projet. Plusieurs types de spectrometres sont utilises pour la mesure du rayonnement

  13. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  14. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  15. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  16. Meta-control of combustion performance with a data mining approach

    Science.gov (United States)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  17. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  18. A method and instruments to identify the torque, the power and the efficiency of an internal combustion engine of a wheeled vehicle

    Science.gov (United States)

    Egorov, A. V.; Kozlov, K. E.; Belogusev, V. N.

    2018-01-01

    In this paper, we propose a new method and instruments to identify the torque, the power, and the efficiency of internal combustion engines in transient conditions. This method, in contrast to the commonly used non-demounting methods based on inertia and strain gauge dynamometers, allows controlling the main performance parameters of internal combustion engines in transient conditions without inaccuracy connected with the torque loss due to its transfer to the driving wheels, on which the torque is measured with existing methods. In addition, the proposed method is easy to create, and it does not use strain measurement instruments, the application of which does not allow identifying the variable values of the measured parameters with high measurement rate; and therefore the use of them leads to the impossibility of taking into account the actual parameters when engineering the wheeled vehicles. Thus the use of this method can greatly improve the measurement accuracy and reduce costs and laboriousness during testing of internal combustion engines. The results of experiments showed the applicability of the proposed method for identification of the internal combustion engines performance parameters. In this paper, it was determined the most preferred transmission ratio when using the proposed method.

  19. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  20. Combustion and gasification of solid biomass: energy solutions for the Amazon; Combustao e gasificacao de biomassa solida: solucoes energeticas para a Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Eduardo Jose Fagundes; Rendeiro, Goncalo; Nogueira, Manoel Fernandes Martins; Brasil, Augusto Cesar de Mendonca; Cruz, Daniel Onofre de Almeida; Guerra, Danielle Regina da Silva; Macedo, Emanuel Negrao; Ichihara, Jorge de Araujo

    2008-07-01

    For electrify isolated rural communities in the Amazon, the Ministerio de Minas e Energia - MME (Brazilian Mining and Energy Ministry), promoted under the 'Luz para todos' (Light for All) program, a series of activities aimed at the development and implementation of projects for small- scale power generation and training professionals, in the region, for the deployment of alternative energy solutions from renewable energy sources. Among these activities are the production of the collection 'Energy Solutions for the Amazon', consisting of five volumes. This is the fourth volume in the series that presents an overview of the combustion and gasification of solid biomass.

  1. CAD/CAM/CAI Application for High-Precision Machining of Internal Combustion Engine Pistons

    Directory of Open Access Journals (Sweden)

    V. V. Postnov

    2014-07-01

    Full Text Available CAD/CAM/CAI application solutions for internal combustion engine pistons machining was analyzed. Low-volume technology of internal combustion engine pistons production was proposed. Fixture for CNC turning center was designed.

  2. 49 CFR Appendix H to Part 173 - Method of Testing for Sustained Combustibility

    Science.gov (United States)

    2010-10-01

    ... standard manner sustains combustion. 2. Principle of the method A metal block with a concave depression... consisting of a block of aluminum alloy or other corrosion-resistant metal of high thermal conductivity is... is 2.2 mm (see Figure 32.5.2.1); (b) Thermometer, mercury in glass, for horizontal operation, with a...

  3. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  4. Nanocrystalline LiMn2O4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material

    International Nuclear Information System (INIS)

    Fey, G.T.-K.; Cho, Y.-D.; Kumar, T. Prem

    2006-01-01

    Nanocrystalline LiMn 2 O 4 was synthesized by a self-sustaining solution combustion method with hexamethylenetetramine as a fuel. Ammonium nitrate was used as an additional oxidant-and-porogen. Thermal analytical studies showed the formation of LiMn 2 O 4 by a single-step decomposition process between 300 and 380 deg. C. The products were highly crystalline with an average crystallite size of ∼30 nm. Charge-discharge studies showed that the optimal heat treatment protocol was a 10 h calcination at 700 deg. C. A product obtained under these conditions from a precursor containing a 1:1 molar ratio of [LiNO 3 + Mn(NO 3 ) 2 ] and NH 4 NO 3 sustained 202 cycles between 3.0 and 4.3 V at a charge-discharge rate of 0.1 C before reaching an 80% charge retention cut-off value. Nanocrystalline particles provide small diffusion pathways that lead to an improvement in the lithium-ion intercalation kinetics and minimize surface distortions during cycling. These factors are believed to confer excellent electrochemical properties to the product

  5. A computationally efficient P_1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods

    International Nuclear Information System (INIS)

    Krishnamoorthy, Gautham

    2017-01-01

    Highlights: • The P_1 radiation model was interfaced with high performance linear solvers. • Pre-conditioned conjugate gradient (PC CG) method improved convergence by 50% • PC CG was more than 30 times faster than classical iterative methods. • The time to solution scaled linearly with increase in problem size employing PC CG. • Employing WSGGM with P_1 model compared reasonably well against benchmark data. - Abstract: The iterative convergence of the P_1 radiation model can be slow in optically thin scenarios when employing classical iterative methods. In order to remedy this shortcoming, an in-house P_1 radiation model was interfaced with high performance, scalable, linear solver libraries. Next, the accuracies of P_1 radiation model calculations was assessed by comparing its predictions against discrete ordinates (DO) model calculations for prototypical problems representative of modern combustion systems. Corresponding benchmark results were also included for comparison. Utilizing Pre-Conditioners (PC) to the Conjugate Gradients (CG) method, the convergence time of the P_1 radiation model reduced by a factor of 30 for modest problem sizes and a factor of 70 for larger sized problems when compared against classical Gauss Seidel sweeps. Further, PC provided 50% computational savings compared to employing CG in a standalone mode. The P_1 model calculation times were about 25–30% of the DO model calculation time. The time to solution also scaled linearly with an increase in problem size. The weighted sum of gray gases model employed in this study in conjunction with the P_1 model provided good agreement against benchmark data with L_2 error norms (defined relative to corresponding DO calculations) improving when isotropic intensities were prevalent.

  6. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    Science.gov (United States)

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  8. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments

    International Nuclear Information System (INIS)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-01-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr2−2ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [es

  9. Control of emissions from stationary combustion sources: Pollutant detection and behavior in the atmosphere

    International Nuclear Information System (INIS)

    Licht, W.; Engel, A.J.; Slater, S.M.

    1979-01-01

    Stationary combustion resources continue to be significant sources of NOx and SOx pollutants in the ambient atmosphere. This volume considers four problem areas: (1) control of emissions from stationary combustion sources, particularly SOx and NOx (2) pollutant behavior in the atmosphere (3) advances in air pollution analysis and (4) air quality management. Topics of interest include carbon slurries for sulfur dioxide abatement, mass transfer in the Kellogg-Weir air quality control system, oxidation/inhibition of sulfite ion in aqueous solution, some micrometeorological methods of measuring dry deposition rates, Spanish moss as an indicator of airborne metal contamination, and air quality impacts from future electric power generation in Texas

  10. NIR to visible upconversion in Er3+/Yb3+ co-doped CaYAl3O7 phosphor obtained by solution combustion process

    International Nuclear Information System (INIS)

    Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus

    2011-01-01

    Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.

  11. Study of photoluminescence and thermoluminescence properties of BaAl2O4 (Eu2+, Dy3+) phosphor synthesized by solution combustion method

    Science.gov (United States)

    Pathak, Pushpraj; Kurchania, Rajnish

    2016-10-01

    Eu and Dy co-doped barium aluminate phosphor was successfully synthesized by combustion method using urea as a fuel. Phase formation was confirmed by powder X-ray diffraction (PXRD) analysis. The calculated average crystallite size was found to be ~34.62 nm. Scanning electron microscopy (SEM) images acquired at different (low and high) magnifications reveal that the crystallites have no uniform shape and size. This was due to the non-uniform distribution of temperature and mass flow in the combustion technique. Fourier Transform Infra-red (FTIR) spectrum was recorded to confirm the phase formation and also to identify any impurity if present in the prepared phosphor. Photoluminescence (PL) measurement was carried out to investigate the incorporation of dopant into the host lattice. Thermoluminescence (TL) behaviour of synthesized phosphor was studied after the irradiation with Cobalt-60 gamma rays (Eavg=1.25 MeV) as well as 6 and 16 MV (Mega Voltage) X-ray photons, at various dose levels. The glow curves of irradiated samples exhibit only one peak at 115 °C at each dose level. With the increases of radiation dose an increase in total intensity has been observed. No appreciable shift in peak positions has been observed. Trapping parameters were evaluated to understand the characteristics of prepared phosphor. A simple glow peak with relatively high intensity is one of the important factors, which make this phosphor useful for monitoring the ionizing radiations in nuclear industries, gamma irradiators, high energy accelerators, nuclear reactors etc. where medium and high level of exposure is involved. It could also be applicable for accidental and retrospective dose assessment.

  12. One-step solution combustion synthesis of Fe{sub 2}O{sub 3}/C nano-composites as anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyang; Deng, Jiachun; Li, Ying [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liang, Wei, E-mail: liangwei@tyut.edu.cn [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Kun [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Kang, Litao, E-mail: kangltxy@gmail.com [Nano-Energy Inorganic Materials Laboratory, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zeng, Shaozhong; Yin, Shanhui; Zhao, Zhigang [Chery Automobile Co. Ltd., Wuhu 241006 (China); Liu, Xuguang; Yang, Yongzhen [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Gao, Feng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-03-25

    Highlights: • Fe{sub 2}O{sub 3}/C composite anode materials were prepared by a solution combustion process. • The carbon content could be adjusted by regulating the ratio of oxidizer/fuel. • The Fe{sub 2}O{sub 3}/C composite showed capacity 470 mA h g{sup −1} at the 80th cycle at 125 mA g{sup −1}. -- Abstract: This article describes a one-step solution combustion route (within 30 min at 350 °C in air) to prepare Fe{sub 2}O{sub 3} anode materials for lithium ion batteries (LIBs) from Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O solution with citric acid. XRD, SEM-EDX and TEM showed that the product consisted a mixture of nano-sized α-Fe{sub 2}O{sub 3} and γ-Fe{sub 2}O{sub 3} crystals that agglomerated into porous particles. Significantly, in situ formed carbon could be introduced into the product (i.e., Fe{sub 2}O{sub 3}/C nano-composites) by simply increasing the dosage of citric acid in the precursor solution. The as-prepared Fe{sub 2}O{sub 3}/C nano-composite exhibited high reversible capacities of 470 and 419 mA h g{sup −1} at the 80th and 200th cycles with a current density of 125 mA g{sup −1}, which are much higher than those of counterparts without carbon (i.e., Fe{sub 2}O{sub 3} nano-particles). Comparison experiments correlated with the performance improvement of Fe{sub 2}O{sub 3}/C nano-composites with in situ formed carbon, well-developed mesopores and relatively high specific surface areas.

  13. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  14. Use of combustible wastes as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Salamov, A.A.

    1983-01-01

    Achievements of science and technology in creating and using units for combustion of wastes with recovery of heat of the escaping gases has been systematized and generalized. Scales and outlooks are examined for the use of general, industrial and agricultural waste as fuel, composition of the waste, questions of planning and operating units for combustion of solid refuse, settling of waste water and industrial and agricultural waste. Questions are covered for preparing them for combustion use in special units with recovery of heat and at ES, aspects of environmental protection during combustion of waste, cost indicators of the employed methods of recovering the combustible waste.

  15. Modeling of atomization and distribution of drop-liquid fuel in unsteady swirling flows in a combustion chamber and free space

    Science.gov (United States)

    Sviridenkov, A. A.; Toktaliev, P. D.; Tretyakov, V. V.

    2018-03-01

    Numerical and experimental research of atomization and propagation of drop-liquid phase in swirling flow behind the frontal device of combustion chamber was performed. Numerical procedure was based on steady and unsteady Reynolds equations solution. It's shown that better agreement with experimental data could be obtained with unsteady approach. Fractional time step method was implemented to solve Reynolds equations. Models of primary and secondary breakup of liquid fuel jet in swirling flows are formulated and tested. Typical mean sizes of fuel droplets for base operational regime of swirling device and combustion chamber were calculated. Comparison of main features of internal swirling flow in combustion chamber with unbounded swirling flow was made.

  16. Tetragonal-cubic phase boundary in nanocrystalline ZrO2-Y2O3 solid solutions synthesized by gel-combustion

    International Nuclear Information System (INIS)

    Fabregas, Ismael O.; Craievich, Aldo F.; Fantini, Marcia C.A.; Millen, Ricardo P.; Temperini, Marcia L.A.; Lamas, Diego G.

    2011-01-01

    Research highlights: → Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO 2 -Y 2 O 3 nanopowders, that exhibit the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms (t' and t'') and the cubic phase. → Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. → The crystallographic features of ZrO 2 -Y 2 O 3 nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. → Compositional t'/t'' and t''/cubic phase boundaries are located at (9 ± 1) and (10.5 ± 0.5) mol% Y 2 O 3 , respectively. → For the whole series of nanocrystalline ZrO 2 -Y 2 O 3 solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO 2 -Y 2 O 3 solid solutions, the presence at room temperature of three different phases depending on Y 2 O 3 content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO 2 -Y 2 O 3 solid solutions exhibit the same phases reported in the literature for compositionally homogeneous materials containing larger (micro

  17. Multi-stage combustion using nitrogen-enriched air

    Science.gov (United States)

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  18. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    spectral measurements at several line-of-sights with a view to applications for tomographic measurements on full-scale industrial combustion systems. The system was successfully applied on industrial scale for simultaneous fast exhaust gas temperature measurements in the three optical ports of the exhaust......D project, it was also important to investigate the spectral properties of major combustion species such as carbon dioxide and carbon monoxide in the infrared range at high temperatures to provide the theoretical background for the development of the optical tomography methods. The new software....... JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  19. Glycine as Alternative Fuel in Making Hydrotalcite Compound by Means of Combustion Method

    International Nuclear Information System (INIS)

    Shamsudin, I.K.; Helwani, Z.; Abdullah, A.Z.

    2013-01-01

    Hydrotalcite is anion compound capable of exchanging ions; it has the potential as a catalyst and adsorbent for variety of applications. Hydrotalcite can be prepared through several approaches, depending on the specific need and the characteristics of the compound. In this study, hydrotalcite was prepared through combustion method using glycine as fuel for the first time. Glycine was selected as opposed to urea so that hydrotalcite is safe for use in food processing or health. Hydrotalcite that was successfully obtained via combustion technique using glycine as fuel showed interesting characteristics. The compound demonstrated high thermal endurance and highest alkalinity, which suited the application for bio diesel production from vegetable oil and hydrogenation in the making of fats. However, the surface area was low in comparison with the same compound obtained from co-precipitation and sol-gel techniques. (author)

  20. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  1. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  2. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  3. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  4. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  5. Apparatus and method for solid fuel chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  6. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  7. Large eddy simulation of premixed and non-premixed combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Sadasivuni, SK; Gubba, SR

    2010-01-01

    This paper summarises the authors experience in using the Large Eddy Simulation (LES) technique for the modelling of premixed and non-premixed combustion. The paper describes the application of LES based combustion modelling technique to two well defined experimental configurations where high quality data is available for validation. The large eddy simulation technique for the modelling flow and turbulence is based on the solution of governing equations for continuity and momentum in a struct...

  8. Determination of 60 Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method

    International Nuclear Information System (INIS)

    Lugo, V.; Bulbulian, S.; Urena, F.

    2005-01-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co 2+ ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co 2+ ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  9. Oxyfuel combustion for below zero CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Boeg Toftegaard, M; Hansen, Kim G; Fisker, D [DONG Energy Power, Hvidovre (Denmark); Brix, J; Brun Hansen, B; Putluru, S S.R.; Jensen, Peter Arendt; Glarborg, Peter; Degn Jensen, A [Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark); Montgomery, M [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark)

    2011-07-01

    The reduction of CO{sub 2} emissions is of highest concern in relation to limiting the anthropogenic impacts on the environment. Primary focus has gathered on the large point sources of CO{sub 2} emissions constituted by large heat and power stations and other heavy, energy-consuming industry. Solutions are sought which will enable a significant reduction of the anthropogenic CO{sub 2} emissions during the transformation period from the use of fossil fuels to renewable sources of energy. Carbon capture and storage (CCS) has the potential to significantly reduce CO{sub 2} emissions from power stations while allowing for the continuous utilisation of the existing energy producing system in the transformation period. Oxyfuel combustion is one of the possible CCS technologies which show promising perspectives for implementation in industrial scale within a relatively short period of time. Oxyfuel combustion deviates from conventional combustion in air by using a mixture of pure oxygen and recirculated flue gas as the combustion medium thereby creating a flue gas highly concentrated in CO{sub 2} making the capture process economically more feasible compared to technologies with capture from more dilute CO{sub 2} streams. This project has investigated a number of the fundamental and practical issues of the oxyfuel combustion process by experimental, theoretical, and modelling investigations in order to improve the knowledge of the technology. The subjects investigated cover: general combustion characteristics of coal and biomass (straw) and mixtures thereof, formation and emission of pollutants, ash characteristics, flue gas cleaning for SO{sub 2} by wet scrubbing with limestone and for NO{sub x} by selective catalytic reduction (SCR), corrosion of boiler heat transfer surfaces, operation and control of large suspension-fired boilers, and the perspectives for the implementation of oxyfuel combustion s a CO{sub 2} sequestration solution in the Danish power production

  10. Study of mechanically activated coal combustion

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolij P.

    2009-01-01

    Full Text Available Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods at coals grinding on their chemical activeness at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activeness that enables development of new highly boosted processing methods for coals with various levels of metamorphism.

  11. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  12. Combustion properties of wood impregnated with commercial ...

    African Journals Online (AJOL)

    The objective of this study was to determine some combustion properties of Calabrian pine (Pinus brutia Ten.) wood specimens impregnated with aqueous solutions of commercial fertilizers. Ammonium sulphate (AS) and diammonium phosphate (DAP) were used as commercial fertilizers. Diammonium phosphate and ...

  13. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  14. Study of the catalytic activity of ceramic nano fibers in the methane combustion

    International Nuclear Information System (INIS)

    Reolon, R.P.; Berutti, F.A.; Alves, A.K.; Bergmann, C.P.

    2009-01-01

    In this work titanium oxide fibers, doped with cerium and copper, were synthesized using the electro spinning process. Titanium propoxide was used as a precursor in the electro spinning synthesis. The obtained fibers were heat treated after receive a spray with an alcoholic solution of cerium acetate and copper nitrate. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, X-ray photoelectron spectroscopy (XPS), BET method to determine the surface and SEM to analyze the microstructure of the fibers. The catalytic activity was evaluated by methane and air combustion under different temperatures. The amount of combustion gases such as NO x , C x H y , CO e CO 2 , were analyzed. (author)

  15. Cost–benefit analysis method for building solutions

    International Nuclear Information System (INIS)

    Araújo, Catarina; Almeida, Manuela; Bragança, Luís; Barbosa, José Amarilio

    2016-01-01

    Highlights: • A new cost–benefit method was developed to compare building solutions. • The method considers energy performance, life cycle costs and investment willingness. • The graphical analysis helps stakeholders to easily compare building solutions. • The method was applied to a case study showing consistency and feasibility. - Abstract: The building sector is responsible for consuming approximately 40% of the final energy in Europe. However, more than 50% of this consumption can be reduced through energy-efficient measures. Our society is facing not only a severe and unprecedented environmental crisis but also an economic crisis of similar magnitude. In light of this, EU has developed legislation promoting the use of the Cost-Optimal (CO) method in order to improve building energy efficiency, in which selection criteria is based on life cycle costs. Nevertheless, studies show that the implementation of energy-efficient solutions is far from ideal. Therefore, it is very important to analyse the reasons for this gap between theory and implementation as well as improve selection methods. This study aims to develop a methodology based on a cost-effectiveness analysis, which can be seen as an improvement to the CO method as it considers the investment willingness of stakeholders in the selection process of energy-efficient solutions. The method uses a simple graphical display in which the stakeholders’ investment willingness is identified as the slope of a reference line, allowing easy selection between building solutions. This method will lead to the selection of more desired – from stakeholders’ point of view – and more energy-efficient solutions than those selected through the CO method.

