On the reliability of finite element solutions
International Nuclear Information System (INIS)
Prasad, K.S.R.K.
1975-01-01
The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)
Molybdenum: the element and aqueous solution chemistry
International Nuclear Information System (INIS)
Sykes, A.G.
1987-01-01
This chapter on the chemistry of the coordination compounds of molybdenum concentrates on the element itself, its recovery from ores and its use in the manufacture of steels. Most of the chapter is devoted to the aqueous solution chemistry of molybdenum in oxidation states II, III and IV. (UK)
Multi-element determination of soil solution by INAA
International Nuclear Information System (INIS)
Qian Qinfang; Wu Shuiqing; Tian Jibing
1992-01-01
One of the factors influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective elemental contents in soil, a novel method was introduced. In this method, soil solution was extracted by a squeezer. The concentrations of elements in soil solution were determined by INAA. Study on the compositions and the contents of elements in soil solution will provide information on making a suitable soil environment for plant growth and on rational and economical manuring
Solution chemistry of element 104: Pt. 1
International Nuclear Information System (INIS)
Czerwinski, K.R.; Gregorich, K.E.; Hannink, N.J.; Kacher, C.D.; Kadkhodayan, B.A.; Kreek, S.A.; Lee, D.M.; Nurmia, M.J.; Tuerler, A.; Seaborg, G.T.; Hoffman, D.C.
1994-01-01
Liquid-liquid extractions of element 104 (Rf), Zr, Nb, Th, and Eu were conducted using triisooctylamine (TIOA), an organic soluble high molecular weight amine. Initial studies were conducted studying the extraction of Zr, Nb, Th and Eu from 12 M HCl in an organic phase of TIOA in benzene. Tracer loss due to thin sample formation was examined using 95 Zr. Based on the tracer extraction results, Rf extractions were conducted with an aqueous phase of 12 M HCl and an organic phase of 1.0 M and 0.1 M TIAO in benzene. The Rf extraction results showed that 0.1 M TIOA in benzene extracts Rf to a greater extent than 1.0 M TIOA in benzene. This difference is attributed to Rf loss during thin sample formation. The extraction of Rf by TIOA is further evidence that Rf behaves similar to the group 4 elements. (orig.)
An efficient finite element solution for gear dynamics
International Nuclear Information System (INIS)
Cooley, C G; Parker, R G; Vijayakar, S M
2010-01-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Hydrothermal calcification of alkali treated titanium in CaHPO{sub 4} solution
Energy Technology Data Exchange (ETDEWEB)
Fu, T., E-mail: taofu@xjtu.edu.cn [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China); Fan, J.T., E-mail: jitang_fan@hotmail.com [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081 (China); Shen, Y.G. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Sun, J.M. [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China)
2017-03-01
The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO{sub 4} solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO{sub 2} with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO{sub 4} solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO{sub 2} and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO{sub 4} solution. • HA nanocrystallites are formed at 80–120 °C, but TiO{sub 2} nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.
Hydrothermal calcification of alkali treated titanium in CaHPO_4 solution
International Nuclear Information System (INIS)
Fu, T.; Fan, J.T.; Shen, Y.G.; Sun, J.M.
2017-01-01
The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO_4 solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO_2 with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO_4 solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO_2 and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO_4 solution. • HA nanocrystallites are formed at 80–120 °C, but TiO_2 nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.
DISTRIBUTION OF MAJOR ELEMENTS (NA, K, CA, MG) IN THE ...
African Journals Online (AJOL)
Levels of sodium, potassium, calcium and magnesium were determined in plant organs (bud, flowers, fruit, seed, leaves, stems, roots, cobs, styles, shaft, grains and efflorescences) of three Fadama farms located in Ifaki-Ekiti, Ado-Ekiti and Ikere-Ekiti of Ekiti State, Nigeria. The highest levels of Mg, K, Na and Ca were ...
A finite element solution method for quadrics parallel computer
International Nuclear Information System (INIS)
Zucchini, A.
1996-08-01
A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
2011-09-23
... Medical Solutions USA, Inc., Oncology Care Systems Division, Concord, CA; Siemens Medical Solutions USA... Solutions USA, Inc. (Siemens), Oncology Care Systems Division, Concord, California (subject firm). The...., Oncology Care Systems Division, Concord, California (TA-W-73,158) and Siemens Medical Solutions USA, Inc...
Gottschalk, M.; Najorka, J.; Andrut, M.
Tremolite (CaxSr1-x)2Mg5[Si8O22/(OH)2] and diopside (CaxSr1-x)Mg[Si2O6] solid solutions have been synthesized hydrothermally in equilibrium with a 1 molar (Ca,Sr)Cl2 aqueous solution at 750°C and 200 MPa. The solid run products have been investigated by optical, electron scanning and high resolution transmission electron microscopy, electron microprobe, X-ray-powder diffraction and Fourier-transform infrared spectroscopy. The synthesized (Ca,Sr)-tremolites are up to 2000 µm long and 30 µm wide, the (Ca,Sr)-diopsides are up to 150 µm long and 20 µm wide. In most runs the tremolites and diopsides are well ordered and chain multiplicity faults are rare. Nearly pure Sr-tremolite (tr0.02Sr-tr0.98) and Sr-diopside (di0.01Sr-di0.99) have been synthesized. A continuous solid solution series, i.e. complete substitution of Sr2+ for Ca2+ on M4-sites exists for (Ca,Sr)-tremolite. Total substitution of Sr2+ for Ca2+ on M2-sites can be assumed for (Ca,Sr)-diopsides. For (Ca,Sr)-tremolites the lattice parameters a, b and β are linear functions of composition and increase with Sr-content whereas c is constant. For the diopside series all 4 lattice parameters are a linear function of composition; a, b, c increase and β decreases with rising Sr-content. The unit cell volume for tremolite increases 3.47% from 906.68 Å3 for tremolite to 938.21 Å3 for Sr-tremolite. For diopside the unit cell volume increases 4.87 % from 439.91 Å3 for diopside to 461.30 Å3 for Sr-diopside. The observed splitting of the OH stretching band in tremolite is caused by different configurations of the next nearest neighbors (multi mode behavior). Resolved single bands can be attributed to the following configurations on the M4-sites: SrSr, SrCa, CaCa and CaMg. The peak positions of these 4 absorption bands are a linear function of composition. They are shifted to lower wavenumbers with increasing Sr-content. No absorption band due to the SrMg configuration on the M4-site is observed. This indicates
Anion-exchange Studies of Radioactive Trace Elements in Sulphuric Acid Solutions
Energy Technology Data Exchange (ETDEWEB)
Samsahl, K
1963-01-15
As part of a chemical group separation procedure used as a pretreatment in gamma spectrometric analysis, a study has been made of the adsorption from sulphuric acid solutions on strongly basic anion exchange resins, prepared in the hydroxide and the sulphate forms, of trace activities of Na, P, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Zr, Nb, Mo, Tc, Ag, Cd, In, Cs, Ba, La, Ce, Hf, Ta, W, Ir, Pa and Np. Besides adsorbing some of the trace elements in the solution, the anion exchange resin in the hydroxide form will neutralize the bulk of the sulphuric acid. This makes possible the subsequent sequential separation of chloride complexes on short anion-exchange columns by a stepwise increasing of the HCl concentration of the solution. On the basis of the results obtained in the present and earlier experiments, a new improved chemical group-separation procedure for mixtures of radioactive trace elements is outlined.
Solutions of group IV elements in liquid lithium
International Nuclear Information System (INIS)
Dadd, A.T.; Hubberstey, P.; Roberts, P.G.
1982-01-01
The solubilities of tin (0.00 = 22 Sn 5 . A simple thermochemical cycle is used to demonstrate that, whereas carbon dissolves endothermically in both liquid lithium and liquid sodium, the heavier Group IV elements dissolve exothermically. A similar cycle is used to derive solvation enthalpies (for the neutral gaseous species) for all Group IV elements in the two solvents. The trend in solvation enthalpy: C > Si > Ge > Sn > Pb is indicative of a diminishing affinity of solvent for solute and is attributed to the increasing metallic character of the solute as the Group is descended. (author)
Interactions of Ni and Ca at the calcite-solution interface
International Nuclear Information System (INIS)
Carlsson, T.; Aalto, H.
1996-10-01
The performance assessment of repositories for spent nuclear fuel need, among other things, data describing the solubilities of radionuclides in the near field and far field. The solubility limits are often used in order to estimate the maximum concentrations of radionuclides during their possible transport to the biosphere. The solubilities used are mostly the individual solubilities for pure solids of the actual radionuclides. This way of using solubility limits represents a conservative performance assessment where the estimated nuclide concentrations are unrealistically high. This is acceptable from a performance assessment point of view but very unsatisfactory for an optimal design of the repository. In order to make the assessment more realistic, coprecipitation and solid solution formation should be taken into account. Only solids which are, in geological terms, formed in fast reactions need to be considered, which in practice restricts the number of radionuclide scavengers to calcite and iron(III)oxihydroxide. This work focuses on the Ni coprecipitation with calcite. The systems were studied under anoxic conditions and consisted of calcite-saturated 0.05 M NaCl solutions in equilibrium with synthetic calcite. The solutions were initially spiked with 63 Ni and 45 Ca and the concentrations of these elements were determined using liquid scintillation counting. (18 refs.)
Ternary and quaternary solid solutions in rare earth alloy phases with the CaCu5-type structure
International Nuclear Information System (INIS)
Malani, G.K.; Raman, A.; Mohanty, R.C.
1992-01-01
Crystal structural data were analyzed in seleced CaCu 5 -type ternary and quaternary solid solutions to assess the crystal chemical characteristics and stability features of the CaCu 5 -type structure in rare earth containing alloy phases. LaNi 5 was found to dissolve 100 mol% LaCu 5 , 100 mol% ErNi 5 , about 50 mol% LaIr 5 , 40 mol% 'LaMn 5 ', 20 mol% 'LaFe 5 ', and 25 mol% ErRh 5 . In contrast, LaCo 5 did not dissolve any Mn or any of the other elements other than Al - it dissolved about 20 mol% 'LaAl 5 '. LaCu 5 behaves similar to LaNi 5 in solid solutions. From the lack of solubility of any other element in LaFe 5 , LaCo 5 , LaRh 5 , and LaIr 5 and their great instability, these are inferred to be borderline cases in the realm of the CaCu 5 -type structure. In the CaCu 5 and related crystal structures, Ir is compatible with Ni, but not with Co or Rh, and Rh is not compatible with either Ni or Ir. (orig.) [de
Chemical solution deposition of CaCu3Ti4O12 thin film
Indian Academy of Sciences (India)
Administrator
CaCu3Ti4O12; thin film; chemical solution deposition; dielectric properties. 1. Introduction. The CaCu3Ti4O12. (CCTO) compound has recently attracted considerable ... and Kelvin probe force microscopy (Chung et al 2004). Intrinsic .... SEM images of CCTO thin films as a function of sintering temperature. silicon based ...
Trace Element Partitioning Between low-Ca Pyroxene and Ultracalcic Liquids.
Pertermann, M.; Schmidt, M. W.; Pettke, T.
2003-12-01
Low-Ca pyroxene or pigeonite ( ˜0.25-0.35 Ca per formula unit, pfu) is an important residual phase during high temperature melting of refractory mantle (e.g., ankaramite formation). High-Ca cpx (>0.6-0.7 Ca pfu) may be residual to relatively low temperature melting of fertile mantle (MOR and OI), but the opx-cpx solvus narrows considerably at higher temperatures (>1330-1350° C), leading to coexisting opx and low-Ca cpx. Little is known about the trace element partitioning of such low-Ca cpx at upper mantle conditions. Our new partitioning experiments investigate the role of low-Ca cpx during melting of depleted peridotite. Nominally anhydrous experiments with graphite-lined Pt-capsules were conducted at 1.4 GPa and 1360-1370° C. The synthetic starting material is close in composition to an ultracalcic liquid saturated in opx+pigeonite+olivine+spinel. The experiments yielded assemblages of glass, low-Ca cpx, ol, and minor Cr-spinel; opx is absent. The low-Ca clinopyroxenes have 0.20 and 0.32 Ca pfu at 1370 and 1360° C, respectively, and tetrahedral Al of 0.046 and 0.067 pfu. The liquids have ˜50 wt% SiO2, ˜12.5 wt% CaO and CaO/Al2O3 of 1.44-1.54. Pyroxenes and glasses were analyzed for trace elements (La, Ce, Nd, Sm, Eu, Gd, Dy, Er Yb, Lu, Sc, Y, Sr, Zr, Hf, V, Cr, Mn, Co, Zn) by LA-ICP-MS using a 193 nm ArF excimer laser coupled to an Elan 6100 mass spectrometer. Ablation occurred in He, and ablation spot sizes were 15-30 μ m for minerals and 50 μ m for glasses. Trace element concentrations in pyroxenes were low for most 3+ and 4+ cations. This resulted in small mineral/melt partition coefficients (D-values), approximately an order of magnitude lower than those for high-Ca cpx associated with peridotite melting, thus making the low-Ca cpx partitioning behavior rather similar to the behavior of peridotitic opx. Cpx with 0.32 Ca pfu has slightly elevated D-values for 3+ cations when compared to the 0.20 Ca pfu cpx: DSc = 0.45, DY = 0.11, DSm = 0.054 and DYb
A Summary of the Space-Time Conservation Element and Solution Element (CESE) Method
Wang, Xiao-Yen J.
2015-01-01
The space-time Conservation Element and Solution Element (CESE) method for solving conservation laws is examined for its development motivation and design requirements. The characteristics of the resulting scheme are discussed. The discretization of the Euler equations is presented to show readers how to construct a scheme based on the CESE method. The differences and similarities between the CESE method and other traditional methods are discussed. The strengths and weaknesses of the method are also addressed.
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Directory of Open Access Journals (Sweden)
Changyong Cao
2015-01-01
Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr
Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.
2015-01-01
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L
2015-05-29
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.
Extraction of transplutonium elements from carbonate solutions by alkylpyrocatechol
International Nuclear Information System (INIS)
Karalova, Z.K.; Myasoedov, B.F.; Rodionova, L.M.; Kuznetsova, V.S.
1983-01-01
Extraction of americium, berkelium as well as Ce, Eu, Th, U, Zr, Cs, Fe with solution of 4(α, α-dioctylethyl)pyrocatechol (DOP) in toluene from carbonate solutions to determine conditions of their separation has been studied. It is established that americium extraction is quite sensitive to the changes of potassium carbonate concentration. The maximum extraction of americium (R >90%) is observed in the case of 0.1-0.5 mol/l of K 2 CO 3 solutions and the minimum one (R=2.5%) - in the case of 8 mol/l K 2 CO 3 . Americium extraction increases sharply when sodium hydroxide is introduced in carbonate solutions. It is shown that varying sodium hydroxide concentration it is possible to achieve qualitative extraction of americium even from saturated solution of potassium carbonate. Reextraction of TPE is easily realized with 3 mol/l HCl solution. The system K 2 CO 3 (KOH)-DOP proved to be perspective for Am separation from Bk, Ce, Cs, actinoid elements as well as from Fe
Finite element solution of quasistationary nonlinear magnetic field
International Nuclear Information System (INIS)
Zlamal, Milos
1982-01-01
The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth
International Nuclear Information System (INIS)
Iwata, K.; Matsumiya, T.; Sawada, H.; Kawakami, K.
2003-01-01
The method is presented to predict the activity coefficients and the interaction parameters of the solute elements in infinite dilute Si solutions by the use of first-principles calculations based on density functional theory. In this method, the regular solution model is assumed. The calculated activity coefficients in solid Si are converted to those in molten Si by the use of the solid-liquid partition coefficients. Furthermore, the interaction parameters in solid Si solutions are calculated and compared with reported experimental values of those in liquid Si solutions. The results show that the calculated activity coefficients and interaction parameters of Al, Fe, Ti and Pb in Si solutions are in good agreement with the tendency of the experiments. However, the calculations have some quantitative discrepancy from the experiments. It is expected that consideration of the excess entropy would reduce this discrepancy
Search for superheavy elements in the bombardment of 248Cm with 48Ca
International Nuclear Information System (INIS)
Hulet, E.K.; Lougheed, R.W.; Wild, J.F.; Landrum, J.H.; Stevenson, P.C.; Ghiorso, A.; Nitschke, J.M.; Otto, R.J.; Morrissey, D.J.; Baisden, P.A.; Gavin, B.F.; Lee, D.; Silva, R.J.; Fowler, M.M.; Seaborg, G.T.
1977-01-01
We have searched for superheavy elements 110 to 116 with half-lives between 10 4 and 10 8 s in fractions chemically separated after each of a series of bombardments of 248 Cm made with 267-MeV 48 Ca ions. After 6 months of α and spontaneous-fission counting, our results provide no persuasive evidence for the presence of super-heavy elements. The most plausible explanation for not finding the superheavy elements is that they have either short half-lives or very small formation cross sections
Effects of solute interstitial elements on swelling of stainless steel
International Nuclear Information System (INIS)
Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.
1975-01-01
High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)
Redox reactions for group 5 elements, including element 105, in aqueous solutions
International Nuclear Information System (INIS)
Ionova, G.V.; Pershina, V.; Johnson, E.; Fricke, B.; Schaedel, M.
1992-08-01
Standard redox potentials Edeg(M z+x /M z+ ) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials Edeg(M 3+ /M 2+ ). The stability of the maximum oxidation state of the elements decreases in the direction 103 > 104 > 105. (orig.)
Eigenvalue solutions in finite element thermal transient problems
International Nuclear Information System (INIS)
Stoker, J.R.
1975-01-01
The eigenvalue economiser concept can be useful in solving large finite element transient heat flow problems in which the boundary heat transfer coefficients are constant. The usual economiser theory is equivalent to applying a unit thermal 'force' to each of a small sub-set of nodes on the finite element mesh, and then calculating sets of resulting steady state temperatures. Subsequently it is assumed that the required transient temperature distributions can be approximated by a linear combination of this comparatively small set of master temperatures. The accuracy of a reduced eigenvalue calculation depends upon a good choice of master nodes, which presupposes at least a little knowledge about what sort of shape is expected in the unknown temperature distributions. There are some instances, however, where a reasonably good idea exists of the required shapes, permitting a modification to the economiser process which leads to greater economy in the number of master temperatures. The suggested new approach is to use manually prescribed temperature distributions as the master distributions, rather than using temperatures resulting from unit thermal forces. Thus, with a little pre-knowledge one may write down a set of master distributions which, as a linear combination, can represent the required solution over the range of interest to a reasonable engineering accuracy, and using the minimum number of variables. The proposed modified eigenvalue economiser technique then uses the master distributions in an automatic way to arrive at the required solution. The technique is illustrated by some simple finite element examples
Methods for removing transuranic elements from waste solutions
International Nuclear Information System (INIS)
Slater, S.A.; Chamberlain, D.B.; Connor, C.; Sedlet, J.; Srinivasan, B.; Vandegrift, G.F.
1994-11-01
This report outlines a treatment scheme for separating and concentrating the transuranic (TRU) elements present in aqueous waste solutions stored at Argonne National Laboratory (ANL). The treatment method selected is carrier precipitation. Potential carriers will be evaluated in future laboratory work, beginning with ferric hydroxide and magnetite. The process will result in a supernatant with alpha activity low enough that it can be treated in the existing evaporator/concentrator at ANL. The separated TRU waste will be packaged for shipment to the Waste Isolation Pilot Plant
Energy Technology Data Exchange (ETDEWEB)
Zhang, R.F. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, Y.Q. [Zhejiang DunAn Light Alloy Technology CO,.LTD, Zhuji 311835 (China); Hunan University of Science and Technology, Xiangtan 411201 (China); Zhang, S.F.; Qu, B. [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Guo, S.B. [Hunan University of Science and Technology, Xiangtan 411201 (China); Xiang, J.H., E-mail: xiangjunhuai@163.com [School of Material and Electromechanics, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)
2015-01-15
Highlights: • Compared to the Mg phase, the area of Mg{sub 2}Ca phase is much smaller. • The coatings are preferentially developed on the area adjacent to Mg{sub 2}Ca phase. • During MAO process, some sodium phytate molecules are hydrolyzed. • Anodic coatings are developed from uneven to uniform. - Abstract: Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO{sub 3} electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO{sub 3}. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg{sub 2}Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg{sub 2}Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg{sub 2}Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO{sub 3} has minor influence on the calcium content of the obtained MAO coatings.
Precipitation of Nd-Ca carbonate solid solution at 25 degrees C
International Nuclear Information System (INIS)
Carroll, S.A.
1993-01-01
The formation of a Nd-Ca carbonate solid solution was studied by monitoring the reactions of calcite with aqueous Nd, orthorhombic NdOHCO 3 (s) with aqueous Ca, and calcite with hexagonal Nd-carbonate solid phase as a function of time at 25 degrees C and controlled pCO 2 (g). All experiments reached steady state after 200 h of reaction. The dominant mechanism controlling the formation of the solid solution was precipitation of a Nd-Ca carbonate phase from the bulk solution as individual crystals or at the orthorhombic NdOHCO 3 (s)-solution interface. The lack of Nd adsorption or solid solution at the calcite-solution interface suggests that the solid solution was orthorhombic and may be modeled as a mixture of orthorhombic NdOHCO 3 (s) and aragonite. Orthorhombic NdOHCO 3 (s) was determined to be the stable Nd-carbonate phase in the Nd-CO 2 -H 2 O system at pCO 2 (g) 0.1 atmospheres at 25 degrees C. The equilibrium constant corrected to zero ionic strength for orthorhombic NdOHCO 3 (s) solubility is 10 10.41(±0.29) for the following: NdOHCO 3 (s) + 3H + = Nd 3+ + CO 2 (g) + H 2 O. Results are discussed in relation to radioactive waste disposal by burial, and specifically in relation to americium chemistry
Removal of Calcium from Scheelite Leaching Solution by Addition of CaSO4 Inoculating Crystals
Liu, Wenting; Li, Yongli; Zeng, Dewen; Li, Jiangtao; Zhao, Zhongwei
2018-04-01
In this work, the solubility behaviors of gypsum and anhydrite in the H2SO4-H3PO4-H2O system were investigated over the temperature range T = 30-80°C, and the results showed that the solubility of anhydrite was considerably lower than that of gypsum. On the basis of the differential solubilities of gypsum and anhydrite, a method was developed to remove calcium from the scheelite leaching solution by adding anhydrite as an inoculating crystal. The effects of the reaction time, concentration of the CaSO4 inoculating crystals, and temperature were investigated. With an addition of CaSO4 inoculating crystals at a concentration of 60 g/L, the Ca2+ concentration of the scheelite leaching solution decreased to a low level of approximately 0.76 g/L after 10 h at 70°C.
Kinetics of Roasting Decomposition of the Rare Earth Elements by CaO and Coal
Directory of Open Access Journals (Sweden)
Shuai Yuan
2017-06-01
Full Text Available The roasting method of magnetic tailing mixed with CaO and coal was used to recycle the rare earth elements (REE in magnetic tailing. The phase transformation and decomposition process were researched during the roasting processes. The results showed that the decomposition processes of REE in magnetic tailing were divided into two steps. The first step from 380 to 431 °C mainly entailed the decomposition of bastnaesite (REFCO3. The second step from 605 to 716 °C mainly included the decomposition of monazite (REPO4. The decomposition products were primarily RE2O3, Ce0.75Nd0.25O1.875, CeO2, Ca5F(PO43, and CaF2. Adding CaO could reduce the decomposition temperature of REFCO3 and REPO4. Meanwhile, the decomposition effect of CaO on bastnaesite and monazite was significant. Besides, the effects of the roasting time, roasting temperature, and CaO addition level on the decomposition rate were studied. The optimum technological conditions were a roasting time of 60 min; roasting temperature of 750 °C; and CaO addition level of 20% (w/w. The maximum decomposition rate of REFCO3 and REPO4 was 99.87%. The roasting time and temperature were the major factors influencing the decomposition rate. The kinetics process of the decomposition of REFCO3 and REPO4 accorded with the interfacial reaction kinetics model. The reaction rate controlling steps were divided into two steps. The first step (at low temperature was controlled by a chemical reaction with an activation energy of 52.67 kJ/mol. The second step (at high temperature was controlled by diffusion with an activation energy of 8.5 kJ/mol.
Chemical solution deposition of CaCu 3 Ti 4 O 12 thin film
Indian Academy of Sciences (India)
CaCu3Ti4O12 (CCTO) thin film was successfully deposited on boron doped silica substrate by chemical solution deposition and rapid thermal processing. The phase and microstructure of the deposited films were studied as a function of sintering temperature, employing X-ray diffractometry and scanning electron ...
Mg/Ca partitioning between aqueous solution and aragonite mineral: a molecular dynamics study
Ruiz-Hernandez, S.E.; Grau-Crespo, R.; Almora-Barrios, N.; Wolthers, M.; Ruiz-Salvador, A.R.; Fernandez, N.; Leeuw, N.H. de
2012-01-01
We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO3 in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces,
Biosorption of strontium ions from aqueous solution using Ca-alginate biopolymer beads
International Nuclear Information System (INIS)
Goek, C.; Aytas, S.; Gerstmann, U.
2009-01-01
Biosorption of strontium ions from aqueous solution onto calcium alginate biopolymer beads was investigated in a batch system. Ca-alginate biopolymer beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. Optimum biosorption conditions were determined as a function of initial solution pH, initial Sr concentration, contact time, biomass dosage and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Sr ions by Ca-alginate biopolymer beads. The thermodynamic parameters (ΔH, ΔS, ΔG) for Sr sorption onto biosorbent were also determined from the temperature dependence. The results indicate that this biosorbent has a good potential for removal of Sr ions from dilute aqueous solution.
Finite element based composite solution for neutron transport problems
International Nuclear Information System (INIS)
Mirza, A.N.; Mirza, N.M.
1995-01-01
A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)
Wang, Yu-Lin; Wang, Ying; Yi, Hai-Bo
2016-07-21
In this study, the structural characteristics of high-coordinated Ca-Cl complexes present in mixed CaCl2-LiCl aqueous solution were investigated using density functional theory (DFT) and molecular dynamics (MD) simulations. The DFT results show that [CaClx](2-x) (x = 4-6) clusters are quite unstable in the gas phase, but these clusters become metastable when hydration is considered. The MD simulations show that high-coordinated Ca-chloro complexes are possible transient species that exist for up to nanoseconds in concentrated (11.10 mol·kg(-1)) Cl(-) solution at 273 and 298 K. As the temperature increases to 423 K, these high-coordinated structures tend to disassociate and convert into smaller clusters and single free ions. The presence of high-order Ca-Cl species in concentrated LiCl solution can be attributed to their enhanced hydration shell and the inadequate hydration of ions. The probability of the [CaClx](2-x)aq (x = 4-6) species being present in concentrated LiCl solution decreases greatly with increasing temperature, which also indicates that the formation of the high-coordinated Ca-Cl structure is related to its hydration characteristics.
Schmitt, Anne-Désirée; Gangloff, Sophie; Labolle, François; Chabaux, François; Stille, Peter
2017-09-01
Calcium (Ca) is the fourth most abundant element in mineral nutrition and plays key physiological and structural roles in plant metabolism. At the soil-water-plant scale, stable Ca isotopes are a powerful tool for the identification of plant-mineral interactions and recycling via vegetation. Radiogenic Sr isotopes are often used as tracers of Ca sources and mixtures of different reservoirs. In this study, stable Ca and radiogenic Sr are combined and analysed in several organs from two beech trees that were collected in June and September in the Strengbach critical zone observatory (CZO) (NE France) and in corresponding soil solutions. At the beech-tree scale, this study confirms the field Ca adsorption (i.e., physico-chemical mechanism and not vital effects) on carboxyl acid groups of pectin in the apoplasm of small roots. The analysis of the xylem sap and corresponding organs shows that although the Strengbach CZO is nutrient-poor, Ca seems to be non-limiting for tree-growth. Different viscosities of xylem sap between the stemwood and branches or leaves can explain δ44/40Ca values in different tree-organs. The bark and phloem 40Ca-enrichments could be due to Ca-oxalate precipitation in the bark tissues and in the phloem. The results from this study regarding the combination of these two isotopic systems show that the isotopic signatures of the roots are dominated by Ca fractionation mechanisms and Sr, and thus Ca, source variations. In contrast, translocation mechanisms are only governed by Ca fractionation processes. This study showed that at the root-soil solution interface, litter degradation was not the main source of Ca and Sr and that the soil solutions are not the complement of uptake by roots for samples from the 2011/2013 period. The opposite is observed for older samples. These observations indicate the decreasing contribution of low radiogenic Sr fluxes, such as recycling, alimenting the soil solutions. Such reduced importance of nutrient uptake and
Tribological behaviors of graphite sliding against cemented carbide in CaCl2 solution
International Nuclear Information System (INIS)
Guo, Fei; Tian, Yu; Liu, Ying; Wang, Yuming
2015-01-01
The tribological behaviors of graphite sliding against cemented carbide were investigated using a standard tribological tester Plint TE92 in a ring-on-ring contact configuration in both CaCl 2 solution and deionized water. An interesting phenomenon occurred: as the CaCl 2 solution concentration increased, the friction coefficient firstly decreased and was lower than that in the deionized water, and then gradually increased, exceeding the friction coefficient in the deionized water. The wear rate of the ,graphite also presented the same variation trend. According to the polarization curves of cemented carbide, contact angle measurements, Raman spectrum analysis and scanning electron microscope (SEM) images analysis, the above friction and wear behaviors of graphite sliding against cemented carbide were attributed to the graphite surface wettability and the cemented carbide surface corrosion property. (paper)
Thick films of Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O by solution processes
International Nuclear Information System (INIS)
Barboux, P.; Tarascon, J.M.; Shokoohi, F.; Wilkens, B.J.; Schwartz, C.L.
1988-01-01
We have prepared superconducting thick films of the Bi-based and the Tl-based cuprates via the decomposition of aqueous-glycerol solutions containing the salts of the elements. Preliminary results are presented in this work. The substrates are coated prior to heat treating, either by dipping or by spraying on various substrates heated at 200 0 C. Short firing times are required in order to minimize the loss of the constituent Bi (Tl). We find that nitrates of the constituents dissolved in a water-glycerol solution increase the reaction rate in comparison to pure nitrate aqueous solutions. They also help to produce the correct superconducting phase before some reaction with the substrate occurs or too much of the constituent Bi (Tl) is lost during heating to form the superconducting phase. However, the thallium phases cannot be obtained if the films are not fired in the presence of a high pressure of thallium in a sealed capsule. The films are composed of platelets, a few microns large, that are on average oriented parallel to the substrate with their c axis normal. The Bi films show an onset temperature at 85 K and zero resistance at 75 K while the Tl films show an onset temperature of 105 K and zero resistance at 95 K. The critical currents obtained to date are quite low (∼50 A/cm 2 at 77 K for the thallium phase)
Is The Ca + K + Mg/Al Ratio in the Soil Solution a Predictive Tool for Estimating Forest Damage?
International Nuclear Information System (INIS)
Goeransson, A.; Eldhuset, T. D.
2001-01-01
The ratio between (Ca +K +Mg) and Al in nutrient solution has been suggested as a predictive tool for estimating tree growth disturbance. However, the ratio is unspecific in the sense that it is based on several elements which are all essential for plant growth;each of these may be growth-limiting. Furthermore,aluminium retards growth at higher concentrations. Itis therefore difficult to give causal and objective biological explanations for possible growth disturbances. The importance of the proportion of base-cations to N, at a fixed base-cation/Al ratio, is evaluated with regard to growth of Picea abies.The uptake of elements was found to be selective; nutrients were taken up while most Al remained in solution. Biomass partitioning to the roots increased after aluminium addition with low proportions of basecations to nitrogen. We conclude that the low growthrates depend on nutrient limitation in these treatments. Low growth rates in the high proportion experiments may be explained by high internal Alconcentrations. The results strongly suggest that growth rate is not correlated with the ratio in the rooting medium and question the validity of using ratios as predictive tools for estimating forest damage. We suggest that growth limitation of Picea abies in the field may depend on low proportions of base cations to nitrate. It is therefore important to know the nutritional status of the plant material in relation to the growth potential and environmental limitation to be able to predict and estimate forest damage
Schmitt, Anne-Désirée; Gangloff, Sophie; Labolle, François; Chabaux, François; Stille, Peter
2017-04-01
Stable calcium and radiogenic Sr are analysed in several organs from two beech trees that were collected in June and September in the Strengbach CZO (NE France) and in corresponding soil solutions. The combination of these two isotopic systems shows that the isotopic signatures of roots are dominated by Ca fractionation mechanisms and Sr, and thus Ca, source variations. In contrast, translocation mechanisms are only governed by Ca fractionation processes. This study also confirms in the field that the Ca uptake mechanisms from nutritive solutions are controlled by adsorption processes in small roots because of physico-chemical mechanisms. Similarly, a study of surface soil solutions suggests that recent soil waters are less affected by vegetation uptake than in the past, probably because of a decline in the growth of the vegetation that is linked to climate warming, which causes drought episodes. Thus, soil solutions reflect the role of soil components in addition to nutrient uptake by vegetation. This isotopic Ca-Sr study also helps to identify one-time events that are caused by snow cover melting and/or dry episodes that release cations.
CSIR Research Space (South Africa)
Dejene, FB
2011-07-01
Full Text Available Effect of Tb3+ ion concentrations on the structural and persistence luminescence properties of CaSixOy:Tb3+ crystals were evaluated using powders grown by the solution combustion technique. The XRD study indicates the change of phase from CaSiO3...
Selection of the Best Process Stream to Remove Ca2+ Ion Using Electrodialysis from Sugar Solution
Directory of Open Access Journals (Sweden)
Jogi Ganesh Dattatreya Tadimeti
2014-01-01
Full Text Available Electrodialytic removal of calcium chloride (CaCl2, 25–50 mol·m−3 from 5% sugar solution was executed in batch recirculation mode. Calcium ion removal rate was monitored with (i applied potential, (ii feed flow rate, (iii solution viscosity and conductivity, and (iv catholyte streams (NaOH or sodium salt of ethylene diamine tetraacetic acid-acetic acid, Na2EDTA-AA. Unsteady state model for ion concentration change was written for the ED cell used. Linearized Nernst-Planck equation instead of Ohm’s law was applied to closely obtain the current density and concentration change theoretically. The model developed could closely predict the experimental observation. Mass transfer coefficients and specific energy densities were estimated for each combination of catholyte stream used. NaOH showed better performance for a short duration over Na2EDTA-acetic acid combination.
Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin
2016-02-01
A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.
Bakovets, V. V.; Zolotova, E. S.; Antonova, O. V.; Korol'kov, I. V.; Yushina, I. V.
2016-12-01
The specific features of the photoluminescence of [ nCaWO4-(1- n)CaMoO4]:Eu3+ solid solutions with the scheelite structure are examined using X-ray phase analysis and photoluminescence, Raman scattering, and diffuse reflectance spectroscopy. The studied features are associated with a change in the long- and short-range orders of the crystal lattice upon variations in the composition of solutions in the range n = 0-1.0 (with a pitch of 0.2) at a concentration of red photoluminescence activator Eu3+ of 2 mol %. The mechanism of the modification of photoluminescence of solid solutions upon variations in their composition has been discussed. Anomalies in the variations in parameters of the crystal lattice, its short-range order, and luminescence spectra have been observed in the transition from pure compounds CaMoO4:Eu3+ and CaWO4:Eu3+ to solutions; the concentration of Eu3+ ions in the centrosymmetric localization increases (decreases) in the transition from the molybdate (tungstate). It has been demonstrated that the spectral radiant emittance of solid solution [0.4CaWO4-0.6CaMoO4]:Eu3+ (2 mol %) is the closest to that of an incandescent lamp.
Directory of Open Access Journals (Sweden)
E.I. Adeyeye
2005-12-01
Full Text Available Levels of sodium, potassium, calcium and magnesium were determined in plant organs (bud, flowers, fruit, seed, leaves, stems, roots, cobs, styles, shaft, grains and efflorescences of three Fadama farms located in Ifaki-Ekiti, Ado-Ekiti and Ikere-Ekiti of Ekiti State, Nigeria. The highest levels of Mg, K, Na and Ca were obtained in the bud of Hibiscus esculentus with respective values (ppm dry weight, ppm DW of 4397, 2983, 3928 and 1622; this was closely followed by their levels in Lycopersicon esculentum root: Mg (2734, K (1079, Na (2111 and Ca (678. The levels of all the elements were highly varied in the anatomical parts of each plant and between the various plants. The index of bioaccumulation (ratio in plants/soil was recorded for all the elements with all values falling within 1-101 showing that the degree of accumulation was intensive. The overall levels of the elements were Mg > Na > K > Ca.
Thermal stresses in rectangular plates: variational and finite element solutions
International Nuclear Information System (INIS)
Laura, P.A.A.; Gutierrez, R.H.; Sanchez Sarmiento, G.; Basombrio, F.G.
1978-01-01
This paper deals with the development of an approximate method for the analysis of thermal stresses in rectangular plates (plane stress problem) and an evaluation of the relative accuracy of the finite element method. The stress function is expanded in terms of polynomial coordinate functions which identically satisfy the boundary conditions, and a variational approach is used to determine the expansion coefficients. The results are in good agreement with a finite element approach. (Auth.)
International Nuclear Information System (INIS)
Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.; Tertre, E.; Beaucaire, C.; Juery, A.; Ly, J.
2010-01-01
Sorption of inorganic elements onto carbonate minerals has been intensively described in the literature by two reaction steps: (1) a first one rapid and completed within a few hours and (2) a second one slower, eventually irreversible, and occurring at a constant rate. The first step is often attributed to an ion-exchange process, but its reversibility is rarely investigated. Consequently, discrimination of the global sorption phenomenon into two different mechanisms is not always justified. In this study, we investigated, by batch experiments, both sorption and desorption of Ca(II), HCO 3 - , and Zn(II), radiolabeled with isotopes 45 Ca(II), H 14 CO 3 - , and 65 Zn(II), respectively, onto synthetic pure calcite. Solutions were pre-equilibrated with atmospheric p(CO 2 ) and saturated with respect to calcite. Therefore, our purpose was to: (1) obtain experimental distribution coefficients of major elements (Ca(II) and HCO 3 - ) and a trace element (Zn(II)) onto calcite from sorption and desorption experiments, (2) test the validity of a first-occurring ion-exchange process generally noted in the literature, by calculating distribution coefficients for the 'sole' exchange process, and (3) quantify the amounts of Ca(II), HCO 3 - , and Zn(II) sorbed on the calcite surface by the sole 'exchange process' and compare them with surface crystallochemical data. Ca(II) or HCO 3 - sorption experimental data suggest that a significant fraction of these two elements was sorbed irreversibly onto or in the calcite. By using a method based on isotopic ratios, the Ca(II) or HCO 3 - concentrations, which are reversibly adsorbed on the calcite, have been quantified. These concentrations are respectively estimated at 4. 0 ± 2. 0 * 10 -4 and 7. 0 ± 1. 5 * 10 -4 mol/kg. The obtained Ca(II) surface concentration value is one order of magnitude lower than the one obtained from isotopic measurement by former authors [Geochim. Cosmochim. Acta 55 (1991) 1549; Geochim. Cosmochim. Acta 51
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
International Nuclear Information System (INIS)
Gürsoy, M.; Takeda, M.; Albert, B.
2015-01-01
Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials
Suffo, M.
2017-08-01
In this work, we present the real case of an industrial product was placed prematurely on the market without having checked the different stages of its life cycle. This type of products must be validated by numerical methods and by mechanical tests to verify their rheological behavior. In particular, the product consists of two small pieces in contact, one made of HDPE and the other one corresponding to a stainless steel. The polymeric piece supports the metal pressure under a constant static load over time. As a result of normal operation, the polymer experienced a “crazing” breakdown, which caused the failure to occur. In the study, design methods and computer assisted analysis software (CAED) have been used. These methods were complemented by scanning electron microscopy that confirmed the initial failure hypothesis. Using the finite element method (FEM), a series of load scenarios were carried out, where the different load hypothesis the product must go through prior to its placing on the market were simulated. It is shown that the failure was initiated by stress concentration on one of the edges of the polymeric piece. The proposed solution of the problem based on the analysis focuses on a simple redesign of the piece, which should have been round, or to the reduction of the thickness of the metal piece. As a result of the alteration of its natural life cycle, the company assumed both monetary costs and the definitive loss of customer confidence.
Wedenig, Michael; Dietzel, Martin; Boch, Ronny; Hippler, Dorothee
2016-04-01
Thermal water is increasingly used for heat and electric power production providing base-load capable renewable and virtually unlimited geothermal energy. Compared to other energy sources geothermal facilities are less harmful to the environment, i.e. chemically and visually. In order to promote the economic viability of these systems compared to other traditional and renewable energy sources, production hindering processes such as corrosion and scaling of components arising from the typically high salinity thermal waters have to be considered as important economic factors. In this context, using proper materials being in contact with the thermal water is crucial and a playground for further improvements. Aim of the study presented, are basic experiments and observations of scaling and corrosive effects from hydrothermal water interacting with different materials and surfaces (stainless steel, polyamide, galvanized steel) and in particular the nucleation and growth effects of these materials regarding the precipitation of solid carbonate phases. The incorporation of Mg, Sr and Ba cations into the carbonate scalings are investigated as environmental proxy. For this purpose, hydrothermal carbonate precipitating experiments were initialized by mixing NaHCO3 and Ca-Mg-Sr-Ba-chloride solutions at temperatures ranging from 40 to 80 °C in glass reactors hosting artificial substrates of the above mentioned materials. The experiments show a strong dependence of the precipitation behaviour of calcium carbonate polymorphs on the particular material being present. Stainless steel and polyamide seem to restrict aragonite formation, whereas galvanized steel supports aragonite nucleation. Vaterite formation is promoted by polyamide surfaces. Importantly, vaterite is more soluble (less stable) compared to the other anhydrous calcium carbonate polymorphs, i.e. vaterite can be more easily re-dissolved. Thus, the use of polyamide components might reduce the amount and durability of
Finite element approach to solution of multidimensional quasi ...
African Journals Online (AJOL)
problems whose function can be expressed as derivatives and integrated functional or on solution of quasi-harmonic functions whose physical behaviors are governed by a general quasi-harmonic differential equation that can be treated as a quadratic functional that can be minimized over a region. The functional of a ...
Symplectic discretization for spectral element solution of Maxwell's equations
International Nuclear Information System (INIS)
Zhao Yanmin; Dai Guidong; Tang Yifa; Liu Qinghuo
2009-01-01
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
On the possibility to measure 0νββ-decay nuclear matrix element for 48Ca
International Nuclear Information System (INIS)
Rodin, Vadim
2011-01-01
As shown in Ref. [2], the Fermi part M F 0ν of the total 0νββ-decay nuclear matrix element M 0ν can be related to the single Fermi transition matrix element between the isobaric analog state (IAS) of the ground state of the initial nucleus and the ground state of the final nucleus. The latter matrix element could be measured in charge-exchange reactions. Here we discuss a possibility of such a measurement for 48 Ca and estimate the cross-section of the reaction 48 Ti(n,p) 48 Sc(IAS).
