Directory of Open Access Journals (Sweden)
Teresa D'Aprile
2000-11-01
Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.
Russo, David
2017-11-01
The main goal of this study was to test the capability of irrigation water-based and soil-based approaches to control nitrate and chloride mass fluxes and concentrations below the root zone of agricultural fields irrigated with treated waste water (TWW). Using numerical simulations of flow and transport in relatively a fine-textured, unsaturated, spatially heterogeneous, flow domain, scenarios examined include: (i) irrigating with TWW only (REF); (ii) irrigation water is substituted between TWW and desalinized water (ADW); (iii) soil includes a capillary barrier (CB) and irrigating with TWW only (CB + TWW); and (iv) combination of (ii) and a CB (CB + ADW). Considering groundwater quality protection, plausible goals are: (i) to minimize solute discharges leaving the root zone, and, (ii) to maximize the probability that solute concentrations leaving the root zone will not exceed a prescribed, critical value. Results of the analyses suggest that in the case of a seasonal crop (a corn field) subject to irrigations only, with respect to the first goal, the CB + TWW and CB + ADW scenarios provide similar, excellent results, better than the ADW scenario; with respect to the second goal, however, the CB + ADW scenario gave substantially better results than the CB + TWW scenario. In the case a multiyear, perennial crop (a citrus orchard), subject to a sequence of irrigation and rainfall periods, for both solutes, and, particularly, nitrate, with respect to the two goals, both the ADW and CB + ADW scenarios perform better than the CB + TWW scenario. As compared with the REF and CB + TWW scenarios, the ADW and CB + ADW scenarios substantially reduce nitrogen mass fluxes to the groundwater and to the atmosphere, and, essentially, did not reduce nitrogen mass fluxes to the trees. Similar results, even better, were demonstrated for a relatively coarse-textured, spatially heterogeneous soil.
Directory of Open Access Journals (Sweden)
X.-G. Han
2014-06-01
Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.
Czech Academy of Sciences Publication Activity Database
Beššeová, Ivana; Banáš, Pavel; Kührová, P.; Košinová, P.; Otyepka, Michal; Šponer, Jiří
Roč. 116, č. 33 ( 2012 ), s. 9899-9916 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GBP305/12/G034; GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GD203/09/H046; GA ČR(CZ) GA203/09/1476 Grant - others:GA AV ČR(CZ) GPP301/11/P558 Program:GP Institutional research plan: CEZ:AV0Z50040702 Keywords : A-RNA * molecular dynamics * force field Subject RIV: BO - Biophysics Impact factor: 3.607, year: 2012
Ideal flux field dielectric concentrators.
García-Botella, Angel
2011-10-01
The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.
Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.
2017-04-01
Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.
Solutions of Einstein's field equations
Energy Technology Data Exchange (ETDEWEB)
Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education
1978-12-01
In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.
Integrated solution for field operations
Energy Technology Data Exchange (ETDEWEB)
Aubin, Renaud; Dionis, Francois [EDF, Chatou (France)
2014-08-15
This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted.
Integrated solution for field operations
International Nuclear Information System (INIS)
Aubin, Renaud; Dionis, Francois
2014-01-01
This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted
Integrated solution for field operations
International Nuclear Information System (INIS)
Aubin, Renaud; Dionis, Francois
2014-01-01
This paper presents the authors' approach to design and to implement mobile applications for field operations. Internal on-field studies can yield the fact that the value-added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted. (author)
Field evaporation test of uranium tailings solution
International Nuclear Information System (INIS)
Chandler, B.L.; Shepard, T.A.; Stewart, T.A.
1985-01-01
A field experiment was performed to observe the effect on evaporation rate of a uranium tailings impoundment pond water as salt concentration of the water increased. The duration of the experiment was long enough to cause maximum salt concentration of the water to be attained. The solution used in the experiment was tailings pond water from an inactive uranium tailings disposal site in the initial stages of reclamation. The solution was not neutralized. The initial pH was about 1.0 decreasing to a salt gel at the end of the test. The results of the field experiment show a gradual and slight decrease in evaporation efficiency. This resulted as salt concentrations increased and verified the practical effectiveness of evaporation as a water removal method. In addition, the physical and chemical nature of the residual salts suggest that no long-term stability problem would likely result due to their presence in the impoundment during or after reclamation
USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS
Directory of Open Access Journals (Sweden)
N. G. Kul’neva
2015-01-01
Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is
Radiolysis of concentrated nitric acid solutions
International Nuclear Information System (INIS)
Nagaishi, R.; Jiang, P.Y.; Katsumura, Y.; Domae, M.; Ishigure, K.
1995-01-01
A study on electron pulse- and 60 Co γ-radiolysis of concentrated nitric acid and nitrate solutions has been carried out to elucidate the radiation induced reactions taking place in the solutions. Dissociation into NO 2 - and O( 3 P) was proposed as a direct action of the radiation on nitrate and gave the G-values were dependent on the chemical forms of nitrate: g s2 (-NO 3 - )=1.6 and g s2 (-HNO 3 )=2.2 (molecules/100eV). Based on the experimental yields of HNO 2 and reduced Ce IV , the primary yields of radiolysis products of water, g w , were evaluated to clarify the effects of nitrate on spur reactions of water in various nitrate solutions. (author)
Structural study of concentrated micellar solutions
International Nuclear Information System (INIS)
Zemb, Thomas
1985-01-01
This research thesis reports the study of the structure of concentrated soap-water binary micelles with a comparison of measurements of light, neutrons and X-ray scattering, and the relaxation induced by paramagnetic ions adsorbed at the interface. In the first part, the author discusses the specific sensitivity ranges of different experimental techniques, outlines the resolution which can be obtained with scattering experiments, and proposes a critical analysis of results published in the relevant literature. In a second part, the author discusses the compared results of the application of various techniques (magnetic resonance, X-light and neutron scattering) on the two most used model systems: sodium octanoate and sodium dodecyl sulfate (SDS) in solution. Then, the author addresses the case of ternary systems: study of the influence of the presence of a co-surfactant on the structure, study of the effect of interfacial charge on the micellar structure, use of the same previous quantitative methods to study the disturbances brought to the structure due to the presence of reactants [fr
Properties of concentrated plutonium nitrate solutions
International Nuclear Information System (INIS)
Gray, J.H.; Swanson, J.L.
1978-01-01
Selected properties were measured for solutions containing about 500 and 700 g/l plutonium (IV) in 4--5M nitric acid: density, viscosity, vapor pressure, boiling point, radiolytic gas (H 2 ) evolution rates, and corrosion rate on Ti and 304L stainless steel. Pu solubility was determined to be 550 to 800 g/l in 2.5 to 7M HNO 3 at ambient temperature and 820 to 860 g/l in 3M HNO 3 at 50 0 C
Mean-field learning for satisfactory solutions
Tembine, Hamidou
2013-12-01
One of the fundamental challenges in distributed interactive systems is to design efficient, accurate, and fair solutions. In such systems, a satisfactory solution is an innovative approach that aims to provide all players with a satisfactory payoff anytime and anywhere. In this paper we study fully distributed learning schemes for satisfactory solutions in games with continuous action space. Considering games where the payoff function depends only on own-action and an aggregate term, we show that the complexity of learning systems can be significantly reduced, leading to the so-called mean-field learning. We provide sufficient conditions for convergence to a satisfactory solution and we give explicit convergence time bounds. Then, several acceleration techniques are used in order to improve the convergence rate. We illustrate numerically the proposed mean-field learning schemes for quality-of-service management in communication networks. © 2013 IEEE.
Towards combined global monthly gravity field solutions
Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean
2014-05-01
Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing
A Wavefront Division Polarimeter for the Measurements of Solute Concentrations in Solutions
Directory of Open Access Journals (Sweden)
Sergio Calixto
2017-12-01
Full Text Available Polarimeters are useful instruments that measure concentrations of optically active substances in a given solution. The conventional polarimetric principle consists of measuring the rotation angle of linearly polarized light. Here, we present a novel polarimeter based on the study of interference patterns. A Mach–Zehnder interferometer with linearly polarized light at the input is used. One beam passes through the liquid sample and the other is a reference beam. As the linearly polarized sample beam propagates through the optically active solution the vibration plane of the electric field will rotate. As a result, the visibility of the interference pattern at the interferometer output will decrease. Fringe contrast will be maximum when both beams present a polarization perpendicular to the plane of incidence. However, minimum visibility is obtained when, after propagation through the sample the polarization of the sample beam is oriented parallel to the plane of incidence. By using different solute concentrations, a calibration plot is obtained showing the behavior of visibility.
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
Zakrzewski, W.J.
1982-01-01
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
Nitrate concentrations in soil solutions below Danish forests
DEFF Research Database (Denmark)
Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per
1999-01-01
leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...
Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions
National Research Council Canada - National Science Library
Tsui, David
1998-01-01
Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...
Microrheology of concentrated DNA solutions using optical tweezers
Indian Academy of Sciences (India)
. In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power spectral analysis, ...
A portable concentrator for processing plutonium containing solutions
International Nuclear Information System (INIS)
Chamberlain, D.B.; Conner, C.; Chen, L.
1995-01-01
This report describes a horizontal, compact agitated-film concentrator called a Rototherm, manufactured by Artisan Industries, Inc. which can be used to process aqueous solutions of radioactive wastes containing plutonium. The unit is designed to concentrate liquid streams to a high-solid content slurry
International Nuclear Information System (INIS)
Sorel, C.; Moisy, Ph.; Dinh, B.; Blanc, P.
2000-01-01
In order to calculate criticality parameters of nuclear fuel solution systems, number density of nuclides are needed and they are generally estimated from density equations. Most of the relations allowing the calculation of the density of aqueous solutions containing the electrolytes HNO 3 -UO 2 (NO 3 ) 2 -Pu(NO 3 ) 4 , usually called 'nitrate dilution laws' are strictly empirical. They are obtained from a fit of assumed polynomial expressions on experimental density data. Out of their interpolation range, such mathematical expressions show discrepancies between calculated and experimental data appearing in the high concentrations range. In this study, a physico-chemical approach based on the isopiestic mixtures rule is suggested. The behaviour followed by these mixtures was first observed in 1936 by Zdanovskii and expressed as: 'Binary solutions (i.e. one electrolyte in water) having a same water activity are mixed without variation of this water activity value'. With regards to this behaviour, a set of basic thermodynamic expressions has been pointed out by Ryazanov and Vdovenko in 1965 concerning enthalpy, entropy, volume of mixtures, activity and osmotic coefficient of the components. In particular, a very simple relation for the density is obtained from the volume mixture expression depending on only two physico-chemical variables: i) concentration of each component in the mixture and in their respectively binary solutions having the same water activity as the mixture and ii), density of each component respectively in the binary solution having the same water activity as the mixture. Therefore, the calculation needs the knowledge of binary data (water activity, density and concentration) of each component at the same temperature as the mixture. Such experimental data are largely published in the literature and are available for nitric acid and uranyl nitrate. Nevertheless, nitric acid binary data show large discrepancies between the authors and need to be
Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions
Turkoz, Emre; Perazzo, Antonio; Arnold, Craig B.; Stone, Howard A.
2018-05-01
The addition of small amounts of xanthan gum to water yields viscoelastic solutions. In this letter, we show that the viscoelasticity of aqueous xanthan gum solutions can be tuned by different types of salts. In particular, we find that the decrease in viscoelasticity not only depends, as is known, on the salt concentration, but also is affected by the counterion ionic radius and the valence of the salt.
Conductivity and electrochemical stability of concentrated aqueous choline chloride solutions
Grishina, E. P.; Kudryakova, N. O.
2017-10-01
The conductivity and electrochemical stability of choline chloride (ChCl) solutions with water contents ranging from 20 to 39 wt % are studied. Exposing ChCl to moist ambient air yields a highly concentrated aqueous solution that, as an electrolyte, exhibits the properties and variations in conductivity with temperature and concentration characteristic of other similar systems. Its electrochemical stability window, determined by cyclic voltammetry, is comparable to that of ChCl-based deep eutectic solvents (DESs). Products of the electrolysis of ChCl‒H2O mixtures seem to be less toxic than those of Reline, Ethaline, and Maline.
Development of system on predicting uranium concentration from pregnant solution
International Nuclear Information System (INIS)
Yi Weiping
2004-01-01
Uranium concentration from pregnant solution is primary index of process for in-situ leaching of uranium, and the suitable method with which to predicate this index and effective means to solve it with were continuously studied hard. SPUC-system on predicting uranium concentration based on GM model of gray system theory is developed, and the mathematical model, constitution, function and theory foundation of this system are introduced. (authors)
Shinagawa, Tatsuya; Takanabe, Kazuhiro
2015-01-01
. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015
Densities concentrations of aqueous of uranyl nitrate solutions
International Nuclear Information System (INIS)
Rodrigo Otero, A.; Rodriguez Hernandez, B.; Fernandez Rodriguez, L.
1966-01-01
The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U 3 O 8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs
Rheological properties of concentrated solutions of carboxymethyl starch
Directory of Open Access Journals (Sweden)
Stojanović Željko
2003-01-01
Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.
Acquisition and Analysis of Data from High Concentration Solutions
Besong, Tabot M.D.
2016-05-13
The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.
Acquisition and Analysis of Data from High Concentration Solutions
Besong, Tabot M.D.; Rowe, Arthur J.
2016-01-01
The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.
Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.
Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T
2016-07-07
We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.
Fissile materials in solution concentration measured by active neutron interrogation
International Nuclear Information System (INIS)
Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.
1993-01-01
The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a 252 Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.)
Small angle X-ray scattering on concentrated hemoglobin solutions
International Nuclear Information System (INIS)
Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.
1978-01-01
The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)
Moran, B.; Kulkarni, S.S.; Reeves, H.W.
2007-01-01
A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.
Energy Technology Data Exchange (ETDEWEB)
Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)
2016-01-15
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f
International Nuclear Information System (INIS)
Cochrane, T. T.; Cochrane, T. A.
2016-01-01
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded
Shinagawa, Tatsuya
2015-04-24
To maintain local pH levels near the electrode during electrochemical reactions, the use of buffer solutions is effective. Nevertheless, the critical effects of the buffer concentration on electrocatalytic performances have not been discussed in detail. In this study, two fundamental electrochemical reactions, oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR), on a platinum rotating disk electrode are chosen as model gas-related aqueous electrochemical reactions at various phosphate concentrations. Our detailed investigations revealed that the kinetic and limiting diffusion current densities for both the ORR and HOR logarithmically decrease with increasing solute concentration (log|jORR|=-0.39c+0.92,log|jHOR|=-0.35c+0.73). To clarify the physical aspects of this phenomenon, the electrolyte characteristics are addressed: with increasing phosphate concentration, the gas solubility decrease, the kinematic viscosity of the solution increase and the diffusion coefficient of the dissolved gases decrease. The simulated limiting diffusion currents using the aforementioned parameters match the measured ones very well (log|jORR|=-0.43c+0.99,log|jHOR|=-0.40c+0.54), accurately describing the consequences of the electrolyte concentration. These alterations of the electrolyte properties associated with the solute concentration are universally applicable to other aqueous gas-related electrochemical reactions because the currents are purely determined by mass transfer of the dissolved gases. © 2015 The Authors.
Automated assay of uranium solution concentration and enrichment
International Nuclear Information System (INIS)
Horley, E.C.; Gainer, K.; Hansen, W.J.; Kelley, T.A.; Parker, J.L.; Sampson, T.E.; Walton, G.; Jones, S.A.
1992-01-01
For the first time, the concentration and enrichment of uranium solutions can be measured in one step. We have developed a new instrument to automatically measure the concentration and enrichment of uranium solutions through the adaptation of a commercial robot. Two identical solution enrichment systems are being installed in the Portsmouth Gaseous Diffusion Plant. These automated systems will reduce radiation exposure to personnel and increase the reliability and repeatability of the measurements. Each robotic system can process up to 40 batch and 8 priority samples in an unattended mode. Both passive gamma-ray and x-ray fluorescence (XRF) analyses are performed to determine total uranium concentration and 235 U enrichment. Coded samples are read by a bar-code reader to determine measurement requirements, then assayed by either or both of the gamma-ray and XRF instruments. The robot moves the sample containers and operates all shield doors and shutters, reducing hardware complexity. If the robots is out of service, an operator can manually perform all operations
Methylparaben concentration in commercial Brazilian local anesthetics solutions
Directory of Open Access Journals (Sweden)
Gustavo Henrique Rodriguez da Silva
2012-08-01
Full Text Available OBJECTIVE: To detect the presence and concentration of methylparaben in cartridges of commercial Brazilian local anesthetics. MATERIAL AND METHODS: Twelve commercial brands (4 in glass and 8 in plastic cartridges of local anesthetic solutions for use in dentistry were purchased from the Brazilian market and analyzed. Different lots of the commercial brands were obtained in different Brazilian cities (Piracicaba, Campinas and São Paulo. Separation was performed using high performance liquid chromatography (HPLC with UV-Vis detector. The mobile phase used was acetonitrile:water (75:25 - v/v, pH 4.5, adjusted with acetic acid at a flow rate of 1.0 ml.min-1. RESULTS: When detected in the solutions, the methylparaben concentration ranged from 0.01% (m/v to 0.16% (m/v. One glass and all plastic cartridges presented methylparaben. CONCLUSION: 1. Methylparaben concentration varied among solutions from different manufacturers, and it was not indicated in the drug package inserts; 2. Since the presence of methylparaben in dental anesthetics is not regulated by the Brazilian National Health Surveillance Agency (ANVISA and this substance could cause allergic reactions, it is important to alert dentists about its possible presence.
Mean-field learning for satisfactory solutions
Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro
2013-01-01
One of the fundamental challenges in distributed interactive systems is to design efficient, accurate, and fair solutions. In such systems, a satisfactory solution is an innovative approach that aims to provide all players with a satisfactory payoff
Dielectric constant of ionic solutions: a field-theory approach.
Levy, Amir; Andelman, David; Orland, Henri
2012-06-01
We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.
Classical Solutions in Quantum Field Theory
International Nuclear Information System (INIS)
Mann, Robert
2013-01-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons-–kinks, vortices, and magnetic monopoles-–and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is
Raut, Ashlesha S; Kalonia, Devendra S
2015-04-01
Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
A new solution of Einstein's vacuum field equations
Indian Academy of Sciences (India)
The motivation for the new solution ensues ... terms of singularity, does not seem to work universally as there also exist other solutions of eq. ..... the field equations and not necessarily a contribution to the energy–stress tensor, rather just.
Effect of solution concentration on MEH-PPV thin films
Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.
2018-05-01
MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.
Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes.
Salerno, Franco; Rogora, Michela; Balestrini, Raffaella; Lami, Andrea; Tartari, Gabriele A; Thakuri, Sudeep; Godone, Danilo; Freppaz, Michele; Tartari, Gianni
2016-09-06
Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.
New solutions of a nonlinear classical field theory
International Nuclear Information System (INIS)
Marques, G.C.; Ventura, I.
1975-01-01
New solutions of a relativistic, classical, field theoretical model having logarithmic nonlinearities are obtained. Some of these solutions correspond to field not bounded in time but having finite energy and charge. There are no bounded solutions (bound states and resonances in particular) if the charge exceeds a certain value. This effect is due to the existance of a 'charge barrier' in this field theoretical model. All calculations are performed in a number of spatial dimensions [pt
Intelligent fiber optic sensor for solution concentration examination
Borecki, Michal; Kruszewski, Jerzy
2003-09-01
This paper presents the working principles of intelligent fiber-optic intensity sensor used for solution concentration examination. The sensor head is the ending of the large core polymer optical fiber. The head works on the reflection intensity basis. The reflected signal level depends on Fresnel reflection and reflection on suspended matter when the head is submersed in solution. The sensor head is mounted on a lift. For detection purposes the signal includes head submerging, submersion, emerging and emergence is measured. This way the viscosity turbidity and refraction coefficient has an effect on measured signal. The signal forthcoming from head is processed electrically in opto-electronic interface. Then it is feed to neural network. The novelty of presented sensor is implementation of neural network that works in generalization mode. The sensor resolution depends on opto-electronic signal conversion precision and neural network learning accuracy. Therefore, the number and quality of points used for learning process is very important. The example sensor application for examination of liquid soap concentration in water is presented in the paper.
Radiological field survey problems and solutions
International Nuclear Information System (INIS)
Deming, E.J.; Boerner, A.J.
1986-01-01
Situations often arise during radiological field surveys which require the health physicist to improvise and/or make spot decisions. At times these situations can be humorous, but they can also present hazards more serious than normal radiological considerations. This presentation will depict various problematic situations encountered by Oak Ridge Associated Universities Radiological Site Assessment Program in the course of performing field environmental surveys. Detailing these potential hazards can alert other field survey groups to problems they may encounter
Numerical Solution of Magnetostatic Field of Maglev System
Directory of Open Access Journals (Sweden)
Jaroslav Sobotka
2008-01-01
Full Text Available The paper deals with the design of the levitation and guidance system of the levitation train Transrapid 08 by means of QuickField 5.0 – a 2D program formagnetic electromagnetic fields solutions.
Ion-exchange concentration of inorganic anions from aqueous solution
Directory of Open Access Journals (Sweden)
L. P. Bondareva
2016-01-01
Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.
Exact solutions in string-motivated scalar-field cosmology
International Nuclear Information System (INIS)
Oezer, M.; Taha, M.O.
1992-01-01
Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era
International Nuclear Information System (INIS)
Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio
2003-01-01
The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost
A class of exact solutions to the Einstein field equations
International Nuclear Information System (INIS)
Goyal, Nisha; Gupta, R K
2012-01-01
The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)
Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions
International Nuclear Information System (INIS)
Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.
1979-01-01
Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given
The solutions of affine and conformal affine Toda field theory
International Nuclear Information System (INIS)
Papadopoulos, G.; Spence, B.
1994-02-01
We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs
Solutions for the motion of an electron in electromagnetic fields
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Jushin, A.V.
1975-01-01
New exact solutions of the Lorentz, Hamilton--Jacobi, Klein--Gordon, and Dirac equations for an electron moving in the field of a plane wave and in electric and magnetic fields were found. The electric and magnetic fields are parallel to the direction of propagation of the plane wave. The magnetic field is constant and the electric field is an arbitrary function of the combination ct-z
Heterotic string solutions and coset conformal field theories
Giveon, Amit; Tseytlin, Arkady A
1993-01-01
We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...
A three-dimensional field solutions of Halbach
International Nuclear Information System (INIS)
Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan
2008-01-01
A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)
International Nuclear Information System (INIS)
Xia Dechang; Liu Chao
2012-01-01
On the basis of discussing the influence of single factor on maximum uranium concentration in digestion solution,the influence degree of some factors such as U content, H 2 O content, mass ratio of P and U was compared and analyzed. The results indicate that the relationship between U content and maximum uranium concentration in digestion solution was direct ratio, while the U content increases by 1%, the maximum uranium concentration in digestion solution increases by 4.8%-5.7%. The relationship between H 2 O content and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 46.1-55.2 g/L while H 2 O content increases by 1%. The relationship between mass ratio of P and U and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 116.0-181.0 g/L while the mass ratio of P and U increase 0.1%. When U content equals 62.5% and the influence of mass ratio of P and U is no considered, the maximum uranium concentration in digestion solution equals 1 578 g/L; while mass ratio of P and U equals 0.35%, the maximum uranium concentration decreases to 716 g/L, the decreased rate is 54.6%, so the mass ratio of P and U in U 3 O 8 type uranium ore concentrate is the main controlling factor. (authors)
Efficient numerical solution to vacuum decay with many fields
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali; Olum, Ken D.; Shlaer, Benjamin, E-mail: ali@cosmos.phy.tufts.edu, E-mail: kdo@cosmos.phy.tufts.edu, E-mail: shlaer@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2017-01-01
Finding numerical solutions describing bubble nucleation is notoriously difficult in more than one field space dimension. Traditional shooting methods fail because of the extreme non-linearity of field evolution over a macroscopic distance as a function of initial conditions. Minimization methods tend to become either slow or imprecise for larger numbers of fields due to their dependence on the high dimensionality of discretized function spaces. We present a new method for finding solutions which is both very efficient and able to cope with the non-linearities. Our method directly integrates the equations of motion except at a small number of junction points, so we do not need to introduce a discrete domain for our functions. The method, based on multiple shooting, typically finds solutions involving three fields in around a minute, and can find solutions for eight fields in about an hour. We include a numerical package for Mathematica which implements the method described here.
Analytic solutions for marginal deformations in open superstring field theory
International Nuclear Information System (INIS)
Okawa, Y.
2007-04-01
We extend the calculable analytic approach to marginal deformations recently developed in open bosonic string field theory to open superstring field theory formulated by Berkovits. We construct analytic solutions to all orders in the deformation parameter when operator products made of the marginal operator and the associated superconformal primary field are regular. (orig.)
Directory of Open Access Journals (Sweden)
T. S. Steenhuis
1997-01-01
Full Text Available Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.
Concentration of rhenium from dilute sodium chloride solutions
Directory of Open Access Journals (Sweden)
DRAGOLJUB M. LUKIC
2008-03-01
Full Text Available The conditions for the desorption of rhenium from the anion exchange resin Dowex 1-x8 by HNO3, HCl, H2SO4 and NaOH were determined. The solution (5.0´10-3 mol dm-3 Re in 0.15 mol dm-3 NaCl was passed through a column containing 0.10 g of the resin. The total sorbed amount of rhenium was 0.20 g/g of the resin. It was then eluted by the corresponding eluent in the concentration range up to about 3.0 mol dm-3. The highest elution efficiency and the most favourable elution profile were found with 3.0 mol dm-3 HNO3. Over 77 % of the sorbed rhenium was found in the first 5 ml of the eluate. Practically all the rhenium was recovered with 20 ml of the acid. Under the given experimental conditions, HCl and H2SO4 were less favourable while NaOH was not applicable, due to very low efficiency of rhenium elution.
A New Solution for Einstein Field Equation in General Relativity
Mousavi, Sadegh
2006-05-01
There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.
Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao
2003-09-01
The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-01-01
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested
Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza
2018-04-01
In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface
Regularity of solutions of a phase field model
Amler, Thomas
2013-01-01
Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Zhu, Y-G; Huang, Y-Z; Hu, Y; Liu, Y-X
2003-04-01
A hydroponic experiment was carried out to investigate the effects of iodine species and solution concentrations on iodine uptake by spinach (Spinacia oleracea L.). Five iodine concentrations (0, 1, 10, 50 and 100 microM) for iodate (IO(3)(-)) and iodide (I(-)) were used. Results show that higher concentrations of I(-) (> or =10 microM) had some detrimental effect on plant growth, while IO(3)(-) had little effect on the biomass production of spinach plants. Increases in iodine concentration in the growth solution significantly enhanced I concentrations in plant tissues. The detrimental effect of I(-) on plant growth was probably due to the excessively high accumulation of I in plant tissues. The solution-to-spinach leaf transfer factors (TF(leaf), fresh weight basis) for plants treated with iodide were between 14.2 and 20.7 at different solution concentrations of iodide; TF(leaf) for plants treated with iodate decreased gradually from 23.7 to 2.2 with increasing solution concentrations of iodate. The distribution coefficients (DCs) of I between leaves and roots were constantly higher for plants treated with iodate than those treated with iodide. DCs for plants treated with iodide increased with increasing solution concentrations of iodide, while DCs for plants treated with iodate (around 5.5) were similar across the range of solution concentrations of iodate used in this experiment. The implications of iodine accumulation in leafy vegetables in human iodine nutrition are also discussed. Copyright 2002 Elsevier Science Ltd.
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Analytic study of nonperturbative solutions in open string field theory
International Nuclear Information System (INIS)
Bars, I.; Kishimoto, I.; Matsuo, Y.
2003-01-01
We propose an analytic framework to study the nonperturbative solutions of Witten's open string field theory. The method is based on the Moyal star formulation where the kinetic term can be split into two parts. The first one describes the spectrum of two identical half strings which are independent from each other. The second one, which we call midpoint correction, shifts the half string spectrum to that of the standard open string. We show that the nonlinear equation of motion of string field theory is exactly solvable at zeroth order in the midpoint correction. An infinite number of solutions are classified in terms of projection operators. Among them, there exists only one stable solution which is identical to the standard butterfly state. We include the effect of the midpoint correction around each exact zeroth order solution as a perturbation expansion which can be formally summed to the complete exact solution
The potts chain in a random field: an exact solution
International Nuclear Information System (INIS)
Riera, R.; Chaves, C.M.G.F.; Santos, Raimundo R. dos.
1984-01-01
An exact solution is presented for the one-dimensional q-state Potts model in a quenched random field. The ferromagnetic phase is unstable against any small random field perturbation. The correlation function and the Edwards-Anderson order parameter Q are discussed. For finite q only the phase with Q ≠ 0 is present. (Author) [pt
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions
Czech Academy of Sciences Publication Activity Database
Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel
2014-01-01
Roč. 118, č. 28 (2014), s. 7902-7909 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Institutional support: RVO:61388963 Keywords : calcium chloride * aqueous solution * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014
Plutonium solution in concentration range from 8 to 17 G/liter
Energy Technology Data Exchange (ETDEWEB)
Rothe, R.E.
1997-06-01
This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs.
Plutonium solution in concentration range from 8 to 17 G/liter
International Nuclear Information System (INIS)
Rothe, R.E.
1997-01-01
This paper very briefly discusses the need for a fundamental criticality study of low concentrations of plutonium solutions. Examples of the occurrence of such solutions, which are characteristic of waste, are cited. Due to the prevalence of decontaminating and decommissioning activities, low concentration solutions are expected to become an important concern. Technical deficiencies in previous calculations are also discussed as a reason for performing low concentration criticality studies. 3 refs
Charged string solutions with dilaton and modulus fields
Cvetic, M
1994-01-01
We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\
International Nuclear Information System (INIS)
Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V
2008-01-01
We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization
Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution
Directory of Open Access Journals (Sweden)
Chia-Chin Chiang
2013-01-01
Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Reactivity of the cadmium ion in concentrated phosphoric acid solutions.
De Gyves, J; Gonzales, J; Louis, C; Bessiere, J
1989-07-01
The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified.
Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias; Bruus, Henrik
2017-01-01
that weakly perturb the fluid density and speed of sound is presented and applied to study manipulation of concentration fields in rectangular-channel acoustic eigenmodes and in Bessel-function acoustic vortices. In the first example, methods to obtain horizontal and vertical multilayer stratification...
Finite element solution of quasistationary nonlinear magnetic field
International Nuclear Information System (INIS)
Zlamal, Milos
1982-01-01
The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth
Numerical solution of field theories using random walks
International Nuclear Information System (INIS)
Barnes, T.; Daniell, G.J.
1985-01-01
We show how random walks in function space can be employed to evaluate field theoretic vacuum expectation values numerically. Specific applications which we study are the two-point function, mass gap, magnetization and classical solutions. This technique offers the promise of faster calculations using less computer memory than current methods. (orig.)
Phase field simulations of ice crystal growth in sugar solutions
Sman, Van Der R.G.M.
2016-01-01
We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make
Combination of monthly gravity field solutions from different processing centers
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2015-04-01
Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the
Explicit Solutions for One-Dimensional Mean-Field Games
Prazeres, Mariana
2017-04-05
In this thesis, we consider stationary one-dimensional mean-field games (MFGs) with or without congestion. Our aim is to understand the qualitative features of these games through the analysis of explicit solutions. We are particularly interested in MFGs with a nonmonotonic behavior, which corresponds to situations where agents tend to aggregate. First, we derive the MFG equations from control theory. Then, we compute explicit solutions using the current formulation and examine their behavior. Finally, we represent the solutions and analyze the results. This thesis main contributions are the following: First, we develop the current method to solve MFG explicitly. Second, we analyze in detail non-monotonic MFGs and discover new phenomena: non-uniqueness, discontinuous solutions, empty regions and unhappiness traps. Finally, we address several regularization procedures and examine the stability of MFGs.
Sedimentation Characteristics of Kaolin and Bentonite in Concentrated Solutions
Directory of Open Access Journals (Sweden)
Abdulah Obut
2005-11-01
Full Text Available The sedimentation characteristics of two clays, namely kaolinite and bentonite, were determinated at high clay (5 % wt/vol and electrolyte (1 N concentrations using various inorganic-organic compounds. It was observed that the settling behaviour of kaolinite (1:1 clay and montmorillonite (2:1 clay is quite different due to the structural differences between these minerals. Although, similar initial settling rates and final sediment volumes were obtained after 24 hours of settling time for kaolin suspensions, the corresponding rates and volumes for bentonite suspensions varied greatly with the used chemical compound. According to the experimental results, a further intensive theoretical and experimental investigation is needed to reveal the mechanism underlying the sedimentation characteristics of clay minerals at high clay and electrolyte concentrations.
Comparison of potential field solutions for Carrington Rotation 2144
Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong
2016-02-01
We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.
Solution to reinforcement learning problems with artificial potential field
Institute of Scientific and Technical Information of China (English)
XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li
2008-01-01
A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
Influence of starch origin on rheological properties of concentrated aqueous solutions
Directory of Open Access Journals (Sweden)
Stojanović Željko P.
2011-01-01
Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.
CSR Fields: Direct Numerical Solution of the Maxwell's Equation
International Nuclear Information System (INIS)
Novokhatski, Alexander
2011-01-01
We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).
The numerical solution of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.; Todd, A.M.M.