  16. Experimental study of improvement on combustion control of fluidized bed combustion chamber; Ryudosho shokyakuro no nenshosei no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Izumiya, T.; Baba, K.; Koshida, H.; Uetani, J.; Furuta, M.

    1998-10-29

    Nippon Steel Corporation has carried out an experimental study using the Yawata waste incinerator plant in order to improve combustion control of a fluidized bed combustion chamber. For controlling the forming of dioxin, combustion control is very important in addition to conventional methods. In this paper, we report two studies about improvements on combustion control. In the first study, we verified improvement on combustion control by modifying gas flow at the freeboard. The operational results of the experiments were studied using the numerical model of the combustion chamber. The modification of gas flow at freeboard was confirmed to be effective to obtain a compact design of fluidized bed combustion chamber for municipal waste. In the second, study we improved combustion control for sewage combustion with municipal waste. In burning municipal waste and sewage, it is especially required to take combustion control into careful consideration. In this experiment, we developed a new device for supplying sewage for the appropriate controlling combustion, and verified its effectiveness to combustion control and an effective reduction of dioxin. (author)

  17. Technology Solutions Case Study: Combustion Safety Simplified Test Protocol

    Energy Technology Data Exchange (ETDEWEB)

    L. Brand, D. Cautley, D. Bohac, P. Francisco, L. Shen, and S. Gloss

    2015-12-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives.

  18. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  19. YAG:Dy – Based single white light emitting phosphor produced by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Carreira, J.F.C., E-mail: correiacarreira@ua.pt; Sedrine, N. Ben; Monteiro, T.; Rino, L.

    2017-03-15

    Dysprosium-doped yttrium aluminum garnet (YAG:Dy) phosphor was successfully produced by a Solution Combustion Synthesis (SCS) using a mixture of two fuels (urea and glycine). The effects of Dy concentration and annealing temperature were studied by X-ray diffraction (XRD), Raman spectroscopy (RS), photoluminescence (PL) and photoluminescence excitation (PLE). X-ray diffraction results show that the phosphors are single phase YAG with crystallite size ranging from 45 to 82 nm. Raman spectroscopy corroborates these results and show that the introduction of Dy ions in the YAG lattice results in additional Raman modes. Room temperature photoluminescence results confirm the introduction of the ion in the host lattice and its optical activation for all the Dy concentrations. CIE1931 color coordinates show that the samples’ emission lays in the near white region. The highest intraionic emission intensity was achieved for a Dy concentration of 2 mol% and annealing temperature of 1400 °C. Photoluminescence excitation results show that the ions luminescence is preferential excited with 351.8 and 365.8 nm wavelength photons.

  20. Simultaneous determination of V, As, Se, Cd, Ba and Pb in coal by ICP-MS after high pressure oxygen combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K.; Arikawa, Y. [Japan Womens University, Tokyo (Japan). Graduate School of Science

    2007-04-15

    A simple decomposition procedure by a high pressure oxygen combustion method was employed for the determination of six elements (V, As, Se, Cd, Ba and Pb) in coal by inductively coupled plasma mass spectrometry (ICP-MS). Combustion under 3 MPa pressure of oxygen in a sealed bomb is a simple and effective method for the decomposition of carbonaceous materials. Organic components are burnt to form CO{sub 2} and H{sub 2}O. Other components also form oxides, which are absorbed in the absorbing solution of a 5 mL of 5% HNO{sub 3} - 1% H{sub 2}O1 Mixed solution put in a bomb. To completely decompose the sample, 600 mg of starch is added to 300 mg of a ground coal sample. Though ignition normally takes about s, 30 min is required before opening the bomb to keep to the oxides absorbed into the absorbing solution. The accuracy of the procedure was evaluated by comparing the determination value of each element with a certified value of a standard reference material. In this study, NIST SRM 1632c and 1632b, given by the National Institute for Standards and Technology in Washington DC, USA were used as standard reference materials. The results obtained by ICP-MS after high pressure oxygen combustion showed good agreements with the certified values of NIST 1632c for 6 elements (V, As, Se, Cd, Ba, Pb). This method was applied to the determination of 6 elements in coal real samples supplied by CCUJ (Center of Coal Utilization Japan).

  1. The rheodynamics and combustion of coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Popov, V.I.; Tomilov, V.G.; Fedosenko, V.D. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Thermophysics (Siberian Branch, Russian Academy of Science)

    2002-05-01

    Investigation methods for characteristics of movement along the tubes, combustion dynamics and gasification of separate drops were developed for the coal-water mixtures (CWM). The following parameters were determined on the basis of laser heating: thermometric, pyrometric and concentration dynamics of single-drop combustion, complete combustion times, duration of temperature phases of combustion, as well as the moment and temperature of ignition. Information on the combustion mass velocity and gasification products was also obtained using laser heating. 6 refs., 13 figs., 1 tab.

  2. CFD simulation of the combustion process of the low-emission vortex boiler

    Science.gov (United States)

    Chernov, A. A.; Maryandyshev, P. A.; Pankratov, E. V.; Lubov, V. K.

    2017-11-01

    Domestic heat and power engineering needs means and methods for optimizing the existing boiler plants in order to increase their technical, economic and environmental work. The development of modern computer technology, methods of numerical modeling and specialized software greatly facilitates the solution of many emerging problems. CFD simulation allows to obtaine precise results of thermochemical and aerodynamic processes taking place in the furnace of boilers in order to optimize their operation modes and develop directions for their modernization. The paper presents the results of simulation of the combustion process of a low-emission vortex coal boiler of the model E-220/100 using the software package Ansys Fluent. A hexahedral grid with a number of 2 million cells was constructed for the chosen boiler model. A stationary problem with a two-phase flow was solved. The gaseous components are air, combustion products and volatile substances. The solid phase is coal particles at different burnup stages. The Euler-Lagrange approach was taken as a basis. Calculation of the coal particles trajectories was carried out using the Discrete Phase Model which distribution of the size particle of coal dust was accounted for using the Rosin-Rammler equation. Partially Premixed combustion model was used as the combustion model which take into account elemental composition of the fuel and heat analysis. To take turbulence into account, a two-parameter k-ε model with a standard wall function was chosen. Heat transfer by radiation was calculated using the P1-approximation of the method of spherical harmonics. The system of spatial equations was numerically solved by the control volume method using the SIMPLE algorithm of Patankar and Spaulding. Comparison of data obtained during the industrial-operational tests of low-emission vortex boilers with the results of mathematical modeling showed acceptable convergence of the tasks of this level, which confirms the adequacy of the

  3. Experimental evaluation of washing for treatment of combustible plutonium-contaminated materials

    International Nuclear Information System (INIS)

    Wilkins, J.D.; Wisbey, S.J.

    1983-03-01

    Laboratory scale experiments have been carried out in order to assess the potential of washing as a method for removing plutonium from contaminated combustible wastes. A wide range of aqueous (eg 1 M HNO 3 , 1 M NaOH) and organic (1,1,2-trichlorotrifluoroethane) reagents have been investigated. Both synthetically contaminated and real wastes have been investigated. The preferred wash reagent has been identified as 1 M sodium hydroxide solution; plutonium recoveries of ca.80 to 90% can be achieved. (author)

  4. Solution combustion synthesis of (La, K) FeO3 orthoferrite ceramics ...

    Indian Academy of Sciences (India)

    Administrator

    Fourier transform infrared spectroscopy (FTIR), and magnetic and optical property ... Among many perovskite ceramics, LaFeO3 is of cur- ... example, in anode-supported SOFCs, doped LaFeO3 used ... doped with K+, synthesized by a simple combustion ... single phase formation was limited to ... magnetic field of 1000 Oe.

  5. Determination of adsorbable organic halogens in surface water samples by combustion-microcoulometry versus combustion-ion chromatography titration.

    Science.gov (United States)

    Kinani, Aziz; Sa Lhi, Hacène; Bouchonnet, Stéphane; Kinani, Said

    2018-03-02

    Adsorbable Organic Halogen (AOX) is an analytical parameter of considerable interest since it allows to evaluate the amount of organohalogen disinfection by-products (OXBPs) present in a water sample. Halogen speciation of AOX into adsorbable organic chlorine, bromine and iodine, respectively AOCl, AOBr and AOI, is extremely important since it has been shown that iodinated and brominated organic by-products tend to be more toxic than their chlorinated analogues. Chemical speciation of AOX can be performed by combustion-ion chromatography (C-IC). In the present work, the effectiveness of the nitrate wash according to ISO 9562 standard method protocol to eliminate halide ions interferences was firstly examined. False positive AOX values were observed when chloride concentration exceeded 100 ppm. The improvements made to the washing protocol have eliminated chloride interference for concentrations up to 1000 ppm. A C-IC method for chemical speciation of AOX into AOCl, AOBr, and AOI has been developed and validated. The most important analytical parameters were investigated. The following optimal conditions were established: an aqueous solution containing 2.4 mM sodium bicarbonate/2.0 mM sodium carbonate, and 2% acetone (v/v) as mobile phase, 2 mL of aqueous sodium thiosulfate (500 ppm) as absorption solution, 0.2 mL min -1 as water inlet flow rate for hydropyrolysis, and 10 min as post-combustion time. The method was validated according to NF T90-210 standard method. Calibration curves fitted through a quadratic equation show coefficients of determination (r 2 ) greater than 0.9998, and RSD less than 5%. The LOQs were 0.9, 4.3, and 5.7 μg L -1 Cl for AOCl, AOBr, and AOI, respectively. The accuracy, in terms of relative error, was within a ± 10% interval. The applicability of the validated method was demonstrated by the analysis of twenty four water samples from three rivers in France. The measurements reveals AOX amounts above 10

  6. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  7. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    Science.gov (United States)

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  8. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  9. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  10. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Vi H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-06-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is constrained by concerns about related impacts on the safety of naturally vented combustion appliances. Tighter housing units more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spillage. Several test methods purportedly assess the potential for depressurization-induced backdrafting and spillage, but these tests are not robustly reliable and repeatable predictors of venting performance, in part because they do not fully capture weather effects on venting performance. The purpose of this literature review is to investigate combustion safety diagnostics in existing codes, standards, and guidelines related to combustion appliances. This review summarizes existing combustion safety test methods, evaluations of these test methods, and also discusses research related to wind effects and the simulation of vent system performance. Current codes and standards related to combustion appliance installation provide little information on assessing backdrafting or spillage potential. A substantial amount of research has been conducted to assess combustion appliance backdrafting and spillage test methods, but primarily focuses on comparing short-term (stress) induced tests and monitoring results. Monitoring, typically performed over one week, indicated that combinations of environmental and house operation characteristics most conducive to combustion spillage were rare. Research, to an extent, has assessed existing combustion safety diagnostics for house depressurization, but the objectives of the diagnostics, both stress and monitoring, are not clearly defined. More research is also needed to quantify the frequency of test “failure” occurrence throughout the building stock and assess the statistical effects of weather (especially wind) on house depressurization and in turn on combustion appliance venting

  11. Thermogravimetric analysis of biowastes during combustion

    International Nuclear Information System (INIS)

    Otero, M.; Sanchez, M.E.; Gomez, X.; Moran, A.

    2010-01-01

    The combustion of sewage sludge (SS), animal manure (AM) and the organic fraction of municipal solid waste (OFMSW) was assessed and compared with that of a semianthracite coal (SC) and of a PET waste by thermogravimetric (TG) analysis. Differences were found in the TG curves obtained for the combustion of these materials accordingly to their respective proximate analysis. Non-isothermal thermogravimetric data were used to assess the kinetics of the combustion of these biowastes. The present paper reports on the application of the Vyazovkin model-free isoconversional method for the evaluation of the activation energy necessary for the combustion of these biowastes. The activation energy related to SS combustion (129.1 kJ/mol) was similar to that corresponding to AM (132.5 kJ/mol) while the OFMSW showed a higher value (159.3 kJ/mol). These values are quite higher than the one determined in the same way for the combustion of SC (49.2 kJ/mol) but lower than that for the combustion of a PET waste (165.6 kJ/mol).

  12. Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method

    International Nuclear Information System (INIS)

    Tholkappiyan, R.; Vishista, K.

    2014-01-01

    Pure and lanthanum doped zinc ferrite nanoparticles were synthesized by a combustion method using glycine as fuel. The mechanism of formation of these nanoferrites is discussed briefly. The prepared nanoparticles characterized using powder X-ray diffraction analysis (XRD) revealed the formation of cubic spinel phase with high crystallinity. Average crystallite size, X-ray density and bulk density were found to decrease with an increase in La 3+ concentration. The chemical elements and states on the surface of these ferrites were determined using X-ray photoelectron spectroscopy (XPS). The detailed core level spectra of the photoelectron peaks of Zn 2p, Fe 2p, La 3d and O 1s were analyzed. The magnetic behavior of these nanoparticles was studied using a vibrating sample magnetometer (VSM) and corresponding changes in the saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were analyzed. The optical behavior of these ferrite nanoparticles was characterized by UV–Diffuse reflectance studies (UV–DRS). From the UV–DRS studies, the optical band gap was found to be in the range of 1.87–1.97 eV. The combustion method significantly produces large amount of products within a short time. Therefore, this method is potentially suitable for manufacturing industries for preparing the magnetic nanoparticles

  13. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  14. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  15. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  16. Accurate determination of bromine and iodine in medicinal plants by inductively coupled plasma-mass spectrometry after microwave-induced combustion

    Science.gov (United States)

    Nascimento, Mariele S.; Mendes, Ana Luiza G.; Henn, Alessandra S.; Picoloto, Rochele S.; Mello, Paola A.; Flores, Erico M. M.

    2017-12-01

    In this work, a method for the determination of bromine and iodine in medicinal plants by inductively coupled plasma mass spectrometry (ICP-MS) after digestion by microwave-induced combustion (MIC) was developed. Medicinal plants were pressed as pellets and combusted at 20 bar of oxygen. The suitability of absorbing solution (water, 50 mmol L- 1 (NH4)2CO3, 10 mmol L- 1, 25 mmol L- 1, 50 mmol L- 1 or 100 mmol L- 1 NH4OH) was evaluated and a reflux step of 5 min was applied after combustion. The accuracy of the proposed method was evaluated by using certified reference materials (CRMs) of apple leaves and peach leaves and also by spiked samples. Using 50 mmol L- 1 NH4OH as absorbing solution, recoveries close to 100% for bromine and iodine were obtained as well as a low relative standard deviation (5%). No statistical difference (t-test, 95% of confidence level) was observed between the values obtained by ICP-MS after MIC digestion and the certified values. One of the important advantages of the proposed method is that it allowed the use of a relatively high sample mass (1000 mg) of medicinal plant resulting in low limits of quantification (0.033 μg g- 1 and 0.003 μg g- 1 for Br and I, respectively). Blanks were always negligible and only diluted solutions were used, in agreement with current recommendations for analytical methods. A high digestion efficiency was achieved (> 99%) assuring quantitative results. The concentration of analytes in medicinal plants was in the range of 0.17 μg g- 1 to 53.1 μg g- 1 for Br and medicinal plants (125 μg g- 1).

  17. Porous oxides synthesized by the combustion method

    International Nuclear Information System (INIS)

    Lugo L, V.

    2005-01-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of 60 Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co 2+ , with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co 2+ to simulate the sorption of 60 Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  18. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    Science.gov (United States)

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  20. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    International Nuclear Information System (INIS)

    Zhang Jianrong; Gao Lian

    2004-01-01

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb 2 O 3 . The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size shows that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m 2 /g when the citric acid to tin ratio was about 6

  1. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  2. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  3. Method of reduction of diagnostic parameters during observation on the example of a combustion engine

    Directory of Open Access Journals (Sweden)

    Orczyk Malgorzata

    2017-01-01

    Full Text Available The article presents a method of selecting diagnostic parameters which map the process of damaging the object. This method consists in calculating, during the observation, the correlation coefficient between the intensity of damage and the individual diagnostic parameters; and discarding of those parameters whose correlation coefficient values are outside of the narrowest confidence interval of the correlation coefficient. The characteristic feature of this method is that the parameters are reduced during the diagnostic experiment. The essence of the proposed method is illustrated by the vibration diagnosis of an internal combustion engine.

  4. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  5. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  6. Risk analysis of a biomass combustion process using MOSAR and FMEA methods.

    Science.gov (United States)

    Thivel, P-X; Bultel, Y; Delpech, F

    2008-02-28

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of SeverityxProbability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode.

  7. Risk analysis of a biomass combustion process using MOSAR and FMEA methods

    International Nuclear Information System (INIS)

    Thivel, P.-X.; Bultel, Y.; Delpech, F.

    2008-01-01

    Thermal and chemical conversion processes that convert in energy the sewage sludge, pasty waste and other pre-processed waste are increasingly common, for economic and ecological reasons. Fluidized bed combustion is currently one of the most promising methods of energy conversion, since it burns biomass very efficiently, and produces only very small quantities of sulphur and nitrogen oxides. The hazards associated with biomass combustion processes are fire, explosion and poisoning from the combustion gases (CO, etc.). The risk analysis presented in this paper uses the MADS-MOSAR methodology, applied to a semi-industrial pilot scheme comprising a fluidization column, a conventional cyclone, two natural gas burners and a continuous supply of biomass. The methodology uses a generic approach, with an initial macroscopic stage where hazard sources are identified, scenarios for undesired events are recognized and ranked using a grid of Severity x Probability and safety barriers suggested. A microscopic stage then analyzes in detail the major risks identified during the first stage. This analysis may use various different tools, such as HAZOP, FMEA, etc.: our analysis is based on FMEA. Using MOSAR, we were able to identify five subsystems: the reactor (fluidized bed and centrifuge), the fuel and biomass supply lines, the operator and the environment. When we drew up scenarios based on these subsystems, we found that malfunction of the gas supply burners was a common trigger in many scenarios. Our subsequent microscopic analysis, therefore, focused on the burners, looking at the ways they failed, and at the effects and criticality of those failures (FMEA). We were, thus, able to identify a number of critical factors such as the incoming gas lines and the ignition electrode

  8. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  9. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A new solution method for wheel/rail rolling contact.

    Science.gov (United States)

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  11. Sulfur equilibrium desulfurization of sulfur containing products of combustion

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Abichandani, J.S.

    1990-01-01

    This patent describes the method for the combustion of a carbon- and sulfur-containing fuel for substantially reducing emission of gaseous sulfur compounds formed during combustion of the fuel in a combustion zone. The zone having one or more fuel inlets and one or more oxidizer inlets, and having a combustion products outlet spaced therefrom, and having one or more inorganic sorbent inlets downstream of the fuel inlet(s) and oxidizer inlet(s) and upstream of the combustion products outlet

  12. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  13. Combustion control and sensors: a review

    International Nuclear Information System (INIS)

    Docquier, N.; Candel, S.