Gómez Villalba, Luz Stella; López-Arce, Paula; Fort González, Rafael
2011-01-01
A study of the stability of calcium carbonate polymorphs formed as a result of the carbonation process from an alcoholic colloidal solution of nanocrystals of Ca(OH)2 in low relative humidity (RH) conditions (33% and 54% RH) is presented in this research. The crystalline behavior, the time dependence of nucleation and the phases’ transformations as a result of exposure to low humidity conditions are evaluated. The carbonation process is slow, starting with the nucleation of amorphous calcium ...
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Directory of Open Access Journals (Sweden)
Asad Rehman
Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity
Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions
International Nuclear Information System (INIS)
Oganessian, Y T; Utyonkov, V K; Lobanov, Y V; Abdullin, F S; Polyakov, A N; Sagaidak, R N; Shirokovsky, I V; Tsyganov, Y S; Voinov, A A; Gulbekian, G G; Bogomolov, S L; Gikal, B N; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Subotic, K; Zagrebaev, V I; Vostokin, G K; Itkis, M G; Moody, K J; . Patin, J B; Shaughnessy, D A; Stoyer, M A; Stoyer, N J; Wilk, P A; Kenneally, J M; Landrum, J H; Wild, J F; Lougheed, R W
2006-01-01
The decay properties of 290 116 and 291 116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, 293 116, have been measured in the 245 Cm( 48 Ca,xn) 293-x 116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the 249 Cf+ 48 Ca reaction. They performed the element 118 experiment at two projectile energies, corresponding to 297 118 compound nucleus excitation energies of E* = 29.2 ± 2.5 and 34.4 ± 2.3 MeV. During an irradiation with a total beam dose of 4.1 x 10 19 48 Ca projectiles, three similar decay chains consisting of two or three consecutive α decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope 294 118 (E α = 11.65 ± 0.06 MeV, T α = 0.89 -0.31 +1.07 ms) produced in the 3n-evaporation channel of the 249 Cf+ 48 Ca reaction with a maximum cross section of 0.5 -0.3 +1.6 pb
LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix
International Nuclear Information System (INIS)
Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong
2013-01-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid sample. A new approach was presented to improve the detection limit and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions, respectively. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to obtained LOD of 0.07 ppm for Cr element in solutions. (author)
LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix
International Nuclear Information System (INIS)
Wen Guanhong; Sun Duixiong; Su Maogen; Dong Chenzhong
2014-01-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions
Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6
International Nuclear Information System (INIS)
Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.
2007-01-01
The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice
Energy Technology Data Exchange (ETDEWEB)
Wang, Weidan; Han, Junjie [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xuan; Li, Mei [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Tan, Lili [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Zhang, Yu [Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)
2016-12-15
Highlights: • A non-toxic Mg-based alloy system with nutrient elements Si, Sr, Ca is proposed. • Properties improved due to morphology of coarse Mg{sub 2}Si change into small polygon. • Fewer, finer and homogenized Mg{sub 2}Si particles are obtained after anneal-treated. • Cytocompatibility results indicate a potential application in orthopedic. - Abstract: Magnesium has been widely studied as a biodegradable material, where its mechanical property and biocompatibility make it preferred candidate for orthopedic implant. Proper alloying can further improve the properties of Mg. First and foremost, to guarantee the biosafety for biomedical application, the alloying element should be toxic free. To address this point, nutrient elements including Si, Sr and Ca were selected due to their biological functions in human body, especially in bone regeneration and repair. In this study, 0.5–1.0 wt% Sr and Ca were used to refine and modify the morphology of coarse Mg{sub 2}Si in Mg-1.38wt% Si to obtain an uniform microstructure. Microstructure, mechanical and degradation properties of as-cast and homogenizing-annealed quaternary Mg-1.38Si-xSr-yCa (x, y = 0.5–1 wt%) alloys were investigated by optical microscopy, scanning electronic microscopy, X-ray diffraction, tensile and electrochemical measurement. Addition of Sr and Ca element cause a morphological change in Mg{sub 2}Si particles from coarse Chinese script shape to small polygonal type. The presences of intermetallic phases, such as Mg{sub 2}Si, CaMgSi and Mg{sub 17}Sr{sub 2}, were confirmed in quaternary alloys, of which content was applied to interpret the results for the quaternary system. Compared with the as-cast state, fewer, finer and homogenized microstructure were observed after an anneal heat treatment under 500 °C. The mechanical properties were improved with increase of Ca and Sr additions, which was related to the evolution of the microstructure and second phases, however, also causing an
International Nuclear Information System (INIS)
Zheng, Haibing; Li, Weihua; Ma, Fubin; Kong, Qinglin
2014-01-01
In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH) 2 solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH) 2 solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface
Organic radionuclide compounds in soil solutions and their role in elements absorption in plants
International Nuclear Information System (INIS)
Agapkin, G.I.; Tikhomirov, F.A.
1991-01-01
The results of reference experiments with introduction of radioactive labels ( 35 S, 45 Ca, 59 Fe, 85 , 125 I) into 5 types of climatophytic soils by the method of radiogel-chromatography allow to ascertain that in soil solutions 59 Fe and 125 I incorporate completely and 35 S, 45 Ca and 85 Sr incorporate by 60-90 % into the composition of one of three fractions of organic compounds with molecular masses of 4x10 2 -6x10 4 . It is shown that significant variations between soils in the absorption of such radionuclides as 4 5 Ca, 58 Fe, 85 Sr and 125 I are celated to a different degree of their transport into soil solutions as well as to differencies in their distribution by molecular-mass fractions of water-soluble organic compounds
Application of finite element method in the solution of transport equation
International Nuclear Information System (INIS)
Maiorino, J.R.; Vieira, W.J.
1985-01-01
It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt
International Nuclear Information System (INIS)
Soares, Eufemia Paez; Saiki, Mitiko; Wiebeck, Helio
2005-01-01
In the present study a radiometric method was established to determine the migration of elements from food plastic packagings to a simulated acetic acid solution. This radiometric method consisted of irradiating plastic samples with neutrons at IEA-R1 nuclear reactor for a period of 16 hours under a neutron flux of 10 12 n cm -2 s -1 and, then to expose them to the element migration into a simulated solution. The radioactivity of the activated elements transferred to the solutions was measured to evaluate the migration. The experimental conditions were: time of exposure of 10 days at 40 deg C and 3% acetic acid solution was used as simulated solution, according to the procedure established by the National Agency of Sanitary Monitoring (ANVISA). The migration study was applied for plastic samples from soft drink and juice packagings. The results obtained indicated the migration of elements Co, Cr and Sb. The advantage of this methodology was no need to analyse the blank of simulantes, as well as the use of high purity simulated solutions. Besides, the method allows to evaluate the migration of the elements into the food content instead of simulated solution. The detention limits indicated high sensitivity of the radiometric method. (author)
Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution
Energy Technology Data Exchange (ETDEWEB)
Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering
1995-01-01
The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.
Feasibility study on using three element TLD badge based on CaSO4:Dy as environmental dosimeter
International Nuclear Information System (INIS)
Choudhary, Sreeletha; BharathiLashmi, G.V.; Yasotha, E.; Devanathan, P.S.; Annalakshmi, O.; Mathiyarasu, R.
2018-01-01
A three element thermoluminescence badge based on CaSO 4 :Dy is used for personnel monitoring in India. The three discs of the badge is heated in sequential manner by hot nitrogen gas and from the amount of light emitted while heating, the doses are estimated. This badge was redesigned as a two element system and is used for environmental monitoring. Though the two element badge has some advantages, the software used for processing of TLDs in the semiautomatic reader has to be modified and separate badges has to be maintained for environmental dose measurements. In this work a feasibility study has been carried out to use the three element personnel monitoring badge itself for environmental monitoring also. This study was also carried out to understand the abnormal pattern of the glow curves observed in some field cards
Use of the iterative solution method for coupled finite element and boundary element modeling
International Nuclear Information System (INIS)
Koteras, J.R.
1993-07-01
Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver
International Nuclear Information System (INIS)
Shuhong Hu; Xiaoyan Lin; Yahui Zhang; Meiling Shi
2017-01-01
In this study, the core-shell nanoscale zero-valent iron (nZVI)@Alg-Ca beads were synthesized by coaxial electronic injection method for removal of U (VI) from aqueous solution, and characterized by SEM, EDX and XPS. The results showed that the pseudo-second-order models and the Langmuir isotherm model fitted well with the data obtained. The removal mechanism may include both physical adsorption of U (VI) on the surface or inside of core-shell nZVI@Alg-Ca beads and subsequent reduction of U (VI) to U (IV). Therefore, the core-shell nZVI@Alg-Ca beads would have an application prospect in effective removal of U (VI) contamination from aqueous solution. (author)
Solution microcalorimeter for measuring heats of solution of radioactive elements and compounds
International Nuclear Information System (INIS)
Raschella, D.L.
1978-12-01
The microcalorimeter vessel is constructed of tantalum metal, with a nominal volume of 5 cm 3 . Its energy equivalent is 24 J K -1 when containing 5 cm 3 H 2 O. The thermal leakage modulus is 0.010 min -1 . A thermistor is employed as the temperature sensor. The operating sensitivity is about 1 x 10 -5 K (300 μJ). The performance of the calorimetry system was tested using tris(hydroxymethyl)aminomethane (TRIS) and magnesium metal. The results of the TRIS experiments, at a concentration of 1 g dm -3 in 0.1 N HCl at 298 K, yielded a heat of solution of -29.606 +- 0.063 kJ mol -1 . The magnesium experiments, in 1 N HCl at 298 K, gave a heat of solution of -465.965 +- 1.136 kJ mol -1 . The heat of solution of curium-248 metal in 1 N HCl at 298 K was measured. The experiments, which should not be considered definitive, yielded a heat of solution of -606.4 +- 1.8 kJ mol -1 . A single measurement in 6 N HCl gave a heat of solution of -602.3 kJ mol -1 . From these results the heat of formation of Cm 3+ /sub (aq)/ is calculated to be -607.2 +- 2.5 kJ mol -1
On reactions of polymerization of p-element hydroxides in aqueous solutions
International Nuclear Information System (INIS)
Tikavyj, V.F.; Lesnikovich, A.I.
1978-01-01
The tendency of p-element hydroxides towards polymerization in aqueous solutions has been considered with respect to their location in the Periodic Table. Stable hydroxides of d-elements are practically all polymerized; among s-elements only berillium and magnesium hydroxides polymerize as the least dissociated ones. Hydroxides of the elements located to the right of the 4 Group and above the 5-th Period do not polymerize in aqueous solutions. The structure and tendency towards polymerization of In, Te, and I compounds have been studied. The tendency to polymerization of all hydroxides of p-elements located below the 4-th Period is explained from the standpoint of electron structure and the simplest thermodynamic analysis (entropy, enthalpy)
Distribution of trace elements between clays and zeolites and aqueous solutions similar to sea water
International Nuclear Information System (INIS)
Berger, G.
1992-01-01
The mechanisms of solid-solution partitioning during mineral crystallization in sea water have been investigated for Rb, Cs, Co, Sr, U, Th and lanthanides as trace elements, and Fe, Mg-chlorite/smectites and Na-zeolites as solid phases. These minerals have been synthesized by alteration at 40 o C in saline solutions of silicate glasses of appropriate compositions. The variation of the distribution coefficients (D) with the concentration of the elements as well as competition mechanisms between elements of analogous crystallochemical properties have been studied. The ''trapping'' of trace elements is shown to be governed by two mechanisms, according to D values or to water-rock ratios. At low values of D the incorporation of elements is controlled only by D, whereas at high values it is controlled by the number of available crystallochemical sites. (Author)
Martínez-Fernández, Domingo; Bingöl, Deniz; Komárek, Michael
2014-07-15
Two experiments were carried out to study the competition for adsorption between trace elements (TEs) and nutrients following the application of nano-maghemite (NM) (iron nano-oxide; Fe2O3) to a soil solution (the 0.01molL(-1) CaCl2 extract of a TEs-contaminated soil). In the first, the nutrients K, N, and P were added to create a set of combinations: potential availability of TEs during their interaction with NM and nutrients were studied. In the second, response surface methodology was used to develop predictive models by central composite design (CCD) for competition between TEs and the nutrients K and N for adsorption onto NM. The addition of NM to the soil solution reduced specifically the concentrations of available As and Cd, but the TE-adsorption capacity of NM decreased as the P concentration increased. The CCD provided more concise and valuable information, appropriate to estimate the behavior of NM sequestering TEs: according to the suggested models, K(+) and NH4(+) were important factors for Ca, Fe, Mg, Mn, Na, and Zn adsorption (Radj(2)=95%, except for Zn with Radj(2)=87%). The obtained information and models can be used to predict the effectiveness of NM for the stabilization of TEs, crucial during the phytoremediation of contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of organic substrates on available elemental contents in nutrient solution
Energy Technology Data Exchange (ETDEWEB)
Ao, Y.S.; Sun, M.; Li, Y.Q. [Shanghai Jiao Tong University, Shanghai (China). School for Agriculture & Biology
2008-07-15
In this paper, the changes of available elemental contents in the nutrient solution extracts of organic substrates (peat moss, charred rice husk, chicken manure, sawdust, turfgrass clipping and weathered coal) were studied and compared with that in the water extracts. Results showed that available elemental contents in the nutrient solution extracts are significantly different between organic substrates, whereas ionic concentrations are basically under steady condition after treatment for 36-108 h. Ionic contents in the nutrient solution extracts are not equal to the value of adding ionic concentrations in the supplied nutrient solution to that in the water extract. Thus, a mathematical model was proposed for adjusting the composition of supplied nutrient solution to match plant requirements in the organic soilless culture system.
International Nuclear Information System (INIS)
Gates, J. M.; Duellmann, Ch. E.; Schaedel, M.; Ackermann, D.; Block, M.; Bruechle, W.; Essel, H. G.; Hartmann, W.; Hessberger, F. P.; Huebner, A.; Jaeger, E.; Khuyagbaatar, J.; Kindler, B.; Krier, J.; Kurz, N.; Lommel, B.; Schaffner, H.; Schausten, B.; Schimpf, E.; Steiner, J.
2011-01-01
Experiments with the new recoil separator, Transactinide Separator and Chemistry Apparatus (TASCA), at the GSI were performed by using beams of 48 Ca to irradiate targets of 206-208 Pb, which led to the production of 252-254 No isotopes. These studies allowed for evaluation of the performance of TASCA when coupled to a new detector and electronics system. By following these studies, the isotopes of element 114 ( 288-291 114) were produced in irradiations of 244 Pu targets with 48 Ca beams at compound nucleus excitation energies around 41.7 and 37.5 MeV, demonstrating TASCA's ability to perform experiments with picobarn-level cross sections. A total of 15 decay chains were observed and were assigned to the decay of 288-291 114. A new α-decay branch in 281 Ds was observed, leading to the new nucleus 277 Hs.
Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration
International Nuclear Information System (INIS)
Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.
1985-01-01
The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)
Solution of the conjugated heat transfer problem for the fuel elements assemblies
International Nuclear Information System (INIS)
Golba, V.S.; Ivanenko, I.J.; Zinina, G.A.
1997-01-01
The paper presents the assemblies conjugated heat conductivity problem calculation and experimental method. The method is based on the temperature superposition modified concept and subchannel method and allows to predict the fuel elements surface temperatures with availability of fuel elements inside structure of any complication caused by technological and working defects and with availability of depositions with low heat conductivity on the fuel elements surfaces. According to the method developed the partial solutions of the heat conductivity equation at the heat removal boundaries (solid-liquid) are found separately for the fuel elements and for the liquid. The heat conductivity equation partial solutions for the fuel elements are predicted by calculations. The coolant heat conductivity equation partial solution ('influence functions') data massif is obtained in present work experimentally in the fuel assembly model consists of 7 tube bundle of fuel elements imitators placed in right grating with relative grating step equal to 1.1 and cooled by eutectic alloy Pb-Bi. It is shown that 'subchannel prediction method' decreases the crosswise heat transfer in comparison with crosswise heat transfer, when the fuel element inside structure is taken into account. Also in the paper it is shown that it is possible to realize the assembly temperature prediction method suggested without carrying out the experiments in the assembly's model in order to get the external problem influence functions'. (author)
Element/Ca, C and O isotope ratios in modern brachiopods
DEFF Research Database (Denmark)
Ullmann, C. V.; Frei, Robert; Korte, Christoph
2017-01-01
Fossil brachiopods are of major importance for the reconstruction of palaeoenvironmental conditions, particularly of the Paleozoic. In order to better understand signals of ancient shell materials, modern analogue studies have to be conducted. Here we present C and O isotope data in conjunction...... with ambient seawater. Some species – especially in the suborder Terebratellidina – show partly distinct disequilibrium signals, suggesting some degree of phylogenetic control on the expression of vital effects. Mn/Ca and Fe/Ca ratios measured in the modern species form a baseline to assess fossil preservation...
Rare earth element and uranium-thorium variations in tufa deposits from the Mono Basin, CA
Wilcox, E. S.; Tomascak, P. B.; Hemming, N.; Hemming, S. R.; Rasbury, T.; Stine, S.; Zimmerman, S. R.
2009-12-01
Samples of fossil tufa deposits from several localities in the Mono Basin, eastern California, were analyzed for trace element concentrations in order to better understand changes in lake composition in the past. These deposits were formed during the last glacial cycle, mostly during deglaciation (Benson et al., 1990, PPP). Three elevations are represented by the analyses. Samples from near Highway 167 were sampled between 2063 and 2069 m asl. Samples from near Thompson Road were sampled between 2015 and 2021 m. One layered mound was sampled at 1955 m. Concentrations of the lanthanide rare earth elements (REE), in particular the heavy/light (HREE/LREE) distributions, have been shown to be sensitive to alkalinity in modern saline lakes (e.g., Johannesson et al., 1994, GRL, 21, 773-776), and the same has been suggested for U/Th (Anderson et al., 1982, Science, 216, 514-516). Holocene to near-modern tufa towers exist in shallow water and around the current shoreline (1945 m). Tufa towers above 2000 m include a characteristic morphology termed thinolite, interpreted to represent pseudomorphs after the very cold water mineral ikaite. Most lower elevation towers do not have the thinolite morphology, but some layered tufa mounds at low elevations include several layers of thinolite, such as the one sampled for this project. Analyses were made on millimeter-scale bulk samples from tufa towers. Measurements were made on sample solutions with a Varian 820MS quadrupole ICP-MS. Mono Basin tufa samples have total REE concentrations ranging from 0.029 to 0.77 times average shales. Samples have flat to moderately HREE-enriched shale-normalized patterns with limited overall variability ([La/Lu]SN of 1.8 to 9.6) but with some variability in the slope of the HREE portion of the patterns. Tufa towers sampled from three elevations have (Gd/Lu)SN of 0.40 to 1.5. The REE patterns of most samples have small positive Ce anomalies, but a minority of samples, all from the layered tufa mound
Experiments on the Synthesis of Element 115 in the Reaction ^{243}Am (^{48}Ca, xn)^{291-x}115
Oganessian, Yu T; Lobanov, Yu V; Abdullin, F S; Polyakov, A N; Shirokovsky, I V; Tsyganov, Yu S; Gulbekyan, G G; Bogomolov, S L; Mezentsev, A N; Iliev, S; Subbotin, V G; Sukhov, A M; Voinov, A A; Buklanov, G V; Subotic, K M; Zagrebaev, V I; Itkis, M G; Patin, J B; Moody, K J; Wild, J F; Stoyer, M A; Stoyer, N J; Shaughnessy, D A; Kenneally, J M; Lougheed, R W
2003-01-01
The results of experiments designed to synthesize element 115 isotopes in the ^{243}Am(^{48}Ca,xn)^{291-x}115 reaction are presented. With a beam dose of 4.3\\cdot 10^{18} 248-Mev ^{48}Ca projectiles, we observed three similar decay chains consisting of five consecutive alpha-decays, all detected in time intervals of about 20 s and terminated at a later time by a spontaneous fission with a high energy release (TKE \\sim 220 MeV). At a higher bombarding energy of 253 MeV, with an equal ^{48}Ca beam dose, we registered a different decay chain of four consecutive alpha-decays detected in a time interval of about 0.5 s, also terminated by spontaneous fission. The alpha-decay energies and half-lives for nine new alpha-decaying nuclei were determined. The decay properties of these synthesized nuclei are consistent with consecutive alpha-decays originating from the parent isotopes of the new element 115, ^{288}115 and ^{287}115, produced in the 3n- and 4n-evaporation channels with cross sections of about 3 and 1 pb, r...
Luminescence Properties of CaF2 Nanostructure Activated by Different Elements
Directory of Open Access Journals (Sweden)
Numan Salah
2015-01-01
Full Text Available Nanostructures of calcium fluoride (CaF2 doped with Eu, Tb, Dy, Cu, and Ag were synthesized by the coprecipitation method and studied for their thermoluminescence (TL and photoluminescence (PL properties. The PL emission spectrum of pure CaF2 nanostructure has a broad band in the 370–550 nm range. Similar spectra were observed in case of doped samples, beside extra bands related to these impurities. The maximum PL intensity was observed in Eu doped sample. The TL results of Eu, Cu, Ag, and Tb doped samples show weak glow peaks below 125°C, whereas Dy doped one is found to be highly sensitive with a prominent peak at 165°C. This sample was further exposed to a wide range of gamma rays exposures from 137Cs source. The response curve is linear in the 100 Gy-10 kGy range. It is also observed that the particle size of CaF2 nanostructure was significantly reduced by increasing Dy concentration. These results showed that Dy is a proper activator in the host of CaF2 nanostructure, providing a highly sensitive dosimeter in a wide range of exposures and also plays a role as a controlling agent for particle size growth.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Solution of two energy-group neutron diffusion equation by triangular elements
International Nuclear Information System (INIS)
Correia Filho, A.
1981-01-01
The application of the triangular finite elements of first order in the solution of two energy-group neutron diffusion equation in steady-state conditions is aimed at. The EFTDN (triangular finite elements in neutrons diffusion) computer code in FORTRAN IV language is developed. The discrete formulation of the diffusion equation is obtained applying the Galerkin method. The power method is used to solve the eigenvalues' problem and the convergence is accelerated through the use of Chebshev polynomials. For the equation systems solution the Gauss method is applied. The results of the analysis of two test-problems are presented. (Author) [pt
Dmitriev, S N; Utyonkov, V K; Shishkin, S V; Eremin, A V; Lobanov, Yu V; Chepigin, V I; Sokol, E A; Tsyganov, Yu S; Vostokin, G K; Aksenov, N V; Hussonnois, M; Itkis, M G; Aggeler, H W; Schumann, D; Bruchertseifer, H; Eichler, R; Shaughnessy, D A; Wilk, P A; Kenneally, J M; Stoyer, M A; Wild, J F
2004-01-01
The results of an experiment designed to identify $^{268}$Db as the terminal isotope in the $\\alpha $-decay chain of element 115 produced via the ${\\rm {^{243}Am}}({\\rm {^{48}Ca}},3n){\\rm {^{288}115}}$ reaction are presented. The $^{243}$Am target was bombarded with a beam dose of $3.4\\cdot 10^{18}$ $^{48}$Ca projectiles at an energy of 247 MeV at the center of the target. The reaction products were collected in the surface layer of a copper catcher block, which was removed with a lathe and then dissolved in concentrated HNO$_{3}$. The group-5 elements were separated by sorption onto Dowex $50{\\times} 8$ cation-exchange resin with subsequent desorption using 1 M HF, which forms anionic fluoride complexes of group-5 elements. The eluent was evaporated onto a 0.4 $\\mu$m thick polyethylene foil that was placed between a pair of semiconductor detectors surrounded by $^{3}$He neutron counters for measurement of $\\alpha$ particles, fission fragments, and neutrons. In the course of the experiment, we observed 15 spo...
Mutual influences in solution spectroscopy of Fe, Ni Cr, Ti elements taken two by two
International Nuclear Information System (INIS)
Baudin, Guy; Henon, Genevieve
1960-01-01
The effect of third elements in solution spectroscopy has been studied for Fe, Ni Cr, Ti elements taken two by two. The existence of a linear relation Δc x /c x = f(c y ) between this effect and the third element concentration has been evidenced and opens interesting perspectives for the analysis of stainless steels. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1463-1465, sitting of 22 February 1960 [fr
Energy Technology Data Exchange (ETDEWEB)
Reddy, J N; Chao, W C [Virginia Polytechnic Inst. and State Univ., Blacksburg (USA). Dept. of Engineering Science and Mechanics
1981-04-01
In this study the effects of reduced integration, mesh size, and element type (i.e. linear or quadratic) on the accuracy of a penalty-finite element based on the theory governing thick, laminated, anisotropic composite plates are investigated. In order to assess the accuracy of the present finite element, exact closed-form solutions are developed for cross-ply and antisymmetric angle-ply rectangular plates simply supported and subjected to sinusoidally distributed mechanical and/or thermal loadings, and free vibration.
Shen, Hua
2016-10-19
A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.
Shen, Hua; Wen, Chih-Yung; Parsani, Matteo; Shu, Chi-Wang
2016-01-01
A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.
Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions
International Nuclear Information System (INIS)
Hinatsu, Y.; Fujino, T.
1988-01-01
Magnetic susceptibilities of Ca/sub y/U/sub 1-y/O/sub 2+x/ solid solutions with fluorite structure were measured from 4.2 K to room temperature. An antiferromagnetic transition was observed for all the solid solutions examined in this study (y ≤ 0.33). The Neel temperature of the oxygen-hypostoichiometric solid solutions (x 2 solid solutions, but different from that of (U,Th)O 2 solid solutions. The effective magnetic moment decreased with increasing calcium concentration, which indicates the oxidation of uranium in the solid solutions. From the analysis of the magnetic susceptibility data, it was found that the oxidation state of uranium was either tetravalent or pentavalent. The Neel temperature of the hyperstoichiometric solid solutions (x > 0) did not change appreciably with calcium concentrations. From the comparison of the magnetic susceptibility data of the hypostoichiometric solid solutions with those of the hyperstoichiometric solid solutions, the effect of oxygen vacancies is more significant than that of interstitial oxygens on the decrease of magnetic interactions between uranium ions
Photoluminescence in solid solutions and thin films of tungstates CaWO{sub 4}-CdWO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Taoufyq, A.; Mauroy, V.; Guinneton, F.; Valmalette, J-C. [University of Toulon, IM2NP, UMR CNRS 7334, La Garde, (France); Fiorido, T. [Aix Marseille University, IM2NP, UMR CNRS, 7334, Marseille, (France); Benlhachemi, A. [IBN ZOHR University, Faculty of sciences, Environment and Materials Laboratory, Agadir, (Morocco); Lyoussi, A. [CEA of Cadarache, DEN, Departement of reactors studies, experimental physics, Instrumentation Sensors and Dosimetry Laboratory, (France); Nolibe, G. [Cesigma society, signals and systems, La Garde, (France); Gavarri, J-R. [University of Toulon, IM2NP, UMR CNRS 7334, La Garde, (France)
2015-07-01
In this study, we present two types of studies on the luminescence properties under UV and X-ray excitations of solid solutions Ca{sub 1-x}Cd{sub x}WO{sub 4} and of thin layers of CaWO{sub 4} and CdWO{sub 4}. These tungstate based solid solutions are susceptible to be integrated into new radiation sensors, in order to be used in different fields of applications such as reactor measurements, safeguards, homeland security, nuclear nondestructive assays, LINAC emission radiation measurement. However these complex materials were rarely investigated in the literature. One first objective of our studies was to establish correlations between luminescence efficiency, chemical substitution and the degree of crystallization resulting from elaboration conditions. A second objective will be to determine the efficiency of luminescence properties of thin layers of these materials. In the present work, we focus our attention on the role of chemical substitution on photon emissions under UV and X-ray irradiations. The luminescence spectra of Ca{sub 1-x}Cd{sub x}WO{sub 4} polycrystalline materials have been investigated at room temperature as a function of composition (0≤x≤1). In addition, we present a preliminary study of the luminescence of CaWO{sub 4} and CdWO{sub 4} thin layers: oscillations observed in the case of X-ray excitations in the luminescence spectra are discussed. (authors)
Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions. Chemical composition range and flux crystal growth
Energy Technology Data Exchange (ETDEWEB)
Ivanov, V.A. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Marychev, M.O., E-mail: marychev@yandex.ru [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Andreev, P.V.; Lykov, V.A.; Faddeev, M.A. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation); Koseva, I. [Bulgarian Academy of Science, Institute of General and Inorganic Chemistry, BU-1113 Sofia (Bulgaria); Nikolov, V. [N.I. Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, 603950 (Russian Federation)
2015-11-01
A series of Ca{sub 2−x}Li{sub 2x}GeO{sub 4} specimens with 0 < 2x < 2, were synthesized by the classical solid state method. X-ray analysis revealed that for 0 < 2x < 0.6 only Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions of Ca{sub 2}GeO{sub 4} structure crystallized. The cell parameters of these solid solutions linearly decreased upon increasing the lithium concentration, which means that the solutions are in accordance with the Vegard's law. For 2x > 0.6 the specimens contained two phases: (i) Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions with maximum lithium concentration approximately equal to that for 2x = 0.6 and minimum values of the cell parameters and (ii) Li{sub 2}CaGeO{sub 4} phase. Li{sub 2}O·MoO{sub 3}–Ca{sub 2}GeO{sub 4} high-temperature solutions were used to grow Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions and Li{sub 2}CaGeO{sub 4} single crystals by the high temperature solution (flux) method. Li{sub 2}CaGeO{sub 4} crystals were grown in the concentration range 8–26 wt. % Ca{sub 2}GeO{sub 4} in the temperature range 830–980 °C. Crystals with chemical compositions of the Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions with different Li concentrations were grown in the concentration range 26–40 wt. % Ca{sub 2}GeO{sub 4} in the temperature range 980–1090 °C. - Highlights: • Ca{sub 2−x}Li{sub 2x}GeO{sub 4} solid solutions are established for the first time. • The Li concentration range into the solutions is between 0 and 0.6. • The solid solutions are in accordance to Vegard's law. • Suitable solutions are found out for Ca{sub 2−x}Li{sub 2x}GeO{sub 4} and Li{sub 2}CaGeO{sub 4} crystal growth.
Directory of Open Access Journals (Sweden)
José Miguel Vargas-Félix
2012-11-01
Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.
Finite-element solutions of the AER-2 rod ejection benchmark by CRONOS
International Nuclear Information System (INIS)
Kolev, N.P.; Lenain, R.; Fedon-Magnaud, C.
2001-01-01
The finite-element option in CRONOS was used to analyse the AER-2 rod-ejection benchmark for WWER-440. The objective is to obtain spatially converged solutions by means of node subdivision and approximation refinement. This paper presents the first phase of analysis dealing with the initial and just-ejected states used for calculation of the initial reactivity. Fine-mesh and extrapolated to zero mesh size solutions were obtained and verified by comparison to MAG code solutions. These differences provide potential for large deviations in the transient results and deserve further attention in reactor safety analysis (Authors)
Solution of Fokker–Planck equation by finite element and finite ...
Indian Academy of Sciences (India)
The response of a structural system to white noise excitation (delta-correlated) constitutes a Markov vector process whose transitional probability density function (TPDF) is governed by both the forward Fokker–Planck and backward Kolmogorov equations. Numerical solution of these equations by ﬁnite element and ﬁnite ...
The Influence of Mg(II and Ca(II Ions on Rutin Autoxidation in Weakly Alkaline Aqueous Solutions
Directory of Open Access Journals (Sweden)
Živanović Slavoljub C.
2016-09-01
Full Text Available Rutin (quercetin-3-O-rutinoside is one of the most abundant bioflavonoids with various biological and pharmacological activities. Considering the ubiquitous presence of Mg(II and Ca(II ions in biological systems we decided to investigate their influence on the autoxidation of rutin in weakly alkaline aqueous solutions. Changes in UV-Vis spectra recorded during the rutin autoxidation in aqueous solution at pH 8.4 revealed that this process was very slow in the absence of metal ions. The presence of Mg(II and, especially Ca(II ion, increased the transformation rate of rutin. UV-Vis spectra recorded after prolonged autoxidation indicated the formation of humic acidlike products in the presence of Mg(II and Ca(II ions. Four new compounds formed during the initial stage of rutin autoxidation in the presence of Mg(II and Ca(II ions were detected by HPLCDAD. Based on the analysis of their DAD UV-Vis spectra and comparison of their retention times with the retention time value for rutin, we concluded that the initial rutin transformation products were formed by the water addition on double bond in ring C and hydroxylation of ring B. A very small decrease of the initial rutin concentration (4% was observed by HPLC-DAD in the absence of metal ions for the period of 90 minutes. However, rutin concentration decrease was much larger in the presence of Mg(II and Ca(II ions (14% and 24%, respectively. The more pronounced effect of Ca(II ion on the rutin autoxidation may be explained by the stronger binding of Mg(II ion to rutin and thus greater stabilizing effect on reaction intermediates caused by its higher ionic potential (charge/ionic radius ratio in comparison to Ca(II ion. The results of this study may contribute to the better understanding of interactions of Mg(II and Ca(II ions with natural phenolic antioxidants which are important for their various biological activities.
GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase I
National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...
Transfer of alkaline earth elements in mothers' milk and doses from 45Ca, 90Sr and 226Ra
International Nuclear Information System (INIS)
Smith, T.J.; Phipps, A.W.; Fell, T.P.; Harrison, J.D.
2003-01-01
An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for 45 Ca, 90 Sr and 226 Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for 45 Ca (ratio = 3.1) while, in other cases such as 90 Sr, the infant dose can be a significant fraction of the adult dose. (author)
Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method
International Nuclear Information System (INIS)
Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr
2008-01-01
Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code
Directory of Open Access Journals (Sweden)
Agata Jędrzejuk
2016-09-01
Full Text Available Bedding plants are often subjected to soil water deficit – either after planting and/or during the market chain. Methods to alleviate the negative water stress effects are sought for to preserve ornamental values of plants. The aim of this study was to evaluate the response of two bedding plants, Ageratum houstonianum Mill. and Salvia splendens Sellow ex Scult., to water stress and treatments with calcium chloride aimed to alleviate drought effects. Plants were subjected either to 45 days of periodical stress (five cycles when watering was off for 5 consecutive days, followed by four cycles on for 5 consecutive days or 10 days of radical drought (complete water withdrawal. On the first day, before the onset of drought, plants were watered with 0.5% Ca or 1% Ca w/v as a solution of calcium chloride (5 g or 10 g Ca per 1 dm3 of the growing substrate. The similarly Ca-treated but routinely watered plants provided controls to evaluate the water shortage effects. Plant height, inflorescence length/number, leaf number, leaf area (in Salvia splendens only, aboveground plant part weight, and root weight (in Salvia splendens only as well as leaf relative water content (RWC were measured at the beginning and at the end of the experiments. Water withdrawal during 10 days of growth (radical drought reduced by half RWC in leaves of withering Salvia splendens and Ageratum houstonianum plants. Its effects on the growth parameters were less pronounced and mitigated by Ca applications. Also in the periodically stressed plants of both species, RWC and most growth parameters were reduced by water shortage but Ca applications alleviated the negative stress effects.
CaCO3 nanoparticle synthesis by carbonation of lime solution in microemulsion systems
Sugih, A.K.; Shukla, D.; Heeres, H.J.; Mehra, A.
2007-01-01
Various aspects of nanoparticle precipitation in gas-reverse micellar systems have been studied. The experimental system chosen for investigation deals with the precipitation of CaCO3 nanoparticles. The effect of operating variables, such as water-to-surfactant molar ratio, different continuous
Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity.
Atroshchenko, Elena; Bordas, Stéphane P A
2015-07-08
In this paper, both singular and hypersingular fundamental solutions of plane Cosserat elasticity are derived and given in a ready-to-use form. The hypersingular fundamental solutions allow to formulate the analogue of Somigliana stress identity, which can be used to obtain the stress and couple-stress fields inside the domain from the boundary values of the displacements, microrotation and stress and couple-stress tractions. Using these newly derived fundamental solutions, the boundary integral equations of both types are formulated and solved by the boundary element method. Simultaneous use of both types of equations (approach known as the dual boundary element method (BEM)) allows problems where parts of the boundary are overlapping, such as crack problems, to be treated and to do this for general geometry and loading conditions. The high accuracy of the boundary element method for both types of equations is demonstrated for a number of benchmark problems, including a Griffith crack problem and a plate with an edge crack. The detailed comparison of the BEM results and the analytical solution for a Griffith crack and an edge crack is given, particularly in terms of stress and couple-stress intensity factors, as well as the crack opening displacements and microrotations on the crack faces and the angular distributions of stresses and couple-stresses around the crack tip.
International Nuclear Information System (INIS)
Amir Esgandari, B.; Mehrjoo, H.; Nami, B.; Miresmaeili, S.M.
2011-01-01
Highlights: → Ca and RE elements decrease the precipitation rate during aging of AZ91 alloy. → Precipitation kinetics and mechanism during aging of the alloys were studied. → Effect of Ca and RE on creep properties of age hardened AZ91 alloy was studied. - Abstract: The effect of simultaneous alloying with Ca and rare earth (RE) elements on the age hardening kinetics of AZ91 was studied through the fitting of the Johnson-Mehl-Avrami (JMA) equation. The results showed that the addition of both Ca and RE elements not only suppress discontinuous precipitation of the Mg 17 Al 12 phase during the age hardening process, but also decrease the alloy hardness. Fitting the JMA equation to the experimental data indicated that the phase transformation during age hardening of an alloy variant containing both Ca and RE (at 170 deg. C and 190 deg. C) and standard AZ91 (at 170 deg. C) takes place by the nucleation of precipitates on dislocations. In contrast, the precipitation during age hardening of AZ91 at 190 deg. C occurs via nucleation at grain boundaries. Although it was observed that the creep strength of age hardened specimens are lower than that of the as cast specimens, but age hardening treatment has lower deleterious influence on the creep resistance of the alloy containing Ca and RE in comparison with conventional AZ91. This may be ascribed to the decreased precipitation rate resulting from the addition of both Ca and RE elements.
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
International Nuclear Information System (INIS)
Vaganov, P.A.; Kol'tsov, A.A.; Kulikov, V.D.; Mejer, V.A.
1983-01-01
The multi-element instrumental neutron activation analysis of samples of mountain rocks (sandstones, aleurolites and shales of one of gold deposits) is performed. The spectra of irradiated samples are measured by Ge(Li) detector of the volume of 35 mm 3 . The content of 22 chemical elements is determined in each sample. The results of analysis serve as reliable basis for multi-dimensional statistic information processing, they constitute the basis for the generalized characteristics of rocks which brings about the solution of classification problem for rocks of different deposits
Energy Technology Data Exchange (ETDEWEB)
Fischer, P.F. [Brown Univ., Providence, RI (United States)
1996-12-31
Efficient solution of the Navier-Stokes equations in complex domains is dependent upon the availability of fast solvers for sparse linear systems. For unsteady incompressible flows, the pressure operator is the leading contributor to stiffness, as the characteristic propagation speed is infinite. In the context of operator splitting formulations, it is the pressure solve which is the most computationally challenging, despite its elliptic origins. We seek to improve existing spectral element iterative methods for the pressure solve in order to overcome the slow convergence frequently observed in the presence of highly refined grids or high-aspect ratio elements.
Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš
2016-01-01
Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684
Directory of Open Access Journals (Sweden)
Christopher Ash
Full Text Available Shredded card (SC was assessed for use as a sorbent of potentially toxic elements (PTE carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water. We further assessed SC for retention of PTE, using acidified water (pH 3.4. Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49 were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC. In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC. In water, only Pb showed high sorption (191x more Pb in leachate without SC. In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil, and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC. A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption. SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.
This study characterizes the personal, indoor, and outdoor concentrations of PM2.5 and the major components of PM2.5, including nitrate (NO3-), elemental carbon (EC), and the elements for individuals with chronic obstructive pulmonary disease (COPD) living in Los Angeles, CA. ...
International Nuclear Information System (INIS)
Sri Murniasih; Muzakky
2007-01-01
The analysis of Fe, Sr, Zr and Ca elements concentration of granular sediment from upstream to downstream of Code river has been done. The aim of this research is to know the influence of particle size on the concentration of Fe, Sr, Zr and Ca elements in the Code river sediments from upstream to downstream and its distribution pattern. The instrument used was x-ray fluorescence with Si(Li) detector. Analysis results show that more Fe and Sr elements are very much found in 150 - 90 μm particle size, while Zr and Ca elements are very much found in < 90 μm particle size. Distribution pattern of Fe, Sr, Zr and Ca elements distribution in Code river sediments tends to increase relatively from upstream to downstream following its conductivity. The concentration of Fe, Sr, Zr and Ca elements are 1.49 ± 0.03 % - 5.93 ± 0.02 % ; 118.20 ± 10.73 ppm - 468.21 ± 20.36 ppm; 19.81 ppm ± 0.86 ppm - 76.36 ± 3.02 ppm and 3.22 ± 0.25 % - 11.40 ± 0.31 % successively. (author)
Formation of ammonia complexes of alkaline earth elements in aqueous solutions
International Nuclear Information System (INIS)
Padar, T.G.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.
1990-01-01
Coefficients of ammonia distribution between aqueous solutions of calcium, strontium, barium and ammonium perchlorate mixtures at ionic strength - 0.50; 1.0 and 1.5 at 298.2 K and ammonia concentrations 0.2-10 mol/dm 3 are measured. Formation of ammonia complexes of M(NH 3 ) n 2+ composition is shown. Logarithms of stepped stability constants for solutions with zero ionic strength for Ca 2+ are: -0.13; -0.25; -0.52 and -0.77, where n=1-4; for Sr 2+ : -0.04; -0.42 and -0.70, where n=1-3 and for Ba 2+ : -0.11; -0.50 and 0.76, where n=1-3
International Nuclear Information System (INIS)
Singh, Vijay; Watanabe, S.; Gundu Rao, T.K.; Al-Shamery, Katharina; Haase, Markus; Jho, Young-Dahl
2012-01-01
Tb 3+ doped CaZrO 3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO 3 :Tb 3+ exhibits three thermoluminescence (TL) glow peaks at 126 °C, 200 °C and 480 °C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O − ion. Centre II with an axial symmetric g-tensor with principal values g ⊥ =1.9986 and g ⊥ =2.0023 is assigned to an F + centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F + centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F + centre appear to correlate with the observed high temperature TL peak in CaZrO 3 :Tb 3+ phosphor. - Highlights: ► Powder phosphor of CaZrO 3 :Tb 3+ was prepared by an easy solution combustion synthesis method. ► The phosphor exhibits a bright green emission at 545 nm ( 5 D 4 → 7 F 5 ) of the Tb 3+ ion. ► Electron Spin Resonance studies have been carried out to identify the defect centres responsible for the observed thermoluminescence peaks.