1986-01-01
The numerics of a numerical code called GARFIELD (Grumman Aerospace RF fIELD code) designed to calculate the three-dimensional structure of ICRF fields in axisymmetric mirrors is presented. The code solves the electromagnetic wave equation for the electric field using a cold plasma dispersion relation with a small collision term to simulate absorption. The full wave solution including E.B is computed. The fields are Fourier analyzed in the poloidal direction and solved on a grid in the axial and radial directions. A two-dimensional equilibrium can be used as the source of equilibrium data. This allows us to extend previous studies of ICRF wave propagation and absorption in mirrors to include the effect of axial variation of the magnetic field and density. (orig.)
Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media
International Nuclear Information System (INIS)
Norton, D.L.; Glass, R.J.
1993-01-01
This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media
On classical solutions of SU(3) gauge field equations
International Nuclear Information System (INIS)
Chakrabarti, A.
1975-01-01
Static classical solutions of SU(3) gauge field equations are studied. The roles of the O(3) subgroup and of the quadrupole generators are discussed systematically. The general form thus obtained leads, through-out, to a high degree of symmetry in the results. This brings in some simplifying features. An octet of scalar mesons is finally added. Certain classes of exact solutions are given that are singular at the origin. A generalized gauge condition is pointed out. The relation of the general form to known particular cases is discussed [fr
Evanescent Wave Absorption Based Fiber Sensor for Measuring Glucose Solution Concentration
Marzuki, Ahmad; Candra Pratiwi, Arni; Suryanti, Venty
2018-03-01
An optical fiber sensor based on evanescent wave absorption designed for measuring glucose solution consentration was proposed. The sensor was made to detect absorbance of various wavelength in the glucose solution. The sensing element was fabricated by side polishing of multimode polymer optical fiber to form a D-shape. The sensing element was immersed in different concentration of glucoce solution. As light propagated through the optical fiber, the evanescent wave interacted with the glucose solution. Light was absorbed by the glucose solution. The larger concentration the glucose solution has, the more the evanescent wave was absorbed in particular wavelenght. Here in this paper, light absorbtion as function of glucose concentration was measured as function of wavelength (the color of LED). We have shown that the proposed sensor can demonstrated an increase of light absorption as function of glucose concentration.
Zhang, H; Zhao, F J; Sun, B; Davison, W; McGrath, S P
2001-06-15
Risk assessments of metal contaminated soils need to address metal bioavailability. To predict the bioavailability of metals to plants, it is necessary to understand both solution and solid phase supply processes in soils. In striving to find surrogate chemical measurements, scientists have focused either on soil solution chemistry, including free ion activities, or operationally defined fractions of metals. Here we introduce the new concept of effective concentration, CE, which includes both the soil solution concentration and an additional term, expressed as a concentration, that represents metal supplied from the solid phase. CE was measured using the technique of diffusive gradients in thin films (DGT) which, like a plant, locally lowers soil solution concentrations, inducing metal supply from the solid phase, as shown by a dynamic model of the DGT-soil system. Measurements of Cu as CE, soil solution concentration, by EDTA extraction and as free Cu2+ activity in soil solution were made on 29 different soils covering a large range of copper concentrations. Theywere compared to Cu concentrations in the plant material of Lepidium heterophyllum grown on the same soils. Plant concentrations were linearly related and highly correlated with CE but were more scattered and nonlinear with respect to free Cu2+ activity, EDTA extraction, or soil solution concentrations. These results demonstrate that the dominant supply processes in these soils are diffusion and labile metal release, which the DGT-soil system mimics. The quantity CE is shown to have promise as a quantitative measure of the bioavailable metal in soils.
Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils
International Nuclear Information System (INIS)
Kamei-Ishikawa, Nao; Uchida, Shigeo; Tagami, Keiko; Satta, Naoya
2011-01-01
The soil-soil solution distribution coefficient (K d ) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that K d is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which K d is valid. The objective of this study was to determine if the K d for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63 Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant K d becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat K d for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)
Problems of evaluating isotope analysis of concentrated salt solutions in potash mines
International Nuclear Information System (INIS)
Schmiedl, H.D.
1980-01-01
Three problems of quantitative evaluation of analytic D and 18 O isotope data of concentrated salt solutions are discussed: (1) Consideration of the influence of admixtures of hydrated salts in determining meteoric or marine water fractions in a concentrated salt solution, (2) analytic accuracy and detection limits in determining meteoric water in salt solutions, and (3) processes of isotopic exchange with reservoir rock and sample matrix
Institute of Scientific and Technical Information of China (English)
WANG Zixiao; YU Lei; LIU Zhiyong; SONG Ning
2015-01-01
Effect of an organic corrosion inhibitor (OCI) named PCI-2014 added in chloride solution on the critical chlo-ride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chlo-ride solution were investigated. The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution. Within a certain chloride ion concentration range, the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution. Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer. Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Directory of Open Access Journals (Sweden)
Jefferson Luiz de Aguiar Paes
2014-10-01
Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan
2016-01-01
After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.
Kabala, Cezary; Karczewska, Anna; Gałka, Bernard; Cuske, Mateusz; Sowiński, Józef
2017-07-01
The aims of the study were to analyse the concentration of nitrate and ammonium ions in soil solutions obtained using MacroRhizon miniaturized composite suction cups under field conditions and to determine potential nitrogen leaching from soil fertilized with three types of fertilizers (standard urea, slow-release urea, and ammonium nitrate) at the doses of 90 and 180 kg ha -1 , applied once or divided into two rates. During a 3-year growing experiment with sugar sorghum, the concentration of nitrate and ammonium ions in soil solutions was the highest with standard urea fertilization and the lowest in variants fertilized with slow-release urea for most of the months of the growing season. Higher concentrations of both nitrogen forms were noted at the fertilizer dose of 180 kg ha -1 . One-time fertilization, at both doses, resulted in higher nitrate concentrations in June and July, while dividing the dose into two rates resulted in higher nitrate concentrations between August and November. The highest potential for nitrate leaching during the growing season was in July. The tests confirmed that the miniaturized suction cups MacroRhizon are highly useful for routine monitoring the concentration of nitrate and ammonium ions in soil solutions under field conditions.
Engineered pipeline field joint coating solutions for demanding conditions
Energy Technology Data Exchange (ETDEWEB)
Lwemuchi, Andre L.; Gudme, Carl C.; Buchanan, Robert [Canusa-CPS, Toronto, OT (Canada)
2009-12-19
Trends in the oil and gas pipeline industry see that the demand for new technologies and engineered solutions for pipeline external coatings are increasing. In general, superior mechanical resistance and long term performance are being required in addition to operating at higher temperatures. This demand for more robust coatings has been created because of factors such as more remote fields, deep onshore reservoirs, deep water offshore fields and heavy oil that must be pumped at higher temperatures. The development of new techniques for pipeline construction is also exposing the coatings to more aggressive construction conditions. Because of this, the use of three layer and multi-layer polypropylene mainline coating systems have been growing considerably. Following this trend, the field joint coating manufacturers developed polypropylene systems and more recently had to work on engineered solutions required for recent offshore projects in Europe where very thick polypropylene field joint heat-shrinkable systems were provided. In addition, projects in remote locations such as the recently completed projects in the Brazilian Amazon required special logistics and field services. The growth of the mining industry in South America with slurry pipelines constructed in the recent years also demanded thicker, more robust coatings. The popularization of directional drilling and shore approach applications moved the industry to develop improved abrasion resistant coating systems such as using sacrificial elements to protect the primary coating integrity after the pipeline pull. PETROBRAS plans to replace existing thermally insulated pipelines crossing Great Sao Paulo. Therefore, pumping heavy oil at high temperatures created the need to develop improved mainline and field joint coatings to avoid having the same sort of problems they are facing in existing thermally insulated lines. Due to these needs, the field joint coating manufactures have been challenged to provide
A new force field including charge directionality for TMAO in aqueous solution
International Nuclear Information System (INIS)
Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore
2016-01-01
We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O TMAO ) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O TMAO to mimic the O TMAO lone pairs and we migrate the negative charge on the O TMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.
A new force field including charge directionality for TMAO in aqueous solution
Energy Technology Data Exchange (ETDEWEB)
Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes; Bonn, Mischa [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Sulpizi, Marialore, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de [Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz (Germany)
2016-08-14
We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.
International Nuclear Information System (INIS)
Lye, P G; Boerkamp, M; Ernest, A; Lamb, D W
2005-01-01
Polymethylmethacrylate (PMMA) optical fibres are low-cost polymer fibres that are generally more physically robust than silica fibres, are more flexible, yet like silica fibres have the potential to be used for practical evanescent field absorption sensors in aqueous solutions. However, evanescent field absorption in aqueous solutions is influenced by more than just the specific absorptivity of the solution in question. The physical configuration of the optical fibre itself, as well as surface charge interactions between the fibre and the chromophore in the solution also significantly affects the sensitivity of the fibre to evanescent field absorption. This paper reports on an investigation of numerous physical phenomena that influence evanescent field absorption for PMMA fibres using an aqueous solution of the dye Amidoblack. Parameters investigated included fibre coiling configuration and bend radius, fibre interaction length, and effect of solution pH. Coiled fibres were found to be more sensitive to evanescent field absorption than straight (uncoiled) lengths, and sensitivity was found to increase with a further reduction in bend radius. At high solution pH, the absorption versus solution concentration proved to be linear whereas at low pH the absorption versus concentration relationship exhibited a clear deviation from linearity. The observed nonlinearity at low pH points to the importance of accounting for electrostatic interactions between chromophore and fibre surface when designing a PMMA sensor for evanescent field absorption measurements in aqueous solutions
International Nuclear Information System (INIS)
Han, Xiang-Gang; Zhang, Xue-Feng
2015-01-01
Using the self-consistent field lattice technique, the effects of concentration and hydrophobic middle block length (where the chain length remains constant) on aggregation behavior are studied in amphiphilic symmetric triblock copolymer solutions. The heat capacity peak for the unimer-micelle transition and the distribution peaks for the different degrees of aggregation for micelles and small aggregates (submicelles) are calculated. Analysis of the conducted computer simulations shows that the transition broadness dependence on concentration is determined by the hydrophobic middle block length, and this dependence is distinctly different when the length of the hydrophobic middle block changes. Different size for small aggregates simultaneously appear in the transition region. As temperature decreases, the number of different size small aggregates for the large hydrophobic middle block length first ascends and then descends in aggregation degree order. These results indicate that any transition broadness change with concentration is related to the mechanism of fragmentation and fusion. These results are helpful for interpreting the aggregation process of amphiphilic copolymers at equilibrium
Isolation of transplutonium elements on ion exchangers from solutions of high salt concentration
International Nuclear Information System (INIS)
Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.
1985-01-01
The behaviour of transplutonium elements (TPE) on cation and anion exchangers in aqueous alcoholic solutions of chlorides and nitrates of some alkali and alkaline earth metals depending on different factors: salt concentration, content of alcohol and of acid in the solution as well as the nature of a cation was studied. The data obtained were used to determine the optimal conditions of concentration of TPE on ion exchangers from solutions containing great quantities of salts. The advantages of the use of aqueous alcoholic solutions of nitric acid in the isolation of TPE are shown. (author)
Imaging at ultrahigh magnetic fields: History, challenges, and solutions.
Uğurbil, Kamil
2018-03-01
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison of interpolation methods for sparse data: Application to wind and concentration fields
International Nuclear Information System (INIS)
Goodin, W.R.; McRae, G.J.; Seinfield, J.H.
1979-01-01
in order to produce gridded fields of pollutant concentration data and surface wind data for use in an air quality model, a number of techniques for interpolating sparse data values are compared. The techniques are compared using three data sets. One is an idealized concentration distribution to which the exact solution is known, the second is a potential flow field, while the third consists of surface ozone concentrations measured in the Los Angeles Basin on a particular day. The results of the study indicate that fitting a second-degree polynomial to each subregion (triangle) in the plane with each data point weighted according to its distance form the subregion provides a good compromise between accuracy and computational cost
Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas
2005-06-02
Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.
Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy
Directory of Open Access Journals (Sweden)
Marc Souris
2012-06-01
Full Text Available The retrieval of nutrient concentration in sugarcane through hyperspectral remote sensing is widely known to be affected by canopy architecture. The goal of this research was to develop an estimation model that could explain the nitrogen variations in sugarcane with combined cultivars. Reflectance spectra were measured over the sugarcane canopy using a field spectroradiometer. The models were calibrated by a vegetation index and multiple linear regression. The original reflectance was transformed into a First-Derivative Spectrum (FDS and two absorption features. The results indicated that the sensitive spectral wavelengths for quantifying nitrogen content existed mainly in the visible, red edge and far near-infrared regions of the electromagnetic spectrum. Normalized Differential Index (NDI based on FDS_{(750/700} and Ratio Spectral Index (RVI based on FDS_{(724/700} are best suited for characterizing the nitrogen concentration. The modified estimation model, generated by the Stepwise Multiple Linear Regression (SMLR technique from FDS centered at 410, 426, 720, 754, and 1,216 nm, yielded the highest correlation coefficient value of 0.86 and Root Mean Square Error of the Estimate (RMSE value of 0.033%N (n = 90 with nitrogen concentration in sugarcane. The results of this research demonstrated that the estimation model developed by SMLR yielded a higher correlation coefficient with nitrogen content than the model computed by narrow vegetation indices. The strong correlation between measured and estimated nitrogen concentration indicated that the methods proposed in this study could be used for the reliable diagnosis of nitrogen quantity in sugarcane. Finally, the success of the field spectroscopy used for estimating the nutrient quality of sugarcane allowed an additional experiment using the polar orbiting hyperspectral data for the timely determination of crop nutrient status in rangelands without any requirement of prior
Modeling of water flow and solute transport in unsaturated heterogeneous fields
International Nuclear Information System (INIS)
Bresler, E.; Dagan, G.
1982-01-01
A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications
Investigation into sorption of uranium fron its high-concentrated nitric acid solutions on resin AMP
International Nuclear Information System (INIS)
Savel'eva, V.I.; Sudarikov, B.N.; Kireeva, G.N.; Ryzhkova, V.N.; Kandaryuk, V.V.
1976-01-01
Sorption of uranium has been studied on strongly basic anion-exchange resin from nitric acid solutions with concentration in metal 10-150 g/l in presence of sodium, calcium, and aluminium nitrates. Sorption of uranium from solutions has been performed by the static method with the aid of contacting the initial solution with airdry resin for 4 hours, resin to solution ratio being 1:12.5. It has been established that sorption of uranium increases with a rise in concentration of salting out agents in the following order: Al(NO 3 ) 3 > Ca(NO 3 ) 2 > Na(NO 3 ). It has been shown spectrophotometricatly that in solutions of nitrates and HNO 3 with a concentration 3 exceeds 6 mol/l
Anomalous concentration gradient in NaI solutions inadvertently frozen in transit
International Nuclear Information System (INIS)
Billinghurst, M.W.; Abrams, D.N.; Coutts, A.D.
1990-01-01
Therapeutic doses of iodine-131 ( 131 I) are frequently dispensed volumetrically from a stock vial containing a solution of sodium iodide. During the winter months the authors have observed that initial aliquots do not always have the same radioactive concentration as that calculated for the bulk solution. In order to evaluate the cause and extent of this problem, they prepared a stock solution of low radioactive concentration sodium iodide with the same concentration of sodium thiosulfate and pH as that in the stock therapeutic iodine vial. Aliquots of this solution were transferred to plastic tubes and were stored at various temperatures. These results clearly show that when there is a risk of freezing during transportation of therapeutic solutions of sodium iodide it is essential to physically mix the liquid once thawing is complete if therapeutic doses are to be dispensed accurately on a volume basis
Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.
2011-01-01
The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium
Quasistationary solutions of scalar fields around accreting black holes
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.
2016-08-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.
International Nuclear Information System (INIS)
Hadjadj, A.; Julien, R.; Pucheault, J.; Ferradini, C.; Hickel, B.
1982-01-01
In the preceding study of the radiolysis of concentrated aqueous LiCl solutions, one of the hypotheses used to explain the apparent inefficacy of Cl 2- formation by the direct effect was that molecular chlorine, not detectable by spectrophotometry, could be formed during the early stages of water radiolysis. Such an hypothesis is confirmed here for pulse and #betta#-radiolysis of concentrated aqueous neutral LiI solutions. Indeed, it is shown that, 10 ns after the pulse, molecular iodine, detected as I 3- , is formed with a yield that increases with the LiI concentration. The experimental results yields values of 4.8 and 7.3 respectively for the indirect and direct effects of total oxidation G/sub I 2- / + 2G/sub I 3- /. This last high value is discussed
Traveling wave solution of the Reggeon field theory
International Nuclear Information System (INIS)
Peschanski, Robi
2009-01-01
We identify the nonlinear evolution equation in impact-parameter space for the 'Supercritical Pomeron' in Reggeon field theory as a two-dimensional stochastic Fisher-Kolmogorov-Petrovski-Piscounov equation. It exactly preserves unitarity and leads in its radial form to a high-energy traveling wave solution corresponding to a 'universal' behavior of the impact-parameter front profile of the elastic amplitude; its rapidity dependence and form depend only on one parameter, the noise strength, independently of the initial conditions and of the nonlinear terms restoring unitarity. Theoretical predictions are presented for the three typical distinct regimes corresponding to zero, weak, and strong noise.
In vitro reduction of dental erosion by low-concentration TiF4 solutions
Vieira, A.M.; Ruben, J.L.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.
2011-01-01
The aims of this study were to compare daily versus single applications of low-concentration TiF(4) solutions for reduction of enamel erosion and to evaluate the enamel surface loss due to application of these solutions. Sixty bovine enamel samples were randomly divided into 2 groups: single versus
Computation of major solute concentrations and loads in German rivers using regression analysis.
Steele, T.D.
1980-01-01
Regression functions between concentrations of several inorganic solutes and specific conductance and between specific conductance and stream discharge were derived from intermittent samples collected for 2 rivers in West Germany. These functions, in conjunction with daily records of streamflow, were used to determine monthly and annual solute loadings. -from Author
In vitro Reduction of Dental Erosion by Low-Concentration TiF4 Solutions
Vieira, A. M.; Ruben, J. L.; Bronkhorst, E. M.; Huysmans, M. C. D. N. J. M.
2011-01-01
The aims of this study were to compare daily versus single applications of low-concentration TiF4 solutions for reduction of enamel erosion and to evaluate the enamel surface loss due to application of these solutions. Sixty bovine enamel samples were randomly divided into 2 groups: single versus
TRANSPORT OF SOLUTES IN THE FIELD AS AFFECTED BY IRRIGATION
Directory of Open Access Journals (Sweden)
Alessandro Comegna
2007-09-01
Full Text Available This study documents and compares the transport of a conservative solute in near saturated soil profiles under flood and sprinkler irrigation. The experiments were carried out on a clay Vertic-Usthortens soil located near Potenza (Italy. Two 2x2 m2 plots were clipped of their native grass vegetation. After spraying on the surface a Cl- pulse as KCl salt; water was applied in five increments over two months as flood irrigation on the first plot and as sprinkler irrigation on the second one. Chloride resident concentration Cr, was sampled by soil coring at four different days after chemical application. Cr(z,t profiles were analyzed by spatial moment method. The recovered mass of Cl- and location of center of mass were comparable for the two types of irrigation. The spread around the center of mass, however, was higher for the flood-irrigated plot. In the flood-irrigated plot, more mass leached below the depth of 90 cm. The velocity of the center of mass was consistently 10-20% larger than the piston displacement velocity. To evaluate the nature of transport, the Cr(z,t distributions were modelled using quasi-steady solution of convection-dispersion equation(CDE. At the scale of our experiments the profiles of Cl- resident concentration are well-simulated.
Stable solutions of inflation driven by vector fields
Energy Technology Data Exchange (ETDEWEB)
Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)
2017-03-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Stable solutions of inflation driven by vector fields
International Nuclear Information System (INIS)
Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li
2017-01-01
Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.
Numerical solution of a model for a superconductor field problem
International Nuclear Information System (INIS)
Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.
1979-01-01
A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances
Salm, van der C.; Vries, de W.; Kros, J.
1996-01-01
The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased
van Vlimmeren, BAC; Maurits, NM; Zvelindovsky, AV; Sevink, GJA; Fraaije, JGEM
1999-01-01
We simulate the microphase separation dynamics of aqueous solutions of the triblock polymer surfactants (ethylene oxide)(13)(propylene oxide)(30)(ethylene oxide)(13) and (propylene oxide)(19)(ethylene oxide)(33)(propylene oxide)(19) by a dynamic variant of mean-field density functional theory for
Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models
Energy Technology Data Exchange (ETDEWEB)
Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.
2005-09-15
Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.
DEFF Research Database (Denmark)
Pajchrowski, Grzegorz; Abdali, Salim; Nørbygaard, Thomas
2006-01-01
Surface Enhanced Raman Scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in series of concentrations, covering a range of 5·10-5 M to 5·10-8 M. In these measurements Ag and Au colloids were used and the ......Surface Enhanced Raman Scattering (SERS) measurements were carried out on stilbazolium merocyanine dye in methanol and pyridine solvents. Both solutions were measured in series of concentrations, covering a range of 5·10-5 M to 5·10-8 M. In these measurements Ag and Au colloids were used...... report here on the success of using SERS to obtain Raman spectra of merocyanine dye at very low concentration in an attempt of new approach, which can be used for further investigations of the dye. The SERS spectra will here be reported and the results from different solutions, colloids, concentrations...
Directory of Open Access Journals (Sweden)
T. Deshler
2017-06-01
Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures
Mass transfer processes and field-scale transport of organic solutes
International Nuclear Information System (INIS)
Brusseau, M.L.
1990-01-01
The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)
Low-Concentration Indium Doping in Solution-Processed Zinc Oxide Films for Thin-Film Transistors
Directory of Open Access Journals (Sweden)
Xue Zhang
2017-07-01
Full Text Available We investigated the influence of low-concentration indium (In doping on the chemical and structural properties of solution-processed zinc oxide (ZnO films and the electrical characteristics of bottom-gate/top-contact In-doped ZnO thin-film transistors (TFTs. The thermogravimetry and differential scanning calorimetry analysis results showed that thermal annealing at 400 °C for 40 min produces In-doped ZnO films. As the In content of ZnO films was increased from 1% to 9%, the metal-oxygen bonding increased from 5.56% to 71.33%, while the metal-hydroxyl bonding decreased from 72.03% to 9.63%. The X-ray diffraction peaks and field-emission scanning microscope images of the ZnO films with different In concentrations revealed a better crystalline quality and reduced grain size of the solution-processed ZnO thin films. The thickness of the In-doped ZnO films also increased when the In content was increased up to 5%; however, the thickness decreased on further increasing the In content. The field-effect mobility and on/off current ratio of In-doped ZnO TFTs were notably affected by any change in the In concentration. Considering the overall TFT performance, the optimal In doping concentration in the solution-processed ZnO semiconductor was determined to be 5% in this study. These results suggest that low-concentration In incorporation is crucial for modulating the morphological characteristics of solution-processed ZnO thin films and the TFT performance.
Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions
Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang
2017-04-01
The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.
Compilation of field-scale caisson data on solute transport in the unsaturated zone
International Nuclear Information System (INIS)
Polzer, W.L.; Essington, E.H.; Fuentes, H.R.; Nyhan, J.W.
1986-11-01
Los Alamos National Laboratory has conducted technical support studies to assess siting requirements mandated by Nuclear Regulatory Commission in 10 CFR Part 61. Field-scale transport studies were conducted under unsaturated moisture conditions and under steady and unsteady flow conditions in large caissons located and operated in a natural (field) environment. Moisture content, temperature, flow rate, base-line chemical, tracer influent, and tracer breakthrough data collected during tracer migration studies in the caisson are compiled in tables and graphs. Data suggest that the imposition of a period of drainage (influent solution flow was stopped) may cause an increase in tracer concentration in the soil solution at various sampling points in the caisson. Evaporation during drainage and diffusion of the tracers from immobile to mobile water are two phenomena that could explain the increase. Data also suggest that heterogeneity of sorption sites may increase the variability in transport of sorbing tracers compared with nonsorbing tracers
Directory of Open Access Journals (Sweden)
S. I. Niftaliev
2014-01-01
Full Text Available Summary. The concentrated sodium sulfate solution is formed during the processing of waste battery scrap. A promising way to further treatment of the concentrated salt solution could be the conversion of these salts into acid and bases by electrodialysis, that can be reused in the same technical process cycle. For carrying out the process of conversion of salts into the corresponding acid and base several cells schemes with different combinations of cation, anion and bipolar membranes are used. At this article a comparative analysis of these cells is carried out. In the cells there were used the membranes МC-40, МА-41 and МB-2I. Acid and base solutions with higher concentration may be obtained during the process of electrodialysis in the circulation mode, when a predetermined amount of salt in the closed loop is run through a set of membranes to obtain the desired concentration of the product. The disadvantages of this method are the high cost of buffer tanks and the need to work with small volumes of treated solutions. In industrial applications it is advisable to use continuous electrodialysis with bipolar membranes, since this configuration allows to increase the number of repeating sections, which is necessary to reduce the energy costs. The increase of the removal rate of salts can be achieved by increasing the process steps, and to produce a more concentrated products after the conversion step can be applied electrodialysis-concentrator or evaporator.
Minkov, Ivan L.; Manev, Emil D.; Sazdanova, Svetla V.; Kolikov, Kiril H.
2013-01-01
Osmosis is essential for the living organisms. In biological systems the process usually occurs in confined volumes and may express specific features. The osmotic pressure in aqueous solutions was studied here experimentally as a function of solute concentration (0.05–0.5 M) in two different regimes: of constant and variable solution volume. Sucrose, a biologically active substance, was chosen as a reference solute for the complex tests. A custom made osmotic cell was used. A novel operative experimental approach, employing limited variation of the solution volume, was developed and applied for the purpose. The established equilibrium values of the osmotic pressure are in agreement with the theoretical expectations and do not exhibit any evident differences for both regimes. In contrast, the obtained kinetic dependences reveal striking divergence in the rates of the process at constant and varied solution volume for the respective solute concentrations. The rise of pressure is much faster at constant solution volume, while the solvent influx is many times greater in the regime of variable volume. The results obtained suggest a feasible mechanism for the way in which the living cells rapidly achieve osmotic equilibrium upon changes in the environment. PMID:24459448
International Nuclear Information System (INIS)
Pucheault, J.; Ferradini, C.; Julien, R.; Deysine, A.; Gilles, L.; Moreau, M.
1979-01-01
This study of the radiolysis of concentrated aqueous LiCl solutions enables the relative contributions of the direct and indirect effects to be evaluated as a function of Cl - concentration and also permits an evaluation of the role of Cl - in the early stages of water radiolysis. Radicalar and molecular yields G/sub Cl 2 - /, G/sub OH/, G//sub e//sub aq/ - / + G/sub H/, G/sub H 2 O 2 /, and G/sub H 2 / are determined for all concentrations employed, and the material balance is verified. The main conclusions concerning the apparent inefficacy of the direct effect and the importance of OH scavenging in spurs are discussed
Existence of solutions for Hamiltonian field theories by the Hamilton-Jacobi technique
International Nuclear Information System (INIS)
Bruno, Danilo
2011-01-01
The paper is devoted to prove the existence of a local solution of the Hamilton-Jacobi equation in field theory, whence the general solution of the field equations can be obtained. The solution is adapted to the choice of the submanifold where the initial data of the field equations are assigned. Finally, a technique to obtain the general solution of the field equations, starting from the given initial manifold, is deduced.
Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions
Directory of Open Access Journals (Sweden)
Arash Fattah-alhosseini
2015-10-01
Full Text Available The passivation behavior of AISI 430 ferritic stainless steel was investigated in concentrated alkaline solutions in relation to several test parameters, using electrochemical techniques. Increasing solution pH (varying from 11.5 to 14.0 leads to an increase in the corrosion rate of the alloy. Mott–Schottky analysis revealed that passive films formed on AISI 430 ferritic stainless steel behave as n-type semiconductor and the donor densities increased with pH. Electrochemical impedance spectroscopy (EIS results showed that the reciprocal capacitance of the passive film is directly proportional to its thickness, which decreases with pH increase. The results revealed that for this ferritic stainless steel in concentrated alkaline solutions, decreasing the solution pH offers better conditions for forming passive films with higher protection behavior, due to the growth of a much thicker and less defective film.
Calculation of near-field concentrations of hydrogen sulphide
International Nuclear Information System (INIS)
Baynes, C.J.
1985-03-01
This report provides simulations of the near-field dispersion in the atmosphere of postulated releases of hydrogen sulphide gas (H2S) at a heavy water plant. The size and extent of the flammable or detonable gas clouds which might result are estimated. This work was undertaken to support experimental studies of the detonability of H2S releases. Thirty-six different cases were simulated involving the catastrophic failure of a liquid H2S storage tank or tank car of H2S. The major variables were the size of the release, the initial mixing ratio of gas with ambient air, and the wind speed. Since the gas/air mixture is initially heavier than air, an existing heavy gas mathematical model (DENZ) was used for these simulations. The model was modified to provide the outputs needed to support the experimental studies. The outputs were the mass of H2S in the cloud, the mass and volume of the cloud, its radius at ground level and its temperature, all as functions of distance and time from release. The edge of the cloud was defined by a given concentration of H2S in air. The simulations were repeated for ten different values of this parameter, ranging between 3% and 40% H2S by volume. Simulations were also performed using a simple 'top-hat' mixing model to predict the length of the flammable or detonable jet formed at the break in a pipe carrying H2S vapour under pressure. The analysis was conducted for four postulated pipe break diameters and repeated for the same ten concentration levels used in the storage tank studies. The report presents a summary of the results. The complete outputs from the 36 storage tank failure simulations are available on floppy disks in a format suitable for detailed examination using any IBM-PC compatible microcomputer system
Directory of Open Access Journals (Sweden)
Antczak Jerzy
2014-06-01
Full Text Available This paper applies the determined suitability of nanofiltration (NF membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.
Ammonia complexes of metals in aqueous solutions with high concentrations of ammonia
International Nuclear Information System (INIS)
Padar, T.G.; Novikov, L.K.; Stupko, T.V.; Isaev, I.D.; Pashkov, G.L.; Mironov, V.E.
1991-01-01
Potentiometric method, glass electrodes and Bierrum function were used to study the formation of ammonia complexes of magnesium, calcium, cadmium, zinc, copper(2) and silver in 2.0 mol/dm 3 aqueous solutions of ammonia nitrate with 0-18 mol/dm 3 ammonia concentrations at 25.0 deg C. Step constants of stability of studied complexes were calculated and their compositions were determined with account of nonideal character of aqueous-salt solutions with ammonia concentrations above 1.0 mol/dm 3 . Values of correction effects on salting out ammonia action for Bierrum function in solutions with 1.0-18 mol/dm 3 ammonia concentrations were found
International Nuclear Information System (INIS)
Fernandes, G.P.
1980-02-01
The fission tracks registration technique was used to determine the uranium concentration in soil solutions. The Makrofol KG, a synthetic plastic manufactured by Bayer, was used as a detector and the wet method was applied. From the calibration curves obtained, it was possible to determine uranium concentrations in soil solutions, from 90 to 320 μg U/l, with an error between 9.4% and 4.0%, respectively. The method was applied to a few soil samples from Pocos de Caldas, Minas Gerais in Brazil. The uranium concentrations in the sample and residues were also determined by other methods to compare the results obtained; only one sample showed deviation from the results obtained by the fission tracks method. And this discrepancy was explained in a reasonable way. It was shown that the fission tracks technique can be used with sucess for application in soil solutions. (Author) [pt
Directory of Open Access Journals (Sweden)
Nicolae APOSTOLESCU
2010-12-01
Full Text Available The main objective of this paper is to describe a code for calculating an equivalent systemof concentrate loads for a FEM analysis. The tables from the Aerodynamic Department containpressure field for a whole bearing surface, and integrated quantities both for the whole surface andfor fixed and mobile part. Usually in a FEM analysis the external loads as concentrated loadsequivalent to the distributed pressure field are introduced. These concentrated forces can also be usedin static tests. Commercial codes provide solutions for this problem, but what we intend to develop isa code adapted to the user’s specific needs.
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2017-09-01
The Halbach type hollow cylindrical permanent magnet array (HCPMA) is a volume compact and energy conserved field source, which have attracted intense interests in many practical applications. Here, using the complex variable integration method based on the Biot-Savart Law (including current distributions inside the body and on the surfaces of magnet), we derive analytical field solutions to an ideal multipole HCPMA in entire space including the interior of magnet. The analytic field expression inside the array material is used to construct an analytic demagnetization function, with which we can explain the origin of demagnetization phenomena in HCPMA by taking into account an ideal magnetic hysteresis loop with finite coercivity. These analytical field expressions and demagnetization functions provide deeper insight into the nature of such permanent magnet array systems and offer guidance in designing optimized array system.