    2002-01-01

    There is an increased interest in the application of control to combustion. The objective is to optimize combustor operation, monitor the process and alleviate instabilities and their severe consequences. One wishes to improve the system performance, for example by reducing the levels of pollutant emissions or by smoothing the pattern factor at the combustor exhaust. In other cases, the aim is to extend the stability domain by reducing the level of oscillation induced by coupling between resonance modes and combustion. As combustion systems have to meet increasingly more demanding air pollution standards, their design and operation becomes more complex. The trend towards reduced NO x levels has led to new developments in different fields. Automotive engines and gas turbine combustors are considered in this article. In the first case, complex exhaust aftertreatment is being applied and dedicated engine control systems are required to ensure and maintain high pollutant conversion efficiency. For gas turbines, premixed combustors, which operate at lower local temperatures than conventional systems have been designed. In both cases, monitoring and control of the operating point of the process have to be achieved with great precision to obtain the full benefits of the NO x reduction scheme. For premixed combustors operating near the lean stability limit, the flame is more susceptible to blowout, oscillation or flashback. Research is now carried out to reduce these dynamical problems with passive and active control methods. In addition to a broad range of fundamental problems raised by Active Combustion Control (ACC) and Operating Point Control (OPC), there are important technological issues. This paper contains a review of some facets of combustion control and focuses on the sensors that take or could take part to combustion control solutions. The current status of ACC and OPC is presented together with the associated control concepts. The state of the art in sensors is

  14. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    International Nuclear Information System (INIS)

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-01-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO 2 ; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database

  15. Staged combustion with piston engine and turbine engine supercharger

    Science.gov (United States)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O'Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  16. Oxidative desulfurization of Cayirhan lignites by permanganate solution

    Energy Technology Data Exchange (ETDEWEB)

    Guru, M.; Tuzun, F.N.; Murathan, A.S.; Asan, A.; Kiyak, T. [Gazi University, Ankara (Turkey). Dept. for Chemical Engineering

    2008-07-01

    Unless important developments record new and renewable energy sources, the role of fossil fuels as an energy resource goes on. It is possible to detect sulfur, heavy metals, and tracer elements such as arsenic and selenium by decreasing calorific value of coals. Sulfur oxides, which are the main pollutants in atmosphere, are irritative to humans and plants, and erosion occurs on buildings. Although there are high lignite reservoirs, high sulfur content limits the efficient use of them. In this research, it is aimed to convert combustible sulfur in coal to non-combustible sulfur form in the ash by oxidizing it with permanganate solution. During this research, the effect of two different parameters of potassium permanganate concentration, processing time, and mean particle size were investigated at constant room temperature and shaking rate. The conversion of combustible sulfur to non-combustible sulfur form was achieved optimally with 0.14 M potassium permanganate solution, 0.1 mm mean particle size at 16 h of treatment time, and the combustible sulfur amount was decreased by 46.37% compared to undoped conditions.

  17. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine

    Directory of Open Access Journals (Sweden)

    Rajesha Bedre Jagannatha

    2017-01-01

    Full Text Available In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and UV-visible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures. There are no other impurities in the diffraction peak. In addition, SEM measurement shows that most of the nanoparticles are spongy and spherical in shape and fairly mono dispersed. A significant degradation of the Caffeine was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photo degradation increaseds with the photocatalyst loading. Besides the photocatalyst loading, the effect of some parameters on the photo degradation efficiency such as initial concentration and pH were also studied.

  18. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  19. Oxidation inhibitors for aqueous MEA solutions used in a post-combustion CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Carrette, P.L.; Bonnard, L. [IFP, Solaize (France); Delfort, B. [IFP, Rueil-Malmaison (France)

    2009-07-01

    This study examined the feasibility of using an aqueous solution of MEA as a solvent for post- combustion capture of carbon dioxide (CO{sub 2}). MEA is inexpensive, largely available, non toxic and highly effective because of its high capacity for CO{sub 2} capture and its fast reaction kinetics. However, significant oxidative degradation occurs when MEA is exposed to oxygen. Oxidation of MEA is not only a source of solvent consumption but also creates volatile compounds such as ammonia and carboxylic acids that can cause corrosion. As such, degradation control is a major challenge. Oxidative degradation can potentially be solved by the use of antioxidant additives. This presentation reported on a laboratory scale evaluation test of MEA degradation associated with analysis of degradation products. Different antioxidant additives were then evaluated. Conventional antioxidant additives were found to be poorly active or inactive, and some even exhibited a pronounced effect upon degradation. New classes of additives have been found to be effective in considerably reducing degradation.

  20. Development of spent solvent treatment process by a submerged combustion technique

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide; Chida, Mitsuhisa

    1994-01-01

    An experimental study using a bench-scale equipment of 1 kg-simulated spent solvents per hour has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of tri-n-butyl phosphate and/or n-dodecane, and on the distribution behaviors of combustion products such as phosphoric acid, Ru, I, Zr and lanthanides as TRU simulants in the submerged combustion process. Also the experimental results of TRU separation from phosphoric acid solution by co-precipitation using bismuth phosphate are reported. It was shown that the submerged combustion technique was applicable to the treatment of spent solvents including the distillation residues of the solvent. Based on the experimental data, a new treatment process of spent solvent was proposed which consisted of submerged combustion, co-precipitation using bismuth phosphate, ceramic membrane filtration, cementation of TRU lean phosphate, and vitrification of TRU rich waste. (author)

  1. Distribution of droplet sizes for seed solution

    International Nuclear Information System (INIS)

    Marwah, R.K.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.

    In open cycle MHD power generation, power is generated by passing seeded hot combustion products of a fossil fuel through a magnetic field. Seeding is done with a salt which is readily ionizable, preferably in the form of an aqueous solution, such as potassium carbonate, potassium sulphate, etc. Methods of atomization and the theoretical drop size calculations are presented. Basic parameters necessary for droplet size determination and their measurement are also described. (K.B.)

  2. Visible and NIR luminescence of nanocrystalline β-Ga2O3:Er3+ prepared by solution combustion synthesis

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko

    2008-01-01

    In this paper we report on facile solution combustion synthesis of erbium doped β-Ga 2 O 3 with urea as fuel. The product was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties of β-Ga 2 O 3 :Er are studied with excitation in near infrared (Nd:YAG laser at 1064 nm) and visible (argon laser at 514.5 nm). A strong NIR emission of Er 3+ in the window of minimal optical loss in silica based optical fibers, due to the 4 I 13/2 → 4 I 15/2 transition at 1.55 μm has been observed. Codoping with Yb 3+ significantly increases the intensity of that important emission

  3. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  4. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  5. Determination of nonmetallic elements in actinide complexes by oxygen flask combustion (OFC) (Part 2). Sulphur

    International Nuclear Information System (INIS)

    Ruikar, P.B.; Nagar, M.S.; Subramanian, M.S.

    1989-01-01

    This report describes the determination of sulphur in metallic complexes by oxygen flask combustion followed by conductivity titration with standard barium acetate solution in alcoholic medium and lead electrode titration using a lead ion sensitive electrode. Various organic ligands and uranyl and plutonyl synergistic complexes have been analysed by both these methods and the precision and accuracy of the results have been found to be satisfactory. (author). 12 refs., 12 tabs

  6. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  7. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  8. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  9. Numerical simulations of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  10. Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture

    Science.gov (United States)

    Suseel Jai Krishnan, S.; P. K., Nagarajan

    2017-05-01

    In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.

  11. Quantifying emissions from spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    Spontaneous combustion can be a significant problem in the coal industry, not only due to the obvious safety hazard and the potential loss of valuable assets, but also with respect to the release of gaseous pollutants, especially CO2, from uncontrolled coal fires. This report reviews methodologies for measuring emissions from spontaneous combustion and discusses methods for quantifying, estimating and accounting for the purpose of preparing emission inventories.

  12. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    Science.gov (United States)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  13. An investigation of calibration methods for solution calorimetry.

    Science.gov (United States)

    Yff, Barbara T S; Royall, Paul G; Brown, Marc B; Martin, Gary P

    2004-01-28

    Solution calorimetry has been used in a number of varying applications within pharmaceutical research as a technique for the physical characterisation of pharmaceutical materials, such as quantifying small degrees of amorphous content, identifying polymorphs and investigating interactions between drugs and carbohydrates or proteins and carbohydrates. A calibration test procedure is necessary to validate the instrumentation; a few of the suggested calibration reactions are the enthalpies of solution associated with dissolving Tris in 0.1 M HCl or NaCl, KCl or propan-1-ol in water. In addition, there are a number of different methods available to determine enthalpies of solution from the experimental data provided by the calorimeter, for example, the Regnault-Pfaundler's method, a graphical extrapolation based on the Dickinson method, or a manual integration-based method. Thus, the aim of the study was to investigate how each of these methods influences the values for the enthalpy of solution. Experiments were performed according to the method outlined by Hogan and Buckton [Int. J. Pharm. 207 (2000) 57] using KCl (samples of 50, 100 and 200 mg), Tris and sucrose as calibrants. For all three materials the manual integration method was found to be the most consistent with the KCl in water (sample mass of 200 mg) being the most precise. Thus, this method is recommended for the validation of solution calorimeters.

  14. Newton-like methods for Navier-Stokes solution

    Science.gov (United States)

    Qin, N.; Xu, X.; Richards, B. E.

    1992-12-01

    The paper reports on Newton-like methods called SFDN-alpha-GMRES and SQN-alpha-GMRES methods that have been devised and proven as powerful schemes for large nonlinear problems typical of viscous compressible Navier-Stokes solutions. They can be applied using a partially converged solution from a conventional explicit or approximate implicit method. Developments have included the efficient parallelization of the schemes on a distributed memory parallel computer. The methods are illustrated using a RISC workstation and a transputer parallel system respectively to solve a hypersonic vortical flow.

  15. Vanadium in fuel oil - a new solution

    Energy Technology Data Exchange (ETDEWEB)

    Czech, N. [Siemens, Muelheim (Germany); Finckh, H. [Siemens, Erlangen (Germany)

    1998-11-01

    Hot corrosion of the hot-gas-path components due to vanadium contamination is one of the hazards associated with heavy residual oil combustion in heavy-duty gas turbines. This economically attractive oil combustion process has benefited from the recently developed vanadium inhibition technique, which is currently being tested at the Valladolid 220 MWe combined cycle plant in Mexico. The method uses atomization of a dilute aqueous solution of Epsom salt (MgSO{sub 7},7H{sub 2}O) into very small droplets which are then injected onto the flame where intensive mixing takes place. The successful use of this new technique promises extended operating periods between cleanup operations, and cost reductions from the use of inexpensive materials, as well as the ability to operate advanced gas turbines on difficult fuels, not previously feasible. (UK)

  16. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  17. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    Science.gov (United States)

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  18. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  19. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Malik, M M; Kurchania, Rajnish; Kumar, G S

    2015-01-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon. (paper)

  20. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  1. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  2. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.; Vedharaj, S.; An, Yanzhao; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON

  3. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  4. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  5. Particular solution of the discrete-ordinate method.

    Science.gov (United States)

    Qin, Yi; Box, Michael A; Jupp, David L

    2004-06-20

    We present two methods that can be used to derive the particular solution of the discrete-ordinate method (DOM) for an arbitrary source in a plane-parallel atmosphere, which allows us to solve the transfer equation 12-18% faster in the case of a single beam source and is even faster for the atmosphere thermal emission source. We also remove the divide by zero problem that occurs when a beam source coincides with a Gaussian quadrature point. In our implementation, solution for multiple sources can be obtained simultaneously. For each extra source, it costs only 1.3-3.6% CPU time required for a full solution. The GDOM code that we developed previously has been revised to integrate with the DOM. Therefore we are now able to compute the Green's function and DOM solutions simultaneously.

  6. Tunable diode laser spectroscopy as a technique for combustion diagnostics

    International Nuclear Information System (INIS)

    Bolshov, M.A.; Kuritsyn, Yu.A.; Romanovskii, Yu.V.

    2015-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) has become a proven method of rapid gas diagnostics. In the present review an overview of the state of the art of TDL-based sensors and their applications for measurements of temperature, pressure, and species concentrations of gas components in harsh environments is given. In particular, the contemporary tunable diode laser systems, various methods of absorption detection (direct absorption measurements, wavelength modulation based phase sensitive detection), and relevant algorithms for data processing that improve accuracy and accelerate the diagnostics cycle are discussed in detail. The paper demonstrates how the recent developments of these methods and algorithms made it possible to extend the functionality of TDLAS in the tomographic imaging of combustion processes. Some prominent examples of applications of TDL-based sensors in a wide range of practical combustion aggregates, including scramjet engines and facilities, internal combustion engines, pulse detonation combustors, and coal gasifiers, are given in the final part of the review. - Highlights: • Overview of modern TDL-based sensors for combustion • TDL systems, methods of absorption detection and algorithms of data processing • Prominent examples of TDLAS diagnostics of the combustion facilities • Extension of the TDLAS on the tomographic imaging of combustion processes

  7. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw...

  8. System catalytic neutralization control of combustion engines waste gases in mining technologies

    Science.gov (United States)

    Korshunov, G. I.; Solnitsev, R. I.

    2017-10-01

    The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.

  9. Tetragonal-cubic phase boundary in nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions synthesized by gel-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fabregas, Ismael O. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Craievich, Aldo F.; Fantini, Marcia C.A. [Instituto de Fisica, Universidade de Sao Paulo, Travessa R da Rua do Matao, No. 187, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Millen, Ricardo P.; Temperini, Marcia L.A. [Instituto de Quimica, Universidade de Sao Paulo, Avenida Prof. Lineu Prestes 748, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Lamas, Diego G., E-mail: dlamas@uncoma.edu.ar [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Pcia. de Buenos Aires (Argentina); Laboratorio de Caracterizacion de Materiales, Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen Capital, Prov. de Neuquen (Argentina)

    2011-04-21

    Research highlights: > Gel-combustion synthesis yields compositionally homogeneous, single-phased ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders, that exhibit the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms (t' and t'') and the cubic phase. > Phase identification can be achieved by synchrotron XPD (SXPD) and Raman spectroscopy since the tetragonal forms and the cubic phase can be distinguished by these techniques. > The crystallographic features of ZrO{sub 2}-Y{sub 2}O{sub 3} nanopowders were determined by SXPD. They are similar to those reported by Yashima and coworkers for compositionally homogeneous materials containing larger (micro)crystals. However, the lattice parameters are slightly different and the axial ratios c/a of our t' samples are smaller than those reported by these authors. > Compositional t'/t'' and t''/cubic phase boundaries are located at (9 {+-} 1) and (10.5 {+-} 0.5) mol% Y{sub 2}O{sub 3}, respectively. > For the whole series of nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions studied in the present work, no evidences of the presence of a mixture of phases - as reported by Yashima and coworkers for microcrystalline solid solutions - were detected. - Abstract: By means of synchrotron X-ray powder diffraction (SXPD) and Raman spectroscopy, we have detected, in a series of nanocrystalline and compositionally homogeneous ZrO{sub 2}-Y{sub 2}O{sub 3} solid solutions, the presence at room temperature of three different phases depending on Y{sub 2}O{sub 3} content, namely two tetragonal forms and the cubic phase. The studied materials, with average crystallite sizes within the range 7-10 nm, were synthesized by a nitrate-citrate gel-combustion process. The crystal structure of these phases was also investigated by SXPD. The results presented here indicate that the studied nanocrystalline ZrO{sub 2}-Y{sub 2}O{sub 3} solid

  10. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  11. C -14 analysis in radioactive waste by combustion and digestion techniques

    International Nuclear Information System (INIS)

    Venescu, R. E.; Valeca, M.; Bujoreanu, L.; Bujoreanu, D.; Venescu, B.

    2016-01-01

    Carbon-14 is a long lived radionuclide (half life of 5730 years) present in almost all radioactive waste streams generated by a CANDU nuclear power plant. It is a pure beta emitter that decays to 14N by emitting low energy beta-radiation with an average energy of 49.5keV and a maximum energy of 156keV. Before the beta radiation of 14C can be measured from radioactive waste liquid scintillation counting (LSC), the samples must be transformed in a stable, clear and homogeneous solution. Two methods were tested for carbon-14 recovery and analysis in radioactive wastes from nuclear power plants. The combustion process is a simple automatic method of sample preparation, in which all carbon isotopes, including 14C are oxidized to gaseous carbon dioxide that is subsequently trapped in form of carbonate in a column filled with a carbon dioxide absorbent. The microwave digestion is the method wherein the samples are transformed totally or partially in liquid phase depending on the sample matrix using adequate digestion reagents. The samples were counted with a normal and low level count mode liquid scintillation counter Tri-Carb3110TR. The tests performed on the simulated radwaste showed a 14C recovery of 90% by combustion and higher than 75% by microwave digestion method. (authors)

  12. Determination of fluoride in spices using microwave induced oxygen combustion

    Directory of Open Access Journals (Sweden)

    Emanuel Šucman

    2012-01-01

    Full Text Available Fluorine is essential in human and/or animal nutrition; therefore, so it is important to know its concentration in a diet. One of the possible sources of fluorine for humans is spice, containing various amounts of this trace element. This work describes the method for fluoride determination in various kinds ofspices using microwave-supported sample preparation in high pressure oxygen atmosphere followed by potentiometry with a fluoride ion-selective electrode. Parameters of the microwave device for combustion procedure were checked and optimized in order to find settings ensuring complete sample combustion and/or absorption of the analyte in the absorption solution. For the ion-selective electrode measurement, the technique of standard straight line was chosen. Concentrations of fluorides in spices and spice blends under investigation ranged from 3.15 mg·kg-1 to 26.08 mg·kg-1. In order to check the accuracy of the method Certified Reference Material Fluoride in Vegetation NIST 2695 was used and a good agreement between certified and found values was found. The precision expressed as the relative standard deviation ranged from 0.6% to 5.0%. The method is fast, accurate and reliable for this kind of analysis. In recent literature data on fluoride concentrations in spices and/or spice blends have not been found.

  13. Using biofuel tracers to study alternative combustion regimes

    International Nuclear Information System (INIS)

    Mack, J.H.; Flowers, D.L.; Buchholz, B.A.; Dibble, R.W.

    2007-01-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO 2 emissions are countered with higher nitrogen oxides (NO x ) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NO x formation. Altering the combustion regime to burn at temperatures below the NO x threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NO x and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling

  14. Method for increasing the calorific value of gas produced by the in situ combustion of coal

    Science.gov (United States)

    Shuck, Lowell Z.

    1978-01-01

    The present invention relates to the production of relatively high Btu gas by the in situ combustion of subterranean coal. The coal bed is penetrated with a horizontally-extending borehole and combustion is initiated in the coal bed contiguous to the borehole. The absolute pressure within the resulting combustion zone is then regulated at a desired value near the pore pressure within the coal bed so that selected quantities of water naturally present in the coal will flow into the combustion zone to effect a hydrogen and carbon monoxide-producing steam-carbon reaction with the hot carbon in the combustion zone for increasing the calorific value of the product gas.

  15. Exact solutions to some nonlinear PDEs, travelling profiles method

    Directory of Open Access Journals (Sweden)

    Noureddine Benhamidouche

    2008-04-01

    \\end{equation*} by a new method that we call the travelling profiles method. This method allows us to find several forms of exact solutions including the classical forms such as travelling-wave and self-similar solutions.

  16. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  17. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  18. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  19. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  20. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  1. Apparatus and method for temperature mapping a turbine component in a high temperature combustion environment

    Science.gov (United States)

    Baleine, Erwan; Sheldon, Danny M

    2014-06-10

    Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.

  2. Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

    Science.gov (United States)

    Ozdemir, A.; Altunal, V.; Kurt, K.; Depci, T.; Yu, Y.; Lawrence, Y.; Nur, N.; Guckan, V.; Yegingil, Z.