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
Design of photon energy compensation filters for the new four element CaSO4:Dy TLD badge
International Nuclear Information System (INIS)
Mishra, D.R.; Kulkarni, M.S.; Pradeep, Ratna; Kannan, S.
2001-01-01
A new four element TLD badge using CaSO 4 :Dy is being developed for the estimation of personal dose equivalents Hp(10) and Hp(0.07) and to discriminate them in the mix field (low energy x-ray and high energy γ-ray). Design of energy compensation filters for the new TLD badge is discussed. The total metal filter thickness is kept less than 1 mm. The first and second elements of the badge are planned to be open and plastic (≅180 gm/cm 2 ) window. For the third element a combination of 0.2 mm Sn + 0.7mm Cu + 0.1 mm Al with mass thickness ≅ 1100 mg/cm 2 is proposed which gives energy dependent response similar to Hp(10) within ± 20% (above 80 keV). For the fourth dosimeter a filter combination of 0.4 mm Al + 0.07 mm Sn is proposed which gives Hp(10)xR response for diagnostic x-rays within ± 10% in the mix field. (author)
Susana, Apriliani Dewi; Titus, Amol
2013-01-01
This study aims at identifying key issues in SR franchise business along the six elements of marketing mix: people, partner, place, product, promotion, and price, and then propose solution recommendations for the identified issues. Data is collected through a method of in-depth interviews with key SR stakeholders, internally and externally, namely end customers, SR personnels, and SR franchisees. Issues identified are mapped into a Problem Tree Analysis diagram to determine causal relations...
Energy Technology Data Exchange (ETDEWEB)
Gourisse, D. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1966-09-01
A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Gourisse, D [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1966-09-01
A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)
SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEM BY THE FINITE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
Süleyman TAŞGETİREN
1995-01-01
Full Text Available Determination of temperature distribution is generally the first step in the design of machine elements subjected to ubnormal temperatures in their service life and for selection of materials. During this heat transfer analysis, the boundary and enviromental conditions must be modeled realistically and the geometry must be well represented. A variety of materials deviating from simple constant property isotropic material to composit materials having different properties according to direction of reinforcements are to be analysed. Then, the finite element method finds a large application area due to its use of same notation in heat transfer analysis and mechanical analysis of elements. In this study, the general formulation of two dimensional transient heat conduction is developed and a sample solution is given for arectangular bar subjected to convection baundary condition.
TRIP: a finite element computer program for the solution of convection heat transfer problems
International Nuclear Information System (INIS)
Slagter, W.; Roodbergen, H.A.
1976-01-01
The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method
International Nuclear Information System (INIS)
Calabrese, C.R.; Grant, C.R.
1990-01-01
This work presents comparisons between measured fluxes obtained by activation of Manganese foils in the light water, enriched uranium research pool reactor RA-2 MTR (Materials Testing Reactors) fuel element) and fluxes calculated by the finite element method FEM using DELFIN code, and describes the heterogeneus finite elements by a set of solutions of the transport equations for several different configurations obtained using the collision probability code HUEMUL. The agreement between calculated and measured fluxes is good, and the advantage of using FEM is showed because to obtain the flux distribution with same detail using an usual diffusion calculation it would be necessary 12000 mesh points against the 2000 points that FEM uses, hence the processing time is reduced in a factor ten. An interesting alternative to use in MTR fuel management is presented. (Author) [es
Directory of Open Access Journals (Sweden)
Aleksandar Ž. Kostić
2014-01-01
Full Text Available Solutions of milk protein concentrate, whey protein concentrate and bovine serum albumin (BSA were treated with polyacrylic hydrogel to establish whether the hydrogel could be used for decontamination of heavy metal ions from milk protein-based products. The obtained results indicated that swelling of hydrogel in these solutions had different effects on their mineral, trace element and total protein content. Total protein and phosphorus content increased in milk protein concentrate and whey protein concentrate solutions after swelling of hydrogel without changes in their protein compositions. On the other hand, the protein content in BSA solution decreased after swelling. The content of Na did not change in milk protein concentrate solution, whereas it significantly increased in whey protein concentrate solution after hydrogel swelling. The content of Ca and Mg was reduced after the swelling in milk protein concentrate and whey protein concentrate solutions for 20.3–63.4 %, depending on the analysed sample and the mineral. The content of Zn did not change during swelling, whereas the content of Fe, Cu, Mn, Ni and Pb significantly decreased after hydrogel swelling in all analysed samples. According to the obtained results, the addition of polyacrylic hydrogel to milk and whey protein concentrate solutions can significantly decrease the content of heavy metal ions without affecting their protein composition. Therefore, this work could be useful in developing a new technological process for heavy metal purification of milk protein-based products.
Neutron diffraction studies on Ca1-xBaxZr4P6O24 solid solutions
International Nuclear Information System (INIS)
Achary, S.N.; Jayakumar, O.D.; Patwe, S.J.; Kulshreshtha, S.K.; Tyagi, A.K.; Shinde, A.B.; Krishna, P.S.R.
2008-01-01
Herein we report the results of detailed crystallographic studies of Ca 1-x Ba x Zr 4 P 6 O 24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from the systematic variation of unit cell parameters. The variation of unit cell parameters with the composition indicates decreasing trend in α parameter with increasing Ba 2+ concentration contrast to an increasing trend in c parameter. (author)
International Nuclear Information System (INIS)
Tachimori, Shoichi
1990-02-01
A mathematical model of chemical reactions with actinide elements: REACT code, was developed to simulate change of valency states of U, Pu and Np in the aqueous nitric acid solution. Twenty seven rate equations for the redox reactions involving some reductants, disproportionation reactions, and radiolytic growth and decay reaction of nitrous acid were programmed in the code . Eight numerical solution methods such as Porsing method to solve the rate equations were incorporated parallel as options depending on the characteristics of the reaction systems. The present report gives a description of the REACT code, e.g., chemical reactions and their rate equations, numerical solution methods, and some examples of the calculation results. A manual and a source file of the program was attached to the appendix. (author)
International Nuclear Information System (INIS)
Koteras, J.R.
1996-01-01
The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region
First-principles study of (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions
Amoroso, Danila; Cano, Andrés; Ghosez, Philippe
2018-05-01
(Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 solid solutions are the building blocks of lead-free piezoelectric materials that attract a renewed interest. We investigate the properties of these systems by means of first-principles calculations, with a focus on the lattice dynamics and the competition between different ferroelectric phases. We first analyze the four parent compounds in order to compare their properties and their different tendency towards ferroelectricity. The core of our study is systematic characterization of the binary systems (Ba ,Ca ) TiO3 and Ba (Ti ,Zr ) O3 within both the virtual crystal approximation and direct supercell calculations. In the case of Ca doping, we find a gradual transformation from B -site to A -site ferroelectricity due to steric effects that largely determines the behavior of the system. In the case of Zr doping, in contrast, the behavior is eventually dominated by cooperative Zr-Ti motions and the local electrostatics. In addition, our comparative study reveals that the specific microscopic physics of these solids sets severe limits to the applicability of the virtual crystal approximation for these systems.
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Metallic elements (Ca, Hg, Fe, K, Mg, Mn, Na, Zn) in the fruiting bodies of Boletus badius.
Kojta, Anna K; Falandysz, Jerzy
2016-06-01
The aim of this study was to investigate and compare the levels of eight metallic elements in the fruiting bodies of Bay Bolete (Boletus badius; current name Imleria badia) collected from ten sites in Poland to understand better the value of this popular mushroom as an organic food. Bay Bolete fruiting bodies were collected from the forest area near the towns and villages of Kętrzyn, Poniatowa, Bydgoszcz, Pelplin, Włocławek, Żuromin, Chełmno, Ełk and Wilków communities, as well as in the Augustów Primeval Forest. Elements such as Ca, Fe, K, Mg, Mn, Na and Zn were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-OES), and mercury by cold vapor atomic absorption spectrometry (CV-AAS). This made it possible to assess the nutritional value of the mushroom, as well as possible toxicological risks associated with its consumption. The results were subjected to statistical analysis (Kruskal-Wallis test, cluster analysis, principal component analysis). Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Tsuruta, T.
2006-01-01
The effects of proton, thorium and uranium on the bioaccumulation of thorium and uranium from the solution (pH 3.5) containing uranium and thorium using Streptomyces levoris cells were examined. The amount of thorium accumulated using the cells decreased by the pre-contact between the cells and the solution (pH 3.5) containing no metals, whereas that of uranium was almost unaffected by the treatment. The amount of thorium was almost unaffected by the existence of uranium. On the other hand, the amount of uranium accumulated was strongly affected by the thorium, especially thorium addition after uranium accumulation. The decrease of uranium accumulated by the addition of thorium after the accumulation of uranium was higher than that from the solution containing both elements. Therefore, the contribution of uranium-thorium exchange reaction was higher than that of competition reaction. Accordingly, proton-uranium-thorium exchange reaction was occurred in the accumulation of thorium from the solution containing thorium and uranium. The gram-positive bacteria, such as Micrococcus luteus, Arthrobacter nicotianae, Bacillus subtilis and B. megaterium, has a much higher separation factor as thorium/uranium than that of actinomycetes. These gram-positive bacterial strains can be used for the accumulation of thorium from the solution containing uranium and thorium
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
Finite element simulation of moisture movement and solute transport in a large caisson
International Nuclear Information System (INIS)
Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.
1987-01-01
The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed
Finite element method solution of simplified P3 equation for flexible geometry handling
International Nuclear Information System (INIS)
Ryu, Eun Hyun; Joo, Han Gyu
2011-01-01
In order to obtain efficiently core flux solutions which would be much closer to the transport solution than the diffusion solution is, not being limited by the geometry of the core, the simplified P 3 (SP 3 ) equation is solved with the finite element method (FEM). A generic mesh generator, GMSH, is used to generate linear and quadratic mesh data. The linear system resulting from the SP 3 FEM discretization is solved by Krylov subspace methods (KSM). A symmetric form of the SP 3 equation is derived to apply the conjugate gradient method rather than the KSMs for nonsymmetric linear systems. An optional iso-parametric quadratic mapping scheme, which is to selectively model nonlinear shapes with a quadratic mapping to prevent significant mismatch in local domain volume, is also implemented for efficient application of arbitrary geometry handling. The gain in the accuracy attainable by the SP 3 solution over the diffusion solution is assessed by solving numerous benchmark problems having various core geometries including the IAEA PWR problems involving rectangular fuels and the Takeda fast reactor problems involving hexagonal fuels. The reference transport solution is produced by the McCARD Monte Carlo code and the multiplication factor and power distribution errors are assessed. In addition, the effect of quadratic mapping is examined for circular cell problems. It is shown that significant accuracy gain is possible with the SP 3 solution for the fast reactor problems whereas only marginal improvement is noted for thermal reactor problems. The quadratic mapping is also quite effective handling geometries with curvature. (author)
A study on removal of elemental mercury in flue gas using fenton solution
International Nuclear Information System (INIS)
Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Yongchun; Zhou, Jianfei; Zhang, Jun
2015-01-01
Highlights: • A novel technique on oxidation of Hg 0 using Fenton was proposed. • The effects of several process parameters on Hg 0 removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg 0 removal was studied. • Simultaneous removal of Hg 0 , NO and SO 2 was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg 0 ) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H 2 O 2 concentration, Hg 0 inlet concentration, Fe 2+ concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO 2 , O 2 , CO 2 , inorganic ions and particulate matters on Hg 0 removal were studied. The results indicate that H 2 O 2 concentration, Fe 2+ concentration, solution pH and gas flow have great effects on Hg 0 removal. Solution temperature, Hg 0 , NO, SO 2 , CO 3 2− and HCO 3 − concentrations also have significant effects on Hg 0 removal. However, Cl − , SO 4 2− , NO 3 − , O 2 and CO 2 concentrations only have slight effects on Hg 0 removal. Furthermore, reaction mechanism of Hg 0 removal and simultaneous removal process of Hg 0 , NO and SO 2 were also studied. Hg 0 is removed by oxidation of ·OH and oxidation of H 2 O 2 . The simultaneous removal efficiencies of 100% for SO 2 , 100% for Hg 0 and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg 0 removal and simultaneous removal of Hg 0 , SO 2 and NO using Fenton solution in a bubbling reactor
A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
Iskandarani, M; Levin, J C
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...
Value assignment and uncertainty evaluation for single-element reference solutions
Possolo, Antonio; Bodnar, Olha; Butler, Therese A.; Molloy, John L.; Winchester, Michael R.
2018-06-01
A Bayesian statistical procedure is proposed for value assignment and uncertainty evaluation for the mass fraction of the elemental analytes in single-element solutions distributed as NIST standard reference materials. The principal novelty that we describe is the use of information about relative differences observed historically between the measured values obtained via gravimetry and via high-performance inductively coupled plasma optical emission spectrometry, to quantify the uncertainty component attributable to between-method differences. This information is encapsulated in a prior probability distribution for the between-method uncertainty component, and it is then used, together with the information provided by current measurement data, to produce a probability distribution for the value of the measurand from which an estimate and evaluation of uncertainty are extracted using established statistical procedures.
On the application of finite element method in the solution of steady state diffusion equation
International Nuclear Information System (INIS)
Ono, S.
1982-01-01
The solution of the steady state neutron diffusion equation is obtained by using the finite element method. Specifically the variational approach is used for one dimensional problems and the weighted residual method (Galerkin) for one and two dimensional problems. The spatial domain is divided into retangular elements and the neutron flux is approximated by linear (one dimensional case), and bilinear (two-dimensional case) functions. Numerical results are obtained with a FORTRAN IV computer program and compared with those obtained by the finite difference CITATION code. The results show that linear or bilinear functions, do not satisfactorily describe the differential parameters in highly heterogeneous reactor cases, but provide good results for integral parameters such as multiplication factor. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)
1996-12-31
Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.
International Nuclear Information System (INIS)
Guseva, L.I.; Tikhomirova, G.S.
1984-01-01
The behaviour of Am, Cm, Pu and certain fragment elements (Cs, Sr, Y, Zr, Nb, Ru, Eu) on cationite dauex-50 in aqueous and aqueous-alcohol solutions of HCl and HNO 3 has been studied. Dependences of distribution coefficients and separation factors of the elements on the acid concentration and alcohol content in the solutions are presented. The sorption of TPE by cationite from HCl and HNO 3 solutions in the presence of alcohol is shown to increase over the range of concentrations studied (from 0.5 mol/L to 4-5 mol/L), which is explained by the salting-out effect of alcohol. The distribution coefficients of TPE in the solutions, containing >= 50% alcohol, constitute >= 10 2 . The distribution coefficients of the fragment elements in the presence of alcohol also increase, but to a considerably lesser extent, which results in a better separation. The study of the washing-out curves has shown that, to separate TPE from fragment elements on cationites, both HCl and HNO 3 solutions can be used, at that, in the case of aqueous solutions a better separation is attained at acid concentration, equal to 1 mol/L, and in the case of eluating by aqueous-alcohol solutions a good separation is achieved at hig-her concentrations of the acids as well
Abdrassilova, Gulnara S.
2017-09-01
In the context of development of the agriculture as the driver of the economy of Kazakhstan it is imperative to study new types of agrarian constructions (agroparks, agrotourists complexes, "vertical" farms, conservatories, greenhouses) that can be combined into complexes - agrarian technoparks. Creation of agrarian technoparks as elements of the infrastructure of the agglomeration shall ensure the breakthrough in the field of agrarian goods production, storing and recycling. Modeling of architectural-planning solutions of agrarian technoparks supports development of the theory and practice of designing objects based on innovative approaches.
Solution of three-dimensional energy equation using finite element method
International Nuclear Information System (INIS)
Bhasin, V.; Singh, R.K.; Dutta, B.K.; Kushwaha, H.S.
1993-01-01
In the present work an attempt has been made to formulate an efficient 3-D finite element program for solving coupled momentum-energy equation with unsymmetric frontal solver and a suitable upwinding scheme. Based on the above solution technique of energy equation it can be concluded that upwinding scheme can lead to fairly accurate and smooth results even with coarse mesh. Otherwise the mesh size requirement will be extremely stringent for most of the practical problems. With upwinding the additional computer time required is marginally more. This effort has resulted in getting practical solution for large size real life problems in nuclear industry. The program was used for computation of temperature field in heavy water moderator of Madras Atomic Power Station (MAPS) reactor, in new mode of operation. (author). 9 refs., 7 figs
Formulation of natural convection around repository for dual reciprocity boundary element solution
International Nuclear Information System (INIS)
Vrankar, L.; Sarler, B.
1998-01-01
The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)
International Nuclear Information System (INIS)
Hutchinson, S.; Costillo, S.; Dalton, K.; Hensel, E.
1990-01-01
A study is conducted of the finite element solution of the partial differential equations governing two-dimensional electromagnetic field scattering problems on a SIMD computer. A nodal assembly technique is introduced which maps a single node to a single processor. The physical domain is first discretized in parallel to yield the node locations of an O-grid mesh. Next, the system of equations is assembled and then solved in parallel using a conjugate gradient algorithm for complex-valued, non-symmetric, non-positive definite systems. Using this technique and Thinking Machines Corporation's Connection Machine-2 (CM-2), problems with more than 250k nodes are solved. Results of electromagnetic scattering, governed by the 2-d scalar Hemoholtz wave equations are presented in this paper. Solutions are demonstrated for a wide range of objects. A summary of performance data is given for the set of test problems
Isolating 241Am from waste solutions containing Al, Ca, Fe, and Cr
International Nuclear Information System (INIS)
Gray, L.W.; Burney, G.A.; King, C.M.
1982-01-01
About 2.4 kg of 241 Am contaminated with calcium and aluminum had been recovered from low-activity waste during recycle of 11% 240 Pu. A process was developed and demonstrated to purify the americium before shipment as 241 AmO 2 . The americium and some of the calcium were batch extracted into 50% TBP-n-paraffin from 2.2M Al(NO 3 ) 3 - 0.3M HNO 3 solution in a canyon tank. Pregnant solvent was scrubbed first with 2.1M Al 3+ -0.3M Li + -6.7M NO 3 - and then with 7M LiNO 3 to reduce the calcium content and to displace the aluminum. Americium was then stripped from the solvent with water and concentrated by evaporation. Before precipitating the americium with oxalic acid, the nitric acid was adjusted with NH 4 OH to yield a 1M NH 4 NO 3 solution. Recovery across the batch extraction step was 97.8%, while 93% of the calcium and >99% of the aluminum was rejected. Recovery across precipitation averaged >96% while producing a product which was >99.3% pure 241 AmO 2 . The major impurities were water, carbon, calcium, iron, and zinc
DEFF Research Database (Denmark)
Pedersen, Stine F.; Jørgensen, Nanna K.; Hoffmann, Else Kay
1998-01-01
Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2',7',-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists...
Lu, Benzhuo; Holst, Michael J; McCammon, J Andrew; Zhou, Y C
2010-09-20
In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.
International Nuclear Information System (INIS)
Korgaonkar, V.
1967-10-01
The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO 3 ) 6 2- and UO 2 (NO 3 ) 4 2- in solution these elements are present in the form of complexes having the general formula: Th(NO 3 ) 6-n n-2 and UO 2 (NO 3 ) 4-n n-2 It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO 3 . From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author) [fr
International Nuclear Information System (INIS)
Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.
2006-01-01
Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature
Milligan, J. V.
1965-01-01
Using area under the contracture curve to quantitate contractures, the diffusion coefficient of calcium ions within the frog toe muscle during washout in a calcium-free solution and subsequent recovery after reintroduction of calcium to the bathing solution was calculated to be about 2 x 10-6 cm2/sec. The diffusion coefficient measured during washout was found to be independent of temperature or initial calcium ion concentration. During recovery it was found to decrease if the temperature was lowered. This was likely due to the repolarization occurring after the depolarizing effect of the calcium-free solution. The relation between contracture area and [Ca]o was found to be useful over a wider range than that between maximum tension and [Ca]o. The normalized contracture areas were larger at lower calcium concentrations if the contractures were produced with cold potassium solutions or if NO3 replaced Cl in the bathing solutions. Decreasing the potassium concentration of the contracture solution to 50 mM from 115 mM did not change the relation between [Ca]o and the normalized area. If the K concentration of the bathing solution was increased, the areas were decreased at lower concentrations of Ca. PMID:14324991
Solution of the diffusion equations for several groups by the finite elements method
International Nuclear Information System (INIS)
Arredondo S, C.
1975-01-01
The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)
Digital Repository Service at National Institute of Oceanography (India)
Rivonker, C.U.; Parulekar, A.H.
The major elements and trace metals were analysed from nussel tissue and the seawater taken from three depths (0, 5 and 9 meters) from the culture site. Range of variation in Ca, Mg, Fe, Cu, Zn and Mn were 226-399; 708-1329; 0.005-0.084; BDL-0...
Energy Technology Data Exchange (ETDEWEB)
Y.J. Wang; Y.F. Duan; Z.J. Huang; S.L. Meng; L.G. Yang; C.S. Zhao [Southeast University, Nanjing (China). School of Energy and Environment
2010-05-15
The ability of three sorbents (untreated Ca(OH){sub 2}, MnO{sub 2}-impregnated Ca(OH){sub 2} and Ag-impregnated Ca(OH){sub 2}) removing the elemental mercury had been studied using a laboratory-scale fixed-bed reactor at 80{sup o}C under simulated fuel gas conditions. The adsorption performance of the three sorbents was compared by mercury removal efficiency and adsorption capacity. The effect of acid gases such as HCl and SO{sub 2} on the mercury removal was investigated and presented in this article. The results showed that the mercury removal by Ca(OH){sub 2} was mainly controlled by physical mechanisms. In the case of Ca(OH){sub 2}, the presence of both SO{sub 2} and HCl promoted the Hg{sup 0} removal, and compared HCl with SO{sub 2}, HCl had a higher mercury removal than SO{sub 2}. Ca(OH){sub 2} impregnated with MnO{sub 2} had a slightly higher mercury removal than the original Ca(OH){sub 2}, but it was beneficial for mercury speciation. The presence of both SO{sub 2} and HCl promotes the Hg0 removal greatly, which was adsorbed by Ca(OH){sub 2} impregnated with MnO{sub 2}. The Ca(OH){sub 2} impregnated with MnO{sub 2} adsorbed more than 50% total Hg due to the occurrence of chemisorptions. The mercury removal by Ca(OH){sub 2} impregnated with Ag was the highest. This may be because mercury integrated with silver easily that could produce silver amalgam alloy.
Xiang, Yanli; Sun, Xiaopeng; Gao, Shan; Qin, Feng; Dai, Mingqiu
2017-03-06
Drought is a major abiotic stress that causes the yearly yield loss of maize, a crop cultured worldwide. Breeding drought-tolerant maize cultivars is a priority requirement of world agriculture. Clade A PP2C phosphatases (PP2C-A), which are conserved in most plant species, play important roles in abscisic acid (ABA) signaling and plant drought response. However, natural variations of PP2C-A genes that are directly associated with drought tolerance remain to be elucidated. Here, we conducted a candidate gene association analysis of the ZmPP2C-A gene family in a maize panel consisting of 368 varieties collected worldwide, and identified a drought responsive gene ZmPP2C-A10 that is tightly associated with drought tolerance. We found that the degree of drought tolerance of maize cultivars negatively correlates with the expression levels of ZmPP2C-A10. ZmPP2C-A10, like its Arabidopsis orthologs, interacts with ZmPYL ABA receptors and ZmSnRK2 kinases, suggesting that ZmPP2C-A10 is involved in mediating ABA signaling in maize. Transgenic studies in maize and Arabidopsis confirmed that ZmPP2C-A10 functions as a negative regulator of drought tolerance. Further, a causal natural variation, deletion allele-338, which bears a deletion of ERSE (endoplasmic reticulum stress response element) in the 5'-UTR region of ZmPP2C-A10, was detected. This deletion causes the loss of endoplasmic reticulum (ER) stress-induced expression of ZmPP2C-A10, leading to increased plant drought tolerance. Our study provides direct evidence linking ER stress signaling with drought tolerance and genetic resources that can be used directly in breeding drought-tolerant maize cultivars. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
A study on removal of elemental mercury in flue gas using fenton solution
Energy Technology Data Exchange (ETDEWEB)
Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Yongchun [Jiangsu Province Special Equipment Safety Supervision Inspection Institute (Branch of Wuxi), Wuxi 214000 (China); Zhou, Jianfei [School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Jun [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096 (China)
2015-07-15
Highlights: • A novel technique on oxidation of Hg{sup 0} using Fenton was proposed. • The effects of several process parameters on Hg{sup 0} removal were studied. • Products and ·OH in solution were detected. • Reaction mechanism of Hg{sup 0} removal was studied. • Simultaneous removal of Hg{sup 0}, NO and SO{sub 2} was also studied. - Abstract: A novel technique on oxidation-separation of elemental mercury (Hg{sup 0}) in flue gas using Fenton solution in a bubbling reactor was proposed. The effects of several process parameters (H{sub 2}O{sub 2} concentration, Hg{sup 0} inlet concentration, Fe{sup 2+} concentration, solution temperature, solution pH, gas flow) and several flue gas components (NO, SO{sub 2}, O{sub 2}, CO{sub 2}, inorganic ions and particulate matters on Hg{sup 0} removal were studied. The results indicate that H{sub 2}O{sub 2} concentration, Fe{sup 2+} concentration, solution pH and gas flow have great effects on Hg{sup 0} removal. Solution temperature, Hg{sup 0}, NO, SO{sub 2}, CO{sub 3}{sup 2−} and HCO{sub 3}{sup −} concentrations also have significant effects on Hg{sup 0} removal. However, Cl{sup −}, SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, O{sub 2} and CO{sub 2} concentrations only have slight effects on Hg{sup 0} removal. Furthermore, reaction mechanism of Hg{sup 0} removal and simultaneous removal process of Hg{sup 0}, NO and SO{sub 2} were also studied. Hg{sup 0} is removed by oxidation of ·OH and oxidation of H{sub 2}O{sub 2}. The simultaneous removal efficiencies of 100% for SO{sub 2}, 100% for Hg{sup 0} and 88.3% for NO were obtained under optimal test conditions. The results demonstrated the feasibility of Hg{sup 0} removal and simultaneous removal of Hg{sup 0}, SO{sub 2} and NO using Fenton solution in a bubbling reactor.
DEFF Research Database (Denmark)
Grivel, Jean-Claude; Kepa, Katarzyna; Hlásek, T.
2013-01-01
Bi2Sr2CaCu2O8 thin films have been deposited on MgO single crystal substrates by spin-coating a solution based on 2-ethylhexanoate precursors. Pyrolysis takes place between 200°C and 450°C and is accompanied by the release of 2-ethylhexanoic acid, CO2 and H2O vapour. Highly c-axis oriented Bi2Sr2Ca...
Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro
2018-06-01
The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.
International Nuclear Information System (INIS)
Hofmann, S.; Ackermann, D.; Burkhard, H. G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Mann, R.; Muenzenberg, G.; Schoett, H. J.; Sulignano, B.; Antalic, S.; Saro, S.; Streicher, B.; Venhart, M.; Yeremin, A. V.; Comas, V. F.; Heredia, J. A.
2008-01-01
The production of 283 112 in 48 Ca induced nuclear reactions was investigated using physical and chemical separation techniques. In the reaction 48 Ca on 238 U, four events were registered at the SHIP velocity filter. The mean atomic mass of the evaporation residues (EVR)
Rienstra, S.W.; Eversman, W.
2001-01-01
An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass
Energy Technology Data Exchange (ETDEWEB)
Maichin, B.; Knapp, G. [Technische Univ., Graz (Austria). Inst. fuer Analytische Chemie, Mikro- und Radiochemie; Kettisch, P. [Anton Paar GmbH, Graz (Austria)
2000-01-01
Investigations of microwave assisted drying of sample materials and microwave assisted evaporation of aqueous sample solutions and acidic digestion residues were accomplished by means of special rotors for the microwave digestion system MULTIWAVE. To check the results obtained by microwave assisted drying, the samples were also conventionally dried at 105 C in an oven. The following samples have been dried: 10 g each of meat, fish, apple, cucumber, potato, mustard, yogurt, clay and marl; 1 g each of certified reference material TORT 2 (lobster hepatopancreas), BCR 278 (mussel tissue) and BCR 422 (cod muscle); 500 g garden mould. Microwave assisted drying takes 40 min for organic samples and 30 min for inorganic material. Important is a slow increase of microwave power during the first 20 min. The results agree well with conventional drying at 105 C. Losses of As, Se and Hg have been investigated for 3 CRMs. Only Se shows losses in the range of 20%. Losses of As, Be, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sr, Ti, Tl, V and Zn after evaporation of aqueous samples and acidic solutions after wet digestion, respectively, have been investigated. 50 mL aqueous solution was evaporated almost to dryness within 25 min. The recovery of Hg is 40-50%, of Se 90-95% and of the other elements 97-102%. 0.2 g each of TORT 2, BCR 278 and BCR 422 have been digested with 4 mL nitric acid and 1 mL hydrochloric acid by means of the microwave digestion system MULTIWAVE. The digestion residue was evaporated almost to dryness and dissolved again in 10 mL diluted nitric acid. In this case no element losses have been observed. The measured concentration of As, Cd, Cu, Fe, Mn, Hg, Pb, Mo, Ni, Se, Sr, V and Zn agree very well with the certified values. An important prerequisite for good recoveries is not to evaporate the solutions to complete dryness. (orig.)
Makedonska, N.; Sparks, D. W.; Aharonov, E.
2012-12-01
Pressure solution (also termed chemical compaction) is considered the most important ductile deformation mechanism operating in the Earth's upper crust. This mechanism is a major player in a variety of geological processes, including evolution of sedimentary basins, hydrocarbon reservoirs, aquifers, earthquake recurrence cycles, and fault healing. Pressure solution in massive rocks often localizes into solution seams or stylolites. Field observations of stylolites often show elastic/brittle interactions in regions between pressure solution features, including and shear fractures, veins and pull-apart features. To understand these interactions, we use a grain-scale model based on the Discrete Element Method that allows granular dissolution at stressed contacts between grains. The new model captures both the slow chemical compaction process and the more abrupt brittle fracturing and sliding between grains. We simulate a sample of rock as a collection of particles, each representing either a grain or a unit of rock, bonded to each other with breakable cement. We apply external stresses to this sample, and calculate elastic and frictional interactions between the grains. Dissolution is modeled by an irreversible penetration of contacting grains into each other at a rate that depends on the contact stress and an adjustable rate constant. Experiments have shown that dissolution rates at grain contacts are greatly enhanced when there is a mineralogical contrast. Therefore, we dissolution rate constant can be increased to account for an amount of impurities (e.g. clay in a quartz or calcite sandstone) that can accumulate on dissolving contacts. This approach allows large compaction and shear strains within the rock, while allowing examination of local grain-scale heterogeneity. For example, we will describe the effect of pressure solution on the distribution of contact forces magnitudes and orientations. Contact forces in elastic granular packings are inherently
Energy Technology Data Exchange (ETDEWEB)
Jang, Yongseok [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Tan, Zongqing [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Jurey, Chris [Luke Engineering, Wadsworth, OH 44282 (United States); Xu, Zhigang [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Dong, Zhongyun [Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221 (United States); Collins, Boyce [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States); Sankar, Jagannathan [Engineering Research Center for Revolutionizing Metallic Biomaterials (ERC-RMB), North Carolina A and T State University, Greensboro, NC 27411 (United States)
2015-03-01
Mg–Zn–Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg–xZn–0.3Ca (x = 1, 3 and 5 wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg–xZn–0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca{sub 2}Mg{sub 6}Zn{sub 3} formed along grain boundaries, 2) the corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH){sub 2}), hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), and magnesite (MgCO{sub 3}·3H{sub 2}O). - Highlights: • Effects of PEO and Zn concentration in Mg–xZn–0.3Ca alloys on biodegradation • Corrosion rate of Mg–xZn–0.3Ca alloys increases with increasing Zn concentration. • Plasma electrolytic oxidation retards the biodegradation of Mg–xZn–0.3Ca alloys.
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For
Towards a unified solution of localization failure with mixed finite elements
Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas
2015-04-01
Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement
Lavery, N.; Taylor, C.
1999-07-01
Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright
International Nuclear Information System (INIS)
Camp, D.C.
1984-07-01
Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10 4 ; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated
International Nuclear Information System (INIS)
Nikolaev, V.M.; Lebedev, V.M.; Lebedeva, L.S.
1986-01-01
The mechanisms of transplutonium (TPE) and rare earth elements (REE) extraction by HDEHP from lactic acid solutions are analysed in the literature. On the base of the known expressions and experimental data the model for TPE and REE extraction by HDEHP from lactic acid, accounting lactic acid and metal extraction as MeA 3 x3HA, MeLA 2 x2HA and MeLA 2 complexes, is suggested. The expression, permitting to estimate quantitatively the effect of TPE and REE complexing with lactic acid and the extraction of complex forms on the distribution coefficient of the extracted metal, is obtained. Comparison of calculational data with experimental ones show their good coincidence that confirms the rightness of the model accepted for extraction
International Nuclear Information System (INIS)
Kılıç, Emre; Eibert, Thomas F.
2015-01-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained
Energy Technology Data Exchange (ETDEWEB)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Fast solution of neutron diffusion problem by reduced basis finite element method
International Nuclear Information System (INIS)
Chunyu, Zhang; Gong, Chen
2018-01-01
Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
The boundary element method for the solution of the multidimensional inverse heat conduction problem
International Nuclear Information System (INIS)
Lagier, Guy-Laurent
1999-01-01
This work focuses on the solution of the inverse heat conduction problem (IHCP), which consists in the determination of boundary conditions from a given set of internal temperature measurements. This problem is difficult to solve due to its ill-posedness and high sensitivity to measurement error. As a consequence, numerical regularization procedures are required to solve this problem. However, most of these methods depend on the dimension and the nature, stationary or transient, of the problem. Furthermore, these methods introduce parameters, called hyper-parameters, which have to be chosen optimally, but can not be determined a priori. So, a new general method is proposed for solving the IHCP. This method is based on a Boundary Element Method formulation, and the use of the Singular Values Decomposition as a regularization procedure. Thanks to this method, it's possible to identify and eliminate the directions of the solution where the measurement error plays the major role. This algorithm is first validated on two-dimensional stationary and one-dimensional transient problems. Some criteria are presented in order to choose the hyper-parameters. Then, the methodology is applied to two-dimensional and three-dimensional, theoretical or experimental, problems. The results are compared with those obtained by a standard method and show the accuracy of the method, its generality, and the validity of the proposed criteria. (author) [fr
Effects of solute elements on hardening of thermally-aged RPV model alloys
International Nuclear Information System (INIS)
Dohi, Kenji; Nishida, Kenji; Nomoto, Akiyoshi; Soneda, Naoki; Liu, Li; Sekimura, Naoto; Li Zhengcao
2012-01-01
The investigation of effects of solute elements on the copper-enriched cluster, which is a cause of radiation embrittlement of reactor pressure vessel steels, is needed in order to understand the mechanism of the hardening and the cluster formation. The dependence of the hardness change and the formation of thermally-aged Fe-Cu model alloys doped Ni, Si and Mn on aging time are investigated using Vickers harness tester and three dimensional atom probe. Ni addition suppresses hardening, and Si addition accelerates hardening slightly at the initial stage of the aging. Mn addition accelerates hardening much more but does not almost affect the peak hardness. Ni and Si addition increase the number density and the size of the cluster, while Mn addition remarkably increases the number density and the size of the cluster at the initial stage of the aging. In addition, there is no clear correlation between the square root of the volume fraction of the clusters and the hardness change for all of the alloys. The reasons are considered to be the decrease in the solute hardening caused by the cluster formation and the difference in the shear modulus of the cluster due to the difference in the chemical composition of the cluster. (author)
Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan
2015-03-01
Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.
Mareci, D; Bolat, G; Izquierdo, J; Crimu, C; Munteanu, C; Antoniac, I; Souto, R M
2016-03-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg-0.63Ca and Mg-0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Schoene, Bernd R.; Zhang, Zengjie; Jacob, Dorrit; Soldate, Analia; Gillikin, David P.; Tuetken, Thomas; Garbe-Shoenberg, Dieter; McConnaughey, Ted
2010-01-01
The element chemistry of biogenic carbonates can provide important data on past environments. However, the Sr/Ca and Mg/Ca ratios as well as the Mg and Sr concentrations of biological carbonates, especially aragonitic bivalves often depart from apparent thermodynamic equilibrium. When measured in situ by means of LA-ICP-MS, the Mg concentration is often substantially enriched (two- to threefold) near the organic-rich, annual growth lines. To test the hypothesis that some organic components exert a major influence on the skeletal metal content, the element chemistry of different shell components (insoluble organic matrix, IOM; dissolved CaCO 3 and soluble organics, SOM) of Arctica islandica was measured by means of ICP-OES and LA-ICP-MS. The ICP-OES data indicate that the IOM is strongly enriched in Mg (130 ppm) and depleted in Sr and Ca (10 ppm and 0.22 wt%, respectively) when compared to the whole biomineral (Mg: 68 to 99 ppm, Sr: 860 to 1,060 ppm, Ca: ∼35.72 wt%). Although the average relative abundance of the IOM barely exceeds 0.46 wt%, its chemical composition in combination with its heterogeneous distribution across the shell can significantly increase estimates of the Mg concentration if measured in situ by LA-ICP-MS. Depending on the distribution of the IOM, the Ca concentration may be significantly lower locally than the average Ca concentration of the whole shell (35.72 wt%). If this remains undetected, the Mg concentration of shell portions with higher than average IOM content is overestimated by LA-ICP-MS and, conversely, the Mg concentration is underestimated in shell portions with lower than average IOM content. Removal of the IOM prior to the chemical analysis by LA-ICP-MS or mathematical correction for the IOM-derived magnesium concentrations is therefore strongly advised. The different chemistry of the IOM may also exert a major control on the trace element to calcium ratios. Shell portions enriched in IOM will show up to 200 times higher Mg/Ca
International Nuclear Information System (INIS)
Koo, Seong Mo; Kim, Hye Sung; Jeong, Ha-Guk; Kim, Teak-Soo
2015-01-01
Optimum heat treatment conditions to improve the hardness and corrosion resistance of ternary Mg-Ca-Zn alloys have been studied, based on the theoretical models and DSC (Differential scanning calorimetry) experimental data. Two-step heating process at 420 ℃ and 480 ℃ has been applied and we have found that the low melting point phase, Ca_2Mg_6Zn_3 can effectively be dissolved into α-Mg matrix without premature melting. Due to preceding treatment at lower temperature followed by the second stage solid solution heat treatment at 480 ℃, Mg-1.4 wt%Ca-xwt%Zn alloys (x=0, 1.5 and 4.0) exhibit improved corrosion resistance than that from the single step solid solution treated alloy at 480 ℃. However, aging treatment of the alloy at 200 ℃ has led to the homogeneous precipitation of Ca_2Mg_6Zn_3 and Mg_2Ca phases in the matrix as well as at the grain boundary. This microstructural change results in the deterioration of corrosion resistance mainly originated from galvanic corrosion between the matrix and the precipitates. The hardness of Mg-1.4%Cax%Zn alloy, on the other hand, significantly increases with Zn addition by applying two-step solid solution and aging heat treatment.
Energy Technology Data Exchange (ETDEWEB)
L' Her, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1967-01-01
The aim of this work is the application of spectrophotometric titrations to the analysis of uranium-containing solutions. We have been led to examine the general principles involved in these titrations, and we give a brief outline of these principles. In the first part we deal therefore with spectrophotometric titrations from a general point of view, examining their fundamental principle, their practical execution as well as the various possibilities of the method. The advantage of the titration are examined, in particular that of lending itself simultaneous determination of two species. The possibility of applying these spectrophotometric titrations to the analysis of uranium-containing solutions is the subject of the second part of this report: the dosage of a few species in uranium (VI) solutions is described. To this second part is added an experimental appendix consisting of a description of the apparatus, as well as of the operational techniques used for certain titrations, in particular those involving solutions containing uranium. (author) [French] Le but de ce travail est l'application des titrages spectrophotometriques a l'analyse des solutions uraniferes. Nous avons ete amenes a examiner les principes generaux de ces titrages, principes qu'il nous est apparu necessaire de rappeler. Dans une premiere partie nous traiterons donc d'une facon generale des titrages spectrophotometriques, en examinant leur principe fondamental, leur mise en oeuvre ainsi que les possibilites diverses de dosage. Nous examinerons aussi les avantages de la methode de titrage, en insistant notamment sur la possibilite de faire des dosages successifs. La possibilite d'application de ces titrages spectrophotometriques a l'analyse des solutions uraniferes sera le sujet de la deuxieme partie: nous y decrivons le dosage de quelques especes, dans les solutions d'uranium (VI). A cette deuxieme partie nous joindrons une annexe experimentale comportant une description de l'appareillage que
International Nuclear Information System (INIS)
Fahey, A.J.
1988-01-01
This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48 Ca and 50 Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48 Ca and a 5.2% deficit in 50 Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48 Ca and 50 Ti respectively. Correlated excesses of 48 Ca and 50 Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26 Mg, attributable to the in-situ decay of 26 Al, in 7 of these inclusions
2015-01-01
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831
International Nuclear Information System (INIS)
Rosidi; Agus Taftazani; Sukirno
2010-01-01
The analysis of Fe, Cd, Ca, Co and Cr on the well water and river were detected by γ spectrometer with HPGe detector using NAA method. The main objective of this research was carried out to characterize the Fe, Cd, Ca, Co and Cr on the well water and river in area Gunung Kidul Yogyakarta, which accommodate of the present of environment data in support the clean water program. The result indicated that concentration of elements in well and river water at the Wonosari were still in standard level by Govenor of Daerah Istimewa Yogyakarta no 214/KPTS/1991, were Cd = 0,005 mg/L; Ca = 200 mg/L; Fe = 0,5 mg/L; Co = 0,2 mg/L and Cr = 0,050 mg/L. The concentration in water of Cd, Fe, Ca, Co, and Cr were (0.0002-0.006), (16-40), (5-20), (0.0002-0.37) and (0.0003-0.005) mg/L respectively. The result of analysis give the information that these elements concentration were still proper to use for domestic activities. (author)
Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-02-26
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1997-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
International Nuclear Information System (INIS)
Jo, Jong Chull; Shin, Won Ky
1997-01-01
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1998-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
International Nuclear Information System (INIS)
Liu, Ying; Imashuku, Susumu; Kawai, Jun
2014-01-01
A portable total reflection X-ray fluorescence spectrometer (TXRF) was used to analyze leaching solutions of hijiki seaweeds. S, Cl, K, Ca, Ti, Fe, Ni, As and Br were detected in the solutions. Arsenic quantification results were compared to those from ICP-AES. The TXRF quantification results of arsenic were not significantly different from those of ICP-AES, as two-way analysis of variance (ANOVA) method was applied to the significance test. This kind of small and high sensitive TXRF spectrometer can be used in food quality and environmental pollution investigation. (author)
International Nuclear Information System (INIS)
Kaiser, H.G.