Hydrogen-bonded structure in highly concentrated aqueous LiBr solutions
International Nuclear Information System (INIS)
Imano, Masahiro; Kameda, Yasuo; Usuki, Takeshi; Uemura, Osamu
2001-01-01
Neutron diffraction measurements were carried out for H/D isotopically substituted aqueous 10, 25 and 33 mol% LiBr solutions in order to obtain structural information on the intermolecular hydrogen bonds among water molecules in highly concentrated aqueous solutions. Observed scattering cross sections for D 2 O (99.9 % D), 0 H 2 O(35.9 % D) and 0-2 H 2 O(68.0 % D) solutions were combined to deduce partial structure factors, a HH (Q), a XH (Q) and a XX (Q) (X: O, Br and Li). The least squares fitting analysis was applied to the observed partial structure factors to determine the nearest neighbor interatomic distance, root-mean-square amplitude and coordination number. Intermolecular distances, r OH =1.91(1) A, r HH =2.38(1) A and r OO =3.02(1) A, between the nearest neighbor water molecules, were obtained for the 10 mol% LiBr solution. On the other hand, the intermolecular O···H interaction was found to almost disappear in concentrated 25 and 33 mol% LiBr solutions. The result implies that the hydrogen-bonded network is completely broken in highly concentrated aqueous LiBr solutions. (author)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Zaripov, T. S.; Gilfanov, A. K.; Zaripov, S. K.; Rybdylova, O. D.; Sazhin, S. S.
2018-01-01
The behaviour of high-inertia aerosol particles’ concentration fields in stationary gas suspension flows around a cylinder is investigated using a numerical solution to the Navier-Stokes equations and the fully Lagrangian approach for four Stokes numbers (Stk = 0.1, 1, 4, 10) and three Reynolds numbers (Re = 1, 10, 100). It has been shown that the points of maximum particle concentration along each trajectory shift downstream both when Stk and/or Re increase.
Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.
2017-07-01
Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.
A NOVEL INTERPRETATION OF CONCENTRATION DEPENDENCE OF VISCOSITY OF DILUTE POLYMER SOLUTION
Institute of Scientific and Technical Information of China (English)
Yan Pan; Rong-shi Cheng
2000-01-01
The concentration dependence of the reduced viscosity of dilute polymer solution is interpreted in the light of a new concept of the self-association of polymer chains in dilute solution. The apparent self-association constant is defined as the molar association constant divided by the molar mass of individual polymer chain and is numerically interconvertible with the Huggins coefficient. The molar association constant is directly proportional to the effective hydrodynamic volume of the polymer chain in solution and is irrespective of the chain architecture. The effective hydrodynamic volume accounts for the non-spherical conformation of a short polymer chain in solution and is a product of a shape factor and hydrodynamic volume. The observed enhancement of Huggins coefficient for short chain and branched polymer is satisfactorily interpreted by the concept of self-association. The concept of self-association allows us to predict the existence of a boundary concentration Cs (dynamic contact concentration) which divides the dilute polymer solution into two regions.
Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria
2015-11-01
To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.
Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François
2017-10-19
Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.
A study on prediction of uranium concentration in pregnant solution from in-situ leaching
International Nuclear Information System (INIS)
Yi Weiping; Zhou Quan; Yu Yunzhen; Wang Shude; Yang Yihan; Lei Qifeng
2005-01-01
The modeling course on prediction of uranium concentration in pregnant solution from in-situ leaching of uranium is described, a mathematical model based on grey system theory is put forward, and a set of computer application software is correspondingly developed. (authors)
Energy Technology Data Exchange (ETDEWEB)
Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)
2015-12-28
The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.
Removing ferric ions from concentrated acid leaching solution of an uranium ore by jarosite
International Nuclear Information System (INIS)
Song Huanbi; Hu Yezang
1997-01-01
The author expounds the fundamental rules of removing ferric ions by jarosite and presents results of removing ferric ions from concentrated acid curing-trickle leaching solution of an uranium ore. It turns out that the method can be applied to uranium hydrometallurgical process effectively
Shukla, Sushumna
2014-01-01
This thesis presents an original approach for the concentration of thermo-sensitive solutions: the Sweep Gas Membrane Distillation (SGMD) process. A new membrane contactor with metallic hollow fibers has been designed and allows the distillation process to be operational at low temperature. Heat is
The determination of hydroxide and carbonate in concentrated sodium chloride solutions
Roolvink, W.B.; Bos, M.
1980-01-01
A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not
Sodium concentration in home made salt – sugar – solution (sss ...
African Journals Online (AJOL)
In a cohort of 210 young mothers, selected through cluster sampling technique from Ogida health district of Egor Local Government Area of Edo State, the electrolyte concentration of prepared salt-sugar-solutions (SSS) were evaluated. This was predicated on the need to determine the effects of introduction of various ...
Zadorozhko, A A; Rudavskij, E Y; Chagovets, V K; Sheshin, G A
2003-01-01
The temperature and concentration gradients nabla T and nabla x in a superfluid sup 3 He- sup 4 He mixture with an initial concentration 9,8 % of sup 3 He are measured in a temperature range 70-500 mK. The gradients are produced by a steady thermal flow with heating from below. It is shown that the value of nabla x/nabla T observed in the experiment is in good agreement with the theoretical model derived from the temperature and concentration dependences of osmotic pressure. The experimental data permitted us to obtain a thermal diffusion ratio of the solution responsible for the thermal diffusion coefficient.
Confined solutions of the Thirring model coupled to a Schwinger field
International Nuclear Information System (INIS)
Hortacsu, M.
1976-08-01
In the study of the confined classical solutions of the bosonized massive Thirring field coupled to a Schwinger field, it is observed that, regardless of their respective magnitudes and signs, the Thirring interaction is dominant over the other one, in determining whether such a solution exists. Confined solutions for the Thirring field are possible if and only if the Thirring coupling is attractive. Solutions are constructed for the Thirring model coupling attractive, repulsive and equal to zero
Generating solutions of Einstein's field equations by typing mistakes
Energy Technology Data Exchange (ETDEWEB)
Hoenselaers, C.; Skea, J.E.F.
1989-01-01
A solution to Einstein's field equations is presented that represents a Petrov type II electromagnetic null field with one Killing vector. This solution generalizes a vacuum solution previously discovered by Hoenselaers. The solution was found by the peculiar method of generalizing a member of this class inadvertently discovered by making a typing error when checking the vacuum solution with the computer algebra system SHEEP.
Determination of the unfrozen water content of maximally freeze-concentrated carbohydrate solutions.
Hatley, R H; Mant, A
1993-08-01
The heat capacity change at T'g has been studied in freeze-concentrated carbohydrate solutions. The values obtained have been compared with those found for high concentration solutions that do not undergo freezing above Tg. The analysis has indicated that the freezing process influences the degree of stress in the glassy phase. This results in a complex power-time curve when frozen solutions are heated in a differential scanning calorimeter. The endotherm produced by the stress relaxation can cause considerable error in W'g measurement obtained by any method that relies on the integration of the power-time curve. A more reliable method for W'g determination is via the intersection of T'g with a previously prepared Tg/Wg calibration curve.
Interaction of Celestine Concentrate and Reagent Grade SrSO4 with Oxalate Solutions
Directory of Open Access Journals (Sweden)
Abdullah Obut
2012-12-01
Full Text Available The interaction of reagent grade strontium sulphate and celestine concentrate with aqueous solutions of oxalic acid, sodiumoxalate and ammonium oxalate for the production of strontium carbonate were investigated for different oxalate compound:SrSO4 moleratios and reaction times using x-ray diffraction analysis and dissolution tests. Under the same experimental conditions, it was foundthat aqueous oxalic acid and sodium oxalate solutions had no or little effect on reagent grade strontium sulphate or celestineconcentrate, but aqueous ammonium oxalate solution converted them into strontium oxalate hydrate. Strontium carbonate was obtainedat conversion ratios of 74.7% for the celestine concentrate and 84.6 % for the reagent grade strontium sulphate by the decompositionof the obtained strontium oxalate hydrate at 600 °C under air atmosphere.
Stochastic quantization of the Kink solution of phi4 field theory
International Nuclear Information System (INIS)
Kates, R.; Rosenblum, A.
1989-01-01
The method of Parisi-Wu Stochastic quantization in quantum field theory is compared to earlier work in classical field equations. The method is applied to solve for the propagator for Phi 4 field theory by perturbing the Kink solution
Concentration and purification of plutonium solutions by means of ion-exchange columns
Energy Technology Data Exchange (ETDEWEB)
Durham, R W; Aikin, A M
1953-02-15
Equilibrium experiments using Dowex 50 ion-exchange resin and nitric acid solutions of Pu{sup 3+}, UO{sub 2}{sup 2+}, Fe{sup 2+} cations have yielded values for the absorption affinities for these ions. Trivalent plutonium was found to be far more strongly absorbed than UO{sub 2}{sup 2+} and Fe{sup 2+}. Column studies have shown that uranium can be completely separated from plutonium even when the initial concentration of uranium is very much greater than that of the plutonium. A plutonium concentration increase of about fifty-fold can be obtained from solutions about 10{sup -3} M in plutonium and 1.0M in nitric acid. The equation K{sub Pu}{sup 3+} = X{sub R} (1-X{sub S}){sup 3} C{sub S}{sup 2}/X{sub S} (1-X{sub R}){sup 3} C{sub R}{sup 2} for estimating the maximum amount of plutonium taken up by a column of resin of unit volume from a solution of total equivalent concentration, C{sub S} , has been shown to hold for values of C{sub S} up to 3 equivalents per litre. X{sub R}, the equivalent fraction of plutonium on the resin, is the number of equivalents of plutonium absorbed by the resin divided by the total capacity of the column. X{sub S}, the equivalent fraction of plutonium in solution, is the equivalent concentration of plutonium divided by the total equivalent concentration of cations in solution. C{sub R} is the total capacity of the resin in milli-equivalents per gram of dry resin. Recommendations have been made for the application and operation of ion-exchange columns in the Plutonium-Extraction Plant. (author)
Li, Ruipeng
2012-09-04
A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Safonova, L.P.; Shmukler, L.Eh.; Kolker, A.M.
2008-01-01
The integral heats of solution of Bu 4 NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu 4 NI in DMSO at various temperatures and the C-bar p 0 (Bu 4 N + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δ sol H m (Bu 4 NI) and of the electrolyte on Δ sol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu 4 NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied [ru
Safonova, L. P.; Shmukler, L. E.; Kolker, A. M.
2008-05-01
The integral heats of solution of Bu4NI in dimethylsulfoxide (DMSO) were measured at 298.15, 313.15, and 328.15 K and concentrations from dilute to saturation. The standard enthalpies and heat capacities of solution and solvation of Bu4NI in DMSO at various temperatures and the bar C_p^o (Bu_4 N^ + ) value at 298.15 K were calculated. The obtained and literature data were used to consider the influence of the nature of solvents on Δsol H m (Bu4NI) and of the electrolyte on Δsol H m in dimethylsulfoxide at 298.15 K. The dynamic viscosity and density of the Bu4NI-DMSO system were determined at various concentrations and temperatures. The Eyring equation was used to calculate the activation energy of viscous flow at all the concentrations studied.
Effect of ion concentrations on uranium absorption from sodium carbonate solutions
International Nuclear Information System (INIS)
Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.
1979-01-01
The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium
International Nuclear Information System (INIS)
Esmail, S.F.H.
2011-01-01
The mathematical formulation of numerous physical problems a results in differential equations actually partial or ordinary differential equations.In our study we are interested in solutions of partial differential equations.The aim of this work is to calculate the concentrations of the pollution, by solving the atmospheric diffusion equation(ADE) using different mathematical methods of solution. It is difficult to solve the general form of ADE analytically, so we use some assumptions to get its solution.The solutions of it depend on the eddy diffusivity profiles(k) and the wind speed u. We use some physical assumptions to simplify its formula and solve it. In the present work, we solve the ADE analytically in three dimensions using Green's function method, Laplace transform method, normal mode method and these separation of variables method. Also, we use ADM as a numerical method. Finally, comparisons are made with the results predicted by the previous methods and the observed data.
Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane
Redjeki, S.; Hapsari, N.; Iriani
2018-01-01
Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.
International Nuclear Information System (INIS)
Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio
2000-01-01
Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)
International Nuclear Information System (INIS)
Wu, Xiao Chu; Wu, Dong Qing; Zhang, W J; Sammynaiken, R; Yang, Wei; Wang, Rui
2008-01-01
Endogenously generated hydrogen sulfide (H 2 S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H 2 S is toxic. However, whether H 2 S plays a positive or negative role is dependent on the H 2 S concentration levels in mammals. This further puts a high demand on the accurate measurement of H 2 S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H 2 S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H 2 S is, however, a great challenge. In the present study, we proposed and examined five potential H 2 S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H 2 S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H 2 S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H 2 S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H 2 S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust
Solute concentration affects bradykinin-mediated increases in renal prostaglandin E2
International Nuclear Information System (INIS)
Zenser, T.V.; Davis, E.S.; Rapp, N.S.; Davis, B.B.
1981-01-01
The effects of solute concentration on the bradykinin-mediated increase in inner medullary slice prostaglandin E2 (PGE2) synthesis were investigated. PG content was determined by specific RIA. Bradykinin stimulation was prevented by the addition of the following solutes to Krebs buffer: 1.0 M urea, 0.5 or 1.0 M NaCl, 0.5 or 1.0 M mannitol, 1.0 M urea plus 0.5 M NaCl, or 1.0 M mannitol plus 0.5 M NaCl. By contrast, basal PGE2 synthesis was increased by 1.0 M mannitol or by 1.0 M mannitol plus 0.5 M NaCl, but decreased by 1.0 M urea. Urea elicited a concentration-dependent, reversible inhibition of bradykinin stimulation, with 0.01 M urea being the lowest effective concentration. By contrast, basal PGE2 synthesis was only reduced at a urea concentration greater than 0.6 M. Arachidonic acid-mediated increases in both PGE2 and PGF2 alpha synthesis were not prevented by 1.0 M urea. The latter suggests that neither PG endoperoxide synthetase nor PG endoperoxide E isomerase are inhibited by urea. The data indicate that different hypertonic solutions have different effects on basal PG production, but all inhibit bradykinin stimulation
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
International Nuclear Information System (INIS)
Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.
1985-01-01
Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures
International Nuclear Information System (INIS)
Broda, R.; Radoszewski, T.
1982-01-01
The construction and parameters of the prototype liquid scintillation detector for disintegration rate determination of standard solutions is described. The detector is equipped with a liquid scintillation anticoincidence shield with a volume of 40 l. The instrument is placed in the building of the Radioisotope Production and Distribution Centre in the Institute of Nuclear Research at Swierk. The results of instrument background reduction are described. The counting efficiency of several beta-emitters 3 H, 63 Ni, 14 C and 90 Sr + 90 Y is given, as well as the examples of a disintegration rate determination of low radioactivity concentration of standard solutions. (author)
The prediction of concentration profiles for a NIMCIX column absorbing uranium from aqueous solution
International Nuclear Information System (INIS)
Wright, R.S.
1979-01-01
A procedure is proposed for the prediction of concentration profiles for a countercurrent ion-exchange absorption column, use being made of equilibrium and kinetic data derived from small-scale batch tests. A comparison is presented between the predictions and the measured performance of a column (2,5 m in diameter) absorbing uranium from solution. The method is shown to be adequate for design purposes provided that the data used are from tests in which the solution and resin conditions approximate those for which the plant is being designed [af
Chen, Yu-Liang; Jiang, Hong-Ren
2017-05-01
We demonstrate a functional rotating electrothermal technique for rapidly concentrating and sorting a large number of particles on a microchip by the combination of particle dielectrophoresis (DEP) and inward rotating electrothermal (RET) flows. Different kinds of particles can be attracted (positive DEP) to or repelled (negative DEP) from electrode edges, and then the n-DEP responsive particles are further concentrated in the heated region by RET flows. The RET flows arise from the spatial inhomogeneous electric properties of fluid caused by direct infrared laser (1470 nm) heating of solution in a rotating electric field. The direction of the RET flows is radially inward to the heated region with a co-field (the same as the rotating electric field) rotation. Moreover, the velocity of the RET flows is proportional to the laser power and the square of the electric field strength. The RET flows are significant over a frequency range from 200 kHz to 5 MHz. The RET flows are generated by the simultaneous application of the infrared laser and the rotating electric field. Therefore, the location of particle concentrating can be controlled within the rotating electric field depending on the position of the laser spot. This multi-field technique can be operated in salt solutions and at higher frequency without external flow pressure, and thus it can avoid electrokinetic phenomena at low frequency to improve the manipulation accuracy for lab-on-chip applications.
Oxidative Pressure Leaching of Silver from Flotation Concentrates with Ammonium Thiocyanate Solution
Yang, Sheng-Hai; Yang, Jian-Guang; Liu, Wei; Chen, Geng-Tao; Tang, Mo-Tang; Qiu, Guan-Zhou
2010-02-01
The thermodynamics and technologies of the selective pressure leaching of silver from flotation concentrates were investigated in an ammonium thiocyanate medium. Thermodynamic analyses, which include silver solubility in NH4SCN solution and Eh-pH diagrams of the Me-MeS-NH4SCN-H2O system at 25 °C, were discussed. The effects of several factors, such as temperature, leaching time, oxidant, pH value, flotation concentrates concentration, surfactant concentration, and so on, on the extraction percentages of silver and zinc were investigated. The following optimal leaching conditions were obtained: NH4SCN concentration 1.5 M, lignin concentration 0.5 g/L, Fe3+ concentration 2 g/L, flotation concentrates addition 200 g/L, and oxygen pressure 1.2 MPa at 130 °C for 3 hours. Under these optimum conditions, the average extraction percentage of silver exceeded 94 pct, whereas the average extraction percentage of zinc was less than 3 pct. Only 7 pct of ammonium thiocyanate was consumed after 4 cycles, which indicated that ammonium thiocyanate hardly was oxidized under these oxidative pressure leaching conditions.
Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution
International Nuclear Information System (INIS)
Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.
2016-01-01
Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.
Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution
Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M.
2016-05-01
Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.
Unusual concentration-dependent microscopic dynamics of dendrimers in aqueous solution
Energy Technology Data Exchange (ETDEWEB)
Wong, Kaikin; Wu, Chin Ming; Lam, Hak Fai; Chathoth, Suresh M., E-mail: smavilac@cityu.edu.hk [City University of Hong Kong, Department of Physics and Materials Science (Hong Kong, People’s Republic of China) (China)
2016-05-15
Dendrimers are novel three-dimensional, hyperbranched globular nanopolymeric macromolecules. The nanoscopic size, narrow polydispersity index, excellent control over molecular structure, availability of multiple functional groups at the periphery, and cavities in the interior made them very attractive candidate for drug delivery. In this communication, we have studied the microscopic dynamics of tetra-acid and pentaerythritol glycidyl ether dendrimers dissolved in aqueous solution with different concentrations. The effects of concentration and temperature to their long-range diffusion process are investigated by dynamic light scattering. Experimental results show a huge variation in the translational diffusion coefficient for the two dendrimers samples. Besides, the dependence of diffusion coefficients on concentration is unusually different in these dendrimer samples. Although the diffusion process follows Arrhenius relation with the temperature in both systems, the activation energy for the diffusion process has a distinct concentration dependence.
Particular transcendent solution of the Ernst system generalized on n fields
International Nuclear Information System (INIS)
Leaute, B.; Marcilhacy, G.
1986-01-01
A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields
Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.
2018-05-01
The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.
Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land.
Premrov, Alina; Coxon, Catherine E; Hackett, Richard; Kirwan, Laura; Richards, Karl G
2014-02-01
There is a growing need to reduce nitrogen losses from agricultural systems to increase food production while reducing negative environmental impacts. The efficacy of vegetation cover for reducing nitrate leaching in tillage systems during fallow periods has been widely investigated. Nitrate leaching reductions by natural regeneration (i.e. growth of weeds and crop volunteers) have been investigated to a lesser extent than reductions by planted cover crops. This study compares the efficacy of natural regeneration and a sown cover crop (mustard) relative to no vegetative cover under both a reduced tillage system and conventional plough-based system as potential mitigation measures for reducing over-winter soil solution nitrate concentrations. The study was conducted over three winter fallow seasons on well drained soil, highly susceptible to leaching, under temperate maritime climatic conditions. Mustard cover crop under both reduced tillage and conventional ploughing was observed to be an effective measure for significantly reducing nitrate concentrations. Natural regeneration under reduced tillage was found to significantly reduce the soil solution nitrate concentrations. This was not the case for the natural regeneration under conventional ploughing. The improved efficacy of natural regeneration under reduced tillage could be a consequence of potential stimulation of seedling germination by the autumn reduced tillage practices and improved over-winter plant growth. There was no significant effect of tillage practices on nitrate concentrations. This study shows that over winter covers of mustard and natural regeneration, under reduced tillage, are effective measures for reducing nitrate concentrations in free draining temperate soils. © 2013.
Energy Technology Data Exchange (ETDEWEB)
Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, G. F. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-30
Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop SHINE, an accelerator-driven process that will utilize a uranyl-sulfate solution for the production of fission product Mo-99. An integral part of the process is the development of a column for the separation and recovery of Mo-99, followed by a concentration column to reduce the product volume from 15-25 L to <1 L. Argonne has collected data from batch studies and breakthrough column experiments to utilize the VERSE (Versatile Reaction Separation) simulation program (Purdue University) to design plant-scale product recovery and concentration processes.
Specific wavelength colorimeter. [for measuring given solute concentration in test sample
Brawner, C. C.; Mcdavid, L. S.; Walsh, J. M. (Inventor)
1974-01-01
A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab.
International Nuclear Information System (INIS)
Zhang, Yanwen; Wang, Lumin; Caro, Alfredo; Weber, William J.; Univ. of Tennessee, Knoxville, TN
2015-01-01
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel to binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys
Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L
2015-01-01
A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.
Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal
2016-08-23
Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Recrystallization of freezable bound water in aqueous solutions of medium concentrations
Institute of Scientific and Technical Information of China (English)
赵立山; 潘礼庆; 纪爱玲; 曹则贤; 王强
2016-01-01
For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings diffi-culty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentra-tion range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrys-tallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.
Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources
Energy Technology Data Exchange (ETDEWEB)
Liu, Di; Zhao, Fu-Yun; Tang, Guang-Fa [College of Civil Engineering, Hunan University, Changsha (China)
2008-01-15
Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element. (author)
Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources
Energy Technology Data Exchange (ETDEWEB)
Liu Di [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: liudi66@163.com; Zhao Fuyun [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: zfycfdnet@163.com; Tang Guangfa [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: gftangcfd@163.com
2008-01-15
Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element.
Behaviour of solute and particle markers in the stomach of sheep given a concentrate diet
International Nuclear Information System (INIS)
Faichney, G.J.; Griffiths, D.A.
1978-01-01
Fistulated sheep given a concentrate diet were used to study the behaviour of solute ([ 51 Cr]EDTA) and particle ([ 103 Ru]phenanthroline) markers in the stomach under conditions of continuous feeding. An injection of a mixed dose of [ 51 Cr]EDTA and [ 103 Ru]phenanthroline was given into the rumen and the time course of marker concentrations in the rumen and the abomasum was recorded. The curves were analysed on the assumption that the stomach of the sheep could be represented as two mixing compartments (reticulo-rumen and abomasum) and a time delay (omasum). This model provided a very good description of the data. [ 103 Ru]-phenanthroline associated with small particles was retained in the rumen much longer than [ 51 Cr]EDTA. Although exchange of [ 103 Ru] phenanthroline occurred between large and small particle fractions, the results suggested that small particles may have been retained somewhat longer in the rumen than solutes. However, it was clear from the results that the mean retention times for particulate matter in the rumen could not be simply obtained using adsorbable markers. Cyclical fluctuations in the concentration of [ 51 Cr]EDTA in the rumen indicated that there were daily variations in net water flux in the rumen. The presence of protozoa was associated with much shorter retention times of both solutes and particles in the rumen. Protozoa were also associated with reduced rumen volumes. (author)
Directory of Open Access Journals (Sweden)
Isaac de M. Ponciano
2016-04-01
Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.
Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys
Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi
2011-10-01
The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.
Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation
Directory of Open Access Journals (Sweden)
Mitsuo Kato
2018-01-01
Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.
Libera, Arianna; de Barros, Felipe P. J.; Riva, Monica; Guadagnini, Alberto
2017-10-01
Our study is keyed to the analysis of the interplay between engineering factors (i.e., transient pumping rates versus less realistic but commonly analyzed uniform extraction rates) and the heterogeneous structure of the aquifer (as expressed by the probability distribution characterizing transmissivity) on contaminant transport. We explore the joint influence of diverse (a) groundwater pumping schedules (constant and variable in time) and (b) representations of the stochastic heterogeneous transmissivity (T) field on temporal histories of solute concentrations observed at an extraction well. The stochastic nature of T is rendered by modeling its natural logarithm, Y = ln T, through a typical Gaussian representation and the recently introduced Generalized sub-Gaussian (GSG) model. The latter has the unique property to embed scale-dependent non-Gaussian features of the main statistics of Y and its (spatial) increments, which have been documented in a variety of studies. We rely on numerical Monte Carlo simulations and compute the temporal evolution at the well of low order moments of the solute concentration (C), as well as statistics of the peak concentration (Cp), identified as the environmental performance metric of interest in this study. We show that the pumping schedule strongly affects the pattern of the temporal evolution of the first two statistical moments of C, regardless the nature (Gaussian or non-Gaussian) of the underlying Y field, whereas the latter quantitatively influences their magnitude. Our results show that uncertainty associated with C and Cp estimates is larger when operating under a transient extraction scheme than under the action of a uniform withdrawal schedule. The probability density function (PDF) of Cp displays a long positive tail in the presence of time-varying pumping schedule. All these aspects are magnified in the presence of non-Gaussian Y fields. Additionally, the PDF of Cp displays a bimodal shape for all types of pumping
Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration
Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.
2009-01-01
Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that
A singular one-parameter family of solutions in cubic superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Arroyo, E. Aldo [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-170 São Paulo, SP (Brazil)
2016-05-03
Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.
Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear.
Zhang, Chao; Shao, Huili; Luo, Jie; Hu, Xuechao; Zhang, Yaopeng
2018-02-01
Considering the high biocompatibility of regenerated silk fibroin (RSF) and the good enhancement effect of graphene oxide (GO), various RSF/GO composite materials have been previously investigated, and found that GO plays a vital role in the fabrication of high-performance RSF/GO materials. However, its effects on the structure of RSF solution are unclear. Therefore, in this work, we studied the rheological and optical properties, as well as the aggregation behavior of concentrated RSF/GO solution in response to applied shear. The results demonstrated that the presence of GO sheets in RSF solution increased the shear resistance, while delayed the sol-gel transition. Moreover, GO sheets were not favorable to the formation of the ordered structures of RSF. The results from small angle X-ray scattering (SAXS) of RSF/GO solution also showed that the shear process promoted the formation of RSF/GO interface. The data also provided insights into the structural evolution within the mixture solutions, which can be beneficial to the future design and fabrication of nanofiller-reinforced high-performance materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Lacerda, Luciana A; Hlavac, Nicole R C; Terra, Silvia R; Back, Franciele P; Jane Wardrop, K; González, Félix H D
2014-09-01
Additive solutions (AS) and prestorage leukoreduction (LR) are important tools used to maintain erythrocyte viability during storage and avoid transfusion reactions in recipients, respectively. The purpose of the study was to determine the efficacy of a WBC filter (Immugard IIIRC) and compare the effect of 4 AS (phosphate-adenine-glucose-guanosine-gluconate-mannitol [PAGGGM], saline-adenine-glucose-mannitol [SAGM], Adsol, Optisol) on the in vitro quality of canine leukoreduced packed RBC units (pRBC) stored for 41 days. Five hundred milliliters of blood were collected from 8 healthy dogs each into 70 mL of citrate-phosphate-dextrose (CPD) solution, and were leukoreduced by a polyurethane filter. pRBC of each dog were divided equally into 4 bags containing a different AS. Bags were stored for 41 days at 4°C and evaluated every 10 days. Variables analyzed included pH, PCV, and% hemolysis, and lactate, glucose, potassium, sodium, ATP, and 2,3-diphosphoglycerate (2,3-DPG) concentrations. The LR resulted in residual WBC counts comparable to human standards. During storage, pH, and glucose, 2,3-DPG, and ATP concentrations decreased, and hemolysis, and lactate, sodium, and potassium concentrations increased (P 2,3-DPG concentrations. When compared with day 1 values, significant changes were seen in these variables by day 31 with all AS. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene
2014-06-01
The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.
International Nuclear Information System (INIS)
Camp, D.C.
1984-07-01
Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 10 4 ; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.
1988-01-01
A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak
Self-similar solutions for poloidal magnetic field in turbulent jet
International Nuclear Information System (INIS)
Komissarov, S.S.; Ovchinnikov, I.L.
1990-01-01
Evolution of a large-scale magnetic field in a turbulent extragalactic source radio jets is considered. Self-similar solutions for a weak poloidal magnetic field transported by turbulent jet of incompressible fluid are found. It is shown that the radial profiles of the solutions are the eigenfunctions of a linear differential operator. In all the solutions, the strength of a large-scale field decreases more rapidly than that of a small-scale turbulent field. This can be understood as a decay of a large-scale field in the turbulent jet
Radiofrequency solutions in clinical high field magnetic resonance
Andreychenko, A.
2013-01-01
Magnetic resonance imaging (MRI) and spectroscopy (MRS) benefit from the sensitivity gain at high field (≥7T). However, high field brings also certain challenges associated with growing frequency and spectral dispersion. Frequency growth results in degraded performance of large volume radiofrequency
String field theory solution for any open string background
Czech Academy of Sciences Publication Activity Database
Erler, T.; Maccaferri, Carlo
2014-01-01
Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014
Regularity of solutions of a phase field model
Amler, Thomas; Botkin, Nikolai D.; Hoffmann, Karl Heinz; Ruf, K. A.
2013-01-01
are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
International Nuclear Information System (INIS)
Shahbazi-Gahrouei, D.; Williams, M.; Allen, B.J.
2001-01-01
Although gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) has been used as a contrast material in MRI, it is known that the contrast enhancement effect is not uniform for high concentrations of Gd-DTPA. In order to evaluate the proper pulse sequences for dynamic MRI in aqueous solutions of Gd-DTPA, blood samples and melanoma cells, the signal intensity for several concentrations of Gd-DTPA were measured under inversion recovery T 1 -weighted) at high magnetic field strength (7.0 Tesla). For aqueous solutions of Gd-DTPA, signal intensity correlated linearly with the concentration of Gd-DTPA between 0 mmol/L and 4 mmol/L. Using blood and melanoma cells, signal intensity correlated non-linearly with the concentration of Gd-DTPA between 0 mmol/L and 1.5 mmol/L. For concentrations of more than 4 mmol/L in aqueous solutions of Gd-DTPA, 1 mmol/L in blood and 1.5 mmol/L in melanoma, signal intensity decreased with increased Gd-DTPA concentration. Copyright (2001) Blackwell Science Pty Ltd
Solute concentration dependence of the decay curves of the liquid scintillation
International Nuclear Information System (INIS)
Onishi, Masayoshi; Niki, Eiji.
1976-01-01
The decay curves of the liquid scintillation of 2,5-diphenyloxazole (PPO) in toluene by the irradiation of β ray from 14 C were measured. Solute concentration dependences of the decay times of the fast and slow components were studied. The decay time tau sub(f) of the fast component of the air saturated scintillator was the smallest at 1.8x10 -2 --4.5x10 -2 mol/l, and about (3.4--3.5)ns. When the concentration became less than 1.8x10 -2 mol/l, the peak of the decay curve became roundish and the pulse width became large. The increase of the necessary time for the energy transfer due to the difficulty of the nonradiative transfer from excited solvent molecules to the solute was the reason. When the concentration became less than about 2.26x10 -3 mol/l, tau sub(f) became larger and the energy transfer became radiative. The pulse width and tau sub(f) were very small because of oxygen quenching compared with oxygen free. At higher concentrations such as 1.6x10 -1 and 2.3x10 -1 mol/l, the effect of the PPO excimer was observed on the fast component, and tau sub(f) became larger apparently. This denied the presumption of the close relation between PPO molecular interaction and the slow component together with the fact that the decay time tau sub(s) of the slow component was independent of PPO concentration. (auth.)
Sato, Kiminori; Hunger, Michael
2017-07-19
Radioactive Cs released into a soil environment migrates along with groundwater in a manner dependent on Cs concentration. Data on the variation of Cs adsorption as a function of solution concentration are an essential prerequisite to successful decontamination work in Fukushima. To aid the ongoing decontamination work, the adsorption of Cs in aqueous solution across a wide Cs + molarity range is studied for the case of saponite clay as adsorbent, an inorganic layered material that is an abundant mineral in the soil environment. The local molecular structures, i.e. nanosheet surfaces, nanosheet edges, and oncoming hexagonal cavities, participating in Cs adsorption are qualitatively highlighted by means of a recently developed analytical method using data from a conventional elution test, 133 Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR), and the radiocesium interception potential (RIP) [K. Sato, et al., J. Phys. Chem. C, 2016, 120, 1270]. The concentrations of nanosheet edges amount to between 100 and 400 mmol kg -1 , which are not substantially different from those of the nanosheet surfaces, generally regarded as the main decontamination sites. This unambiguously implies that the nanosheet edges should be targeted as the molecular sites for decontaminating radioactive Cs, in addition to the nanosheet surfaces.