    2017-12-01

    To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1-0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li2B4O7:Cu material was prepared by adding B (0.001-0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li2B4O7:Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a ;linear; way with the beta-ray exposure between 0.1-20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li2B4O7:Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li2B4O7:Cu, B were found all favorable for dosimetric purposes.

  3. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  4. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  5. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  6. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  7. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  8. CFD simulation of gas and particles combustion in biomass furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Griselin, Nicolas

    2000-11-01

    In this thesis, gas and particle combustion in biomass furnaces is investigated numerically. The aim of this thesis is to use Computational Fluid Dynamics (CFD) technology as an effective computer based simulation tool to study and develop the combustion processes in biomass furnaces. A detailed model for the numerical simulation of biomass combustion in a furnace, including fixed-bed modeling, gas-phase calculation (species distribution, temperature field, flow field) and gas-solid two-phase interaction for flying burning particles is presented. This model is used to understand the mechanisms of combustion and pollutant emissions under different conditions in small scale and large scale furnaces. The code used in the computations was developed at the Division of Fluid Mechanics, LTH. The flow field in the combustion enclosure is calculated by solving the Favre-averaged Navier-Stokes equations, with standard {kappa} - {epsilon} turbulence closure, together with the energy conservation equation and species transport equations. Discrete transfer method is used for calculating the radiation source term in the energy conservation equation. Finite difference is used to solve the general form of the equation yielding solutions for gas-phase temperatures, velocities, turbulence intensities and species concentrations. The code has been extended through this work in order to include two-phase flow simulation of particles and gas combustion. The Favre-averaged gas equations are solved in a Eulerian framework while the submodels for particle motion and combustion are used in the framework of a Lagrangian approach. Numerical simulations and measurement data of unburned hydrocarbons (UHC), CO, H{sub 2}, O{sub 2} and temperature on the top of the fixed bed are used to model the amount of tar and char formed during pyrolysis and combustion of biomass fuel in the bed. Different operating conditions are examined. Numerical calculations are compared with the measured data. It is

  9. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet

    Science.gov (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang

    2018-02-01

    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  10. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  11. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  12. Porous oxides synthesized by the combustion method; Oxidos porosos sintetizados por el metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo L, V

    2005-07-01

    The result of this work, seeks to be a contribution for the treatment of radioactive wastes, with base to the sorption properties that present those porous oxides, synthesized by a method that allows to increase the sorption capacity. The main objective of the present investigation has been the modification of the structural characteristics of the oxides of Fe, Mg and Zn to increase its capacity of sorption of {sup 60} Co in particular. It was studied the effect of the synthesis method by combustion in the inorganic oxides; the obtained solids were characterized using the following techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), semiquantitative elementary analysis by Dispersive energy spectroscopy (EDS) and determination of surface area by the Brunauner-Emmett-Teller method (BET). Also was carried out batch type experiments for the sorption of Co{sup 2+}, with the purpose of studying the sorption capacity of each one of the prepared oxides. In accordance with that previously exposed, the working plan that was carried out in this investigation is summarized in the following stages: 1. Preparation of inorganic oxides by two different methods, studying the effect of the temperature in the synthesis process. 2. Characterization of the inorganic oxides by XRD, by means of which those were chosen the solids with better properties. 3. Characterization of the inorganic oxides by SEM and EDS where it was studied the morphology of the synthesized materials and the semiquantitative elemental composition. 4. Realization of a sorption experiment type Batch with non radioactive Co{sup 2+} to simulate the sorption of {sup 60} Co and determination of the sorption capacity by means of neutron activation of the non radioactive cobalt. 5. Determination of the surface area by the (BET) technique of the inorganic oxides with better sorption properties. (Author)

  13. Rotary combustion device

    NARCIS (Netherlands)

    2008-01-01

    Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber.

  14. Interesting spontaneous combustion fire at Haus Aden colliery

    Energy Technology Data Exchange (ETDEWEB)

    Both, W; Weinheimer, O

    1976-02-05

    Spontaneous combustion ahead of the face occurred in an over-worked and under-worked seam. When the first cavity containing hot ash was found, an attempt to extinguish the fire with water was abandoned because of the quantity of steam produced, but the fire was extinguished by covering it with paste containing magnesium chloride and hydroxide and calcium chloride. Mining operations continued while the coal surrounding the hot region was cooled with water. The steps taken to detect and deal with other fires in advance of the face are described. These included pre-infusion with calcium chloride solution via boreholes and treatment of the hot cavities encountered with magnesium chloride paste. This method of fire-fighting was more successful than the use of water alone.

  15. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    International Nuclear Information System (INIS)

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  16. Dynamic estimator for determining operating conditions in an internal combustion engine

    Science.gov (United States)

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  17. Determination of {sup 60} Co by means of Neutron Activation Analysis in the sorption of Co in synthesized porous oxides by the combustion method; Determinacion de {sup 60} Co por medio de AAN en la sorcion de Co en oxidos porosos sintetizados por metodo de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lugo, V.; Bulbulian, S.; Urena, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: violelugo@yahoo.es

    2005-07-01

    Recently inorganic materials are investigating as sorbent of radioactive pollutants present in water. The inorganic oxides belong to this group of materials. A quick method exists for the obtaining of inorganic oxides, denominated combustion method that could be used to produce porous oxides successfully with good properties for the sorption of radioactive ions. In this investigation, iron oxides, magnesium and zinc were synthesized obtained by the combustion method, comparing them with those synthesized by the calcination method, using two different synthesis temperatures. The obtained solids were characterized by scanning electron microscopy (Sem), by X-ray diffraction (XRD) and by semiquantitative elemental analysis (EDS). After the characterization, the crystalline oxides synthesized by both methods, to temperature of 800 C, were evaluated as sorbents in the removal of Co{sup 2+} ions, through experiments in batch, and using neutron activation analysis, determining the sorption percentage, with this it was concluded that the magnesium oxide produced by combustion it is more effective in the removal of Co{sup 2+} ions than that synthesized by calcination. It was determined the surface area of the magnesium oxides, obtaining a surface area greater for the synthesized oxide by combustion method. (Author)

  18. The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions

    Directory of Open Access Journals (Sweden)

    Mehmet Tarik Atay

    2013-01-01

    Full Text Available The Variational Iteration Method (VIM and Modified Variational Iteration Method (MVIM are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM and the Modified Variational Iteration Method (MVIM are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.

  19. Wood products in the waste stream: Characterization and combustion emissions. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    Waste wood is wood separated from the solid-waste stream and processed into a uniform-sized product that is reused for other purposes such as fuel. As an alternative to the combustion of fossil fuels, it has raised concerns that if it is 'contaminated' with paints, resins, preservatives, etc., unacceptable environmental impacts may be generated during combustion. Given the difficulty of separating contaminated materials from waste wood and the large energy potential existing in the resource, it is important to identify possible problems associated with contaminated waste wood combustion. The study describes research about technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. The project's purpose was to provide environmental regulators, project developers, and others with data to make informed decisions on the use of waste wood materials as a combustion resource. Potential environmental problems and solutions were identified. A specific project result was the identification of combustion system operation parameters and air pollution control technologies that can minimize emissions of identified air and solid waste contaminants from combustion of wood waste

  20. Management of coal combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-01

    It has been estimated that 780 Mt of coal combustion products (CCPs) were produced worldwide in 2010. Only about 53.5% were utilised, the rest went to storage or disposal sites. Disposal of coal combustion waste (CCW) on-site at a power plant may involve decades-long accumulation of waste, with hundreds of thousands, if not millions, of tonnes of dry ash or wet ash slurry being stored. In December 2008, a coal combustion waste pond in Kingston, Tennessee, USA burst. Over 4 million cubic metres of ash sludge poured out, burying houses and rivers in tonnes of toxic waste. Clean-up is expected to continue into 2014 and will cost $1.2 billion. The incident drew worldwide attention to the risk of CCW disposal. This caused a number of countries to review CCW management methods and regulations. The report begins by outlining the physical and chemical characteristics of the different type of ashes generated in a coal-fired power plant. The amounts of CCPs produced and regulations on CCW management in selected countries have been compiled. The CCW disposal methods are then discussed. Finally, the potential environmental impacts and human health risks of CCW disposal, together with the methods used to prevent them, are reviewed.

  1. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  2. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  4. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  5. Combustion synthesis and structural characterization of Li–Ti mixed

    Indian Academy of Sciences (India)

    Combustion synthesis and structural characterization of Li–Ti mixed nanoferrites ... were prepared by combustion method at lower temperatures compared to the ... first time at low temperatures, using PEG which acts as a new fuel and oxidant.

  6. Combustion synthesis and structural characterization of Li–Ti mixed ...

    Indian Academy of Sciences (India)

    pared by combustion method at lower temperatures compared to the conventional high temperature sintering for ... Li–Ti mixed ferrites; combustion synthesis; hysteresis. 1. ... Quantum model - VSM 6000) at an applied field of ±10 kOe.

  7. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  8. Fuel effect on solution combustion synthesis of Co(Cr,Al)2O4 pigments; Efecto del combustible en la síntesis de pigmentos Co(Cr,Al)2O4 por combustión de una disolución

    Energy Technology Data Exchange (ETDEWEB)

    Gilabert, J.; Palacios, M.D.; Sanz, V.; Mestre, S.

    2017-11-01

    The fuel effect on the synthesis of a ceramic pigment with a composition CoCr2−2ΨAl2ΨO4 (0≤Ψ≤1) by means of solution combustion synthesis process (SCS) has been studied. Three different fuels were selected to carry out the synthesis (urea, glycine and hexamethylentetramine (HMT)). Highly foamy pigments with very low density were obtained. Fd-3m spinel-type structure was obtained in all the experiments. Nevertheless, crystallinity and crystallite size of the spinels show significant differences with composition and fuel. The use of glycine along with the chromium-richest composition favours ion rearrangement to obtain the most ordered structure. Lattice parameter does not seem to be affected by fuel, although it evolves with Ψ according to Vegard's law. Colouring power in a transparent glaze shows important variations with composition. On the other hand, fuel effect presents a rather low influence since practically the same shades are obtained. However, it exerts certain effect on luminosity (L*). [Spanish] Se ha estudiado el efecto del combustible en la síntesis de pigmentos cerámicos tipo CoCr2-2ΨAl2ΨO4 (0≤Ψ≤1), obtenidos mediante síntesis por combustión de una disolución. Se seleccionaron 3 tipos de combustible diferentes: urea, glicina y hexametilentetramina. Todos los pigmentos obtenidos presentaron una textura altamente esponjosa y con muy baja densidad. Las estructuras cristalinas desarrolladas en todos los casos fueron tipo espinela Fd-3m. Sin embargo, tanto la cristalinidad como el tamaño de cristalito presentaron diferencias significativas dependiendo de la composición y del combustible utilizado. El uso de glicina, junto con las composiciones más ricas en cromo, favorece la reorganización de los iones para obtener estructuras más ordenadas y con mayor cristalinidad. El parámetro de red no parece verse afectado por el combustible, aunque sí evoluciona con Ψ de acuerdo con la Ley de Vegard. El poder colorante desarrollado

  9. Method for improving solution flow in solution mining of a mineral

    International Nuclear Information System (INIS)

    Moore, T.

    1980-01-01

    An improved method for the solution mining of a mineral from a subterranean formation containing same in which an injection and production well are drilled and completed within said formation, leach solution and an oxidant are injected through said injection well into said formation to dissolve said mineral, and said dissolved mineral is recovered via said production well, wherein the improvement comprises pretreating said formation with an acid gas to improve the permeabiltiy thereof

  10. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  11. Multi-dimensional Analysis Method of Hydrogen Combustion in the Containment of a Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E and C Co., Seongnam (Korea, Republic of)

    2014-05-15

    The most severe case is the occurrence of detonation, which induces a few-fold greater pressure load on the containment wall than a deflagration flame. The occurrence of a containment-wise global detonation is prohibited by a national regulation. The compartments located in the flow path such as steam generator compartment, annular compartment, and dome region are likely to have highly-concentrated hydrogen. If it is found that hydrogen concentration in any compartment is far below a detonation criterion during an accident progression, it can be thought that the occurrence of a detonative explosion in a compartment is excluded. However, if it is not, it is necessary to evaluate the characteristics of flame acceleration in the containment. The possibility of a flame transition from a deflagration to a detonation (DDT) can be evaluated from a calculated hydrogen distribution in a compartment by using sigma-lambda criteria. However, this method can provide a very conservative result because the geometric characteristics of a real compartment are not considered well. In order to evaluate the containment integrity from a threat of a hydrogen explosion, it is necessary to establish an integrated evaluation system, which includes a lumped-parameter and detail analysis methods. In this study, a method for the multi-dimensional analysis of hydrogen combustion is proposed to mechanistically evaluate the flame acceleration characteristics with a geometric effect. The geometry of the containment is modeled 3-dimensionally using a CAD tool. To resolve a propagating flame front, an adaptive mesh refinement method is coupled with a combustion analysis solver.

  12. Modeling of the dynamical combustion of explosives: influence of mechanical properties; Modelisation de la combustion dynamique des explodifs: influence des proprietes mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Picart, D.; Pertuis, C. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    Experimental observations performed during the combustion of solid explosives under pressure have shown an unexpected desensitization of the samples when damaged. A simplified method of combustion simulation inside a pressure cell is proposed in this study. The model used is based on the description of the mechanical behaviour of the solid phase. It allows to retrieve the overall experimental results, and in particular the occurrence of anomalous combustion modes. (J.S.) 8 refs.

  13. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Bok Agnieszka

    2014-12-01

    Full Text Available The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides. The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  14. Characterization and electrodialytic treatment of wood combustion fly ash for removal of cadmium

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2003-01-01

    especially contain amounts of the toxic heavy metal cadmium that may exceed the limiting values for agricultural utilisation given by the Danish Environmental Protection Agency.In this work the advances of using an electrodialytic remediation method to reduce the Cd content in wood combustion fly ash...... conditions. However, significant amounts of Cd could be extracted at neutral to alkaline conditions using an ammonium citrate solution as a desorption agent.Electrodialytic remediation experiments showed that, under optimised remediation conditions using a mixture of ammonium citrate (0.25M) and NH"3 (1.......25%) as an assisting agent, more than 70% of the initial Cd could be removed from the wood fly ash. The results also indicated that a continuous out-separation of Cd from the aqueous process solutions is possible. Thereby, recycling of the (nutrient rich) process solutions as well as of the remediated ash seems...

  15. Spectral radiative property control method based on filling solution

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Hsu, P.-F.

    2014-01-01

    Controlling thermal radiation by tailoring spectral properties of microstructure is a promising method, can be applied in many industrial systems and have been widely researched recently. Among various property tailoring schemes, geometry design of microstructures is a commonly used method. However, the existing radiation property tailoring is limited by adjustability of processed microstructures. In other words, the spectral radiative properties of microscale structures are not possible to change after the gratings are fabricated. In this paper, we propose a method that adjusts the grating spectral properties by means of injecting filling solution, which could modify the thermal radiation in a fabricated microstructure. Therefore, this method overcomes the limitation mentioned above. Both mercury and water are adopted as the filling solution in this study. Aluminum and silver are selected as the grating materials to investigate the generality and limitation of this control method. The rigorous coupled-wave analysis is used to investigate the spectral radiative properties of these filling solution grating structures. A magnetic polaritons mechanism identification method is proposed based on LC circuit model principle. It is found that this control method could be used by different grating materials. Different filling solutions would enable the high absorption peak to move to longer or shorter wavelength band. The results show that the filling solution grating structures are promising for active control of spectral radiative properties. -- Highlights: • A filling solution grating structure is designed to adjust spectral radiative properties. • The mechanism of radiative property control is studied for engineering utilization. • Different grating materials are studied to find multi-functions for grating

  16. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  17. Numerical simulation of turbulent combustion: Scientific challenges

    Science.gov (United States)

    Ren, ZhuYin; Lu, Zhen; Hou, LingYun; Lu, LiuYan

    2014-08-01

    Predictive simulation of engine combustion is key to understanding the underlying complicated physicochemical processes, improving engine performance, and reducing pollutant emissions. Critical issues as turbulence modeling, turbulence-chemistry interaction, and accommodation of detailed chemical kinetics in complex flows remain challenging and essential for high-fidelity combustion simulation. This paper reviews the current status of the state-of-the-art large eddy simulation (LES)/prob-ability density function (PDF)/detailed chemistry approach that can address the three challenging modelling issues. PDF as a subgrid model for LES is formulated and the hybrid mesh-particle method for LES/PDF simulations is described. Then the development need in micro-mixing models for the PDF simulations of turbulent premixed combustion is identified. Finally the different acceleration methods for detailed chemistry are reviewed and a combined strategy is proposed for further development.

  18. Gaussian process regression based optimal design of combustion systems using flame images

    International Nuclear Information System (INIS)

    Chen, Junghui; Chan, Lester Lik Teck; Cheng, Yi-Cheng

    2013-01-01

    Highlights: • The digital color images of flames are applied to combustion design. • The combustion with modeling stochastic nature is developed using GP. • GP based uncertainty design is made and evaluated through a real combustion system. - Abstract: With the advanced methods of digital image processing and optical sensing, it is possible to have continuous imaging carried out on-line in combustion processes. In this paper, a method that extracts characteristics from the flame images is presented to immediately predict the outlet content of the flue gas. First, from the large number of flame image data, principal component analysis is used to discover the principal components or combinational variables, which describe the important trends and variations in the operation data. Then stochastic modeling of the combustion process is done by a Gaussian process with the aim to capture the stochastic nature of the flame associated with the oxygen content. The designed oxygen combustion content considers the uncertainty presented in the combustion. A reference image can be designed for the actual combustion process to provide an easy and straightforward maintenance of the combustion process

  19. Combustion mode switching with a turbocharged/supercharged engine

    Science.gov (United States)

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  20. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  1. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  2. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  3. Multiple Revolution Solutions for the Perturbed Lambert Problem using the Method of Particular Solutions and Picard Iteration

    Science.gov (United States)

    Woollands, Robyn M.; Read, Julie L.; Probe, Austin B.; Junkins, John L.

    2017-12-01

    We present a new method for solving the multiple revolution perturbed Lambert problem using the method of particular solutions and modified Chebyshev-Picard iteration. The method of particular solutions differs from the well-known Newton-shooting method in that integration of the state transition matrix (36 additional differential equations) is not required, and instead it makes use of a reference trajectory and a set of n particular solutions. Any numerical integrator can be used for solving two-point boundary problems with the method of particular solutions, however we show that using modified Chebyshev-Picard iteration affords an avenue for increased efficiency that is not available with other step-by-step integrators. We take advantage of the path approximation nature of modified Chebyshev-Picard iteration (nodes iteratively converge to fixed points in space) and utilize a variable fidelity force model for propagating the reference trajectory. Remarkably, we demonstrate that computing the particular solutions with only low fidelity function evaluations greatly increases the efficiency of the algorithm while maintaining machine precision accuracy. Our study reveals that solving the perturbed Lambert's problem using the method of particular solutions with modified Chebyshev-Picard iteration is about an order of magnitude faster compared with the classical shooting method and a tenth-twelfth order Runge-Kutta integrator. It is well known that the solution to Lambert's problem over multiple revolutions is not unique and to ensure that all possible solutions are considered we make use of a reliable preexisting Keplerian Lambert solver to warm start our perturbed algorithm.