1985-01-01
The author is concerned with the flow conditions in case of narrow fuel element grids of pressurised-water reactors. Starting from the mathematical formulation of the flow processes for incompressible, isothermal flows, models of the turbulence characteristics are being developed. Besides turbulence models, and network structure the finite element method is treated as numeric solution process. Finally the results are summarized and discussed. (HAG) [de
Directory of Open Access Journals (Sweden)
Hernández, L. S.
2007-03-01
Full Text Available The present study compared the response of rust-free and corroded steel electrodes in Ca(OH2-saturated solutions and in cement mortar, essentially defined in terms of polarization resistance as measured with gravimetric, metallographic and electrochemical methods. Answers were sought for the following questions, which persist despite the use of reinforced concrete (RC in building for over a century: At what corrosion rate is RC durability seriously compromised? Does restoration of the initial conditions in properly manufactured concrete guarantee repassivation of corroded steel? Does the use of inhibitors enhance repassivation? Does the nature of the corrosion products have any significant effect on the response of corroded steel reinforcement? The results obtained in indicated that the effectiveness of preventive methods is much more closely related to the degree of existing corrosion than to the nature of the corrosion products.En el presente trabajo se analizan las respuestas de electrodos de acero, limpios y precorroídos, en soluciones saturadas de Ca(OH2 y en mortero de cemento, recurriendo para ello a técnicas gravimétricas, metalográficas y electroquímicas, esencialmente a medidas de resistencia de polarización. Se intenta encontrar respuesta a las siguientes dudas persistentes después de más de un siglo de utilización de las estructuras de hormigón armado (EHA: Â¿qué velocidades de corrosión comprometen seriamente la durabilidad de las EHA? Â¿La restauración de las condiciones iniciales de un hormigón correctamente fabricado garantiza la recuperación del estado pasivo en los refuerzos ya corroídos? Â¿La utilización de inhibidores facilita la repasivación de los refuerzos? Â¿Cambia la naturaleza de los productos de corrosión sustancialmente la respuesta de las armaduras ya corroídas? Los resultados obtenidos indican que la eficacia de las medidas preventivas resulta mucho más condicionada por el grado de
Energy Technology Data Exchange (ETDEWEB)
Yokoi, T [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria
1997-05-27
Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.
DEFF Research Database (Denmark)
including convection-difmsion-reaction PDEs are numerically solved using the two methods on the same spatial grid. Even though the CE/SE method uses a simple stencil structure and is developed on a simple mathematical basis (i.e., Gauss' divergence theorem), accurate and computationally-efficient solutions...
Meier, W. R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C.
2017-06-01
Measurements of the anisotropic properties of single crystals play a crucial role in probing the physics of new materials. Determining a growth protocol that yields suitable high-quality single crystals can be particularly challenging for multicomponent compounds. Here we present a case study of how we refined a procedure to grow single crystals of CaKFe4As4 from a high temperature, quaternary liquid solution rich in iron and arsenic ("FeAs self-flux"). Temperature dependent resistance and magnetization measurements are emphasized, in addition to the x-ray diffraction, to detect intergrown CaKFe4As4 , CaFe2As2 , and KFe2As2 within what appear to be single crystals. Guided by the rules of phase equilibria and these data, we adjusted growth parameters to suppress formation of the impurity phases. The resulting optimized procedure yielded phase-pure single crystals of CaKFe4As4 . This optimization process offers insight into the growth of quaternary compounds and a glimpse of the four-component phase diagram in the pseudoternary FeAs -CaFe2As2-KFe2As2 system.
International Nuclear Information System (INIS)
Masiello, E.
2006-01-01
The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)
Energy Technology Data Exchange (ETDEWEB)
Fujii, Katsuhiko, E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan); Ohkubo, Tadakatsu, E-mail: OHKUBO.Tadakatsu@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Fukuya, Koji, E-mail: fukuya@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan)
2011-10-01
The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
International Nuclear Information System (INIS)
Max, Bertrand
2014-01-01
Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)
Ishiyama, Tatsuya; Shirai, Shinnosuke; Okumura, Tomoaki; Morita, Akihiro
2018-06-01
Molecular dynamics (MD) simulations of KCl, NaCl, and CaCl2 solution/dipalmytoylphosphatidylcholine lipid interfaces were performed to analyze heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra in relation to the interfacial water structure. The present MD simulation well reproduces the experimental spectra and elucidates a specific cation effect on the interfacial structure. The K+, Na+, and Ca2+ cation species penetrate in the lipid layer more than the anions in this order, due to the electrostatic interaction with negative polar groups of lipid, and the electric double layer between the cations and anions cancels the intrinsic orientation of water at the water/lipid interface. These mechanisms explain the HD-VSFG spectrum of the water/lipid interface and its spectral perturbation by adding the ions. The lipid monolayer reverses the order of surface preference of the cations at the solution/lipid interface from that at the solution/air interface.
International Nuclear Information System (INIS)
Yu Zhihui; Qi Tao; Qu Jingkui; Wang Lina; Chu Jinglong
2009-01-01
Experimental measurements have been made on the batch ion exchange of Ca(II) and Mg(II) from potassium chromate solution using cation exchanger of Amberlite IRC 748 as K + form. The ion exchange behavior of two alkaline-earth metals on the resin, depending on contact time, pH, temperature and resin dosage was studied. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms. For Ca(II) ion, the Langmuir model represented the adsorption process better than the Freundlich model. The maximum ion exchange capacity was found to be 47.21 mg g -1 for Ca(II) and 27.70 mg g -1 for Mg(II). The kinetic data were tested using Lagergren-first-order and pseudo-second-order kinetic models. Kinetic data correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. Various thermodynamic parameters such as Gibbs free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) were also calculated. These parameters showed that the ion exchange of Ca(II) and Mg(II) from potassium chromate solution was feasible, spontaneous and endothermic process in nature. The activation energy of ion-exchange (E a ) was determined as 12.34 kJ mol -1 for Ca(II) and 9.865 kJ mol -1 for Mg(II) according to the Arrhenius equation.
Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.
2017-09-01
Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.
Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-01-01
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363
Directory of Open Access Journals (Sweden)
Lorenzo Massimi
2018-02-01
Full Text Available Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.
Energy Technology Data Exchange (ETDEWEB)
Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1969-07-01
The aim of this work is to compare the complexation in chloride solutions of trivalent lanthanides and actinides. We have first studied the solvatation of these cations without complexation. We found a difference between Am, Cm and Rare Earths (we can separate lanthanides into Light and Heavy Rare Earths). For studying the complexation we choose the technic of electrophoresis on paper after establishing a simple theory of mobilities in complex solutions. The hydrolysis of these cations was studied and compared in chloride solutions. We have then studied the complexation with the Cl{sup -} ligand in some solutions: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. We have established that the complexation is the same in dilute HCl solutions but in concentrated solutions the trivalent actinides are more complexed. This difference is sharper in LiCl solutions. We also proposed the different models of complex in these solutions. (author) [French] Le but de ce travail est de comparer les transuraniens et lanthanides trivalents au point de vue de leur complexation en solution chlorhydrique. Nous avons ete amenes tout d'abord a etudier la solvatation de ces cations non complexes. C'est ainsi que nous pouvons constater une difference entre Am, Cm et les lanthanides. Ces derniers pouvant se separer en lanthanides legers et lanthanides lourds. Pour etudier la complexation nous avons utilise l'electrophorese sur papier apres avoir donne une theorie simple des mobilites en milieu complexant. Apres avoir etudie et compare l'hydrolyse de ces divers cations en solution chlorhydrique, nous avons etudie leur complexation avec l'ion Cl{sup -} dans dans divers milieux: HCl, NH{sub 4}Cl, CaCl{sub 2}, CeCl{sub 3}, LiCl. ous avons note qu'en solution HCl les deux series se comportent de la meme facon pour des concentrations faibles en Cl{sup -} mais que les transuraniens se complexent plus fortement dans les solutions concentrees. Cette difference s'accroit encore dans les milieux
Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.
2018-01-01
In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed
International Nuclear Information System (INIS)
Gureghian, A.B.
1979-01-01
A mathematical model of ground water transport through an aquifer is presented. The solute of interest is a metal tracer or radioactive material which may undergo decay through a sorbing unconfined aquifer. The subject is developed under the following headings: flow equation, solute equation, boundary conditions, finite element formulation, element formulation, solution scheme (flow equation, solute equation), results and discussions, water movement in a ditch drained aquifer under transient state, water and solute movement in a homogeneous and unsaturated soil, transport of 226 Ra in nonhomogeneous aquifer, tailings pond lined, and tailings pond unlined. It is concluded that this mathematical model may have a wide variety of applications. The uranium milling industry may find it useful to evaluate the hydrogeological suitability of their disposal sites. It may prove suited for the design of clay disposal ponds destined to hold hazardous liquids. It may also provide a means of estimating the long-term impact of radionuclides or other pollutants on the quality of ground water. 31 references, 9 figures, 3 tables
Malakpoor, K.; Kaasschieter, E.F.; Huyghe, J.M.R.J.
2007-01-01
The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci. 35 (1997) 793-802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues.
International Nuclear Information System (INIS)
Ragusa, J. C.
2004-01-01
In this paper, a method for performing spatially adaptive computations in the framework of multigroup diffusion on 2-D and 3-D Cartesian grids is investigated. The numerical error, intrinsic to any computer simulation of physical phenomena, is monitored through an a posteriori error estimator. In a posteriori analysis, the computed solution itself is used to assess the accuracy. By efficiently estimating the spatial error, the entire computational process is controlled through successively adapted grids. Our analysis is based on a finite element solution of the diffusion equation. Bilinear test functions are used. The derived a posteriori error estimator is therefore based on the Hessian of the numerical solution. (authors)
DEFF Research Database (Denmark)
Schmidt, I.K.; Tietema, A.; Williams, D.
2004-01-01
Soil water chemistry and element budgets were studied at three northwestern European Calluna vulgaris heathland sites in Denmark (DK), The Netherlands (NL), and Wales (UK). Responses to experimental nighttime warming and early summer drought were followed during a two-year period. Soil solution...
Directory of Open Access Journals (Sweden)
Bartosz Puzio
2018-06-01
Full Text Available Five crystalline members of the hydroxyapatite (HAP; Ca5(PO43OH–johnbaumite (JBM; Ca5(AsO43OH series were crystallized at alkaline pH from aqueous solutions and used in dissolution experiments at 5, 25, 45, and 65 °C. Equilibrium was established within three months. Dissolution was slightly incongruent, particularly at the high-P end of the series. For the first time, the Gibbs free energy of formation ΔGf0, enthalpy of formation ΔHf0, entropy of formation Sf0, and specific heat of formation Copf were determined for HAP–JBM solid solution series. Based on the dissolution reaction, Ca5(AsO4m(PO43−mOH = 5Ca2+(aq + mAsO43−(aq + (3 − mPO43−(aq + OH−(aq, their solubility product Ksp,298.15 was determined. Substitution of arsenic (As for phosphorus (P in the structure of apatite resulted in a linear increase in the value of Ksp: from HAP logKsp,298.15 = −57.90 ± 1.57 to JBM logKsp,298.15 = −39.22 ± 0.56. The temperature dependence of dissolution in this solid solution series is very specific; in the temperature range of 5 °C to 65 °C, the enthalpy of dissolution ΔHr varied around 0. For HAP, the dissolution reaction at 5 °C and 25 °C was endothermic, which transitioned at around 40 °C and became exothermic at 45 °C and 65 °C.
Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions
Setkova, Tatiana; Shapovalov, Yury; Balitsky, Vladimir
2011-03-01
Interest in the growth of tourmaline single crystals is based on the promising piezoelectric and pyroelectric properties of this material compared to quartz crystals currently in use. Moreover, synthetic tourmaline can be used as a substitute for the natural stone in the jewelry industry similar to other synthetic analogues of gemstones. Single crystals of colored Co-, Ni-, Fe-, (Ni,Cr)-, (Ni,Fe)-, and (Co,Ni,Cr)-containing tourmalines with concentration of transition metal elements up to 16 wt% on a seed have been grown from complex boron-containing hydrothermal solutions at a range of temperatures 400-750 °C and pressures 100 MPa. Experiments were conducted under conditions of a thermal gradient in titanium and chromium-nickel autoclaves. Tourmaline growth on a seed crystal occurs only if separate tourmaline-forming components (monocrystalline corundum and quartz bars) are used as charge. All tourmalines specified above grow in analogous (+) direction of the optical axis with a speed of 0.05 mm/day by faces of the trigonal pyramid, except tourmalines containing chromium. They grow in analogous (+0001) direction with a speed 0.05 mm/day, and in antilogous (-0001) direction with a speed of 0.01 mm/day by faces of the trigonal pyramid and in prism direction with a speed of 0.001 mm/day. Along with the large single crystals, a great amount of finest (30-150 μm in size) tourmaline crystals was formed during the runs by spontaneous nucleation both on the surface of the seed crystals and in the charge.
The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides
International Nuclear Information System (INIS)
Hsiao, Chun-Lung; Qi, Xiaoding
2016-01-01
Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted
International Nuclear Information System (INIS)
Mair, R.J.; Taylor, R.N.; Higgins, K.G.; Potts, D.M.
1989-01-01
Analyses have been undertaken on an advancing tunnel heading at great depth in a clay formation corresponding to the test drift construction at Mol. Belgium. Simplifying assumptions enable plasticity solutions to be used to model the behaviour of a tunnel heading in a linear elastic-perfectly plastic soil. Finite element analysis with the same soil model has been undertaken of the test drift construction, assuming axisymmetric conditions. The results are compared with the plasticity solutions and with the measurements of lining stresses, soil movements and pore pressures by SCK/CEN. Good agreement is obtained between the plasticity solutions and finite element analysis. The measured immediate build-up of stress on the linings is well-predicted and reasonable agreement is obtained between predicted and measured soil movements. The measured pore-pressure changes are poorly predicted by the analyses
International Nuclear Information System (INIS)
Soares, Eufemia Paez; Saki, Mitiko; Silva, Leonardo G.A.
2007-01-01
Brazilian plastic production for food packagings, in recent years, has grown in the same proportion as food consumption. Considering that the plastic manufacturing involves catalytic processes and the use of additives, when the foods are in direct contact with these materials, the components present in plastics may migrate to the food. The Brazilian Health Surveillance Agency (ANVISA) has established boundary-values of migrants as well as procedures to evaluate migration of elements and substances from plastic packaging to food. In this study elemental composition of poly (ethylene terephthalate) - PET - packaging and results of elemental migration were obtained. Instrumental Neutron Activation Analysis (INAA) was used to determine elemental concentrations in PET packagings and the radiometric method was applied for elemental migration determination. This radiometric method consisted of irradiating the PET samples with neutrons, followed by migration exposition and radioactivity measurement in food-simulated solution. Experimental conditions used for migration were 10 days exposure period at 40 deg C. Migration was evaluated for soft drink, juice and water PET packaging. The analytical results indicated that PET packagings contain Co and Sb and those elements are transferred to the simulated solutions. However, these migration results were lower than the maximum tolerance values established by ANVISA. The migration detection limits also indicated high sensitivity of the radiometric method. (author)
Directory of Open Access Journals (Sweden)
Марина Анатоліівна Рябікіна
2016-07-01
Full Text Available Modern industry uses a lot of elements as additives to improve the service characteristics of metal products that are to be used for various purposes. These elements can be divided into two groups: the first group includes the elements interacting with iron and improving its characteristics (alloying elements, and the second group includes the elements, that modify the characteristics of the structure and properties in an undesirable direction. These are trace elements: S, P, O, As, and others in steel. The negative impact of these elements shows itself as banding, the formation of non-metallic inclusions, flakes, grain boundary segregations et al. The influence of the elements of the both groups on the properties of steel depends on the nature and level of interatomic interaction in the alloy. Computational and analytical study of the major impurity elements in steel impact on the interatomic bond strength and the probability of forming complexes, clusters, and chemical compounds with the basic alloying elements in the steel has been carried out in the work. The theoretical parameter which defines the strength of the ion-covalent bond of two atoms: non-metallic – metallic is the electronegativity of elements. The electronegativity difference of the metal and non-metallic elements increasing, the ionic bonding and thermodynamic stability of these compounds increase. On the other hand, concentration of valent electrons is a universal characteristic of an atomic element which determines many of its properties, and especially the energy of interatomic interaction. Energy calculations of pairwise interatomic impurity elements: H, C, N, S, P, As interaction with Fe and major alloying elements in steel: Mn, Cr, Si, V, Al, Ti, W, Cu, Mo, Nb were made. It has been stated that all the impurity elements except phosphorus, hydrogen and arsenic have sufficient high adhesion with the majority of the metal elements in the modern steels. Phosphorus does
Shirage, Parasharam M; Kihou, Kunihiro; Lee, Chul-Ho; Takeshita, Nao; Eisaki, Hiroshi; Iyo, Akira
2012-09-19
The effect of alloying the two perovskite-type iron-based superconductors (Ca(4)Al(2)O(6))(Fe(2)As(2)) and (Ca(4)Al(2)O(6))(Fe(2)P(2)) was examined. While the two stoichiometric compounds possess relatively high T(c)'s of 28 and 17 K, respectively, their solid solutions of the form (Ca(4)Al(2)O(6))(Fe(2)(As(1-x)P(x))(2)) do not show superconductivity over a wide range from x = 0.50 to 0.95. The resultant phase diagram is thus completely different from those of other typical iron-based superconductors such as BaFe(2)(As,P)(2) and LaFe(As,P)O, in which superconductivity shows up when P is substituted for As in the non-superconducting "parent" compounds. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100 K. The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of antiferromagnetic/orthorhombic long-range order. The similarity suggests that the suppression of the superconductivity in the present case also has a magnetic and/or structural origin.
Energy Technology Data Exchange (ETDEWEB)
Terekhin, M.A. [P.N. Lebedev Physical Institute, Leninskij Prospekt 53, 119991 Moscow (Russian Federation); Makhov, V.N., E-mail: makhov@sci.lebedev.ru [P.N. Lebedev Physical Institute, Leninskij Prospekt 53, 119991 Moscow (Russian Federation); Lebedev, A.I.; Sluchinskaya, I.A. [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2015-10-15
Spectral and kinetic properties of extrinsic crossluminescence (CL) in SrF{sub 2}:Ba (1%) and CaF{sub 2}:Ba (1%) are compared with those of intrinsic CL in BaF{sub 2} and are analyzed taking into account EXAFS data obtained at the Ba L{sub III} edge and results of first-principles calculations. The CL decay time was revealed to be longer in SrF{sub 2}:Ba and CaF{sub 2}:Ba compared to BaF{sub 2}. This fact contradicts the expected acceleration of luminescence decay which could result from an increased overlap of wave functions in solid solutions due to shortening of the Ba-F distance obtained in both EXAFS measurements and first-principles calculations. This discrepancy is explained by the effect of migration and subsequent non-radiative decay of the Ba (5p) core holes in BaF{sub 2} and by decreasing of the probability of optical transitions between Ba (5p) states and the valence band in SrF{sub 2}:Ba and CaF{sub 2}:Ba predicted by first-principles calculations. - Highlights: • The crossluminescence kinetics in SrF{sub 2}:Ba and CaF{sub 2}:Ba is slower than in BaF{sub 2}. • Ba{sup 2+} ions substitute for host Ca{sup 2+}(Sr{sup 2+}) ions in the on-center positions. • The nearest Ba-F distances in SrF{sub 2}:Ba and CaF{sub 2}:Ba are shorter than in BaF{sub 2}. • EXAFS data and first-principles calculations of the local structure agree well. • First-principles calculations explain slower luminescence decay in solid solutions.
International Nuclear Information System (INIS)
Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Matsuzaki, Akio; Mimura, Tetsuro
2014-01-01
K in the soil solution can control the uptake of radioactive Cs by rice plants, but this control is not accomplished only by K; it is affected by other ionic species. It is therefore important to investigate uptake of radioactive Cs from the perspective of the concentration of major cations such as Ca in the soil solution and the levels of exchangeable cations in the soil. To clarify the effects of K and Ca in the soil solution and of the levels of soil exchangeable cations to prevent uptake of radioactive Cs, we conducted a pot experiment and field experiments in a paddy soil in 2011 and 2012. To reduce the uptake of radioactive Cs, it was necessary to achieve a K concentration in the soil solution of 0.5 mmol L"-"1, and a Ca concentration higher than 2 mmol L"-"1 based on the results of the pot experiment. In addition, we obtained the desirable levels of exchangeable cations and the cation exchange capacity (CEC) in the soil from previous reports and the results of our field experiments. On this basis, we propose the following threshold levels for exchangeable cations and CEC in the soil as a standard: 0.53 K cmol_c kg"-"1, 18.0 Ca cmol_c kg"-"1, 2.0 Mg cmol_c kg"-"1, i.e. 25 mg K_2O 100 g"-"1, 505 mg CaO 100 g"-"1, 40 Mg O mg 100 g"-"1, and a CEC of 30 cmol_c kg"-"1. Converting these values into the corresponding levels in the soil solution, we obtained concentrations of 0.71 mmol K L"-"1, 4.22 mmol Ca L"-"1, and 1.35 mmol Mg L"-"1. These levels are within the improving standard for fertility of paddy soils in Japan. Consequently, it will be necessary to improve the fertility of paddy soils to control the uptake of radioactive Cs by rice plants. (author)
Synthesis, single crystal growth and thermodynamic properties of SrNdAlO4-CaNdAlO4 solid solutions
International Nuclear Information System (INIS)
Novoselov, A.; Ryumin, M.; Pushkina, G.; Spiridonov, F.; Komissarova, L.; Zimina, G.; Pajaczkowska, A.
2005-01-01
Continuous solid solutions in the SrNdAlO 4 -CaNdAlO 4 system are formed. Powder samples of Sr x Ca 1-x NdAlO 4 (0.0≤x≤1.0) were obtained using the carbonate coprecipitation method while single crystals of Sr x Ca 1-x NdAlO 4 (x=0.0,0.162,0.392,0.687,1.0) were grown by the Czochralski method. Structural parameters and thermodynamic properties of the samples were studied by X-ray diffraction and heat flux Calvet calorimetry. Composition dependence of lattice constants was observed to follow Vegard's low. Heat of solution of the Sr x Ca 1-x NdAlO 4 samples in molten 2PbO.B 2 O 3 were measured, and enthalpies of formation and mixing were calculated. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Sukirno and Sri Murniasih
2009-01-01
he analysis of metals (Fe, Ca, Ti, Ba, Ce, Zr and La) in the sea sediment environmental samples at Muria peninsula has been carried out with X-Ray Fluorescence (XRF) method. The aim of this analysis is to know the distribution metals which accommodate the recent environmental data in supporting the license of site and Environmental Impact Assessment (EIA) for the Nuclear Power Plants (NPP). Samples taken preparation and analysis based on the procedures of environmental analysis. The result analysis that contents of mayor elements in 7 sea sediment location of sampling were Ca, Ti and Fe with concentration are (6.74 – 11.69 ) %; (0.74 – 6.89 ) % and (0.45 -1.94 ) % successively; while minor elements were Ba, Ce, Zr and La with concentration are 451.4 – 1331.6 ) mg/kg; (201.8 – 427.3) mg/kg; (192.3 – 338.5) mg/kg dan (171.7 – 298.4) mg/kg. The statistic test result shows that sampling location there is a significant difference all of element with the level significant of 95 %. (author)
Energy Technology Data Exchange (ETDEWEB)
Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.
2007-10-01
This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4
International Nuclear Information System (INIS)
Vanura, P.; Makrlik, E.; Selucky, P.
2015-01-01
Extraction of microamounts of Eu 3+ , Am 3+ , Ca 2+ and Sr 2+ with a nitrobenzene solution of hydrogen dicarbollylcobaltate (H+B) in the presence of substituted bis-diphenylphosphine dioxides was investigated and discussed. It was find that diphenylphosphine dioxides can be used for the extraction of the above metal. The most efficient extraction reagent is bis(diphenylphosphino)methane dioxide. The stability constants of some species formed in the organic phase were calculated. (author)
Czech Academy of Sciences Publication Activity Database
Tanaka, Ch.; Yokota, Y.; Kurosawa, S.; Yamaji, A.; Jarý, Vítězslav; Babin, Vladimir; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.
2016-01-01
Roč. 90, Jul (2016), s. 170-173 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : neutron scintillator * LiCaAlF 6 * Pb2+ * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016
Development of a high intensity sup 4 sup 8 Ca ion beam for the heavy element program
Wutte, D C; Lyneis, C
2002-01-01
A high intensity sup 4 sup 8 Ca ion beam has been developed at the 88 Inch Cyclotron for the synthesis of sup 2 sup 8 sup 3 112 using the reaction sup 2 sup 3 sup 8 U( sup 4 sup 8 Ca, 3n). An ion beam intensity of approx 700 pnA was delivered on target, resulting in a total dose of 2 x 10 sup 1 sup 8 ions over a six day period. Since sup 4 sup 8 Ca is a very expensive and rare isotope minimal consumption is essential. Therefore a new oven [1] and special tantalum liner [2] have been developed for the AECR-U ion source during the last year to improve the metal ion beam efficiency. Both the LBL ECR and the AECR-U ion sources are built with radial access. Six radial slots between the sextupole magnet bars provide additional pumping and easy access to the plasma chamber for ovens and feedthroughs. Two types of radial ovens have been used at LBNL in the past, operating at temperatures up to 2100 C.
International Nuclear Information System (INIS)
Lv Zhengang; Guo Ruisong; Yao Pei; Dai Fengying
2007-01-01
Yttria stabilized zirconia (YSZ) has a high oxide ion conductivity at high temperatures. Some rare earth elements (e.g., Yb, Sc, Dy) with similar cation radii to Zr 4+ can dissolve into ZrO 2 , increasing its vacancy concentration and crystal lattice distortion, and therefore enhancing its conductivity and lowering the activation energy. It is expected this material could be used as intermediate temperature electrolyte. In the present work, YSZ electrolyte materials doped by multi-elements (Sc 2 O 3 or Dy 2 O 3 and Yb 2 O 3 ) were prepared by high temperature solid-state method. The high temperature conductivity was improved obviously, reaching 0.18 S/cm at 1000 deg. C, but the density and mechanical properties of sintered materials were not sufficiently high. It is found that sinterability and mechanical properties could be improved by inclusion of a small amount of Al 2 O 3 and/or CaO into the multi-elements doped YSZ materials and our results proved it. The results showed density and bending strength of sintered bodies were enhanced by Al 2 O 3 addition by 4.6% and 30%, respectively, while the conductivity did not degrade remarkably. But the degradation in bending strength and conductivity resulting from the CaO addition happened due to the second phase formed at the grain boundary. XRD patterns showed that all samples had cubic fluorite structure and crystalline lattice parameter was increased. SEM photographs obviously revealed the grain growth for the samples with CaO inclusion
International Nuclear Information System (INIS)
Thien, Bruno M.J.; Kulik, Dmitrii A.; Curti, Enzo
2014-01-01
Highlights: • There are several models able to describe trace element partitioning in growing minerals. • To describe complex systems, those models must be embedded in a geochemical code. • We merged two models into a unified one suitable for implementation in a geochemical code. • This unified model was tested against coprecipitation experimental data. • We explored how our model reacts to solution depletion effects. - Abstract: Thermodynamics alone is usually not sufficient to predict growth-rate dependencies of trace element partitioning into host mineral solid solutions. In this contribution, two uptake kinetic models were analyzed that are promising in terms of mechanistic understanding and potential for implementation in geochemical modelling codes. The growth Surface Entrapment Model (Watson, 2004) and the Surface Reaction Kinetic Model (DePaolo, 2011) were shown to be complementary, and under certain assumptions merged into a single analytical expression. This Unified Uptake Kinetics Model was implemented in GEMS3K and GEM-Selektor codes ( (http://gems.web.psi.ch)), a Gibbs energy minimization package for geochemical modelling. This implementation extends the applicability of the unified uptake kinetics model to accounting for non-trivial factors influencing the trace element partitioning into solid solutions, such as the changes in aqueous solution composition and speciation, or the depletion effects in closed geochemical systems
International Nuclear Information System (INIS)
Adib, M.; Abdel-Kawy, A.; Hamouda, I.
1976-01-01
The potential scattering cross-sections for slow neutrons have been measured for Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta in order to determine the nuclear potential radius and to investigate the prediction of nuclear optical model. The coherent scattering cross-sections for these elements have been measured from the obtained values of the Bragg cut-offs observed in the behaviour of the total cross-sections at cold neutron energies. The measurements were based on the total neutron cross-sections resulting from transmission experiments performed with the neutron chopper at ET-RR-1 reactor
Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions
Szeglowski, Z
2003-01-01
This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
International Nuclear Information System (INIS)
Li Zhenhu; Jiao Rongzhou; Zhu Yongjun
1994-01-01
A study has been made of the extraction equilibrium of Am(III) and rare earth elements (III) in HNO 3 solution with P507-sulphonating kerosene. It has been found that this equilibrium depends on saponification ratio of P507, feed acidity, metal concentration as well as phase ratio. The extraction ability in order is La< Ce< Am< Pr< Nd< Sm. The model of distribution ratio has been founded. The agreement for calculated and experimental values of distribution ratio is fairly good. These values can be used to design the extraction and separation process of Am and rare earth elements
International Nuclear Information System (INIS)
Franke, H.P.
1976-05-01
The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de
Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy
International Nuclear Information System (INIS)
Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.
2011-01-01
The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.
International Nuclear Information System (INIS)
Cho, C.M.; Axmann, H.
1965-01-01
Determination of small quantities of plant nutrients in the soil solution of flooded rice soils is a difficult problem. The concentrations of Mn, Fe and P, for example, in some soil solutions are so small that no chemical method gives any accurate result. Neutron activation analysis was reported to give a much lower limit of detectability for several elements, while for elements with low-induced activity after neutron irradiation, substoichiometric isotopic dilution analysis was applied. One of the advantages of neutron activation analysis lies in the fact that simultaneous activation of every inducible element in a sample takes place. This gives an opportunity to determine many elements by one sample preparation and irradiation. This, however, is not a simple task since identification of the activated products and their quantitative estimation becomes very difficult. Certain operations of separation must be carried out before activity measurements. Ion-exchange resin columns and chemical separation following the addition of carriers were successfully used for the determination of many elements after neutron irradiation. These procedures, however, cannot be directly applied to the determination of the elements of agronomic interest. A procedure was developed to determine several elements of agronomic interest. Times of irradiation and cooling, quick separation by ion-exchange columns, together with chemical precipitation for β-emitters of relatively long half-lives, were all combined to get the maximum benefit from neutron activation analysis. For Fe, for which no satisfactory neutron activation analysis has yet been developed, a modified substoichiometric double isotope dilution procedure is applied
Catalytic oxidation of methanol on Pt/X (X = CaTP, NaTP electrodes in sulfuric acid solution
Directory of Open Access Journals (Sweden)
Said Benmokhtar
2013-10-01
Full Text Available In this paper, we report the synthesis and characterization of electrodes based on NASICON type phosphates. The study of the electrochemical oxidation of methanol at ambient temperature on electrodes based on NASICON type Ca0,5Ti2(PO43 (CaTP and Na5Ti(PO43 (NaTP compared to that of the platinum electrode model has been conducted by cyclic voltammetry in acidic medium. The results showed a significant increase of current density on the electro oxidation of methanol on the material developed based NASICON structure CaTP, cons deactivation of the electro oxidation is observed the closed structure type NaTP.
The speciation of dissolved elements in aquatic solution. Radium and actinides
International Nuclear Information System (INIS)
Haesaenen, E.
1994-01-01
In the publication, the chemistry and speciation of radium, thorium, protactinium, uranium, neptunium, lutonium, americium and curium in ground-water environment is reviewed. Special attention is given to the transuranium elements, which have a central role in the repository of nuclear wastes. The most important methods used in the speciation of these elements is presented. The laser-induced methods, developed in the 1980's, are especially discussed. These have made it possible, e.g., to speciate the transuranium elements in their very low, actual repository ground-water concentrations (10-100 ng/l). (54 refs., 10 figs., 3 tabs.)
International Nuclear Information System (INIS)
Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.
2014-01-01
A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode
Glazyrina, O. V.; Pavlova, M. F.
2016-11-01
We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.
Czech Academy of Sciences Publication Activity Database
Šesnic, S.; Dorić, V.; Poljak, D.; Šušnjara, A.; Artaud, J.F.
2018-01-01
Roč. 46, č. 4 (2018), s. 1027-1034 ISSN 0093-3813 R&D Projects: GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : Finite element analysis * Tokamaks * current diffusion equation (CDE) * finite-element method (FEM) Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016
Numerical solution of recirculating flow by a simple finite element recursion relation
Energy Technology Data Exchange (ETDEWEB)
Pepper, D W; Cooper, R E
1980-01-01
A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.
High-precision solution to the moving load problem using an improved spectral element method
Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li
2018-02-01
In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
Energy Technology Data Exchange (ETDEWEB)
Smith, T.J.; Phipps, A.W.; Fell, T.P.; Harrison, J.D
2003-07-01
An international programme of work is currently under way to develop methods for calculating doses to infants from ingestion of radionuclides present in mothers' milk. This paper considers the special case of the alkaline earth elements. Models have been developed for {sup 45}Ca, {sup 90}Sr and {sup 226}Ra and the sensitivity of results to various changes in parameter values is discussed. A complication when calculating doses from intakes of radium is that the International Commission on Radiological Protection has previously recommended that doses from decay products of radium should be calculated using element-specific biokinetic models (so-called independent biokinetics). An extension of this method to the models for breastfeeding is proposed. Preliminary estimates of the doses received by the infant for a number of maternal intake scenarios show that doses to the infant can exceed the corresponding adult dose, such as for {sup 45}Ca (ratio = 3.1) while, in other cases such as {sup 90}Sr, the infant dose can be a significant fraction of the adult dose. (author)
International Nuclear Information System (INIS)
Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will; Zhang, Tongwei; Romanak, Katherine D.
2016-01-01
Dissolution of CO 2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO 2 entering the atmosphere. Ions in solution partially control the amount of CO 2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO 2 solubility is difficult to predict. In this study, CO 2 solubility was experimentally determined in water, NaCl, CaCl 2 , Na 2 SO 4, and NaHCO 3 solutions and a mixed brine similar to the Bravo Dome natural CO 2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO 2 pressures to 35.5 MPa. Increasing ionic strength decreased CO 2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO 2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO 2 was strongly correlated (R 2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO 2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO 2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl 2 brine and a natural Na + , Ca 2+ , Cl − type brine with minor amounts of Mg 2+ , K + , Sr 2+ and Br − ). - Highlights: • Measured CO 2 solubility in Na + , Cl − , HCO 3 - , Ca 2+ and SO 4 2− solutions at high PCO 2 . • A new equation calculates electrostricted water (mol/kgw) from hydration number. • CO 2 solubility strongly correlates (R 2 = 0.96) to electrostricted water. • Ion electrostriction of water limits its availability for CO 2 caging and solvation. • Correlations predict CO 2 solubility of several mixed brines to within 1–9%.
International Nuclear Information System (INIS)
Mirza, Anwar M.; Iqbal, Shaukat; Rahman, Faizur
2007-01-01
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K + variational principle for slab geometry. The program has a core K + module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10 2 has been achieved using the new approach in some cases
Energy Technology Data Exchange (ETDEWEB)
Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)
2007-07-15
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.
International Nuclear Information System (INIS)
Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.
2002-01-01
Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation
Structural and magnetic properties of the (Ca1-xNax)(Fe2-xTix)O4 solid solution (0 ≤ x ≤ 1)
International Nuclear Information System (INIS)
Zouari, S.; Ranno, L.; Cheikh-Rouhou, A.; Isnard, O.; Wolfers, P.; Bordet, P.; Strobel, P.
2008-01-01
New compounds corresponding to the (Ca 1-x Na x )(Fe 2-x Ti x )O 4 formula with 0 ≤ x ≤ 1 were prepared by solid state reactions at 1100 deg. C in air. A continuous solid solution was found between end members CaFe 2 O 4 and NaFeTiO 4 . The evolution of structural parameters and bonding geometry with composition is discussed in detail. Magnetic measurements show that the antiferromagnetic ordering known in CaFe 2 O 4 is suppressed for all x values investigated (x ≥ 0.2). The absence of crystallographic transition at low temperature was checked by X-ray diffraction down to 10 K. The magnetic structure of CaFe 2 O 4 was redetermined from powder neutron diffraction. Spins on the two iron sites order antiparallel (F z F z spin arrangement), as described previously. The difference in magnetic moments on Fe 1 and Fe 2 sites result in a ferrimagnetic configuration with net moment 2.72μ B at 2 K
Bosch, Jessica; Stoll, Martin; Benner, Peter
2014-01-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton
Liu, Yun-Feng; Fan, Ying-Ying; Dong, Hui-Yue; Zhang, Jian-Xing
2017-12-01
The method used in biomechanical modeling for finite element method (FEM) analysis needs to deliver accurate results. There are currently two solutions used in FEM modeling for biomedical model of human bone from computerized tomography (CT) images: one is based on a triangular mesh and the other is based on the parametric surface model and is more popular in practice. The outline and modeling procedures for the two solutions are compared and analyzed. Using a mandibular bone as an example, several key modeling steps are then discussed in detail, and the FEM calculation was conducted. Numerical calculation results based on the models derived from the two methods, including stress, strain, and displacement, are compared and evaluated in relation to accuracy and validity. Moreover, a comprehensive comparison of the two solutions is listed. The parametric surface based method is more helpful when using powerful design tools in computer-aided design (CAD) software, but the triangular mesh based method is more robust and efficient.
International Nuclear Information System (INIS)
Sradjono; Erni Rifandriyah, A.; Zahardi
1995-01-01
Separation of uranium and rare-earth elements from Rirang ore leach solution was carried out through a two-step precipitation. Several condition affecting the separation processes were examined including solution pH, reagent concentration, and reaction prepitation time. Optimum conditions for the first and second precipitation steps include adjustment of precipitation pH to 1.3 and 2.3, respectively by the addition of 7.3% of NH 4 OH solution and allowing 60 minutes precipitation/reaction time. Based on the conditions, about 6% of Th, 3% of U, 0.9% of PO 4 3- , and none of RE were recovered in the first precipitation step meanwhile, about 99% of RE, 55% of U, 76% of PO 4 3- , and of the Th were recovered in the second step. (author). 3 refs. 4 tabs. 4 figs
The spectral element approach for the solution of neutron transport problems
International Nuclear Information System (INIS)
Barbarino, A.; Dulla, S.; Ravetto, P.; Mund, E.H.
2011-01-01
In this paper a possible application of the Spectral Element Method to neutron transport problems is presented. The basic features of the numerical scheme on the one-dimensional diffusion equation are illustrated. Then, the AN model for neutron transport is introduced, and the basic steps for the construction of a bi-dimensional solver are described. The AN equations are chosen for their structure, involving a system of coupled elliptic-type equations. Some calculations are carried out on typical benchmark problems and results are compared with the Finite Element Method, in order to evaluate their performances. (author)
Provenance determination of pottery by trace element analysis. Problems, solutions and applications
International Nuclear Information System (INIS)
Mommsen, H.
2001-01-01
Provenance determinations of pottery by chemical analysis is reviewed and shown to work well. Since pottery is produced from a well homogenized clay paste according to a certain recipe, sharp elemental patterns are expected for a series of products having the same origin. To obtain such patterns when forming compositional groups of pottery, a consideration of experimental errors, a correction for dilution and a choice of only stable elements is necessary. The patterns thus obtained will have low probability of overlap with groups of different origin. Examples for well defined groups of German stonewares and of Mycenaean wares from the Peloponnese are recorded. (author)
A solution for the integration of finite element analysis in a ship design environment
International Nuclear Information System (INIS)
Finifter, D.; Wyniecki, P.; Castel, J. de
1982-01-01
The DEMAIN system for the pre- and post-processing of finite element analyses of ship structures is presented. It is shown that this new modelling concept, although being self-contained and specialized, has features which relate it to computer-aided design applications of a more general nature. Thus, compared to other finite element pre/post-processors, it allows a more natural occurrence of the structural analysis task in the design flow and can be considered a major step towards an integrated design and analysis system. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Szecsody, James E.; Rockhold, Mark L.; Oostrom, Martinus; Moore, R. C.; Burns, Carolyn A.; Williams, Mark D.; Zhong, Lirong; Fruchter, Jonathan S.; McKinley, James P.; Vermeul, Vincent R.; Covert, Matthew A.; Wietsma, Thomas W.; Breshears, Andrew T.; Garcia, Ben J.
2009-03-01
The objective of this project is to develop a method to emplace apatite precipitate in the 100N vadose zone, which results in sorption and ultimately incorporation of Sr-90 into the apatite structure. The Ca-citrate-PO4 solution can be infiltrated into unsaturated sediments to result in apatite precipitate to provide effective treatment of Sr-90 contamination. Microbial redistribution during solution infiltration and a high rate of citrate biodegradation for river water microbes (water used for solution infiltration) results in a relatively even spatial distribution of the citrate biodegradation rate and ultimately apatite precipitate in the sediment. Manipulation of the Ca-citrate-PO4 solution infiltration strategy can be used to result in apatite precipitate in the lower half of the vadose zone (where most of the Sr-90 is located) and within low-K layers (which are hypothesized to have higher Sr-90 concentrations). The most effective infiltration strategy to precipitate apatite at depth (and with sufficient lateral spread) was to infiltrate a high concentration solution (6 mM Ca, 15 mM citrate, 60 mM PO4) at a rapid rate (near ponded conditions), followed by rapid, then slow water infiltration. Repeated infiltration events, with sufficient time between events to allow water drainage in the sediment profile can be used to buildup the mass of apatite precipitate at greater depth. Low-K heterogeneities were effectively treated, as the higher residual water content maintained in these zones resulted in higher apatite precipitate concentration. High-K zones did not receive sufficient treatment by infiltration, although an alternative strategy of air/surfactant (foam) was demonstrated effective for targeting high-K zones. The flow rate manipulation used in this study to treat specific depths and heterogeneities are not as easy to implement at field scale due to the lack of characterization of heterogeneities and difficulty tracking the wetting front over a large
Mobility of major and trace elements in a coupled groundwater-surface water system: Merced River, CA
Wildman, R. A.; Domagalski, J. L.; Hering, J. G.