Farsiani, Yasaman; Elbing, Brian
2017-11-01
High molecular weight polymer solutions in wall-bounded flows can reduce the local skin friction by as much as 80%. External flow studies have typical focused on injection of polymer within a developing turbulent boundary layer (TBL), allowing the concentration and drag reduction level to evolve with downstream distance. Modification of the log-law region of the TBL is directly related to drag reduction, but recent results suggest that the exact behavior is dependent on flow and polymer properties. Weissenberg number and the viscosity ratio (ratio of solvent viscosity to the zero-shear viscosity) are concentration dependent, thus the current study uses a polymer ocean (i.e. a homogenous concentration of polymer solution) with a developing TBL to eliminate uncertainty related to polymer properties. The near-wall modified TBL velocity profiles are acquired with particle image velocimetry. In the current presentation the mean velocity profiles and the corresponding flow (Reynolds number) and polymer (Weissenberg number, viscosity ratio, and length ratio) properties are reported. Note that the impact of polymer degradation on molecular weight will also be quantified and accounted for when estimating polymer properties This work was supported by NSF Grant 1604978.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yun [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Wuxi Institute of Commerce, Wuxi (China). School of Electromechanical Technology; Xie, Xun; Hao, Jiong-Ju; Yang, Hong-Wei [Nanjing Agricultural Univ., Nanjing (China). Dept. of Physics; Yang, Ze-Kun [Lanzhou Univ. (China). School of Information Science and Engineering; Xu, Zhi-Gang [Nanjing Agricultural Univ., Nanjing (China). College of Agriculture
2017-07-01
In this article, we propose an approach to measure solution concentrations by using photonic crystal cavities. Based on the experimental data, the refractive index of a NaCl solution is proportional to the concentration. Filling the proposed photonic crystal cavity with a NaCl solution, we calculate the spectral transmission using the transfer matrix method. We found that the cavity transmittance was proportional to the refractive index of the NaCl solution, and thus we obtained a linear relationship between cavity transmittance and the concentration of the NaCl solution. The formula was found by fitting the simulation results with experimental data. Such a formula can be applied to the measurement of an unknown concentration of NaCl solution utilizing a photonic crystal cavity.
Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.
Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M
2018-02-27
Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.
Yadav, Sushma; Chandra, Amalendu
2017-12-01
We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.
Kanda, H.; Hashimoto, N.; Takahashi, H.
The phenomenon of grain boundary migration due to boundary diffusion via vacancies is a well-known process for recrystallization and grain growth during annealing. This phenomenon is known as diffusion-induced grain boundary migration (DIGM) and has been recognized in various binary systems. On the other hand, grain boundary migration often occurs under irradiation. Furthermore, such radiation-induced grain boundary migration (RIGM) gives rise to solute segregation. In order to investigate the RIGM mechanism and the interaction between solutes and point defects during the migration, stainless steel and Ni-Si model alloys were electron-irradiated using a HVEM. RIGM was often observed in stainless steels during irradiation. The migration rate of boundary varied, and three stages of the migration were recognized. At lower temperatures, incubation periods up to the occurrence of the boundary migration were observed prior to first stage. These behaviors were recognized particularly for lower solute containing alloys. From the relation between the migration rates at stage I and inverse temperatures, activation energies for the boundary migration were estimated. In comparison to the activation energy without irradiation, these values were very low. This suggests that the RIGM is caused by the flow of mixed-dumbbells toward the grain boundary. The interaction between solute and point defects and the effective defect concentration generating segregation will be discussed.
Solutions of weakened field equations in Gödel space-time
Directory of Open Access Journals (Sweden)
Aditya Mani Mishra
2019-04-01
Full Text Available We have solved Weakened field equations, collected work of Lovelock for cylindrically symmetric G¨odel type spacetime. A comparative study of these solutions to solution of Einstein’s field equation have shown. Conformality of Gödel spacetime has discussed with vanishing and non-vanishing scalar curvature of the spacetime.
Energy Technology Data Exchange (ETDEWEB)
Bond, John W., E-mail: jwb13@le.ac.uk [Department of Chemistry, George Porter Building, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lieu, Elaine [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)
2014-09-15
Highlights: • Corrosion of brass in NaCl concentrations found in eccrine sweat was investigated. • Concentrations < 0.2 M produce a layer of mainly zinc oxide after 24 h. • A concentration of 0.2 M enables active corrosion of brass at room temperature. • 0.2 M NaCl gives both zinc and copper dissolution. • 24-h immersion of brass in 0.2 M NaCl gives an oxide film thickness of 1.3 nm. - Abstract: In this work, the corrosion properties of α phase brass immersed in concentrations of aqueous NaCl solutions that are typically found in eccrine fingerprint sweat and range between 0.01 M and 0.2 M have been analysed. Analysis methods employed were electrochemical techniques, X-ray photoelectron spectroscopy and optical profiling. For NaCl concentrations <0.2 M, active corrosion did not occur although, after a period of 24 h, a passivating layer of mainly zinc oxide formed. At a concentration of 0.2 M active corrosion did occur, with measured corrosion potentials consistent with both brass and copper dissolution. A 1 h contact time at this concentration (0.2 M) resulted in the formation of a zinc oxide passivating layer with the surface ratio of zinc oxide to copper oxide increasing with time. Film thickness was calculated to be of the order of 1.3 nm after 24 h contact. Formation of oxide layers on brass by fingerprint sweat as observed here may well have implications for the successful investigation of crime by the visualisation of corrosion fingerprint ridge patterns or the reduction of hospital environmental contamination by hand contact with brass objects such as door handles or taps.
Energy Technology Data Exchange (ETDEWEB)
Ikeda, B.M.; Quinn, M.J
2003-01-01
The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces
International Nuclear Information System (INIS)
Ikeda, B.M.; Quinn, M.J.
2003-01-01
The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at ∼90 o C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces. The
Hwang, Sunbin; Potscavage, William J; Yang, Yu Seok; Park, In Seob; Matsushima, Toshinori; Adachi, Chihaya
2016-10-26
Recent progress in conducting polymer-based organic thermoelectric generators (OTEGs) has resulted in high performance due to high Seebeck coefficient, high electrical conductivity (σ), and low thermal conductivity obtained by chemically controlling the materials's redox levels. In addition to improving the properties of individual OTEGs to obtain high performance, the development of solution processes for the fabrication of OTEG modules is necessary to realize large thermoelectric voltage and low-cost mass production. However, the scarcity of good candidates for soluble organic n-type materials limits the use of π-leg module structures consisting of complementary elements of p- and n-type materials because of unbalanced transport coefficients that lead to power losses. In particular, the extremely low σ of n-type materials compared with that of p-type materials is a serious challenge. In this study, poly(pyridinium phenylene) (P(PymPh)) was tested as an n-type semiconductor in solution-processed OTEGs, and the carrier density was controlled by a solution-based chemical doping process using the dopant sodium naphthalenide, a well-known reductant. The electronic structures and doping mechanism of P(PymPh) were explored based on the changes in UV-Vis-IR absorption, ultraviolet photoelectron, and X-ray photoelectron spectra. By controlling the dopant concentration, we demonstrate a maximum n-type power factor of 0.81 μW m -1 K -2 with high σ, and at higher doping concentrations, a switch from n-type to p-type TE operation. This is one of the first cases of a switch in polarity just by increasing the concentration of the reductant and may open a new route for simplified fabrication of complementary organic layers.
New exact solutions of Einstein's field equations: gravitational force can also be repulsive!
International Nuclear Information System (INIS)
Dietz, W.
1988-01-01
This article has not been written for specialists of exact solutions of Einstein's field equations but for physicists who are interested in nontrivial information on this topic. We recall the history and some basic properties of exact solutions of Einstein's vacuum equations. We show that the field equations for stationary axisymmetric vacuum gravitational fields can be expressed by only one nonlinear differential equation for a complex function. This compact form of the field equations allows the generation of almost all stationary axisymmetric vacuum gravitational fields. We present a new stationary two-body solution of Einstein's equations as an application of this generation technique. This new solution proves the existence of a macroscopic, repulsive spin-spin interaction in general relativity. Some estimates that are related to this new two-body solution are given
Directory of Open Access Journals (Sweden)
Manuel Fiedler
2015-02-01
Full Text Available This article describes sensors for concentration measurement based on the electro- chemical properties of the liquid being measured. Herein two electrical methods, namely cyclic voltammetry and impedance spectroscopy, are being presented. The measurement can be performed quasi simultaneously using the same measurement medium. Further optimization of the combined methods is possible by adapting the geometric design of the electrode structure, the electrode material, the optional passivation and the electric coupling (galvanically or capacitively. In summary, by combining multiple sensory principles on a device it becomes possible to analyze mixtures of substances contained in a solution with respect to their composition.
Existence and concentration of positive solutions for a quasilinear elliptic equation in R
Directory of Open Access Journals (Sweden)
Elisandra Gloss
2010-05-01
Full Text Available We study the existence and concentration of positive solutions for the quasilinear elliptic equation $$ -varepsilon^2u'' -varepsilon^2(u^2''u+V(x u = h(u $$ in $mathbb{R}$ as $varepsilono 0$, where the potential $V:mathbb{R}o mathbb{R}$ has a positive infimum and $inf_{partial Omega}V>inf_{ Omega}V$ for some bounded domain $Omega$ in $mathbb{R}$, and $h$ is a nonlinearity without having growth conditions such as Ambrosetti-Rabinowitz.
International Nuclear Information System (INIS)
Pino N, I.; Casa G, L.
1989-01-01
With the aim to assess the agronomic behaviour of the phosphoric rock from Bahia Inglesa, a field trial was carried out with concentrated and non concentrated 100 mesh sieved rock. The method of isotopic dilution was used with TSP labeled P32 (TSP-P32) as standard fertilizer. Total dry matter, total P by colorimetry and P32 by liquid scintillation using the Cerenkov effect were measured. Both agronomic and isotope parameters were analyzed. The concentrated phosphoric rock was 3.7 times better than the same non concentrated rock. These also was a positive effect from non concentrated at 400 kg P205/ha dose. This effect was attributed to a higher saturation in the points of P sorption. The TSP showed a better behaviour than the phosphoric rock under study. (author)
Structural study of concentrated micelle-solutions of sodium octanoate by light scattering
International Nuclear Information System (INIS)
Hayoun, Marc
1982-05-01
Structural investigation of sodium octanoate (CH 3 -(CH 2 ) 6 -COONa) by light scattering has been made to study properties of concentrated aqueous micelle-solutions. From static light scattering data, the micellar weight and shape have been determined. The monomer aggregation number and the apparent micellar charge have been confirmed. Quasi-elastic light scattering, has been used to measure the effective diffusion coefficient as a function of the volume fraction. Extrapolation to the c.m.c. give the hydrodynamic radius of the micelles. At low micelle-concentration, strong exchange reaction between monomers and micelles affects the Brownian motion and resulting is an increase in the diffusion coefficient. The experimental data show a strong hydrodynamic contribution to S(q) (factor structure) and D(q) (effective diffusion coefficient) arising from hard spheres interactions with a large repulsive potential. (author) [fr
International Nuclear Information System (INIS)
Korotkin, Yu.S.; Ter-Akop'yan, G.M.; Popeko, A.G.; Drobina, T.P.; Zhuravleva, E.L.
1982-01-01
The results of experiments on further concentration of a new natural spontaneously fissionable nuclide, the concentrates of which form the Cheleken geothermal brines have been obtained, are presented. The conclusions are drown about the chemical nature of a new spontaneously fissionable nuclide. It is a chalcophile element which copreipitates with sulphides of copper, lead, arsenic and mercury from weakly acid solutions. The behaviour of the new nuclide in sulphide systems in many respects is similar to the behaviour of polonium, astatine and probably of bismuth. The most probable stable valence of the new nuclide varies from +1 up to +3. The data available on the chemical behaviour of the new nuclide as well as the analysis over contamination by spontaneously fissionable isotopes permit to state that the new natural spontaneously fissionable nuclide does not relate to the known isotopes
Effect of applied voltage and initial concentration to desalting NaCl solution using electrodialysis
International Nuclear Information System (INIS)
Boubakri, Ali; Gzara, Lassaad; Dhahbi, Mahmoud; Bouguecha, Salah
2009-01-01
The desalination process of electrodialysis is one of membrane separation that competes with reverse osmosis for desalination of brackish water and seawater. In this work water desalination using a laboratory electrodialysis was performed and evaluated to desalting aqueous solutions containing 5000, 10000 and 20000 mg/L NaCl at different applied potential (10, 15 and 20 V) and at a constant flow rate of 3 L/min. Nine electrodialysis runs were performed. The results showed that the increasing of applied potential and decreasing of NaCl concentration have an important effect to enhance the electrodialysis performance. The efficiencies of each experiment were evaluated as function of specific power consumption with the electrical energy consumed in electrodialysis stack. It was obtained that the specific power consumption increased when the salt concentration and applied voltage increased. A laboratory electrodialysis stack containing fifteen cation exchange membranes and fifteen anion exchange membranes of 0,716 m 2 total effective area was used.
Numerical solutions of ICRF fields in axisymmetric mirrors
International Nuclear Information System (INIS)
Phillips, M.W.
1985-01-01
The results of a new numerical code called GARFIELD (Grumman Aerospace Rf Field code) that calculates ICRF Fields in axisymmetric mirror geometry (such as the central cell of a tandem mirror or an RF test stand) are presented. The code solves the electromagnetic wave equation using a cold plasma dispersion relation with a small collision frequency to simulate absorption. The purpose of the calculation is to examine how ICRF wave structure and propagation is effected by the axial variation of the magnetic field in a mirror for various antenna designs. In the code the wave equation is solved in flux coordinates using a finite element method. This should allow more complex dielectric tensors to be modeled in the future. The resulting matrix is solved iteratively, to maximize the allowable size of the spatial grid. Results for a typical antenna array in a simple mirror will be shown
International Nuclear Information System (INIS)
Zinke, M.
1979-01-01
Exemplified by hemoglobin, the thermodynamic equilibrium properties of the dissolved macromolecular system could be determined solely from the small angle X-ray scattering of concentrated macromolecular solutions via the intermolecular structure of the dissolved macromolecules and their intermolecular potentials. From the scattering experiment on concentrated Hb solutions the concentration dependence of the following properties of the dissolved Hb system were determined: fluctuation, isothermic compressibility, internal energy, surface tension, and osmotic pressure. (author)
Concentration of Rutin Model Solutions from Their Mixtures with Glucose Using Ultrafiltration
Directory of Open Access Journals (Sweden)
Zaid S. Saleh
2010-02-01
Full Text Available Separation of polyphenolic phytochemical compounds from their mixtures with sugars is necessary to produce an added-value sugar-reduced extract with high biological activity from fruit juice processing industry waste streams. The separation characteristics of a binary mixture of rutin and glucose using a Pellicon-2 regenerated cellulose ultrafiltration membrane with an area of 0.1 m2 having nominal MWCO of 1,000 Da were investigated, to demonstrate the separation of phenolic compounds from sugars. The effects of the operating variables–transmembrane pressure, feed solution temperature and pH, initial feed concentration and feed flow rate–on the permeate flux and enrichment of rutin, were determined. The permeate flux increased with the increase in transmembrane pressure up to a certain limit and after that the flux remained more or less constant. The optimum transmembrane pressure was within 4–5 bar. The flux increased with the increase in feed solution temperature because of reduced feed viscosity, and better solubility. The concentration of rutin was optimum at lower temperature (30ºC, with an enrichment factor of 1.3. The effect of pH on permeate flux was less obvious. Lowering the feed solution pH increased the retention of rutin and the optimum separation was obtained within pH 3–4. The permeate flux decreased with the increase in feed concentration of rutin (concentration range 0.1–0.5 g/L. The enrichment of rutin was significant in the glucose concentration range 0.35–0.5 g/L. The feed flow rate had a significant effect on the flux and separation characteristics. Higher cross-flow through the membrane reduced the fouling by providing a shear force to sweep away deposited materials from the membrane surface. At high feed flow rate, more rutin was retained by the membrane with less sugar permeating through. The optimum feed flow rate was 1.5 L/min. For the separation of rutin (in the retentate and glucose (in the permeate, the
Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy
International Nuclear Information System (INIS)
Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.
2007-01-01
Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying
Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)
2007-07-01
Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High
See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A
2017-10-18
Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest
On multibrane solutions in open string field theory
Czech Academy of Sciences Publication Activity Database
Murata, Masaki; Schnabl, Martin
2011-01-01
Roč. 2011, č. 188 (2011), s. 50-55 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * D-branes * open strings Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/50/
Soil properties and preferential solute transport at the field scale
DEFF Research Database (Denmark)
Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine
An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...
Waterer, J. G.; Vessey, J. K.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1992-01-01
Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalof AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.
38 CFR 4.76a - Computation of average concentric contraction of visual fields.
2010-07-01
... concentric contraction of visual fields. 4.76a Section 4.76a Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS SCHEDULE FOR RATING DISABILITIES Disability Ratings The Organs of Special Sense § 4.76a Computation of average concentric contraction of visual fields. Table III—Normal Visual...
Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun
2013-10-01
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution
Sindt, Julien O.; Alexander, Andrew J.; Camp, Philip J.
2017-12-01
The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.
Effects of nanoparticle heating on the structure of a concentrated aqueous salt solution.
Sindt, Julien O; Alexander, Andrew J; Camp, Philip J
2017-12-07
The effects of a rapidly heated nanoparticle on the structure of a concentrated aqueous salt solution are studied using molecular dynamics simulations. A diamond-like nanoparticle of radius 20 Å is immersed in a sodium-chloride solution at 20% above the experimental saturation concentration and equilibrated at T = 293 K and P = 1 atm. The nanoparticle is then rapidly heated to several thousand degrees Kelvin, and the system is held under isobaric-isoenthalpic conditions. It is observed that after 2-3 ns, the salt ions are depleted far more than water molecules from a proximal zone 15-25 Å from the nanoparticle surface. This leads to a transient reduction in molality in the proximal zone and an increase in ion clustering in the distal zone. At longer times, ions begin to diffuse back into the proximal zone. It is speculated that the formation of proximal and distal zones, and the increase in ion clustering, plays a role in the mechanism of nonphotochemical laser-induced nucleation.
Directory of Open Access Journals (Sweden)
Friedrich Wagner
Full Text Available To use the "apparent diffusion coefficient" (Dapp as a quantitative imaging parameter, well-suited test fluids are essential. In this study, the previously proposed aqueous solutions of polyvinylpyrrolidone (PVP were examined and temperature calibrations were obtained. For example, at a temperature of 20°C, Dapp ranged from 1.594 (95% CI: 1.593, 1.595 μm2/ms to 0.3326 (95% CI: 0. 3304, 0.3348 μm2/ms for PVP-concentrations ranging from 10% (w/w to 50% (w/w using K30 polymer lengths. The temperature dependence of Dapp was found to be so strong that a negligence seems not advisable. The temperature dependence is descriptively modelled by an exponential function exp(c2 (T - 20°C and the determined c2 values are reported, which can be used for temperature calibration. For example, we find the value 0.02952 K-1 for 30% (w/w PVP-concentration and K30 polymer length. In general, aqueous PVP solutions were found to be suitable to produce easily applicable and reliable Dapp-phantoms.
Walkowiak-Tomczak, Dorota; Czapski, Janusz; Młynarczyk, Karolina
2016-01-01
Elderberries are a source of dietary supplements and bioactive compounds, such as anthocyanins. These dyes are used in food technology. The aim of the study was to assess the changes in colour parameters, anthocyanin contents and sensory attributes in solutions of elderberry juice concentrates during storage in a model system and to determine predictability of sensory attributes of colour in solutions based on regression equations using the response surface methodology. The experiment was carried out according to the 3-level factorial design for three factors. Independent variables included pH, storage time and temperature. Dependent variables were assumed to be the components and colour parameters in the CIE L*a*b* system, pigment contents and sensory attributes. Changes in colour components X, Y, Z and colour parameters L*, a*, b*, C* and h* were most dependent on pH values. Colour lightness L* and tone h* increased with an increase in experimental factors, while the share of the red colour a* and colour saturation C* decreased. The greatest effect on the anthocyanin concentration was recorded for storage time. Sensory attributes deteriorated during storage. The highest correlation coefficients were found between the value of colour tone h* and anthocyanin contents in relation to the assessment of the naturalness and desirability of colour. A high goodness-of-fit of the model to data and high values of R2 for regression equations were obtained for all responses. The response surface method facilitates optimization of experimental factor values in order to obtain a specific attribute of the product, but not in all cases of the experiment. Within the tested range of factors, it is possible to predict changes in anthocyanin content and the sensory attributes of elderberry juice concentrate solutions as food dye, on the basis of the lack of a fit test. The highest stability of dyes and colour of elderberry solutions was found in the samples at pH 3.0, which confirms
International Nuclear Information System (INIS)
Spencer, B.B.
1991-01-01
Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90 degrees C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs
Institute of Scientific and Technical Information of China (English)
You-wen LIU; Chao XIE; Chun-zhi JIANG; Qi-hong FANG
2010-01-01
In this paper,the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode Ⅲ uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation.The effects of material combinations,bond of interface and geometric configurations on interfacial stresses generated by eigenstrain,remote load and concentrated load are studied.The results show that the stress concentration and interfacial stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.
Sänger-Van De Griend, Cari E.; Ek, Anders G.; Widahl-Näsman, Monica E.; Andersson, E. K Margareta
2006-01-01
L-Adrenaline is often included in local anaesthetic (LA) solutions for injection to improve the quality of the anaesthetic block. The concentration of the LA is between 2.5 and 20 mg/ml and the concentration of adrenaline is typically ≤0.1% of the LA concentration. In order to follow the
Directory of Open Access Journals (Sweden)
DEREVIANKO V. N.
2015-10-01
Full Text Available Problem statement. In activating MgO by electrolyte salts, as a result of formation of non water-resist magnesium silicate hydrate are obtained the durable cement stone having the low water-resist. I. P. Vyrodov considers [9; 5], that magnesia cement curing in mixing with sufficiently concentrated (C > 20 % solutions MgCl2 is caused with the crystallization of oxyhydrochloride composition: 3MgO∙MgCl2∙11Н2О, 5MgO∙MgCl2∙13Н2О and 7MgO∙MgCl2∙15Н2О. In the lower concentration parts of MgCl2 solution is formed a transitional compound of Mg[(OHnCl2-n] with isomorphous Mg(OH2 structure. At very low Cl concentration only Mg(OH2 is practically formed. Purpose. The Formation of water-resist magnesium silicate hydrates for obtaining of fast curing and solid structure of the magnesia stone. Conclusion. The dependence of the formation of the magnesia stone from the ratio (MgO/MgCl2 of the magnesia cement (MgO and the magnesium chloride solution (MgCl2 of different density has been identified in order to obtain the best content for oxyhydrochloride 3MgO•MgCl2•11Н2О, 5MgO•MgCl2•13Н2О and magnesium hydroxide (Mg(OH2. In putting into the system MgO∙–∙H2О of the silicic acid or fine ground quartz grains with size of less than 20 – 30 microns, over 1 month for the magnesium silicate hydrates formation is needed, where from 2 to 5 % of the total number of newgrowths are created. The study is proved by the expert opinion, that magnesium silicate hydrates do not have binding properties, unlike calcium silicate hydrates, and the main role in the system curing is played with the Mg(OH2 gel recrystallization, which provides the acceptable stone strength (R ≈ 30MPa in a few years. It has been also established, that in mixing of cement with low concentration MgO solutions of less than 1,5 mol/l (or 13% 1,1g/sm3, the final product in the stone structure is Mg(OH2. With increasing the sealer (MgCl2 solution there is formed by turn in
Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment
Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.
2017-12-01
Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.
International Nuclear Information System (INIS)
Guo Yiping; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi; Kato, Kazumi
2006-01-01
Lead-free piezoelectric films with thickness larger than 1 μm integrated on silicon substrates have been receiving considerable attention because of environmental concerns and their potential applications in microelectromechanical systems. We demonstrate that, by chemical solution deposition, it is possible to process (1 0 0)-predominant 1 μm BaTiO 3 films on LaNiO 3 /Pt/TiO x /SiO 2 /Si substrates using thinner high-crystallinity columnar BaTiO 3 films as buffer layers. We point out that this kind of buffer layer prepared with a lower concentration solution on the surface of an LaNiO 3 /Pt electrode is effective in enhancing the crystallinity and orientation degree of final BaTiO 3 films prepared with a higher concentration solution. The 1 μm BaTiO 3 films show good dielectric and insulating characteristics against an applied field, and the conduction current shows Schottky emission behavior at modest voltage and space-charge-limited behavior at higher voltage. We also demonstrate that the (1 0 0)-predominant 1 μm BaTiO 3 films have excellent piezoelectric properties: piezoelectric coefficients d 33 higher than 50 pm/V have been determined for the bare films using atomic force microscopy, which are comparable to those of Pb(Zr,Ti)O 3 films. These results indicate that the (1 0 0)-predominant BaTiO 3 films should be promising candidates for microelectromechanical systems applications
Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.
2018-05-01
Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.
Exact solution of matricial Φ23 quantum field theory
Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar
2017-12-01
We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.
Castellanos, Maria Monica
Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small
International Nuclear Information System (INIS)
Erlinger, C.; Belloni, L.; Zemb, T.; Madic, C.
1999-01-01
Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions, modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits
Li, Ruipeng; Khan, Hadayat Ullah; Payne, Marcia M.; Smilgies, Detlef Matthias; Anthony, John Edward; Amassian, Aram
2012-01-01
-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions
Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions
Ferreira, Rita; Gomes, Diogo A.; Tada, Teruo
2018-01-01
In this paper, we study first-order stationary monotone mean-field games (MFGs) with Dirichlet boundary conditions. While for Hamilton--Jacobi equations Dirichlet conditions may not be satisfied, here, we establish the existence of solutions of MFGs that satisfy those conditions. To construct these solutions, we introduce a monotone regularized problem. Applying Schaefer's fixed-point theorem and using the monotonicity of the MFG, we verify that there exists a unique weak solution to the regularized problem. Finally, we take the limit of the solutions of the regularized problem and using Minty's method, we show the existence of weak solutions to the original MFG.
Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions
Ferreira, Rita
2018-04-19
In this paper, we study first-order stationary monotone mean-field games (MFGs) with Dirichlet boundary conditions. While for Hamilton--Jacobi equations Dirichlet conditions may not be satisfied, here, we establish the existence of solutions of MFGs that satisfy those conditions. To construct these solutions, we introduce a monotone regularized problem. Applying Schaefer\\'s fixed-point theorem and using the monotonicity of the MFG, we verify that there exists a unique weak solution to the regularized problem. Finally, we take the limit of the solutions of the regularized problem and using Minty\\'s method, we show the existence of weak solutions to the original MFG.
DEFF Research Database (Denmark)
Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund
2007-01-01
using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...
Concentration in the European electricity industry: The internal market as solution?
International Nuclear Information System (INIS)
Domanico, Fabio
2007-01-01
This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation
Concentration in the European electricity industry: The internal market as solution?
Energy Technology Data Exchange (ETDEWEB)
Domanico, Fabio [Department of Economics, Luiss Guido Carli University, 1, Via O. Tommasini, 00162 Roma (Italy)
2007-10-15
This article offers an analysis of the present competitive and regulatory framework of the European electricity sector and the results achieved with the liberalisation process. Considering the reactions of incumbents to the liberalisation, the focus in this work is mainly on the problem of market concentration in the sector. The new trends toward the creation of 'national champions' as well as recent mergers between gas suppliers and electricity producers raise serious concerns about abuses of market power and risk of future collusion. In particular, the strategic linkage of existing markets and the expansion into new ones are analyzed in the light of the multimarket contact theory. Considering investment in interconnection among Member States, the internal market issue is investigated as a solution to the 'risks' coming from liberalisation. (author)
Directory of Open Access Journals (Sweden)
Pingping He
2018-04-01
Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.
International Nuclear Information System (INIS)
Korostynska, O; Ortoneda-Pedrola, M; Mason, A; Al-Shamma'a, A I
2014-01-01
A novel electromagnetic wave sensor operating at GHz frequencies for real-time chlorides concentration analysis is reported. The sensor response to deionized water, NaCl, KCl, MnCl 2 and CuCl solutions at various concentrations was tested. The sensing element, in the form of a silver pattern antenna that emits an electromagnetic field, was printed on a polyimide flexible laminate substrate to form a sensor to suit a broad range of applications, where a sensor could be placed in water reservoirs or fluid-carrying pipes for continuous analysis. The developed system confirmed the viability of using microwaves for real-time chloride solutions monitoring as the reflected signals represented by S 11 parameters were unique with clearly observed shifts in the resonant frequencies and amplitude changes when placed in direct contact with 20 µl of each solution. (paper)
Directory of Open Access Journals (Sweden)
Guadalupe Albarrán
2014-10-01
Full Text Available Vitamin loss during irradiation has been claimed as a critical area in food irradiation technology, especially that of thiamine (B1, which has been considered as the most sensitive to radiation. Although it has been suggested that no vitamin deficiency could result from consuming irradiated food, a long debate on the loss of vitamins and other nutrients during food irradiation has been maintained by the lack of experimental studies monitoring decomposition rates at different concentrations and doses. Since thiamine, riboflavin, and pyridoxine are labile vitamins, this study has focused on their radiolytic decomposition in dilute aqueous solutions in the presence of air. The decomposition process was followed by HPLC and UV-spectroscopy. The results obtained in aqueous solutions showed a dependence of the decomposition as a nonlinear function of the dose. Of these three compounds, the decomposition was higher for thiamine than for riboflavin and even less in pyridoxine.
International Nuclear Information System (INIS)
Bonniaud, R.; Sombret, C.
1961-01-01
The present report gives the actual point of studies on vitrification of concentrated solutions of fission products. An active cell, giving glasses in crucibles, permitted to study various glass compositions. The leaching rate from the glass raises 1 to 2 10 -7 g of glass/cm 2 /day. Activity loss by volatility during vitrification remains weak and often below 0.1 per cent of total activity. Off gas cleaning is made easier by presence of filter which is compound of granules including iron oxide. After saturation the content of this filter can be melt. Moreover different processes are in experimentation for a more important production. Daily 72 liters of solution containing tracer activity are treated in a continuous calcination and vitrification plant. The loss in 106 Ru is still important and a modification of installation has been necessary. A pot vitrification plant is in study. In order to reduce cost of processing the possibility to pour glass after melting is actuality in study. A production set of very active glass is also in project. (authors) [fr
Pansare, Swapnil K; Patel, Sajal Manubhai
2016-08-01
Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.
Experiments on the incorporation of concentrated solutions of fission products in glasses and micas
International Nuclear Information System (INIS)
Bonniaud, R.; Cohen, P.; Sombret, C.
1958-01-01
1) The plants designed for extracting the plutonium of the G1, G2, G3 reactors fuel rods will produce extremely concentrated solutions of fission products. 2) Let us consider a synthetic solution of the 'G2' type: (2N NO 3 H - 2,25 meq/cm 3 AI +++ - 5.10 -3 134 Cs - 137 Cs tracer). We made various glasses and micas by adding and mixing the necessary adjuvants and baking (900 to 1400 deg. C) in a graphite crucible. 3) The products obtained had either the shape of a cylindrical pellet or were reduced into a fine powder. They were mixed with 300 cm 3 of synthetic sea water during variable periods of time in order to study leaching of the activity. 4) Experiments were first carried on caesium because of its solubility. 5) Fabrication of micas on a large scale sets many technological problems more difficult to solve (1400 deg. C) than in the case of glasses (1000 deg. C). A comparative study on both micas and glasses showed that leaching of activity was more important in the micas. (author) [fr
Effect of Na2CO3 degumming concentration on LiBr-formic acid-silk fibroin solution properties
Directory of Open Access Journals (Sweden)
Liu Zhi
2016-01-01
Full Text Available Salt-acid system has been proved to be of high efficiency for silk fibroin dissolution. Using salt-acid system to dissolve silk, native silk fibrils can be preserved in the regenerated solution. Increasing experiments indicate that acquirement of silk fibrils in solution is strongly associated with the degumming process. In this study, the effect of sodium carbonate degumming concentration on solution properties based on lithium bromide-formic acid dissolution system was systematically investigated. Results showed that the morphology transformation of silk fibroin in solution from nanospheres to nanofibrils is determined by sodium carbonate concentration during the degumming process. Solutions containing different silk fibroin structure exhibited different rheological behaviors and different electrospinnability, leading to different electrospun nanofibre properties. The results have guiding significance for preparation and application of silk fibroin solutions.
New exact solution for the exterior gravitational field of a charged spinning mass
International Nuclear Information System (INIS)
Chamorro, A.; Manko, V.S.; Denisova, T.E.
1991-01-01
An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly
New exact solution for the exterior gravitational field of a spinning mass
International Nuclear Information System (INIS)
Manko, V.S.
1990-01-01
An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented
New approaches and solutions of the nonlinear force-free field
International Nuclear Information System (INIS)
Xie Baisong; Yin Xintao; Luo Xia
2006-01-01
New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed
Some exact solutions for one-dimensional self-interacting systems in quantum field theories
International Nuclear Information System (INIS)
De Puy, R.J.
1975-01-01
Particular positive or negative frequency solutions of the field equation, (d 2 /dt 2 + m 2 )phi/sub q lambda/ + lambda phi/sub q lambda/ /sup 2q+1/ = 0, for which q not equal to 0, -1 are used in the study of one-dimensional quantum field theories. The commutator, [phi/sub q lambda/,d phi/sub q lambda//dt]/sub -/ = 1, is not applied because phi/sub q lambda/ is required to be a general solution. The commutator, [phi/sub q lambda//sup (+)/(t),phi/sub q lambda//sup (-)/(t)]/sub -/ = 1, cannot be applied to the particular solutions considered. The system is quantized by requiring that [phi/sub q lambda//sup (+)/(0),phi/sub q lambda//sup (-)/(0)]/sub -/ = 1 in analogy with the quantization procedure prescribed for free fields. This quantization procedure leads to a propagator which is not invariant with respect to time translations. Hence any connection between the procedure for quantizing nonlinear particular solutions and the linear canonical quantization formalism remains obscure. General solutions of the field equation, (d 2 /dt 2 + m 2 )phi + lambda phi 3 = 0, are patterned after solutions obtained by the method of successive approximations. These solutions process terms containing polynomial factors in the independent variable, t, known as secular terms which account for the unboundedness of the solutions for large magnitudes of the independent variable. Therefore the differential equation and its solution complete with secular terms are modified by making structural changes in both and by expanding the mass in operator-valued terms. The constituent operators of the solution and mass are chosen such that the secular terms are eliminated. The higher order terms in the mass operator are rewritten in terms of the field solution and its first derivative
Koopmans, G F; Hiemstra, T; Regelink, I C; Molleman, B; Comans, R N J
2015-05-01
Manufactured metallic silver nanoparticles (AgNP) are intensively utilized in consumer products and this will inevitably lead to their release to soils. To assess the environmental risks of AgNP in soils, quantification of both their concentration and size in soil solution is essential. We developed a methodology consisting of asymmetric flow field-flow fractionation (AF4) in combination with on-line detection by UV-vis spectroscopy and off-line HR-ICP-MS measurements to quantify the concentration and size of AgNP, coated with either citrate or polyvinylpyrrolidone (PVP), in water extracts of three different soils. The type of mobile phase was a critical factor in the fractionation of AgNP by AF4. In synthetic systems, fractionation of a series of virgin citrate- and PVP-coated AgNP (10-90 nm) with reasonably high recoveries could only be achieved with ultrahigh purity water as a mobile phase. For the soil water extracts, 0.01% (w:v) sodium dodecyl sulfate (SDS) at pH 8 was the key to a successful fractionation of the AgNP. With SDS, the primary size of AgNP in all soil water extracts could be determined by AF4, except for PVP-coated AgNP when clay colloids were present. The PVP-coated AgNP interacted with colloidal clay minerals, leading to an overestimation of their primary size. Similar interactions between PVP-coated AgNP and clay colloids can take place in the environment and facilitate their transport in soils, aquifers, and surface waters. In conclusion, AF4 in combination with UV-vis spectroscopy and HR-ICP-MS measurements is a powerful tool to characterize AgNP in soil solution if the appropriate mobile phase is used. Copyright © 2015 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Eliseeva, O.V.; Golubev, V.V.
2003-01-01
Concentration dependence of partial volumes, electric conductivity and viscosity of lithium nitrate and chloride solutions in methanol, propanol, isopropanol, butanol, isobutanol, pentanol and isopentanol at 298.15 K were studied by the methods of densimetry, conductometry and viscosimetry. Structural specific features of the solutions studied are discussed on the basis of the calculated volumetric characteristics of the substance dissolved and solvent [ru
Svoboda, Martin; Lísal, Martin
2018-06-01
To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.
SO(4)-symmetric solutions of Minkowskian Yang-Mills field equations
International Nuclear Information System (INIS)
Luescher, M.
1977-06-01
We construct all solutions to the SU(2) Yang-Mills field equations in Minkowski space that are invariant under an SO(4) subgroup of the conformal group. They are real, regular and have finite energy and action. A connection with the instanton solution is pointed out. (orig.) [de
Self-similar solutions for toroidal magnetic fields in a turbulent jet
International Nuclear Information System (INIS)
Komissarov, S.S.; Ovchinnikov, I.L.
1989-01-01
Self-similar solutions for weak toroidal magnetic fields transported by a turbulent jet of incompressible fluid are obtained. It is shown that radial profiles of the self-similar solutions form a discrete spectrum of eigenfunctions of a linear differential operator. The strong depatures from the magnetic flux conservation law, used frequently in turbulent jet models for extragalactic radio sources, are found
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.
2017-01-05
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.
Large time asymptotics of solutions of the equations of principal chiral field
International Nuclear Information System (INIS)
Sukhanov, V.V.
1990-01-01
Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation
Calabrò, Emanuele; Magazù, Salvatore
2018-05-01
Samples of a typical tetrameric protein, the hemoglobin, at the concentration of 150 mg/ml in bidistilled water solution, were exposed to a uniform magnetic field at 200 mT at different temperatures of 15∘C, 40∘C and 65∘C. Fourier Transform Infrared Spectroscopy was used to analyze the response of the secondary structure of the protein to both stress agents, heating and static magnetic field. The most relevant result which was observed was the significant increasing in intensity of the Amide I band after exposure to the uniform magnetic field at the room temperature of 15∘C. This result can be explained assuming that protein's α-helices aligned along the direction of the applied magnetic field due to their large dipole moment, inducing the alignment of the entire protein. Increasing of temperature up to 40∘C and 65∘C induced a significant reduction of the increasing in intensity of the Amide I band. This effect may be easily explained assuming that Brownian motion of the protein in water solution caused by thermal molecular agitation increased with increasing of temperature, contrasting the effect of the torque of the magnetic field applied to the protein in water solution.
Directory of Open Access Journals (Sweden)
Luszczkiewicz Andrzej
2016-01-01
Full Text Available Industrial and laboratory flotation copper concentrates were subjected to separation into density fractions by means of heavy liquids in the form of sodium polytungstate aqueous solutions. For two samples, three densities factions were created, however in different density ranges. The density fractions were analyzed to establish the content of copper, lead, silver and organic carbon. The size of particles in both samples was similar (90-95% −0.071 mm. It was found that the lightest density fractions −2.45 and −2.0 g/cm3 still contained sulfide minerals scattered in the organic carbon bearing particles. Removal of the lightest density fraction (−2.0 g/cm3 from the industrial concentrate samples led to considerable reduction of organic carbon (92% and increasing its quality from 13 to 28% Cu. The mineralogical analysis of the heavy liquid separation products showed that most sulfide minerals were evenly dissemination in the heaviest density fractions with the recovery of 95-98%. The lightest density fraction of −2.0 g/cm3, being the richest in organic carbon, contained approximately 3% of unliberated sulfide minerals.
Angle, J. Scott; McGrath, Stephen P.; Chaney, Rufus L.
1991-01-01
A new growth medium which closely approximates the composition of the soil solution is presented. This soil solution equivalent (SSE) medium contains the following components (millimolar): NO3, 2.5; NH4, 2.5; HPO4, 0.005; Na, 2.5; Ca, 4.0; Mg, 2.0; K, 0.503; Cl, 4.0; SO4, 5.0; ethylenediamine-di(o-hydroxyphenylacetic acid), 0.02; and MES [2-(N-morpholino)ethanesulfonic acid] (to maintain the pH at 6.0), 10, plus 0.1% arabinose. The advantages of the SSE medium are discussed. PMID:16348614
Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C
2011-01-01
The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.
International Nuclear Information System (INIS)
Jing, Wu; Chun-Yan, Xiao
2010-01-01
The solutions to the electromagnetic field excited by a long axial current outside a conductive and magnetic cylindrical shell of finite length are studied in this paper. The more accurate analytical solutions are obtained by solving the proper boundary value problems by the separation variable method. Then the solutions are simplified according to asymptotic formulas of Bessel functions. Compared with the accurate solutions, the simplified solutions do not contain the Bessel functions and the inverse operation of the singular matrix, and can be calculated out fast by computers. The simplified solutions are more suitable for the cylindrical shell of high permeability and conductivity excited by a high frequency source. Both of the numerical results and the physical experimental results validate the simplified solutions obtained. (classical areas of phenomenology)
On asymptotic solutions of Regge field theory in zero transverse dimensions
International Nuclear Information System (INIS)
Bondarenko, S.; Horwitz, L.; Levitan, J.; Yahalom, A.
2013-01-01
An investigation of dynamical properties of solutions of a toy model of interacting Pomerons with triple vertex in zero transverse dimension is performed. Stable points and corresponding solutions at the limit of large rapidity are studied in the framework of a given model. It is shown that, at large rapidity, the “fan” amplitude is also a leading solution for the full RFT-0 (Regge Field Theory in zero transverse dimensions) Hamiltonian with both vertices of Pomeron splitting and merging included. An analytical form of the symmetrical solution of the equations of motion at high energy is obtained as well. For the solutions we have found, the scattering amplitude at large values of rapidity is calculated. Stability of the solutions is investigated by Lyapunov functions and the presence of closed cycles in solutions is demonstrated by the new method
Zavitsas, Andreas A
2012-08-23
Viscosities of aqueous solutions of many highly soluble hydrophilic solutes with hydroxyl and amino groups are examined with a focus on improving the concentration range over which Einstein's relationship between solution viscosity and solute volume, V, is applicable accurately. V is the hydrodynamic effective volume of the solute, including any water strongly bound to it and acting as a single entity with it. The widespread practice is to relate the relative viscosity of solute to solvent, η/η(0), to V/V(tot), where V(tot) is the total volume of the solution. For solutions that are not infinitely dilute, it is shown that the volume ratio must be expressed as V/V(0), where V(0) = V(tot) - V. V(0) is the volume of water not bound to the solute, the "free" water solvent. At infinite dilution, V/V(0) = V/V(tot). For the solutions examined, the proportionality constant between the relative viscosity and volume ratio is shown to be 2.9, rather than the 2.5 commonly used. To understand the phenomena relating to viscosity, the hydrodynamic effective volume of water is important. It is estimated to be between 54 and 85 cm(3). With the above interpretations of Einstein's equation, which are consistent with his stated reasoning, the relation between the viscosity and volume ratio remains accurate to much higher concentrations than those attainable with any of the other relations examined that express the volume ratio as V/V(tot).
Vortex solutions of a Maxwell-Chern-Simons field coupled to four-fermion theory
International Nuclear Information System (INIS)
Hyun, S.; Shin, J.; Yee, J.H.; Lee, H.
1997-01-01
We find the static vortex solutions of the model of a Maxwell-Chern-Simons gauge field coupled to a (2+1)-dimensional four-fermion theory. Especially, we introduce two matter currents coupled to the gauge field minimally: the electromagnetic current and a topological current associated with the electromagnetic current. Unlike other Chern-Simons solitons the N-soliton solution of this theory has binding energy and the stability of the solutions is maintained by the charge conservation laws. copyright 1997 The American Physical Society
Weng, L.; Temminghoff, E.J.M.; Riemsdijk, van W.H.
2001-01-01
Accurate measurement of the free metal ion is difficult, especially for trace metals present in very small concentrations (less than micromolar) in natural systems. The recently developed Donnan membrane technique can measure the concentrations in solution in the presence of inorganic and organic
Butko, A. V.; Butko, V. Yu.; Lebedev, S. P.; Lebedev, A. A.; Kumzerov, Yu. A.
2017-10-01
For the creation of new promising chemical sensors, it is very important to study the influence of the interface between graphene and aqueous solutions of acids and alkalis on the transistor characteristics of graphene. Transistor structures on the basis of graphene grown by thermal decomposition of silicon carbide were created and studied. For the interface of graphene with aqueous solutions of acetic acid and potassium hydroxide in the transistor geometry, with a variation in the gate-to-source voltage, the field effect corresponding to the hole type of charge carriers in graphene was observed. It is established that an increase in the concentration of molecular ions in these solutions leads to an increase in the dependence of the resistance of the transistor on the gate voltage.
2015-01-01
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831
International Nuclear Information System (INIS)
Marsh, S.F.; Gallegos, T.D.
1987-07-01
The principal aqueous process used to recover and purify plutonium at the Los Alamos Plutonium Facility is anion exchange in nitric acid. Previous studies with gel-type anion exchange resin have shown an inverse relationship between plutonium concentration in the feed solution and the optimum flow rate for this process. Because gel-type resin has been replaced with macroporous resin at Los Alamos, the relationship between plutonium concentration and solution flow rate was reexamined with the selected Lewatit MP-500-FK resin using solutions of plutonium in nitric acid and in nitric acid with high levels of added nitrate salts. Our results with this resin differ significantly from previous data obtained with gel-type resin. Flow-rate variation from 10 to 80 liters per hour had essentially no effect on the measured quantities of plutonium sorbed by the macroporous resin. However, the effect of plutonium concentration in the feed solutions was pronounced, as feed solutions that contained the highest concentrations of plutonium also produced the highest resin loadings. The most notable effect of high concentrations of dissolved nitrate salts in these solutions was an increased resin capacity for plutonium at low flow rates. 16 refs., 7 figs., 2 tabs
International Nuclear Information System (INIS)
Fu, Dong; Wang, LeMeng; Mi, ChenLu; Zhang, Pan
2016-01-01
Highlights: • Absorption of CO_2 in high concentrated DEAE-PZ aqueous solutions were measured. • Viscosities of CO_2-unloaded and CO_2-loaded DEAE-PZ aqueous solutions were measured. • Weiland equation was used to calculate the viscosities. • Effects of temperature, concentration and CO_2 loading on viscosity were demonstrated. - Abstract: The absorption capacity of CO_2 in piperazine (PZ) promoted 2-diethylaminoethanol (DEAE) aqueous solution was measured. The viscosities of both CO_2-unloaded and CO_2-loaded PZ-DEAE aqueous solutions were measured and then modelled. The temperatures ranged from 303.2 K to 323.2 K. The mass fraction of PZ and DEAE respectively ranged from 0 to 0.075 and 0.3 to 0.5. The temperature and concentration dependences of absorption capacity were determined. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.
The rheology of oxide dispersions and the role of concentrated electrolyte solutions
International Nuclear Information System (INIS)
Biggs, Simon; Tindley, Amy
2007-01-01
Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid- liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO 2 suspensions were determined (Colloidal Dynamics Zeta Probe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001 M - 1 M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5 M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear
Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field
International Nuclear Information System (INIS)
Xu Hengli; Shao Fei; Zou Maoqin
2009-01-01
This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
Einstein-Maxwell-axion theory: dyon solution with regular electric field
Energy Technology Data Exchange (ETDEWEB)
Balakin, Alexander B.; Zayats, Alexei E. [Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)
2017-08-15
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Einstein-Maxwell-axion theory: dyon solution with regular electric field
International Nuclear Information System (INIS)
Balakin, Alexander B.; Zayats, Alexei E.
2017-01-01
In the framework of the Einstein-Maxwell-axion theory we consider static spherically symmetric solutions which describe a magnetic monopole in the axionic environment. These solutions are interpreted as the solutions for an axionic dyon, the electric charge of which is composite, i.e. in addition to the standard central electric charge it includes an effective electric charge induced by the axion-photon coupling. We focus on the analysis of those solutions which are characterized by the electric field regular at the center. Special attention is paid to the solutions with the electric field that is vanishing at the center, and that has the Coulombian asymptote, and thus displays an extremum at some distant sphere. Constraints on the electric and effective scalar charges of such an object are discussed. (orig.)
Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields
Asenjo, Felipe A.; Hojman, Sergio A.
2017-07-01
A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature
DEFF Research Database (Denmark)
Ma, Huanming; Qin, Zhiwei; Wang, Zaide
2017-01-01
ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...
Concentration field in traveling-wave and stationary convection in fluid mixtures
International Nuclear Information System (INIS)
Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.
1991-01-01
By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern
Jacob, Daniel J.; Waldman, Jed. M.; Munger, J. William; Hoffmann, Michael R.
2011-01-01
High ionic loadings were found in fogwater collected at Bakersfield. California during an extended stagnation episode. The major ions were NH4+ NO3-, and SO42-, with concentrations usually in the millimolar range. Droplet growth played an important rôle in determining fogwater concentrations. The amount of solute decreased substantially over the course of each fog event; this was attributed, at least in part, to deposition of fog droplets on surfaces. The occurrence of dense fogs thus seemed ...
Static and time-dependent solutions of Einstein-Maxwell-Yukawa fields
International Nuclear Information System (INIS)
Lal, K.B.; Khan, M.Q.
1977-01-01
An exact solution of Einstein-Maxwell-Yukawa field equations has been obtained in a space-time with a static metric. A critical analysis reveals that the results previously obtained by Patel (Tensor New Sci.; 29:237 (1975)), Singh (Gen. Rel. Grav.; 6:657 (1974)), and Taub (Ann. Math.; 53:472 (1951)) are particular cases of the present solution. The singular behaviour of the solution is also discussed in this paper. Further, extending the technique developed by Janis et al (Phys. Rev.; 186:1729 (1969)), for static fields, to the case of nonstatic fields, an exact time-dependent axially symmetric solution of EMY fields has been obtained. The present solution in the nonstatic case is nonsingular in the sense of Bonnor (J. Math. Mech.; 6:203 (1957)) and presents a generalization of the results obtained by Misra (Proc. Cambridge Philos. Soc.; 58:711 (1962)) to the case when a zero-mass scalar field coexists with a source free electromagnetic field. (author)
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in φ4-Theory
International Nuclear Information System (INIS)
Finster, Felix; Tolksdorf, Juergen
2012-01-01
Solutions of the classical φ 4 -theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a ''classical measurement process'' in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory
Finster, Felix; Tolksdorf, Jürgen
2012-05-01
Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.
Kobayashi, J; Yanagisawa, R; Ono, T; Tatsuzawa, Y; Tokutake, Y; Kubota, N; Hidaka, E; Sakashita, K; Kojima, S; Shimodaira, S; Nakamura, T
2018-02-01
Adverse reactions to platelet transfusions are a problem. Children with primary haematological and malignant diseases may experience allergic transfusion reactions (ATRs) to platelet concentrates (PCs), which can be prevented by giving washed PCs. A new platelet additive solution, using bicarbonated Ringer's solution and acid-citrate-dextrose formula A (BRS-A), may be better for platelet washing and storage, but clinical data are scarce. A retrospective cohort study for consecutive cases was performed between 2013 and 2017. For 24 months, we transfused washed PCs containing BRS-A to children with primary haematological and malignant diseases and previous adverse reactions. Patients transfused with conventional PCs (containing residual plasma) were assigned as controls, and results were compared in terms of frequency of ATRs, corrected count increment (CCI) and occurrence of bleeding. We also studied children transfused with PCs washed by a different system as historical controls. Thirty-two patients received 377 conventional PC transfusions. ATRs occurred in 12 (37·5%) patients from transfused with 18 (4·8%) bags. Thirteen patients, who experienced reactions to regular PCs in plasma, then received 119 transfusion bags of washed PCs containing BRS-A, and none had ATRs to washed PCs containing BRS-A. Before study period, six patients transfused 137 classical washed PCs with different platelet additive solution, under same indication, ATRs occurred in one (16·7%) patient from transfused with one (0·7%) bags. CCIs (24 h) in were lower with classical washed PCs (1·26 ± 0·54) compared to regular PCs in plasma (2·07 ± 0·76) (P < 0·001), but there was no difference between washed PCs containing BRS-A (2·14 ± 0·77) and regular PCs (2·21 ± 0·79) (P = 0·769), and we saw no post-transfusion bleeding. Washed PCs containing BRS-A appear to prevent ATRs without loss of transfusion efficacy in children with primary haematological and malignant
International Nuclear Information System (INIS)
Baxter, Mathew; Van Gorder, Robert A
2013-01-01
We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)
Külske, C
2003-01-01
We derive useful general concentration inequalities for functions of Gibbs fields in the uniqueness regime. We also consider expectations of random Gibbs measures that depend on an additional disorder field, and prove concentration w.r.t the disorder field. Both fields are assumed to be in the uniqueness regime, allowing in particular for non-independent disorder field. The modification of the bounds compared to the case of an independent field can be expressed in terms of constants that resemble the Dobrushin contraction coefficient, and are explicitly computable. On the basis of these inequalities, we obtain bounds on the deviation of a diffraction pattern created by random scatterers located on a general discrete point set in the Euclidean space, restricted to a finite volume. Here we also allow for thermal dislocations of the scatterers around their equilibrium positions. Extending recent results for independent scatterers, we give a universal upper bound on the probability of a deviation of the random sc...
Energy Technology Data Exchange (ETDEWEB)
Sung, G. B.; Jung, K. H.; Kang, D. W. [KEPRI, Taejon (Korea, Republic of); Park, C. S. [KEPCO, Taejon (Korea, Republic of)
1999-05-01
Boric acid is used for reactivity control in nuclear reactors, which frequently results in leftover boric acid. This extra boric acid is stored in boric acid storage tank after the concentration process by boric acid evaporator. Apart from this excess, highly concentrated boric acid is stored in safety-related boric acid storage tank. Accordingly, proper maintenance of these boric acid is one of the greatest safety concerns. The solubility of boric acid decreases with decreasing temperature resulting in its precipitation. Consequently, the temperature of boric acid storage tanks is maintained at high temperature. The following analysis should be also performed at the similar temperature to prevent the formation of boric acid precipitation, which is difficult to achieve affecting the accuracy of analytical results. This paper presents a new sampling and measuring technique that makes up for the difficulties mentioned above and shows several advantages including improved reliability and short analysis time. This method is based on gravimetry and dilution method and is expected to be widely used in field application.
Analytic solution of magnetic induction distribution of ideal hollow spherical field sources
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2017-12-01
The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
International Nuclear Information System (INIS)
Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B
2009-01-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
In-core LOCA-s: analytical solution for the delayed mixing model for moderator poison concentration
International Nuclear Information System (INIS)
Firla, A.P.
1995-01-01
Solutions to dynamic moderator poison concentration model with delayed mixing under single pressure tube / calandria tube rupture scenario are discussed. Such a model is described by a delay differential equation, and for such equations the standard ways of solution are not directly applicable. In the paper an exact, direct time-domain analytical solution to the delayed mixing model is presented and discussed. The obtained solution has a 'marching' form and is easy to calculate numerically. Results of the numerical calculations based on the analytical solution indicate that for the expected range of mixing times the existing uniform mixing model is a good representation of the moderator poison mixing process for single PT/CT breaks. However, for postulated multi-pipe breaks ( which is very unlikely to occur ) the uniform mixing model is not adequate any more; at the same time an 'approximate' solution based on Laplace transform significantly overpredicts the rate of poison concentration decrease, resulting in excessive increase in the moderator dilution factor. In this situation the true, analytical solution must be used. The analytical solution presented in the paper may also serve as a bench-mark test for the accuracy of the existing poison mixing models. Moreover, because of the existing oscillatory tendency of the solution, special care must be taken in using delay differential models in other applications. (author). 3 refs., 3 tabs., 8 figs
Directory of Open Access Journals (Sweden)
Longxiang Li
Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
Evolution of ion damage at 773K in Ni- containing concentrated solid-solution alloys
Shi, Shi; He, Mo-Rigen; Jin, Ke; Bei, Hongbin; Robertson, Ian M.
2018-04-01
Quantitative analysis of the impact of the compositional complexity in a series of Ni-containing concentrated solid-solution alloys, Ni, NiCo, NiFe, NiCoCr, NiCoFeCr, NiCoFeCrMn and NiCoFeCrPd, on the evolution of defects produced by 1 MeV Kr ion irradiation at 773 K is reported. The dynamics of the evolution of the damage structure during irradiation to a dose of 2 displacements per atom were observed directly by performing the ion irradiations in electron transparent foils in a transmission electron microscope coupled to an ion accelerator. The defect evolution was assessed through measurement of the defect density, defect size and fraction of perfect and Frank loops. These three parameters were dependent on the alloying element as well as the number of elements. The population of loops was sensitive to the ion dose and alloy composition as faulted Frank loops were observed to unfault to perfect loops with increasing ion dose. These dependences are explained in terms of the influence of each element on the lifetime of the displacement cascade as well as on defect formation and migration energies.
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
International Nuclear Information System (INIS)
Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin
2017-01-01
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.
G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions
Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E.
2014-01-01
© 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.
G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions
Sun, Dan
2014-07-16
© 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.
Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field
Directory of Open Access Journals (Sweden)
Pei-Kun Yang
2013-07-01
Full Text Available To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes.
International Nuclear Information System (INIS)
Masduki, B.; Wardaya; Widarmoko, A.
1996-01-01
An investigation on the effect of uranium and free nitric acid concentration of uranyl nitrate as feed of gelation process on quality of UO 2 kernel was done.The investigation is to look for some concentration of uranyl nitrate solutions those are optimum as feed for preparation of gelled UO 3 . Uranyl nitrate solution of various concentration of uranium (450; 500; 550; 600; 650; 700 g/l) and free nitric acid of (0.9; 1.0; 1.1 N) was made into feed solutions by adding urea and HMTA with mole ratio of urea/uranium and HMTA/uranium 2.1 and 2.0. The feed solutions were changed into spherical gelled UO 3 by dropping was done to get the optimum concentrations of uranyl nitrate solutions. The gelled UO 3 was soaked and washed with 2.5% ammonia solution for 17 hours, dried at 70 o C, calcined at 350 o C for 3 hours then reduced at 850 o C for 3 hours. At every step of the steps process the colour and percentage of well product of gelled UO 3 were noticed. The density and O/U ratio of end product (UO 2 kernel) was determined, the percentage of well product of all steps process was also determined. The three factor were used to chose the optimum concentration of uranyl nitrate solution. From this investigation it was concluded that the optimum concentration of uranyl nitrate was 600 g/l uranium with free nitric acid 0,9 - 1,0 N, the percentage of well product was 97% density of 6.12 - 4.8 g/cc and O/U ratio of 2.15 - 2.06. (author)
Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping
2017-07-01
To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.
Directory of Open Access Journals (Sweden)
Devin W McBride
Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.
International Nuclear Information System (INIS)
Paviet, P.; Fanghaenel, T.; Klenze, R.; Kim, J.I.
1996-01-01
The formation of sulfate complexes of Curium in aqueous solutions is studied by time resolved laser fluorescence spectroscopy (TRLFS) at 25 C. The species Cm 3+ , Cm(SO 4 ) - , Cm(SO 4 ) - 2 and Cm(SO 4 ) 3- 3 are quantified spectroscopically in the trace concentration range by peak deconvolution of fluorescence emission spectra. The complex formation equilibria are measured in NaCl/ Na 2 SO 4 solutions of constant ionic strength (3 molal) as a function of the sulfate concentration. The stability constants of Cm(SO 4 ) + and Cm(SO 4 ) - 2 are determined to be log β 1 = 0.93±0.08 and log β 2 = 0.61±0.08, respectively. The complex Cm(SO 4 ) 3- 3 is found to be stable only at very high sulfate concentrations (above 1 molal) and therefore not considered for further evaluation. (orig.)
Gratieri, Luiz Augusto; Cecílio Filho, Arthur Bernardes; Barbosa, José Carlos; Pavani, Luiz Carlos
2013-01-01
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The "Bonus no. 2" was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L(-1)) and four K concentrations (4, 6, 8, and 10 mmol L(-1)). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO₃ and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L(-1)) and K (10 mmol L(-1)) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm(-2)).
Directory of Open Access Journals (Sweden)
Luiz Augusto Gratieri
2013-01-01
Full Text Available With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1 and four K concentrations (4, 6, 8, and 10 mmol L−1. The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1 and K (10 mmol L−1 resulted in higher masses for the first (968 g and the second (951 g fruits and crop yield (4,425 gm−2.
On the existence of classical solutions for stationary extended mean field games
Gomes, Diogo A.; Patrizi, Stefania; Voskanyan, Vardan
2014-01-01
In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.
On the existence of classical solutions for stationary extended mean field games
Gomes, Diogo A.
2014-04-01
In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Shelkovich, V M
2008-01-01
This is a survey of some results and problems connected with the theory of generalized solutions of quasi-linear conservation law systems which can admit delta-shaped singularities. They are the so-called δ-shock wave type solutions and the recently introduced δ (n) -shock wave type solutions, n=1,2,..., which cannot be included in the classical Lax-Glimm theory. The case of δ- and δ'-shock waves is analyzed in detail. A specific analytical technique is developed to deal with such solutions. In order to define them, some special integral identities are introduced which extend the concept of weak solution, and the Rankine-Hugoniot conditions are derived. Solutions of Cauchy problems are constructed for some typical systems of conservation laws. Also investigated are multidimensional systems of conservation laws (in particular, zero-pressure gas dynamics systems) which admit δ-shock wave type solutions. A geometric aspect of such solutions is considered: they are connected with transport and concentration processes, and the balance laws of transport of 'volume' and 'area' to δ- and δ'-shock fronts are derived for them. For a 'zero-pressure gas dynamics' system these laws are the mass and momentum transport laws. An algebraic aspect of these solutions is also considered: flux-functions are constructed for them which, being non-linear, are nevertheless uniquely defined Schwartz distributions. Thus, a singular solution of the Cauchy problem generates algebraic relations between its components (distributions).
Low-cost modular array-field designs for flat-panel and concentrator photovoltaic systems
Post, H. N.; Carmichael, D. C.; Alexander, G.; Castle, J. A.
1982-09-01
Described are the design and development of low-cost, modular array fields for flat-panel and concentrator photovoltaic (PV) systems. The objective of the work was to reduce substantially the cost of the array-field Balance-of-System (BOS) subsystems and site-specific design costs as compared to previous PV installations. These subsystems include site preparation, foundations, support structures, electrical writing, grounding, lightning protection, electromagnetic interference considerations, and controls. To reduce these BOS and design costs, standardized modular (building-block) designs for flat-panel and concentrator array fields have been developed that are fully integrated and optimized for lowest life-cycle costs. Using drawings and specifications now available, these building-block designs can be used in multiples to install various size array fields. The developed designs are immediately applicable (1982) and reduce the array-field BOS costs to a fraction of previous costs.
International Nuclear Information System (INIS)
Bair, E.S.; Digel, R.K.
1990-01-01
A study designed to evaluate ground water quality changes resulting from spreading oil-field brine on roads for ice and dust control was conducted using a gravel roadbed that received weekly applications of brine eight times during the winter phase and 11 times during the summer phase of the study. A network of 11 monitoring wells and five pressure-vacuum lysimeters was installed to obtain ground water and soil water samples. Thirteen sets of water-quality samples were collected and analyzed for major ions, trace metals, and volatile organic compounds. Two sets of samples were taken prior to brine spreading, four sets during winter-phase spreading, five sets during summer-phase spreading, and two sets during the interim between the winter and summer phases. A brine plume delineated by elevated specific-conductance values and elevated chloride concentrations in ground water samples to exceed US EPA public drinking-water standards by two-fold during the winter phase and five-fold during the summer phase. No other major ions, trace metals, or volatile organic compounds exceeded the standards during the winter or summer phases. More than 99% dilution of the solutes in the brine occurred between the roadbed surface and the local ground water flow system. Further attenuation of calcium, sodium, potassium, and strontium resulted from adsorption, whereas further attenuation of benzene resulted from volatilization and adsorption
Analysis of hyperspectral field radiometric data for monitoring nitrogen concentration in rice crops
Stroppiana, D.; Boschetti, M.; Confalonieri, R.; Bocchi, S.; Brivio, P. A.
2005-10-01
Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. Rational nitrogen fertilization is of particular importance in rice crops in order to guarantee high production levels while minimising the impact on the environment. In fact, the typical flooded condition of rice fields can be a significant source of greenhouse gasses. Information on plant nitrogen concentration can be used, coupled with information about the phenological stage, to plan strategies for a rational and spatially differentiated fertilization schedule. A field experiment was carried out in a rice field Northern Italy, in order to evaluate the potential of field radiometric measurements for the prediction of rice nitrogen concentration. The results indicate that rice reflectance is influenced by nitrogen supply at certain wavelengths although N concentration cannot be accurately predicted based on the reflectance measured at a given wavelength. Regression analysis highlighted that the visible region of the spectrum is most sensitive to plant nitrogen concentration when reflectance measures are combined into a spectral index. An automated procedure allowed the analysis of all the possible combinations into a Normalized Difference Index (NDI) of the narrow spectral bands derived by spectral resampling of field measurements. The derived index appeared to be least influenced by plant biomass and Leaf Area Index (LAI) providing a useful approach to detect rice nutritional status. The validation of the regressive model showed that the model is able to predict rice N concentration (R2=0.55 [p<0.01] RRMSE=29.4; modelling efficiency close to the optimum value).
Haupt, Sue Ellen; Beyer-Lout, Anke; Long, Kerrie J.; Young, George S.
Assimilating concentration data into an atmospheric transport and dispersion model can provide information to improve downwind concentration forecasts. The forecast model is typically a one-way coupled set of equations: the meteorological equations impact the concentration, but the concentration does not generally affect the meteorological field. Thus, indirect methods of using concentration data to influence the meteorological variables are required. The problem studied here involves a simple wind field forcing Gaussian dispersion. Two methods of assimilating concentration data to infer the wind direction are demonstrated. The first method is Lagrangian in nature and treats the puff as an entity using feature extraction coupled with nudging. The second method is an Eulerian field approach akin to traditional variational approaches, but minimizes the error by using a genetic algorithm (GA) to directly optimize the match between observations and predictions. Both methods show success at inferring the wind field. The GA-variational method, however, is more accurate but requires more computational time. Dynamic assimilation of a continuous release modeled by a Gaussian plume is also demonstrated using the genetic algorithm approach.
Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils.
Cey, Edwin E; Rudolph, David L; Passmore, Joanna
2009-06-26
Transport of solutes and colloids in soils, particularly those subject to preferential flow along macropores, is important for assessing the vulnerability of shallow groundwater to contamination. The objective of this study was to investigate flow and transport phenomena for dissolved and colloid tracers during large infiltration events in partially saturated, macroporous soils. Controlled tracer infiltration tests were completed at two field sites in southern Ontario. A tension infiltrometer (TI) was used to infiltrate water with dissolved Brilliant Blue FCF dye simultaneously with 3.7 microm and 0.53 microm diameter fluorescent microspheres. Infiltration was conducted under maximum infiltration pressure heads ranging from -5.2 to -0.4 cm. All infiltration test sites were excavated to examine and photograph dye-stained flow patterns, map soil features, and collect samples for microsphere enumeration. Results indicated that preferential transport of dye and microspheres via macropores occurred when maximum pressure heads were greater than -3.0 cm, and the corresponding infiltration rates exceeded 2.0 cm h(-1). Dye and microspheres were detected at depths greater than 70 cm under the highest infiltration rates from both sites. Microsphere concentrations in the top 5-10 cm of soil decreased by more than two orders of magnitude relative to input concentrations, yet remained relatively constant with depth thereafter. There was some evidence for increased retention of the 3.7 microm microspheres relative to the 0.53 microm microspheres, particularly at lower infiltration pressures where straining and attachment mechanisms are most prevalent. Microspheres were observed within dye stained soil matrix surrounding individual macropores, illustrating the significance of capillary pressures in controlling the vertical migration of both tracers in the vicinity of the macropores. Overall, microsphere distributions closely followed the dye patterns, with microsphere
Directory of Open Access Journals (Sweden)
Fani Pangabdian
2012-03-01
Full Text Available Background: Smear layer is a debris consisting of organic and inorganic particles of calcified tissue, necrotic tissue, pulp tissue, and dentinoblast and microorganism processes that can close the entrance to the dentin tubuli. Smear layer, will not only inhibit the penetration of disinfection materials and sealers to the dentin tubuli, but will also reduce the attachment of root canal filling material so that root canal irrigation solution is needed to dissolve the smear layer. Red betel leaf (Piper crocatum infusion, on the other hand, contains saponin characterized as “surfactants” which can dissolve smear layer. Nevertheless, the effective concentration of the red betel leaf infusion has still not been known clearly. Purpose: This study is aimed to determine the effective concentration of the red betel leaf infusion for cleaning root canal walls from smear layer. Methods: Fiveteen extracted human teeth with straight single roots were randomized into 5 groups (n=3. The specimens were then shaped by using rotary instruments up to a size of 25/.07. During instrumentation, each canal was irrigated with 10, 20, 30 and, 40% red betel leaf infusion for treatment groups, while another was irrigated with aquadest for the control group. Root canal cleanliness was observed by using scanning electron microscope (SEM. Results: There were significant differences among treatment groups (p<0.05, except in the treatment groups irrigated with red betel leaf infusion with concentrations of 30% and 40% (p>0.05. Conclusion: It can be concluded that red betel leaf infusion with a concentration of 30% is effective for cleaning the root canal walls from the smear layer.Latar belakang: Smear layer adalah suatu debris yang mengandung partikel organik dan anorganik dari jaringan terkalsifikasi, jaringan nekrotik, proses dentinoblas, jaringan pulpa dan mikroorganisme yang dapat menutup jalan masuk ke tubuli dentin. Smear layer akan menghalangi penetrasi dari bahan
Real analytic solutions for marginal deformations in open superstring field theory
International Nuclear Information System (INIS)
Okawa, Yuji
2007-01-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction
Real analytic solutions for marginal deformations in open superstring field theory
International Nuclear Information System (INIS)
Okawa, Y.
2007-04-01
We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction. (orig.)
International Nuclear Information System (INIS)
Fu, W.-Z.; Hau, L.-N.
2005-01-01
An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ
The exploratory development of A self-made oral Gd-DTPA solution for low field MRCP in children
International Nuclear Information System (INIS)
Sheng Mao; Zhou Min; Gu Zhicheng; Wu Jizhi; Guo Wanliang; Ni Yongbiao; Fang Lin
2010-01-01
Objective: To evaluate the value of ingestion self-made Gd-DTPA solutin for low field magnetic resonance cholangiopancreatography (MRCP) (0.35T) in children. Methods: Phantom experiments were performed to select the optimal concentration of Gd-DTPA to be used as an oral negative contrast agent in low field MRCP. Twenty children suspected of celiac disease were performed with MRCP before and after ingestion Gd-DTPA solution. Signal intensity measurements of gastroduodenal lumens, pancreatobiliary ducts, and image quality scores were obtained systematically before and after contrast ingestion. Results: The selected Gd-DTPA concentration was 1.992 mmol/L. Ingestion of 80 ml solution eliminated or suppressed efficiently the gastroduodenal signal intensity, improving the MRCP image quality scores (P<0.01) significantly in children. Conclusion: 1.992 mmol/L self-made Gd-DTPA solutin can suppress or eliminate water signals from gastrointestinal tract and improve the quality of low field MRCP image in children. (authors)
Narasimhamurthy, Girish Chikkanayakanahalli; Patel, Muralidhara Danappa; Menezes, Yvonne; Gurushanth, Kavyashree Nagenahalli
2016-04-01
Ropivacaine is amide local anaesthetic pure S(-)enantiomer of bupivacaine. Its duration of analgesia is similar to that of Bupivacaine (in equivalent doses) but the motor block is slower in onset, less intense, shorter in duration for a given level of sensory block with lesser cardiac side effects but addition of an adjuvant like clonidine which is an imidazoline derivative has been studied for its sedative, anxiolytic and analgesic properties. This study was aimed to show the optimum concentrations of Ropivacaine and Clonidine to maximize analgesia without side effects by evaluating its safety and efficacy. Sixty children aged 2-10 years of ASA grade 1, scheduled to undergo infraumbilical surgeries were randomly allocated to Group A & Group B of 30 each. Group A received 0.2% Ropivacaine with normal saline and Group B received 0.2% Ropivacaine and preservative free Clonidine 1μg/kg, the total volume of solution being 1ml/kg haemodynamic changes were monitored intraoperatively and haemodynamic parameters along with motor blockade, pain score and sedation score were assessed postoperatively. Done with unpaired student t and Mann-Whitney test. The groups were comparable regarding demographic characterstics. The mean duration of analgesia was prolonged in group B (12+2.22 hours) than in group A (6.53+1.16 hours) with p-value <0.001 leading to less rescue analgesia in former group. None of the children in the groups had a pain score of ≥ 4 at the end of 2 hours. A 6.6% and 60% of group A children had score of ≥ 4 at the end of 4(th) & 6(th) hour respectively. None in Group B had a score of ≥ 4. At the end of 8(th) hour, only 6.6% of the children in Group B had a pain score of ≥ 4 whereas it was 33.33% in Group A which is statistically significant. No bradycardia or hypotension and no significant sedation. Combination of Ropivacaine and Clonidine in the concentration used (0.2% ropivacaine and 1μg/kg of clonidine) can be optimal for postoperative analgesia in
Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)
Liu, Z. J.; Low, T. S.
1996-04-01
The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.
Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory
International Nuclear Information System (INIS)
Janda, A.
2006-01-01
We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin
2004-01-28
Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.
Mohanan, Sharika; Srivastava, Atul
2014-04-10
The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent
Energy Technology Data Exchange (ETDEWEB)
Brown, L.F.; Ebinger, M.H.
1996-08-01
Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.
Generation of exact solutions to the Einstein field equations for homogeneous space--time
International Nuclear Information System (INIS)
Hiromoto, R.E.
1978-01-01
A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon
On the Existence of Solutions for Stationary Mean-Field Games with Congestion
Evangelista, David
2017-09-11
Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.
Short-time existence of solutions for mean-field games with congestion
Gomes, Diogo A.
2015-11-20
We consider time-dependent mean-field games with congestion that are given by a Hamilton–Jacobi equation coupled with a Fokker–Planck equation. These models are motivated by crowd dynamics in which agents have difficulty moving in high-density areas. The congestion effects make the Hamilton–Jacobi equation singular. The uniqueness of solutions for this problem is well understood; however, the existence of classical solutions was only known in very special cases, stationary problems with quadratic Hamiltonians and some time-dependent explicit examples. Here, we demonstrate the short-time existence of C∞ solutions for sub-quadratic Hamiltonians.
On the Existence of Solutions for Stationary Mean-Field Games with Congestion
Evangelista, David; Gomes, Diogo A.
2017-01-01
Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.
Vacuum-field solutions of Ross and Sen-Dunn theories of gravitation
International Nuclear Information System (INIS)
Krori, K.D.; Nandy, D.
1978-01-01
Vacuum-field solutions of Ross (Phys. Rev.; D5:284 (1972)) and Sen-Dunn (J. Math. Phys.; 12:578 (1971)) theories of gravitation have been obtained with the aid of a Friedmann-type metric. Non-static solutions are found showing that the Birkhoff theorem holds for neither theory. It has been observed that the two theories have a limited scope for vacuum solution as against the Brans-Dicke theory. Mach's principle, however, holds for both the theories. (author)
Choudhary, Piyush; Srivastava, Rakesh K.; Nath Mahendra, Som; Motahhir, Saad
2017-08-01
In today’s scenario to combat with climate change effects, there are a lot of reasons why we all should use renewable energy sources instead of fossil fuels. Solar energy is one of the best options based on features like good for the environment, independent of electricity prices, underutilized land, grid security, sustainable growth, etc. This concept paper is oriented primarily focused on the use of Solar Energy for the crude oil heating purpose besides other many prospective industrial applications to reduce cost, carbon footprint and moving towards a sustainable and ecologically friendly Oil & Gas Industry. Concentrated Solar Power technology based prototype system is proposed to substitute the presently used system based on natural gas burning method. The hybrid system which utilizes the solar energy in the oil and gas industry would strengthen the overall field working conditions, safety measures and environmental ecology. 40% reduction on natural gas with this hybrid system is estimated. A positive implication for an environment, working conditions and safety precautions is the additive advantage. There could also decrease air venting of CO2, CH4 and N2O by an average of 30-35%.
Creation-field cosmology: A possible solution to singularity, horizon, and flatness problems
International Nuclear Information System (INIS)
Narlikar, J.V.; Padmanabhan, T.
1985-01-01
A solution of Einstein's equations which admits radiation and a negative-energy massless scalar creation field as a source is presented. It is shown that the cosmological model based on this solution satisfies all the observational tests and thus is a viable alternative to the standard big-bang model. The present model is free from singularity and particle horizon and provides a natural explanation for the flatness problem. We argue that these features make the creation-field cosmological model theoretically superior to the big-bang model
Energy Technology Data Exchange (ETDEWEB)
Romeyer Dherbey, J.; Passard, Ch.; Cloue, J.; Bignan, G.
1993-12-31
The use of the active neutron interrogation to measure the concentration of plutonium contained in flow solutions is particularly interesting for fuel reprocessing plants. Indeed, this method gives a signal which is in a direct relation with the fissile materials concentration. Moreover, it is less sensitive to the gamma dose rate than the other nondestructive methods. Two measure methods have been evolved in CEA. Their principles are given into details in this work. The first one consists to detect fission delayed neutrons induced by a {sup 252} Cf source. In the second one fission prompt neutrons induced by a neutron generator of 14 MeV are detected. (O.M.). 6 refs.
Le, Khai Q.; Dang, Ngo Hai
2018-05-01
This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.
Energy Technology Data Exchange (ETDEWEB)
Riveros, Diana C. [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia); Martinez, Fleming [Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota D.C. (Colombia); Vargas, Edgar F., E-mail: edvargas@uniandes.edu.co [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia)
2012-11-20
Highlights: Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. Black-Right-Pointing-Pointer Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute-solvent interactions.
Directory of Open Access Journals (Sweden)
Shalini Kulandaivalu
2016-01-01
Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.
International Nuclear Information System (INIS)
Shan, C.; Javandel, I.
1996-05-01
Analytical solutions are developed for modeling solute transport in a vertical section of a homogeneous aquifer. Part 1 of the series presents a simplified analytical solution for cases in which a constant-concentration source is located at the top (or the bottom) of the aquifer. The following transport mechanisms have been considered: advection (in the horizontal direction), transverse dispersion (in the vertical direction), adsorption, and biodegradation. In the simplified solution, however, longitudinal dispersion is assumed to be relatively insignificant with respect to advection, and has been neglected. Example calculations are given to show the movement of the contamination front, the development of concentration profiles, the mass transfer rate, and an application to determine the vertical dispersivity. The analytical solution developed in this study can be a useful tool in designing an appropriate monitoring system and an effective groundwater remediation method
International Nuclear Information System (INIS)
Abdullah, M.O.
2000-01-01
A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H 2 O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)
Hydraulic concentration of magnetic fields in the solar photosphere. I - Turbulent pumping
Parker, E. N.
1974-01-01
Observations suggest that most of the magnetic flux through the solar photosphere is concentrated in vertical filaments in the supergranule boundaries. Each filament appears to contain about 3 times 10 to the 18-th power maxwells, in the form of a field of 500 gauss or more, over a diameter of 700 km or less. The magnetic energy density in the filaments is 100 times the observed kinetic energy density of the observed supergranule motions, but comparable to the kinetic energy density of the granules. Force-free field configurations cannot duplicate the observational numbers, nor can such cooling effects as are believed responsible for the intense fields in sunspot umbrae. We point out a simple hydraulic mechanism (turbulent pumping) that appears to account for the observed concentration of fields.
Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf
2016-04-05
Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.
New exact solutions of the Einstein—Maxwell equations for magnetostatic fields
International Nuclear Information System (INIS)
Goyal, Nisha; Gupta, R.K.
2012-01-01
The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions
Energy Technology Data Exchange (ETDEWEB)
Swensen, James S.; Wang, Liang (Frank); Rainbolt, James E.; Koech, Phillip K.; Polikarpov, Evgueni; Gaspar, Daniel J.; Padmaperuma, Asanga B.
2012-12-01
We report a solution-processed approach for a p-type doped hole transport layer in organic light emitting devices (OLEDs). UV-vis-NIR absorption spectra identified the charge transfer between the donor and acceptor in the solution processed doped films. Single carrier device and field-effect transistor were utilized as test vehicles to study the charge transport property and extract important parameters such as bulk mobile carrier concentration and mobility. OLEDs with p-type doped hole transport layer showed significant improvement in power efficiency up to 30% at the optimal doping ratio. This approach has the great potential to reduce the power consumption for OLED solid state lighting while lowering the cost and boosting the throughput of its manufacturing.
Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests
Camino-Serrano, Marta; Graf Pannatier, Elisabeth; Vicca, Sara; Luyssaert, Sebastiaan; Jonard, Mathieu; Ciais, Philippe; Guenet, Bertrand; Gielen, Bert; Peñuelas, Josep; Sardans, Jordi; Waldner, Peter; Sawicka, Kasia
2016-01-01
Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish
Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests
Camino-Serrano, M.; Graf Pannatier, E.; Vicca, S.; Luyssaert, S.; Jonard, M.; Ciais, P.; Guenet, B.; Gielen, B.; Peñuelas, J.; Sardans, J.; Waldner, P.; Etzold, S.; Cecchini, G.; Clarke, N.; Galić, Z.; Gandois, L.; Hansen, K.; Johnson, J.; Klinck, U.; Lachmanová, Z.; Lindroos, A.J.; Meesenburg, H.; Nieminen, T.M.; Sanders, T.G.M.; Sawicka, K.; Seidling, W.; Thimonier, A.; Vanguelova, E.; Verstraeten, A.; Vesterdal, L.; Janssens, I.A.
2016-01-01
Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish
Internal electric fields of electrolytic solutions induced by space-charge polarization
Sawada, Atsushi
2006-10-01
The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.
International Nuclear Information System (INIS)
Wu, Q X; Zhao, T S; Chen, R; Yang, W W
2010-01-01
Conventional direct methanol fuel cells (DMFCs) have to operate with excessively diluted methanol solutions to limit methanol crossover and its detrimental consequences. Operation with such diluted methanol solutions not only results in a significant penalty in the specific energy of the power pack, limiting the runtime of this type of fuel cell, but also lowers the cell performance and operating stability. In this paper, a microfluidic-structured anode flow field for passive DMFCs with neither liquid pumps nor gas compressors/blowers is developed. This flow field consists of plural micro flow passages. Taking advantage of the liquid methanol and gas CO 2 two-phase counter flow, the unique fluidic structure enables the formation of a liquid–gas meniscus in each flow passage. The evaporation from the small meniscus in each flow passage can lead to an extremely large interfacial mass-transfer resistance, creating a bottleneck of methanol delivery to the anode CL. The fuel cell tests show that the innovative flow field allows passive DMFCs to achieve good cell performance with a methanol concentration as high as 18.0 M, increasing the specific energy of the DMFC system by about five times compared with conventional designs.
DEFF Research Database (Denmark)
Fileti, E. E.; Chaban, V. V.
2014-01-01
Solubilization of fullerenes is of high interest because of their wide usage in both fundamental research and numerous applications. This paper reports molecular dynamics (MD) simulations of saturated and supersaturated solutions of C-60 in 1-butyl-3-methylimidazolium tetrafluoroborate, [C4C1IM......-long real-time dynamics. The ion-molecular structure patterns in saturated and supersaturated solutions are distinguished in terms of radial distribution functions and cluster analysis of the solute particles. The cation separated solute pair is found to be a common structure in both saturated......][BF4], room-temperature ionic liquid (RTIL). The simulations cover a wide range of temperatures between 280 and 500 K at ambient pressure. Unlike in simpler solvents, C-60 in [C4C1IM][BF4] forms highly supersaturated solutions, whose internal arrangement remains unaltered during nearly a microsecond...
Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields
Energy Technology Data Exchange (ETDEWEB)
Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)
2017-03-15
Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)
Butt, Muhammad Zakria; Noshi, Mozina; Bashir, Farooq
2008-12-01
The mode of planar distribution of solute atoms in Cu single crystals alloyed with 0.5 to 8.0 at.%Ge has been investigated via the temperature dependence of the critical resolved shear stress of these alloys. It is found that there exists a critical solute concentration c m ≈ 5 at.%Ge below which the distribution of solute atoms in the crystal is random, and above which some local ordering occurs. This together with such data available in the literature for Cu-Zn, Cu-Al and Cu-Mn alloys, i.e. c m ≈7 at. %Zn, 7 at.%Al and 1 at.%Mn, when examined as a function of the size-misfit factor δ = (1/ b)(d b/d c)of a given binary alloy system, shows that the value of c m strongly depends on δ; the smaller the magnitude of δ, the greater the value of c m and vice versa. Also, the value of c m is found to correlate well with the electron-to-atom ratio ( e/a)of the Cu-Zn, Cu-Al, Cu-Ge and Cu-Mn alloys with the solute concentration c = c m . However, no systematic correlation exists between the critical solute concentration c m for the onset of local ordering and the modulus-mismatch parameter η = (1/ G)(d G/d c).
A study on relativistic lagrangian field theories with non-topological soliton solutions
International Nuclear Information System (INIS)
Diaz-Alonso, J.; Rubiera-Garcia, D.
2009-01-01
We perform a general analysis of the dynamic structure of two classes of relativistic lagrangian field theories exhibiting static spherically symmetric non-topological soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic terms, whereas the gauge-invariant lagrangians are general functions of the field invariants. These functions are constrained by requirements of regularity, positivity of the energy and vanishing of the vacuum energy, defining what we call 'admissible' models. In the scalar case we establish the general conditions which determine exhaustively the families of admissible lagrangian models supporting this kind of finite-energy solutions. We analyze some explicit examples of these different families, which are defined by the asymptotic and central behaviour of the fields of the corresponding particle-like solutions. From the variational analysis of the energy functional, we show that the admissibility constraints and the finiteness of the energy of the scalar solitons are necessary and sufficient conditions for their linear static stability against small charge-preserving perturbations. Furthermore, we perform a general spectral analysis of the dynamic evolution of the small perturbations around the statically stable solitons, establishing their dynamic stability. Next, we consider the case of many-components scalar fields, showing that the resolution of the particle-like field problem in this case reduces to that of the one-component case. The study of these scalar models is a necessary step in the analysis of the gauge fields. In this latter case, we add the requirement of parity invariance to the admissibility constraints. We determine the general conditions defining the families of admissible gauge-invariant models exhibiting finite
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.
2017-09-01
We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.
Directory of Open Access Journals (Sweden)
Henrique Silva Furtado
2009-09-01
Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.
Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J
2007-01-01
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.
International Nuclear Information System (INIS)
Vandenhove, H.; Hees, M. van; Wouters, K.; Wannijn, J.
2007-01-01
Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for 238 U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K d , L kg -1 ) and the organic matter content (R 2 = 0.70) and amorphous Fe content (R 2 = 0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH = 6, log(K d ) was linearly related with pH [log(K d ) = - 1.18 pH + 10.8, R 2 = 0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex. - Uranium solubility in soil can be predicted from organic matter or amorphous iron content and pH or with complex multilinear models considering several soil parameters
DEFF Research Database (Denmark)
Houde, Damian; Esmail Nazari, Zeinab; Bou-Assaf, George M
2016-01-01
When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause fo...... in industry. Graphical Abstract ᅟ....
Amm, O.; Fujii, R.; VanhamäKi, H.; Yoshikawa, A.; Ieda, A.
2013-05-01
We devise an approach to calculate the polarization electric field in the ionosphere, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups, and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field of its potential which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, and the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate our theory, we then apply it to two simple models of auroral electrodynamic situations, the first being a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, and a morning sector auroral arc with only a weak conductance enhancement, but a large southward primary electric field at the poleward flank of the arc. While the significance of the polarization electric field for maximum Cowling efficiency is large for the first case, it is rather minor for the second one. Both models show that the polarization electric field effect may not only change the magnitude of the current systems but also their overall geometry. Furthermore, the polarization electric field may extend into regions where the primary electric field is small, thus even dominating the total electric field in these regions. For the first model case, the total Joule heating integrated over the analysis area decreases by a factor of about 4 for maximum Cowling efficiency as compared to the case of vanishing Cowling efficiency
High-performance solution-processed polymer ferroelectric field-effect transistors
Naber, RCG; Tanase, C; Blom, PWM; Gelinck, GH; Marsman, AW; Touwslager, FJ; Setayesh, S; De Leeuw, DM; Naber, Ronald C.G.; Gelinck, Gerwin H.; Marsman, Albert W.; Touwslager, Fred J.
We demonstrate a rewritable, non-volatile memory device with flexible plastic active layers deposited from solution. The memory device is a ferroelectric field-effect transistor (FeFET) made with a ferroelectric fluoropolymer and a bisalkoxy-substituted poly(p-phenylene vinylene) semiconductor
Duval, J.F.L.; Minor, M.; Cecilia, J.; Leeuwen, van H.P.
2003-01-01
A quantitative theory is presented for the bipolar behavior of conducting planar surfaces in a thin-layer cell of a type commonly used in electrokinetic studies. The lateral current density distribution in the cell, as dictated by the externally applied field in the solution, is formulated for the
Wormhole solutions with a complex ghost scalar field and their instability
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta
2018-01-01
We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.
Convergence to stationary solutions for a parabolic-hyperbolic phase-field system
Czech Academy of Sciences Publication Activity Database
Grasselli, M.; Petzeltová, Hana; Schimperna, G.
2006-01-01
Roč. 5, č. 4 (2006), s. 827-838 ISSN 1534-0392 R&D Projects: GA AV ČR(CZ) IAA1019302 Institutional research plan: CEZ:AV0Z10190503 Keywords : phase-field models * convergence to stationary solutions * Łojasiewicz-Simon inequality Subject RIV: BA - General Mathematics Impact factor: 0.857, year: 2006
A solution algorithm for calculating photon radiation fields with the aid of the Monte Carlo method
International Nuclear Information System (INIS)
Zappe, D.
1978-04-01
The MCTEST program and its subroutines for the solution of the Boltzmann transport equation is presented. The program renders possible to calculate photon radiation fields of point or plane gamma sources. After changing two subroutines the calculation can also be carried out for the case of directed incidence of radiation on plane shields of iron or concrete. (author)
International Nuclear Information System (INIS)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)
Some physical solutions of Yang's equations for SU (2) gauge fields ...
Indian Academy of Sciences (India)
Some previously obtained physical solutions [1–3] of Yang's equations for (2) gauge fields [4], Charap's equations for pion dynamics [5,6] and their combination as proposed by Chakraborty and Chanda [1] have been presented. They represent different physical characteristics, e.g. spreading wave with solitary profile ...
Numerical solution of electromagnetic field problems in two and three dimensions
International Nuclear Information System (INIS)
Trowbridge, C.W.
1981-01-01
Recent developments in algorithms for solving electromagnetic field problems carried out at Rutherford Appleton Laboratory (RAL) are reviewed. The interaction of electric and magnetic fields provides many examples of coupled problems which have been solved by the Finite Element method. This paper concentrates on static and low frequency problems using the differential operator approach. The status of computation for 2D fields is discussed. The use of scalar potentials for 3D static fields for economy is emphasised and the importance of selecting potential types carefully to minimise numerical cancellation errors is also discussed. Some formulations for the vector 3D field problem for eddy current fields are derived with analytic and experimental field measurement comparisons. Results using software packages built at RAL are presented to illustrate the methods. (author)
Effect of solution concentration on sealing treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy
Directory of Open Access Journals (Sweden)
Qiangsheng Dong
2017-09-01
Full Text Available Cerium-based sealing treatment was developed for Mg-Al hydrotalcite film on AZ91D Mg alloy, and the influence of cerium salt solution was investigated to modify the surface integrity and corrosion resistance. Scanning electron microscope (SEM and X-ray diffraction (XRD measurements were carried out to analyze the surface morphology and phase composition. The corrosion resistance of Mg-Al hydrotalcite film after sealing treatment was evaluated by the polarization curve and electrochemical impedance spectroscopy (EIS tests. The results showed that lower concentration of Ce-containing solution was beneficial to seal the micro-cracks on Mg-Al hydrotalcite film, and improve the surface integrity and corrosion resistance; higher concentration of Ce-containing solution could seal fewer micro-cracks, and the corrosion resistance was decreased owing to the disintegration of Mg-Al hydrotalcite film.
International Nuclear Information System (INIS)
Fontes, P.C.R.; Barber, S.A.
1984-01-01
To evaluate the effects P concentrations in nutrient solution on root growth and on root physiological characteristics involved in P uptake by tomato Lycopersicon esculentum Mill plants, six seedlings were grown in nutrient solution at initial concentrations of 48.5, 97, 194 and 388 μMP until one day before harvest. They were then transferred to solutions with P at 20 μM and 30 μM, and the depletion curves and Michaelis-Menten parameters were determined. The conclusions were that as P supply increased and as the plant P contents are sufficient for maximum growth, the rate of P uptake tends to be lower. The results also indicate that total P uptake by tomato seedlings depends on the amount of root surface area exposed to P. (M.A.C.) [pt
Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M
2016-04-14
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
ICRF full wave field solution and absorption for D-T and D-3He heating scenarios
International Nuclear Information System (INIS)
Scharer, J.; Sund, R.
1989-01-01
We consider a fundamental power conservation relation, full wave solutions for fields and power absorption in moderate and high density tokamaks to third order in the gyroradius expansion. The power absorption, conductivity tensor and kinetic flux associated with the conservation relation as well as the wave differential equation are obtained. Cases examined include D-T and D- 3 He scenarios for TFTR,JET and CIT at the Fundamental and Second harmonic. Optimum single pass absorption cases for D-T operation in JET and CIT are considered as a function of the K ≡ spectrum of the antenna with an without a minority He 3 resonance. It is found that at elevated temperatures >4 keV, minority (10%) fundamental deuterium absorption is very efficient for either fast wave low or high field incidence or high field Bernstein wave incidence. We consider the effects of a 10 keV bulk and 100 keV tail helium distribution on the second harmonic absorption in a deuterium plasma for Jet parameters. In addition, scenarios with ICRF operation without attendant substantial tritium concentrations are found the fundamental (15%) and second harmonic helium (33%) heating in a the deuterium plasma. For High field operation at high density in CIT, we find a higher part of the K parallel spectrum yields good single pass absorption with a 5% minority helium concentration in D-T
Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth
Burger, Martin
2016-11-18
In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.
Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution
Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi
2015-05-01
Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.
International Nuclear Information System (INIS)
Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.
2008-01-01
Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded
International Nuclear Information System (INIS)
Mair, M.A.; Savage, D.J.
1986-12-01
Plutonium nitrate solution is treated with sulphuric acid before being heated and finally ignited. The stoichiometric plutonium dioxide so formed is weighed and hence the plutonium content is calculated. (author)
Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis
2017-12-01
We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.
Separation of radionuclides from spent decontamination solutions and/or evaporator concentrates
International Nuclear Information System (INIS)
Sebesta, F.; John, J.; Rosikova, K.; Motl, A.
1999-01-01
Separation of radionuclides from spent alkaline decontamination solutions has been tested in model experiments with strontium separation from simulant solution. The composite absorbers tested included TiO-PAN and NaTiO-PAN materials (titanium dioxide or sodium titanate incorporated into a matrix of polyacrylonitrile binder). As an alkaline simulant, solution of 1 M NaOH + 1 M NaNO 3 + 10 -4 M Ca(NO 3 ) 2 + 10 -5 M Sr(NO 3 ) 2 spiked with a carrier-free 85 Sr tracer, was used. The experiments were performed at a flow rate of 12.5 BV/hr. Some experiments with real and simulant spent decontamination solutions are described
Analytic Solution to the Problem of Aircraft Electric Field Mill Calibration
Koshak, W. J.
2003-12-01
possible to solve for a single 2m-vector b that provides all other needed variables (i.e., the unknown fair weather field, the unknown aircraft charge, and the unknown matrix M). To avoid retrieving the trivial solution b = 0, appropriate external constraints are applied. Numerical tests of the solution, effects of measurement errors, and studies of solution non-uniqueness are ongoing as of this writing.
International Nuclear Information System (INIS)
Riveros, Diana C.; Martínez, Fleming; Vargas, Edgar F.
2012-01-01
Highlights: ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. ► Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute–solvent interactions.
Effect of a magnetic field on the fluorescence produced in irradiated anthracene solutions
International Nuclear Information System (INIS)
Dixon, R.S.; Sargent, F.P.; Lopata, V.J.; Gardy, E.M.; Brocklehurst, B.
1977-01-01
The effect of an applied magnetic field on the fluorescence from radiolytic ion recombination has been studied for anthracene in some hydrocarbon solvents. In pulse-irradiated anthracene in squalane, the fluorescence intensity following the pulse increases as a function of applied magnetic field in the range studied. At a constant magnetic field strength, the field-induced enhancement of the fluorescence intensity varies with time after the pulse. At high field strengths the enhancement reaches a maximum about 50 ns after the pulse. Similar effects are observed in cyclohexane but the enhancement is smaller than that in squalane. In benzene solutions the effect is extremely small. These findings are confirmed by observations in continuously gamma-irradiated solutions. 9,10-Dimethylanthracene gives a larger enhancement and anthracene-d 10 a smaller enhancement than the parent anthracene at high fields. The results are in general agreement with recent theoretical predictions based on the effect of a magnetic field on the loss of spin correlation of geminate ions pairs prior to recombination
Exact solution for the Poisson field in a semi-infinite strip.
Cohen, Yossi; Rothman, Daniel H
2017-04-01
The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.
Exact solutions to the nonlinear spinor field equations in the Goedel universe
International Nuclear Information System (INIS)
Herrera, A.
1996-01-01
The nonlinear spinor field in the external gravitational field of the Goedel universe is considered and exact static solutions to the field equations corresponding to the Lagrangians with the nonlinear terms L N =F(I S ) and L N =G(I P ) are obtained. Here F(I S ) and G(I P ) are arbitrary functions of the spinor invariants I S =S+Ψ bar Ψ and I P =P 2 =(iΨ bar γ 5 Ψ) 2 . The conditions under which one-dimensional soliton-like solutions exist are established and the role of gravity in the formation of these objects is determined. 9 refs., 1 fig
Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments
Hanna, Steven; Chang, Joseph; Huq, Pablo
2016-01-01
As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.
Energy Technology Data Exchange (ETDEWEB)
Jacob, D.J.; Waldman, J.M.; Munger, J.W.; Hoffmann, M.R.
1984-09-01
High ionic loadings were found in fogwater collected at Bakersfield, California during an extended stagnation episode. The major ions were NH4(+), NO3(-), and SO4(2-), with concentrations usually in the millimolar range. Droplet growth played an important role in determining fogwater concentrations. The amount of solute decreased substantially over the course of each fog event this was attributed, at least in part, to deposition of fog droplets on surfaces. The occurrence of this was attributed, at least in part, to deposition of fog droplets on surfaces. The sulfate fraction in the aerosol increased appreciably over several days of stagnation, but no statistical evidence for in situ S(IV) aqueous-phase oxidation was found. The high ammonia concentrations present were sufficient to neutralize a large fraction of the ambient acidity. As a result, fogwater pH values rarely attained the extremely low values found in other polluted environments. 46 references.
Estimating soil solution nitrate concentration from dielectric spectra using PLS analysis
Fast and reliable methods for in situ monitoring of soil nitrate-nitrogen concentration are vital for reducing nitrate-nitrogen losses to ground and surface waters from agricultural systems. While several studies have been done to indirectly estimate nitrate-nitrogen concentration from time domain s...
International Nuclear Information System (INIS)
Yépez, L.D.; Carrillo, J.L.; Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P.
2016-01-01
The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.
Energy Technology Data Exchange (ETDEWEB)
Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)
2016-06-15
The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.
Gomes, Diogo A.
2016-01-06
We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.
Gomes, Diogo A.; Nurbekyan, Levon; Prazeres, Mariana
2016-01-01
We present recent developments in the theory of first-order mean-field games (MFGs). A standard assumption in MFGs is that the cost function of the agents is monotone in the density of the distribution. This assumption leads to a comprehensive existence theory and to the uniqueness of smooth solutions. Here, our goals are to understand the role of local monotonicity in the small perturbation regime and the properties of solutions for problems without monotonicity. Under a local monotonicity assumption, we show that small perturbations of MFGs have unique smooth solutions. In addition, we explore the connection between first-order MFGs and classical mechanics and KAM theory. Next, for non-monotone problems, we construct non-unique explicit solutions for a broad class of first-order mean-field games. We provide an alternative formulation of MFGs in terms of a new current variable. These examples illustrate two new phenomena: the non-uniqueness of solutions and the breakdown of regularity.
International Nuclear Information System (INIS)
Lu Zhanpeng; Huang Delun; Yang Wu
2005-01-01
The effects of an applied magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate have been investigated by electrochemical measurements. Open circuit potentials, cathodic and anodic polarisation curves, values of polarisation resistance were measured in the presence or absence of a 0.4 T horizontal magnetic field (HMF). A potentiostatic polarisation plus magnetic field perturbation technique was used to study the effect of the magnetic field on open circuit corrosion. Cathodic reaction rates at open circuit potentials for iron in sulphuric acid solutions containing dichromate ions are controlled by both the electron-transfer process and the diffusion process. A magnetic field made the open circuit potential move in the positive direction, and changes of the open circuit potentials due to the magnetic field increase with increasing dichromate concentration. When iron was potentiostatically polarised at open circuit potentials in the absence of a magnetic field, a cathodic current was observed after a magnetic field was imposed. Such cathodic currents induced by the magnetic field increases with increasing dichromate concentration. The positive shifts of open circuit potential, the decrease of polarisation resistance, and the occurrence of cathodic currents induced by the magnetic field are caused by the accelerating effect of magnetic field on the cathodic diffusion process. Measured current densities showed lower, equal, or higher values in the presence of the magnetic field than those in the absence of a magnetic field at certain anodic potentials. This effect of the magnetic field is related to the contribution of the cathodic and anodic reactions to the measured current and the types of rate-determining steps for each reaction at certain potentials. The applied magnetic field significantly decreased the polarisation resistance. The experimental results in this paper are formulated based on the fundamental electrochemistry
Chan Hew Wai, A; Becasse, P; Tworski, S; Pradeau, D; Planas, V
2014-11-01
In the context of current distrust of antimicrobial preservatives, the quantities of these substances in two pharmaceutical formulas were studied: an ophthalmic solution of cysteamine preserved benzalkonium chloride at 1mg/5mL and Glycerotone(®) preserved with sorbic acid at 0.1g/100g. The purpose of this work was to verify that a reduction of the quantities of preservative continues to fulfil the requirements for antimicrobial preservation. The Test of efficacy of antimicrobial preservation, section 5.1.3 of the 8th edition of the European Pharmacopoeia, was carried out on each formulation prepared with decreasing quantities of preservative. The results show that formulations whose preservative concentration was reduced by a factor of four remained compliant with standards. It is to be noted that in formulas without preservative, fungal growth was observed in both the solution of Glycerotone(®) and the ophthalmic solution containing cysteamine. Although there is no question that an antimicrobial preservative is necessary, the quantity of preservative can be reduced without deteriorating the quality of the pharmaceutical product but the minimal effective concentration remains to be determined. The formulations of many pharmaceutical products should therefore be examined in order to limit the quantities of preservative while continuing to guarantee patient's safety. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas
2013-04-01
In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-02-11
Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are
Energy Technology Data Exchange (ETDEWEB)
Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)
2016-04-14
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
International Nuclear Information System (INIS)
Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland
2016-01-01
Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.
Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2008-01-01
We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature
Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2008-07-11
We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.
Ambipolarons: Solitary wave solutions for the radial electric field in a plasma
International Nuclear Information System (INIS)
Hastings, D.E.; Hazeltine, R.D.; Morrison, P.J.
1986-01-01
The ambipolar radial electric field in a nonaxisymmetric plasma can be described by a nonlinear diffusion equation. This equation is shown to possess solitary wave solutions. A model nonlinear diffusion equation with a cubic nonlinearity is studied. An explicit analytic step-like form for the solitary wave is found. It is shown that the solitary wave solutions are linearly stable against all but translational perturbations. Collisions of these solitary waves are studied and three possible final states are found: two diverging solitary waves, two stationary solitary waves, or two converging solitary waves leading to annihilation
International Nuclear Information System (INIS)
Labra, L.; Juárez-Romero, D.; Siqueiros, J.; Coronas, A.; Salavera, D.
2017-01-01
Highlights: • Determination of concentration of absorption mixture for absorption heat transformers. • Measurement of physical properties for heat transformer assessment. • Comparative behavior of Electric conductivity, Refractive index, and density of LiBr-H_2O. - Abstract: An electrolyte solution of Lithium Bromide (LiBr) water was chosen for study because of its wide use in prototype absorption machines. The LiBr must be operated close to the temperature and mass fraction at which lithium bromide achieves the highest efficiency. For the purpose of establishing the concentration in a prototype absorption machines, measurements were made of the properties that vary with temperature and concentration. The selected properties are electrical conductivity, density, refractive indexes and sound velocity. The resulting measured properties values were compared with some values found in previous works. The properties of aqueous lithium bromide solutions were measured at the concentration range of 45–65% of LiBr and temperatures range of 20–80 °C. Semi-empirical correlations that determine the properties of lithium bromide are also proposed. The methods for measuring the properties of aqueous solutions were considered taking into account their reliability, simplicity and sampling time.
International Nuclear Information System (INIS)
Kelley, T.A.; Parker, J.L.; Sampson, T.E.
1993-01-01
For the 1992 INNM meeting, the authors reported on the general characteristics of an automated system--then under development--for measuring both the concentration and enrichment of uranium in solutions. That paper emphasized the automated control capability, the measurement sequences, and safety features of the system. In this paper, the authors report in detail on the measurement methods, the analysis algorithms, and the performance of the delivered system. The uranium concentration is measured by a transmission-corrected X-ray fluorescence method. Cobalt-57 is the fluorescing source and a combined 153 Gd and 57 Co source is used for the transmission measurements. Corrections are made for both the absorption of the exciting 57 Co gamma rays and the excited uranium X-rays. The 235 U concentration is measured by a transmission-corrected method, which employs the 185.7-keV gamma ray of 235 U and a transmission source of 75 Se to make corrections for the self-absorption of the 235 U gamma rays in the solution samples. Both measurements employ high-resolution gamma-ray spectrometry and use the same 50ml sample contained in a custom-molded, flat-bottomed, polypropylene bottle. Both measurements are intended for uranium solutions with concentrations ≥0.1 g U/l, although at higher enrichments the passive measurement will be even more sensitive
The concentration of Cs, Sr and other elements in water samples collected in a paddy field
International Nuclear Information System (INIS)
Ban-nai, Tadaaki; Hisamatsu, Shun'ichi; Yanai-Kudo, Masumi; Hasegawa, Hidenao; Torikai, Yuji
2000-01-01
To research elemental concentrations in soil water in a paddy field, samples of the soil water were collected with porous Teflon resin tubes which were buried in the field. The soil water collections were made at various depth, 2.5, 12.5, 25 and 35 cm from the surface in the paddy field, located in Rokkasho, Aomori, once every two weeks during the rice cultivation period, from May to October in 1998. The paddy field was irrigated from May 7th to July 20th, dried from July 20th to August 5th, then again irrigated until September 16th. Drastic changes of the alkaline earth metal elements, Fe and Mn in soil water samples were seen at the beginning and end of the midsummer drainage. The concentrations of Cs, Fe, Mn and NH 4 in soil water samples showed a similar variation pattern to that of alkaline earth metal elements in the waterlogged period. The change of redox potential was considered a possible cause for the concentration variation for these substances. (author)
Eldhuset, Toril D; Lange, Holger; de Wit, Helene A
2006-10-01
Toxic effects of aluminium (Al) on Picea abies (L.) Karst. (Norway spruce) trees are well documented in laboratory-scale experiments, but field-based evidence is scarce. This paper presents results on fine root growth and chemistry from a field manipulation experiment in a P. abies stand that was 45 years old when the experiment started in 1996. Different amounts of dissolved aluminium were added as AlCl3 by means of periodic irrigation during the growing season in the period 1997-2002. Potentially toxic concentrations of Al in the soil solution were obtained. Fine roots were studied from direct cores (1996) and sequential root ingrowth cores (1999, 2001, 2002) in the mineral soil (0-40 cm). We tested two hypotheses: (1) elevated concentration of Al in the root zone leads to significant changes in root biomass, partitioning into fine, coarse, living or dead fractions, and distribution with depth; (2) elevated Al concentration leads to a noticeable uptake of Al and reduced uptake of Ca and Mg; this results in Ca and Mg depletion in roots. Hypothesis 1 was only marginally supported, as just a few significant treatment effects on biomass were found. Hypothesis 2 was supported in part; Al addition led to increased root concentrations of Al in 1999 and 2002 and reduced Mg/Al in 1999. Comparison of roots from subsequent root samplings showed a decrease in Al and S over time. The results illustrated that 7 years of elevated Al(tot) concentrations in the soil solution up to 200 microM are not likely to affect root growth. We also discuss possible improvements of the experimental approach.
Solute movement observation in the field soils by means of radioactive tracers
International Nuclear Information System (INIS)
Lichner, L.
1986-01-01
The radioactive tracer method is discussed as applied to transfer velocity measurements of solutions in unsaturated soils, its applicability and the criteria for the choice of the tracer. The method is based on measurement of the radioactive tracer velocity in the field and on laboratory determination of the equilibrium distribution coefficients of the tracer and the solute in the same field soil. From these results and from the soil characteristics (porosity, bulk density) the solute transfer velocity in the field soil can be calculated. The results are presented of 131 I - velocity measurements in the loamy soil in the region of water source Cunovo near Bratislava, which equals 9.29x10 -9 m/s, and in the downstream slope of the earth dam Rozgrund near Banska Stiavnica where the velocity of 131 I - near the dam foot was found to be 2.03 - 2.86 times greater than near the top. Results are also presented of 131 I - , [ 60 Co-EDTA] - and 60 Co 2+ velocity measurements in clay-loam soil at the experimental field of the Research Institute of Irrigation in Most near Bratislava. The results are applicable to evaluation of surface damage to embankments and earth dams, to determination of the conservation zone around water sources, and the establishment of the level of ground water pollution from different sources (waste disposal, agriculture, etc.)
Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
Liu, Min; Pang, Yuanjie; Zhang, Bo; de Luna, Phil; Voznyy, Oleksandr; Xu, Jixian; Zheng, Xueli; Dinh, Cao Thang; Fan, Fengjia; Cao, Changhong; de Arquer, F. Pelayo García; Safaei, Tina Saberi; Mepham, Adam; Klinkova, Anna; Kumacheva, Eugenia; Filleter, Tobin; Sinton, David; Kelley, Shana O.; Sargent, Edward H.
2016-09-01
Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
Directory of Open Access Journals (Sweden)
Kianoush Kashani
Full Text Available Given the known deleterious effects seen with bicarbonate supplementation for acidemia, we hypothesized that utilizing high bicarbonate concentration replacement solution in continuous venovenous hemofiltration (CVVH would be independently associated with higher mortality.In a propensity score-matched historical cohort study conducted at a single tertiary care center from December 9, 2006, through December 31, 2009, a total of 287consecutive adult critically ill patients with Stage III acute kidney injury (AKI requiring CVVH were enrolled. We excluded patients on maintenance dialysis, those who received other modalities of continuous renal replacement therapies, and patients that received a mixed of 22 and 32 mEq/L bicarbonate solution pre- and post-filter. The primary outcome was in-hospital and 90-day mortality rates.Among enrollees, 68 were used 32 mEq/L bicarbonate solution, and 219 received 22mEq/L bicarbonate solution for CVVH. Patients on 32 mEq/L bicarbonate solution were more often non-surgical, had lower pH and bicarbonate level but had higher blood potassium and phosphorus levels in comparison with those on 22 mEq/L bicarbonate solution. After adjustment for the baseline characteristics, the use of 32 bicarbonate solution was significantly associated with increased in-hospital (HR = 1.94; 95% CI 1.02-3.79 and 90-day mortality (HR = 1.50; 95% CI 1.03-2.14. There was a significant increase in the hospital (p = .03 and 90-day (p = .04 mortality between the 22 vs. 32 mEq/L bicarbonate solution groups following propensity matching.Our data showed there is a strong association between using high bicarbonate solution and mortality independent of severity of illness and comorbid conditions. These findings need to be evaluated further in prospective studies.
An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.
Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan
2018-08-01
Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med 80:833-839, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fermentation of solutions of glucose-protein concentrate in a cascade-multi-ray unit
Energy Technology Data Exchange (ETDEWEB)
Denshchikov, M T; Shashilova, V P
1964-01-01
Glucose-protein concentrate is a material obtained by the hydrolysis of corn, containing glucose 75 to 80, maltose, isomaltose, and other non-fermentable sugars 1.5 to 2, H/sub 2/O 15 to 17, mineral matter 1.9 to 1%, and N-containing materials 3.2 to 3.4 g/kg. In earlier fermentation trails with this material, after addition of H/sub 2/O, only 10 to 12% ethanol concentrations were obtained. With period addition of citric acid and replacement of the yeast at regular intervals, using a cascade-multitray unit, 12 to 13% concentrations of ethanol were obtained.
Directory of Open Access Journals (Sweden)
Amy H Easton
Full Text Available Neonicotinoids are widely used systemic insecticides which, when applied to flowering crops, are translocated to the nectar and pollen where they may impact upon pollinators. Given global concerns over pollinator declines, this potential impact has recently received much attention. Field exposure of pollinators to neonicotinoids depends on the concentrations present in flowering crops and the degree to which pollinators choose to feed upon them. Here we describe a simple experiment using paired yellow pan traps with or without insecticide to assess whether the commonly used neonicotinoid imidacloprid repels or attracts flying insects. Both Diptera and Coleoptera exhibited marked avoidance of traps containing imidacloprid at a field-realistic dose of 1 µg L(-1, with Diptera avoiding concentrations as low as 0.01 µg L(-1. This is to our knowledge the first evidence for any biological activity at such low concentrations, which are below the limits of laboratory detection using most commonly available techniques. Catch of spiders in pan traps was also slightly reduced by the highest concentrations of imidacloprid used (1 µg L(-1, but catch was increased by lower concentrations. It remains to be seen if the repellent effect on insects occurs when neonicotinoids are present in real flowers, but if so then this could have implications for exposure of pollinators to neonicotinoids and for crop pollination.
International Nuclear Information System (INIS)
Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.
2004-01-01
A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting
Combination of GRACE monthly gravity field solutions from different processing strategies
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2018-02-01
We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.
Enhancement Solution to Improve Remediation of Soil Contaminated with Lead by Electrical Field
Directory of Open Access Journals (Sweden)
Ayad Abd Al-hamza Faisal
2015-11-01
Full Text Available A laboratory investigation of six different tests were conducted on silty clay soil spiked with lead in concentrations of 1500 mg/kg. A constant DC voltage gradient of 1 V/cm was applied for all these tests with duration of 7 days remediation process for each test. Different purging solutions and addition configurations, i.e. injection wells, were investigated experimentally to enhance the removal of lead from Iraqi soil during electro-kinetic remediation process. The experimental results showed that the overall removal efficiency of lead for tests conducted with distilled water, 0.1 M acetic acid, 0.2 M EDTA and 1 M ammonium citrate as the purging solutions were equal to 18 %, 37 %, 42 %, and 29 %, respectively. However, introducing the injection wells as another enhancement technique into the tests used the same purging solutions mentioned above which have vital role in increasing the removal efficiency up to 59 %.
Using fractional extraction method to separate Mo from U in high concentration solution
International Nuclear Information System (INIS)
Zhao Pinzhi; Cheng Guangrong; Ma Xiuhua
1996-01-01
The author presents investigation on separating Mo from U in acid high concentration lixivium with fractional extraction of secondary amine (7203) and D2EHPA and preparing qualified products of ammonium molybdate and sodium diuranate
Directory of Open Access Journals (Sweden)
Rambausek Lina
2014-09-01
Full Text Available In today’s research, smart textiles is an established topic in both electronics and the textile fields. The concept of producing microelectronics directly on a textile substrate is not a mere idea anymore and several research institutes are working on its realisation. Microelectronics like organic field effect transistor (OFET can be manufactured with a layered architecture. The production techniques used for this purpose can also be applied on textile substrates. Besides gate, active and contact layers, the isolating or dielectric layer is of high importance in the OFET architecture. Therefore, generating a high quality dielectric layer that is of low roughness and insulating at the same time is one of the fundamental requirements in building microelectronics on textile surfaces. To evaluate its potential, we have studied polyimide as a dielectric layer, dip-coated onto copper-coated polyester filaments. Accordingly, the copper-coated polyester filament was dip-coated from a polyimide solution with two different solvents, 1-methyl-2-pyrrolidone (NMP and dimethylformaldehyde. A variety of dip-coating speeds, solution concentrations and solvent-solute combinations have been tested. Their effect on the quality of the layer was analysed through microscopy, leak current measurements and atomic force microscopy (AFM. Polyimide dip-coating with polyimide resin dissolved in NMP at a concentration of 15w% in combination with a dip-coating speed of 50 mm/min led to the best results in electrical insulation and roughness. By optimising the dielectric layer’s properties, the way is paved for applying the subsequent semi-conductive layer. In further research, we will be working with the organic semiconductor material TIPS-Pentacene
Concentrated Polymer Solutions are Different from Melts: Role of Entanglement Molecular Weight
DEFF Research Database (Denmark)
Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.
2013-01-01
We compare viscoelastic properties of several polystyrene solutions and melts with the same number of entanglements. It is demonstrated that the modulus and time can be shifted such that the linear viscoelastic properties are identical provided the number of entanglements are identical. However...
DEFF Research Database (Denmark)
Lorenz, S. E.; Hamon, R. E.; McGrath, S. P.
1994-01-01
A pot experiment was conducted to study changes over time of Cd and Zn in soil solution and in plants. Radish was grown in a soil which had been contaminated with heavy metals prior to 1961. Constant amounts of a fertilizer solution (NH4N03, KN03) were added daily. Soil solution was obtained......-metal (Cd, Zn) ions in soil solutions and a decrease in soil pH, probably due to ion-exchange mechanisms and the dissolution of carbonates. Uptake of Cd and Zn into leaves was correlated with the mass flow of Cd (adjusted r2 = 0.798) and Zn (adjusted r2=0.859). Uptake of K, Ca and Mg by the plants...... at intervals by displacement with water. The cumulative additions of small amounts of fertilizers were made equal to the plants' requirements at the final harvest but were found to exceed them during most of the experiment. Excess fertilizers caused substantial increases of major (K, Ca, Mg) and heavy...
International Nuclear Information System (INIS)
Arkhipov, O.; Kabakchi, S.
2014-01-01
One of the problems arising in operation of the NPP with reactors VVER/PWR are the consequences of the primary coolant radiolysis, namely, generation of the oxidizing particles intensifying the equipment corrosion rate. During operation of the reactor a decrease in concentration of oxidizing radiolysis products is provided with introduction of molecular hydrogen into the coolant. In this connection, the reliable estimation of Critical Hydrogen Concentration (CHC), sufficient for suppression of formation of oxidizing radiolysis products under specific in-pile conditions (reactor radiation dose rate, temperature, coolant chemical composition) is of practical interest. Unfortunately, the experimental data on CHC in-pile determination differ essentially from the values calculated. Critical hydrogen concentration is in the region of kinetic instability of radiation-chemical system. A slight change in hydrogen concentration leads to a sharp (by several orders) change in concentration of both short-lived (OH, HO 2 ) and stable (O 2 , H 2 O 2 ) oxidizing particles. In essence, when reaching the CHC, the radiation-chemical system changes over from one stable state to another. The paper deals with the results of the computer simulation of influence of short-term n,γ- field fluctuations on changing of the radiation-chemical system from the state with low concentration of oxidizing particles over to the state with their high concentrations. It is demonstrated that for the correct calculation of CHC in the primary coolant of VVER/PWR the non-uniformity of n,γ-field in the core shall be taken into account. (author)
International Nuclear Information System (INIS)
Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Matsuzaki, Akio; Mimura, Tetsuro
2014-01-01
K in the soil solution can control the uptake of radioactive Cs by rice plants, but this control is not accomplished only by K; it is affected by other ionic species. It is therefore important to investigate uptake of radioactive Cs from the perspective of the concentration of major cations such as Ca in the soil solution and the levels of exchangeable cations in the soil. To clarify the effects of K and Ca in the soil solution and of the levels of soil exchangeable cations to prevent uptake of radioactive Cs, we conducted a pot experiment and field experiments in a paddy soil in 2011 and 2012. To reduce the uptake of radioactive Cs, it was necessary to achieve a K concentration in the soil solution of 0.5 mmol L"-"1, and a Ca concentration higher than 2 mmol L"-"1 based on the results of the pot experiment. In addition, we obtained the desirable levels of exchangeable cations and the cation exchange capacity (CEC) in the soil from previous reports and the results of our field experiments. On this basis, we propose the following threshold levels for exchangeable cations and CEC in the soil as a standard: 0.53 K cmol_c kg"-"1, 18.0 Ca cmol_c kg"-"1, 2.0 Mg cmol_c kg"-"1, i.e. 25 mg K_2O 100 g"-"1, 505 mg CaO 100 g"-"1, 40 Mg O mg 100 g"-"1, and a CEC of 30 cmol_c kg"-"1. Converting these values into the corresponding levels in the soil solution, we obtained concentrations of 0.71 mmol K L"-"1, 4.22 mmol Ca L"-"1, and 1.35 mmol Mg L"-"1. These levels are within the improving standard for fertility of paddy soils in Japan. Consequently, it will be necessary to improve the fertility of paddy soils to control the uptake of radioactive Cs by rice plants. (author)
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
Macrì, Angelo; Vagge, Aldo; Salis, Annalisa; Fucile, Carmen; Marini, Valeria; Martelli, Antonietta; Giuffrida, Sebastiano; Iester, Michele; Damonte, Gianluca; Mattioli, Francesca
2017-04-01
The purpose of this study was to evaluate the aqueous humor concentrations of bromfenac ophthalmic solution 0.09 % in patients undergoing phacoemulsification. Patients requiring cataract extraction received one drop (50 µL) of bromfenac 0.09 % solution in the eye to be operated, before bedtime the day before surgery or the morning of the surgery. The last administration was recorded. At the time of paracentesis, an aqueous humor sample was collected with a 30-gauge needle attached to a TB syringe and was later analyzed by high-performance liquid chromatography for drug concentration. 188 treated volunteers and 48 control, untreated, subjects were included in the study. The mean aqueous concentration of bromfenac in the treated group was 37.60 ± 68.86 and 0 nM (nmol/L) in the control group (p < 0.0001). Correlation coefficient in bromfenac group between time elapsed from instillation and drug concentration was -0.16 (p not significant). Bromfenac showed properties of good penetration and stable concentration in aqueous humor up to about 12 h after instillation.
International Nuclear Information System (INIS)
Xia Xinghui; Li Gongchen; Yang Zhifeng; Chen Yumin; Huang, Gordon H.
2009-01-01
With an Xe arc lamp house as simulated sunlight, the influences of fulvic acid (FA) concentration and origins on photodegradation of acenaphthene, fluorine, phenanthrene, fluoranthene and pyrene in aqueous solution have been studied. Similar effects of FAs, collected from five places around China, on polycyclic aromatic hydrocarbon (PAH) photodegradation have been observed. Active oxygen was of significance in PAH photodegradation with the presence of FAs. For systems with 1.25 mg L -1 FAs, the contributions of ·OH to PAH photodegradation rates were from 33% to 69%. FAs had two opposite effects, i.e., stimulating the generation of active oxygen and advancing PAH photodegradation; competing with PAHs for energy and photons and restraining PAH photodegradation. Generally, photodegradation rates of the 5 PAHs decreased with the increase of FAs concentration; except fluoranthene and pyrene were advanced in solutions with low FA concentration. The influences of FA concentration on PAH photodegradation were more significant than FA origin. - Influences of fulvic acid (FA) concentration on PAH photodegradation were more significant than FA origin, and active oxygen played an important role in PAH photodegradation
Liebner, Robert; Meyer, Martin; Hey, Thomas; Winter, Gerhard; Besheer, Ahmed
2015-02-01
Although PEGylation of biologics is currently the gold standard for half-life extension, the technology has a number of limitations, most importantly the non-biodegradability of PEG and the extremely high viscosity at high concentrations. HESylation is a promising alternative based on coupling to the biodegradable polymer hydroxyethyl starch (HES). In this study, we are comparing HESylation with PEGylation regarding the effect on the protein's physicochemical properties, as well as on formulation at high concentrations, where protein stability and viscosity can be compromised. For this purpose, the model protein anakinra is coupled to HES or PEG by reductive amination. Results show that coupling of HES or PEG had practically no effect on the protein's secondary structure, and that it reduced protein affinity by one order of magnitude, with HESylated anakinra more affine than the PEGylated protein. The viscosity of HESylated anakinra at protein concentrations up to 75 mg/mL was approximately 40% lower than that of PEG-anakinra. Both conjugates increased the apparent melting temperature of anakinra in concentrated solutions. Finally, HESylated anakinra was superior to PEG-anakinra regarding monomer recovery after 8 weeks of storage at 40°C. These results show that HESylating anakinra offers formulation advantages compared with PEGylation, especially for concentrated protein solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
Mixed field radiation effects on dry and acidic solution saturated polyamide 6,6
Energy Technology Data Exchange (ETDEWEB)
Brown, L. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ont., K7K 7B4 (Canada); Bonin, H.W. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ont., K7K 7B4 (Canada)]. E-mail: bonin-h@rmc.ca; Bui, V.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ont., K7K 7B4 (Canada)
2005-05-15
The disposal of Canada's radioactive waste materials has been the focus of ongoing research at the Royal Military College of Canada, in the use of polymer-based composite materials for the fabrication of disposal containers. An evaluation of the performance of polyamide 6,6 after exposure to radiation and acidic aqueous solutions provides the basis for the assessment of the lifetime performance of a polymeric-based storage container. This work demonstrates the importance of the combined effects of aqueous solution diffusion and radiation exposure on the mechanical performance and molecular structure of polyamide 6,6. Irradiation of dry samples initially results in a marked reduction of mechanical performance, however, post-irradiation aging allows for the return to pre-irradiation mechanical strength. Samples irradiated after exposure to either distilled water or 0.1 M sulfuric acid solutions exhibited increases in mechanical performance upon exposure to a mixed field radioactive environment.
Mixed field radiation effects on dry and acidic solution saturated polyamide 6,6
International Nuclear Information System (INIS)
Brown, L.; Bonin, H.W.; Bui, V.T.
2005-01-01
The disposal of Canada's radioactive waste materials has been the focus of ongoing research at the Royal Military College of Canada, in the use of polymer-based composite materials for the fabrication of disposal containers. An evaluation of the performance of polyamide 6,6 after exposure to radiation and acidic aqueous solutions provides the basis for the assessment of the lifetime performance of a polymeric-based storage container. This work demonstrates the importance of the combined effects of aqueous solution diffusion and radiation exposure on the mechanical performance and molecular structure of polyamide 6,6. Irradiation of dry samples initially results in a marked reduction of mechanical performance, however, post-irradiation aging allows for the return to pre-irradiation mechanical strength. Samples irradiated after exposure to either distilled water or 0.1 M sulfuric acid solutions exhibited increases in mechanical performance upon exposure to a mixed field radioactive environment
C-metric solution for conformal gravity with a conformally coupled scalar field
Energy Technology Data Exchange (ETDEWEB)
Meng, Kun, E-mail: mengkun@tjpu.edu.cn [School of Science, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, Liu, E-mail: lzhao@nankai.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)
2017-02-15
The C-metric solution of conformal gravity with a conformally coupled scalar field is presented. The solution belongs to the class of Petrov type D spacetimes and is conformal to the standard AdS C-metric appeared in vacuum Einstein gravity. For all parameter ranges, we identify some of the physically interesting static regions and the corresponding coordinate ranges. The solution may contain a black hole event horizon, an acceleration horizon, either of which may be cut by the conformal infinity or be hidden behind the conformal infinity. Since the model is conformally invariant, we also discussed the possible effects of the conformal gauge choices on the structure of the spacetime.
International Nuclear Information System (INIS)
Sharma, P.; Zhang, X.
2006-01-01
The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed at all time and (consistent with atomistic simulations), supersonic states are found to be admissible
Epidemic spreading in weighted networks: an edge-based mean-field solution.
Yang, Zimo; Zhou, Tao
2012-05-01
Weight distribution greatly impacts the epidemic spreading taking place on top of networks. This paper presents a study of a susceptible-infected-susceptible model on regular random networks with different kinds of weight distributions. Simulation results show that the more homogeneous weight distribution leads to higher epidemic prevalence, which, unfortunately, could not be captured by the traditional mean-field approximation. This paper gives an edge-based mean-field solution for general weight distribution, which can quantitatively reproduce the simulation results. This method could be applied to characterize the nonequilibrium steady states of dynamical processes on weighted networks.
Nonlinear effects in parallel magnetic fields in vanadyl and iron (111) ions solutions
International Nuclear Information System (INIS)
Ryzhov, V.A.; Fomichev, V.N.
1983-01-01
Nonlinear effects (NE) in vanadyl (VOSO 4 ) and iron (FeCl 3 x6H 2 O) solutions are investigated experimentally in the 268-323 K temperature range in parallel constant and variable linearly polarized magnetic fields, including conditions when EPR spectra are lacking due to strong resonance transition widening. It is shown that nonlinear effects are specified, on the one side, by the effect of a variable field on the relaxation processes and, on the other side, by resonance transitions in parallel fields. The relaxation and resonance effects contribute to different phase components of the second harmonic of magnetization, recorded in the experiment, at low frequences of a variable field (as compared to characteristic frequences of lattice motion). Therefore, separate analysis of the effects is possible. The presence of NE effects under conditions, when the EPR signal is not observed, and the possibility of the inverse problem solution using the variation technique on the base of simple models reveal that NE in parallel magnetic fields may be used for the investigation of paramagnets with a large EPR resonance transitions width
International Nuclear Information System (INIS)
Paul, Sumana; Shah, R.V.; Aggarwal, S.K.; Pandey, A.K.
2015-01-01
Determination of isotopic composition (IC) and concentration of plutonium (Pu) is necessary at various stages of nuclear fuel cycle which involves analysis of complex matrices like dissolver solution of irradiated fuel, nuclear waste stream etc. Mass spectrometry, e.g. thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICP-MS) are commonly used for determination of IC and concentration of plutonium. However, to circumvent matrix interferences, efficient separation as well as preconcentration of Pu is required prior to mass spectrometric analysis. Purification steps employing ion-exchange resins are widely used for the separation of Pu from dissolver solution or from mixture of other actinides e.g. U, Am. However, an alternative way is to selectively preconcentrate Pu on a resin bead, followed by direct loading of the bead on the filament of thermal ionization mass spectrometer
Leng, Hong-yao; Zheng, Xian-lan; Yan, Li; Zhang, Xian-hong; He, Hua-yun; Xiang, Ming
2013-09-01
To compare the effect of different types and concentrations of sweet solutions on neonatal pain during heel lance procedure. Totally 560 full term neonates (male 295, female 265) were randomized into 7 groups:placebo group (plain water), 10% glucose, 25% glucose, 50% glucose, 12% sucrose, 24% sucrose and 30% sucrose groups.In each group, 2 ml corresponding oral solutions were administered through a syringe by dripping into the neonate's mouth 2 minute before heel lance. The procedure process was recorded by videos, from which to collect heart rate, oxygen saturation and pain score 1 min before puncture, 3, 5 and 10 min after puncture. The average heart rate increase 3, 5 and 10 min after procedure in the 25% and 50% glucose groups, 12% and 24% and 30% sucrose groups was significantly lower than those in the placebo group (P lance (both P lance, but the best concentration of sucrose for pain relief needs further study.
Xu, Zhang; Reilley, Michael; Li, Run; Xu, Min
2017-06-01
We report chemometric wide-field fluorescence microscopy for imaging the spatial distribution and concentration of endogenous fluorophores in thin tissue sections. Nonnegative factorization aided by spatial diversity is used to learn both the spectral signature and the spatial distribution of endogenous fluorophores from microscopic fluorescence color images obtained under broadband excitation and detection. The absolute concentration map of individual fluorophores is derived by comparing the fluorescence from "pure" fluorophores under the identical imaging condition following the identification of the fluorescence species by its spectral signature. This method is then demonstrated by characterizing the concentration map of endogenous fluorophores (including tryptophan, elastin, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide) for lung tissue specimens. The absolute concentrations of these fluorophores are all found to decrease significantly from normal, perilesional, to cancerous (squamous cell carcinoma) tissue. Discriminating tissue types using the absolute fluorophore concentration is found to be significantly more accurate than that achievable with the relative fluorescence strength. Quantification of fluorophores in terms of the absolute concentration map is also advantageous in eliminating the uncertainties due to system responses or measurement details, yielding more biologically relevant data, and simplifying the assessment of competing imaging approaches.
The extraction characteristic of Au-Ag from Au concentrate by thiourea solution
Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung
2013-04-01
The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.
Shape functions for separable solutions to cross-field diffusion problems
International Nuclear Information System (INIS)
Luning, C.D.; Perry, W.L.
1984-01-01
The shape function S(x), which arises in the study of nonlinear diffusion for cross-field diffusion in plasmas, satisfies the equation S''(x)+lambdaa(x)S/sup α/(x) = 0, 0 0. In the cases of physical interest a(x) possesses an integrable singularity at some point in (0,1) but is otherwise continuous. Existence of a positive solution to this problem is established
Ott, Wayne R; Klepeis, Neil E; Switzer, Paul
2003-08-01
This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in
International Nuclear Information System (INIS)
Adamu, M.K.; Francis, O.A.
2008-01-01
The study investigated the effect of sublethal concentrations (39.10, 19.55, 9.87 and 0.00 mg/l) of Portland cement powder in solution on the electrolyte reserves (sodium, potassium, calcium, chloride and inorganic phosphorus) in the serum, liver and kidney of the juvenile African catfish Clarias gariepinus after a 15 day exposure period. The basic function of the determined electrolyte reserves in the body lies in controlling fluid distribution, intra and extra cellular acidobasic equilibrium, maintaining osmotic pressure of body fluid and normal neuro-muscular irritability. The result revealed significant (P 0.05) changes in inorganic phosphorus. Sodium, calcium, chloride and inorganic phosphorus and potassium were significantly (P 0.05) different in liver and kidney, respectively. Ipso-facto, the effector organs viz: liver and kidney of teleost species - Clarias gariepinus which are primarily responsible for regulating water and ionic movement between external and internal milieu of fishes are susceptible to deleterious effects of Portland cement powder thus sublethal concentration (39.10 mg/l) of Portland cement powder in solution after a 15 day exposure has been most toxic and debilitating to the test fish. (author)
Separation of cadmium from solutions containing high concentration of zinc ions
International Nuclear Information System (INIS)
Sharma, K.D.; Bhutani, A.K.; Parvathisem, P.
1984-01-01
In hydrometallurgical process of extracting cadmium as a byproduct, zinc dust is added for separation of cadmium as cadimum sponge. High amounts of zinc are quite often noticed in the cadmium electrolyte subjected for electrowinning of the metal. This leads to poor quality of cadmium deposit and lower current efficiencies. Study of cadmium sponge cementation process revealed that zinc dust may be added to an acidic cadmium solution for precipitation of cadmium sponge without neutralization of the free acidity present in the system. This fact is utilized for obtaining a high cadmium sponge with 75-80 per cent cadmium and 5-10 per cent zinc with 98 per cent recovery of cadmium from the solution as sponge. The suggested process is confirmed in a cadmium production plant producing 11.0 MT of cadmium per month. (author)
Study of the chemical interactions of actinide cations in solution at macroscopic concentrations
International Nuclear Information System (INIS)
Maurice, C.
1983-01-01
The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation [fr
Are Polar Field Magnetic Flux Concentrations Responsible for Missing Interplanetary Flux?
Linker, Jon A.; Downs, C.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.
2012-05-01
Magnetohydrodynamic (MHD) simulations are now routinely used to produce models of the solar corona and inner heliosphere for specific time periods. These models typically use magnetic maps of the photospheric magnetic field built up over a solar rotation, available from a number of ground-based and space-based solar observatories. The line-of-sight field at the Sun's poles is poorly observed, and the polar fields in these maps are filled with a variety of interpolation/extrapolation techniques. These models have been found to frequently underestimate the interplanetary magnetic flux (Riley et al., 2012, in press, Stevens et al., 2012, in press) near the minimum part of the cycle unless mitigating correction factors are applied. Hinode SOT observations indicate that strong concentrations of magnetic flux may be present at the poles (Tsuneta et al. 2008). The ADAPT flux evolution model (Arge et al. 2010) also predicts the appearance of such concentrations. In this paper, we explore the possibility that these flux concentrations may account for a significant amount of magnetic flux and alleviate discrepancies in interplanetary magnetic flux predictions. Research supported by AFOSR, NASA, and NSF.
International Nuclear Information System (INIS)
Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong
2013-01-01
Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions
Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A
2011-02-01
The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010
On the radiolysis of concentrated alkaline and calcium-nitrate solutions
International Nuclear Information System (INIS)
Kiwi, J.T.; Daniels, M.
1978-01-01
Previous studies have shown that more nitrite is produced than can reasonably be accounted for by an indirect radiolysis mechanism based on the radical products of radiolysed water. Further results on the relative roles of indirect effect and direct effect (a chemical transformation in the solute due to its energy absorption) are presented. Major products are nitrite, peroxide and oxygen and yields can be accounted for using the electron fraction model. (author)
Czech Academy of Sciences Publication Activity Database
Pluhařová, Eva; Fischer, H. E.; Mason, Philip E.; Jungwirth, Pavel
2014-01-01
Roč. 112, 9/10 (2014), s. 1230-1240 ISSN 0026-8976 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * solution * molecular dynamics * chloride * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014
Barium low concentration determination in solutions using X rays energy spectrometry
International Nuclear Information System (INIS)
Barbosa, Joao Batista Santos; Pereira, Jose dos Santos Jorge
1999-01-01
This work was proposed to establish an analytical methodology for barium determination in samples from the Waste Supervision of CDTN. Barium is the focus here because it has the same chemical behaviour as radium. Therefore, barium can replace it as an inactive tracer in contention matrix studies. The methodology is made up of two phases; physical concentration and barium determination by an Energy Dispersive Spectrometer using an Am 241 photon excitation system. A very good set of results is found when Am 241 is used in fluorescing barium atoms. This fact, in addition to the physical concentration process, allows to detect up 12 ppb of elementary barium. (author)
Directory of Open Access Journals (Sweden)
Joanna Nowak
2013-12-01
Full Text Available Effects of growing media and concentration of nutrient solution on growth, flowering, evapotranspiration and macroelement content of media and leaves of Tymophylla tenuiloba were evaluated under ebb-and-flow conditions. Two media: peat and peat + perlite (3:l, v/v, and four concentrations of nutrient solution: 1.0, 1.5, 2.0, 2.5 mS cm-1 were applied. High quality plants were produced in both media and all concentration of nutrient solution. The lowest evapotranspiration was measured at the highest concentration of nutrient solution. N concentration of leaves was high in all treatments. Concentrations of K, Ca, and Mg decreased with increasing concentration of nutrient solution. Opposite was found for P. At the end of cultivation the lowest pH was measured in the upper layer of growing media. The highest total soluble salt level was measured in the upper layers. Upper layers accumulated more N-NO3, P, Ca, and Mg. Mineral element content of both media was high in all concentrations of nutrient solution. Low concentration of nutrient solution at 1.0 mS cm-1 is recommended, although -1Tymophylla tenuiloba-1 can be also cultivated at higher concentrations of nutrient solution up to 2.5mS cm-1, if placed on the same bench with other bedding plants requiring more nutrients.
Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.
2017-09-01
Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.
Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T
2017-09-15
Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.
Field instruments for real time in-situ crude oil concentration measurements
International Nuclear Information System (INIS)
Fuller, C.B.; Bonner, J.S.; Page, C.A.; Arrambide, G.; Sterling, M.C.Jr.; Ojo, T.O.
2003-01-01
Accidental oil spills, contaminant release during resuspension, storms, and harmful algal blooms are all episodic events that can effect coastal margins. It is important to quantitatively describe water and ecological quality evolution and predict the impact to these areas by such events, but traditional sampling methods miss environmental activity during cyclical events. This paper presents a new sampling approach that involves continuous, real-time in-situ monitoring to provide data for development of comprehensive modeling protocols. It gives spill response coordinators greater assurance in making decisions using the latest visualization tools which are based on a good understanding of the physical processes at work in pulsed events. Five sensors for rapid monitoring of crude oil concentrations in aquatic systems were described. The in-situ and ex-situ sensors can measure plume transport and estimate polycyclic aromatic hydrocarbon exposure concentrations to assess risk of toxicity. A brief description and evaluation of the following 5 sensors was provided: the LISST-100 by Sequoia Instrument, a submersible multi-angle laser scattering instrument; the AU-10 field fluorometer by Turner Designs, an ex-situ single wavelength fluorometer; the Flashlamp by WET Labs Inc., an in-situ single wavelength fluorometer; and, the ECO-FL3 and SAFire by WET Labs Inc., two in-situ multiple wavelength fluorometers. These instruments were used to analyze crude oil emissions of various concentrations. All of the instruments followed a linear response within the tested concentration range. At the lowest concentrations the LISST-100 was not as effective as the fluorometers because of limited particle volume for scatter. For the AU-10 field fluorometer, the highest concentrations tested were above the measurement range of the instrument. 6 refs., 5 figs
The Determination of the Concentrations of Sugar Solutions by Laser Refractometry.
Hughes, Elvin, Jr.; And Others
1988-01-01
Presents an easily performed experiment to determine sucrose concentrations using a laser and a hollow glass prism. The experiment is suggested for high school, freshman college, and instrumental analysis classes. Notes an Erlenmeyer flask can be used instead of a prism. (MVL)
International Nuclear Information System (INIS)
Mestorino, N.; Marchetti, M.L.; Turic, E.; Pesoa, J.; Errecalde, J.
2009-01-01
Danofloxacin is a fluoroquinolone developed for use in veterinary medicine. Its concentrations and pharmacokinetic profile in plasma, milk and tissues of lactating dairy cows were determined, and its milk withdrawal time (WT) calculated. Twenty-one dairy cows received a single subcutaneous administration of 18% mesylate danofloxacin salt (6 mg kg -1 ). Plasma and milk samples were obtained at different times until 48 h. Groups of three animals were sacrificed at different post-administration times and tissue samples (mammary gland, uterus, duodenum, jejunum, ileum, colon and mesenteric lymph nodes) obtained. Danofloxacin concentrations were determined by liquid chromatography with fluorescence detection. The milk WT was calculated by the Time to Safe Concentration method (Software WTM 1.4, EMEA). Danofloxacin was rapidly absorbed and its distribution from plasma to all sampled tissues and milk was extensive. Milk and tissues concentrations were several times above those found in plasma. Plasma area under the curve (AUCp) was 9.69 μg h mL -1 and its elimination half life (T β 1/2 ) was 12.53 h. AUC values for the various tissues and milk greatly exceeded AUCp. T β 1/2 from milk and tissues ranged between 4.57 and 21.91 h and the milk withdrawal time was 73.48 h. The reported results support the potential use of danofloxacin in the treatment of mastitis and other infections in milk cows with 3 days of withdrawal
Fleer, G.J.; Skvortsov, A.M.; Tuinier, R.
2007-01-01
We propose simple expressions II/IIo = 1 + and (omega/omega(ex))(3 alpha-1) and (delta(0)/delta)(2) = 1 + (omega/omega(ex))(2 alpha) for the osmotic pressure II and the depletion thickness 6 as a function of the polymer concentration omega. Here, IIo and delta 0 correspond to the dilute limit, and
van der Meer, P.; Pietersz, R.; Reesink, H.
2001-01-01
BACKGROUND: AND OBJECTIVE: Buffy coat (BC) pooling sets are integrated systems, consisting of a pooling bag, a filter and a platelet storage container, for the production of leucoreduced platelet concentrates (LR-PCs) from pooled BCs. It was our aim to compare various pooling sets that are currently
Gharibshahian, E.; Jafar Tafershi, M.; Fazli, M.
2018-05-01
In this study, KTiOPO4 (KTP) nanoparticles were synthesized using a co-precipitation method. The effects of the solution concentration (M) and capping agents, such as PVA, oxalic acid, glycine, triethanolamine, and L-alanine, on the structural, microstructural, and optical properties of the products were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Decreasing the solution concentration decreased the crystallite size from 53.07 nm (for M = 2) to 39.42 nm (for M = 0.5). After applying different capping agents to the sample at the optimum concentration (M = 0.5), the crystallite size decreased again and grains as small as 10.61 nm were obtained. XRD and FTIR analyses indicated the formation of KTP nanoparticles with an orthorhombic structure in all of the samples. The optical band gap increased as the crystallite size decreased. Different morphological patterns such as spherical, needle shaped, polyhedron, and tablet forms were observed in the nanoparticles, which were correlated with the effects of the capping agents employed.
A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations
International Nuclear Information System (INIS)
Nikonov, V V; Tchemarina, Ju V; Tsirulev, A N
2008-01-01
We consider a static spherically symmetric real scalar field, minimally coupled to Einstein gravity. A two-parameter family of exact asymptotically flat solutions is obtained by using the inverse problem method. This family includes non-singular solutions, black holes and naked singularities. For each of these solutions the respective potential is partially negative but positive near spatial infinity. (comments, replies and notes)
Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory
Directory of Open Access Journals (Sweden)
Matthew T. Aadne
2017-02-01
Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.
Directory of Open Access Journals (Sweden)
Fanny Bauchy
2016-01-01
Full Text Available Background. Capsaicin, one of several capsaicinoid compounds, is a potent TRPV1 agonist. Topical application at high concentration (high concentration, >1% induces a reversible disappearance of epidermal free nerve endings and is used to treat peripheral neuropathic pain (PNP. While the benefit of low-concentration capsaicin remains controversial, the 8%-capsaicin patch (Qutenza®, 2010, Astellas, Netherlands has shown its effectiveness. This patch is, however, costly and natural high-concentration capsaicinoid solutions may represent a cheaper alternative to pure capsaicin. Methods. In this retrospective study, 149 patients were screened, 132 were included with a diagnosis of neuropathic pain, and eighty-four were retained in the final analyses (median age: 57.5 years [IQR25–75: 44.7–67.1], male/female: 30/54 with PNP who were treated with topical applications of natural high-concentration capsaicinoid solutions (total number of applications: 137. Indications were postsurgical PNP (85.7% and nonsurgical PNP (14.3% (posttraumatic, HIV-related, postherpetic, and radicular PNP. Objectives. To assess the feasibility of topical applications of natural high-concentration capsaicinoid solutions for the treatment of PNP. Results. The median treated area was 250 cm2 [IQR25–75: 144–531]. The median amount of capsaicinoids was 55.1 mg [IQR25–75: 28.7–76.5] per plaster and the median concentration was 172.3 μg/cm2 [IQR25–75: 127.6–255.2]. Most patients had local adverse effects on the day of treatment, such as mild to moderate burning pain and erythema. 13.6–19.4% of the patients experienced severe pain or erythema. Following treatment, 62.5% of patients reported a lower pain intensity or a smaller pain surface, and 35% reported a sustained pain relief lasting for at least 4 weeks. Conclusion. Analgesic topical treatment with natural high-concentration capsaicinoid is feasible and may represent a low cost alternative to alleviate
Wamser, Anderson Fernando; Cecilio Filho, Arthur Bernardes; Nowaki, Rodrigo Hiyoshi Dalmazzo; Mendoza-Cortez, Juan Waldir; Urrestarazu, Miguel
2017-01-01
The interactive effects of N (6, 9, 12 and 15 mmol L-1) and K (3, 5, 7, and 9 mmol L-1) concentrations in nutrient solutions were evaluated on bell pepper grown in a coconut-coir substrate and fertilized without drainage. An additional treatment with drainage was evaluated using N and K concentrations of 12 and 7 mmol L-1, respectively. The hybrid Eppo cultivar of yellow bell pepper was cultivated for 252 days beginning 9 November 2012. Electrical conductivity (EC), the N and K concentrations in the substrate solution, marketable fruit yield, total dry weight and macronutrient concentrations in shoots were periodically evaluated. Fruit production was lower in the system without drainage, regardless of the N and K concentrations, compared to the recommended 10-20% drainage of the volume of nutrient solution applied. Higher K concentrations in the nutrient solution did not affect plant production in the system without drainage for the substrate with an initial K concentration of 331.3 mg L-1. Fruit yield was higher without drainage at a nutrient-solution N concentration of 10.7 mmol L-1. The upper EC limit of the substrate solution in the system without drainage was exceeded 181 days after planting. Either lower nutrient concentrations in the nutrient solution or a drainage system could thus control the EC in the substrate solution.
EXTENDED STORAGE OF BUFFY-COAT PLATELET CONCENTRATES IN PLASMA OR A PLATELET ADDITIVE SOLUTION
Slichter, Sherrill J.; Bolgiano, Doug; Corson, Jill; Jones, Mary Kay; Christoffel, Todd; Bailey, S. Lawrence; Pellham, Esther
2014-01-01
Background Platelet concentrates prepared from whole blood in the U.S. are made using the platelet-rich-plasma (PRP) method. The platelet concentrates must be made within 8 hours of blood collection and stored for only 5 days. In Europe and Canada, platelet concentrates are made using the buffy-coat (BC) method from whole blood held overnight at 22°C and storage times may be up to 7 days. Our studies were designed to determine how long BC platelets can be stored in plasma or Plasmalyte while meeting the FDA’s post-storage viability criteria. Study Design, Materials, And Methods Normal subjects donated whole blood that was stored at 22°C for 22 ± 2 hours prior to preparation of BC platelets. Platelets were stored for 5 to 8 days in either plasma or Plasmalyte concentrations of 65% or 80%. Radiolabeled autologous stored versus fresh platelet recoveries and survivals were assessed as well as post-storage in vitro assays. Results BC platelets stored in either plasma or 65% Plasmalyte met FDA post-storage platelet recovery criteria for 7 days but survivals for only 6 days, while storage in 80% Plasmalyte gave very poor results. Both stored platelet recoveries and survivals correlated with the same donor’s fresh results, but the correlation was much stronger between recoveries than survivals. In vitro measures of extent of shape change, morphology score, and pH best predicted post-storage platelet recoveries, while annexin V binding best predicted platelet survivals. Conclusion BC platelets stored in either plasma or 65% Plasmalyte meet FDA’s post-storage viability criteria for 6 days. PMID:24673482
Mardawati, Efri; Parlan; Rialita, Tita; Nurhadi, Bambang
2018-03-01
Xylanase is an enzyme used in the industrial world, including food industry. Xylanase can be utilized as a 1,4-β-xylosidic endo-hydrolysis catalyst of xylanase, a hemicellulose component for obtaining a xylose monomer. This study aims to determine the optimum concentration of the fermentation medium using Response Surface Method (RSM) in the production of xylanase enzyme from oil palm empty fruit bunches (OPEFB) through solid state fermentation process. The variables varied in this study used factor A (ammonium sulphate concentration 1.0-2.0 g/L), B (concentration of potassium dihydrogen phosphate 1.5-2.5 g/L) and C (urea concentration 0.2 – 0.5 g/L). The data was analysed by using Design Expert version 10.0.1.0 especially CCD with total 17 running including 3 times replicated of canter point. Trichoderma viride was used for the process production of xylanase enzyme. The ratio between substrate and moistening solution used was 0.63 g / mL with temperature of 32.80C, 60 h incubation time. The analysis of enzyme activity was done by DNS method with 1% xylan as substrate. Analysis of protein content in enzyme was done by Bradford method. The optimum of moistening solution concentration in this fermentation was obtained. They are, the ammonium sulphate concentration of 1.5 g/L, potassium dihydrogen phosphate 2.0 g/L and urea 0.35 g/L with activity of 684.70 U/mL, specific activity enzyme xylanase 6261.58 U/mg, protein content 0.1093 U/mg, the model was validated using experiment design with perfect reliability value 0.96.
International Nuclear Information System (INIS)
Wang, S.G.; Sun, M.; Cheng, P.C.; Long, K.
2011-01-01
Highlights: → The corrosion resistance of BNII was enhanced in comparison with CPII in 0.1-0.4 mol L -1 solution. → The function work of BNII is 0.47 eV larger that of CPII. → The energy state density of 4s electrons of BNII is 13.73% less than that of CPII. → BNII corrosion resistance was enhanced due to its larger work function and less 4s electrons weight. → The specific adsorption of Cl - on BNII was weaker than that of CPII due to its larger function work. - Abstract: We studied the corrosion properties of bulk nanocrystalline ingot iron (BNII) and conventional polycrystalline ingot iron (CPII) in HCl solutions from 0.1 mol L -1 to 0.4 mol L -1 at room temperature. The corrosion resistance of BNII was enhanced in comparison with CPII. We investigated the surface energy state densities of BNII and CPII with ultra-violet photoelectron spectroscopy. The energy state density of BNII 4s electrons was 13.73% less than that of CPII. The function work of BNII was 0.47 eV larger that of CPII. The corrosion resistance of BNII was enhanced in comparison with CPII due to its less energy state density of 4s electrons, larger work function and weaker Cl - specific adsorption.
Using MOF-74 for Hg{sup 2+} removal from ultra-low concentration aqueous solution
Energy Technology Data Exchange (ETDEWEB)
Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le; Feng, Xue Feng; Meng, Li Na; Zhang, Le; Meng, Pan Pan; Luo, Ming Biao; Luo, Feng, E-mail: ecitluofeng@163.com
2017-02-15
Mercury (Hg{sup 2+}) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when the initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.
Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution
International Nuclear Information System (INIS)
Xiong, Yang Yang; Li, Jian Qiang; Gong, Le Le; Feng, Xue Feng; Meng, Li Na; Zhang, Le; Meng, Pan Pan; Luo, Ming Biao; Luo, Feng
2017-01-01
Mercury (Hg 2+ ) ions have very high toxicity and widely spread as environmental pollutants. At present, many efforts have been taken to remove the hazardous materials of mercury(II) by adsorption, and it is highly desirable to develop a novel adsorbent with high adsorptive capacities. However it is still a big challenge to remove the ultra-low-concentration mercury ions from water. In this paper, MOF-74-Zn is explored for such function, showing high removal rate of Hg(II) from water without any pretreatment, especially for the ultra-trace Hg(II) ions in the ppb magnitude with the removal rate reaching to 54.48%, 69.71%, 72.26% when the initial concentration of Hg(II) is 20ppb, 40ppb, 50ppb, respectively. - Graphical abstract: The absorption of mercury ions on MOF-74-Zn is due to somewhat weak interactions between MOF skeleton that is composed of carboxylate and hydroxy group and Hg2+ ions. - Highlights: • MOF-74-Zn shows high removal rate of Hg(II) from water without any pretreatment. • The MOF-74-Zn has a notable performance at ultra-low concentration of Hg(II). • MOF-74-Zn shows the potential for Hg(II) removal from industrial waste water.
Shiralipour, Roohollah; Larki, Arash
2017-01-01
In this study, a new absorbent based on cellulose nanosponges modified with methyltrioctylammonium chloride (aliquat 336) was prepared and used for pre-concentration, removal and determination of tartrazine dye, using UV-vis spectrophotometry. This adsorbent was fully characterized using various instrumental techniques such as SEM, FTIR and XRD spectra. The pre-concentration and removal procedures were studied in column and batch modes, respectively. The effects of parameters such as pH of the aqueous medium, methyltrioctylammounium chloride dose, adsorbent amount, desorbing conditions and interfering ions on the adsorption of tartrazine were investigated and optimized. The fitting experimental data with conventional isotherm models revealed that the adsorption followed the Brunauer-Emmett-Teller (BET) model and the maximum adsorption capacity for tartrazine was 180mg/g with modified nanosponges. Under the optimized conditions, the calibration curve was linear over the range of 2-300ng/mL and the limit of detection was 0.15ng/mL. The relative standard deviation (RSD) for 20 and 100ng/mL of tartrazine were 3.1% and 1.5%, respectively. The proposed method was applied for pre-concentration and determination of tartrazine dye in different water samples. Copyright © 2016 Elsevier Inc. All rights reserved.
Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.
Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw
2006-02-22
Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.
Liu, Yueqiang; Phenrat, Tanapon; Lowry, Gregory V
2007-11-15
Nanoscale zero-valent iron (NZVI) is used to remediate contaminated groundwater plumes and contaminant source zones. The target contaminant concentration and groundwater solutes (NO3-, Cl-, HCO3-, SO4(2-), and HPO4(2-)) should affect the NZVI longevity and reactivity with target contaminants, but these effects are not well understood. This study evaluates the effect of trichloroethylene (TCE) concentration and common dissolved groundwater solutes on the rates of NZVI-promoted TCE dechlorination and H2 evolution in batch reactors. Both model systems and real groundwater are evaluated. The TCE reaction rate constant was unaffected by TCE concentration for [TCE] TCE concentration up to water saturation (8.4 mM). For [TCE] > or = 0.46 mM, acetylene formation increased, and the total amount of H2 evolved at the end of the particle reactive lifetime decreased with increasing [TCE], indicating a higher Fe0 utilization efficiency for TCE dechlorination. Common groundwater anions (5mN) had a minor effect on H2 evolution but inhibited TCE reduction up to 7-fold in increasing order of Cl- TCE reduction but increased acetylene production and decreased H2 evolution. NO3- present at > 3 mM slowed TCE dechlorination due to surface passivation. NO3- present at 5 mM stopped TCE dechlorination and H2 evolution after 3 days. Dissolved solutes accounted for the observed decrease of NZVI reactivity for TCE dechlorination in natural groundwater when the total organic content was small (< 1 mg/L).
Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields
Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.
2017-09-01
It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.
Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis
2018-05-01
Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full
Conditioning highly concentrated borate solutions with calcium sulfo-aluminate cement
International Nuclear Information System (INIS)
Champenois, J.B.; Cau dit Coumes, C.; Poulesquen, A.; Le Bescop, P.; Damidot, D.
2012-01-01
The early age hydration by borate solution of 3 calcium sulfo-aluminate cements (CSA), containing respectively 0%, 10% and 20% of gypsum by weight of cement was studied using isothermal calorimetry and dynamic mode rheo-metry. XRD and TGA analysis were carried out on pastes with increasing hydration degrees (up to 90 days) to specify the mineralogy and to figure out the mechanisms of borate immobilisation. It has been shown that the retarding effect of borate anions is due to the precipitation of the amorphous calcium borate C 2 B 3 H 8 ; borate anions were then incorporated in Aft-type phases. The macroscopic properties of hydrated binders (compressive strength, length change) were also followed during 180 days. It appears that the mechanical strength continuously increases with the hydration degree. Length changes under wet-curing and sealed bag remain moderate and seem to be stabilized after 180 days
CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace
Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong
2014-01-01
A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.
International Nuclear Information System (INIS)
Logsdail, D.H.; Evans, S.F.; Jenkins, J.A.; Smith, I.J.
1988-01-01
Dynamic model of the operation of the BRADSIM pulsed plate column is developed. Examples of simulation of the pures process extraction system are given. Profiles of dissolved substances concentrations and profiles of physical properties of liquid along the column are provided. Calculated values are compared with the experimental data, obtained in case of the column 50 mm in diameter, Harwell extractional facility and Sellafield pulsed column 300 mm in diameter for extraction systems uranyl nitrate-nitric acid-20% and 30% TBP in kerosene. 2 refs.; 6 figs
International Nuclear Information System (INIS)
Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.
2017-01-01
Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions
Yu, Yong-xiang; Zhao, Cheng-yi; Jia, Hong-tao; Yu, Bo; Zhou, Tian-he; Yang, Yu-guang; Zhao, Hua
2015-01-01
A field study was conducted to compare soil CO2 efflux and CO2 concentration between mulched and non-mulched cotton fields by using closed chamber method and diffusion chamber technique. Soil CO2 efflux and CO2 concentration exhibited a similar seasonal pattern, decreasing from July to October. Mulched field had a lower soil CO2 efflux but a higher CO2 concentration, compared to those of non-mulched fields. Over the measurement period, cumulative CO2 efflux was 1871.95 kg C . hm-2 for mulched field and 2032.81 kg C . hm-2 for non-mulched field. Soil CO2 concentration was higher in mulched field (ranging from 5137 to 25945 µL . L-1) than in non- mulched field (ranging from 2165 to 23986 µL . L-1). The correlation coefficients between soil CO2 concentrations at different depths and soil CO2 effluxes were 0.60 to 0.73 and 0.57 to 0.75 for the mulched and non-mulched fields, indicating that soil CO2 concentration played a crucial role in soil CO2 emission. The Q10 values were 2.77 and 2.48 for the mulched and non-mulched fields, respectively, suggesting that CO2 efflux in mulched field was more sensitive to the temperature.
Convolution equations on lattices: periodic solutions with values in a prime characteristic field
Zaidenberg, Mikhail
2006-01-01
These notes are inspired by the theory of cellular automata. A linear cellular automaton on a lattice of finite rank or on a toric grid is a discrete dinamical system generated by a convolution operator with kernel concentrated in the nearest neighborhood of the origin. In the present paper we deal with general convolution operators. We propose an approach via harmonic analysis which works over a field of positive characteristic. It occurs that a standard spectral problem for a convolution op...
Directory of Open Access Journals (Sweden)
T. V. Grebennikova
2017-01-01
Full Text Available One of the basis water-soluble fertilizers that are used in greenhouse enterprises is a Calcium nitrate, where its production and demand raise. At present time, calcium nitrate is produced in a granulated and crystaline form consisted of tetrahydrate, dihydrate and concentrated variants. These forms are significantly distinguished by their chemical composition. Besides the basic form of nitrogen – nitrate – there is ammoniacal nitrogen in the composition of Calcium nitrate that is found to be undesirable element, particularly with drip irrigation system in the greenhouse. The new product, calcium nitrate has been worked out with minimal content of ammoniacal nitrogen at URALCHIM. The study showed the advantages of the product for such characteristics as solubility and time of dissolving. It dissolves 3.4-7 time faster than those of tetrahydrate and dihydrate analogues. At present time, the concentrated calcium nitrate is used in many greenhouse industrial complexes and enterprises, and has shown its efficiency in practice.
Application of stable, nitroxide free radicals in solution to low magnetic fields measurements
International Nuclear Information System (INIS)
Besson, Rene
1973-01-01
The first attempts to use the Overhauser-Abragam effect for measuring low magnetic fields date back to 1956. However, the instability of the free radical used, PREMY'S Salt, as well as its virtual insolubility in solvents other than water, hampered the development of the nuclear magnetic resonance magnetometer realized in accordance to this principle: dynamic polarization of protons. New free radicals stable and soluble in many solvents, will enhanced the interest in the device. In particular, the use of 2,2,6,6, tetramethyl- piperidine-4-one-1-oxide (TANO or TANONE) leads to a high sensitivity, low field magnetometer. The methods of measurements, the required apparatus and sample preparation are first described. Next the results of measurements made both in high and low magnetic fields with various free radicals in different solvents are presented in tabular and graphical form. These measurements have determined which radical-solvent couple will yield a high dynamic polarization coefficient. In addition, the improvement obtained by complete deuteration of the free radical has been demonstrated. Problems connected with the application of such radicals in solution to the 'double effect probe' of the magnetometer built by LETI at CEN Grenoble and the solutions reached are discussed. (author) [fr
Hanson, R. K.; Presley, L. L.; Williams, E. V.
1972-01-01
The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.
Approximate solution of space and time fractional higher order phase field equation
Shamseldeen, S.
2018-03-01
This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.
International Nuclear Information System (INIS)
Rockhold, M.L.
1993-02-01
A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a ''blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration
Fan, Lin; Du, Cui-wei; Liu, Zhi-yong; Li, Xiao-gang
2013-07-01
Susceptibilities to stress corrosion cracking (SCC) of X80 pipeline steel in high pH solutions with various concentrations of HCO{3/-} at a passive potential of -0.2 V vs. SCE were investigated by slow strain rate tensile (SSRT) test. The SCC mechanism and the effect of HCO{3/-} were discussed with the aid of electrochemical techniques. It is indicated that X80 steel shows enhanced susceptibility to SCC with the concentration of HCO{3/-} increasing from 0.15 to 1.00 mol/L, and the susceptibility can be evaluated in terms of current density at -0.2 V vs. SCE. The SCC behavior is controlled by the dissolution-based mechanism in these circumstances. Increasing the concentration of HCO{3/-} not only increases the risk of rupture of passive films but also promotes the anodic dissolution of crack tips. Besides, little susceptibility to SCC is found in dilute solution containing 0.05 mol/L HCO{3/-} for X80 steel. This can be attributed to the inhibited repassivation of passive films, manifesting as a more intensive dissolution in the non-crack tip areas than at the crack tips.
Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.
2013-01-01
In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.
Directory of Open Access Journals (Sweden)
J. Guillén
2000-12-01
Full Text Available The water turbidity measured with optical methods (transmittance and backscattering is usually expressed as beam attenuation coefficient (BAC or formazin turbidity units (FTU. The transformation of these units to volumetric suspended sediment concentration (SSC units is not straightforward, and accurate calibrations are required in order to obtain valuable information on suspended sediment distributions and fluxes. In this paper, data from field calibrations between BAC, FTU and SSC are presented and best-fit calibration curves are shown. These calibrations represent an average from different marine environments of the western Mediterranean (from estuary to continental slope. However, the general curves can only be applied for descriptive or semi-quantitative purposes. Comparison of turbidity measurements using the same sensor with different calibration ranges shows the advantage of simultaneously combining two instruments calibrated in different ranges when significant changes in suspended sediment concentrations are expected.