  4. Solution of the porous media equation by Adomian's decomposition method

    International Nuclear Information System (INIS)

    Pamuk, Serdal

    2005-01-01

    The particular exact solutions of the porous media equation that usually occurs in nonlinear problems of heat and mass transfer, and in biological systems are obtained using Adomian's decomposition method. Also, numerical comparison of particular solutions in the decomposition method indicate that there is a very good agreement between the numerical solutions and particular exact solutions in terms of efficiency and accuracy

  5. Identification and quantification of priority species from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Zheng, L.; Hlavacek, T. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada). Energy Research Laboratories

    1996-07-01

    The objective is to quantify and characterize emissions from pulverized coal combustion of seven coals and the circulating fluidized bed combustion of four coals. The species of particular interest are sulphur, nitrogen, chlorine, arsenic, mercury, lead, cadmium, potassium, and sodium. The Facility for Analysis of Chemical Thermodynamics (F{asterisk}A{asterisk}C{asterisk}T) method is used to predict type and amount of priority species. Prediction is made for combustion with and without the presence of limestone. The results show that the combustion technology used influences the amount of priority species emitted. 16 tabs., 3 apps.

  6. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  7. Structural, morphological and optical investigations on BaMgAl10O17:Eu2+ elaborated by a microwave induced solution combustion synthesis

    International Nuclear Information System (INIS)

    Pradal, Nathalie; Potdevin, Audrey; Chadeyron, Genevieve; Mahiou, Rachid

    2011-01-01

    Graphical abstract: Graphical abstract (with Research highlights). This is a paragraph for graphical abstract. Research highlights: → Synthesis of BAM:Eu 2+ by MISCS using different fuel to oxidizer molar ratios. → Both blue and red phosphors were obtained. → Majority of blue phosphors was obtained for fuel-rich synthesis. → A specific morphology was observed for each contribution. -- Abstract: Blue-emitting Eu 2+ -doped barium magnesium aluminate (BaMgAl 10 O 17 :Eu 2+ ) for advanced displays and lighting devices was prepared by a microwave induced solution combustion synthesis using urea as combustion fuel and nitrates as oxidizer. Purity control of as-synthesized blue phosphor particles was undertaken by modifying the fuel to oxidizer molar ratio. X-ray diffraction, scanning electron microscopy and photoluminescence were used to investigate powders crystallinity, particles size, morphology and luminescent properties, respectively. Fuel-rich urea reactions preferentially lead to pure phases compared to the powders synthesized with a stoichiometric fuel to oxidizer ratio. In both cases, we produce a nearly pure well-crystallized and nanostructured BaMgAl 10 O 17 :Eu 2+ . Photoluminescence measurements exhibit the characteristic blue emission of Eu 2+ under UV light excitation however a weak red emission associated to Eu 3+ is also detected.

  8. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  9. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    Science.gov (United States)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  10. E25 stratified torch ignition engine emissions and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Baêta, José Guilherme Coelho; Teixeira, Alysson Fernandes; Valle, Ramón Molina; Fonseca de Souza, José Leôncio

    2016-01-01

    Highlights: • A stratified torch ignition (STI) engine was built and tested. • The STI engines was tested in a wide range of load and speed. • Significant reduction on emissions was achieved by means of the STI system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine. • HC emission is the main drawback of the stratified torch ignition engine. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and greenhouse gases (GHG). This fact associated with fast global vehicle fleet growth calls for prompt scientific community technological solutions in order to promote a significant reduction in vehicle fuel consumption and emissions, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition (STI) engine was built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for a very low fuel flow rate. In this work the engine out-emissions of CO, NOx, HC and CO_2 of the STI engine are presented and a detailed analysis supported by the combustion parameters is conducted. The results obtained in this work show a significant decrease in the specific emissions of CO, NOx and CO_2 of the STI engine in comparison with the baseline engine. On the other hand, HC specific emission increased due to wall wetting from the fuel hitting in the pre-combustion chamber wall.

  11. Perturbation method for periodic solutions of nonlinear jerk equations

    International Nuclear Information System (INIS)

    Hu, H.

    2008-01-01

    A Lindstedt-Poincare type perturbation method with bookkeeping parameters is presented for determining accurate analytical approximate periodic solutions of some third-order (jerk) differential equations with cubic nonlinearities. In the process of the solution, higher-order approximate angular frequencies are obtained by Newton's method. A typical example is given to illustrate the effectiveness and simplicity of the proposed method

  12. Fundamental combustion characteristics of lean hydrogen mixtures; Suiso kihaku kongoki no kisoteki nensho tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Barat, D; Kido, H; Nakahara, M; Hashimoto, J [Kyushu University, Fukuoka (Japan)

    1997-10-01

    One of the excellent combustion characteristics of hydrogen-air mixture is that its emission is free of CO2, but the problem of NOx remains, mainly caused by the high combustion temperature. Using leaner mixture and carrying out EGR are supposed to be effective methods to reduce NOx. In this study, to examine the effectiveness of the two methods, fundamental combustion characteristics of nitrogen added lean hydrogen mixtures were investigated by chemical equilibrium calculations and measurements of turbulent combustion characteristics. It is suggested that nitrogen added mixtures can achieve lower NOx combustion than lean mixtures, taking the combustion efficiency into consideration. 7 refs., 7 figs., 1 tab.

  13. Combustion synthesized nanocrystalline Li3V2(PO4)3/C cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Nathiya, K.; Bhuvaneswari, D.; Gangulibabu; Kalaiselvi, N.

    2012-01-01

    Graphical abstract: Nanocrystalline Li 3 V 2 (PO 4 ) 3 /C compound has been synthesized using a novel corn assisted combustion (CAC) method, wherein the composite prepared at 850 °C is found to exhibit superior physical and electrochemical properties than the one synthesized at 800 °C (Fig. 1). Despite the charge disproportionation of V 4+ and a possible solid solution behavior of Li 3 V 2 (PO 4 ) 3 cathode upon insertion and de-insertion of Li + ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V (Fig. 2). An appreciable specific capacity of 174 mAh g −1 with an excellent columbic efficiency (99%) and better capacity retention upon high rate applications have been exhibited by Li 3 V 2 (PO 4 ) 3 /C cathode, thus demonstrating the feasibility of CAC method in preparing the title compound to best suit with the needs of lithium battery applications. Display Omitted Highlights: ► Novel corn assisted combustion method has been used to synthesize Li 3 V 2 (PO 4 ) 3 /C. ► Corn is a cheap and eco benign combustible fuel to facilitate CAC synthesis. ► Li 3 V 2 (PO 4 ) 3 /C exhibits an appreciable specific capacity of 174 mAh g −1 (C/10 rate). ► Currently observed columbic efficiency of 99% is better than the reported behavior. ► Suitability of Li 3 V 2 (PO 4 ) 3 /C cathode up to 10C rate is demonstrated. -- Abstract: Nanocrystalline Li 3 V 2 (PO 4 ) 3 /C composite synthesized using a novel corn assisted combustion method at 850 °C exhibits superior physical and electrochemical properties than the one synthesized at 800 °C. Despite the charge disproportionation of V 4+ and a possible solid solution behavior of Li 3 V 2 (PO 4 ) 3 cathode upon insertion and extraction of Li + ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V. An appreciable specific capacity of 174 mAh g −1 and better capacity retention upon high rate applications have been

  14. Modified harmonic balance method for the solution of nonlinear jerk equations

    Science.gov (United States)

    Rahman, M. Saifur; Hasan, A. S. M. Z.

    2018-03-01

    In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

  15. Method for Cs-137 separation from the decontamination solutions

    International Nuclear Information System (INIS)

    Toropov, I.G.; Efremenkov, V.M.; Toropova, V.V.; Satsukevich, V.M.; Davidov, Yu.P.

    1995-01-01

    In this work results of investigations are presented on separation of radiocaesium from the decontamination solutions containing reducing agents (thiocarbamide). The scientific basis for radiocaesium removal from the solution focuses on the state of the radionuclide and its sorption behavior in the solution with a complicated composition. Then using a combination of sorption and ultrafiltration methods it would be possible to concentrate the radionuclide in a small volume and to purify the main part of the solution. As a sorbent for radiocaesium removal from the solution, a ferrocyanide based sorbent is proposed. Use of this sorbent is justified since its high selectivity and effectiveness for radiocaesium sorption from the solutions of different composition is well known. When synthesis of the sorbent is performed directly in the treating solution, two components as a minimum should be added to it, namely K 4 Fe(CN) 6 and metal ions of Ni-II, Co-II, Cu-II, etc. The results are presented which show the possibility of radiocaesium separation from the decontamination solutions (containing 60--100 g/l of salts) using sorption and membrane separation methods without the use of metal salts. At the same time by using FE-2 in solution in the presence of cyanide ions and thiocarbamide, it is possible to avoid the addition of metal salts (Ni, Cu, etc.). Utilization of the proposed method for spent decontamination solution treatment allows a relatively easy way to reduce the concentration of radiocaesium in solution on 2--4 orders of magnitudes, and to exclude the utilization of relatively expensive metal salts

  16. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  17. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  18. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  19. Experimental validation for combustion analysis of GOTHIC code in 2-dimensional combustion chamber

    International Nuclear Information System (INIS)

    Lee, J. W.; Yang, S. Y.; Park, K. C.; Jung, S. H.

    2002-01-01

    In this study, the prediction capability of GOTHIC code for hydrogen combustion phenomena was validated with the results of two-dimensional premixed hydrogen combustion experiment executed by Seoul National University. The experimental chamber has about 24 liter free volume (1x0.024x1 m 3 ) and 2-dimensional rectangular shape. The test were preformed with 10% hydrogen/air gas mixture and conducted with combination of two igniter positions (top center, top corner) and two boundary conditions (bottom full open, bottom right half open). Using the lumped parameter and mechanistic combustion model in GOTHIC code, the SNU experiments were simulated under the same conditions. The GOTHIC code prediction of the hydrogen combustion phenomena did not compare well with the experimental results. In case of lumped parameter simulation, the combustion time was predicted appropriately. But any other local information related combustion phenomena could not be obtained. In case of mechanistic combustion analysis, the physical combustion phenomena of gas mixture were not matched experimental ones. In boundary open cases, the GOTHIC predicted very long combustion time and the flame front propagation could not simulate appropriately. Though GOTHIC showed flame propagation phenomenon in adiabatic calculation, the induction time of combustion was still very long compare with experimental results. Also, it was found that the combustion model of GOTHIC code had some weak points in low concentration of hydrogen combustion simulation

  20. Infrared emissions in MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}/Ba{sup 2+}/Ca{sup 2+} obtained by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2013-02-15

    An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.

  1. Synthesis of nanocrystalline Gd doped ceria by combustion technique

    DEFF Research Database (Denmark)

    Jadhav, L. D.; Chourashiya, M. G.; Subhedar, K. M.

    2009-01-01

    chemical method of combustion where in the combustion of precursors results in the formation of nanoparticles relatively at lower processing temperature. The thermogravimetric study was carried out to understand the ignition temperature and optimize the fuel-to-oxidant ratio. The successful synthesis...

  2. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  3. Printed indium gallium zinc oxide transistors. Self-assembled nanodielectric effects on low-temperature combustion growth and carrier mobility.

    Science.gov (United States)

    Everaerts, Ken; Zeng, Li; Hennek, Jonathan W; Camacho, Diana I; Jariwala, Deep; Bedzyk, Michael J; Hersam, Mark C; Marks, Tobin J

    2013-11-27

    Solution-processed amorphous oxide semiconductors (AOSs) are emerging as important electronic materials for displays and transparent electronics. We report here on the fabrication, microstructure, and performance characteristics of inkjet-printed, low-temperature combustion-processed, amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) grown on solution-processed hafnia self-assembled nanodielectrics (Hf-SANDs). TFT performance for devices processed below 300 °C includes >4× enhancement in electron mobility (μFE) on Hf-SAND versus SiO2 or ALD-HfO2 gate dielectrics, while other metrics such as subthreshold swing (SS), current on:off ratio (ION:IOFF), threshold voltage (Vth), and gate leakage current (Ig) are unchanged or enhanced. Thus, low voltage IGZO/SAND TFT operation (IGZO combustion processing leaves the underlying Hf-SAND microstructure and capacitance intact. This work establishes the compatibility and advantages of all-solution, low-temperature fabrication of inkjet-printed, combustion-derived high-mobility IGZO TFTs integrated with self-assembled hybrid organic-inorganic nanodielectrics.

  4. An experimental study of factors in the recovery of plutonium from combustible wastes treated by incineration, pyrolysis and other processes

    International Nuclear Information System (INIS)

    Bamber, D.C.; McDonald, L.A.; Roberts, W.G.; Sutcliffe, P.W.; Wilkins, J.D.

    1984-01-01

    The work described in this report is concerned with the incineration and pyrolysis of plutonium-contaminated combustible wastes, the leaching of the ashes and chars and the subsequent treatment of the leach solutions. A range of ashes and chars have been prepared from a range of plutonium-contaminated materials covering a variety of combustible materials (e.g. PVC, neoprene, Hypalon) and plutonium contaminants [e.g. PuO 2 , Pu(NO 3 ) 4 , (U, Pu)O 2 ]. Treatment temperatures in the range of 550-900 0 C have been investigated, the best results being obtained at or below 700 0 C with pyrolysis followed by char oxidation being the favoured process. A number of methods for treatment of the leach solutions have been considered and some have been investigated experimentally. Extraction of plutonium and americium with tributylphosphate (TBP) from a leach solution conditioned to 0.1 M H/+5 M NO 3 - has been studied. The key stage has been found to be the conditioning step where precautions must be taken to ensure that plutonium-containing precipitates and non-extractable plutonium are not formed. Consideration has also been given to treatment of the americium containing raffinates from a high acid TBP extraction and some methods have been investigated. A range of simple washing experiments have been carried out in order to compare the process with incineration/pyrolysis

  5. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S.S.; Muller, Edson I. [Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria (Brazil); Mesko, Marcia F. [Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, 96900-010 Pelotas, RS (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.com [Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria (Brazil)

    2015-03-01

    . In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH{sub 4}Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants. - Highlights: • Application of microwave induced combustion for flame retardant containing polymers. • Feasibility for metals and also Br determination by ICP-MS and also ICP OES. • Ammonium chloride was used allowing Cr determination. • High sample mass digestion was possible allowing suitable LODs. • Application for ABS and polycarbonate polymers not still studied for MIC.

  6. Method of lines solution of Richards` equation

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, C.T.; Miller, C.T.; Tocci, M.D.

    1996-12-31

    We consider the method of lines solution of Richard`s equation, which models flow through porous media, as an example of a situation in which the method can give incorrect results because of premature termination of the nonlinear corrector iteration. This premature termination arises when the solution has a sharp moving front and the Jacobian is ill-conditioned. While this problem can be solved by tightening the tolerances provided to the ODE or DAE solver used for the temporal integration, it is more efficient to modify the termination criteria of the nonlinear solver and/or recompute the Jacobian more frequently. In this paper we continue previous work on this topic by analyzing the modifications in more detail and giving a strategy on how the modifications can be turned on and off in response to changes in the character of the solution.

  7. Characterization and electrodialytic treatment of wood combustion fly ash for the removal of cadmium

    International Nuclear Information System (INIS)

    Pedersen, A.J.

    2003-01-01

    Due to a high content of macronutrients and a potential liming capacity, recycling of ashes from biomass combustion to agricultural fields as fertilisers and/or for soil improvement is considered in Denmark and other countries utilising biomass as an energy source. However, the fly ash fractions especially contain amounts of the toxic heavy metal cadmium that may exceed the limiting values for agricultural utilisation given by the Danish Environmental Protection Agency. In this work the advances of using an electrodialytic remediation method to reduce the Cd content in wood combustion fly ash--for the aim of recycling--was described. Initial characterisation of the experimental ash showed that the Cd content exceeded the limiting values for agricultural use and therefore needed treatment before being recycled. The pH in the ash was very high (13.3), and the Cd was not soluble at these alkaline conditions. However, significant amounts of Cd could be extracted at neutral to alkaline conditions using an ammonium citrate solution as a desorption agent. Electrodialytic remediation experiments showed that, under optimised remediation conditions using a mixture of ammonium citrate (0.25 M) and NH 3 (1.25%) as an assisting agent, more than 70% of the initial Cd could be removed from the wood fly ash. The results also indicated that a continuous out-separation of Cd from the aqueous process solutions is possible. Thereby, recycling of the (nutrient rich) process solutions as well as of the remediated ash seems achievable

  8. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  9. Properties and solution methods for large location-allocation problems

    DEFF Research Database (Denmark)

    Juel, Henrik; Love, Robert F.

    1982-01-01

    Location-allocation with l$ _p$ distances is studied. It is shown that this structure can be expressed as a concave minimization programming problem. Since concave minimization algorithms are not yet well developed, five solution methods are developed which utilize the special properties of the l......Location-allocation with l$ _p$ distances is studied. It is shown that this structure can be expressed as a concave minimization programming problem. Since concave minimization algorithms are not yet well developed, five solution methods are developed which utilize the special properties...... of the location-allocation problem. Using the rectilinear distance measure, two of these algorithms achieved optimal solutions in all 102 test problems for which solutions were known. The algorithms can be applied to much larger problems than any existing exact methods....

  10. Approximate solution fuzzy pantograph equation by using homotopy perturbation method

    Science.gov (United States)

    Jameel, A. F.; Saaban, A.; Ahadkulov, H.; Alipiah, F. M.

    2017-09-01

    In this paper, Homotopy Perturbation Method (HPM) is modified and formulated to find the approximate solution for its employment to solve (FDDEs) involving a fuzzy pantograph equation. The solution that can be obtained by using HPM is in the form of infinite series that converge to the actual solution of the FDDE and this is one of the benefits of this method In addition, it can be used for solving high order fuzzy delay differential equations directly without reduction to a first order system. Moreover, the accuracy of HPM can be detected without needing the exact solution. The HPM is studied for fuzzy initial value problems involving pantograph equation. Using the properties of fuzzy set theory, we reformulate the standard approximate method of HPM and obtain the approximate solutions. The effectiveness of the proposed method is demonstrated for third order fuzzy pantograph equation.

  11. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    Science.gov (United States)

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  12. Computational combustion and emission analysis of hydrogen-diesel blends with experimental verification

    International Nuclear Information System (INIS)

    Masood, M.; Ishrat, M.M.; Reddy, A.S.

    2007-01-01

    The paper discusses the effect of blending hydrogen with diesel in different proportions on combustion and emissions. A comparative study was carried out to analyze the effect of direct injection of hydrogen into the combustion chamber with that of induction through the inlet manifold for dual fueling. Percentage of hydrogen substitution varied from 20% to 80%, simultaneously reducing the diesel percentages. CFD analysis of dual fuel combustion and emissions were carried out for both the said methods using the CFD software FLUENT, meshing the combustion chamber was carried out using GAMBIT. The standard combustion and emission models were used in the analysis. In the second part of the paper, the effect of angle of injection in both the methods of hydrogen admission, on performance, combustion and emissions were analyzed. The experimental results were compared with that of simulated values and a good agreement between them was noticed. (author)

  13. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  14. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  15. Signal correlations in biomass combustion. An information theoretic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruusunen, M.