2004-12-01
Trace element transport in coupled surface water/groundwater systems is controlled not only by advective flow, but also by redox reactions that affect the partitioning of various elements between mobile and immobile phases. These processes have been examined in the context of a field project conducted by the U.S. Geological Survey (USGS) as part of the National Water-Quality Assessment (NAWQA) program. The Merced River flows out of Yosemite National Park and the Sierra Nevada foothills and into California's Central Valley, where it joins the San Joaquin River. Our field site is approximately twenty river kilometers from the confluence with the San Joaquin River. This deep alluvial plain has minimal topography. Agricultural development characterizes the land surrounding this reach of river; consequently, the hydrology is heavily influenced by irrigation. Riverbed groundwater samples were collected from ten wells aligned in two transects across the river located approximately 100 m apart. The wells were sampled from depths of 0.5 m, 1 m, and 3 m below the sediment-water interface. Groundwater flowpath samples were taken from wells positioned on a path perpendicular to the river and located 100 m, 500 m, and 1000 m from the river. The saturated groundwater system exists from 7 to 40 m below the surface and is confined below by a clay layer. Each well location samples from 3-5 depths in this surface aquifer. Samples were collected in December 2003, March-April, June-July, and October 2004. This served to provide an evenly-spaced sampling frequency over the course of a year, and also to allow observation of trends coinciding with the onset of winter, the spring runoff, and early and late summer irrigation. An initial survey of the elements in the riverbed samples was conducted using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). Elements for further study were selected based on variability in this survey, either with respect to depth or location, as well as to
Institute of Scientific and Technical Information of China (English)
Yong Chen; Hua Li; Zongping Wang; Tao Tao; Chun Hu
2011-01-01
Tetracyclines constitute one of the most important antibiotic families and represent a classic example of phototoxicity.The photoproducts of tetracyclines and their parent compounds have potentially adverse effects on natural ecosystem.In this study,the self-sensitized oxidation products of tetracycline (TC) and oxytetracycline (OTC) were determined and the effects of Ca2+ and Mg2+on self-sensitized degradation were investigated.The Ca2+ and Mg2+ in the natural water sample accounted for enhancement (pH 7.3)and inhibition (pH 9.0) of photodegradation of TC and OTC due to the formation of metal-ions complexes.The formation of Mg2+ complexes was unfavorable for the photodegradation of the tetracyclines at both pH values.In contrast,the Ca2+ complexes facilitated the attack of singlet oxygen (1O2) arising from self-sensitization at pH 7.3 and enhanced TC photodegradation.For the first time,selfsensitized oxidation products of TC and OTC were verified by quenching experiments and detected by LC/ESI-DAD-MS.The products had a nominal mass 14 Da higher than the parent drugs (designated M+14),which resulted from the 1O2 attack of the dimethylamino group on the C-4 atom of the tetracyclines.The presence of Ca2+ and Mg2+ also affected the generation of M+14 due to the formation of metal-ions complexes with TC and OTC.The findings suggest that the metal-ion complexation has significant impact on the selfsensitized oxidation processes and the photoproducts of tetracyclines.
Rubnicu, Alin
2013-01-01
The envelope of the building often has a complex geometry in which a multitude of different sub-assemblies can be identified. The envelope elements specific to roof areas can generally be of three types: walk and non-walk terrace roof as well as roof truss. The exterior joinery analysed is PVC type with four glass sheets.
Czech Academy of Sciences Publication Activity Database
Okrouhlík, Miloslav; Pták, Svatopluk; Valdek, U.
2009-01-01
Roč. 16, č. 2 (2009), s. 103-121 ISSN 1802-1484 R&D Projects: GA AV ČR 1ET400760509 Institutional research plan: CEZ:AV0Z20760514 Keywords : stress wave propagation * finite element method * validity of models Subject RIV: BI - Acoustics
Finite element limit analysis based plastic limit pressure solutions for cracked pipes
International Nuclear Information System (INIS)
Shim, Do Jun; Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin
2002-01-01
Based on detailed FE limit analyses, the present paper provides tractable approximations for plastic limit pressure solutions for axial through-wall cracked pipe; axial (inner) surface cracked pipe; circumferential through-wall cracked pipe; and circumferential (inner) surface cracked pipe. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach
Thermometric titration of a free acid and of uranyl in spent fuel element solutions
International Nuclear Information System (INIS)
Zamek, M.; Strafelda, F.
1975-01-01
A method was elaborated of determining nitric acid in the presence of uranyl nitrate in both aqueous and non-aqueous solutions using a pyridine aqueous solution as a titration agent, and of determining excess uranyl after a hydrogen peroxide addition by a further titration using the same agent. Even a hundred-fold excess of magnesium did not disturb the titration. The method is used in operating solution analyses in the extraction fuel reprocessing in the presence of a small amount of plutonium and of fission products. The reproducibility and accuracy of the method varied in the order of tens to units per cent depending on the concentration of components to be determined. The procedure is applicable for test volumes ranging between 0.1 and 10 ml in concentrations of 1 to 10 -3 M. (author)
International Nuclear Information System (INIS)
Xiong, Z.Q.; Dai, Y.J.; Wang, R.Z.
2009-01-01
A two-stage solar powered liquid-desiccant dehumidification system, for which two kinds of desiccant solution (lithium chloride and calcium bromide) are fed to the two dehumidification stages separately, has been studied. In the studied system air moisture (latent) load is separately removed by a pre-dehumidifier using cheap calcium chloride (CaCl 2 ) and a main dehumidifier using stable lithium bromide (LiBr). Side-effect of mixing heat rejected during dehumidification process is considerably alleviated by an indirect evaporative cooling unit added between the two dehumidification stages. The feasibility of high-desiccant concentration difference achieved by reusing desiccant solution to dehumidify air and regenerating desiccant repeatedly is analyzed. By increasing desiccant concentration difference, desiccant storage capacity is effectively explored. It is found that the pre-dehumidification effect of CaCl 2 solution is significant in high ambient humidity condition. Also seen is that the desiccant investment can be decreased by 53%, though the cost of equipments is somewhat increased, and the Tcop and COP of the proposed system can reach 0.97 and 2.13, respectively
Bosch, Jessica
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.
A POSSIBLE SOLUTION WITH PASSIVE PROTECTION STRUCTURAL RESISTANCE ELEMENTS TO CARGO SHIPS
Directory of Open Access Journals (Sweden)
MUNTEANU Ildikó Renata
2014-09-01
Full Text Available The authors are proposing an additional fire protection solution (semi-passive for cargo ships, by inserting in the tubular strength structure (hollow section, some rectangular, thin wall pipes manufactured of copper alloy, filled with cooling fluid, that, once the fire bursts, it will be activated (i.e. will be pumped into a closed circuit; this closed system contains also a well dimensioned radiator. This innovative solution could bring improvements with regard to the classic one, of intumescent paints, by extending the safe period for evacuating people and goods.
Structural and magnetic investigations of CaBaCo{sub 4−x}Fe{sub x}O{sub 7} solid solutions
Energy Technology Data Exchange (ETDEWEB)
Turkin, D.I., E-mail: turkin@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg GSP-145, 620990 (Russian Federation); Bazuev, G.V. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg GSP-145, 620990 (Russian Federation); Korolev, A.V. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 620041 Ekaterinburg GSP-145, 620999 (Russian Federation)
2017-01-15
Solid solutions of CaBaCo{sub 4−x}Fe{sub x}O{sub 7} (x=0, 0.05, 0.2, 1, 2) were synthesized by glycine-nitrate combustion process. Their structural and magnetic properties were characterized by means of x-ray diffraction and magnetization measurements. In the examined range of the solid solutions, their crystal lattice symmetry changes from orthorhombic with space group Pbn2{sub 1} (0
International Nuclear Information System (INIS)
L'Her, M.
1967-01-01
The aim of this work is the application of spectrophotometric titrations to the analysis of uranium-containing solutions. We have been led to examine the general principles involved in these titrations, and we give a brief outline of these principles. In the first part we deal therefore with spectrophotometric titrations from a general point of view, examining their fundamental principle, their practical execution as well as the various possibilities of the method. The advantage of the titration are examined, in particular that of lending itself simultaneous determination of two species. The possibility of applying these spectrophotometric titrations to the analysis of uranium-containing solutions is the subject of the second part of this report: the dosage of a few species in uranium (VI) solutions is described. To this second part is added an experimental appendix consisting of a description of the apparatus, as well as of the operational techniques used for certain titrations, in particular those involving solutions containing uranium. (author) [fr
International Nuclear Information System (INIS)
Correia Filho, A.
1981-04-01
The Neutron Diffusion Equation at two groups of energy is solved with the use of the Finite - Element Method with first order triangular elements. The program EFTDN (Triangular Finite Elements on Neutron Diffusion) was developed using the language FORTRAN IV. The discrete formulation of the Diffusion Equation is obtained with the application of the Galerkin's Method. In order to solve the eigenvalue - problem, the Method of the Power is applied and, with the purpose of the convergence of the results, Chebshev's polynomial expressions are applied. On the solution of the systems of equations Gauss' Method is applied, divided in two different parts: triangularization of the matrix of coeficients and retrosubstitution taking in account the sparsity of the system. Several test - problems are solved, among then two P.W.R. type reactors, the ZION-1 with 1300 MWe and the 2D-IAEA - Benchmark. Comparision of results with standard solutions show the validity of application of the EFM and precision of the results. (Author) [pt
International Nuclear Information System (INIS)
Karelin, V.V.; Orlov, Yu.N.; Bozhevol'nov, V.E.; Ivanov, L.N.
1981-01-01
The monocrystalline CaF 2 -GdF 3 , SrF 2 -GdF 3 and BaF 2 -GdF 3 systems are studied using the methods of EPR, photo-, radio-, cathode- and thermoluminescence. It is shown that the structure of fluorite solid solutions changes considerably with the growth of the rare earth component concentration. At that, in the systems investigated at least three concentration regions can be singled out: (up to 1%; from 1 to 15%, and > 15% GdF 3 ) which are characterized by their certain selection of impurity centres [ru
International Nuclear Information System (INIS)
Xuan Fuzhen; Liu Changjun; Li Peining
2005-01-01
This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice
Arbabi, Vahid; Pouran, Behdad; Zadpoor, Amir A; Weinans, Harrie
2017-04-23
Osteoarthritis (OA) is a debilitating disease that is associated with degeneration of articular cartilage and subchondral bone. Degeneration of articular cartilage impairs its load-bearing function substantially as it experiences tremendous chemical degradation, i.e. proteoglycan loss and collagen fibril disruption. One promising way to investigate chemical damage mechanisms during OA is to expose the cartilage specimens to an external solute and monitor the diffusion of the molecules. The degree of cartilage damage (i.e. concentration and configuration of essential macromolecules) is associated with collisional energy loss of external solutes while moving across articular cartilage creates different diffusion characteristics compared to healthy cartilage. In this study, we introduce a protocol, which consists of several steps and is based on previously developed experimental micro-Computed Tomography (micro-CT) and finite element modeling. The transport of charged and uncharged iodinated molecules is first recorded using micro-CT, which is followed by applying biphasic-solute and multiphasic finite element models to obtain diffusion coefficients and fixed charge densities across cartilage zones.
Solution of the inverse scattering problem at fixed energy with non-physical S matrix elements
International Nuclear Information System (INIS)
Eberspaecher, M.; Amos, K.; Apagyi, B.
1999-12-01
The quantum mechanical inverse elastic scattering problem is solved with the modified Newton-Sabatier method. A set of S matrix elements calculated from a realistic analytic optical model potential serves as input data. It is demonstrated that the quality of the inversion potential can be improved by including non-physical S matrix elements to half, quarter and eighth valued partial waves if the original set does not contain enough information to determine the interaction potential. We demonstrate that results can be very sensitive to the choice of those non-physical S matrix values both with the analytic potential model and in a real application in which the experimental cross section for the symmetrical scattering system of 12 C+ 12 C at E=7.998 MeV is analyzed
International Nuclear Information System (INIS)
Ferreira, Monica Barcellos Jansen; Carmo, Eduardo Gomes Dutra do
2000-01-01
Heat transfer problems in heterogenous media with large variation of thermal conductivity are notorious for the difficulties in obtaining good numerical results. In this work it is proposed an application of a new mixed discontinuous finite element formulation to this class of problems, which produces good results without the need of high mesh refinement. Stability and consistency aspects are considered and numerical results are presented to show the efficacy of the method. (author)
International Nuclear Information System (INIS)
Nowier, H.G; Metwally, S.S; Abd El-Rehim, S.S; Aly, H.F.
2005-01-01
The extraction of La 3+ , Nd 3+ and Eu 3+ from nitric acid medium by Lewatit CA 9221, Containing 2-ethylhexyl mono -2- ethylhexyl phosphonic acid ester, Ion quest-801, was studied. Batch experiments were carried out to investigate the effect of contact time, V/M ratio, extractant concentration, nitric acid molarity, lanthanide concentration and temperature. The data obtained are discussed in terms of extraction equilibrium and separation factors between the lanthanides as well as certain sorption models. Possible use of column chromatography containing the developed extractant material was assessed
International Nuclear Information System (INIS)
Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.; Bailey, P. D.; Benker, D. E.; Ezold, J. G.; Porter, C. E.; Riley, F. D.
2011-01-01
The heaviest isotopes of elements Z=117 to Z=105, 294 117, 293 117, 290 115, 289 115, 286 113, 285 113, 282 Rg, 281 Rg, 278 Mt, 274 Bh, and 270 Db, were identified by means of the Dubna gas-filled recoil separator among the products of the 249 Bk + 48 Ca reaction. The details of the observed six decay chains, indicating the production and decay of isotopes 293 117 and 294 117, are presented and discussed. The decay energies and resulting half-lives of these new nuclei show a strong rise of stability with increasing neutron number, validating the concept of the island of enhanced stability for superheavy nuclei [Oganessian et al., Phys. Rev. Lett. 104, 142502 (2010)].
Energy Technology Data Exchange (ETDEWEB)
Spitsyn, V. I.; Balukova, V. D.; Gromov, V. V.; Zakharov, S. I.; Zhagin, B. P.; Spiridonov, F. M.
1960-07-01
Research on the sorption of radioisotopes under natural conditions employing the controlled filtration process was performed. Radioisotopes were introduced into the solution as soon as filtration had become steady and the process continued for four months. Soil samples were then taken by drilling at different depths and analysed to determine their radioisotope content. Diffusion of radioisotopes was observed at depths of up to 10 m; two distinct boundaries of soil-activity decrease were ascertained: at the surface of the site and at the depth of the solution filtration front. In addition, the radiostrontium absorption by natural sorbents, principally pure minerals widely distributed in soils and subsoils, was investigated separately. The presence of calcium ions, even in small quantities, sharply reduces the degree of radiostrontium sorption. However, other conditions being equal, strontium may be absorbed to a greater extent than calcium, according to the composition of the sorbent. The field investigations of radiostrontium sorption and migration showed that when filtering radioactive solutions two possible variants have to be taken into account. In the first case the solutions are discharged into soil unaffected by any flow of ground water. In this situation the radiostrontium is retained by the soil. In the second case, the radioisotopes proceed directly into the water-bearing horizon. The radiostrontium will then migrate with the ground water flow and through the soil and this migration will be further affected by the sorption and desorption processes occurring. The experiments performed demonstrate the ease with which long-lived radioisotopes migrate under natural conditions and call attention to the need for thorough study of ground water problems in connexion with various methods of disposing of radioactive waste into ground. (author)
International Nuclear Information System (INIS)
Guppy, C.B.
1962-03-01
In the methods adopted in this report transfer functions in the form of the ratio of two polynomials of the complex variable s are derived from sets of laplace transformed simultaneous differential equations. The set of algebraic simultaneous equations are solved using Cramer's Rule and this gives rise to determinants having polynomial elements. It is shown how the determinants are formed when transfer functions are specified. The procedure for finding the polynomial coefficients from a given determinant is fully described. The first method adopted is a direct one and reduces a determinant with first degree polynomial elements to secular form and follows this by an application of the similarity transformation to reduce the determinant to a form from which the polynomial coefficients can be read out directly. The programme is able to solve a single determinant with polynomial elements and this can be used to reduce an eigenvalue problem in the form of a secular determinant to polynomial form if the need arises. A description is given of the way in which the data is to be set out for solution by the programme. A description is also given of a method used in an earlier programme for solving polynomial determinants by curve fitting techniques using Chebyshev Polynomials. In this method determinants with polynomial elements of any degree can be solved. (author)
International Nuclear Information System (INIS)
Michard, A.; Albarede, F.; Michard, G.; Minster, J.F.; Charlou, J.L.
1983-01-01
The mobility of rare-earth elements (REE) and U during hydrothermal alteration of the basalts at spreading centres has long been a matter of concern because of its bearing on the evolution and recycling of the oceanic crust. Previous approaches to this problem have been indirect, through studies on altered dredged basalts or ophiolites. Sampling of hydrothermal vent waters from the East Pacific Rise (EPR) at 13 0 N is reported. It provides the first direct evidence of REE-enriched solutions which, however, leave the budget of these elements in the crust and the ocean rather unmodified. In constrast, uranium, like magnesium, is quantitatively taken up from the seawater during the hydrothermal process. (author)
Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method
International Nuclear Information System (INIS)
Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G.
2014-01-01
Highlights: • An hp finite element method is proposed for the Lambda modes problem of a nuclear reactor. • Different strategies can be implemented for increasing the accuracy of the solutions. • 2D and 3D benchmarks have been studied obtaining accurate results. - Abstract: Lambda modes of a nuclear power reactor have interest in reactor physics since they have been used to develop modal methods and to study BWR reactor instabilities. An h–p-Adaptation finite element method has been implemented to compute the dominant modes the fundamental mode and the next subcritical modes of a nuclear reactor. The performance of this method has been studied in three benchmark problems, a homogeneous 2D reactor, the 2D BIBLIS reactor and the 3D IAEA reactor
Directory of Open Access Journals (Sweden)
GONCHARENKO D. F.
2017-01-01
Full Text Available Problem statement. Currently sanitary drainage systems of large cities in Ukraine are significantly worn down with prolonged use and due to inefficient solutions for protection of the structures from aggressive effects of the environment, poor quality of materials and construction and installation works during building. Restoration of performance characteristics, reliability and durability of sewer tunnels is the costly and technically complex task, which is urgently needed to be fulfilled to prevent accidents including those with serious environmental impact. Modern work technique and the materials used for restoration allow us to solve these problems with different levels of efficiency, while reducing the cost of restoration due to use of recycled polymeric raw material, as well as to improvement of technological solutions is a currently important direction of research. Purpose of the article. To develop solutions for restoring serviceability, reliability and durability of sewer tunnels taking into account the accumulated experience in renovation of water disposal networks. Conclusion. Use of components made of recycled polymer composite materials during restoring sewer tunnels has significant economic and environmental effects and allows to undertake repair work in hard-to-reach areas.
International Nuclear Information System (INIS)
Berdonosova, D.G.; Burlakova, E.V.; Yasenkova, M.A.; Ivanov, L.N.; Melikhov, I.V.
1989-01-01
The mechanism of formation of the precipitated CaSO 4 ·0.5H 2 O phase was studied in detail; the precipitation was performed at 80 degree, equimolar solutions of Ca(H 2 PO 4 ) 2 and H 2 SO 4 in phosphoric acid of 38% concentration being used. The availability of detailed information on the mechanism of formation of CaSO 4 ·0.5H 2 O precipitates determined the choice of conditions of study of capture of rare earths. In particular, H 3 PO 4 of 38% P 2 O 5 concentration was used as the medium of formation of the calcium sulfate precipitate. Europium was chosen as the rare earth. Its behavior in the liquid and solid phases was studied by radiometric and luminescence methods. The radionuclide 152 Eu is convenient as a radioactive tracer while luminescence of europium is structure-sensitive; therefore, europium is often used in physicochemical investigations as a luminescent probe. It follows from the data that most of the europium captured by the precipitate during coagulation of the ultramicrocrystals is retained firmly by the solid phase. Therefore, in order to diminish capture of europium (and other rare earths) by the precipitate coagulation of the latter should be prevented
International Nuclear Information System (INIS)
Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang
2013-01-01
An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.
International Nuclear Information System (INIS)
Cunha Furtado, F. da; Galeao, A.C.N.R.
1984-01-01
A numerical procedure for the integration of the incompressible Navier-Stokes equations, when expressed in terms of a stream function equation and a vorticity transport equation, is presented. This procedure comprises: the variational formulation of the equations, the construction of the approximation spaces by the finite element method and the discretization via the Galerkin method. For the stationary problems, the system of non-linear algebraic equations resulting from the discretization is solved by the Newton-Raphson algorithm. Finally, for the transient problems, the solution of the non-linear ordinary differential equations resulting from the spatial discretization is accomplished through a Crank-Nicolson scheme. (Author) [pt
Neutron diffraction studies on Ca1−xBaxZr4P6O24 solid solutions
Indian Academy of Sciences (India)
NZP bears special attention for disposal of nuclear waste materials as a significant extent of diversified chemical elements that can be accommodated in the lattice. [2]. The NZP crystallizes in a rhombohedral lattice (space group R-3c) formed by linking ZrO6 octahedral and PO4 tetrahedral units [3]. The Na atom occupies ...
International Nuclear Information System (INIS)
Hubert, J.
1979-01-01
The variational finite element method (of the Rayleigh-Ritz type) has been applied to solve the standard diffusion-convection equation of radial flow in a dispersive medium. It was shown that the imposing of the boundary condition ΔC/Δx = 0 (=null concentration gradient) introduced great errors in computation results. To remedy it this condition was imposed at the free end of the artifical domain. Its other end joined to the downstream boundary of the investigated domain. The results of calculations compared with the known analytical solutions of the parallel flow show their good accuracy. The method was used to discuss the applicability of the approximate analytical solutions of the radial flow. (author)
Liu, Meilin
2012-08-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Directory of Open Access Journals (Sweden)
Liquan Mei
2014-01-01
Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Liu, Meilin; Sirenko, Kostyantyn; Bagci, Hakan
2012-01-01
A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.
Shan, Xiao-Quan; Wang, Zhongwen; Wang, Weisheng; Zhang, Shuzhen; Wen, Bei
2003-02-01
A labile rhizosphere soil solution fraction has been recommended to predict the bioavailability of heavy metals and rare earth elements to plants. This method used moist rhizosphere soil in combination with a mixture of 0.01 mol L(-1) of low-molecular-weight organic acids (LMWOAs) as extractant. The extracted soil solutions were fractionated into two colloidal fractions of soil solution fraction, F(lrss). For the soil solutions extracted with a mixture of LMWOAs the concentrations of heavy metals and rare earth elements in F(2) and F(3) were quite similar. However, the mean concentrations of Cr, Ni, Zn, Cu, Pb, Cd, La, Ce, Pr, and Nd in F(lrss) accounted for 79.9%, 91.3%, 90.8%, 60.1%, 77.5%, 75.3%, 81.2%, 77.2%, 80.3%, and 79.5%, respectively, of their concentrations in F(2). In contrast, there were no differences in the extractable metal concentrations between the three fractions while the first step of the method recommended by the European Community of Reference (BCR), where 0.1 mol L(-1) acetic acid was used as an extractant. The single correlation analysis was made between metal concentrations in the different fractions of soil solutions and their concentrations in wheat. If the first step of BCR method was used there was no good correlation between heavy metals in soil pools and that in wheat shoots and roots. When LMWAOs were used a good correlation was obtained between the concentrations of heavy metals in soil pools and that in wheat roots, which followed a general order of r(1 kD, LMWOAs) >r(0.2 microm, LMWOAs) approximately r(0.45 microm, LMWOAs). In the case of rare earth elements the good correlation was obtained for both the wheat roots and shoots. Generally, the correlation coefficients obtained by LMWAOs were better than that obtained by the first step of BCR method. Therefore, LMWAOs and F(lrss) were strongly recommended to predict the bioavailability of metals in soil pools to plants.
Bourg, Ian C; Sposito, Garrison
2011-08-15
We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.
Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta
2017-12-01
A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Neutron diffraction studies on Ca1− xBaxZr4P6O24 solid solutions
Indian Academy of Sciences (India)
P6O24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from ...
Balasundaram, Karthik; Sharma, Mukesh
2018-03-22
Mercury (Hg) emitted from coal-based thermal power plants (CTPPs) can accumulate and bio-magnify in the food chain, thereby posing a risk to humans and wildlife. The central idea of this study was to develop an adsorbent which can concurrently remove elemental mercury (Hg 0 ) and SO 2 emitted from coal-based thermal power plants (CTPPs) in a single unit operation. Specifically, a composite adsorbent of CaCO 3 impregnated with 2-mercaptobenimidazole (2-MBI) (referred to as modified calcium carbonate (MCC)) was developed. While 2-MBI having sulfur functional group could selectively adsorb Hg 0 , CaCO 3 could remove SO 2 . Performance of the adsorbent was evaluated in terms of (i) removal (%) of Hg 0 and SO 2 , (ii) adsorption mechanism, (iii) adsorption kinetics, and (iv) leaching potential of mercury from spent adsorbent. The adsorption studies were performed using a 2 2 full factorial design of experiments with 15 ppbV of Hg 0 and 600 ppmV of SO 2 . Two factors, (i) reaction temperature (80 and 120 °C; temperature range in flue gas) and (ii) mass of 2-MBI (10 and 15 wt%), were investigated for the removal of Hg 0 and SO 2 (as %). The maximum Hg 0 and SO 2 removal was 86 and 93%, respectively. The results of XPS characterization showed that chemisorption is the predominant mechanism of Hg 0 and SO 2 adsorption on MCC. The Hg 0 adsorption on MCC followed Elovich kinetic model which is also indicative of chemisorption on heterogeneous surface. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) leached mercury from the spent adsorbent were within the acceptable levels defined in these tests. The engineering significance of this study is that the 2-MBI-modified CaCO 3 -based adsorbent has potential for concurrent removal of Hg 0 and SO 2 in a single unit operation. With only minor process modifications, the newly developed adsorbent can replace CaCO 3 in the flue-gas desulfurization (FGD) system.
Minor and Trace Element Chemistry of Urban NS-Soot from the Central Valley of CA, USA
Kleich, S. J.; Hooper, R.
2017-12-01
During a recent study of metal transport in the Central Valley of California, it was noted that ns-soot (soot) occurred as complex clusters of graphene-like spheres admixed with other aerosols and were usually the dominant component of PM2.5 air particulates. These soot clusters contained a wide variety of metals of environmental concern such as As,Pb,Cr, and Ni. This study reports semi-quantitative results for 20 minor and trace elements (calibrated with Smithsonian microbeam standards) using a 200kV Transmission Electron Microscope, EDS, and SAED. This study also examined the mineralogy and crystallinity of admixed aerosols within composite soot clusters. Samples selected represent three contrasting urban settings in the Central Valley: Woodland, on the western side of the valley (Interstate highway to the east); Stockton, an inland sea-port and land transportation corridor in the center of the valley; and Roseville, a major rail-transport hub to the east. The wet/dry Mediterranean climate of California resulted in pronounced seasonal variations in total metal content. Soot cluster chemistry is highly variable however certain patterns emerged. Soot collected during the wet season is generally more aciniform, less structurally complex, and had lower sulfur (sulfate) concentrations but still had significant levels of transition metals (V,Cr,Mn,Fe,Ni,Zn and Pb) . Dry season soot was predominantly admixed with sulfate aerosols, and enriched in alkalis and alkaline earth metals. Stockton (wet-season) soot had up to 6000ppm of Pb. There is appreciable Pb (210ppm-2600ppm) in 38% of samples from Roseville but no Pb greater than 200ppm in Woodland. The highest overall total metals were found in Roseville soot with appreciable As(670ppm), V(100ppm), Pb(2600ppm), Zn(4000 ppm), Cr(90ppm), and Ni(300ppm). Heavy transport (road/rail/port) correlates with higher metal contents regardless of climate.
Effect of solute elements on hardening of thermally-aged RPV model alloys
International Nuclear Information System (INIS)
Nomoto, A.; Nishida, K.; Dohi, K.; Soneda, N.; Liu, L.; Sekimura, N.; Li, Z.
2015-01-01
Embrittlement correlation methods for irradiated reactor pressure vessel (RPV) steels have been developed worldwide to predict the amount of embrittlement during plant operation. The effect of chemical composition on embrittlement is not fully understood, particularly the process of solute atom behavior during solute atom formation. In this series of slides we report the results of thermal ageing experiments of RPV model alloys in order to obtain information on the effect of chemical composition on the hardening process. We can draw the following conclusions. First, the addition of Ni or Si alone to Fe-Cu model alloys does not have clear effect but the addition of Mn to Fe-Cu-Ni alloy accelerates the cluster formation and hardening drastically, the effect of composition on the cluster strength is not clear. Secondly, the hardening process before the hardening peak has linear correlation with APT (Atom Probe Tomography) results and the RSS (Root-Sum-Square)sum model seems to explain the relationship between increase in hardness and APT data in a more consistent manner
McSwiggen, P.L.
1993-01-01
The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.
High-temperature electrical properties of the Bi2.1Sr1.9(Ca1-xYx)Cu2Oy solid solution
International Nuclear Information System (INIS)
Hong, Byungsun; Mason, T.O.
1993-01-01
By a combination of conventional physical property measurements and high temperature electrical property studies, the solid solution limit, transport parameters, and potential defect regimes of the Bi 2.1 Sr 1.9 (Ca 1 - x Y x )Cu 2 O y solid solution were established. A continuous solid solution extends to x = 0.7 or 0.8. The electrical properties indicate that the product of the hole density-of-states and mobility for semiconducting compositions is approximately an order of magnitude smaller than for the other p-type superconducting cuprates. A pronounced drop in hole concentration accompanies the tetragonal-to-orthorhombic transition at x = 0.5, where after superconductivity disappears. The electrical properties also indicate that a composition x ≥ 0.7 is the appropriate ''reference'' compound for the solid solution series. Upon doping this yttrium-rich insulating composition with calcium, holes are introduced. With increased calcium content (decreased yttrium content) the system exhibits several defect regimes reminiscent of the behavior in the La 2 - x AE x CuO 4 (AE = Sr or Ba) system. Oxygen defects (interstitial and vacancies) are believed to play an important role in the defect structure
Numerical solution of critical state in superconductivity by finite element software
Energy Technology Data Exchange (ETDEWEB)
Hong, Z; Campbell, A M; Coombs, T A [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2006-12-15
A numerical method is proposed to analyse the electromagnetic behaviour of systems including high-temperature superconductors (HTSCs) in time-varying external fields and superconducting cables carrying AC transport current. The E-J constitutive law together with an H-formulation is used to calculate the current distribution and electromagnetic fields in HTSCs, and the magnetization of HTSCs; then the forces in the interaction between the electromagnet and the superconductor and the AC loss of the superconducting cable can be obtained. This numerical method is based on solving the partial differential equations time dependently and is adapted to the commercial finite element software Comsol Multiphysics 3.2. The advantage of this method is to make the modelling of the superconductivity simple, flexible and extendable.
A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins
Xu, Jingjie; Lu, Benzhuo
2018-01-01
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644
Khuyagbaatar, J; Yakushev, A; Düllmann, Ch E; Ackermann, D; Andersson, L-L; Asai, M; Block, M; Boll, R A; Brand, H; Cox, D M; Dasgupta, M; Derkx, X; Di Nitto, A; Eberhardt, K; Even, J; Evers, M; Fahlander, C; Forsberg, U; Gates, J M; Gharibyan, N; Golubev, P; Gregorich, K E; Hamilton, J H; Hartmann, W; Herzberg, R-D; Heßberger, F P; Hinde, D J; Hoffmann, J; Hollinger, R; Hübner, A; Jäger, E; Kindler, B; Kratz, J V; Krier, J; Kurz, N; Laatiaoui, M; Lahiri, S; Lang, R; Lommel, B; Maiti, M; Miernik, K; Minami, S; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Pang, G K; Papadakis, P; Renisch, D; Roberto, J; Rudolph, D; Runke, J; Rykaczewski, K P; Sarmiento, L G; Schädel, M; Schausten, B; Semchenkov, A; Shaughnessy, D A; Steinegger, P; Steiner, J; Tereshatov, E E; Thörle-Pospiech, P; Tinschert, K; Torres De Heidenreich, T; Trautmann, N; Türler, A; Uusitalo, J; Ward, D E; Wegrzecki, M; Wiehl, N; Van Cleve, S M; Yakusheva, V
2014-05-02
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the (48)Ca+(249)Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope (294)117 and its decay products. A hitherto unknown α-decay branch in (270)Db (Z = 105) was observed, which populated the new isotope (266)Lr (Z = 103). The identification of the long-lived (T(1/2) = 1.0(-0.4)(+1.9) h) α-emitter (270)Db marks an important step towards the observation of even more long-lived nuclei of superheavy elements located on an "island of stability."
International Nuclear Information System (INIS)
Pershina, V.; Bastug, T.
1999-01-01
Calculations of the electronic structure of MF 6 - and MBr 6 - complexes of Nb, Ta, Pa and element 105, Db, formed in HF and HBr solutions have been performed using the Dirac-Slater Discrete Variational method. On the basis of results of these calculations, relative values of the free energy change of reactions of complex formation have been determined. The order of the complex formation for both acids is shown to be Pa >> Nb > Db > Ta. Such a sequence is defined by a predominant electrostatic energy of the metal-ligand interaction. The hydrolysis of compounds, as a reverse process, proved to change as Ta > Db > Nb >> Pa. Using the theory of metal extraction by anion exchange, the following trend in the extraction of the anionic species from both the HF and HBr aqueous solutions has been predicted: Pa >> Nb ≥ Db > Ta. The strength of the ML 6 - complexes is shown to decrease from MF 6 , to MCl 6 and further to MBr 6 - which is reflected by shifting the complex formation process to the area of higher acid concentrations. (orig.)
Adib, Arash; Poorveis, Davood; Mehraban, Farid
2018-03-01
In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.
Directory of Open Access Journals (Sweden)
Norma C Perez-Rosas
Full Text Available The process of Ca2+ release from sarcoplasmic reticulum (SR comprises 4 phases in smooth muscle cells. Phase 1 is characterized by a large increase of the intracellular Ca2+ concentration ([Ca2+]i with a minimal reduction of the free luminal SR [Ca2+] ([Ca2+]FSR. Importantly, active SR Ca2+ ATPases (SERCA pumps are necessary for phase 1 to occur. This situation cannot be explained by the standard kinetics that involves a fixed amount of luminal Ca2+ binding sites. A new mathematical model was developed that assumes an increasing SR Ca2+ buffering capacity in response to an increase of the luminal SR [Ca2+] that is called Kinetics-on-Demand (KonD model. This approach can explain both phase 1 and the refractory period associated with a recovered [Ca2+]FSR. Additionally, our data suggest that active SERCA pumps are a requisite for KonD to be functional; otherwise luminal SR Ca2+ binding proteins switch to standard kinetics. The importance of KonD Ca2+ binding properties is twofold: a more efficient Ca2+ release process and that [Ca2+]FSR and Ca2+-bound to SR proteins ([Ca2+]BSR can be regulated separately allowing for Ca2+ release to occur (provided by Ca2+-bound to luminal Ca2+ binding proteins without an initial reduction of the [Ca2+]FSR.
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar
2018-03-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. In the present work, the removal of phenol from aqueous solution across polymer inclusion membrane (PIM), based on mixture of cellulose triacetate and cellulose acetate as support (75/25%), calix[4]resorcinarene derivative as a carrier and 2-nitrophenyl octyl ether (2-NPOE) as plasticizer was investigated. The experimental part of this investigation involved the influence of carrier nature, plasticizer concentration, pH phases, and phenol initial concentration on the removal efficiency of phenol from synthetic wastewater. A PIM containing 0.1 g (of mixture polymer), (0.15 g/g mixture of polymer) of carrier and (0.03 ml/g mixture of polymer) of 2-NPOE provided the highest percentage of phenol removal efficiency over a 6-day transport; the removal was found to be about 95%, indeed the removal was found to be highly dependent of pH phases. The feed solution in these transport experiments was at pH 2, while the stripping solution contained 0.20 M NaOH. This study claims that the PIM with a mixture of cellulose derivatives can be used effectively to remove phenols from wastewaters.
International Nuclear Information System (INIS)
Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.
1993-10-01
Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated
International Nuclear Information System (INIS)
Ensor, D.D.
1984-01-01
This final report summarizes the significant results obtained during our investigation of the fundamental solution properties of the transuranium elements for the period July 1, 1979 to September 30, 1984. Primary interest of the project was the development of improved separation methods for the trivalent actinide elements from each other and from the chemically similar trivalent lanthanide elements using solvent extraction techniques. Two different synergistic systems were investigated. The combination of dialkynaphthalenesulfonic acids with a crown ether or an oxime was an attempt to combine the excellent ion exchange properties of the sulfonic extractant with a synergistic agent which would improve the selectivity of the extraction system. The results showed that the presence of the crown ether improved the extraction of the light lanthanides by approximately 50% while the heavy lanthanides were unaffected. The use of the oxime in combination with the sulfonic acid extractant showed significant enhancement for all metal ions studied but little, if any, selectivity. The use of novel oxygen donors as synergistic agents in combination with thenoyltrifluoroacetone provided significant enhancement for the extraction of trivalent lanthanides and actinides. The data showed the best selectivity was obtained using a linear polyether as the synergistic agent. The crown ether and the cryptand showed significant synergistic capabilities but lacked selectivity due to their rigid cavities. The results of this study indicate that the linear polyether is more promising as a synergistic agent because of its flexibility and ease of chemical modification of the end groups. 10 figures, 5 tables
Energy Technology Data Exchange (ETDEWEB)
Alleon, G. [EADS-CCR, 31 - Blagnac (France); Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E. [Cerfacs, 31 - Toulouse (France)
2003-07-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
International Nuclear Information System (INIS)
Alleon, G.; Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E.
2003-01-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?
Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.
2015-01-01
The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.
International Nuclear Information System (INIS)
Bauer, Mathieu; Broekaert, Jose A.C.
2007-01-01
The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L -1 Na, K, Rb and Ba as matrix elements and 300 μg L -1 Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Watanabe, S.; Gundu Rao, T.K. [Institute of Physics, University of Sao Paulo, 05508-090 Sao Paulo/SP (Brazil); Al-Shamery, Katharina [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science University of Oldenburg, 26129 Oldenburg (Germany); Haase, Markus [Department of Inorganic Chemistry I-Materials Research, Institute of Chemistry, University of Osnabrueck, Barbarastrabe 7, 49069 Osnabrueck (Germany); Jho, Young-Dahl, E-mail: jho@gist.ac.kr [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)
2012-08-15
Tb{sup 3+} doped CaZrO{sub 3} has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO{sub 3}:Tb{sup 3+} exhibits three thermoluminescence (TL) glow peaks at 126 Degree-Sign C, 200 Degree-Sign C and 480 Degree-Sign C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O{sup -} ion. Centre II with an axial symmetric g-tensor with principal values g{sub Up-Tack }=1.9986 and g{sub Up-Tack }=2.0023 is assigned to an F{sup +} centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F{sup +} centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F{sup +} centre appear to correlate with the observed high temperature TL peak in CaZrO{sub 3}:Tb{sup 3+} phosphor. - Highlights: Black-Right-Pointing-Pointer Powder phosphor of CaZrO{sub 3}:Tb{sup 3+} was prepared by an easy solution combustion synthesis method. Black-Right-Pointing-Pointer The phosphor exhibits a bright green emission at 545 nm ({sup 5}D{sub 4}{yields}{sup 7}F{sub 5}) of the Tb{sup 3+} ion. Black-Right-Pointing-Pointer Electron Spin Resonance studies have been carried out to identify the defect centres responsible for the observed thermoluminescence peaks.
International Nuclear Information System (INIS)
Cho, Moon Sung; Kim, Y. M.; Lee, Y. W.
2006-01-01
The fundamental design for a gas-cooled reactor relies on an understanding of the behavior of a coated particle fuel. KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) Project since 2004, is developing a fuel performance analysis code for a VHTR named COPA (COated Particle fuel Analysis). A validation of COPA was attempted by comparing its benchmark results with the visco-elastic solutions obtained from the ABAQUS code calculations for the IAEA-CRP-6 TRISO coated particle benchmark problems involving a creep, swelling, and pressure. However, the ABAQUS finite element model used for the above-mentioned analysis did not consider the material nonlinearity of the SiC coating layer that showed stress levels higher than the assumed yield point of the material. In this study, a consideration of the material nonlinearity is included in the ABAQUS model to obtain the visco-elastoplastic solutions and the results are compared with the visco-elastic solutions obtained from the previous ABAQUS model
International Nuclear Information System (INIS)
Montoya R, E.; Bedregal, P.; Diaz, A.; Zavaleta, N.; Berlanga, R.
1993-01-01
The contents of Ca, Cl, K, Mg and Na in milk and milk with cereal, consumed by the peruvian children were determined by short irradiation INAA using RP-10 reactor, with a thermal flux of 10 13 n/cm -2 s -1 and a pneumatic system. The comparative method with solutions of primary standards of each element determined was used. The IAEA-A11-milk powder, IAEA-H4-animal muscle and IAEA-V10-hay powder, reference materials were periodically analyzed, together with the samples, in order to check the quality of analytical results. (authors) 3 refs., 3 tabs, 2 figs
Energy Technology Data Exchange (ETDEWEB)
Baohong Guan; Hailu Fu; Jie Yu; Guangming Jiang; Bao Kong; Zhongbiao Wu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering
2011-01-15
Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber sludge have been generated by coal burning power plants. Utilization of the sulfite-rich sludge for preparing {alpha}-calcium sulfate hemihydrate ({alpha}-HH), an important kind of cementitious material, is of particular interest to electric utilities and environmental preservation. In the experiment, calcium sulfite hemihydrate was directly transformed to {alpha}-HH without the occurrence of calcium sulfate dihydrate (DH). The transformation was performed in a concentrated CaCl{sub 2} solution containing Mg{sup 2+} and Mn{sup 2+} at 95{sup o}C, atmospheric pressure and low pH. The oxidation of calcium sulfite and the subsequent crystallization of {alpha}-HH constitute the whole conversion, during which the oxidation turns out to be the rate controlling step. Solid solution comprised of calcium sulfite hemihydrate and calcium sulfate was found to coexist with {alpha}-HH in the suspension. Calcium sulfate increases and calcium sulfite decreases spontaneously until the solid solution disappears. Thus, it is a potential alternative to utilize sulfite-rich FGD scrubber sludge for the direct preparation of {alpha}-HH. 36 refs., 10 figs., 1 tab.
Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.
Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi
2017-06-28
The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.
Wang, Baochen; Liu, Yan-Gai; Huang, Zhaohui; Fang, Minghao; Wu, Xiaowen
2017-12-22
Discovery of novel phosphors is one of the main issues for improving the color rendering index (CRI) and correlated color temperature (CCT) of white light-emitting diodes (w-LEDs). This study mainly presents a systematic research on the synthesis, crystal structure variation and photoluminescence tuning of novel (oxy)nitride solid solution Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphors. XRD refinements show that lattice distortion occurs when x value diverges the optimum one (x = 1). The lattice distortion causes a widening of emission spectrum and an increase of Stokes shift (ΔSS), which leads to a bigger thermal quenching. With decrease of x value, the emission spectrum shows an obvious red-shift from 505.2 to 540.8 nm, which is attributed to the crystal field splitting. The enhanced crystal field splitting also broadens the excitation spectrum, making it possible to serve as the phosphor for near ultraviolet (n-UV) LEDs. A 3-phosphor-conversion w-LED lamp was fabricated with the as-prepared phosphor, which exhibits high CRI (Ra = 85.29) and suitable CCT (4903.35 K). All these results indicate that the Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphor can serve as the green phosphor for n-UV w-LEDs, with a tunable spectrum by controlling the crystal structure and morphology.
Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution
Energy Technology Data Exchange (ETDEWEB)
Arthanari, Srinivasan; Jang, Jae Cheol; Shin, Kwang Seon [Seoul National University, Seoul (Korea, Republic of)
2017-06-15
In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density (i{sub corr}) value (5.969 μA/cm{sup 2}) compared to N15 (7.387 μA/cm{sup 2}). EIS-Bode plots revealed a higher impedance (|Z|) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer (R{sub 1}) and charge transfer resistance (R{sub ct}) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss (P{sub W}) and hydrogen volume (P{sub H}) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al{sub 3}Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.
Electric conductivity of solid solutions the Cs3-2xMxPO4 (M=Ba, Sr, Ca, Mg) systems
International Nuclear Information System (INIS)
Burmakin, E.I.; Stroev, S.S.; Shekhtman, G.Sh.; Antonov, B.D.
2003-01-01
The solid solutions in the Cs 3-2x M x PO 4 (M=Ba, Sr, Ca, Mg) system are synthesized and their thermal behavior and electric conductivity are studied. The introduction of the alkaline earth metal cations into cesium orthophosphates is accompanied by the shift of the phase transition occurring in the pure Cs 3 PO 4 at 450-620 Deg C into the low-temperature area as well as by increase in the cesium-cation conductivity at low temperatures. The electric conductivity in the area of existence of the Cs 3 PO 4 high-temperature modification slightly depends on the availability and concentration of the modifying additions, which make it possible to suppose the calcium sublattice structural disordering [ru
International Nuclear Information System (INIS)
Souza, Altivo Monteiro de
2008-12-01
The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS S OLVER M PI 2 D A program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)
International Nuclear Information System (INIS)
Vieira, Andre Luiz Pinto da Silva
2000-01-01
As the auxiliary oils used in machining evolved from integral into aqueous emulsion, and later on into aqueous-solution synthetic oils, the components cleaning process with organic solvents, originally adopted at the Fuel Element Factory (FEC), Industrias Nucleares do Brasil S.A. (INB) began to present problems in removing oil residues from machined components, due to the incompatibility between aqueous and organic media. In order to eliminate such incompatibility and adapt the process to the environmental laws restricting production and use of chlorinated or fluorinated solvents as a measure for preserving the atmosphere's ozone layer, in 1995 INB initiated the development of a components cleaning process using biodegradable aqueous detergent. The effort was completed in 2000 with the construction of a machine in keeping with the specific geometry of the fuel-assembly components and the operating conditions required for working with the new process. (author)
Dudar, O. I.; Dudar, E. S.
2017-11-01
The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.
Energy Technology Data Exchange (ETDEWEB)
Mareci, D., E-mail: danmareci@yahoo.com [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Bolat, G. [Faculty of Chemical Engineering and Environmental Protection, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Izquierdo, J. [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Crimu, C.; Munteanu, C. [Faculty of Mechanical Engineering, The “Gheorghe Asachi” Technical University of Iasi, 700050, Iasi (Romania); Antoniac, I. [Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, University of La Laguna, P.O. Box 456, E-38200 La Laguna (Tenerife) (Spain); Faculty of Materials Science and Engineering, Politehnica of Bucharest, 060042 Bucharest (Romania)
2016-03-01
Biodegradable magnesium–calcium (MgCa) alloy is a very attractive biomaterial. Two MgCa alloys below the solid solubility of Ca were considered, as to solely investigate the effect of Ca content on the behavior of magnesium and the pH changes associated to metal dissolution. X-ray diffraction analysis and optical microscopy showed that both Mg–0.63Ca and Mg–0.89Ca alloys were solely composed of α(Mg) phase. Degradation characteristics and electrochemical characterization of MgCa alloys were investigated during exposure to Ringer's solution at 37 °C by electrochemical impedance spectroscopy and scanning electrochemical microscopy. The impedance behavior showed both capacitive and inductive features that are related to the alloy charge transfer reaction and the relaxation of the absorbed corrosion compounds, and can be described in terms of an equivalent circuit. Scanning electron microscopy (SEM) was employed to view the surface morphology of the MgCa samples after 1 week immersion in Ringer's solution showing extensive precipitation of corrosion products, whereas the substrate shows evidence of a non-uniform corrosion process. Energy dispersive analysis showed that the precipitates contained oxygen, calcium, magnesium and chlorine, and the Mg:Ca ratios were smaller than in the alloys. Scanning electrochemical microscopy (SECM) was used to visualize local pH changes associated to these physicochemical processes with high spatial resolution. The occurrence of pH variations in excess of 3 units between anodic and cathodic half-cell reactions was monitored in situ. - Highlights: • Spontaneous degradation of MgCa alloys in Ringer's solution characterized at 37 °C • Reactivity differences between Mg0.63Ca and Mg0.89Ca are evidenced using multiscale electrochemical characterization. • Electrochemical activation occurs heterogeneously on the alloy surface. • Metal dissolution is accompanied by local pH changes. • Mg0.63Ca degrades faster
International Nuclear Information System (INIS)
Cao, Menghua; Hu, Yuan; Sun, Qian; Wang, Linling; Chen, Jing; Lu, Xiaohua
2013-01-01
This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L −1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals. -- Highlights: ► A novel combination of biosurfactant saponin and EDDS was used to simultaneously remove mixed contaminations from soil. ► Significant synergy on Pb, Cu and PCB desorption were achieved with EDDS/saponin. ► The marked interaction between EDDS and saponin contributed to the synergy performance. -- Significant synergistic effect on Pb, Cu and PCB desorption were achieved with the mixed solution of saponin and EDDS
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.; Karasaki, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
International Nuclear Information System (INIS)
Crevoisier, D.; Voltz, M.; Chanzy, A.
2009-01-01
Ross [Ross PJ. Modeling soil water and solute transport - fast, simplified numerical solutions. Agron J 2003;95:1352-61] developed a fast, simplified method for solving Richards' equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins: 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions. The Ross method is compared with the standard finite element model, Hydrus-1D [Simunek J, Sejna M, Van Genuchten MTh. The HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solutes transport parameters. Agron Abstr 357; 1999]. Computing time, accuracy of results and robustness of numerical schemes are monitored in 1D simulations involving different types of homogeneous soils, grids and hydrological conditions. The Ross method associated with modified Van Genuchten hydraulic functions [Vogel T, Cislerova M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport Porous Media 1988:3:1-15] proves in every tested scenario to be more robust numerically, and the compromise of computing time/accuracy is seen to be particularly improved on coarse grids. Ross method run from 1.25 to 14 times faster than Hydrus-1D. (authors)
International Nuclear Information System (INIS)
Aly, M.M.I.
2010-01-01
Lanthanide elements such as lanthanum and neodymium are important elements in photo-electronic and metallurgical industries as well as in nuclear technology. The main constituents of the spent nuclear fuel are actinides like uranium, thorium and various fission products including lanthanides. The co-ordination compounds of the trivalent lanthanum and neodymium continues to be an active research area, which includes the specific spectroscopic and magnetic properties of rare earth ions and their applications as super molecular device, contrast-enhancing agents in magnetic resonance imaging, optical signal amplifiers and electroluminescent (EL) devices. Hence, the separation and purification of these elements is of great concern. Solvent extraction technique is employed to separate and purify rare earth elements in an industrial scale, but the separation of lanthanum and neodymium is a difficult task, as lanthanide ions exhibit similar chemical and physical properties. They have generally common and stable +3 oxidation state that requires synthesis of certain extractants which are able to extract them from different aqueous solutions. During the last twenty years, different publications have pointed out the remarkable properties of alkyl amide in the field of separation chemistry. These extractants are able to form stable co-ordination compounds with different metallic ions. In this concern, this thesis deals with the synthesis of different amide extractants namely N, N diethylacetoamide (DEAA), N, N Teteraphenyl malonamide (TPMA), N, N diphenylbenzamide (DPBA), N, N' diphenylacetoamide (DPAA), and N, N' Teteraethyl malonamide (TEMA), which were synthesized, characterized and compared with Aliquat-336 in kerosene for extraction and separation of La (III) and Nd (III). The effect of the different parameters affecting the extraction of these metals from aqueous nitric acid medium in the different systems has been studied in terms of shaking time, nitric acid, hydrogen
Energy Technology Data Exchange (ETDEWEB)
Ryu, Eun Hyun; Song, Yong Mann; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-05-15
If time-dependent equation is solved with the FEM, the limitation of the input geometry will disappear. It has often been pointed out that the numerical methods implemented in the RFSP code are not state-of-the-art. Although an acceleration method such as the Coarse Mesh Finite Difference (CMFD) for Finite Difference Method (FDM) does not exist for the FEM, one should keep in mind that the number of time steps for the transient simulation is not large. The rigorous formulation in this study will richen the theoretical basis of the FEM and lead to an extension of the dynamics code to deal with a more complicated problem. In this study, the formulation for the 1-D, 1-G Time Dependent Neutron Diffusion Equation (TDNDE) without consideration of the delay neutron will first be done. A problem including one multiplying medium will be solved. Also several conclusions from a comparison between the numerical and analytic solutions, a comparison between solutions with various element orders, and a comparison between solutions with different time differencing will be made to be certain about the formulation and FEM solution. By investigating various cases with different values of albedo, theta, and the order of elements, it can be concluded that the finite element solution is agree well with the analytic solution. The higher the element order used, the higher the accuracy improvements are obtained.
Gavrieli, I.; Matthews, Alan; Holland, J. B.
1996-10-01
The hydrothermal reaction between grossular and 1 molar manganese chloride solution was studied at 2 kbar and 600 °C at various bulk Ca/(Ca+Mn) compositions: Ca3Al2Si3O12+3Mn2+(aq) ⇔ Mn3Al2Si3O12+3Ca2+(aq) The reaction products are garnets of the spessartine-grossular solid-solution series which discontinuously armour the dissolving grossular grains. The first garnet to crystallize is spessartine rich ( X gt Mn≥0.95), reflecting the high Mn content of the solution, but as the reaction proceeds more calcium-rich garnets progressively overgrow the initial products. The armouring product layer is detached from the dissolving grossular, which allows the progressive overgrowth to occur on both its external and internal surfaces and results in the development of a two directional Ca/(Ca+Mn) zoning pattern in the product grains. The compositional changes in the run products are consistent with attainment of heterogeneous equilibrium between the external rims of the spessartine-grossular garnets and the bulk solutions in runs of duration ≥24 hours. Plots of ln KD versus X gt Ca maxima show linear variations that are not consistent with the ideal mixing that has been proposed for spessartine-grossular garnets at temperatures of 900 to 1200 °C. The data rather fit a regular solution model with the parameters Δ G° (600 °C, 2 kbar)=-8.0±0.8 kJ/mol and w gt CaMn=2.6±2.0 kJ/mol. Existing solubility measurements and thermodynamic data from other Ca and Mn silicates support the calculated data. Grossular activities calculated using the w gt CaMn parameter indicate that even in manganese-rich metapelites pressure estimates calculated using the garnet-plagioclase-Al2SiO5-quartz barometer will not be increased by more than 0.2 kbar.
International Nuclear Information System (INIS)
Kulich, N.V.; Nemtsev, V.A.
1986-01-01
The analytical solution to the problem on the stationary temperature field in an infinite structural element of rectangular profile characteristic of the conjugation points of a vessel and a tube sheet of a heat exchanger (or of a finned surface) at the third-kind boundary conditions has been obtained by the methods of the complex variable function theory. With the help of the obtained analytical dependences the calculations of the given element of the design and the comparison with the known data have been conducted. The proposed analytical solution can be effectively used in calculations of temperature fields in finned surfaces and structural elements of the power equipment of the considered profile and the method is applied for solution of the like problems
Directory of Open Access Journals (Sweden)
Lyakhovich Leonid
2017-01-01
Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.
International Nuclear Information System (INIS)
Cheng, C.Z.
1988-12-01
A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, θ, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle θ and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical β/sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.
1988-12-01
A nonvariational ideal MHD stability code (NOVA) has been developed. In a general flux coordinate (/psi/, theta, /zeta/) system with an arbitrary Jacobian, the NOVA code employs Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /psi/ direction. Extensive comparisons with these variational ideal MHD codes show that the NOVA code converges faster and gives more accurate results. An extended version of NOVA is developed to integrate non-Hermitian eigenmode equations due to energetic particles. The set of non-Hermitian integro-differential eigenmode equations is numerically solved by the NOVA-K code. We have studied the problems of the stabilization of ideal MHD internal kink modes by hot particle pressure and the excitation of ''fishbone'' internal kink modes by resonating with the energetic particle magnetic drift frequency. Comparisons with analytical solutions show that the values of the critical ..beta../sub h/ from the analytical theory can be an order of magnitude different from those computed by the NOVA-K code. 24 refs., 11 figs., 1 tab.
Directory of Open Access Journals (Sweden)
P. S. Freitas
2009-07-01
Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.
Corrosion study on high power feeding of telecomunication copper cable in 5 wt.% CaSO4.2H2O solution
Shamsudin, Shaiful Rizam; Hashim, Nabihah; Ibrahim, Mohd Saiful Bahri; Rahman, Muhammad Sayuzi Abdul; Idrus, Muhammad Amin; Hassan, Mohd Rezadzudin; Abdullah, Wan Razli Wan
2016-07-01
The studies were carried out to find out the best powering scheme over the copper telephone line. It was expected that the application of the higher power feeding could increase the data transfer and capable of providing the customer's satisfaction. To realize the application of higher remote power feeding, the potential of corrosion problem on Cu cables was studied. The natural corrosion behaviour of copper cable in the 0.5% CaSO4.2H2O solution was studied in term of open circuit potential for 30 days. The corrosion behaviour of higher power feeding was studied by the immersion and the planned interval test to determine the corrosion rate as well as the effect of voltage magnitudes and the current scheme i.e. positive direct (DC+) and alternating current (AC) at about 0.40 ± 0.01 mA/ cm2 current density. In the immersion test, both DC+ and AC scheme showed the increasing of feeding voltage magnitude has increased the corrosion rate of Cu samples starting from 60 to 100 volts. It was then reduced at about 100 - 120 volts which may due to the passive and transpassive mechanism. The corrosion rate was slowly reduced further from 120 to 200 volts. Visually, the positively charged of Cu cable was seems susceptible to severe corrosion, while AC scheme exhibited a slight corrosion reaction on the surface. However, the planned interval test and XRD results showed the corrosion activity of the copper cable in the studied solution was a relatively slow process and considered not to be corroded as a partially protective scale of copper oxide formed on the surface.
International Nuclear Information System (INIS)
Rivera Virtudazo, Raymond V.; Fuji, Masayoshi; Takai, Chika; Shirai, Takashi
2012-01-01
Physicochemical analysis on the precipitate samples of the cationic cetyltrimethylammonium bromide (CTAB) adsorbed onto nanocube CaCO 3 particles (NcCP) in aqueous ammonia rich (NH 4 + ) solution was initially examined. The amount of CTAB added to the (<100 nm) NcCP ranging from 0.04 to 88.5 mM was prepared under room temperature aqueous alkaline condition and characterized by thermogravimetry/differential thermogravimetric analysis (TGA/DTA), Raman spectroscopy (RS), scanning electron microscopy, transmission electron microscopy (TEM), gas chromatograph combined with mass spectrometer analysis (GC–MS), and powder X-ray diffraction pattern. RS, GC–MS, and TGA/DTA analyses indicate that only layer of CTAB molecules were present on the surface of the NcCP. Moreover, this thin sheet layer was morphologically observed by the TEM image (particularly at 88 mM concentration of CTAB). In general, adsorption of CTAB molecules onto NcCP under aqueous alkaline medium had no effect on the cubic crystal structure and particle morphology. The present study confirms the adsorption mechanism of cationic surfactant onto NcCP colloids model and contributes to the better understanding of the possible structural arrangement of the sorbed surfactant molecules onto the NcCP-aqueous alkaline interface by simple characterization method. This investigation is expected to create new, low-cost route to produce promising nanopowders and conversion to hollow particles with multi-component porous surface shell wall.
Wiche, Oliver; Székely, Balazs; Kummer, Nicolai-Alexeji; Moschner, Christin; Heilmeier, Hermann
2016-09-01
This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Corrosion studies of thermally sensitised AGR fuel element brace in pH7 and pH9.2 borate solutions
International Nuclear Information System (INIS)
Tyfield, S.P.; Smith, C.A.
1987-04-01
Brace and cladding of AGR fuel elements sensitised in reactor are susceptible to intergranular and crevice corrosion, which may initiate in the pH7 borate pond storage environment of CEGB/SSEB stations. This report considers the benefit in corrosion control that is provided by raising the pond solution pH to 9.2, whilst maintaining the boron level at 1250 gm -3 . The greater corrosion protection provided by pH9.2 solution compared to the pH7 borate solution is demonstrated by a series of tests with non-active laboratory sensitised brace samples exposed to solutions dosed with chloride or sulphate in order to promote localised corrosion. The corrosion tests undertaken consisted of 5000 hour immersions at 32 0 C and shorter term electrochemically monitored experiments (rest potential, impedance, anodic current) generally conducted at 22 0 C. The pH9.2 solution effectively inhibited the initiation of crevice and intergranular corrosion in the presence of low levels of chloride and sulphate, whereas the pH7 solution did not always do so. However, the pH9.2 solution, dosed with 40 gm -3 chloride, failed to suppress fully crevice corrosion initiated in unborated 40 gm -3 chloride solution at 22 0 C. Fluoride is not deleterious at low levels ∼ 10 gm -3 in the borate solutions. The significant improvement in corrosion control demonstrated for the change from pH7 to pH9.2 borate solution on laboratory sensitised brace samples should ideally be confirmed using complete irradiated AGR fuel elements. (U.K.)
International Nuclear Information System (INIS)
Kuo, S.; Lai, M.S.; Lin, C.W.
2006-01-01
Soil washing is considered a useful technique for remediating metal-contaminated soils. This study examined the release edges of Cd, Zn, Ni, Cr, Cu or Pb in two contaminated rice soils from central Taiwan. The concentrations exceeding the trigger levels established by the regulatory agency of Taiwan were Cu, Zn, Ni and Cr for the Ho-Mei soil and Pb for the Nan-Tou soil. Successive extractions with HCl ranging from 0 to 0.2 M showed increased release of the heavy metals with declining pH, and the threshold pH value below which a sharp increase in the releases of the heavy metals was highest for Cd, Zn, and Ni (pH 4.6 to 4.9), intermediate for Pb and Cu (3.1 to 3.8) and lowest for Fe (2.1), Al (2.2) and Cr (1.7) for the soils. The low response slope of Ni and Cr particularly for the rice soils make soil washing with the acid up to the highest concentration used ineffective to reduce their concentrations to below trigger levels. Although soil washing with 0.1 M HCl was moderately effective in reducing Cu, Pb, Zn and Cd, which brought pH of the soils to 1.1 ± 0.1 (S.D.), the concurrent release of large quantities of Fe and Al make this remediation technique undesirable for the rice soils containing high clay. Successive washings with 0.01 M HCl could be considered an alternative as the dissolution of Fe and Al was minimal, and between 46 to 64% of Cd, Zn, and Cu for the Ho-Mei soil and 45% of Pb in the Na-Tou soil were extracted after four successive extractions with this dilute acid solution. The efficacy of Cd extraction improved if CaCl 2 was added to the acid solution. The correlation analysis revealed that Cr extracted was highly correlated (P < 0.001) with Fe extracted, whereas the Cu, Ni, Zn, Cd or Pb extracted was better correlated (P < 0.001) with Al than with Fe extracted. It is possible that the past seasonal soil flooding and drainage in the soils for rice production was conducive to incorporating Cr within the structure of Fe oxide, thereby making them
Energy Technology Data Exchange (ETDEWEB)
Maksimov, S. K., E-mail: maksimov-sk@comtv.ru [National Research University MIET (Laboratory of EMI) (Russian Federation); Maksimov, K. S., E-mail: kuros@rambler.ru [Institute VIMI FSUE (Russian Federation); Sukhov, N. D. [Moscow State University (Faculty of Physics) (Russian Federation); Lovygin, M. V. [National Research University MIET (Laboratory of EMI) (Russian Federation)
2015-10-15
Merohedry is considered an inseparable property of atomic structures, and uses for the refinement of structural data in a process of correct determination of structure of compounds. Transformation of faulty structures stimulated by decreasing of systemic cumulative energy leads to generation of merohedral twinning type. Ordering is accompanied by origin of antiphase domains. If ordering belongs to the CuAu type, it is accompanied by tetragonal distortions along different (100) directions. If a crystal consists of mosaic of nanodimensional antiphase domains, the conjugation of antiphase domains with different tetragonality leads to monoclinic distortions, at that, conjugated domains are distorted mirrorly. Similar system undergoes further transformation by means of quasi-merohedral twinning. As a result of quasi-merohedry, straight-lines of lattices with different monoclinic distortions are transformed into coherent lattice broken-lines providing minimization of the cumulative energy. Structuring is controlled by regularities of the self-organization. However stochasticity of ordering predetermines the origin areas where few domains with different tetragonality contact which leads to the origin of faulty fields braking regular passage of structuring. Resulting crystal has been found structurally non-uniform, furthermore structural non-uniformity permits identifying elements and stages of a process. However there is no precondition preventing arising the origin of homogenous states. Effect has been revealed in Ca{sub 1–x}La{sub x}F{sub 2+x} solid solution, but it can be expected that distortions of regular alternation of ions similar to antiphase domains can be obtained in non-equilibrium conditions in compounds and similar effect of the quasi-merohedry can falsify results of structural analysis.
McGuigan, John A S; Kay, James W; Elder, Hugh Y
2014-01-01
In Ca(2+)/Mg(2+) buffers the calculated ionised concentrations ([X(2+)]) can vary by up to a factor of seven. Since there are no defined standards it is impossible to check calculated [X(2+)], making measurement essential. The ligand optimisation method (LOM) is an accurate method to measure [X(2+)] in Ca(2+)/Mg(2+) buffers; independent estimation of ligand purity extends the method to pK(/) buffers, to calculate electrode and buffer characteristics as a function of Σ. Ca(2+)-electrodes have a Σ buffers. These results demonstrated that it is pK(/) that is normally distributed. Until defined standards are available, [X(2+)] in Ca(2+)/Mg(2+) buffers have to be measured. The most appropriate method is to use Ca(2+)/Mg(2) electrodes combined with the Excel programs SALE or AEC. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Williams, M.M.R.; Hall, S.K.; Eaton, M.D.
2014-01-01
Highlights: • A rectangular reactor cell with an elliptical fuel element. • Solution of transport and diffusion equations by Fourier expansion. • Numerical examples showing convergence. • Two group cell problems. - Abstract: A method for solving the diffusion and transport equations in a rectangular lattice cell with an elliptical fuel element has been developed using a Fourier expansion of the neutron flux. The method is applied to a one group model with a source in the moderator. The cell flux is obtained and also the associated disadvantage factor. In addition to the one speed case, we also consider the two group equations in the cell which now become an eigenvalue problem for the lattice multiplication factor. The method of solution relies upon an efficient procedure to solve a large set of simultaneous linear equations and for this we use the IMSL library routines. Our method is compared with the results from a finite element code. The main drawback of the problem arises from the very large number of terms required in the Fourier series which taxes the storage and speed of the computer. Nevertheless, useful solutions are obtained in geometries that would normally require the use of finite element or analogous methods, for this reason the Fourier method is useful for comparison with that type of numerical approach. Extension of the method to more intricate fuel shapes, such as stars and cruciforms as well as superpositions of these, is possible
International Nuclear Information System (INIS)
Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.
1994-08-01
As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 63 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste (HLW). These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with three solutions prepared to simulate acid-dissolved sludge (pH 0.6), acidified supernate (pH 3.5), and alkaline supernate (pH 13.9) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington. To these simulants we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of more than 2500 element/absorber/solution combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. Because we measured the sorption of many different elements, the tabulated results indicate those elements most likely to interfere with the sorption of elements of greater interest. On the basis of nearly 7500 measured distribution coefficients, we determined that many of these absorbers appear suitable for processing HLW. This study supersedes the previous version of LA-12654, in which results attributed to a solution identified as an alkaline supernate simulant were misleading because that solution contained insufficient hydroxide
2012-03-01
Robotic pH meter (AS-3000 Dual pH Analyzer, LabFit, Burswood, Australia) using a 1:1 soil / solution ratio (0.01 M CaCl2) (Kissel et al., 2009). Soil lime...displacement of elements in the soil profile, and alterations in mineralization processes which affect the leachable element concentration in soil solution . Leachable
Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.
Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou
2018-01-16
Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.
Growth of solid solutions with colquiriite structure LiCa0,2Sr0,8AlF6: Ce3+
International Nuclear Information System (INIS)
Shavelev, A A; Nizamutdinov, A S; Semashko, V V; Marisov, M A
2014-01-01
Aim of this work were experiments on growing new materials based on fluoride crystals with the colquiriite structure LiSr 0,8 Ca 0,2 F 6 , as well as the study of their phase composition. It is shown that for a series of crystals LiSr 0,8 Ca 0,2 F 6 distribution of reflections observed corresponds to the colquiriite structure, and the dependence of the lattice constant in the transition from LiCaAlF 6 crystal to LiSrAlF 6 crystal is linear. Also it found that absorption coefficient in mixed samples is much larger than in not mixed
International Nuclear Information System (INIS)
Park, H.; De Oliveira, C. R. E.
2007-01-01
This paper describes the verification of the recently developed space-angle self-adaptive algorithm for the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and interfaces very well with the underlying second-order, even-parity transport formulation. Simple analytic solutions in both spatial and angular variables are manufactured to assess the theoretical performance of the a posteriori error estimates. The numerical results confirm reliability of the developed space-angle error indicators. (authors)
International Nuclear Information System (INIS)
Moreira, A.H.P.
1988-01-01
This work shows the results of hydrothermal experiments to determine the distribution coefficients of alcali and alcaline earth elements in trace concentrations between sanidine and liquids of same composition and between leucite and liquid. At 2 Kb pressure and 930 0 C for sanidine, 930 0 and 1030 0 C for leucite and 1030 0 C for a melt of sanidine composition the concentration of trace elements (TE) in the coexisting potassium bearing aqueous fluid phase was varied between 10 -1 to 10 -6 mole to one mol of K + . By use of radioactive tracers (Rb 86 , Ca 45 , Sr 85 , Ba 133 ) the concentrations in TE of the aqueous phase, the solids and melts has been determined. This indirect method will give a good aproximation of the behaviour of TE between a melt and crystallising solids. These aprotimations lead to following conclusions: a) during the crystallisation of leucite, this phase incorporates large quantities of Ba and Rb, depleting the residual melt in those elements. Sr and Ca, on the other hand are enriched in the residual melt. b) the crystallisation of sanidine depletes even more the residual melt in Ba, Sr shows similias behaviour, Rb and Ca, however, are enriched in the residual melt phase. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Tagiyev, B.G. [Institute of Physics of Azerbaijan National Academy of Sciences, 131 H.Javid ave., Baku Az-1143 (Azerbaijan); Tagiyev, O.B. [Institute of Physics of Azerbaijan National Academy of Sciences, 131 H.Javid ave., Baku Az-1143 (Azerbaijan); Baku Branch of M.V. Lomonosov Moscow State University, Baku AZ-1143 (Azerbaijan); Mammadov, A.I. [Institute of Physics of Azerbaijan National Academy of Sciences, 131 H.Javid ave., Baku Az-1143 (Azerbaijan); Quang, Vu Xuan [Institute of Research and Development, Duy Tan University, 550000 Da Nang (Viet Nam); Naghiyev, T.G., E-mail: tural@nagiyev.net [Institute of Physics of Azerbaijan National Academy of Sciences, 131 H.Javid ave., Baku Az-1143 (Azerbaijan); Jabarov, S.H. [Institute of Physics of Azerbaijan National Academy of Sciences, 131 H.Javid ave., Baku Az-1143 (Azerbaijan); Bayerisches Geoinstitute, University Bayreuth, d-95440 Bayreuth (Germany); Leonenya, M.S.; Yablonskii, G.P. [Institute of Physics of National Academy Sciences of Belarus, 220072 Minsk (Belarus); Dang, N.T. [Institute of Research and Development, Duy Tan University, 550000 Da Nang (Viet Nam)
2015-12-01
The structural and luminescence properties of chalcogenide semiconductor Ca{sub x}Ba{sub 1−x}Ga{sub 2}S{sub 4} solid solutions (x=0.1–0.9) doped with 7 at% of Eu{sup 2+} ions were studied at room temperature. It was found, that the crystal structure of Ca{sub x}Ba{sub 1−x}Ga{sub 2}S{sub 4} solid solutions varies with the amount of Ca{sup 2+} cations and phase transition from cubic to orthorhombic takes place with increase of x value. Ca{sub x}Ba{sub 1−x}Ga{sub 2}S{sub 4}:Eu{sup 2+} solid solutions exhibit intense photoluminescence in cyan to yellow spectral region depending on x due to 5d→4f electron–dipole transitions in Eu{sup 2+} ions. The peak position of the emission band shifts from 506 nm for x=0.1 to 555 nm for x=0.9 and the full width at half maximum of the emission band varies from 62 nm to 72 nm depending on the symmetry of the crystal lattice. The PL excitation spectrum of Ca{sub x}Ba{sub 1−x}Ga{sub 2}S{sub 4}:Eu{sup 2+} covers the range at half maximum from 310 nm to 480 nm for x=0.1 and to 520 nm for x=0.9. It was shown that long-wavelength shift is caused by influence of the growing crystal field strength on Eu{sup 2+} ions.
International Nuclear Information System (INIS)
Shuhong Hu; Xiaoyan Lin; Wenhui Zhao; Ministry of Education, Sichuan; Xuegang Luo
2018-01-01
Core-shell nanoscale zero-valent iron@alginate/carboxymethyl cellulose sodium composite loaded with calcium (nZVI@SA/CMC-Ca) beads were synthesized in this study using coaxial electronic injection method. The adsorbent structure was characterized via FT-IR, SEM, EDX and XPS. The adsorption behavior of U(VI) and Cu(II) on core-shell nZVI@SA/CMC-Ca beads was studied under various experimental parameters like pH, contact time and temperature. The isotherm and the kinetic data, pertaining to the adsorption of U(VI) and Cu(II) by core-shell nZVI@SA/CMC-Ca beads obeyed both the Langmuir and Freundlich isotherms model and the pseudo-second-order kinetics model, respectively. The thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption. The experiment of regeneration and reusability suggested core-shell nZVI@SA/CMC-Ca bead was a regenerated material. (author)
Characterization of Ti6Al7Nb alloy foams surface treated in aqueous NaOH and CaCl2 solutions.
Bütev, Ezgi; Esen, Ziya; Bor, Şakir
2016-07-01
Ti6Al7Nb alloy foams having 53-73% porosity were manufactured via evaporation of magnesium space holders. A bioactive 1µm thick sodium hydrogel titanate layer, NaxH2-xTiyO2y+1, formed after 5M NaOH treatment, was converted to crystalline sodium titanate, Na2TiyO2y+1, as a result of post-heat treatment. On the other hand, subsequent CaCl2 treatment of NaOH treated specimens induced calcium titanate formation. However, heat treatment of NaOH-CaCl2 treated specimens led to the loss of calcium and disappearance of the titanate phase. All of the aforementioned surface treatments reduced yield strengths due to the oxidation of the cell walls of the foams, while elastic moduli remained mostly unchanged. Accordingly, equiaxed dimples seen on the fracture surfaces of as-manufactured foams turned into relatively flat and featureless fracture surfaces after surface treatments. On the other hand, Ca- and Na-rich coating preserved their mechanical stabilities and did not spall during fracture. The relation between mechanical properties of foams and macro-porosity fraction were found to obey a power law. The foams with 63 and 73% porosity met the desired biocompatibility requirements with fully open pore structures and elastic moduli similar to that of bone. In vitro tests conducted in simulated body fluid (SBF) showed that NaOH-heat treated surfaces exhibit the highest bioactivity and allow the formation of Ca-P rich phases having Ca/P ratio of 1.3 to form within 5 days. Although Ca-P rich phases formed only after 15 days on NaOH-CaCl2 treated specimens, the Ca/P ratio was closer to that of apatite found in bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.
International Nuclear Information System (INIS)
Chernorukov, N.G.; Sulejmanov, E.V.; Nipruk, O.V.; Lizunova, G.M.
2001-01-01
Solubility of uranovanadates of the series A 2+ (VUO 6 ) 2 · nH 2 O (A 2+ - Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water and aqueous solutions of inorganic acids at 25 deg C and different pH values was determined experimentally. The data obtained permitted calculation the Gibbs standard functions of formation and consideration of their state under conditions that were not studied experimentally, in the presence of carbon dioxide, in particular [ru
International Nuclear Information System (INIS)
Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.
2016-01-01
Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.
International Nuclear Information System (INIS)
Li, Yuebing; Lei, Yuebao; Gao, Zengliang
2014-01-01
Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper
International Nuclear Information System (INIS)
Collin, Michel
1969-01-01
A preliminary study of actinide migration on ion exchange paper has been carried out on trace amounts with a view to subsequent application in micro-analysis. The first tests have made it possible to define the factors having an effect on the migrational velocities of aqueous and alcohol-water solutions of HCl and HNO 3 . The behaviour, of actinides has then been studied in non-saline acid solutions. The results obtained for each element separately are interesting from the point of view of their mutual separation. This analytical technique has finally been applied successfully to the migration of 300 μg of uranium deposited from a 1 ml volume of solution. (author) [fr
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
Energy Technology Data Exchange (ETDEWEB)
Korgaonkar, V. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1967-10-01
The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO{sub 3}){sub 6}{sup 2-} and UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} in solution these elements are present in the form of complexes having the general formula: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO{sub 3}. From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author) [French] On etudie l'echange du thorium et de l'uranium entre une resine anion base forte et un solvant mixte eau + ethanol charge en ions nitrates. On a suppose que, dans la resine, le thorium et l'uranium sont fixes sous forme de complexes Th(NO{sub 3}){sub 6}{sup 2-} et UO{sub 2}(NO{sub 3}){sub 4}{sup 2-} en solution, ces elements sont engages dans des complexes de formule generale: Th(NO{sub 3}){sub 6-n}{sup n-2} and UO{sub 2}(NO{sub 3}){sub 4-n}{sup n-2} On a pu degager une loi de variation des coefficients de partage du thorium et de l'uranium en fonction des concentrations des diverses especes en solution et de l'anion complexant NO{sub 3}{sup -}. On en a deduit les conditions operatoires optimales necessaires pour separer les deux elements a partir de leurs melanges. Enfin, dans ces conditions, on a etudie l'influence de quelques elements genants: Ba, Bi, Ce, La, Mo, Pb, Zr. La methode preconisee peut etre
Energy Technology Data Exchange (ETDEWEB)
Ji, Haipeng [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Huang, Zhaohui, E-mail: huang118@cugb.edu.cn [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Xia, Zhiguo, E-mail: xiazg@ustb.edu.cn [The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Xie, Yao [School of Materials Science and Technology, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, China University of Geosciences, Beijing 100083 (China); Molokeev, Maxim S. [Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Department of Physics, Far Eastern State Transport University, Khabarovsk 680021 (Russian Federation); Atuchin, Victor V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)
2016-03-15
Highlights: • Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was prepared by the solution-precipitation assisted route. • The phosphors have satisfactory smooth grain surface and particle size. • It shows greenish-yellow color emission (maximum at 540 nm) upon blue light excitation. • Eu{sup 2+} is coordinated with isolated oxygen atoms and those from PO{sub 4} polyhedra. - Abstract: Greenish-yellow emitting microcrystalline Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphor was successfully prepared by a solution-precipitation assisted high temperature reaction method. Phase structure, morphology and/or luminescence properties of the precursor and the as-prepared phosphors were characterized. The phase-pure Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} phosphors were obtained with smooth grain surface and particle size of 2–8 μm. Ca{sub 6}Ba(PO{sub 4}){sub 4}O:Eu{sup 2+} exhibits bright greenish-yellow color emission with its maximum at 540 nm upon UV-blue light excitation. The maximum position of the broad emission band is independent on the calcination temperature. The emission intensity increases with increasing calcination temperature due to improved crystallinity. Besides, the presence of two Eu{sup 2+} emission centers in the Ca{sub 6}Ba(PO{sub 4}){sub 4}O crystal lattice was confirmed and the coordination effects are considered concerning the roles of isolated O atoms and those from the PO{sub 4} tetrahedra.
International Nuclear Information System (INIS)
Maenhaut, W.; De Reu, L.; Tomza, U.; Versieck, J.
1982-01-01
Particle induced X-ray emission (p.i.x.e.) and neutron activation analysis (n.a.a.) are proposed for determining the trace element content of human serum albumin. Application of these methods to some commercial albumin solutions provided concentration data for up to 19 elements, most of which were present at a level below a few μg ml -1 . The precision of the p.i.x.e. technique, as determined by irradiating up to 20 targets from one sample, was about 3% for those elements where counting statistics were good. A comparison between the p.i.x.e. and n.a.a. results showed close agreement, indicating that p.i.x.e. can yield data which are accurate to within 10%. Neutron activation showed very good sensitivity for the elements producing long-lived nuclides (tsub(1/2) >= 3 days), but had rather high detection limits for the other elements, unless radiochemical separations were used. (Auth.)
Directory of Open Access Journals (Sweden)
Marcin Krzeszowiec
2015-03-01
Full Text Available Computer simulations of physical phenomena are at the moment common both in science and industry. The possibility of finding approximate solutions for complicated systems of differential equations, mathematically describing issues in the fields of mechanics, physics or chemistry, allows for shorten design and research time, often significantly reducing the need for expensive experimental studies or costly production of prototypes. However, the mentioned prevalence of these methods, particularly the Finite Element Method, resulted in analysis outcomes to be often in advance regarded as accurate ones. The purpose of the article is to showcase, on a simple stress analysis problem, how parameters such as the density of the finite element mesh, finite element formulation or integration scheme significantly influence on the simulation results and how easy it is to end up with the results that do not hold any physical sense, despite the fact that all the basic assumptions of correct analysis (suitable boundary conditions, total system energy stored etc. have been met. The results of this study can serve as a warning against premature conclusion drawing from calculations carried out by means of FEM simulation.[b]Keywords[/b]: computational mechanics, finite element method, shell elements, numerical integration
International Nuclear Information System (INIS)
Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L.
1996-06-01
Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed
Energy Technology Data Exchange (ETDEWEB)
Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L. [Russian Academy of Science (Russian Federation). Inst. of Physical Chemistry
1996-06-06
Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar
2015-01-01
An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...
Rashad, Mohamed M.; Mostafa, Ahmed G.; Mwakikunga, Bonex W.; Rayan, Diaa A.
2017-01-01
Rare earth (RE) ions-doped mayenite Ca12Al14- x RE x O33 nanopowders (where RE = La and Gd and x = 0-1.0) were synthesized using the oxalate precursor technique. The as-prepared precursors were calcined at 800 °C for 2 h. Obviously, all RE-doped Ca12Al14- x RE x O33 possessed a well-crystalline cubic mayenite phase till RE content of 0.8. The crystallo-chemical aspects including crystallite size, lattice parameters, theoretical X-ray density and bulk density were robustly on RE nature and ratio. The microstructure and the average grain size were significantly influenced by the RE kind and content. The high transparency of Ca12Al14- x RE x O33 over 80% was found to be evinced in the visible wavelength range of 400-800 nm. Besides, the incorporation of RE cation minimized the direct band gap energy from 4.42 eV for pure mayenite to 3.85 and 3.59 eV with x value 1.0 of La3+ and Gd3+ ions. The photoluminescence spectra of pure mayenite nanoparticles showed that the band edge emission ( λ exc = 248 nm) with an intense visible emission band at 360 nm was detected. Otherwise, the band edge emission showed a slight shift toward short wavelength due to the substitution Al3+ by RE3+ ions. Such results open a new avenue for application of mayenite as a good candidate for transparent low-temperature electron conductor for optoelectronics applications.
Concentrations of rare elements in some Australian soils
International Nuclear Information System (INIS)
Diatloff, E.; Smith, F.W.; Asher, C.J.
1996-01-01
Total, exchangeable, and soil solution concentrations were measured for 15 rare earth elements (REEs) in 9 soils from Queensland and New South Wales. In a further 10 acid soils, effects of amendment with CaCO 3 or CaSO 4 . 2H 2 O were measured on the concentrations of REEs in soil solution. The total concentration of the REEs in soil solutions from unamended soils ranged from below the detection limit (0.007 μM) to 0.64 μM. Lanthanum (La) and cerium (Ce) were the REEs present in the greatest concentrations, the highest concentrations measured in the diverse suite of soils being 0.13 μM La and 0.51 μM Ce. Rare earth elements with higher atomic numbers were present in very low concentrations. Exchangeable REEs accounted for 0.07 to 12.6% of the total REEs measured in the soils. Addition of CaCO 3 increased soil solution pH and decreased REE concentrations in soil solution, whilst CaSO 4 . 2H 2 O decreased soil solution pH and increased the concentrations of REEs in soil solution. Solubility calculations suggest that CePO 4 may be the phase controlling the concentration of Ce in soil solution. 33 refs., 6 tabs., 2 figs
International Nuclear Information System (INIS)
Moretto, P.
1987-01-01
There are few techniques available for the measurement of silicon at trace levels in biological materials. PIXE and prompt nuclear reaction analysis were used to locate and measure silicon and major elements in arterial walls. Macrobeam analysis, carried out by the Van de Graaff accelerator at CENBG, enabled measurement of mean tissue levels. Microbeam analysis, using the nuclear microprobe at Karlsruhe, yielded the distribution of these elements through the thickness of the arterial wall. The microanalyses were performed on arterial walls from healthy rabbits and the macrobeam study was carried out on the same samples and also on human aorta specimens [fr
International Nuclear Information System (INIS)
Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus
2011-01-01
Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
Lee, Jee-Ho; Han, Hyung-Seop; Kim, Yu-Chan; Lee, Jin-Yong; Lee, Bu-Kyu
2017-10-01
Mg-Ca-Zn alloy has been suggested for the application of fixation materials during maxillofacial surgery. We investigated the stability of Mg-Ca-Zn alloy for clinical application during orthognathic surgery. The finite element model for the fixation of sagittal split ramus osteotomy was constructed. In the bicortical screw fixation of the mandible setback condition, the stress distributions of Mg-Ca-Za alloy, polylactic acid polymer, and titanium were evaluated using the virtual model with occlusal loading of 132 N. The deformations of the three different materials of fixation screw were observed according to masticatory force ranging from 132 to 1,000 N. When comparing the stress distribution placed on cortical bone between the polymer and magnesium alloy groups, the magnesium alloy screws could bear more stress, thereby decreasing the stress, which might be distributed to other biologic components, such as the condyle and cortical ramus of the mandible. Deformations of the screws according to functional load were minimal, and the deformation remained stability of sagittal split ramus osteotomy setback surgery. Copyright © 2017. Published by Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Kubel, F.; Pantazi, M. [TU Vienna, Inst. of Chemical Technologies and Analytics, Getreidemarkt 9, 164-SC, 1060 Vienna (Austria); Hagemann, H. [Departement de Chimie Physique, Universite de Geneve, 30, quai E.Ansermet, 1211 Geneva 4 (Switzerland)
2011-09-15
Barium calcium magnesium fluoride (Ba{sub 2}(Ba{sub x}Ca{sub 1-x})Mg{sub 4}F{sub 14}, x=0.19-0.26) has been synthesized at 850 C from precursors prepared by the solution precipitation method. Single crystals with composition of Ba{sub 2.200(2)}Ca{sub 0.800(2)}Mg{sub 4}F{sub 14}were obtained after prolonged heating. Lattice parameters from single crystal data are a = 12.4203(8) and c = 7.4365(5) A [tetragonal, space group P4{sub 2}/mnm (No. 136)]. They increase with increasing barium concentration within a given stability window. The structure is built of a network of MgF{sub 6} octahedra forming a pyrochlore related channel system and isolated fluorine ions. Within the channels, heavy alkaline earth ions are located. The wide channel is filled with off-center positioned barium ions. The channel with a narrow cross section hosts both ions, Ca{sup 2+}and Ba{sup 2+}. The structure is isotypic with Pb{sub 3}Nb{sub 4}O{sub 12}F{sub 2} but has a different coordination around Ba/Ca and Pb, respectively. Doped with {proportional_to}1% Eu(II), the compound shows intense blue luminescence under UV activation. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Gado, J.