    2013-09-01

    Increasing environmental and economic awareness are driving the development of combustion technologies to efficient biomass use and clean burning. To accomplish these goals, quantitative information about combustion variables is needed. However, for small-scale combustion units the existing monitoring methods are often expensive or complex. This study aimed to quantify correlations between flue gas temperatures and combustion variables, namely typical emission components, heat output, and efficiency. For this, data acquired from four small-scale combustion units and a large circulating fluidised bed boiler was studied. The fuel range varied from wood logs, wood chips, and wood pellets to biomass residue. Original signals and a defined set of their mathematical transformations were applied to data analysis. In order to evaluate the strength of the correlations, a multivariate distance measure based on information theory was derived. The analysis further assessed time-varying signal correlations and relative time delays. Ranking of the analysis results was based on the distance measure. The uniformity of the correlations in the different data sets was studied by comparing the 10-quantiles of the measured signal. The method was validated with two benchmark data sets. The flue gas temperatures and the combustion variables measured carried similar information. The strongest correlations were mainly linear with the transformed signal combinations and explicable by the combustion theory. Remarkably, the results showed uniformity of the correlations across the data sets with several signal transformations. This was also indicated by simulations using a linear model with constant structure to monitor carbon dioxide in flue gas. Acceptable performance was observed according to three validation criteria used to quantify modelling error in each data set. In general, the findings demonstrate that the presented signal transformations enable real-time approximation of the studied

  16. Modeling local extinction in turbulent combustion using an embedding method

    Science.gov (United States)

    Knaus, Robert; Pantano, Carlos

    2012-11-01

    Local regions of extinction in diffusion flames, called ``flame holes,'' can reduce the efficiency of combustion and increase the production of certain pollutants. At sufficiently high speeds, a flame may also be lifted from the rim of the burner to a downstream location that may be stable. These two phenomena share a common underlying mechanism of propagation related to edge-flame dynamics where chemistry and fluid mechanics are equally important. We present a formulation that describes the formation, propagation, and growth of flames holes on the stoichiometric surface using edge flame dynamics. The boundary separating the flame from the quenched region is modeled using a progress variable defined on the moving stoichiometric surface that is embedded in the three-dimensional space using an extension algorithm. This Cartesian problem is solved using a high-order finite-volume WENO method extended to this nonconservative problem. This algorithm can track the dynamics of flame holes in a turbulent reacting-shear layer and model flame liftoff without requiring full chemistry calculations.

  17. Combustible gas recombining method and processing facility for gas waste

    International Nuclear Information System (INIS)

    Watabe, Atsushi; Murakami, Kazuo

    1998-01-01

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  18. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  19. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  20. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  1. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  2. Science review of internal combustion engines

    International Nuclear Information System (INIS)

    Taylor, Alex M.K.P.

    2008-01-01

    Internal combustion engines used in transportation produce about 23% of the UK's carbon dioxide emission, up from 14% in 1980. The current science described in this paper suggests that there could be 6-15% improvements in internal combustion fuel efficiency in the coming decade, although filters to meet emission legislation reduce these gains. Using these engines as hybrids with electric motors produces a reduction in energy requirements in the order of 21-28%. Developments beyond the next decade are likely to be dominated by four topics: emission legislation and emission control, new fuels, improved combustion and a range of advanced concepts for energy saving. Emission control is important because current methods for limiting nitrogen oxides and particulate emissions imply extra energy consumption. Of the new fuels, non-conventional fossil-derived fuels are associated with larger greenhouse gas emissions than conventional petroleum-based fuels, while a vehicle propelled by fuel cells consuming non-renewable hydrogen does not necessarily offer an improvement in emissions over the best hybrid internal combustion engines. Improved combustion may be developed for both gasoline and diesel fuels and promises better efficiency as well as lower noxious emissions without the need for filtering. Finally, four advanced concepts are considered: new thermodynamic cycles, a Rankine bottoming cycle, electric turbo-compounding and the use of thermoelectric devices. The latter three all have the common theme of trying to extract energy from waste heat, which represents about 30% of the energy input to an internal combustion engine

  3. Nonclassical pseudospectral method for the solution of brachistochrone problem

    International Nuclear Information System (INIS)

    Alipanah, A.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    In this paper, nonclassical pseudospectral method is proposed for solving the classic brachistochrone problem. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Properties of nonclassical pseudospectral method are presented, these properties are then utilized to reduce the computation of brachistochrone problem to the solution of algebraic equations. Using this method, the solution to the brachistochrone problem is compared with those in the literature

  4. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Science.gov (United States)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  5. Improvement of fuel combustion technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A.G.; Babii, V.I.; Enyakin, Y.P.; Kotler, V.R.; Ryabov, G.V.; Verbovetskii, E.K.; Nadyrov, I.I. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The main problems encountered in the further development of fuel combustion technologies at thermal power stations in Russia are considered. Experience is generalized and results are presented on the efficiency with which nitrogen oxide emissions are reduced by means of technological methods when burning natural gas, fuel oil, and coal. The problems that arise in the introduction of new combustion technologies and in using more promising grades of coal are considered. The results studies are presented that show that low grade Russian coals can be burnt in circulating fluidized bed boilers. 14 refs., 5 figs., 4 tabs.

  6. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  7. Aqueous amine solution characterization for post-combustion CO_2 capture process

    International Nuclear Information System (INIS)

    El Hadri, Nabil; Quang, Dang Viet; Goetheer, Earl L.V.; Abu Zahra, Mohammad R.M.

    2017-01-01

    Highlights: • The CO_2 solubility of 30 aqueous amine solutions was measured at 30 wt% and 313.15 K. • The CO_2 loading of HMD is the highest, and that of TEA is the lowest. • 2DMAE, 3DMA1P, 1DMA2P, MDEA, TMPAD and 2EAE have a low heat of absorption with CO_2. • 2EAE can be used as an alternative to MEA in the CO_2 capture process. - Abstract: This article presents a thermodynamic and kinetic characterization of CO_2 absorption by 30 aqueous amine solutions. A solvent screening setup (S.S.S.) was used to find the CO_2 loading (α) for 30 different aqueous amine solutions (30 wt%) at a pressure of 1 bar with feed gas containing 15 vol% CO_2 and 85 vol% N_2 at 313.15 K to provide reliable absorber parameters. The structures of various amines (linear, non-linear, polyamines, sterically hindered, etc.) were tested and the S.S.S. results showed that hexamethylenediamine (HMD) has higher CO_2 loading at 1.35 moles of CO_2/mole of amine, and triethanolamine (TEA) has the lowest at 0.39 mole of CO_2/mole of amine. The heat of absorption indicates that MDEA has the lowest and HMD has the highest at −52.51 kJ/mole of CO_2 and −98.39 kJ/mole of CO_2, respectively. The combined data for the CO_2 loading and the absorption heat generated 6 amines that have good properties for the post-combustion CO_2 capture process in comparison with that of MEA. These amines are made up of one secondary amine (2-ethylaminoethanol, 2EAE) and 5 tertiary amines (N-methyldiethanolamine, MDEA, 1-dimethylamino-2-propanol, 1DMA2P, 2-dimethylaminoethanol, 2DMAE, 3-dimethylamino-1-propanol, 3DMA1P and N,N,N′,N′-tetramethyl-1,3-propanediamine, TMPDA). In comparison with the amine reference MEA (ΔH = −85.13 kJ/mole of CO_2 and α = 0.58 mole CO_2/mole of amine), the 6 amines have heats of absorption that are between −68.95 kJ/mole of CO_2 and −52.51 kJ/mole of CO_2, and their CO_2 loading is between 0.52 and 1.16 mole of CO_2/mole amine. The third important parameter, namely the

  8. Variation Iteration Method for The Approximate Solution of Nonlinear ...

    African Journals Online (AJOL)

    In this study, we considered the numerical solution of the nonlinear Burgers equation using the Variational Iteration Method (VIM). The method seeks to examine the convergence of solutions of the Burgers equation at the expense of the parameters x and t of which the amount of errors depends. Numerical experimentation ...

  9. expansion method and travelling wave solutions for the perturbed ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we construct the travelling wave solutions to the perturbed nonlinear. Schrödinger's equation (NLSE) with Kerr law non-linearity by the extended (G /G)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with. Kerr law nonlinearity with arbitrary ...

  10. A quick, simplified approach to the evaluation of combustion rate from an internal combustion engine indicator diagram

    Directory of Open Access Journals (Sweden)

    Tomić Miroljub V.

    2008-01-01

    Full Text Available In this paper a simplified procedure of an internal combustion engine in-cylinder pressure record analysis has been presented. The method is very easy for programming and provides quick evaluation of the gas temperature and the rate of combustion. It is based on the consideration proposed by Hohenberg and Killman, but enhances the approach by involving the rate of heat transferred to the walls that was omitted in the original approach. It enables the evaluation of the complete rate of heat released by combustion (often designated as “gross heat release rate” or “fuel chemical energy release rate”, not only the rate of heat transferred to the gas (which is often designated as “net heat release rate”. The accuracy of the method has been also analyzed and it is shown that the errors caused by the simplifications in the model are very small, particularly if the crank angle step is also small. A several practical applications on recorded pressure diagrams taken from both spark ignition and compression ignition engine are presented as well.

  11. Combustion synthesis of LaFeO3 sensing nanomaterial

    International Nuclear Information System (INIS)

    Zaza, F.; Serra, E.; Pallozzi, V.; Pasquali, M.

    2014-01-01

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO 3

  12. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  13. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  14. Real-time combustion control and diagnostics sensor-pressure oscillation monitor

    Science.gov (United States)

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV

    2009-07-14

    An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.

  15. Quality Determination of Biomass for Combustion

    DEFF Research Database (Denmark)

    Liu, Na; Jørgensen, Uffe; Lærke, Poul Erik

    2013-01-01

    A high content of minerals in biomass feedstock may cause fouling, slagging, and corrosion in the furnace during combustion. Here, a new pressurized microwave digestion method for biomass digestion prior to elemental analysis is presented. This high-throughput method is capable of processing...

  16. Methods of Uranium Determination in solutions of Tributyl Phosphate and Kerosene

    International Nuclear Information System (INIS)

    Petrement Eguiluz, J.; Palomares Delgado, F.

    1962-01-01

    A new analytical method for the determination of uranium in organic solutions of tributyl phosphate and kerosene is proposed. In this method the uranium is reextracted from the aqueous phase by reduction with cadmium in acid solution. The uranium can be determined in this solution by the usual methods. In case of very diluted solutions, a direct spectrophtometrical determination of uranium in the organic phase with dibenzoylmethane is proposed. (Author) 21 refs

  17. DNS and LES/FMDF of turbulent jet ignition and combustion

    Science.gov (United States)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  18. The method of lines solution of discrete ordinates method for non-grey media

    International Nuclear Information System (INIS)

    Cayan, Fatma Nihan; Selcuk, Nevin

    2007-01-01

    A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for radiative heat transfer in non-grey absorbing-emitting media was developed by incorporation of a gas spectral radiative property model, namely wide band correlated-k (WBCK) model, which is compatible with MOL solution of DOM. Predictive accuracy of the code was evaluated by applying it to 1-D parallel plate and 2-D axisymmetric cylindrical enclosure problems containing absorbing-emitting medium and benchmarking its predictions against line-by-line solutions available in the literature. Comparisons reveal that MOL solution of DOM with WBCK model produces accurate results for radiative heat fluxes and source terms and can be used with confidence in conjunction with computational fluid dynamics codes based on the same approach

  19. Ash chemistry and behavior in advanced co-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M; Skrifvars, B J [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The purpose of this LIEKKI 2 project is to report results achieved within the EU/JOULE/OPTEB project to the Finnish combustion research community through the LIEKKI program. The purpose of the EU/JOULE/OPTEB project is to find prediction methods for evaluating ash behavior, such as slagging, fouling and corrosion propensity, in full scale combustion systems through chemical or mineralogical analyses, intelligent laboratory tests and chemistry calculations. The project focuses on coals, coal mixtures and coal biomass mixtures fired in advanced combustion systems, such as fluidized bed boilers, pulverized fuel boilers with critical steam values etc. The project will make use of (1) advanced multi-component combustion equilibrium calculations, (2) ash sintering tendency laboratory tests and (3) chemical evaluations of slagging, fouling and corrosion measurements in full scale units. (orig.)

  20. Combined distiller waste utilisation and combustion gases desulphurisation method. The case study of soda-ash industry

    Energy Technology Data Exchange (ETDEWEB)

    Kasikowski, Tomasz; Buczkowski, Roman; Cichosz, Marcin; Lemanowska, Eliza [Faculty of Chemistry, Nicolas Copernicus University, ul. Gagarina 7, 87-100 Torun (Poland)

    2007-09-15

    In this paper, a concept of technology that can be helpful for lowering the negative influence of the synthetic (based on the Solvay process) soda ash plant on the natural environment is presented. We describe the desulphurisation of combustion gases from the factory's power plant, which is based on their absorption in the overflow of distiller waste. The excess of lime milk, which is added in the process of ammonia regeneration from filter liquor, results in a strong alkalinity of distiller waste. The high pH of distiller waste favours absorption of acidic combustion gases. The laboratory-scale tests showed about 80% efficiency of the desulphurisation process. The suspension samples we obtained consist mainly of CaCO{sub 3}. We suggest using the obtained solid phase as an adsorbent-insert in Fluidised Bed Combustion technology (FBC). Based on raw material prices, production costs, and average sell prices of the product, economic analysis of innovation was executed. Profits from employing the method presented come mainly from reduction of environmental fees. The sensitivity analysis of cost showed that the application of the desulphurisation process causes cost reduction in soda-ash production accounting for EUR 150 thousand per year (excluding depreciation) in Poland, and EUR 11,700 thousand per year (excluding depreciation) in Sweden. It has been found that the latter value is similar to the positive environmental impact of this innovation expressed in monetary units (EUR 10,350 thousand per year, excluding depreciation). (author)

  1. An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2006-01-01

    In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).

  2. Method of precipitating uranium from an aqueous solution and/or sediment

    Science.gov (United States)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  3. Les méthodes thermiques de production des hydrocarbures. Chapitre 5 : Combustion "in situ". Pricipes et études de laboratoire Thermal Methods of Hydrocarbon Production. Chapter 5 : "In Situ" Combustion. Principles and Laboratory Research

    Directory of Open Access Journals (Sweden)

    Burger J.

    2006-11-01

    Full Text Available II existe plusieurs variantes de la combustion in situ, suivant le sens de déplacement du front de combustion, à co-courant ou à contre-courant, et suivant la nature des fluides injectés, air seul ou injection combinée d'air et d'eau. Les réactions de pyrolyse, d'oxydation et de combustion mises en jeu par ces techniques sont discutées, en particulier la cinétique des principaux mécanismes réactionnels, l'importance du dépôt de coke et l'exothermicité des réactions d'oxydation et de combustion. Les résultats d'essais de déplacement unidirectionnel du front de combustion dans des cellules de laboratoire sont présentés et discutés. Enfin on indique les conditions pratiques d'application des méthodes de combustion in situ sur champ. Possible variations of in situ combustion technique ore as follows : forward or reverse combustion depending on the relative directions of the air flow and the combustion front, dry combustion if air is the only fluid injected into the oil-bearing formation, or fixe/woter flooding if water is injected along with air. The chemical reactions of pyrolysis, oxidation and combustion involved in these processes are described. The kinetics of these reactions is discussed as well as fuel availability in forward combustion and the exothermicity of the oxidation and combustion reactions. The results obtained in the laboratory when a combustion front propagates in unidirectional adiabatic tells are described and discussed. This type of experimentation provides extensive information on the characteristics of the processes. Screening criteria for the practical application of in situ combustion techniques are presented.

  4. Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion

    Science.gov (United States)

    Huang, Cheng

    reaction; second, the acoustic compression couples with the unsteady hydrodynamics found in the open-geometry simulation, enhances the fuel/air mixing, and triggers a large amount of heat addition. In step two, a modal analysis using DMD extracts the dynamic features of important modes in the combustor, and identifies the presence of Precessing Vortex Core (PVC) mode and its nonlinear interactions with acoustic modes. Moreover, the DMD analysis helps to establish the couplings between the hydrodynamics and acoustics in terms of frequencies. In step 3, Rayleigh index analysis provides a quantitative assessment of acoustics/combustion couplings and identifies local regions for instability driving/damping. Two modal decomposition techniques, Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD), are assessed in terms of their capabilities in extracting important information from the original simulation dataset and in validating the computational results using the experiment measurement. A POD analysis provides a series of modes with decreasing energy content and it offers an efficient and optimized way to represent a large dataset. The frequency-based DMD technique provides modes that correspond to all single frequencies. For the low-order modeling, fundamental aspects are examined to study necessary conditions, criteria and approaches to develop a reduced-order model (ROM) that is able to represent generic combustion/flame responses, which then can be used in an engineering level tool to provide efficient predictions of combustion instability for practical design applications. Explorations are focused on model reduction techniques by using the so-called POD/Galerkin method. The method uses the numerical solutions of the model equations as the database for building a set of POD eigen-bases. Specifically, the numerical solutions are calculated by perturbing quantities of interest such as the inlet conditions. The POD-derived eigen-bases are, in turn, used

  5. Solution of the Schroedinger equation by a spectral method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Steiger, A.

    1982-01-01

    A new computational method for determining the eigenvalues and eigenfunctions of the Schroedinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schroedinger equation. The method requires the computation of a correlation function from a numerical solution psi(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of psi(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Henon--Heiles potential

  6. Thermal Behavior of Coal Used in Rotary Kiln and Its Combustion Intensification

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-04-01

    Full Text Available Pyrolysis and combustion behaviors of three coals (A, B, and C coals were investigated and their combustion kinetics were calculated by the Freeman–Carroll method to obtain quantitative insight into their combustion behaviors. Moreover, the effects of coal size, air flow, oxygen content, and heating rate on coal combustion behaviors were analyzed. Results showed that the three coals have a similar trend of pyrolysis that occurs at about 670 K and this process continuously proceeds along with their combustion. Combustion characteristics and kinetic parameters can be applied to analyze coal combustion behaviors. Three coals having combustion characteristics of suitable ignition temperature (745–761 K, DTGmax (14.20–15.72%/min, and burnout time (7.45–8.10 min were analyzed in a rotary kiln. Combustion kinetic parameters provide quantitative insights into coal combustion behavior. The suitable particle size for coal combustion in a kiln is that the content of less than 74 μm is 60% to 80%. Low activation energy and reaction order make coal, especially C coal, have a simple combustion mechanism, great reactivity, be easily ignited, and a low peak temperature in the combustion state. Oxygen-enrichment and high heating rates enhance coal combustion, increasing combustion intensity and peak value, thus shortening burnout time.

  7. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method

    International Nuclear Information System (INIS)

    Ahmed, Faheem; Kumar, Shalendra; Arshi, Nishat; Anwar, M.S.; Su-Yeon, Lee; Kil, Gyung-Suk; Park, Dae-Won; Koo, Bon Heun; Lee, Chan Gyu

    2011-01-01

    Polyaniline (PANI)-ZnO nanoparticles composites film has been successfully fabricated by solution casting technique on glass substrate in which ZnO nanopowder was prepared via auto combustion method and used as inorganic materials. The as-grown nanocomposites film has been characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM) for their structural and morphological characterizations. X-ray diffraction studies of as-grown film showed the reflection of ZnO nanoparticles along with a broad peak of PANI. The AFM study of the film shows the incorporation of ZnO nanoparticles into the polymer matrix which was further supported by roughness measurement. TEM images showed that the size of ZnO nanoparticles in the nanocomposites increase from ∼ 35 nm to ∼ 45 nm, indicating the interaction of nanoparticles with PANI molecular chains. FTIR spectra showed a band at 501 cm -1 due to ZnO nanoparticles while the hydrogen bonding between the amine group of PANI and ZnO nanoparticles had been confirmed from the presence of the absorption band at 1148 cm -1 .

  8. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2010-01-01

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO 2 ) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO 2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO 2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO 2 sequestration when compared to air-fired power plant.

  9. Steam-moderated oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Adyar, Chennai 600 036 (India)

    2010-10-15

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO{sub 2}) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO{sub 2} and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO{sub 2} sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of {proportional_to}8% for CO{sub 2} sequestration when compared to air-fired power plant. (author)

  10. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  11. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    Science.gov (United States)

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  12. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  13. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  14. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  15. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    Science.gov (United States)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  16. Combustion and emissions control in diesel-methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion

    International Nuclear Information System (INIS)

    Carlucci, Antonio P.; Laforgia, Domenico; Saracino, Roberto; Toto, Giuseppe

    2011-01-01

    Highlights: → We studied dual fuel combustion in diesel engines. → Bulk flow structure of in-cylinder charge and methane supply method were investigated. → Swirl charge motion is capable to enhance air-methane mixture oxidation at low loads. → Methane port injection is capable to reduce unburned hydrocarbons and nitric oxides. - Abstract: In this paper, the results of an extensive experimental campaign about dual fuel combustion development and the related pollutant emissions are reported, paying particular attention to the effect of both the in-cylinder charge bulk motion and methane supply method. A diesel common rail research engine was converted to operate in dual fuel mode and, by activating/deactivating the two different inlet valves of the engine (i.e. swirl and tumble), three different bulk flow structures of the charge were induced inside the cylinder. A methane port injection method was proposed, in which the gaseous fuel was injected into the inlet duct very close to the intake valves, in order to obtain a stratified-like air-fuel mixture up to the end of the compression stroke. For comparison purposes, a homogeneous-like air-fuel mixture was obtained injecting methane more upstream the intake line. Combining the different positions of the methane injector and the three possible bulk flow structures, seven different engine inlet setup were tested. In this way, it was possible to evaluate the effects on dual fuel combustion due to the interaction between methane injector position and charge bulk motion. In addition, methane injection pressure and diesel pilot injection parameters were varied setting the engine at two operating conditions. For some interesting low load tests, the combustion development was studied more in detail by means of direct observation of the process, using an in-cylinder endoscope and a digital CCD camera. Each combustion image was post-processed by a dedicated software, in order to extract only those portions with flame

  17. Construct solitary solutions of discrete hybrid equation by Adomian Decomposition Method

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2009-01-01

    In this paper, we apply the Adomian Decomposition Method to solving the differential-difference equations. A typical example is applied to illustrate the validity and the great potential of the Adomian Decomposition Method in solving differential-difference equation. Kink shaped solitary solution and Bell shaped solitary solution are presented. Comparisons are made between the results of the proposed method and exact solutions. The results show that the Adomian Decomposition Method is an attractive method in solving the differential-difference equations.

  18. Algebraic methods for solution of polyhedra

    Energy Technology Data Exchange (ETDEWEB)

    Sabitov, Idzhad Kh [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-06-30

    By analogy with the solution of triangles, the solution of polyhedra means a theory and methods for calculating some geometric parameters of polyhedra in terms of other parameters of them. The main content of this paper is a survey of results on calculating the volumes of polyhedra in terms of their metrics and combinatorial structures. It turns out that a far-reaching generalization of Heron's formula for the area of a triangle to the volumes of polyhedra is possible, and it underlies the proof of the conjecture that the volume of a deformed flexible polyhedron remains constant. Bibliography: 110 titles.

  19. A general solution strategy of modified power method for higher mode solutions

    International Nuclear Information System (INIS)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-01-01

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the new strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.

  20. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  1. Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation

    International Nuclear Information System (INIS)

    Wang Dengshan; Zhang Hongqing

    2005-01-01

    In this paper, with the aid of the symbolic computation we improve the extended F-expansion method in [Chaos, Solitons and Fractals 2004; 22:111] and propose the further improved F-expansion method. Using this method, we have gotten many new exact solutions which we have never seen before within our knowledge of the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation. In addition,the solutions we get are more general than the solutions that the extended F-expansion method gets.The solutions we get include Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions and so on. Our method can also apply to other partial differential equations and can also get many new exact solutions

  2. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method

    International Nuclear Information System (INIS)

    Fan Engui

    2002-01-01

    A new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system. Compared with most of the existing tanh methods, the Jacobi elliptic function method or other sophisticated methods, the proposed method not only gives new and more general solutions, but also provides a guideline to classify the various types of the travelling wave solutions according to the values of some parameters. The solutions obtained in this paper include (a) kink-shaped and bell-shaped soliton solutions, (b) rational solutions, (c) triangular periodic solutions and (d) Jacobi and Weierstrass doubly periodic wave solutions. Among them, the Jacobi elliptic periodic wave solutions exactly degenerate to the soliton solutions at a certain limit condition. The efficiency of the method can be demonstrated on a large variety of nonlinear evolution equations such as those considered in this paper, KdV-MKdV, Ito's fifth MKdV, Hirota, Nizhnik-Novikov-Veselov, Broer-Kaup, generalized coupled Hirota-Satsuma, coupled Schroedinger-KdV, (2+1)-dimensional dispersive long wave, (2+1)-dimensional Davey-Stewartson equations. In addition, as an illustrative sample, the properties of the soliton solutions and Jacobi doubly periodic solutions for the Hirota equation are shown by some figures. The links among our proposed method, the tanh method, extended tanh method and the Jacobi elliptic function method are clarified generally. (author)

  3. Future combustion methods for biomethane powered tractor engines; Zukuenftige Brennverfahren fuer biomethanbetriebene Traktormotoren

    Energy Technology Data Exchange (ETDEWEB)

    Prehn, Sascha; Harndorf, Horst [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Wichmann, Volker [Rostock Univ. (Germany). Maschinenlabor; Beberdick, Wolfgang

    2016-08-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  4. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  5. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  6. Gas permeation process for post combustion CO2 capture

    International Nuclear Information System (INIS)

    Pfister, Marc

    2017-01-01

    CO 2 Capture and Storage (CCS) is a promising solution to separate CO 2 from flue gas, to reduce the CO 2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO 2 fraction in the inlet flue gas and the high output targets in terms of CO 2 capture and purity (≥90%). Gas permeation across dense membrane can be used in post combustion CO 2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component's effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations. Permeation flux modelling across a dense membrane is required to perform a post combustion CO 2 capture process simulation. A CO 2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO 2 capture technology. (author)

  7. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ronda, A., E-mail: alirg@ugr.es [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Della Zassa, M. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy); Martín-Lara, M.A.; Calero, M. [Department of Chemical Engineering, University of Granada, 18071 Granada (Spain); Canu, P. [Department of Industrial Engineering, University of Padua, 35131 Padova (Italy)

    2016-05-05

    Highlights: • The fate of Pb during combustion at two scales of investigation was studied. • Results from combustion in a flow reactor and in the thermobalance were consistent. • The Pb contained in the solid remained in the ashes. • The Pb does not interfere in the use of OTP as fuel. • The combustion of Pb(II)-loaded OTP does not cause environmental hazards. - Abstract: The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10{sup 2} larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards.

  8. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  9. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  10. Enhanced activity and stability of La-doped CeO2 monolithic catalysts for lean-oxygen methane combustion.

    Science.gov (United States)

    Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai

    2018-02-01

    Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.

  11. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  12. CSP-based chemical kinetics mechanisms simplification strategy for non-premixed combustion: An application to hybrid rocket propulsion

    KAUST Repository

    Ciottoli, Pietro P.

    2017-08-14

    A set of simplified chemical kinetics mechanisms for hybrid rocket applications using gaseous oxygen (GOX) and hydroxyl-terminated polybutadiene (HTPB) is proposed. The starting point is a 561-species, 2538-reactions, detailed chemical kinetics mechanism for hydrocarbon combustion. This mechanism is used for predictions of the oxidation of butadiene, the primary HTPB pyrolysis product. A Computational Singular Perturbation (CSP) based simplification strategy for non-premixed combustion is proposed. The simplification algorithm is fed with the steady-solutions of classical flamelet equations, these being representative of the non-premixed nature of the combustion processes characterizing a hybrid rocket combustion chamber. The adopted flamelet steady-state solutions are obtained employing pure butadiene and gaseous oxygen as fuel and oxidizer boundary conditions, respectively, for a range of imposed values of strain rate and background pressure. Three simplified chemical mechanisms, each comprising less than 20 species, are obtained for three different pressure values, 3, 17, and 36 bar, selected in accordance with an experimental test campaign of lab-scale hybrid rocket static firings. Finally, a comprehensive strategy is shown to provide simplified mechanisms capable of reproducing the main flame features in the whole pressure range considered.

  13. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  14. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    Science.gov (United States)

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  15. Methane combustion over lanthanum-based perovskite mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Arandiyan, Hamidreza [New South Wales Univ., Sydney (Australia). School of Chemical Engineering

    2015-11-01

    This book presents current research into the catalytic combustion of methane using perovskite-type oxides (ABO{sub 3}). Catalytic combustion has been developed as a method of promoting efficient combustion with minimum pollutant formation as compared to conventional catalytic combustion. Recent theoretical and experimental studies have recommended that noble metals supported on (ABO{sub 3}) with well-ordered porous networks show promising redox properties. Three-dimensionally ordered macroporous (3DOM) materials with interpenetrated and regular mesoporous systems have recently triggered enormous research activity due to their high surface areas, large pore volumes, uniform pore sizes, low cost, environmental benignity, and good chemical stability. These are all highly relevant in terms of the utilization of natural gas in light of recent catalytic innovations and technological advances. The book is of interest to all researchers active in utilization of natural gas with novel catalysts. The research covered comes from the most important industries and research centers in the field. The book serves not only as a text for researcher into catalytic combustion of methane, 3DOM perovskite mixed oxide, but also explores the field of green technologies by experts in academia and industry. This book will appeal to those interested in research on the environmental impact of combustion, materials and catalysis.

  16. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  17. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction......, however the alkali in biomass complicate matters. Alkali in biomass severely deactivates the catalyst used for the selective catalytic reduction in matter of weeks, hence a more alkali resistant catalyst is needed. In the thesis a solution to the problem is presented, the nano particle deNOx catalyst...

  18. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  19. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  20. CFD code verification and the method of manufactured solutions

    International Nuclear Information System (INIS)

    Pelletier, D.; Roache, P.J.

    2002-01-01

    This paper presents the Method of Manufactured Solutions (MMS) for CFD code verification. The MMS provides benchmark solutions for direct evaluation of the solution error. The best benchmarks are exact analytical solutions with sufficiently complex solution structure to ensure that all terms of the differential equations are exercised in the simulation. The MMS provides a straight forward and general procedure for generating such solutions. When used with systematic grid refinement studies, which are remarkably sensitive, the MMS provides strong code verification with a theorem-like quality. The MMS is first presented on simple 1-D examples. Manufactured solutions for more complex problems are then presented with sample results from grid convergence studies. (author)

  1. Combustion synthesis of LaFeO{sub 3} sensing nanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F., E-mail: fabio.zaza@enea.it; Serra, E. [ENEA-Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Pallozzi, V.; Pasquali, M. [Department of Basic and Applied Sciences for Engineering, La Sapienza University, Via A. Scarpa 14/16, 00161 Rome (Italy)

    2015-06-23

    Since industrial revolution, human activities drive towards unsustainable global economy due to the overexploitation of natural resources and the unacceptable emissions of pollution and greenhouse gases. In order to address that issue, engineering research has been focusing on gas sensors development for monitoring gas emissions and controlling the combustion process sustainability. Semiconductors metal oxides sensors are attractive technology because they require simple design and fabrication, involving high accessibility, small size and low cost. Perovskite oxides are the most promising sensing materials because sensitivity, selectivity, stability and speed-response can be modulated and optimized by changing the chemical composition. One of the most convenient synthesis process of perovskite is the citrate-nitrate auto-combustion method, in which nitrate is the oxidizing agent and citrate is the fuel and the chelating argent in the same time. Since the sensibility of perovskite oxides depends on the defective crystallographic structure and the nanomorphology, the experimental was designed in order to study the dependence of powder properties on the synthesis conditions, such as the solution acidity and the relative amount of metals, nitrates and citric acid. Crystalline structure was studied in depth for defining the effects of synthesis conditions on size, morphology and crystallographic structure of nanopowders of LaFeO{sub 3}.

  2. On numerical solution of Burgers' equation by homotopy analysis method

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2008-01-01

    In this Letter, we present the Homotopy Analysis Method (shortly HAM) for obtaining the numerical solution of the one-dimensional nonlinear Burgers' equation. The initial approximation can be freely chosen with possible unknown constants which can be determined by imposing the boundary and initial conditions. Convergence of the solution and effects for the method is discussed. The comparison of the HAM results with the Homotopy Perturbation Method (HPM) and the results of [E.N. Aksan, Appl. Math. Comput. 174 (2006) 884; S. Kutluay, A. Esen, Int. J. Comput. Math. 81 (2004) 1433; S. Abbasbandy, M.T. Darvishi, Appl. Math. Comput. 163 (2005) 1265] are made. The results reveal that HAM is very simple and effective. The HAM contains the auxiliary parameter h, which provides us with a simple way to adjust and control the convergence region of solution series. The numerical solutions are compared with the known analytical and some numerical solutions

  3. Air Emissions Sampling from Vacuum Thermal Desorption for Mixed Wastes Designated with a Combustion Treatment Code for the Energy Solutions LLC Mixed Waste Facility

    International Nuclear Information System (INIS)

    Christensen, M.E.; Willoughby, O.H.

    2009-01-01

    EnergySolutions LLC is permitted by the State of Utah to treat organically-contaminated Mixed Waste by a vacuum thermal desorption (VTD) treatment process at its Clive, Utah treatment, storage, and disposal facility. The VTD process separates organics from organically-contaminated waste by heating the material in an inert atmosphere, and captures them as concentrated liquid by condensation. The majority of the radioactive materials present in the feed to the VTD are retained with the treated solids; the recovered aqueous and organic condensates are not radioactive. This is generally true when the radioactivity is present in solid form such as inorganic salts, metals or metallic oxides. The exception is when volatile radioactive materials are present such as radon gas, tritium, or carbon-14 organic chemicals. Volatile radioactive materials are a small fraction of the feed material. On August 28, 2006, EnergySolutions submitted a request to the USEPA for a variance to the Land Disposal Restrictions (LDR) standards for wastes designated with the combustion treatment code (CMBST). The final rule granting a site specific treatment variance was effective June 13, 2008. This variance is an alternative treatment standard to treatment by CMBST required for these wastes under USEPA's rules. The State of Utah provides oversight of the VTD processing operations. A demonstration test for treating CMBST-coded wastes was performed on April 29, 2008 through May 1, 2008. Three separate process cycles were conducted during this test. Both solid/liquid samples and emission samples were collected each day during the demonstration test. To adequately challenge the unit, feed material was spiked with trichloroethylene, o-cresol, dibenzofuran, and coal tar. Emission testing was conducted by EnergySolutions' emissions test contractor and sampling for radioactivity within the off-gas was completed by EnergySolutions' Health Physics department. This report discusses the emission testing

  4. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  5. Magnox Fuel Cycles; Cycles des combustibles gaines de magnox; Toplivnye tsikly magnoks; Ciclos de combustible magnox

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. [United Kingdom Atomic Energy Authority, Risley, Warrington, Lancs (United Kingdom)

    1963-10-15

    The interaction between reactivity flux and temperature distributions and irradiation patterns caused by different refuelling policies is considered and present calculation methods outlined. Various refuelling schemes for both batch and continuous discharge systems are compared. The problem of the efficient irradiation of the first charge is considered together with delayed onset refuelling and shuffling schemes. The economic advantages and problems of using non-natural uranium in flattened reactors are discussed. The practical consideration of on-load refuelling schemes on new reactors are considered and reference is made to the experience gained on Bradwell and Berkeley. The effect of the variation of fuel cost and endurance on fuel-cycle economics is outlined. (author) [French] L'auteur etudie en premier lieu l'interaction entre les distributions de la temperature du flux et de la reactivite, d'une part, et le regime de l'irradiation, d'autre part, dans le cas de differents programmes de rechargement du combustible et il decrit brievement les methodes de calcul actuelles. Il compare ensuite differents programmes de rechargement du combustible pour le dechargement par lots et le dechargement continu. Il etudie le probleme de l'irradiation effica ce de la premiere charge dans le cadre de programmes de remplacement et de deplacement des cartouches a action retardee. Il analyse les avantages economiques de l'utilisatio n d'uranium non naturel dans les reacteurs a flux aplati et les problemes qu'elle pose. Il examine les aspects pratiques des programmes de rechargement en marche pour les nouveaux reacteurs, en se referant a l'experience acquise au moyen des reacteurs de Bradwell et de Berkeley. Enfin, il decrit brievement les effets des variations du cout et de la resistance du combustible sur l'economie des cycles de combustible. (author) [Spanish] La memoria estudia la interaccion entre el flujo de reactividad y la distribucion de temperaturas, asi como los

  6. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    Science.gov (United States)

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  7. The internal combustion engine; a simple solution for pollution from petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1992-01-01

    The internal combustion (IC) engine is an indirect cause of groundwater and soil contamination from petroleum hydrocarbons. Leaking underground storage tank systems that are used to store and distribute fuel for automobiles are a major cause of environmental degradation. That same IC engine which has indirectly caused the pollution is an excellent tool for cleaning up environmental contamination from petroleum releases. An extremely flexible clean-up system using an IC engine was designed, constructed and operated to recover free product, treat contaminated soil and remediate groundwater pollution. The treatment system uses the IC engine for vapor extraction, groundwater pumping, spray aeration and incineration. The IC engine is an excellent incinerator. The petroleum vapors are burned in the IC engine with a supplemental propane fuel. The engine drives a power-takeoff unit and provides energy for an air compressor, water pump, electrical generation and other accessories. Using waste to energy methods multiple techniques are being used in combination with different treatment technologies to optimize the remediation. As the remediation progresses the treatment system can be modified to use additional techniques. Another benefit that is directly associated with the IC engine is the presence of excess heat which is helpful in northern climates. The excess heat has many uses including spray aeration and enhanced biological remediation. The IC engine has several limitations and requires an understanding of the physical and chemical properties of the contamination. As with all environmental remediation, a proper understanding of the Hydrogeological System is critical. When properly applied the IC engine has many advantages over other methods of remediation for petroleum hydrocarbons

  8. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Shastri, Lokesh; Kumar, G.S.; Malik, M.M.; Kurchania, Rajnish

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi 4 Ti 3 O 12 is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi 4 Ti 3 O 12 ) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T c due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample

  9. Combustion of metal agglomerates in a solid rocket core flow

    Science.gov (United States)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  10. Novel Active Combustion Control Concept for High-Frequency Modulation of Atomized Fuel Flow, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal by Jansen's Aircraft Systems Controls, Inc presents an innovative solution for Active Combustion Control. Relative to the state of the art, this...

  11. Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.

    Science.gov (United States)

    Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P

    2016-05-05

    The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New numerical method for solving the solute transport equation

    International Nuclear Information System (INIS)

    Ross, B.; Koplik, C.M.

    1978-01-01

    The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

  13. Combustion synthesis: A new approach for preparation of thermoelectric zinc antimonide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rouessac, F., E-mail: Florence.Rouessac@univ-montp2.fr [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, C2M Universite Montpellier 2, CC 1504 Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Ayral, R.-M. [Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, C2M Universite Montpellier 2, CC 1504 Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Reliable preparation method of thermoelectric materials. Black-Right-Pointing-Pointer Formation of zinc antimonide by the combustion synthesis method is investigated. Black-Right-Pointing-Pointer XRD and Raman spectroscopy as a function of temperature. Black-Right-Pointing-Pointer SHS: a new way for synthesizing thermoelectric materials. - Abstract: Due to the interesting properties of Zn{sub 4}Sb{sub 3} thermoelectric material, a reliable preparation method of this material is required. In this study, the formation of zinc antimonides by the combustion synthesis method is investigated and subjected to characterization using X-ray diffraction and Raman spectroscopy as a function of temperature. The results show that combustion synthesis can be a new way for synthesizing these thermoelectric materials.