1986-02-01
The four group, 2D and 3D hexagonal geometry HTGR benchmark problems and a 2D hexagonal geometry PWR (WWER) benchmark problem have been solved by using the finite element diffusion code DIFGEN. The hexagons (or hexagonal prisms) were subdivided into first order or second order triangles or quadrilaterals (or triangular or quadrilateral prisms). In the 2D HTGR case of the number of the inserted absorber rods was also varied (7, 6, 0 or 37 rods). The calculational results are in a good agreement with the results of other calculations. The larger systematic series of DIFGEN calculations have given a quantitative picture on the convergence properties of various finite element modellings of hexagonal grids in DIFGEN. (orig.)
International Nuclear Information System (INIS)
Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas
2017-01-01
Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO_4]_2 . 4 H_2O, Sr[MnO_4]_2 . 3 H_2O and Ba[MnO_4]_2 are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO_4]_2 a long time ago, we employed a cation-exchange column loaded with Ba"2"+ cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO_4]_2 . 4 H_2O exhibiting [CaO_8] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO_4]_2 . 3 H_2O with [SrO_1_0] polyhedra adopts the cubic space group P2_13 with a=964.19(7) pm and Z=4. So the harder the AE"2"+ cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO_4]_2 in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO_1_2] polyhedra. During the thermal decomposition of Ca[MnO_4]_2 . 4 H_2O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H_2O molecule at 157 C. The crystal structure of Sr[MnO_4]_2 . 3 H_2O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn_2O_3 and the oxomanganates(III,IV) AEMn_3O_6 (AE=Ca and Sr) remain as final decomposition products at 800 C next to amorphous phases. On the other hand, the already anhydrous Ba[MnO_4]_2 thermally decomposes to hollandite-type BaMn_8O_1_6 and BaMnO_3 at 800 C.
International Nuclear Information System (INIS)
Szeglowski, Z.; Bruchertseifer, H.; Brudanin, V.B.
1993-01-01
A rapid method for continuous separation of short-lived tungsten isotopes from the lanthanides has been developed. It consists in transforming nuclear reaction products from the target by an aerosol jet to an absorber where the KCl particulates are dissolved in 0.2 M HF and percolating the product solution through three successively linked columns filled with ion exchange resins Dowex 50X8 (cationite), Dowex 1X8 (anionite) and again Dowex 50X8. 3 refs
International Nuclear Information System (INIS)
Razbash, A.A.; Sevast'yanov, Yu.G.
1985-01-01
Ce(3, 4), Eu(3), Gd(3), Sm(3), Sc(3) distribution coefficients are determined in the macroporic phosphonic acid cationite KRF-20T-60 in nitric acid solutions in 0.1-2.0 M concentration interval using statistical method. A simple method of cerium-139 radionuclide extraction from the industrial lanthanum target is developed. The product yield made up more than 99%, specific activity - 2.37x10 9 Bq/mg, radiochemical purity - no less than 99.9%
Directory of Open Access Journals (Sweden)
Felipe Simon
2017-06-01
Full Text Available Chronic peritoneal dialysis (PD therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.
He, Qiaolin
2011-06-01
In this article we discuss the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line separating two immiscible incompressible viscous fluids near a solid wall. The method we employ combines a finite element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property under certain conditions. Our numerical experiments indicate that the method discussed here is accurate, stable and efficient. © 2011 Elsevier Inc.
Energy Technology Data Exchange (ETDEWEB)
Long Youwen; Yang Liuxiang; Lv Yuxi; Liu Qingqing; Jin Changqing [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhou Jianshi; Goodenough, John B, E-mail: ywlong@iphy.ac.cn, E-mail: Jin@iphy.ac.cn [Texas Materials Institute, University of Texas, 1 University Station, C2200, Austin, TX 78712 (United States)
2011-09-07
Polycrystalline samples of the perovskite family Sr{sub 1-x}Ca{sub x}CrO{sub 3} have been prepared at high pressure and temperature in steps of 1/6 over the range 0{<=}x{<=}1. Rietveld analysis shows a series of structural phase transitions from cubic to tetragonal to orthorhombic with increasing x. The cubic samples have no long-range magnetic order; the other samples become antiferromagnetically ordered below a T{sub N} that increases with x. At ambient pressure, the electric transport properties of the cubic and tetragonal phases are semiconducting with a small (meV range) activation energy that increases with x; the orthorhombic phase exhibits variable-range hopping rather than the small-polaron behavior typically found for mixed-valent, localized-electron configurations. Above a pressure P = P{sub C}, a smooth insulator-metal transition is found at a T{sub IM} that decreases with increasing P for a fixed x; P{sub C} increases with x. These phenomena are rationalized qualitatively with a {pi}*-band model having a width W{sub {pi}} that approaches crossover from itinerant-electron to localized-electron behavior as W{sub {pi}} decreases with increasing x. The smaller size of the Ca{sup 2+} ion induces the structural changes and the greater acidity of the Ca{sup 2+} ion is primarily responsible for narrowing W{sub {pi}} as x increases. (paper)
Chapela Lara, M.; Schuessler, J. A.; Buss, H. L.; McDowell, W. H.
2017-12-01
During the evolution of the critical zone, the predominant source of nutrients to the vegetation changes from bedrock weathering to atmospheric inputs and biological recycling. In parallel, the architecture of the critical zone changes with time, promoting a change in water flow regime from near-surface porous flow during early weathering stages to more complex flow regimes modulated by clay-rich regolith during the late stages of weathering. As a consequence of these two concurrent processes, we can expect the predominant sources and pathways of solutes to the streams to also change during critical zone evolution. If this is true, we would observe a decoupling between the solutes used by the vegetation and those that determine the composition of the streams during the late stages of weathering, represented by geomorphically stable tropical settings. To test these hypotheses, we are analyzing the elemental and Mg isotopic composition of regolith and streams at the humid tropical Luquillo Critical Zone Observatory. We aim to trace the relative contributions of the surficial, biologically mediated pathways and the deeper, weathering controlled nutrient pathways. We also investigate the role of lithology on the solute decoupling between the vegetation and the stream, by examining two similar headwater catchments draining two different bedrocks (andesitic volcaniclastic and granitic). Our preliminary elemental and Mg isotope results are consistent with atmospheric inputs in the upper 2 m of regolith in both lithologies and with bedrock weathering at depth. During a short storm event ( 6 h), a headwater stream draining volcaniclastic bedrock showed a large variation in Mg and δ26Mg, correlated with total suspended solids, while another similar headwater granitic stream showed a much narrower variation. A larger stream draining volcaniclastic bedrock showed changes in Mg concentration in response to rain during the same storm event, but did not change in δ26Mg
Energy Technology Data Exchange (ETDEWEB)
Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)
2007-11-01
The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.
La2O3/CaO CATALYSTS AND ITS APPLICATION IN THE OXIDATIVE COUPLING OF METHANE
Garrido-Schaeffer, A.; Dedios Yenque, G.; Ponce Alvaréz, S.
2014-01-01
La2O3/CaO catalysts were prepared at different weight percentages of La2O3.Por the coprecipitation method described porRaO, CaCO3 is prepared and then it was impregnated in a solution of La (NO) 3.6H2O thus obtaining the catalyst precursor . precursors dried at 393K and calcined at 973K, obtaining 0-15% La2O3/CaO catalysts. XRF elemental qualitative analysis was performed. By FTIR carbonates adsorbed species was observed. The presence of La2O3 and CaO phases was confirmed by XRD and BET surfa...
Directory of Open Access Journals (Sweden)
Drozd Wojciech
2016-01-01
Full Text Available The article presents issues related to the solutions with light clay and straw bale in the contemporary housing. Building using straw bale and light clay is simple, eco-friendly and accessible to all. It fits in with the idea of sustainable development, supporting local businesses and giving people the opportunity to integrate in the design and construction of the house. The article presents the thermal analysis for both walls made of straw bale and of light clay. The analysis showed a very good performance. All positive aspects allow treating straw and light clay as a viable alternative to the commonly used technologies for erecting buildings.
Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao
2015-08-21
Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).
International Nuclear Information System (INIS)
Ragusa, Jean C.
2015-01-01
In this paper, we propose a piece-wise linear discontinuous (PWLD) finite element discretization of the diffusion equation for arbitrary polygonal meshes. It is based on the standard diffusion form and uses the symmetric interior penalty technique, which yields a symmetric positive definite linear system matrix. A preconditioned conjugate gradient algorithm is employed to solve the linear system. Piece-wise linear approximations also allow a straightforward implementation of local mesh adaptation by allowing unrefined cells to be interpreted as polygons with an increased number of vertices. Several test cases, taken from the literature on the discretization of the radiation diffusion equation, are presented: random, sinusoidal, Shestakov, and Z meshes are used. The last numerical example demonstrates the application of the PWLD discretization to adaptive mesh refinement
Soloveichik, Yury G.; Persova, Marina G.; Domnikov, Petr A.; Koshkina, Yulia I.; Vagin, Denis V.
2018-03-01
We propose an approach to solving multisource induction logging problems in multidimensional media. According to the type of induction logging tools, the measurements are performed in the frequency range of 10 kHz to 14 MHz, transmitter-receiver offsets vary in the range of 0.5-8 m or more, and the trajectory length is up to 1 km. For calculating the total field, the primary-secondary field approach is used. The secondary field is calculated with the use of the finite-element method (FEM), irregular non-conforming meshes with local refinements and a direct solver. The approach to constructing basis functions with the continuous tangential components (from Hcurl(Ω)) on the non-conforming meshes from the standard shape vector functions is developed. On the basis of this method, the algorithm of generating global matrices and a vector of the finite-element equation system is proposed. We also propose the method of grouping the logging tool positions, which makes it possible to significantly increase the computational effectiveness. This is achieved due to the compromise between the possibility of using the 1-D background medium, which is very similar to the investigated multidimensional medium for a small group, and the decrease in the number of the finite-element matrix factorizations with the increasing number of tool positions in one group. For calculating the primary field, we propose the method based on the use of FEM. This method is highly effective when the 1-D field is required to be calculated at a great number of points. The use of this method significantly increases the effectiveness of the primary-secondary field approach. The proposed approach makes it possible to perform modelling both in the 2.5-D case (i.e. without taking into account a borehole and/or invasion zone effect) and the 3-D case (i.e. for models with a borehole and invasion zone). The accuracy of numerical results obtained with the use of the proposed approach is compared with the one
International Nuclear Information System (INIS)
Park, Jai Hak; Nikishkov, G. P.
2010-01-01
An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems
Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel
2015-12-01
Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.
International Nuclear Information System (INIS)
Zenaro, R.
1989-01-01
It was studied the chemical composition of ground water from four boreholes as a contribution to the hydrogeochemical studies in the Pocos de Caldas uranium mining. Methods for water analyses were selected and optimized in order to determine the main anions, specially the ones which form stable complexes with uranium ions. Fluoride and chloride were determined by potentiometry; phosphate, nitrate and silicate by spectrophotometry. Cations were determined by atomic absorption spectrophotometry flame emission and argon plasma emission excited by continuous current arch (DCP). Uranium was determined by fluorimetry with a concentration range from 3 to 7 ppb and its distribution calculated among the different species into solution through the measures of pH, Eh, anion amounts and stability of their respective complexes. (author) [pt
Surdu, Violeta; Gagim, Ion
2017-01-01
Abstract: Musical education consists a defining element of artistic spiritual education in Waldorf’s pedagogy. There is a spiritual sciece about the man in the centre of education’s process througn muzic that was founded by Rudolf Steiner. The process of the facilitations are centred according the necessity as a result of forming the musical culture of the pupils as a component part to their spiritual culture.
International Nuclear Information System (INIS)
Chezhina, N.V.; Kuznetsova, I.V.
1995-01-01
Solid solutions of LaCa 0.5 Sr 0.5 Ni x Al 1-x O 4 (0≤x≤0.10) have been synthesized and their magnetic susceptibility in the temperature range of 77-400 K has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied. The change in the basic state of nickel atoms in case of partial substitution of calcium for strontium atoms has been studied, as well as the way it affects exchange interaction in a complex oxide. It is shown that the substitution results in increase of the degree of paramagnetic atoms aggregation in solid solution. 9 refs., 2 figs., 1 tab
International Nuclear Information System (INIS)
Penot, M.
1979-01-01
Hormone-directed long-distance transport was studied on a simplified model - a detached leaf of Pelargonium zonale. The special interest of this model is that it is the only system on which it is possible to determine, simultaneously on the same specimen, the effects of hormone dose, competitivity and synergy. It is shown that various hormones (auxins, gibberellins, cytokinins) have a positive effect on the migration of S, P and Rb; on the other hand, no effect is detected in the case of Ca, Cl or Mo. The orientated migration and subsequent accumulation are functions of the locally applied hormone dose. GA 3 (gibberellic acid) seems to be the most efficient (action threshold: 0.025 mg.1 -1 ). A simultaneous study on the same specimen showed that the mixture AIA (β-indole acetic acid)+BAP (benzylaminopurine)+GA 3 has a greater effect on transport than GA 3 alone, while GA 3 alone has a more pronounced antisenescent effect; this indicates that the two processes are not connected. Likewise, a parallel study showed that there is no direct connection with the transpiratory flows; fusicoccin, which stimulates stomata opening, has no attractant effect for 35 S while GA 3 , which has a very strong effect on migration, does not modify the transpiratory losses. Investigation of the response times shows that the ionic displacements through the phloem may be very fast (abundant accumulation in the petiole in less than 10 minutes) but that the attractant effect cannot be detected below thresholds of 5 hours or 90 minutes respectively for the pre-treatment and transport phases. This simplified system would appear to be an excellent model for studying other parameters involved in transport (effect of the root system and the relative importance of the processes of loading or unloading of metabolites in the phloem). (author)
Kim, H J; Yun, H S
2001-01-01
A site preference of niobium atom in Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) and RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0), which are the solid-solutions between Rb sub 2 La sub 2 Ti sub 3 O sub 1 sub 0 are RbCa sub 2 Nb sub 3 O sub 1 sub 0 , has been investigated by Raman spectroscopy. The Raman spectra of Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0) showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed onl...
International Nuclear Information System (INIS)
Zeng, Rong-Chang; Sun, Lu; Zheng, Yu-Feng; Cui, Hong-Zhi; Han, En-Hou
2014-01-01
Highlights: •A schematic four-layered structural model of the natural oxide film has been constructed. •A novel concept for the Pilling–Bedworth ratios of chemical compounds is proposed. •Grain refinement in the microstructure leads to a shift from pitting corrosion to overall corrosion. •A method to characterise the corrosion rate of dual phase Mg–Li–Ca alloys is proposed. -- Abstract: The influence of the microstructure and the oxide film of the Mg–9.29Li–0.88Ca alloy on its corrosion behaviour was investigated using SEM, EPMA, XPS and corrosion measurements. The results demonstrated that the fine-grained microstructure improved the mechanical and corrosion resistance of the alloy and shifted pitting corrosion to overall corrosion. The oxide film contained a multi-layered structure, with the outer layer being enriched in lithium-bearing compounds; the interior layer predominantly consisting of oxides, hydroxides and carbonates of lithium and magnesium; and the bottom layer containing oxides. The Pilling–Bedworth ratio for chemical compounds was proposed, and the corrosion rates were characterised
Controlled Surface Modification of Polyamide 6.6 Fibres Using CaCl2/H2O/EtOH Solutions
Directory of Open Access Journals (Sweden)
Barbara Rietzler
2018-02-01
Full Text Available Polyamide 6.6 is one of the most widely used polymers in the textile industry due to its durability; however, it has rather limited modification potential. In this work, the controlled surface modification of polyamide 6.6 fibres using the solvent system CaCl2/H2O/EtOH was studied. The effects of solvent composition (relative proportions of the three components and treatment time on fibre properties were studied both in situ (with fibres in solvent and ex situ (after the solvent was washed off. The fibres swell and/or dissolve in the solvent depending on its composition and the treatment time. We believe that the fibre–solvent interaction is through complex formation between the fibre carbonyl groups and the CaCl2. On washing, there is decomplexation and precipitation of the polymer. The treated fibres exhibit greater diameters and surface roughness, structural difference between an outer shell and an inner core is observable, and water retention is higher. The solvent system is more benign than current alternatives, and through suitable tailoring of the treatment conditions, e.g., composition and time, it may be used in the design of advanced materials for storage and release of active substances.
Refat, M. S.; Sharshara, T.
2015-11-01
The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.
Cadmium and zinc in plants and soil solutions from contaminated soils
DEFF Research Database (Denmark)
Lorenz, S.E.; Hamon, R.E.; Holm, P.E.
1997-01-01
In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably...
Energy Technology Data Exchange (ETDEWEB)
Rojas Sarmiento, M.P.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia); Roa-Rojas, J. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 14490, Bogota DC (Colombia)], E-mail: jroar@unal.edu.co
2008-07-15
Systematic measurements on conductivity fluctuation in the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T{sub c} with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T{sub c}, we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T{sub c}, a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu{sub 3-x}(Ni,Co){sub x}O{sub 7-{delta}} material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions.
International Nuclear Information System (INIS)
Rojas Sarmiento, M.P.; Landinez Tellez, D.A.; Roa-Rojas, J.
2008-01-01
Systematic measurements on conductivity fluctuation in the CaLaBaCu 3-x (Ni,Co) x O 7-δ system are reported. Samples with x=0, 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18 were prepared by the standard solid-state reaction recipe. Results of resistivity measurements reveal a linear-like decreasing of the critical temperature T c with progressive substitution of magnetic elements Ni and Co into the Cu crystallographic sites. From the fluctuation analysis, above and close to T c , we found the occurrence of three- and two-dimensional Gaussian fluctuation regimes. Closer to T c , a genuinely critical regime is observed. On the Ginzburg-Landau formalism, from the reduced temperature of the three-dimensional Gaussian region and the mean field critical temperature, we have experimentally obtained the Ginzburg number for the CaLaBaCu 3-x (Ni,Co) x O 7-δ material. Then, critical magnetic field, critical current density and the jump in the specific heat at the critical temperature are calculated. Critical parameters are strongly affected by the doping with magnetic ions
Cavalieri, John
2017-06-01
Chemical sterilisation can be used as an alternative to surgical castration in some circumstances. This review focuses on responses to treatment with zinc- or CaCl 2 -based chemosterilants, factors that have affected treatments and their potential use to sterilise female cattle. Successful treatment with a low incidence of adverse side effects in male animals has occurred with the use of zinc gluconate (ZG), neutralised in arginine and a 20% solution of CaCl 2 in ethanol. Injection technique plays an important role in success. Less satisfactory results appear to occur following use in animals with relatively larger testes. In animals with relatively small testes adjustment of the dose according to testicular size appears to optimise results. The techniques appear to be most suited to population control strategies in companion animals where low cost treatment of animals in environments where surgical facilities and specialised aftercare are lacking. The need for careful administration and likely slower speed of administration compared to surgical castration are likely to hamper application within the cattle industries. Recently transvaginal, intraovarian administration of CaCl 2 in ethanol has been shown to cause complete ovarian atrophy without apparent pain in some heifers, although variable responses were found. Chemical sterilisation can play a role in the sterilisation of animals but careful attention to dose, volume, chemical composition, administration technique are needed to avoid adverse side effects and variability in responses associated with some treatments. Application in female animals requires further study but CaCl 2 in ethanol can potentially cause complete ovarian atrophy when administered to heifers. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ziegler, Christian; Lotsch, Bettina V. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Chemistry, University of Munich (LMU), Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), Munich (Germany); Dennenwaldt, Teresa [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Weber, Daniel; Duppel, Viola; Kamella, Claudia; Tuffy, Brian; Moudrakovski, Igor [Max Planck Institute for Solid State Research, Stuttgart (Germany); Podjaski, Filip [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland); Scheu, Christina [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)
2017-11-17
Tuning the chemical composition and structure for targeted functionality in two-dimensional (2D) nanosheets has become a major objective in the rapidly growing area of 2D materials. In the context of photocatalysis, both miniaturization and extending the light absorption of UV active photocatalysts are major assets. Here, we investigate the solid solution between two photocatalytic systems known from literature to evolve H{sub 2} from water/methanol under UV - RbCa{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.7 eV) - and visible light irradiation - RbPb{sub 2}Nb{sub 3}O{sub 10} (E{sub g} = 3.0 eV) - by synthesizing hypothetical RbCa{sub 2-x}Pb{sub x}Nb{sub 3}O{sub 10}. While the calcium niobate can easily be exfoliated into individual nanosheets via cation-proton exchange and subsequent treatment with tetra-n-butylammonium hydroxide (TBAOH), the lead niobate barely yields nanosheets. Spectroscopic and microscopic analysis suggest that this is caused by volatilization of Pb during synthesis, leading to a local 3D linkage of RbPb{sub 2}Nb{sub 3}O{sub 10} perovskite units with Pb deficient units. On the one hand, this linkage progressively prevents exfoliation along with an increasing Pb content. On the other hand, introducing Pb into the perovskite blocks successively leads to bandgap narrowing, thus gradually enhancing the light harvesting capability of the solid solution. Finding a compromise between this narrowing of the bandgap and the possibility of exfoliation, visible light sensitized nanosheets can be engineered in good yield for an initial molar ratio of Ca:Pb ≥ 1:1. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Sercombe, Jérôme; Masson, Renaud; Helfer, Thomas
2013-01-01
Highlights: • This paper presents closed-formed solutions concerning pellet cladding interaction. • First, the opening of a radial crack in a pellet fragment is estimated. • Second, the stresses in the cladding in front of the pellet crack are calculated. • The closed-formed solutions are found in good agreement with 2D FE simulations. • They are then used in the fuel code ALCYONE to model PCI during power ramps. -- Abstract: This paper presents two closed-form solutions that can be used to enrich the mechanical description of fuel pellets and cladding behavior in standard one-dimensional based fuel performance codes. The first one is concerned with the estimation of the opening of a radial crack in a pellet fragment induced by the radial thermal gradient in the pellet and limited by the pellet-clad contact pressure. The second one describes the stress distribution in a cladding bore in front of an opening pellet crack. A linear angular variation of the pellet-clad contact pressure and a constant prescribed radial displacement are considered. The closed-form solutions are checked by comparison to independent finite element models of the pellet fragment and of the cladding. Their ability to describe non-axisymmetric displacement and stress fields during loading histories representative of base irradiation and power ramps is then demonstrated by cross-comparison with the 2D pellet fragment-cladding model of the multi-dimensional fuel performance code ALCYONE. The calculated radial crack opening profiles at different times and the hoop stress concentration in the cladding at the top of the ramp are found in good agreement with ALCYONE
Hill, J. Grant; Peterson, Kirk A.
2017-12-01
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
Hill, J Grant; Peterson, Kirk A
2017-12-28
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
Energy Technology Data Exchange (ETDEWEB)
Henning, Harald; Bauchert, Joerg M.; Conrad, Maurice; Schleid, Thomas [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie
2017-10-01
Reexamination of the syntheses and crystal structures as well as studies of the thermal decomposition of the heavy alkaline earth metal permanganates Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O and Ba[MnO{sub 4}]{sub 2} are the focus of this work. As an alternative to the very inelegant Muthmann method, established for the synthesis of Ba[MnO{sub 4}]{sub 2} a long time ago, we employed a cation-exchange column loaded with Ba{sup 2+} cations and passed through an aqueous potassium-permanganate solution. We later used this alternative also with strontium- and calcium-loaded columns and all the compounds synthesized this way were indistinguishable from the products of the established methods. Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O exhibiting [CaO{sub 8}] polyhedra crystallizes in the orthorhombic space group Pccn with the lattice parameters a=1397.15(9), b=554.06(4) and c=1338.97(9) pm with Z=4, whereas Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O with [SrO{sub 10}] polyhedra adopts the cubic space group P2{sub 1}3 with a=964.19(7) pm and Z=4. So the harder the AE{sup 2+} cation, the higher its demand for hydration in aqueous solution. Consequently, the crystal structure of Ba[MnO{sub 4}]{sub 2} in the orthorhombic space group Fddd with a=742.36(5), b=1191.23(7) and c=1477.14(9) pm with Z=8 lacks any crystal water, but contains [BaO{sub 12}] polyhedra. During the thermal decomposition of Ca[MnO{sub 4}]{sub 2} . 4 H{sub 2}O, the compound expels up to two water molecules of hydration, before the crystal structure collapses after the loss of the third H{sub 2}O molecule at 157 C. The crystal structure of Sr[MnO{sub 4}]{sub 2} . 3 H{sub 2}O breaks down after the expulsion of the third water molecule as well, but this already occurs at 148 C. For both the calcium and the strontium permanganate samples, orthobixbyite-type α-Mn{sub 2}O{sub 3} and the oxomanganates(III,IV) AEMn{sub 3}O{sub 6} (AE=Ca and Sr) remain as final decomposition products at 800 C
International Nuclear Information System (INIS)
Tsuji, Masashi; Chiba, Gou
2000-01-01
A hierarchical domain decomposition boundary element method (HDD-BEM) for solving the multiregion neutron diffusion equation (NDE) has been fully parallelized, both for numerical computations and for data communications, to accomplish a high parallel efficiency on distributed memory message passing parallel computers. Data exchanges between node processors that are repeated during iteration processes of HDD-BEM are implemented, without any intervention of the host processor that was used to supervise parallel processing in the conventional parallelized HDD-BEM (P-HDD-BEM). Thus, the parallel processing can be executed with only cooperative operations of node processors. The communication overhead was even the dominant time consuming part in the conventional P-HDD-BEM, and the parallelization efficiency decreased steeply with the increase of the number of processors. With the parallel data communication, the efficiency is affected only by the number of boundary elements assigned to decomposed subregions, and the communication overhead can be drastically reduced. This feature can be particularly advantageous in the analysis of three-dimensional problems where a large number of processors are required. The proposed P-HDD-BEM offers a promising solution to the deterioration problem of parallel efficiency and opens a new path to parallel computations of NDEs on distributed memory message passing parallel computers. (author)
Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin
2018-06-01
The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.
Dielectric properties of Ca(Zr0.05Ti0.95)O3 thin films prepared by chemical solution deposition
International Nuclear Information System (INIS)
Cavalcante, L.S.; Simoes, A.Z.; Santos, L.P.S.; Santos, M.R.M.C.; Longo, E.; Varela, J.A.
2006-01-01
Ca(Zr 0.05 Ti 0.95 )O 3 (CZT) thin films were grown on Pt(111)/Ti/SiO 2 /Si(100) substrates by the soft chemical method. The films were deposited from spin-coating technique and annealed at 928K for 4h under oxygen atmosphere. CZT films present orthorhombic structure with a crack free and granular microstructure. Atomic force microscopy and field-emission scanning electron microscopy showed that CZT present grains with about 47nm and thickness about 450nm. Dielectric constant and dielectric loss of the films was approximately 210 at 100kHz and 0.032 at 1MHz. The Au/CZT/Pt capacitor shows a hysteresis loop with remnant polarization of 2.5μC/cm 2 , and coercive field of 18kV/cm, at an applied voltage of 6V. The leakage current density was about 4.6x10 -8 A/cm 2 at 3V. Dielectric constant-voltage curve is located at zero bias field suggesting the absence of internal electric fields
Reepolmaha, Somporn; Limtrakarn, Wiroj; Uthaisang-Tanechpongtamb, Wanlaya; Dechaumphai, Pramote
2010-01-01
The purpose of this study was to estimate and compare the temperatures of two different anterior chamber solutions at the corneal endothelial level during phacoemulsification. An ophthalmic viscosurgical device (OVD) and balanced salt solution (BSS) were compared using the finite element method (FEM). The thermal properties of an OVD (IAL-F) and BSS were studied in an experimental setting. A computer-aided design model of ocular anatomy was created in two dimensions. The phaco needle was considered to be the only source of heat generation. Then, the FEM was used to demonstrate the transient temperature distribution in the two ocular models at 10, 20, 30, 40, 50 and 60 s. In these models, the anterior chamber was filled with IAL-F (IAL-F model) or BSS (BSS model). The heat generation rate of the phaco needle was 0.0004 cal/s/mm(2). The maximum corneal endothelial temperatures for the two models at 60 s were 52.67 and 41.57 degrees C, respectively. The experimental IAL-F model showed fewer changes in temperature for any given time and location. At larger distances from the heat source, less temperature variation was detected. Phacoemulsification is a potential heat-generating procedure performed between the delicate anterior chamber structures. During this procedure, IAL-F protects the endothelium against heat better than BSS. Copyright 2009 S. Karger AG, Basel.
Directory of Open Access Journals (Sweden)
A. Kazakov
2016-12-01
Full Text Available The paper discusses a nonlinear parabolic equation describing the process of heat conduction for the case of the power dependence of the heat conductivity factor on temperature. Besides heat distribution in space, it describes filtration of a polytropic gas in a porous medium, whereupon, in the English-language literature, this equation is generally referred to as the porous medium equation. A distinctive feature of this equation is the degeneration of its parabolic type when the required function becomes zero, whereupon the equation acquires some properties typical of first-order equations. Particularly, in some cases, it proves possible to substantiate theorems of the existence and uniqueness of heat-wave (filtration-wave type solutions for it. This paper proves a theorem of the existence and uniqueness of the solution to the problem of the motion of a heat wave with a specified front in the instance of two independent variables. At that, since the front has the form of a closed plane curve, a transition t o the polar coordinate system is performed. The solution is constructed in the form of a series, a constructible recurrent procedure for calculating its coefficients being proposed. The series convergence is proved by the majorant method. A boundary-element-based computation algorithm in the form of a computer program has been developed and implemented to solve the problem under study. Test examples are considered, the calculations made by a program designed by the authors being compared with the truncated series. A good agreement of the obtained results has been established.
International Nuclear Information System (INIS)
Charnaya, E.V.; Cheng Tien; Lee, M.K.; Sun, S.Y.; Chejina, N.V.
2007-01-01
27 Al Magic Angle Spinning (MAS) NMR studies are carried out for diluted alkali-earth metal doped lanthanum manganite solid solutions in the lanthanum aluminate (1-y)LaAlO 3 -yLa 0.67 A 0.33 MnO 3 (A = Ca, Sr, Ba) with y = 0, 2, 3, and 5 mol %. The spectra depend on the dopant species and show higher substitutional ordering for the Ba containing mixed crystals. Magnetically shifted lines are observed in all solid solutions and attributed to Al in the octahedral oxygen environment near manganese trivalent ions. Nonlinear dependences of their intensity are referred to the manganese-rich cluster formation. An additional MAS NMR line corresponding to aluminium at sites different from the octahedral site in pure LaAlO 3 is observed only in solutions doped with Ba. 3Q MAS NMR revealed that the broadening of this line is governed mainly by quadrupole coupling and allowed calculating the isotropic chemical shift [ru
Energy Technology Data Exchange (ETDEWEB)
Szescody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vermeul, Vincent R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luellen, Jon [AECOM, Denver, CO (United States)
2016-03-01
The Old Rifle Site is a former vanadium and uranium ore-processing facility located adjacent to the Colorado River and approximately 0.3 miles east of the city of Rifle, CO. The former processing facilities have been removed and the site uranium mill tailings are interned at a disposal cell north of the city of Rifle. However, some low level remnant uranium contamination still exists at the Old Rifle site. In 2002, the United States Nuclear Regulatory Commission (US NRC) concurred with United States Department of Energy (US DOE) on a groundwater compliance strategy of natural flushing with institutional controls to decrease contaminant concentrations in the aquifer. In addition to active monitoring of contaminant concentrations, the site is also used for DOE Legacy Management (LM) and other DOE-funded small-scale field tests of remediation technologies. The purpose of this laboratory scale study was to evaluate the effectiveness of a hydroxyapatite (Ca_{10}(PO_{4})_{6}(OH)_{2}) permeable reactive barrier and source area treatment in Old Rifle sediments. Phosphate treatment impact was evaluated by comparing uranium leaching and surface phase changes in untreated to PO_{4}-treated sediments. The impact of the amount of phosphate precipitation in the sediment on uranium mobility was evaluated with three different phosphate loadings. A range of flow velocity and uranium concentration conditions (i.e., uranium flux through the phosphate-treated sediment) was also evaluated to quantify the uranium uptake mass and rate by the phosphate precipitate.
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)
2013-02-15
An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.
Energy Technology Data Exchange (ETDEWEB)
Voss, Ina
2015-07-16
The research platform ENTRIA (Disposal options for radioactive residues Interdisciplinary analyses and development of evaluation principles) includes the sub-project ''Final disposal in deep geological formations without any arrangements for retrieval''. This approach considers rock salt (beside clay and granite) as host rock formation for disposal of heat-producing long-live waste. Most rock salt formations contain Mg-rich brines derived from highly evolved sea water evaporation processes now included in the rock salt mass. If such brines get access to metal-canister corrosion will allow release of soluble nuclides to the brine. In this scenario, it cannot be excluded that contaminated brines leave the deep seated disposal area and move along geological or technical migration pathways towards the rock salt/cap rock contact. The temperature of the brine will drop from near 80 C to 25 or 30 C. The deceasing temperature of the brine causes precipitation of magnesian chloride and sulfate phase in equilibrium with the brine. In order to understand the salt precipitation and the retention mechanism of dissolved trace elements experiments have been set up which allow formation of sylvite, carnallite, kainite, and hydrous Mg-sulphates under controlled conditions. The retention capacity of crystallizing salt minerals based occurring in magnesian brine solutions at decreasing temperature within a salt dome is best measured as the distribution coefficient D. This concept assumes incorporation of trace elements into the lattice of salt minerals. The distribution coefficients of the trace elements, Rb, Cs, Co, Ni, Zn, Li and B between sylvite, carnallite, kainite, and MgSO{sub 4} phases have been determined at experimental temperatures of 25, 35, 55 and 83 C. The results clearly indicate the following range of distribution coefficients (D): Sylvite D > 1 Rb and Br, D < 1 Co, Ni, Zn, Li and B, Carnallite D > 1 Rb and Cs, D < 1 Co, Ni, Zn, Li and B, Kainite D
Energy Technology Data Exchange (ETDEWEB)
Saji, Viswanathan S., E-mail: vssaji@chosun.ac.k [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of); Choe, Han Cheol [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of)
2009-05-29
Pure and yttrium substituted CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x/} {sub 2} (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 {sup o}C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x} {sub /2} (x = 0.02) film at 1 KHz were k {approx} 2700 and tan {delta} {approx} 0.07.
Chang, E; Lee, T M
2002-07-01
This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.
Rodrigues, S M; Henriques, B; Ferreira da Silva, E; Pereira, M E; Duarte, A C; Groenenberg, J E; Römkens, P F A M
2010-12-01
To assess environmental risks related to contaminants in soil it is essential to predict the available pool of inorganic contaminants at regional scales, accounting for differences between soils from variable geologic and climatic origins. An approach composed of a well-accepted soil extraction procedure (0.01 M CaCl(2)) and empirical Freundlich-type models in combination with mechanistically based models which to date have been used only in temperate regions was applied to 136 soils from a South European area and evaluated for its possible general use in risk assessment. Empirical models based on reactive element pools and soil properties (pH, organic carbon, clay, total Al, Fe and Mn) provided good estimations of available concentrations for a broad range of contaminants including As, Ba, Cd, Co, Cu, Hg, Mo, Ni, Pb, Sb, Se and Zn (r(2): 0.46-0.89). The variation of the pools of total Al in soils expressed the sorptive capacity of aluminosilicates and Al oxides at the surfaces and edges of clay minerals better than the actual variability of clay contents. The approach has led to recommendations for further research with particular emphasis on the impact of clay on the solubility of As and Sb, on the mechanisms controlling Cr and U availability and on differences in binding properties of soil organic matter from different climatic regions. This study showed that such approach may be included with a good degree of certainty for first step risk assessment procedures to identify potential risk areas for leaching and uptake of inorganic contaminants in different environmental settings. Copyright © 2010 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Usdowski, E.; Hoefs, J.; Menschel, G.
1979-01-01
A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO 2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model, 13 C of the dissolved carbonate species changes systematically along the flow path. The difference in delta values between the upper and lower part of the stream is about 1%. The 13 C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO 3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4%. The 18 O composition of dissolved carbonate and H 2 O is constant along the stream. Calculated calcite-water temperatures differ by about +5 0 C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO 3 deposited from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes. Plant populations in the water have virtually no influence on CO 2 degassing, calcite saturation and isotopic fractionation. Measurements of Psub(CO 2 ), Ssub(C) and 13 C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO 2 degassing and calcite precipitation, caused by a continuously changing hydrodynamic conditions and carbonate nucleation rates. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Masiello, E
2006-07-01
The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)
Energy Technology Data Exchange (ETDEWEB)
Masiello, E
2006-07-01
The principal goal of this manuscript is devoted to the investigation of a new type of heterogeneous mesh adapted to the shape of the fuel pins (fuel-clad-moderator). The new heterogeneous mesh guarantees the spatial modelling of the pin-cell with a minimum of regions. Two methods are investigated for the spatial discretization of the transport equation: the discontinuous finite element method and the method of characteristics for structured cells. These methods together with the new representation of the pin-cell result in an appreciable reduction of calculation points. They allow an exact modelling of the fuel pin-cell without spatial homogenization. A new synthetic acceleration technique based on an angular multigrid is also presented for the speed up of the inner iterations. These methods are good candidates for transport calculations for a nuclear reactor core. A second objective of this work is the application of method of characteristics for non-structured geometries to the study of double heterogeneity problem. The letters is characterized by fuel material with a stochastic dispersion of heterogeneous grains, and until now was solved with a model based on collision probabilities. We propose a new statistical model based on renewal-Markovian theory, which makes possible to take into account the stochastic nature of the problem and to avoid the approximations of the collision probability model. The numerical solution of this model is guaranteed by the method of characteristics. (author)
International Nuclear Information System (INIS)
Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.
2012-01-01
The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF 2 , SrF 2 , and BaF 2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF 2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ∼2 × 10 3 pA/cm 2 ). In BaF 2 samples, the transformation of BaO into Ba(OH) 2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH) 2 into BaO. In the initial stage of irradiation of all MF 2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF 2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF 2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ∼20 nm in the sample.
EFFECT OF FERRITE PHASE ON THE FORMATION AND COEXISTENCE OF 3CaO.3Al₂O₃.CaSO₄ AND 3CaO.SiO₂ MINERALS
Directory of Open Access Journals (Sweden)
Xiaolei Lu
2017-12-01
Full Text Available The effect of ferrite on the formation and coexistence of 3CaO.3Al₂O₃.CaSO₄ (C₄A₃$ and 3CaO.SiO₂ (C3S was investigated in this paper. The results indicate that 20 % content of ferrite phase with the composition of C₂A0.5F0.5 can facilitate the coexistence of C₄A₃$ and C₃S solid solutions at 1350 ° C. There are other trace elements that incorporate into clinker minerals and form solid solutions. In addition, the dark and polygonal C₄A₃$ solid solution is not dissolved in liquid phase at 1350 ° C. It can promote the burnability of the raw mixes and provide a favorable condition for the formation of C₃S. However, it has an adverse effect on the coexistence of two clinker minerals with the changing of ferrite compositions. This will provide the important basis for the preparation of the calcium sulphoaluminate cement clinker containing C₃S.
International Nuclear Information System (INIS)
Evans, T.C.
1988-01-01
To identify functions that regulate Ca 2+ -induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca 2+ current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca 2+ current from Ca 2+ -dependent inactivation, and the decay of the Ca 2+ -dependent K + and Ca 2+ -dependent Na + currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca 2+ action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a 125 I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed
Directory of Open Access Journals (Sweden)
Yunhuang Yang
2012-06-01
Full Text Available CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e^{−07} corresponding to a hypothetical protein OR16_04617 from Cupriavidus basilensis OR16, which failed to provide insight into the function of CV_2116. The CV_2116 gene was cloned into the p15TvLic expression plasmid, transformed into E. coli, and ^{13}C- and ^{15}N-labeled NMR samples of CV_2116 were overexpressed in E. coli and purified for structure determination using NMR spectroscopy. The resulting high-quality solution NMR structure of CV_2116 revealed a novel α + β fold containing two anti-parallel β -sheets in the N-terminal two-thirds of the protein and one α-helix in the C-terminal third of the protein. CV_2116 does not belong to any known protein sequence family and a Dali search indicated that no similar structures exist in the protein data bank. Although no function of CV_2116 could be derived from either sequence or structural similarity searches, the neighboring genes of CV_2116 encode various proteins annotated as similar to bacteriophage tail assembly proteins. Interestingly, C. violaceum exhibits an extensive network of bacteriophage tail-like structures that likely result from lateral gene transfer by incorporation of viral DNA into its genome (prophages due to bacteriophage infection. Indeed, C. violaceum has been shown to contain four prophage elements and CV_2116 resides in the fourth of these elements. Analysis of the putative operon in which CV_2116 resides indicates that CV_2116 might be a component of the bacteriophage tail-like assembly that occurs in C. violaceum.
Dutton, Andrew William
1993-12-01
A combined numerical and experimental system for tissue heat transfer analysis was developed. The goal was to develop an integrated set of tools for studying the problem of providing accurate temperature estimation for use in hyperthermia treatment planning in a clinical environment. The completed system combines (1) Magnetic Resonance Angiography (MRA) to non-destructively measure the velocity field in situ, (2) the Streamwise Upwind Petrov-Galerkin finite element solution to the 3D steady state convective energy equation (CEE), (3) a medical image based automatic 3D mesh generator, and (4) a Gaussian type estimator to determine unknown thermal model parameters such as thermal conductivity, blood perfusion, and blood velocities from measured temperature data. The system was capable of using any combination of three thermal models (1) the Convective Energy Equation (CEE), (2) the Bioheat Transfer Equation (BHTE), and (3) the Effective Thermal Conductivity Equation (ETCE) Incorporation of the theoretically correct CEE was a significant theoretical advance over approximate models made possible by the use of MRA to directly measure the 3D velocity field in situ. Experiments were carried out in a perfused alcohol fixed canine liver with hyperthermia induced through scanned focused ultrasound Velocity fields were measured using Phase Contrast Angiography. The complete system was then used to (1) develop a 3D finite element model based upon user traced outlines over a series of MR images of the liver and (2) simulate temperatures at steady state using the CEE, BHTE, and ETCE thermal models in conjunction with the gauss estimator. Results of using the system on an in vitro liver preparation indicate the need for improved accuracy in the MRA scans and accurate spatial registration between the thermocouple junctions, the measured velocity field, and the scanned ultrasound power No individual thermal model was able to meet the desired accuracy of 0.5 deg C, the resolution
Xie, Wei; Li, Jiaxin; Tian, Canxin; Wang, Zesong; Xie, Mubiao; Zou, Changwei; Sun, Guohuan; Kang, Fengwen
2018-02-01
When compared to other phosphors typically the blue and green phosphors, red phosphors, which can be used for white light-emitting diodes (wLEDs), always suffer from various problems such as higher cost, lower luminescence efficiency and bad thermal stability. And thus, great interests have been paid to how to enhance the red fluorescence intensity in the recent years. Here we report on a red-emitting solid solutions, (Li,Na,K)Ca(Mo,W)O4:Eu3+, which enable exhibiting continuous Eu3+ emission enhancement through manipulating the alkali metal ions and the relative content ratios between tungsten and molybdenum oxides. X-ray powder diffraction (XRD) has been employed to check the phase purity, and results show that all samples crystallize in a scheelite structure with space group of I41/a (No.88). A regular blue-shifting of XRD peaks, which indicates the increase of crystal plane spacing, appears as the alkali cationic radius increases from 0.92 Å (for Li), 1.18 Å (for Na) and to 1.38 Å (for K). Replacing Mo ion (0.41 Å) by W ion (0.42 Å) enables not only forming the solid solution compounds (Li,Na,K)Ca(Mo,W)O4:Eu3+, but also blue-shifting the XRD position. Similar to the XRD position shifting, our samples also exhibit the regular change in the photoluminescence (PL) spectra, in which the charge transfer (CT) band position as the alkali cationic radii increase from Li, Na and to K and further from Mo to W shows a continuous red-shifting behavior. As for the CT and Eu3+ intensity, our experimental results show that the alkali ion that corresponds to the maximum intensity is Li, and this intensity can be further enhanced by adding W. In coincidence with the change in the excitation spectral intensity, the continuous enhanced Eu3+ emission intensity can be observed up excitation at the CT band and Eu3+ lines. We have discussed the above CT band shifting and Eu3+ fluorescence enhancement and give a feasible mechanism profile that base on the energy transfer from CT
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-01-01
Nano-Mg(OH) 2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH) 2 (nano-Mg(OH) 2 @CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH) 2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH) 2 @CC composite maintained the excellent adsorption performance of nano-Mg(OH) 2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu 2 O 3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH) 2 @CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH) 2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH) 2 @CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.
Physical conditions in CaFe interstellar clouds
Gnacinski, P.; Krogulec, M.
2007-01-01
Interstellar clouds that exhibit strong Ca I and Fe I lines were called CaFe clouds. The ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. The chemical composition of CaFe clouds is that of the Solar System and no depletion of elements onto dust grains is seen. The CaFe clouds have high electron densities n=1 cm^-3 that leads to high column densities of neutral Ca and Fe.
Yang, Xiaoyan; Mao, Xiaofang; Xu, Gao; Xing, Shasha; Chattopadhyay, Ansuman; Jin, Si; Salama, Guy
2018-05-01
In long QT syndrome type 2, women are more prone than men to the lethal arrhythmia torsades de pointes. We previously reported that 17β-estradiol (E2) up-regulates L-type Ca 2+ channels and current (I Ca,L ) (∼30%) in rabbit ventricular myocytes by a classic genomic mechanism mediated by estrogen receptor-α (ERα). In long QT syndrome type 2 (I Kr blockade or bradycardia), the higher Ca 2+ influx via I Ca,L causes Ca 2+ overload, spontaneous sarcoplasmic reticulum Ca 2+ release, and reactivation of I Ca,L that triggers early afterdepolarizations and torsades de pointes. The purpose of this study was to investigate the molecular mechanisms whereby E2 up-regulates I Ca,L , which are poorly understood. H9C2 and rat myocytes were incubated with E2 ± ER antagonist, or inhibitors of downstream transcription factors, for 24 hours, followed by western blots of Cav1.2α1C and voltage-clamp measurements of I Ca,L . Incubation of H9C2 cells with E2 (10-100 nM) increased I Ca,L density and Cav1.2α1C expression, which were suppressed by the ER antagonist ICI182,780 (1 μM). Enhanced I Ca,L and Cav1.2α1C expression by E2 was suppressed by inhibitors of phosphoinositide-3-kinase (Pi3K) (30 μM LY294002; P L via plasma membrane ER and by activating Pi3K, Akt, and CREB signaling. The promoter regions of the CACNA1C gene (human-rabbit-rat) contain adjacent/overlapping binding sites for p-CREB and ERα, which suggests a synergistic regulation by these pathways. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Jorstad, K.; Salbu, B.
1980-01-01
The combination of neutron activation analysis and electrolysis at a constant, controlled potential has proved itself to be a useful multielement method for the determination of 28 elements in seawater. After freeze-drying and irradiation, the samples are dissolved and electrolyzed for 1 h. The radioactive species deposited on the mercury cathode allow determination of 14 elements (Ag, As, Au, Cd, Co, Cr, Fe, Ga, Hg, La, Mo, Sb, Se, Zn). Another 14 elements (Ba, Br, Ca, Ce, Cs, Eu, Na, Rb, Sc, Sm, Sr, Th, U, Yb) are quantitatively determined by measuring the activities in the residual solution. To obtain a reproducible electrolysis, radioactive tracers have been used to study the decrease of element concentrations in solution as a function of time of electrolysis, the influence of the initial element concentration on the rate constant k, the effect of cathode material and of the pH in the solution. 4 figures, 4 tables
Application of thermodynamics to silicate crystalline solutions
Saxena, S. K.
1972-01-01
A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.
Energy Technology Data Exchange (ETDEWEB)
Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko [Kogakuin University, Tokyo (Japan)
2016-06-15
The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in 0.5 mol dm{sup -3} Na{sub 3}PO{sub 4} solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase Al2Ca. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of Al2Ca phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range 30 - 40 μm. The heat resistant phase of Al{sub 2}Ca was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.
Ca-48 handling for a cyclotron ECR ion source to produce highly intense ion beams
International Nuclear Information System (INIS)
Lebedev, V.Ya.; Bogomolov, S.L.; Dmitriev, S.N.; Kutner, V.B.; Shamanin, A.N.; Yakushev, A.B.
2002-01-01
Ca ion beam intensities in the U-400 cyclotron. To control the 48 Ca movement during the preparation of metallic calcium, recuperation of the calcium and to obtain a picture of the distribution of the 48 Ca deposits inside the ECR ion source, we used 47 Ca as a radiotracer. This was obtained from the 48 Ca(γ,n) 47 Ca reaction by irradiating a mixture of 48 CaO + Al, prepared for the reduction of the calcium, with the bremsstrahlung (E e = 22 MeV) of the microtron MT-25 of JINR FLNR. The radiotracer technique provided us with 48 Ca control in all processes of calcium of the ECR ion source after stopping and calcium separation from acidic solutions, that allowed us to minimize our losses of 48 Ca. The whole technique was very effective in dealing with such expensive isotope as 48 Ca. During the last years at FLNR JINR (Dubna) several isotopes of element 114 and 116 have been obtained by irradiation of Pu and Cm targets with highly intense 48 Ca ion beams
Hashimoto, Akihiko
1992-01-01
The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.
Development Of PIXE Measurement Of Ca Changes Resulting From Viral Transduction In Cells
Whitlow, Harry J.; Chienthavorn, Orapin; Eronen, Hannele; Sajavaara, Timo; Laitinen, Mikko; Norarat, Rattanaporn; Gilbert, Leona K.
2011-06-01
Ca is a life-element of particular interest because it is both bound to proteins, and as Ca2+ which functions as a signal molecule in apoptosis. Here we report development of chemical-matrix blind assaying the Ca fluxes from transduced HepG2 cells using particle induced X-ray emission. The cells were transduced with recombinant baculoviruses hosting the DNA for non-structural protein 1 (NS1) of the human pavovirus B19. Different recombinant baculoviruses were used that carried different DNA payloads of this NS1. Two different approaches have been developed to assay Ca in cells. The first is where the cells were directly cultured using a self-supporting pioloform as a substrate. In the second approach the cells are permeabilized, and bound-Ca content in the debris, and unbound-Ca in the wash solutions were measured using an internal V reference standard. The results support a difference in the Ca contents depending on the payload of the infecting virus, however the PIXE signals were too close to the minimum detection limit to draw reliable conclusions.
Directory of Open Access Journals (Sweden)
F. O. Isiogugu
2016-01-01
Full Text Available The strong convergence of a hybrid algorithm to a common element of the fixed point sets of multivalued strictly pseudocontractive-type mappings and the set of solutions of an equilibrium problem in Hilbert spaces is obtained using a strict fixed point set condition. The obtained results improve, complement, and extend the results on multivalued and single-valued mappings in the contemporary literature.
Corrosion study of resorbable Ca60Mg15Zn25 bulk metallic glasses in physiological fluids
Directory of Open Access Journals (Sweden)
RafaÅ Babilas
2017-10-01
Full Text Available The corrosion activity of amorphous plates of Ca60Mg15Zn25 alloy was investigated. The biocompatible elements were selected for the alloy composition. The electrochemical corrosion and immersion tests were carried out in a multi-electrolyte fluid and Ringer's solution. Better corrosion behavior was observed for the samples tested in a multi-electrolyte fluid despite the active dissolution of Ca and Mg in Ringer's solution. The experimental results indicated that reducing concentration of NaCl from 8.6Â g/dm3 for Ringer's solution to 5.75Â g/dm3 caused the decrease of the corrosion rate. The volume of the hydrogen evolved after 480Â min in Ringer's solution (40.1Â ml/cm2 was higher in comparison with that obtained in a multi-electrolyte fluid (24.4Â ml/cm2. The values of open-circuit potential (EOCP for the Ca60Mg15Zn25 glass after 1Â h incubation in Ringer's solution and a multi-electrolyte fluid were determined to be â1553 and â1536Â mV vs. a saturated calomel electrode (SCE. The electrochemical measurements indicated a shift of the corrosion current density (jcorr from 1062 Î¼A/cm2 for the sample tested in Ringer's solution to 788 Î¼A/cm2 for the specimen immersed in a multi-electrolyte fluid. The corrosion products analysis was conducted by using the X-ray photoelectron spectroscopy (XPS. The corrosion products were identified to be CaCO3, Mg(OH2, CaO, MgO and ZnO. The mechanism of corrosion process was proposed and described based on the microscopic observations. The X-ray diffraction and Fourier transform infrared spectroscopy (FTIR also indicated that Ca(OH2, CaCO3, Zn(OH2 and Ca(Zn(OH32Â·2H2O mainly formed on the surface of the studied alloy. Keywords: Ca-based metallic glasses, X-ray photoelectron spectroscopy, FTIR spectroscopy, X-ray diffraction, Corrosion resistance, Hydrogen evaluation
Energy Technology Data Exchange (ETDEWEB)
Spitsyn, V. I.; Balukova, V. D.; Gromov, V. V.; Zakharov, S. I.; Zhagin, B. P.; Spiridonov, F. M.
1960-07-01
Research on the sorption of radioisotopes under natural conditions employing the controlled filtration process was performed. Radioisotopes were introduced into the solution as soon as filtration had become steady and the process continued for four months. Soil samples were then taken by drilling at different depths and analysed to determine their radioisotope content. Diffusion of radioisotopes was observed at depths of up to 10 m; two distinct boundaries of soil-activity decrease were ascertained: at the surface of the site and at the depth of the solution filtration front. In addition, the radiostrontium absorption by natural sorbents, principally pure minerals widely distributed in soils and subsoils, was investigated separately. The presence of calcium ions, even in small quantities, sharply reduces the degree of radiostrontium sorption. However, other conditions being equal, strontium may be absorbed to a greater extent than calcium, according to the composition of the sorbent. The field investigations of radiostrontium sorption and migration showed that when filtering radioactive solutions two possible variants have to be taken into account. In the first case the solutions are discharged into soil unaffected by any flow of ground water. In this situation the radiostrontium is retained by the soil. In the second case, the radioisotopes proceed directly into the water-bearing horizon. The radiostrontium will then migrate with the ground water flow and through the soil and this migration will be further affected by the sorption and desorption processes occurring. The experiments performed demonstrate the ease with which long-lived radioisotopes migrate under natural conditions and call attention to the need for thorough study of ground water problems in connexion with various methods of disposing of radioactive waste into ground. (author) [French] En declenchant un processus de filtration, il a ete possible d'etudier l'absorption des elements radioactifs dans
International Nuclear Information System (INIS)
Amor, H.; Bourgeois, M.
2012-01-01
Document available in extended abstract form only. The disposal of high level, long lived waste in deep underground clay formations is investigated by several countries including France. In the safety assessment of such geological repositories, a thoughtful consideration must be given to the mechanisms and possible pathways of migration of radionuclides released from waste packages. However, when modelling the transfer of radionuclides throughout the disposal facilities and geological formations, the numerical simulations must take into consideration, in addition to long durations of concern, the variety in the properties as well as in geometrical scales of the different components of the overall disposal, including the host formation. This task presents significant computational challenges. Numerical methods used in the MELODIE software The MELODIE software is developed by IRSN, and constantly upgraded, with the aim to assess the long-term containment capabilities of underground and surface radioactive waste repositories. The MELODIE software models water flow and the phenomena involved in the transport of radionuclides in saturated and unsaturated porous media in 2 and 3 dimensions; chemical processes are represented by a retardation factor and a solubility limit, for sorption and solubility respectively, integrated in the computational equations. These equations are discretized using a so-called Finite Volume Finite Element method (FVFE), which is based on a Galerkin method to discretize time and variables, together with a Finite Volume method using the Godunov scheme for the convection term. The FVFE method is used to convert partial differential equations into a finite number of algebraic equations that match the number of nodes in the mesh used to model the considered domain. It is also used to stabilise the numerical scheme. In order to manage the variety in properties and geometrical scales of underground disposal components, an a posteriori error estimator
International Nuclear Information System (INIS)
Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.
1995-01-01
As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs
Energy Technology Data Exchange (ETDEWEB)
Puri, Maalti; Bahel, Shalini [Guru Nanak Dev University, Punjab (India); Raevski, I.P. [Southern Federal University, Rostov-on-Don (Russian Federation); Narang, Sukhleen Bindra [Guru Nanak Dev University, Punjab (India)
2016-06-01
Ceramic samples of (Pb{sub 1−x}Ca{sub x})(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} with x=0.0, 0.20, 0.40, 0.45, 0.50, 0.55, 0.60 and 1.0 were fabricated by columbite precursor method. All the synthesized samples have a perovskite structure and unit cell volume decreases with increasing Ca content. The substitution of Ca for Pb has been found to have a pronounced effect on structural, dielectric and magnetic properties. Saturated magnetic loops were observed at room temperature for compositions with x≥0.40. The observed maximal magnetization at room temperature is rather small and varies non-monotonically with increasing Ca contents. It is supposed that room-temperature magnetic properties of (Pb{sub 1−x}Ca{sub x})(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics might be due to the presence of ferromagnetic impurity, presumably PbFe{sub 12}O{sub 19} and/or CaFe{sub 12}O{sub 19}. - Highlights: • Ceramic samples have been synthesized using columbite precursor method. • The substitution of Ca for Pb has a pronounced effect on various properties. • Low losses at high frequencies make these ceramics suitable for microwave applications. • M–H loops at room temperature are reported first time.
Bao, Kai
2012-10-01
In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..
Bao, Kai; Shi, Yi; Sun, Shuyu; Wang, Xiaoping
2012-01-01
In this paper, a semi-implicit finite element method is presented for the coupled Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn-Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier-Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples. © 2012 Elsevier Inc..
Inorganic elements in sugar samples
Energy Technology Data Exchange (ETDEWEB)
Salles, Paulo M.B. de; Campos, Tarcisio P.R. de, E-mail: pauladesalles@yahoo.com.br, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2013-07-01
Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k{sub 0} method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)
Inorganic elements in sugar samples
International Nuclear Information System (INIS)
Salles, Paulo M.B. de; Campos, Tarcisio P.R. de
2013-01-01
Sugar is considered a safe food ingredient; however, it can be contaminated by organic elements since its planting until its production process. Thus, this study aims at checking the presence of inorganic elements in samples of crystal, refined and brown sugar available for consumption in Brazil. The applied technique was neutron activation analysis, the k 0 method, using the TRIGA MARK - IPR-R1 reactor located at CDTN/CNEN, in Belo Horizonte. It was identified the presence of elements such as, Au, Br, Co, Cr, Hf, K, Na, Sb, Sc and Zn in the samples of crystal/refined sugar and the presence of As, Au, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Sb, Sc, Sm, Sr, Th and Zn in the brown sugar samples. The applied technique was appropriate to this study because it was not necessary to put the samples in solution, essential condition in order to apply other techniques, avoiding contaminations and sample losses, besides allowing a multi elementary detection in different sugar samples. (author)
Strack, O. D. L.
2018-02-01
We present equations for new limitless analytic line elements. These elements possess a virtually unlimited number of degrees of freedom. We apply these new limitless analytic elements to head-specified boundaries and to problems with inhomogeneities in hydraulic conductivity. Applications of these new analytic elements to practical problems involving head-specified boundaries require the solution of a very large number of equations. To make the new elements useful in practice, an efficient iterative scheme is required. We present an improved version of the scheme presented by Bandilla et al. (2007), based on the application of Cauchy integrals. The limitless analytic elements are useful when modeling strings of elements, rivers for example, where local conditions are difficult to model, e.g., when a well is close to a river. The solution of such problems is facilitated by increasing the order of the elements to obtain a good solution. This makes it unnecessary to resort to dividing the element in question into many smaller elements to obtain a satisfactory solution.
Graybill, George
2007-01-01
Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.
El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris
2015-06-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
He, Qiaolin; Glowinski, Roland; Wang, Xiao Ping
2011-01-01
element space approximation with a time discretization by operator-splitting. To solve the Cahn-Hilliard part of the problem, we use a least-squares/conjugate gradient method. We also show that the scheme has the total energy decaying in time property
International Nuclear Information System (INIS)
Fernandes, A.; Maiorino, J.R.
1989-01-01
This work presents a method to solve the neutron transport equation in thre space dimensions. The angular flux is aproximated by spherical harmonics and the finite element method is applied to the space component. The program originated by the analytical development is being tested and some results are presented. (author) [pt
SNL/CA Environmental Management System Program Manual.
Energy Technology Data Exchange (ETDEWEB)
Larsen, Barbara L.
2005-09-01
The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.
Energy Technology Data Exchange (ETDEWEB)
Winsel, A; Von Doehren, H H
1972-01-27
A method for regenerating a fuel cell with Ag-catalyzed O electrodes containing Ni and H electrodes containing Raney Ni where the voltage had dropped from 750 to 630 mV within 3200 hr at 50 mA/cm/sup 2/ is described. An aqueous NH/sub 3/-NH/sub 4/Cl solution was passed through the cell under 1 atm H at 60/sup 0/, whereby 27 g Ni was dissolved as the hydroxide. The voltage of the regenerated cell was 770 mV and remained constant during 500 hr operation. The Ni ions in the regenerating solutions were removed by electrolysis.
Synthesis and characterization of CaTiO3 powder by combustion synthesis process
International Nuclear Information System (INIS)
Jung, C. W.; Shin, H. C.; Park, J. Y.; Lee, H. G.; Kim, H. Y.; Hong, K. W.
2000-01-01
Synroc is considered as a one of the most promising candidate for HLW solidification. CaTiO 3 , perovskite, which is a component of Synroc, can immobilize lanthanide and actinides by forming solid solutions. Generally most of the radioactive wastes elements were treated as a nitrate form. Therefore, the combustion process using metal nitrates as reactant materials can be easily applied to immobilize the radioactive waste elements. In this study, the feasibility of preparing fine, single-phase powders of multi-component oxide by a combustion process was investigated. Generally, the powder synthesized by combustion process showed different characteristics depending on the type and amount of fuel. And the spherical CaTiO 3 particles were directly prepared from the aqueous solution by an ultrasonic mist combustion process using an ultrasonic nebulizers as mist generators. The particles prepared with simple spray pyrolysis method using nitrate solution without fuel as precursor solution showed porous and hollow morphology, while the particles prepared with precursor solutions containing fuel showed dense solid morphology. Among various kinds of fuel tested, glycine showed the best result in reaction kinetics and crystalline phase purity
23 Elemental Composition of Suspended Particulate Matter ...
African Journals Online (AJOL)
`123456789jkl''''#
The samples were analysed by energy dispersive x-ray fluorescence. (EDXRF) and atomic absorption spectroscopy (AAS) for up to 10 elements. It was found that 66% of the ..... coefficients between the various crustal elements Ca, Ti, Mn, ...
Yin, Ping; Li, Nian Feng; Lei, Ting; Liu, Lin; Ouyang, Chun
2013-06-01
Zn and Ca were selected as alloying elements to develop an Mg-Zn-Ca alloy system for biomedical application due to their good biocompatibility. The effects of Ca on the microstructure, mechanical and corrosion properties as well as the biocompatibility of the as-cast Mg-Zn-Ca alloys were studied. Results indicate that the microstructure of Mg-Zn-Ca alloys typically consists of primary α-Mg matrix and Ca₂Mg₆Zn₃/Mg₂Ca intermetallic phase mainly distributed along grain boundary. The yield strength of Mg-Zn-Ca alloy increased slightly with the increase of Ca content, whilst its tensile strength increased at first and then decreased. Corrosion tests in the simulated body fluid revealed that the addition of Ca is detrimental to corrosion resistance due to the micro-galvanic corrosion acceleration. In vitro hemolysis and cytotoxicity assessment disclose that Mg-5Zn-1.0Ca alloy has suitable biocompatibility.
SNL/CA Environmental Management System Program Manual.
Energy Technology Data Exchange (ETDEWEB)
Larsen, Barbara L.
2007-04-01
The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.
International Nuclear Information System (INIS)
Kraus, H.G.; Jones, J.L.
1986-01-01
The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)
International Nuclear Information System (INIS)
Wanty, R.B.; Langmuir, D.; Chatham, J.R.
1981-08-01
This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging
Energy Technology Data Exchange (ETDEWEB)
Wanty, R.B.; Langmuir, D.; Chatham, J.R.
1981-08-01
This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.
Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce
2009-01-01
We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry
Excretion of biotrace elements using the multitracer technique in mice
International Nuclear Information System (INIS)
Wang, X.; Wu, M.; Yin, X.M.; Zhang, X.; Li, Z.W.; Tian, J.; Sheng, X.L.
1999-01-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40 Ar ions was applied to the investigation of the trace elements behavior in feces and urine of mouse. The excretion rates of 23 elements, Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Mo, Nb, Tc, Ru, Ag and In were simultaneously detected under strictly identical experimental conditions, in order to clarify the excretion behavior of the elements in Mice. Fecal and urinary excretion rates of the elements in mice reached the highest value separately at 48 and 24 hours. The total excretion of Mo, Tc and Co within 96 hours were all larger, more than 60%. Accumulative excretion rates of Ca, Nb, Mg, Sr, V, Sc, Na, Cr, Fe, Ag, Mn and Zr were 60-30%. The total rates of Ru, K, As, Zn, Rb, Y, Ga and In were less than 30%, and low excretion. The main excretion pathway of Mo, Co, Mg, Fe and Ag was through urine, and Na, K, As and Rb were eliminated from the body also in urine. But fecal excretion of Tc, Nb, Sr, Y, Ru, and In were larger than urinary excretion, and Ca, Sc, Mn, Zr, Zn were eliminated from the body in feces. (author)
Measurements of natural 41Ca concentrations
International Nuclear Information System (INIS)
Steinhof, A.
1989-05-01
Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de
Energy Technology Data Exchange (ETDEWEB)
Choi, Jeong Ho [Samjung E and W, Changwon (Korea, Republic of); Lee, Jung Hwan [Korea Institute of Materials Science,Changwon (Korea, Republic of); Lee, Je Hyun [Changwon National University, Changwon (Korea, Republic of)
2014-05-15
The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.
International Nuclear Information System (INIS)
Choi, Jeong Ho; Lee, Jung Hwan; Lee, Je Hyun
2014-01-01
The objective of this study is to find the density, stiffness, and strength of truss-wall unit cell models. The diamond-corrugation, triangular-corrugation, and Navtruss-corrugation models are used for the unit cell. The ideal solutions derived for these are based on solid wall unit cell models and are developed using the Gibson-Ashby theory. To verify the ideal solutions of the models, the density, strength, and stiffness are simulated using ABAQUS software and compared with the ideal solutions on a log-log scale. The material properties of stainless steel 304 are applied. The diameter is 0.5 mm; the opening width is 0.5 mm; and the corrugation angle is 45 .deg. . Consequently, the relative Young's modulus and relative yield strength of the truss-wall unit models are good matches for the ideal expectations. It may be possible to apply a truss-wall model to diverse fields such as transportation or biomedical applications as one of the open-cell cellular solids.
International Nuclear Information System (INIS)
Le Marois, Gilles.
1980-06-01
Slight differences between the complexation in aqueous solution of 4f and 5f series ions are revealed by the use of a soft, aromatic and chelating ligand of the o-phenanthroline type. Trivalent actinide ions are extrated selectively in the presence of a carboxylic acid. This extraction takes place at high pH and does not require large quantities of salts in aqueous solution, which increase the volume of radioactive wastes for storage. Only the first two o-phenanthroline complexes of these ions are obtained in aqueous solution. Determination of the constants of formation of such complexes shows the stronger affinity of the ligand for actinide ions. An inversion of the usual order of complexation of the different actinide valencies is also observed: pentavalent ions are most complexed than trivalent, o-phenanthroline stabilises actinide ions preferentially because they are more liable to form bonds with delocalised electrons. Finally a slight stabilisation of europium at valency II shows the participation of electrons by back bonding of the metal, due to the strong conjugation of the ligand π electrons [fr
Czech Academy of Sciences Publication Activity Database
Strnad, L.; Ettler, V.; Mihaljevič, M.; Hladil, Jindřich
2008-01-01
Roč. 9, - (2008), s. 235-236 ISSN 1885-7264. [Reunión de la Sociedad Española de Mineralogía /28./ ; Reunión de la Sociedad Española de Arcillas /21./. Zaragoza, 16.09.2008-19.09.2008] R&D Projects: GA AV ČR IAA300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : trace elements * reference material * carbonate * ICP-MS * laser ablation Subject RIV: DB - Geology ; Mineralogy http://www.ehu.es/sem/macla_pdf/macla9/macla9_235.pdf
Preparation and properties of superconducting Bi-Sr-Ca-Cu-O materials by the alkoxide process
International Nuclear Information System (INIS)
Uchikawa, Fusaoki; Kobayashi, Toshio; Usami, Ryo; Yoshizaki, Kiyoshi
1989-01-01
Homogeneous starting solutions were synthesized using Bi, Sr, Ca and Cu alkoxides. Powders, thick films and gel fibers were prepared respectively by controlling hydrolysis using the same solutions. The synthesized powder had a homogeneous particle size. The fired powder showed a good crystallization property. The thick film coated on MgO substrate using the synthesized sol solution had a smooth surface and a uniformity of each metal elements. The film showed the c-axis orientation and was shown to have the zero resistance temperature of 90 K and the critical current density of 180 A/cm 2 at 77 K. The fiber drawn from the viscous gel solution showed a comparatively large shrinkage with hear treatment. The fired fiber was brittle and had a low strength. It was also found for the fired fiber that zero resistance temperature was 70 K and the critical current density was 90 A/cm 2 at 77 K
Kavner, A.
2017-12-01
In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.
International Nuclear Information System (INIS)
Gwo, J.P.; Jardine, P.M.; Yeh, G.T.; Wilson, G.V.
1995-04-01
Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoretical background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices
Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.J.; de Nooijer, L.J.; Bijma, J.
2015-01-01
Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of
International Nuclear Information System (INIS)
Chatham, J.R.; Wanty, R.B.; Langmuir, D.
1981-02-01
Groundwaters from aquifers in two different sandstone-type uranium mining districts in Texas and Wyoming were collected and chemically analyzed. The data were used to compare the merits of using the computed saturation state of the groundwater with respect to uranium minerals, to that of single-element tracers in the groundwater for geochemical prospecting. Chemical properties of the Texas waters were influenced locally by preferred groundwater flow within buried fluvial channel deposits; upward leakage of brines along growth faults into the aquifer; and the establishment of a redox interface (Eh = 0 volts) within the aquifer. Chemical characteristics of aquifer waters in Wyoming changed gradually downdip, reflecting regional homogeneity in groundwater flow and a more gradual downdip reduction of Eh values than in Texas. The most reliable indicator of reduced uranium ore in both study sites was the saturation state of groundwater with respect to uraninite or coffinite. For both minerals, this saturation state increased from 15 to 20 log units as reduced ore deposits were approached over distances of 3 to 4.5 km in both sites. Tyuyamunite and carnotite approached or exceeded saturation in some oxidized waters of the Texas site reflecting possible occurrences of these minerals. The radiogenic elements Ta and Rn were excellent indicators of ore directly within the deposits, where anomalous values were 2 to 3 orders of magnitude above background. Helium also increased near the ore, although anomalies were generally displaced in the direction of groundwater flow. Uranium and uranium isotope values did not individually pinpoint ore, but may be used together to classify groundwater samples in terms of their position relative to uranium mineralization
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
A comparison of phytoremediation capability of selected plant species for given trace elements
International Nuclear Information System (INIS)
Fischerova, Zuzana; Tlustos, Pavel; Jirina Szakova; Kornelie Sichorova
2006-01-01
In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 mol L -1 CaCl 2 ). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time. - Selected accumulator trees grown on medium contaminated soil may have remediation capacity similar to hyperaccumulator species
Standard elements; Elements standards
Energy Technology Data Exchange (ETDEWEB)
Blanc, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1958-07-01
Following his own experience the author recalls the various advantages, especially in the laboratory, of having pre-fabricated vacuum-line components at his disposal. (author) [French] A la suite de sa propre experience, l'auteur veut rappeler les divers avantages que presente, tout particulierement en laboratoire, le fait d'avoir a sa disposition des elements pre-fabriques de canalisations a vide. (auteur)
International Nuclear Information System (INIS)
Lautard, J.J.; Flumiani, T.
2003-01-01
The mixed dual finite element method is usually used for the resolution of the SPN transport equations (simplified PN equations) in 3D homogenized geometries (composed by homogenized rectangles or hexagons). This method produces fast results with little memory requirements. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals (for the moment limited to 2D), allowing us to treat geometries where fuel pins are exactly represented. The iterative resolution of the resulting matrix system is a generalization of the one already developed for the cartesian and the hexagonal geometries. In order to illustrate and to show the efficiency of this method, results on the NEA-C5G7-MOX benchmark are given. The previous benchmark has been extended for the hexagonal geometry and we provide here some results. This method is a first step towards the treatment of pin by pin core calculations without homogenization. The present solver is a prototype. It shows the efficiency of the method and it has to be extended to 3D calculations as well as to exact transport calculations. We also intend to extend the method to the treatment of unstructured geometries composed by quadrilaterals with curved edges (sectors of a circle).The iterative algorithm has yet to be accelerated using multigrid techniques through a coupling with the present homogenized solver (MINOS). In the future, it will be included in the next generation neutronic toolbox DESCARTES currently under development
International Nuclear Information System (INIS)
Sanzi, H; Elvira, G; Kloster, M; Asta, E; Zalazar, M
2006-01-01
All welding processes induce deformations and thermal tensions, which must be evaluated correctly since they can influence a component's structural integrity. This work determines the distribution of temperatures that develop during a manual welding process with shielded electrodes (SMAW), on the circumference seam of a pipe for use in polyducts. A simplified model of Finite Elements (FEA) using three dimensional solids is proposed for the study. The analysis considers that while the welding process is underway, no heat is lost into the environment, that is, adiabatic conditions are considered, and the transformations produced in the material due to phase changes do not produce modifications in the properties of the supporting or base materials. The results of the simulation are compared with those obtained by recent analytical studies developed by different investigators, such as Nguyen, Ohta, Matsuoka, Suzuki and Taeda, where a continuously moving three dimensional double ellipsoidal source was used. The results are then compared with the experimental results by measuring with thermocouples. This study reveals the sensitivity and the validity of the proposed computer model, and in a second stage optimizes the engineering times for the resolution of a problem like the one presented in order to design the corresponding welding procedure (CW)
Findeisen, Felix; Minor, Daniel L.
2010-01-01
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641
Findeisen, Felix; Minor, Daniel L
2010-12-08
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cooper, Zara; Courtwright, Andrew; Karlage, Ami; Gawande, Atul; Block, Susan
2014-12-01
To provide a description of communication breakdowns and to identify interventions to improve surgical decision making for elderly patients with serious illness and acute, life-threatening surgical conditions. Communication between surgeons, patients, and surrogates about goals of treatment plays an important and understudied role in determining the surgical interventions elderly patients with serious illness receive. Communication breakdowns may lead to nonbeneficial procedures in acute events near the end of life. We review the available literature on factors that lead to communication challenges and nonbeneficial surgery at the end of life. We use this review to identify solutions for navigating surgical decision making for seriously ill elderly patients with acute surgical conditions. Surgeon, patient, surrogate, and systemic factors-including time constraints, inadequate provider communication skills and training, uncertainty about prognosis, patient and surrogate anxiety and fear of inaction, and limitations in advance care planning-contribute to communication challenges and nonbeneficial surgery at the end of life. Surgeons could accomplish more effective communication with seriously ill elderly patients if they had a structured, standardized approach to exploring patients' preferences and to integrating those preferences into surgical decisions in the acute setting. Improved communication among surgeons, patients, and surrogates is necessary to ensure that patients receive the care that they want and to avoid nonbeneficial treatment. Further research is needed to learn how to best structure these conversations in the emergency surgical setting.
International Nuclear Information System (INIS)
Mazzolini, A.P.; Legge, G.J.F.
1982-01-01
A scanning proton microprobe has been used to determine the distribution of Cu and other elements in Wimmera ryegrass roots grown in solution cultures. Cu was found to be localized on or near the surface of the roots in randomly distributed discrete zones. The distribution of Cu was partially correlated with those of Fe, P and Ca and possibly indicates some form of association; co-precipitation in a precipitate of ferric phosphate or hydroxy-oxide is favoured
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.
Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z
2000-12-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice
Energy Technology Data Exchange (ETDEWEB)
Wang, X.; Tian, J. E-mail: tianjun@public.lz.gs.cn; Yin, X.M.; Zhang, X.; Wang, Q.Z
2000-12-15
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon {sup 40}Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice
International Nuclear Information System (INIS)
Wang, X.; Tian, J.; Yin, X.M.; Zhang, X.; Wang, Q.Z.
2000-01-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40 Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice
Directory of Open Access Journals (Sweden)
Wrana B.
2011-03-01
Full Text Available Artykuł podejmuje zagadnienie analizy rozchodzenia sie fal naprezeniowych w gruncie w ujeciu metody elementów skonczonych bazujac na sformułowaniu rozwiazania ciagłego w przestrzeni i nieciagłego w dziedzinie czasu Galerkina (space and time-discontinous Galerkin TDG finite element method. W tym sformułowaniu zarówno przemieszczenia jak i predkosci sa wielkosciami nieznanymi wzajemnie niezaleznymi aproksymowanymi ciagłymi funkcjami kształtu w przestrzeni i nieciagłymi funkcjami kształtu w czasie. Do opisu zachowania sie gruntu w pełni nasyconego woda zastosowano sformułowanie u-p w ujeciu metody elementów skonczonych. Grunt traktowany jest, jako osrodek dwufazowy składajacy sie ze szkieletu i wody w porach. Zastosowane sformułowanie uwzglednia tłumienie osrodka przez uwzglednienie dyssypacji energii proporcjonalnej do predkosci wody wzgledem szkieletu. W artykule przedstawiono porównanie proponowanej metody rozwiazania numerycznego w dziedzinie czasu do metod obecnie stosowanych, takich jak: metoda róznicy centralnej, metoda Houbolta, Wilsona θ, HHT-α oraz najczesciej stosowanej metody Newmarka. Z porównania wynika, ze proponowana metoda jest metoda stabilna o małym błedzie numerycznego rozwiazania.
Energy Technology Data Exchange (ETDEWEB)
Estrada, F.R.; Eiras, J.A.; Garcia, D., E-mail: frestrada@df.ufscar.br, E-mail: eiras@df.ufscar.br, E-mail: ducinei@df.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Fisica. Grupo de Materiais Ferroicos
2017-01-15
Ceramic samples of lead modified calcium titanate (Pb{sub 1-x}Ca{sub x} TiO{sub 3}) with calcium concentration between 0.24≤x≤0.55 were prepared and analyzed in order to determine the structural origin of the negative thermal expansion observed in this ferroelectric system. The Rietveld structural refinement method was used to assess the thermal evolution of the structural parameters using powder X-ray diffraction data collected between 150 and 570 K. Since the Pb{sub 1-x}Ca{sub x} TiO{sub 3} phase diagram and space groups are still unknown for the temperature range investigated, the structural analyses were based on adjustments of the refinement protocol. The results revealed the existence of a correlation between symmetry transitions and anomalies in the thermal expansion of the unit cell, being such transitions not necessarily of the ferroelectric-paraelectric nature. (author)
International Development Research Centre (IDRC) Digital Library (Canada)
et des enfants d'Afrique. INITIATIVE CONCERTÉE. Innovation pour la santé des mères et des enfants d'Afrique. Centre de recherches pour le développement international. CP Box 8500 Ottawa ON Canada K1G 3H9. Téléphone : +1 613 236 6163 • Télécopieur : +1 613 657 7749 ismea@crdi.ca | www.crdi.ca/ismea crdi.ca.
Rare Earth Element Phases in Bauxite Residue
Directory of Open Access Journals (Sweden)
Johannes Vind
2018-02-01
Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.
Fusion dynamics in 40Ca induced reactions
International Nuclear Information System (INIS)
Prasad, E.; Hinde, D.J.; Williams, E.
2017-01-01
Synthesis of superheavy elements (SHEs) and investigation of their properties are among the most challenging research topics in modern science. A non-compound nuclear process called quasi fission is partly responsible for the very low production cross sections of SHEs. The formation and survival probabilities of the compound nucleus (CN) strongly depend on the competition between fusion and quasi fission. A clear understanding of these processes and their dynamics is required to make reliable predictions of the best reactions to synthesise new SHEs. All elements beyond Nh are produced using hot fusion reactions and beams of 48 Ca were used in most of these experiments. In this context a series of fission measurements have been carried out at the Australian National University (ANU) using 40;48 Ca beams on various targets ranging from 142 Nd to 249 Cf. Some of the 40 Ca reactions will be discussed in this symposium
INTRACELLULAR Ca2+ HOMEOSTASIS
Directory of Open Access Journals (Sweden)
Shahdevi Nandar Kurniawan
2015-01-01
Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.
Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong
2016-01-01
CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Sohrabpour, M.; Rostami, S.; Athari, M.
1995-01-01
A network of ten sampling stations for monitoring the elemental concentration of the suspended particulate matter (SPM) in the air of Tehran has been established. Instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS) techniques have been used for analysis of the Whatman-41 filters collected during the year 1994. Assessment of the preliminary results using the two techniques has produced the following twenty-one elements: Al, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sc, Ti, V, Zn. Various standard solutions with known concentrations of elements, together with standard reference materials, have been used for quality assurance of the measured concentrations. (author)
Energy Technology Data Exchange (ETDEWEB)
Souza, Altivo Monteiro de
2008-12-15
The world energy consumption has been increasing strongly in recent years. Nuclear energy has been regarded as a suitable option to supply this growing energy demand in industrial scale. In view of the need of improving the understanding and capacity of analysis of nuclear power plants, modern simulation techniques for flow and heat transfer problems are gaining greater importance. A large number of problems found in nuclear reactor engineering can be dealt assuming axial symmetry. Thus, in this work a stabilized finite element formulation for the solution of the Navier-Stokes and energy equations for axisymmetric problems have been developed and tested. The formulation has been implemented in the NS{sub S}OLVER{sub M}PI{sub 2}D{sub A} program developed at the Parallel Computation Laboratory of the Instituto de Engenharia Nuclear (LCP/IEN) and is now available either for safety analysis or design of nuclear systems. (author)
Galvanic element. Galvanisches Element
Energy Technology Data Exchange (ETDEWEB)
Sprengel, D.; Haelbig, H.
1980-01-03
The invention concerns a gas-tight sealed accumulator with positive and negative electrode plates and an auxillary electrode electroconductively bound to the latter for suppressing oxygen pressure. The auxillary electrode is an intermediate film electrode. The film catalysing oxygen reduction is hydrophilic in character and the other film is hydrophobic. A double coated foil has proved to be advantageous, the hydrophilic film being formed from polymer-bound activated carbon and the hydrophrobic film from porous polytetrafluoroethylene. A metallic network of silver or nickel is rolled into the outer side of the activated carbon film. This auxillary electrode can be used to advantage in all galvanic elements. Even primary cells fall within the scope of application for auxillary electrodes because many of these contain a highly oxidized electrodic material which tends to give off oxygen.
Directory of Open Access Journals (Sweden)
Maksimović Ivana V.
2017-01-01
Full Text Available Even though calcium (Ca, strontium (Sr and barium (Ba belong to the same group of the periodic table of elements, and thus have similar chemical features, their importance for plants differs greatly. Since plants do not have the ability to completely discriminate between essential (e.g. Ca and non-essential elements (e.g. Sr and Ba, they readily take all of them up from soil solution, which is reflected in the ratios of concentrations of those elements in plant tissues, and it influences their nutritive characteristics. The ability of plant species and genotypes to take up and accumulate chemical elements in their different tissues is related to their genetic background. However, differences in chemical composition are the least reflected in their reproductive parts. Hence, the aim of this study was to evaluate ratios of concentrations of Ca, Sr and Ba in the whole grain of diploid and tetraploid wheat - ancestors of common wheat, as well as in hexaploid commercial cultivars, grown in the field, at the same location, over a period of three years. The investigated genotypes accumulated Ca, Sr and Ba at different levels, which is reflected in the ratio of their concentrations in the grain. The lowest ratio was established between Ba and Sr, followed by Ca and Ba, while the highest ratio was between Ca and Sr. Moreover, the results have shown that the year of study, genotype and the combination highly significantly affected the ratio of the concentration Ca:Sr, Ca:Ba, and Ba:Sr.
Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.
2011-06-01
Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship
</