  14. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  15. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  16. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  17. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  18. Bulk synthesis of nanocrystalline urania powders by citrate gel-combustion method

    Science.gov (United States)

    Sanjay Kumar, D.; Ananthasivan, K.; Venkata Krishnan, R.; Amirthapandian, S.; Dasgupta, Arup

    2016-01-01

    Bulk quantities (60 g) of nanocrystalline (nc) free flowing urania powders with crystallite size ranging from 38 to 252 nm have been synthesized for the first time by the citrate gel combustion method. A systematic study of the influence of the fuel (citric acid) to oxidant (nitrate) ratio (R) on the characteristics of the urania powders has been carried out for the first time. Mixture with an "R" value of 0.25 exhibited a vigorous auto-ignition reaction. This reaction was investigated with Differential Scanning Calorimetry (DSC) and in-situ thermogravimetry coupled with differential thermal analysis and mass spectrometry (TG-DTA-MS). The bulk density, specific surface area, X-ray crystallite size, residual carbon and size distribution of particles of this powder were unique. Microscopic and microstructural investigation of selected samples revealed the presence of nanocrystals with irregular exfoliated morphology; their Electron Energy Loss Spectra testified the covalency of the U-O bond.

  19. The functional variable method for finding exact solutions of some ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...

  20. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  1. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    International Nuclear Information System (INIS)

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-01

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out

  2. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  3. Method of continuously regenerating decontaminating electrolytic solution

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Kobayashi, Toshio; Wada, Koichi.

    1985-01-01

    Purpose: To continuously recover radioactive metal ions from the electrolytic solution used for the electrolytic decontamination of radioactive equipment and increased with the radioactive dose, as well as regenerate the electrolytic solution to a high concentration acid. Method: A liquid in an auxiliary tank is recycled to a cathode chamber containing water of an electro depositing regeneration tank to render pH = 2 by way of a pH controller and a pH electrode. The electrolytic solution in an electrolytic decontaminating tank is introduced by way of an injection pump to an auxiliary tank and, interlocking therewith, a regenerating solution is introduced from a regenerating solution extracting pump by way of a extraction pipeway to an electrolytic decontaminating tank. Meanwhile, electric current is supplied to the electrode to deposit radioactive metal ions dissolved in the cathode chamber on the capturing electrode. While on the other hand, anions are transferred by way of a partition wall to an anode chamber to regenerate the electrolytic solution to high concentration acid solution. While on the other hand, water is supplied by way of an electromagnetic valve interlocking with the level meter to maintain the level meter constant. This can decrease the generation of the liquid wastes and also reduce the amount of the radioactive secondary wastes. (Horiuchi, T.)

  4. Emissions of hydrocarbons from combustion of biofuels

    International Nuclear Information System (INIS)

    Olsson, Mona; Persson, Eva Marie.

    1991-10-01

    Evaluations and measurements of emissions of hydrocarbons from power plants with a capacity exceeding 1 MW using biofuels (wood fuels and peat) have been studied in order to identify and quantify the emissions of incompletely combusted hydrocarbons. The influence of the type of fuel and the combustion technology applied were also studied, using literature references. The report summarizes monitoring results from a number of plants using biofuels. The reported emissions from the different plants can not be compared as they are relatively few and the test results have been obtained under various conditions using different methods of testing and analysis. The methods used are often poorly documented in the studied reports. Few investigations of emissions of hydrocarbons from plants in the range of 1 to 10 MW have been carried out. The plant and the technology used are important factors determining the amount and type of emissions of hydrocarbons. Larger temporary emissions can occur during start up, operational disturbances or when using fuel of inhomogeneous quality. In order to minimize the emissions the combustion process must be efficiently controlled, and a fuel of a hohogeneous quality must be used. The report also summarizes sampling and analysis methods used for monitoring emissions of hydrocarbons. (29 refs., 17 figs.)

  5. Combustion synthesis of inorganic materials; Muki zairyo no nensho gose

    Energy Technology Data Exchange (ETDEWEB)

    Oyanagi, M. [Ryukoku University, Kyoto (Japan)

    1999-11-01

    Combustion synthesis of porous titan carbide is outlined. In combustion synthesis, exothermic chain reaction, which is induced by igniting at one point of the simple substance mixture, propagates the combustion wave, and the compound is synthesized, which can be sintered by it. By this method, to this day intermetallic compounds, ceramics and high melting point composite materials have been synthesized, and synthetics can be made compact by adding pressure during or just after the reaction. Recently, applying the induction heating jointly, preheating before the reaction and heat treatment after the reaction can be controlled, accordingly, many high melting point inorganic compounds and composite materials can be made by combustion synthesis under pressure. (NEDO)

  6. Success of lime additives for controlling SO2 releases from fluidized bed combustion units

    International Nuclear Information System (INIS)

    Muezzinoglu, A.; Bayram, A.; Odabasi, M.

    1995-01-01

    Purpose of this work was to study the desulfurization efficiencies of dry additives on the fluidized bed reactors fired with low quality lignites. In these tests selected initial SO 2 levels were in the order of 1000 ppm or less in the flue gases. Lime addition for desulfurization may either be made by mixing with the fuel or by injection into the combustion reactor. In fluidized bed combustion systems both methods are physically possible. In the fluidized combustion systems a third method of addition is also possible this, is by mixing dry additives with fluidizer sand. In this third method additives create a fluidizer effect as well as reacting with the sulfur oxides being formed during the combustion of fuel

  7. Numerical Simulation of In Situ Combustion of Oil Shale

    Directory of Open Access Journals (Sweden)

    Huan Zheng

    2017-01-01

    Full Text Available This paper analyzes the process of in situ combustion of oil shale, taking into account the transport and chemical reaction of various components in porous reservoirs. The physical model is presented, including the mass and energy conservation equations and Darcy’s law. The oxidation reactions of oil shale combustion are expressed by adding source terms in the conservation equations. The reaction rate of oxidation satisfies the Arrhenius law. A numerical method is established for calculating in situ combustion, which is simulated numerically, and the results are compared with the available experiment. The profiles of temperature and volume fraction of a few components are presented. The temperature contours show the temperature variation in the combustion tube. It is found that as combustion reaction occurs in the tube, the concentration of oxygen decreases rapidly, while the concentration of carbon dioxide and carbon monoxide increases contrarily. Besides, the combustion front velocity is consistent with the experimental value. Effects of gas injection rate, permeability of the reservoir, initial oil content, and injected oxygen content on the ISC process were investigated in this study. Varying gas injection rate and oxygen content is important in the field test of ISC.

  8. A Novel Method for Analytical Solutions of Fractional Partial Differential Equations

    OpenAIRE

    Mehmet Ali Akinlar; Muhammet Kurulay

    2013-01-01

    A new solution technique for analytical solutions of fractional partial differential equations (FPDEs) is presented. The solutions are expressed as a finite sum of a vector type functional. By employing MAPLE software, it is shown that the solutions might be extended to an arbitrary degree which makes the present method not only different from the others in the literature but also quite efficient. The method is applied to special Bagley-Torvik and Diethelm fractional differential equations as...

  9. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  10. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  11. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  12. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  13. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  14. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  15. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  16. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  17. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  18. Defining collaborative business rules management solutions : framework and method

    NARCIS (Netherlands)

    dr. Martijn Zoet; Johan Versendaal

    2014-01-01

    From the publishers' website: The goal of this research is to define a method for configuring a collaborative business rules management solution from a value proposition perspective. In an earlier published study (Business rules management solutions: added value by means of business

  19. Thermoluminescence study of Mn doped lithium tetraborate powder and pellet samples synthesized by solution combustion synthesis

    International Nuclear Information System (INIS)

    Ozdemir, A.; Yegingil, Z.; Nur, N.; Kurt, K.; Tuken, T.; Depci, T.; Tansug, G.; Altunal, V.; Guckan, V.; Sigircik, G.; Yu, Y.; Karatasli, M.; Dolek, Y.

    2016-01-01

    In this paper, the thermoluminescence (TL) dosimetric characteristics under beta-ray, x-ray and gamma-ray excitations of powder and pellet Mn-doped lithium tetraborates (LTB) which were produced by solution combustion synthesis technique were investigated, and the results were compared with that of TLD-100 chips. The chemical composition and morphologies of the obtained LTB and Mn-doped LTB (LTB:Mn) were confirmed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM) with EDX. LTB:Mn was studied using luminescence spectroscopy. In addition, the effects of sintering and annealing temperatures and times on the thermoluminescence (TL) properties of LTB:Mn were investigated. The glow curves of powder samples as well as pellet samples exposed to different beta doses exhibited a low temperature peak at about 100 °C followed by an intense principal high temperature peak at about 260 °C. The kinetic parameters (E, b, s) associated with the prominent glow peaks were estimated using T m –T stop , initial rise (IR) and computerized glow curve deconvolution (CGCD) methods. The TL response of integral TL output increased linearly with increasing the dose in the range of 0.1–10 Gy and was followed by a superlinearity up to 100 Gy both for powder and pellet samples using beta-rays. Powder and pellet LTB:Mn were irradiated to a known dose by a linear accelerator with 6 and 18 MV photon beams, 6–15 MeV electron beams and a traceable 137 Cs beam to investigate energy response. Further, TL sensitivity, fading properties and recycling effects related with beta exposure of LTB:Mn phosphor were evaluated and its relative energy response was also compared with that of TLD-100 chips. The comparison of the results showed that the obtained phosphors have good TL dose response with adequate sensitivity and linearity for the measurement of medical doses.

  20. The reduction of air pollution by improved combustion

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, S.W. [Pennsylvania Univ., Chemical Engineering Dept., Philadelphia, PA (United States)

    1997-12-31

    The contributions of combustion to air pollution and possible remedies are discussed. Control and reduction of air pollution from combustion is more feasible than from other sources because of its discrete localization. The gaseous products of combustion inevitably include H{sub 2}O and CO{sub 2}, NO and/or NO{sub 2} and may include N{sub 2}O, SO{sub 2}, SO{sub 3} and unburned and partially burned hydrocarbons. Soot, ash and other dispersed solids may also be present, but are not considered herein. Unburned and partially burned hydrocarbons are prima facie evidence of poor mechanics of combustion and should not be tolerated. On the other hand, NO{sub x}, SO{sub 2} and SO{sub 3} are unavoidable if the fuel contains nitrogen and sulfur. The best remedy in this latter case is to remove these species from the fuel. Otherwise their products of combustion must be removed by absorption, adsorption or reaction. NO{sub x} from the fixation of N{sub 2} in the air and CO may be minimized by advanced techniques of combustion. One such method is described in some detail. If CO{sub 2} must be removed this can be accomplished by absorption, adsorption or reaction, but precooling is necessary and the quantity is an order of magnitude greater than that of any of the other pollutants. (Author)

  1. Investigation of combustion characteristics of methane-hydrogen fuels

    Science.gov (United States)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  2. Combustion synthesis and catalytic activity of LaCoO{sub 3} for HMX thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhi-Xian; Chi, Ying-Nan [Department of Chemistry, Institute for Chemical Physics, Beijing Institute of Technology (China); Hu, Chang-Wen [State Key Laboratory of Explosion Science, Technology Beijing Institute of Technology, Beijing (China); Liu, Hai-Yan [Department of Chemistry, Science Institute, North China University, Taiyuan, Shanxi (China)

    2009-10-15

    Perovskite-type LaCoO{sub 3} was prepared by stearic acid solution combustion method and characterized by XRD, DSC-TG, and XPS techniques. The catalytic activities of LaCoO{sub 3} for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) thermal decomposition were investigated. The as-prepared LaCoO{sub 3} shows higher activity than the calcined one. This could be due to higher concentration of surface-adsorbed oxygen and hydroxyl species as well as higher BET surface area of the as-prepared LaCoO{sub 3}. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

  4. Milestones in the Development of Iterative Solution Methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2010-01-01

    Roč. 2010, - (2010), s. 1-33 ISSN 2090-0147 Institutional research plan: CEZ:AV0Z30860518 Keywords : iterative solution methods * convergence acceleration methods * linear systems Subject RIV: JC - Computer Hardware ; Software http://www.hindawi.com/journals/jece/2010/972794.html

  5. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  6. Mult-Pollutant Control Through Novel Approaches to Oxygen Enhanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard Axelbaum; Pratim Biswas

    2009-02-28

    Growing concerns about global climate change have focused effortss on identifying approaches to stabilizing carbon dioxide levels in the atmosphere. One approach utilizes oxy-fuel combustion to produce a concentrated flue gas that will enable economical CO{sub 2} capture by direct methods. Oxy-fuel combustion rewuires an Air Separation Unit (ASU) to provide a high-purity stream of oxygen as well as a Compression and Purification Unit (CPU) to clean and compress the CO{sub 2} for long term storage. Overall plant efficiency will suffer from the parasitic load of both the ASU and CPU and researchers are investigating techniques to enhance other aspects of the combustion and gas cleanup proceses to improve the benefit-to-cost ratio. This work examines the influence of oxy-fuel combustion and non-carbon based sorbents on the formation and fate of multiple combustion pollutants both numerically and experimentally.

  7. System for combustion of sunflower shells in industrial steam generators

    International Nuclear Information System (INIS)

    Todoriev, Kh.

    2000-01-01

    The paper presents an economically efficient solution for reconstruction of steam generators with steam production over 5 t/h using foregoing cyclone chamber for sunflower shells combustion. For average fuel caloricity 9 445 ccal/kg and sunflower shells caloricity between 3 485 and 3 750 ccal/kg, the petroleum saving is 68.78% for an average boiler efficiency 4.6 t/h steam

  8. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  9. The Evaluation of Solid Wastes Reduction with Combustion System in the Combustion Chamber

    International Nuclear Information System (INIS)

    Prayitno; Sukosrono

    2007-01-01

    The evaluation of solid wastes reduction with combustion system is used for weight reduction factor. The evaluation was done design system of combustion chamber furnace and the experiment was done by burning a certain weight of paper, cloth, plastic and rubber in the combustion chamber. The evaluation of paper wastes, the ratio of wastes (paper, cloth, plastic and rubber) against the factor of weight reduction (%) were investigated. The condition was dimension of combustion chamber furnace = 0.6 X 0.9 X 1.20 X 1 m with combustion chamber and gas chamber and reached at the wastes = 2.500 gram, oxygen pressure 0.5 Bar, wastes ratio : paper : cloth : plastic : rubber = 55 : 10 : 30 : 5, the reduction factor = 6.36 %. (author)

  10. Effects of nano-TiO2 on combustion and desulfurization

    International Nuclear Information System (INIS)

    Zhao, Yi; Wang, Shuqin; Shen, Yanmei; Lu, Xiaojuan

    2013-01-01

    Nanosized titanium oxide powder was prepared via the sol–gel process and characterized by transmission electron microscope. The effects of nano-TiO 2 on combustion characteristics of lignite, desulfurization in combustion and the properties of ashes were investigated. The calorific value of coals and the fusion point of the coal ashes were measured by calorimeter and ash fusion point determination meter; the components of coal ashes and the contents of combustible matters in ash were determined by chemical methods; the pore-size distribution and specific surface area of the coal ash were analyzed by surface area analyzer. A thermogravimetric analyzer was used to investigate the effect of nano-TiO 2 on combustion. The results showed that the calorific value of the coal and the fusion temperature of the coal ash were lowered by adding CaO, while on the other hand adding nano-TiO 2 to coal increased the calorific value and the melting temperature effectively. Meanwhile, the coal combustion efficiency and desulfurization in combustion could be effectively improved by the co-action of TiO 2 . - Highlights: • The burn-off rate of coals was raised and the combustible contents were reduced by adding nano-TiO 2 . • The desulfurization in combustion can be achieved by adding CaO, but the combustion efficiency was inhibited. • Nano-TiO 2 can promote the transfer rate of oxygen from gas phase to the surface of char

  11. Progress Toward Analytic Predictions of Supersonic Hydrocarbon-Air Combustion: Computation of Ignition Times and Supersonic Mixing Layers

    Science.gov (United States)

    Sexton, Scott Michael

    Combustion in scramjet engines is faced with the limitation of brief residence time in the combustion chamber, requiring fuel and preheated air streams to mix and ignite in a matter of milliseconds. Accurate predictions of autoignition times are needed to design reliable supersonic combustion chambers. Most efforts in estimating non-premixed autoignition times have been devoted to hydrogen-air mixtures. The present work addresses hydrocarbon-air combustion, which is of interest for future scramjet engines. Computation of ignition in supersonic flows requires adequate characterization of ignition chemistry and description of the flow, both of which are derived in this work. In particular, we have shown that activation energy asymptotics combined with a previously derived reduced chemical kinetic mechanism provides analytic predictions of autoignition times in homogeneous systems. Results are compared with data from shock tube experiments, and previous expressions which employ a fuel depletion criterion. Ignition in scramjet engines has a strong dependence on temperature, which is found by perturbing the chemically frozen mixing layer solution. The frozen solution is obtained here, accounting for effects of viscous dissipation between the fuel and air streams. We investigate variations of thermodynamic and transport properties, and compare these to simplified mixing layers which neglect these variations. Numerically integrating the mixing layer problem reveals a nonmonotonic temperature profile, with a peak occurring inside the shear layer for sufficiently high Mach numbers. These results will be essential in computation of ignition distances in supersonic combustion chambers.

  12. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  13. Empirically Estimated Heats of Combustion of Oxygenated Hydrocarbon Bio-type Oils

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ponomarev

    2015-04-01

    Full Text Available An empirical method is proposed by which the heats of combustion of oxygenated hydrocarbon oils, typically found from wood pyrolysis, may be calculated additively from empirically predicted heats of combustion of individual compounds. The predicted values are in turn based on four types of energetically inequivalent carbon and four types of energetically inequivalent hydrogen atomic energy values. A method is also given to estimate the condensation heats of oil mixtures based on the presence of four types of intermolecular forces. Agreement between predicted and experimental values of combustion heats for a typical mixture of known compounds was ± 2% and < 1% for a freshly prepared mixture of known compounds.

  14. Potentiometric microdetermination of cadmium in organic compounds after oxygen flask combustion

    International Nuclear Information System (INIS)

    Campiglio, A.

    1986-01-01

    The sample is burnt in an oxygen flask and the combustion products are absorbed in 1Μ HNO 3 . After removal of interfering gases by boiling, the solution is transfered to the titration cell and neutralized with NaOH in the presence of methyl red; cd(II) is finally titrated potentiometrically in a buffered 50% ethanolic medium with 0.01Μ sodium diethyldithiocarbamate in 50% ethanol. A silver/sulphide ion-selective electrode and a double junction referenceelectrode containing a 10% KNO 3 solution in 26% ethanol in the outer compartment are used in combination with a Titroprocessor to detect the end point. The results obtained are very accurate and reproducible: the maximum error does not exceed 0.09%, the recovery of cadmium is in the range 99.67 to 99.95% and the rel. standard deviation is 0.05%. The potentiometric titration with diethyldithiocarbamate, which is useful to determine small Cd(II) amounts down to 30μg (2μg ml -1 ), as well as the oxygen flask combustion of organic cadmium compounds are discussed. (Author)

  15. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  16. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  17. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  18. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  19. Combustion characteristics of biodried sewage sludge.

    Science.gov (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-02-01

    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides