WorldWideScience

Sample records for solubility limits calculation

  1. Determination of radionuclide solubility limits to be used in SR 97. Uncertainties associated to calculated solubilities

    Bruno, J.; Cera, E.; Duro, L.; Jordana, S. [QuantiSci S.L., Barcelona (Spain); Pablo, J. de [DEQ-UPC, Barcelona (Spain); Savage, D. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    1997-12-01

    The thermochemical behaviour of 24 critical radionuclides for the forthcoming SR97 PA exercise is discussed. The available databases are reviewed and updated with new data and an extended database for aqueous and solid species of the radionuclides of interest is proposed. We have calculated solubility limits for the radionuclides of interest under different groundwater compositions. A sensitivity analysis of the calculated solubilities with the composition of the groundwater is presented. Besides selecting the most likely solubility limiting phases, in this work we have used coprecipitation approaches in order to calculate more realistic solubility limits for minor radionuclides, such as Ra, Am and Cm. The comparison between the calculated solubilities and the concentrations measured in relevant natural systems (NA) and in spent fuel leaching experiments helps to assess the validity of the methodology used and to derive source term concentrations for the radionuclides studied. The uncertainties associated to the solubilities of the main radionuclides involved in the spent nuclear fuel have also been discussed in this work. The variability of the groundwater chemistry; redox conditions and temperature of the system have been considered the main factors affecting the solubilities. In this case, a sensitivity analysis has been performed in order to study solubility changes as a function of these parameters. The uncertainties have been calculated by including the values found in a major extent in typical granitic groundwaters. The results obtained from this analysis indicate that there are some radionuclides which are not affected by these parameters, i.e. Ag, Cm, Ho, Nb, Ni, Np, Pu, Se, Sm, Sn, Sr, Tc and U

  2. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J. (Enviros Spain S.L., Barcelona (ES))

    2006-12-15

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  3. Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment

    Duro, L.; Grive, M.; Cera, E.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents and documents the thermodynamic database used in the assessment of the radionuclide solubility limits within the SR-Can Exercise. It is a supporting report to the solubility assessment. Thermodynamic data are reviewed for 20 radioelements from Groups A and B, lanthanides and actinides. The development of this database is partially based on the one prepared by PSI and NAGRA. Several changes, updates and checks for internal consistency and completeness to the reference NAGRA-PSI 01/01 database have been conducted when needed. These modifications are mainly related to the information from the various experimental programmes and scientific literature available until the end of 2003. Some of the discussions also refer to a previous database selection conducted by Enviros Spain on behalf of ANDRA, where the reader can find additional information. When possible, in order to optimize the robustness of the database, the description of the solubility of the different radionuclides calculated by using the reported thermodynamic database is tested in front of experimental data available in the open scientific literature. When necessary, different procedures to estimate gaps in the database have been followed, especially accounting for temperature corrections. All the methodologies followed are discussed in the main text

  4. Experimental studies to validate model calculations and maximum solubility limits for Plutonium and Americium

    2017-01-01

    This report focuses on studies of KIT-INE to derive a significantly improved description of the chemical behaviour of Americium and Plutonium in saline NaCl, MgCl 2 and CaCl 2 brine systems. The studies are based on new experimental data and aim at deriving reliable Am and Pu solubility limits for the investigated systems as well as deriving comprehensive thermodynamic model descriptions. Both aspects are of high relevance in the context of potential source term estimations for Americium and Plutonium in aqueous brine systems and related scenarios. Americium and Plutonium are long-lived alpha emitting radionuclides which due to their high radiotoxicity need to be accounted for in a reliable and traceable way. The hydrolysis of trivalent actinides and the effect of highly alkaline pH conditions on the solubility of trivalent actinides in calcium chloride rich brine solutions were investigated and a thermodynamic model derived. The solubility of Plutonium in saline brine systems was studied under reducing and non-reducing conditions and is described within a new thermodynamic model. The influence of dissolved carbonate on Americium and Plutonium solubility in MgCl 2 solutions was investigated and quantitative information on Am and Pu solubility limits in these systems derived. Thermodynamic constants and model parameter derived in this work are implemented in the Thermodynamic Reference Database THEREDA owned by BfS. According to the quality assurance approach in THEREDA, is was necessary to publish parts of this work in peer-reviewed scientific journals. The publications are focused on solubility experiments, spectroscopy of aquatic and solid species and thermodynamic data. (Neck et al., Pure Appl. Chem., Vol. 81, (2009), pp. 1555-1568., Altmaier et al., Radiochimica Acta, 97, (2009), pp. 187-192., Altmaier et al., Actinide Research Quarterly, No 2., (2011), pp. 29-32.).

  5. Actinide solubility in deep groundwaters - estimates for upper limits based on chemical equilibrium calculations

    Schweingruber, M.

    1983-12-01

    A chemical equilibrium model is used to estimate maximum upper concentration limits for some actinides (Th, U, Np, Pu, Am) in groundwaters. Eh/pH diagrams for solubility isopleths, dominant dissolved species and limiting solids are constructed for fixed parameter sets including temperature, thermodynamic database, ionic strength and total concentrations of most important inorganic ligands (carbonate, fluoride, phosphate, sulphate, chloride). In order to assess conservative conditions, a reference water is defined with high ligand content and ionic strength, but without competing cations. In addition, actinide oxides and hydroxides are the only solid phases considered. Recommendations for 'safe' upper actinide solubility limits for deep groundwaters are derived from such diagrams, based on the predicted Eh/pH domain. The model results are validated as far as the scarce experimental data permit. (Auth.)

  6. Solubility limits on radionuclide dissolution

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  7. Pure Phase Solubility Limits: LANL

    C. Stockman

    2001-01-01

    , complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The

  8. Pure Phase Solubility Limits: LANL

    C. Stockman

    2001-01-26

    products, complex stability constants, and redox potentials for radionuclides in different oxidation states, form the underlying database to be used for those calculations. The potentially low solubilities of many radionuclides in natural waters constitute the first barrier for their migration from the repository into the environment. Evaluation of this effect requires a knowledge of the site-specific water chemistry and the expected spatial and temporal ranges of its variability. Quantitative determinations of radionuclide solubility in waters within the range of chemistry must be made. Speciation and molecular complexation must be ascertained to interpret and apply solubility results. The solubilities thus determined can be used to assess the effectiveness of solubility in limiting radionuclide migration. These solubilities can also be used to evaluate the effectiveness of other retardation processes expected to occur once dissolution of the source material and migration begin. Understanding the solubility behavior of radionuclides will assist in designing valuable sorption experiments that must be conducted below the solubility limit since only soluble species participate in surface reactions and sorption processes. The present strategy for radionuclide solubility tasks has been to provide a solubility model from bulk-experiments that attempt to bracket the estimate made for this Analysis and Modeling Report (AMR) of water conditions on site. The long-term goal must be to develop a thermodynamic database for solution speciation and solid-state determination as a prerequisite for transport calculations and interpretation of empirical solubility data. The model has to be self-consistent and tested against known solubility studies in order to predict radionuclide solubilities over the continuous distribution ranges of potential water compositions for performance assessment of the site. Solubility studies upper limits for radionuclide concentrations in natural waters. The

  9. Experimental studies to validate model calculations and maximum solubility limits for Plutonium and Americium; Experimentelle Arbeiten zur Absicherung von Modellrechnungen und Maximalkonzentrationen fuer Plutonium und Americium

    NONE

    2017-02-16

    This report focuses on studies of KIT-INE to derive a significantly improved description of the chemical behaviour of Americium and Plutonium in saline NaCl, MgCl{sub 2} and CaCl{sub 2} brine systems. The studies are based on new experimental data and aim at deriving reliable Am and Pu solubility limits for the investigated systems as well as deriving comprehensive thermodynamic model descriptions. Both aspects are of high relevance in the context of potential source term estimations for Americium and Plutonium in aqueous brine systems and related scenarios. Americium and Plutonium are long-lived alpha emitting radionuclides which due to their high radiotoxicity need to be accounted for in a reliable and traceable way. The hydrolysis of trivalent actinides and the effect of highly alkaline pH conditions on the solubility of trivalent actinides in calcium chloride rich brine solutions were investigated and a thermodynamic model derived. The solubility of Plutonium in saline brine systems was studied under reducing and non-reducing conditions and is described within a new thermodynamic model. The influence of dissolved carbonate on Americium and Plutonium solubility in MgCl{sub 2} solutions was investigated and quantitative information on Am and Pu solubility limits in these systems derived. Thermodynamic constants and model parameter derived in this work are implemented in the Thermodynamic Reference Database THEREDA owned by BfS. According to the quality assurance approach in THEREDA, is was necessary to publish parts of this work in peer-reviewed scientific journals. The publications are focused on solubility experiments, spectroscopy of aquatic and solid species and thermodynamic data. (Neck et al., Pure Appl. Chem., Vol. 81, (2009), pp. 1555-1568., Altmaier et al., Radiochimica Acta, 97, (2009), pp. 187-192., Altmaier et al., Actinide Research Quarterly, No 2., (2011), pp. 29-32.).

  10. Solubility limited radionuclide transport through geologic media

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  11. Solubility limits of importance to leaching

    Ogard, A.; Bentley, G.; Bryant, E.; Duffy, C.; Grisham, J.; Norris, E.; Orth, C.; Thomas, K.

    1981-01-01

    The solubilities of some radionuclides, especially rare earths and actinides, may be an important and controlling factor in leaching of waste forms. These solubilities should be measured accurately as a function of pH and not as a part of a multicomponent system. Individual solubilities should be measured as a function of temperature to determine if a kinetic effect is being observed in the data. A negative temperature coefficient of solubility for actinides and rare earths in water would have important consequences for nuclear reactor safety and for the management of nuclear wastes

  12. Equation for calculation of nitrogen solubility in iron alloys

    Pomarin, Yu.M.; Grigorenko, G.M.

    1989-01-01

    Equation for calculating nitrogen solubility in multicomponent iron melts in a wide range of partial pressures (1-1600 kPa), of doping component concentrations and temperatures (1773-2373 K) is proposed. Comparative analysis of experimental and calculated values of nitrogen solubility has demonstrated a principle possibility of applying the equation proposed for evaluating absorption ability to nitrogen of industrial nitrogen containing steels and ferroalloys subjected to melting or remelting in plasma or other melting devices

  13. Diagnosing solubility limitations – the example of hydrate formation

    Joerg Berghausen

    2014-07-01

    Full Text Available Solubility is regarded as one of the key challenges in many drug discovery projects. Thus, it’s essential to support the lead finding and optimization efforts by appropriate solubility data. In silico solubility prediction remains challenging and therefore a screening assay is used as a first filter, followed by selected follow-up assays to reveal what causes the low solubility of a specific compound or chemotype. Results from diagnosing the underlying reason for solubility limitation are discussed. As lipophilicity and crystal lattice forces are regarded as main contributors to limiting solubility, changes in solid state are important to be recognized. Solubility limitation by various factors will be presented and the impact of the solid-state is exemplified by compounds that are able to form hydrates.

  14. Review on theoretical calculation of the magnetite solubility

    Kim, Myongjin; Kim, Hongpyo

    2013-01-01

    FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study

  15. Solubility-limited concentrations and aqueous speciation fo U, Pu, Np, Am and Tc: Comparison between results of Bruno and Sellin (1992) and calculations using GEMBOCHS (version R16)

    Bruton, C.J.

    1995-05-01

    Aqueous speciation and solubility-limited concentrations of U, Pu, Np, Am and Tc were calculated with EQ3/6 and version comR16 of the GEMBOCHS data base for comparison to similar calculations made by Bruno and Sellin (1992) for the SKB 91 exercise. Bruno and Sellin utilized data from the older 0288 version of the EQ3/6 data base but substituted their own data sets for U and Pu. Equilibria were computed in representative fresh and saline Finnsjoen-waters under oxidizing and reducing conditions. The comparisons showed that slight discrepancies exist for U because Bruno and Sellin used thermodynamic data from sources that pre-date the NEA data base. This NEA data base is incorporated into GEMBOCHS. Discrepancy also exists for Pu under reducing conditions because of the choice of thermodynamic data for solid Pu(OH) 4 . GEMBOCHS predicts Pu concentrations in solution that are about 1 to 2 orders of magnitude greater than Bruno and Sellin's values. Np concentration in the oxidizing saline water computed with GEMBOCHS is 20 times higher than Bruno and Sellin's value. Under reducing conditions, however, GEMBOCHS predicts an order of magnitude less Np in solution. GEMBOCHS computes Am concentrations in solution about 2--3-times larger than those of Bruno and Sellin. Bruno and Sellin's data base lacks the aqueous species Am(CO 3 ) 2 - although this species occurs only sparingly (< 10 mol%) in the fresh waters. Overall Tc data bases differ significantly because more recent critical compilations of Tc data have been incorporated into GEMBOCHS since Bruno and Sellin's 0288 version. Nonetheless, results for Tc are broadly similar, although GEMBOCHS predicts Tc concentrations about 1.7 times higher than Bruno and Sellin's values for the reducing waters

  16. Calculation of solubility of salts in binary aqueous solutions

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  17. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    Ivanov, A. S.; Rusinkevich, A. A.

    2014-12-01

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code. This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.

  18. Detection of colloidal silver chloride near solubility limit

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  19. Ensuring the validity of calculated subcritical limits

    Clark, H.K.

    1977-01-01

    The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionally subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin

  20. Solubility of unirradiated UO2 fuel in aqueous solutions. Comparison between experimental and calculated (EQ3/6) data

    Ollila, K.

    1995-11-01

    The solubility behaviour of unirradiated UO 2 pellets was studied under oxic (air-saturated) and anoxic (N 2 ) conditions in deionized water, in sodium bicarbonate solutions with varying bicarbonate content (60 - 600 ppm), in Allard groundwater simulating granitic fresh groundwater conditions, and in bentonite water simulating the effects of bentonite on granitic fresh groundwater (25 deg C). The release of uranium was measured during static batch dissolution experiments of long duration (2-6 years). A comparison was made with the theoretical solubility data calculated with the geochemical code EQ3/6 in order to evaluate solubility (steady state) limiting factors. (orig.) (26 refs., 32 figs., 13 tabs.)

  1. Matrix model calculations beyond the spherical limit

    Ambjoern, J.; Chekhov, L.; Kristjansen, C.F.; Makeenko, Yu.

    1993-01-01

    We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)

  2. Simple Functions Spreadsheet tool presentation; for determination of solubility limits of some radionuclides

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara (Amphos 21, Barcelona (Spain))

    2010-09-15

    This document is a guide for users of the Simple Functions Spreadsheet tool. The Simple Functions Spreadsheet tool has been developed by Amphos 21 to determine the solubility limits of some radionuclides and it has been especially designed for Performance Assessment exercises. The development of this tool has been promoted by the necessity expressed by SKB of having a confident and easy-to-handle tool to calculate solubility limits in an agile and relatively fast manner. Its development started in 2005 and since then, it has been improved until the current version. This document describes the accurate and preliminary study following expert criteria that has been used to select the simplified aqueous speciation and solid phase system included in the tool. This report also gives the basic instructions to use this tool and to interpret its results. Finally, this document also reports the different validation tests and sensitivity analyses that have been done during the verification process

  3. Fastlim. A fast LHC limit calculator

    Papucci, Michele; Zeune, Lisa

    2014-02-01

    Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the exclusion p-value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straight-forward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios and non-SUSY models. This paper serves as a self-contained user guide, and indicates the conventions and approximations used.

  4. Influence of substitutional atoms on the solubility limit of carbon in bcc iron

    Saitoh, Hajime; Ushioda, Kohsaku; Yoshinaga, Naoki; Yamada, Wataru

    2011-01-01

    The influence of substitutional atoms (Mn, Cr, Si, P, and Al) on the solubility limit of C in body-centered cubic iron in equilibrium with cementite was investigated in low-carbon steels at a temperature of 700 o C. The C solubility limit was determined from internal friction measurements combined with infrared analysis of C using a high-frequency combustion technique. Experiments clarified that Mn, Cr and Al hardly change the C solubility limit, whereas P and Si increase it.

  5. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    Zhou Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  6. KRISTALLIN-I: estimates of solubility limits for safety relevant radionuclides

    Berner, U.

    1995-04-01

    The safety concept for the Swiss high level radioactive waste repository is based on a multiple barrier system. Within the concept of the safety analysis KRISTALLIN-I, the waste glass starts corroding after failure of the massive steel canister and nuclides are released to the bentonite backfill. This release is limited by restricted solubility of solid phases. The present work quantifies the maximum expected concentrations of the elements Th, Pa, U, Np, Pu, Am, Cm, Tc, Ni, Pd, Se, Ra, Zr, Nb, Sn, Pb, Sb, Bi and Sm within the reference bentonite porewater with pH = 9, Eh = -400 mV and I = 0.08 M at 50 o C. In a first step, maximum expected concentrations were calculated with a geochemical speciation code (MINEQL) based on a documented thermodynamic database. In a second step, the values obtained in this way were carefully reviewed and modified, based on extended geochemical considerations and system-dependent parameters. Thereby, the relevance of potentially limiting solids, chemical analogies, absolute and relative inventories and recent experimental findings from laboratory and natural systems were particularly considered. The expected groundwater composition in the crystalline host rock (modified by the barrier material bentonite) covers a rather narrow pH range from 8.5 to 9. Within this narrow pH range, solubility limits may be termed as pH independent since computable pH effects are never significant compared to the general uncertainty of the solubility limits. The chemical model defining the reference groundwater predicts a system-wide Eh ranging from -400 mV up to +100 mV. A slightly oxidising near-field will stabilize the generally more soluble higher oxidation states of redox sensitive radionuclides. Based on the available thermodynamic data the elements U, Tc, Se and Pa are predicted not to be solubility limited at +75 mV. Therefore, a more detailed investigation of the redox behaviour of critical elements and, much more importantly, a very careful

  7. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  8. The calculated solubilities of hematite, magnetite and lepidocrocite in steam generator feedtrains

    Jobe, D.

    1997-05-01

    The solubility of three iron oxides [hematite (α-Fe 2 O 3 (s)), magnetite (Fe 3 O 4 (s)) and lepidocrocite (γ-FeOOH(s))] under representative steam generator feedtrain conditions were calculated using a thermodynamic database for these oxides and the associated aqueous species. Using this database, we calculated the solubility of iron for both Fe 3 O 4 (s) in equilibrium with other iron oxides and for the individual oxides in the presence of various oxygen partial pressures. The results indicate that the solubility of iron is strongly dependent on redox conditions, represented either by dissolved H 2 or O 2 concentration, or by the presence of other iron oxides (stable or metastable). The solubility behaviour of these oxides can be explained by changes in the aqueous-phase speciation of iron with temperature and pH. Similar calculations for the individual oxides in the presence Of O 2 (g) are also presented and were used to construct temperature-dependent phase diagrams for these oxides in equilibrium (including metastable conditions) with 1 ppb (ppb - μg·kg -1 ) of soluble iron. Calculations were also performed for feedtrain solutions containing 5 ppb of dissolved oxygen and pH buffered using mixtures of amines. From these calculations it was concluded that, relative to the oxidation potential and temperature of the feedtrain solution, changing the pH-buffer has only a minor effect on iron solubility. The effect of the variation in iron solubility along the feedtrain with solution pH, temperature and redox potential on corrosion-product transport to the boiler is also discussed. (author)

  9. Intercrystalline internal adsorption in systems with limiting solubility of components

    Krysova, S.K.; Stepanova, V.A.; Mozgovoj, M.V.

    1979-01-01

    The decrease of the excessive energy of the intercrystalline boundary of ion by additions of transitional elements having unlimited solubility in iron has been studied. The data obtained agree with the results of an earlier work based on materials of a less higher initial purity. For the systems studied (Fe-V, Fe-Cr, Fe-Mn, Fe-Ni) the degree of the intercrystalline interval adsorption is independent of either the annealing temperature or the cooling method. This corresponds to the notion of the relationship between the intercrystalline internal adsorption and the cubic solubility of the addition in a given solvent. For pure ion, a weak temperature dependence of the excessive energy of the intercrystalline boundries was found in the lower section of the examined temperature range. The constants of cumulative recrystallization of the alloys studied in α-phase show a stepwise dependence upon the atomic number of the solute component, what indicates the relationship between the cumulative recrystallization and the intercrystalline internal adsorption. A monotonous decrease of the constant of cumulative recrystallization is observed for the same alloys in α-phase, on both sides of iron

  10. Limited solubility of iron in the Sun's interior

    Pollock, E.L.; Alder, B.J.

    1978-01-01

    Stripped iron nuclei in a hydrogen plasma under central solar conditions, according to the classical Debye-Huckel model, would undergo phase separation for concentrations well below the cosmic abundance value. The higher concentration corrections, needed to characterise the iron-rich phase, lead to enhanced solubility for a simplified model where the electrons form a uniform background. Support for an iron-rich phase coalescing in the solar interior requires more accurate treatment of bound and partially bound electrons in such a mixture. The results of the Debye-Huckel model where the electrons are treated discretely and as a continuum, are reported here and support the possibility of phase separation. The physical cause of that phase separation is simply that the potential energy is lower in the separated phase than in the mixture because the local charge neutralisation is much better satisfied in the two separated phases. (author)

  11. Understanding the behaviour of the actinides under disposal conditions: A comparison between calculated and experimental solubilities

    Pryke, D.C.; Rees, J.H.

    1986-01-01

    The solubilities of plutonium, americium and neptunium measured in simulated near-field waters have compared with those predicted using the simple thermodynamic model NearSol. The dependence of solubility on pH and redox potential is examined in an effort to understand the behaviour of actinides in disposal. The agreement was variable. Differences could be appreciable, in particular for neptunium under oxidizing conditions; conversly, the model successfully predicted the behaviour of neptunium under reducing conditions. Such comparisons pinpointed deficiences in the thermodynamic data base and showed the sensitivity of solubilities to certain experimental parameters such as Eh and the concentration of carbonate ions. A comparison between NearSol and the reaction pathway program PHREEQE gave generally good agreement. NearSol was quicker and easier to use, requiring only limited preselection of participating species; however it did not account for the behaviour of bulk inactive species in solution; like feature will be built into an updated version. (orig.)

  12. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E.

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs

  13. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E. [QuantiSci, Barcelona (Spain)

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs.

  14. The modeler's influence on calculated solubilities for performance assessments at the Aespoe hard-rock laboratory

    Emren, A.T.; Arthur, R.; Glynn, P.D.; McMurry, J.

    1999-01-01

    Four researchers were asked to provide independent modeled estimates of the solubility of a radionuclide solid phase, specifically Pu(OH) 4 , under five specified sets of conditions. The objectives of the study were to assess the variability in the results obtained and to determine the primary causes for this variability. In the exercise, modelers were supplied with the composition, pH and redox properties of the water and with a description of the mineralogy of the surrounding fracture system. A standard thermodynamic data base was provided to all modelers. Each modeler was encouraged to use other data bases in addition to the standard data base and to try different approaches to solving the problem. In all, about fifty approaches were used, some of which included a large number of solubility calculations. For each of the five test cases, the calculated solubilities from different approaches covered several orders of magnitude. The variability resulting from the use of different thermodynamic data bases was in most cases, far smaller than that resulting from the use of different approaches to solving the problem

  15. Detection limit calculations for different total reflection techniques

    Sanchez, H.J.

    2000-01-01

    In this work, theoretical calculations of detection limits for different total-reflection techniques are presented.. Calculations include grazing incidence (TXRF) and gracing exit (GEXRF) conditions. These calculations are compared with detection limits obtained for conventional x-ray fluorescence (XRF). In order to compute detection limits the Shiraiwa and Fujino's model to calculate x-ray fluorescence intensities was used. This model made certain assumptions and approximations to achieve the calculations, specially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows to analyze the different sources of background and the influence of the excitation geometry, which contribute to the understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing exit is carried out. Here a good agreement with the theoretical predictions of the reversibility principle is found, showing that detection limits are similar for both techniques. (author)

  16. Solid dispersions in oncology: a solution to solubility-limited oral drug absorption

    Sawicki, Emilia

    2017-01-01

    This thesis discusses the formulation method solid dispersion and how it works to resolve solubility-limited absorption of orally dosed anticancer drugs. Dissolution in water is essential for drug absorption because only dissolved drug molecules are absorbed. The problem is that half of the arsenal

  17. Evaluation of DOE radionuclide solubility data and selected retardation parameters: description of calculational and confirmatory experimental activities

    Kelmers, A.D.; Clark, R.J.; Cutshall, N.H.; Johnson, J.S.; Kessler, J.H.

    1983-01-01

    An experimentally oriented program has been initiated to support the NRC analysis and licensing activities related to high-level nuclear waste repositories. The program will allow the NRC to independently confirm key geochemical values used in the site performance assessments submitted by the DOE candidate repository site projects. Key radionuclide retardation factor values, particularly radionuclide solubility and sorption values under site specific geochemical conditions, are being confirmed. The initial efforts are being directed toward basalt rock/groundwater systems relevant to the BWIP candidate site in the Pasco Basin. Future work will consider tuff (NNWSI candidate site in Yucca Mountain) and salt (unspecified ONWI bedded or domal salt sites) rock/groundwater systems. Initial experimental results with technetium have confirmed the BWIP values for basalt/groundwater systems under oxic redox conditions: high solubility and no sorption. Under reducing redox conditions, however, the experimental work did not confirm the proposed technetium values recommended by BWIP. In the presence of hydrazine to establish reducing conditions, an apparent solubility limit for technetium of about 5E-7 mol/L was encountered; BWIP recommended calculated values of 1E-12 or greater than or equal to 1E-14 mol/L. Experimental evidence concerning sorption of reduced technetium species is incomplete at this time. Equilibrium speciation and saturation indices were calculated for well water data sets from BWIP using the computer code PHREEQUE. Oversaturation was indicated for hematite and quartz in all data sets. Near surface samples were undersaturated with respect to calcite, but most deep samples were oversaturated with respect to calcite and other carbonate minerals

  18. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  19. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity

    Shen, Chao; Xie, Jianxin; Zhang, Mei; Andrei, Petru; Hendrickson, Mary; Plichta, Edward J.; Zheng, Jim P.

    2017-01-01

    Highlights: •At normal rate, LiPS soluble reaction pathway dominates the discharge process. •Reduction of sulfur to Li 2 S 8 is not inhibited by high Li 2 S 8 concentration. •Subsequent LiPS electrochemical reactions are restricted by LiPS solubility. •Specific energy of the Li-S cell was reevaluated considering LiPS solubility. -- Abstract: Although the cathode of lithium-sulfur (Li-S) batteries has a theoretical specific capacity of 1,672 mAh g −1 , its practical capacity is much smaller than this value and depends on the electrolyte/sulfur ratio. The operation of Li-S batteries under lean electrolyte conditions can be challenging, especially in the case when the solubility of lithium polysulfide (LiPS) sets an upper bound for polysulfide dissolution. In this work, specially designed cathode structures and electrolyte configurations were built in order to analyze the effects of LiPS solubility on cell capacity. Two reaction pathways involving the reduction of LiPS in liquid and solid phase are proposed and analyzed. We show that at discharge rates above 0.4 mA cm −2 the reaction in the liquid phase dominates the discharge process. Once the electrolyte becomes saturated, the solid phase LiPS cannot be further reduced and does not contribute to the capacity of the cells. This phenomenon prevents Li-S batteries from achieving their high theoretical specific capacity. Finally, the specific energy of the Li-S cell is reevaluated and discussed considering the limitation imposed by LiPS solubility.

  20. Determination of the solubility limiting solid of the selenium in the presence of iron under anoxic conditions

    Iida, Y.; Yamaguchi, T.; Tanaka, T.; Kitamura, A.; Nakayama, S.

    2009-01-01

    Dissolution experiments of selenium were performed from both under saturation and over saturation directions to determine the solubility limiting solid of selenium under the conditions which thermodynamically prefer the formation of ferroselite (FeSe 2 ). X-ray diffractometry (XRD) showed that FeSe 2 was formed in the over-saturation experiments. However, the ion activity products for the reaction of 0.5 FeSe 2 + H + + e - 0.5 Fe 2+ + HSe - , aFe 2+0.5 aHSe - a H+ -1 a e- -1 , obtained from both under saturation and over saturation directions were 3 to 4 orders of magnitude higher than the equilibrium constants calculated from existing thermodynamic data. The dependencies of the selenium concentration on pH, Eh and the iron concentration were better interpreted as a dissolution reaction of selenium solid (Se(s)) than the iron-selenium compounds. The equilibrium constant of: Se(s) + H + + 2e - = HSe - was determined to be logK 0 -7.46±0.11. This value agrees with the value of logK 0 = -7.62±0.06 calculated from existing thermodynamic data of crystalline selenium within errors. Because crystalline selenium was not identified in the solid phases by XRD, the solubility limiting solid would be amorphous or minor amount of crystalline selenium, even if the iron-selenium compound was formed. (authors)

  1. Solubility limit and precipitation kinetics of iron-phosphide in ferritic iron

    Suzuki, Shigeru

    1992-01-01

    The solubility limit of iron-phosphide in ferritic iron was examined with electrical resistivity measurements by using the relationship between resistivity and the amount of dissolved phosphorous. The temperature dependence of the solubility obtained was in good agreement with previous results. The kinetics of precipitation of the phosphide from a supersaturated Fe-3.75 at.% P alloy was also investigated with changes of the resistivity by isochronal and isothermal annealing. The activation energy for the precipitation process of the phosphide was about 2.6 eV. Diffusivities of phosphorus were estimated from the annealing behaviour and the morphology of the precipitates, which were comparable to those obtained with the tracer method previously. This suggests that the precipitation process of phosphide is rate controlled by diffusion of phosphorus in ferritic iron-phosphorus alloys. (orig.) [de

  2. Application of nonparametric statistic method for DNBR limit calculation

    Dong Bo; Kuang Bo; Zhu Xuenong

    2013-01-01

    Background: Nonparametric statistical method is a kind of statistical inference method not depending on a certain distribution; it calculates the tolerance limits under certain probability level and confidence through sampling methods. The DNBR margin is one important parameter of NPP design, which presents the safety level of NPP. Purpose and Methods: This paper uses nonparametric statistical method basing on Wilks formula and VIPER-01 subchannel analysis code to calculate the DNBR design limits (DL) of 300 MW NPP (Nuclear Power Plant) during the complete loss of flow accident, simultaneously compared with the DL of DNBR through means of ITDP to get certain DNBR margin. Results: The results indicate that this method can gain 2.96% DNBR margin more than that obtained by ITDP methodology. Conclusions: Because of the reduction of the conservation during analysis process, the nonparametric statistical method can provide greater DNBR margin and the increase of DNBR margin is benefited for the upgrading of core refuel scheme. (authors)

  3. Solubility of hot fuel particles from Chernobyl--influencing parameters for individual radiation dose calculations.

    Garger, Evgenii K; Meisenberg, Oliver; Odintsov, Oleksiy; Shynkarenko, Viktor; Tschiersch, Jochen

    2013-10-15

    Nuclear fuel particles of Chernobyl origin are carriers of increased radioactivity (hot particles) and are still present in the atmosphere of the Chernobyl exclusion zone. Workers in the zone may inhale these particles, which makes assessment necessary. The residence time in the lungs and the transfer in the blood of the inhaled radionuclides are crucial for inhalation dose assessment. Therefore, the dissolution of several kinds of nuclear fuel particles from air filters sampled in the Chernobyl exclusion zone was studied. For this purpose filter fragments with hot particles were submersed in simulated lung fluids (SLFs). The activities of the radionuclides (137)Cs, (90)Sr, (239+240)Pu and (241)Am were measured in the SLF and in the residuum of the fragments by radiometric methods after chemical treatment. Soluble fractions as well as dissolution rates of the nuclides were determined. The influence of the genesis of the hot particles, represented by the (137)Cs/(239+240)Pu ratio, on the availability of (137)Cs was demonstrated, whereas the dissolution of (90)Sr, (239+240)Pu and (241)Am proved to be independent of genesis. No difference in the dissolution of (137)Cs and (239+240)Pu was observed for the two applied types of SLF. Increased solubility was found for smaller hot particles. A two-component exponential model was used to describe the dissolution of the nuclides as a function of time. The results were applied for determining individual inhalation dose coefficients for the workers at the Chernobyl construction site. Greater dose coefficients for the respiratory tract and smaller coefficients for the other organs were calculated (compared to ICRP default values). The effective doses were in general lower for the considered radionuclides, for (241)Am even by one order of magnitude. © 2013 Elsevier B.V. All rights reserved.

  4. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  5. A solubility-limited-source-term model for the geological disposal of cemented intermediate-level waste

    Robinson, P.C.; Hodgkinson, D.P.; Tasker, P.W.; Lever, D.A.; Windsor, M.E.; Grime, P.W.; Herbert, A.W.

    1988-01-01

    This paper presents and illustrates the use of a source-team model for an intermediate-level radioactive-waste repository. The model deals with the behaviour of long-lived nuclides after the initial containment period. The major processes occurring in the near-field are included, namely sorption, elemental solubility limits, chain decay and transport due to groundwater flow. The model is applied to a realistic example of ILW disposal. From this it is clear that some nuclides are present in sufficient quantities to reach their solubility limit even when the assumed sorption coefficients are large. For these nuclides the precise sorption coefficient is unimportant. It is also clear that some daughter products, in particular Pb-210, become significant. The toxicity of the repository porewater is calculated and it is shown that, although this toxicity is high compared to levels acceptable in drinking water, it is much lower than the toxicity of the waste itself. However, the near-field chemical environment is only one of a number of containment barriers. In addition, it has been shown that the rate at which radionuclides enter the rock surrounding the repository is very low. (author)

  6. Comparison of the thermodynamic databases for radioactive elements in application to the calculation of the solubilities in the porewater

    Doi, Reisuke; Shibata, Masahiro

    2006-07-01

    To calculate the solubility of radioactive elements which is the important parameter for performance assessment of geological disposal system, the thermodynamic database must be reliable and based on the latest information. In this research, it has been compared in the calculation of the solubilities of the representative radioactive elements in the porewater compositions of the compacted bentonite which were set up in the second progress report (H12) that the thermodynamic database of JNC, OECD/NEA, Nagra/PSI. And the causes of the differences among the results from application of different databases were investigated and discussed. (author)

  7. The solubility limit of SiO2 in α-alumina at 1600 °C

    Moshe, Ruth; Berner, Alex; Kaplan, Wayne D.

    2014-01-01

    The solubility limit of Si in α-alumina was measured using wavelength-dispersive spectroscopy on a scanning electron microscope. Samples were doped with Si such that the equilibrated material would contain two phases: mullite (3Al 2 O 3 ·2SiO 2 ) and alumina saturated with Si. Thus the amount of Si measured in the alumina grains represents the solubility limit. Measurements were conducted on water-quenched and furnace-cooled samples. For the quenched samples the Si solubility limit in Al 2 O 3 was found to be 188 ± 7 ppm at 1600 °C

  8. Correlation of Solubility with the Metastable Limit of Nucleation Using Gauge-Cell Monte Carlo Simulations.

    Clark, Michael D; Morris, Kenneth R; Tomassone, Maria Silvina

    2017-09-12

    We present a novel simulation-based investigation of the nucleation of nanodroplets from solution and from vapor. Nucleation is difficult to measure or model accurately, and predicting when nucleation should occur remains an open problem. Of specific interest is the "metastable limit", the observed concentration at which nucleation occurs spontaneously, which cannot currently be estimated a priori. To investigate the nucleation process, we employ gauge-cell Monte Carlo simulations to target spontaneous nucleation and measure thermodynamic properties of the system at nucleation. Our results reveal a widespread correlation over 5 orders of magnitude of solubilities, in which the metastable limit depends exclusively on solubility and the number density of generated nuclei. This three-way correlation is independent of other parameters, including intermolecular interactions, temperature, molecular structure, system composition, and the structure of the formed nuclei. Our results have great potential to further the prediction of nucleation events using easily measurable solute properties alone and to open new doors for further investigation.

  9. Volume calculation from limited number of MR imaging sections

    Wang, J.; Mezrich, R.; Sebok, D.

    1988-01-01

    Magnetic resonance imaging is an accurate and noninvasive way to obtain cardiac geometrical information. For the quantification of left ventricular dynamic parameters, sections are taken along the long axis of the ventricle. Due to the limited number of sections that can be obtained in a reasonable amount of scanning time, the estimation of longitudinal dimension is usually the cause of error in volume calculation. The starting and ending sections are best estimated by guidance of the short axis cuts. This can only guarantee first-order accuracy. Simpson's rule for summation of areas to calculate volume, which is the commonly used method, assumes an accurate knowledge of the starting and ending points of integration. When this assumption is not perfectly met, Simpson's rule tends to unsystemically over- or underestimate the true volume. Due to this concern, some researchers adopt the images from the short axis cut to aid the volume calculation. This can improve the accuracy, but makes the already long scanning time longer. The authors have derived a method of extrapolation and intrapolation based on no more information than usually available to correct the volume over- or underestimated by the Simpson's rule

  10. Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.

    Alantary, Doaa; Yalkowsky, Samuel

    2016-09-01

    A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Calculating effective diffusivities in the limit of vanishing molecular diffusion

    Pavliotis, G.A.; Stuart, A.M.; Zygalakis, K.C.

    2009-01-01

    In this paper we study the problem of the numerical calculation (by Monte Carlo methods) of the effective diffusivity for a particle moving in a periodic divergent-free velocity field, in the limit of vanishing molecular diffusion. In this limit traditional numerical methods typically fail, since they do not represent accurately the geometry of the underlying deterministic dynamics. We propose a stochastic splitting method that takes into account the volume-preserving property of the equations of motion in the absence of noise, and when inertial effects can be neglected. An extension of the method is then proposed for the cases where the noise has a non-trivial time-correlation structure and when inertial effects cannot be neglected. The method of modified equations is used to explain failings of Euler-based methods. The new stochastic geometric integrators are shown to outperform standard Euler-based integrators. Various asymptotic limits of physical interest are investigated by means of numerical experiments, using the new integrators

  12. A review of pH calculation and corrosion product solubilities under PWR primary coolant chemistry conditions

    Thornton, E.W.; Polley, M.V.

    1986-12-01

    The calculation of high temperature pH in boric acid solutions is discussed and various relationships for the ionisation constant Ksub(w) or ion product Qsub(w) for water are reviewed. It is shown that the boric acid equilibria of Mesmer, Baes and Sweeton remain virtually unaltered when Marshall and Franck's relationship for Ksub(w) is substituted in a re-analysis of Mesmer, Baes and Sweeton's original experimental data. Magnetite solubility data and Westinghouse's studies of iron, nickel and cobalt solubility from mixed ferrites are collated and consideration is given to experimental difficulties which could have contributed to the variability in the data. Thermodynamic model fits have been computerised and used to compare different studies and to determine pH values at which the temperature dependence of solubility is predicted to be zero. Consideration is given to the differing dependences of solubility on dissolved hydrogen concentration in the three model fits. Two models for predicting iron and nickel solubility with respect to non-stoichiometric nickel ferrites are briefly discussed showing that only one of these is likely to be credible. (author)

  13. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate at concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO 3 and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO 3 be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears to be the largest portion

  14. Colloid-facilitated effects on migration of radionuclides in fractured rock with a kinetic solubility-limited dissolution model

    Jen Chunping; Tien Nengchuan

    2010-01-01

    Nuclides can move with groundwater either as solutes or colloids, where the latter mechanism generally results in much shorter traveling time as the nuclides interact strongly with solid phases, such as actinides. In the performance assessment, it is therefore essential to assess the relative importance of these two transport mechanisms for different nuclides. The relative importance of colloids depends on the nature and concentration of the colloids in groundwater. Plutonium (Pu), neptunium (Np), uranium (U) and americium (Am) are four nuclides of concern for the long-term emplacement of nuclear wastes at potential repository sites. These four actinides have a high potential for migrating if attached to iron oxide, clay or silica colloids in the groundwater.Strong sorption of the actinides by colloids in the groundwater may facilitate the transport of these nuclides along potential flow paths. The solubility-limited dissolution model can be used to assess the safety of the release of nuclear waste in geological disposal sites. Usually, it has been assumed that the solubility of the waste form is constant. If a nuclide reaches its solubility limit at an inner location near the waste form, it is unlikely that the same nuclide will reach its solubility limit at an outer location unless this nuclide has a parent nuclide. It is unlikely that the daughter nuclides will exceed their solubility limit due to decay of their parent nuclide. The present study investigates the effect of colloids on the transport of solubility-limited nuclides under the kinetic solubility-limited dissolution (KSLD) boundary condition in fractured media. The release rate of the nuclides is proportional to the difference between the saturation concentration and the inlet aqueous concentration of the nuclides. The presence of colloids decreases the aqueous concentration of nuclides and, thus, increases the release flux of nuclides from the waste form. (authors)

  15. Possibilities of application of perfect solution model to calculation of equilibrium composition of complex carbonitrides and their solubility in steels

    Gol'dshtejn, M.I.; Popov, V.V.; Cheremnykh, V.G.

    1980-01-01

    Using the Fe-Nb-V-C-N and Fe-Ti-V-C-N systems' low carbon steels, the earlier suggested model of perfect solid solutions has been experimentally researched. Also studied has been the feasibility to calculate the composition of carbonitrides in steels by the derived equations, that comprise, as parameters, products of respective compounds' solubility and coefficients of components interaction in iron-based solid solutions. A conclusion is drawn that perfect solutions models may be used adequately for complex carbonitrides like Nbsub(p)Vsub(1-p)Csub(q)Nsub(1-q) and Tisub(p)Vsub(1-p)Csub(q)Nsub(1-q) during the calculations of their equilibrium composition and solubility in steels

  16. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  17. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  18. Poly(glycolide multi-arm star polymers: Improved solubility via limited arm length

    Florian K. Wolf

    2010-06-01

    Full Text Available Due to the low solubility of poly(glycolic acid (PGA, its use is generally limited to the synthesis of random copolyesters with other hydroxy acids, such as lactic acid, or to applications that permit direct processing from the polymer melt. Insolubility is generally observed for PGA when the degree of polymerization exceeds 20. Here we present a strategy that allows the preparation of PGA-based multi-arm structures which significantly exceed the molecular weight of processable oligomeric linear PGA (<1000 g/mol. This was achieved by the use of a multifunctional hyperbranched polyglycerol (PG macroinitiator and the tin(II-2-ethylhexanoate catalyzed ring-opening polymerization of glycolide in the melt. With this strategy it is possible to combine high molecular weight with good molecular weight control (up to 16,000 g/mol, PDI = 1.4–1.7, resulting in PGA multi-arm star block copolymers containing more than 90 wt % GA. The successful linkage of PGA arms and PG core via this core first/grafting from strategy was confirmed by detailed NMR and SEC characterization. Various PG/glycolide ratios were employed to vary the length of the PGA arms. Besides fluorinated solvents, the materials were soluble in DMF and DMSO up to an average arm length of 12 glycolic acid units. Reduction in the Tg and the melting temperature compared to the homopolymer PGA should lead to simplified processing conditions. The findings contribute to broadening the range of biomedical applications of PGA.

  19. An Assessment of the Sulfate Solubility Limit for the FRIT 418 - Sludge Batch 2/3 System

    PEELER, D.K.

    2004-01-01

    The objective of this report is to establish a ''single point'' sulfate solubility limit or constraint for the Frit 418 - Sludge Batch 2/3 (SB2/3) system. Based on the results of this study, it is recommended that the glass limit in the Product Composition Control System (PCCS) for the Frit 418 - SB2/3 system be set at 0.60 wt%. The new limit has been set based solely on sealed crucible scale data and does not take credit or account for potential volatilization that may occur in the Defense Waste Processing Facility (DWPF) melter. Although the limit is established based on sealed crucible scale tests, supplementary testing using the Slurry-Fed Melt Rate Furnace (SMRF) provides a measure of confidence that applying the 0.6 wt% limit in PCCS will prevent the formation of a salt layer in the melter. The critical data point that was used to define the solubility limit for this system was from a ''spiked'' 30% waste loading (WL) glass targeting 0.65 wt%. The measured content in this glass was 0.62 wt%. Applying the Savannah River Technology Center - Mobile Laboratory (SRTCML) inductively coupled plasma (ICP) atomic emission spectroscopy (AES) uncertainties to establish a solubility limit for the Frit 418 - SB2/3 system of 0.60 wt% (in glass) provides a ''single point'' limit that covers the anticipated WL interval of interest. It is noted that there are glasses above the 0.60 wt% limit that were homogeneous, thus reinforcing the theory of a compositional effect on solubility within this specific system. In general, higher solubilities were observed at higher targeted waste loadings

  20. Assessment of the solubility of thorium and uranium from black sand of Camargue in both simulated lung and gut fluids for dose calculation after internal exposure

    Frelon, S.; Chazel, V.; Tourlonias, E.; Paquet, F. [IRSN/ DRPH/ SRBE, LRTOX, BP 166, 26702 Pierrelatte Cedex (France); Blanchardon, E. [IRSN/ DRPH/ SDI, LEDI, BP 17, 92262 Fontenay Aux Roses Cedex (France); Bouisset, P. [IRSN/ DEI/ STEME, LMRE, Bois des rames, 91400 Orsay (France); Pourcelot, L. [IRSN/ DEI/ SESURE, LERCM, BP3, 13 115 St Paul lez Durance Cedex (France)

    2006-07-01

    In the south of France, some beaches of Camargue present a high rate of natural radioactivity due to thorium and uranium from zircon and apatite heavy minerals present in the so-called black sand. These radionuclides may lead to internal exposure consecutive to inhalation or ingestion of this sand. The accurate assessment of radiological risk after internal exposure of public frequenting these beaches requires some information on the human bioavailability of U and Th from the sand. Both routes of intake were studied in this work and the consecutive dose delivered was calculated under two different scenarios for each type of exposure. As far as inhalation is concerned, the first important conclusion is that the inhalable fraction, i.e. particles with aerodynamic diameters below 50 {mu}m, was tiny (0.002%) in this sample of sand. Moreover in vitro assays of solubility were performed for this fraction and showed that U and Th as well as their progeny presented moderate solubility. Then effective doses under several scenarios were calculated and seem to demonstrate a very poor risk of exposure after inhalation. Indeed, a dose of 1 mSv would be received by a babies after inhalation of about 40 Kg of sand, that is impossible, whereas a more realistic scenario of chronic exposure only reached 31 {mu} Sv. In case of ingestion, the solubility of Th and U in the gastrointestinal fluids was found to be very low with a maximum solubility of 0.5% of the initial mass of radioelement in the sample of sand. Then the worst hypothesis studied yields an effective dose of 0.018 mSv./(g-swallowed sand) that is roughly 50 times less than the legal annual dose limit for members of the public. as a conclusion, the possible internal dose after exposure by inhalation or ingestion of black sand of Camargue seems to be very low under the conditions of this study. (N.C.)

  1. Assessment of the solubility of thorium and uranium from black sand of Camargue in both simulated lung and gut fluids for dose calculation after internal exposure

    Frelon, S.; Chazel, V.; Tourlonias, E.; Paquet, F.; Blanchardon, E.; Bouisset, P.; Pourcelot, L.

    2006-01-01

    In the south of France, some beaches of Camargue present a high rate of natural radioactivity due to thorium and uranium from zircon and apatite heavy minerals present in the so-called black sand. These radionuclides may lead to internal exposure consecutive to inhalation or ingestion of this sand. The accurate assessment of radiological risk after internal exposure of public frequenting these beaches requires some information on the human bioavailability of U and Th from the sand. Both routes of intake were studied in this work and the consecutive dose delivered was calculated under two different scenarios for each type of exposure. As far as inhalation is concerned, the first important conclusion is that the inhalable fraction, i.e. particles with aerodynamic diameters below 50 μm, was tiny (0.002%) in this sample of sand. Moreover in vitro assays of solubility were performed for this fraction and showed that U and Th as well as their progeny presented moderate solubility. Then effective doses under several scenarios were calculated and seem to demonstrate a very poor risk of exposure after inhalation. Indeed, a dose of 1 mSv would be received by a babies after inhalation of about 40 Kg of sand, that is impossible, whereas a more realistic scenario of chronic exposure only reached 31 μ Sv. In case of ingestion, the solubility of Th and U in the gastrointestinal fluids was found to be very low with a maximum solubility of 0.5% of the initial mass of radioelement in the sample of sand. Then the worst hypothesis studied yields an effective dose of 0.018 mSv./(g-swallowed sand) that is roughly 50 times less than the legal annual dose limit for members of the public. as a conclusion, the possible internal dose after exposure by inhalation or ingestion of black sand of Camargue seems to be very low under the conditions of this study. (N.C.)

  2. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development.

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Polyethylene glycol (PEG)-induced protein precipitation is often used to extrapolate apparent protein solubility at specific formulation compositions. The procedure was used for several fields of application such as protein crystal growth but also protein formulation development. Nevertheless, most studies focused on applicability in protein crystal growth. In contrast, this study focuses on applicability of PEG-induced precipitation during high-concentration protein formulation development. In this study, solubility of three different model proteins was investigated over a broad range of pH. Solubility values predicted by PEG-induced precipitation were compared to real solubility behaviour determined by either turbidity or content measurements. Predicted solubility by PEG-induced precipitation was confirmed for an Fc fusion protein and a monoclonal antibody. In contrast, PEG-induced precipitation failed to predict solubility of a single-domain antibody construct. Applicability of PEG-induced precipitation as indicator of protein solubility during formulation development was found to be not valid for one of three model molecules. Under certain conditions, PEG-induced protein precipitation is not valid for prediction of real protein solubility behaviour. The procedure should be used carefully as tool for formulation development, and the results obtained should be validated by additional investigations. © 2017 Royal Pharmaceutical Society.

  3. A thermodynamic data base for Tc to calculate equilibrium solubilities at temperatures up to 300 deg C

    Puigdomenech, I.; Bruno, J.

    1995-04-01

    Thermodynamic data has been selected for solids and aqueous species of technetium. Equilibrium constants have been calculated in the temperature range 0 to 300 deg C at a pressure of 1 bar for T r Cdeg pm values for mononuclear hydrolysis reactions. The formation constants for chloro complexes of Tc(V) and Tc(IV), whose existence is well established, have been estimated. The majority of entropy and heat capacity values in the data base have also been estimated, and therefore temperature extrapolations are largely based on estimations. The uncertainties derived from these calculations are described. Using the data base developed in this work, technetium solubilities have been calculated as a function of temperature for different chemical conditions. The implications for the mobility of Tc under nuclear repository conditions are discussed. 70 refs

  4. The Kinetics of Fission Products Release from Microfuel Taking into Account the Trapped Fraction and Limited Solubility Effects

    Ivanov, A.S.; Rusinkevich, A.A.

    2014-01-01

    In this paper the effect of the oxygen getter on fission products release from the coated particle was studied by the “FP Kinetics” code. Trapped fraction and limited solubility effects taken into consideration. It was shown that these effects have a significant impact on the concentration profile and integral release of fission products. (author)

  5. Evaluating risk using bounding calculations and limited data; TOPICAL

    COWLEY, W.L.

    1999-01-01

    This paper describes a methodology for estimating the potential risk to workers and the public from igniting organic solvents in any of the 177 underground waste storage tanks at the Hanford Site in southeastern Washington state. The Hanford Site is one of the U.S. Department of Energy's former production facilities for nuclear materials. The tanks contain mixed radioactive wastes. Risk is measured by calculating toxicological and radiological accident consequences and frequencies and comparing the results to established regulatory guidelines. Available sample data is insufficient to adequately characterize the waste and solvent, so a model that maximizes releases from the tanks (bounding case) is used. Maximizing releases (and thus consequences) is a standard technique used in safety analysis to compensate for lack of information. The model predicts bounding values of fire duration, the time at which the fire extinguishes because of lack of oxygen, and a pressure history of a fire in a tank. The model output is used to calculate mass and volume release rates of material from the tanks. The mass and volume release rates permit calculation of radiological and toxicological consequences. The resulting consequence calculations demonstrate that risk from an organic solvent fire in the tanks is within regulatory guidelines

  6. Estimating risk using bounding calculations and limited data

    COWLEY, W.L.

    1999-01-01

    This paper describes a methodology for estimating the potential risk to workers and the public from igniting organic solvents in any of the 177 underground waste storage tanks at the Hanford Site in southeastern Washington state. The Hanford Site is one of the U.S. Department of Energy's former production facilities for nuclear materials. The tanks contain mixed radioactive wastes. Risk is measured by calculating toxicological and radiological accident consequences and frequencies and comparing the results to established regulatory guidelines. Available sample data is insufficient to adequately characterize the waste and solvent, so a model that maximizes releases from the tanks (bounding case) is used. Maximizing releases (and thus consequences) is a standard technique used in safety analysis to compensate for lack of information. The model predicts bounding values of fire duration, the time at which the fire extinguishes because of lack of oxygen, and a pressure history of a fire in a tank. The model output is used to calculate mass and volume release rates of material from the tanks. The mass and volume release rates permit calculation of radiological and toxicological consequences. The resulting consequence calculations demonstrate that risk from an organic solvent fire in the tanks is within regulatory guidelines

  7. Potential for radionuclide immobilization in the EBS/NFE: solubility limiting phases for neptunium, plutonium, and uranium

    Rard, J. A., LLNL

    1997-10-01

    Retardation and dispersion in the far field of radionuclides released from the engineered barrier system/near field environment (EBS/NFE) may not be sufficient to prevent regulatory limits being exceeded at the accessible environment. Hence, a greater emphasis must be placed on retardation and/or immobilization of radionuclides in the EBS/NFE. The present document represents a survey of radionuclide-bearing solid phases that could potentially form in the EBS/NFE and immobilize radionuclides released from the waste package and significantly reduce the source term. A detailed literature search was undertaken for experimental solubilities of the oxides, hydroxides, and various salts of neptunium, plutonium, and uranium in aqueous solutions as functions of pH, temperature, and the concentrations of added electrolytes. Numerous solubility studies and reviews were identified and copies of most of the articles were acquired. However, this project was only two months in duration, and copies of some the identified solubility studies could not be obtained at short notice. The results of this survey are intended to be used to assess whether a more detailed study of identified low- solubility phase(s) is warranted, and not as a data base suitable for predicting radionuclide solubility. The results of this survey may also prove useful in a preliminary evaluation of the efficacy of incorporating chemical additives to the EBS/NFE that will enhance radionuclide immobilization.

  8. Water solubility in monzogranite melts: experimental and calculated water contents at 6 kbar

    García Moreno, Olga; Castro Dorado, Antonio; Corretgé, Luis Guillermo

    2002-01-01

    Several piston-cylinder crystallisation experiments have been performed with a synthetic monzogranitic glass with different initial water contents at 6 kbar. Comparison with calculated water contents shows: 1) some differences of the order of 10% of XH2Q; 2) "non-linear" behaviour in XH2C/T curves; and 3) similar pattern in the XH2JT curves in both measured and calculated data. Resumen Se han realizado varios experimentos de cristalización en aparatos "piston-cylinder" a 6 kbar, u...

  9. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    The tendency of calcium to promote microfiltration (MF) membrane fouling is well documented, but the role of lactose has not been studied. Milk protein concentrate that is 85% protein on a dry basis (MPC85) contains less calcium and lactose than skim milk. Our objectives were to determine the effects of skim milk soluble calcium and lactose concentrations on the limiting fluxes (LF) and serum protein (SP) removal factors of 0.1-µm ceramic graded permeability membranes. The MF was fed with 3 different milks: skim milk, liquid MPC85 that had been standardized to the protein content of skim milk with reverse osmosis water (MPC), and liquid MPC85 that had been standardized to the protein and lactose contents of skim milk with reverse osmosis water and lactose monohydrate (MPC+L). Retentate and permeate were continuously recycled to the feed tank. The LF for each feed was determined by increasing flux once per hour from 55 kg·m(-2)·h(-1) until flux did not increase with increasing transmembrane pressure. Temperature, pressure drop across the membrane length, and protein concentration in the retentate recirculation loop were maintained at 50°C, 220 kPa, and 8.77 ± 0.2%, respectively. Experiments were replicated 3 times and the Proc GLM procedure of SAS was used for statistical analysis. An increase in LF between skim milk (91 kg·m(-2)·h(-1)) and MPC+L (124 kg·m(-2)·h(-1)) was associated with a reduction in soluble calcium. The LF of MPC+L was lower than the LF of MPC (137 kg·m(-2)·h(-1)) due to the higher viscosity contributed by lactose. Permeates produced from the MPC and MPC+L contained more protein than the skim milk permeate due to the transfer of caseins from the micelles into the reduced-calcium sera of the MPC and MPC+L. A SP removal factor was calculated by dividing true protein in the permeate by SP in the permeate portion of the feed to describe the ease of SP passage through the membrane. No differences in SP removal factors were detected among the

  10. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  11. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Jennifer C Irvine

    Full Text Available Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar

  12. Wind power limit calculation basedon frequency deviation using Matlab

    Santos Fuentefria, Ariel; Salgado Duarte, Yorlandis; MejutoFarray, Davis

    2017-01-01

    The utilization of the wind energy for the production of electricity it’s a technology that has promoted itself in the last years, like an alternative before the environmental deterioration and the scarcity of the fossil fuels. When the power generation of wind energy is integrated into the electrical power systems, maybe take place problems in the frequency stability due to, mainly, the stochastic characteristic of the wind and the impossibility of the wind power control on behalf of the dispatchers. In this work, is make an analysis of frequency deviation when the wind power generation rise in an isolated electrical power system. This analysis develops in a computerized frame with the construction of an algorithm using Matlab, which allowed to make several simulations in order to obtain the frequency behavior for different loads and wind power conditions. Besides, it was determined the wind power limit for minimum, medium and maximum load. The results show that the greatest values on wind power are obtained in maximum load condition. However, the minimum load condition limit the introduction of wind power into the system. (author)

  13. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  14. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  15. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  16. A thermodynamic data base for Tc to calculate equilibrium solubilities at temperatures up to 300 deg C

    Puigdomenech, I [Studsvik AB, Nykoeping (Sweden); Bruno, J [Intera Information Technologies SL, Cerdanyola (Spain)

    1995-04-01

    Thermodynamic data has been selected for solids and aqueous species of technetium. Equilibrium constants have been calculated in the temperature range 0 to 300 deg C at a pressure of 1 bar for T<100 deg C and at the steam saturated pressure at higher temperatures. For aqueous species, the revised Helgeson-Kirkham-Flowers model is used for temperature extrapolations. The data base contains a large amount of estimated data, and the methods used for these estimations are described in detail. A new equation is presented that allows the estimation of {Delta}{sub r}Cdeg{sub pm} values for mononuclear hydrolysis reactions. The formation constants for chloro complexes of Tc(V) and Tc(IV), whose existence is well established, have been estimated. The majority of entropy and heat capacity values in the data base have also been estimated, and therefore temperature extrapolations are largely based on estimations. The uncertainties derived from these calculations are described. Using the data base developed in this work, technetium solubilities have been calculated as a function of temperature for different chemical conditions. The implications for the mobility of Tc under nuclear repository conditions are discussed. 70 refs.

  17. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  18. 33 CFR 138.240 - Procedure for calculating limit of liability adjustments for inflation.

    2010-07-01

    ... of liability adjustments for inflation. 138.240 Section 138.240 Navigation and Navigable Waters COAST... calculating limit of liability adjustments for inflation. (a) Formula for calculating a cumulative percent... later than every three years from the year the limits of liability were last adjusted for inflation, the...

  19. Calculating exclusion limits for weakly interacting massive particle direct detection experiments without background subtraction

    Green, Anne M.

    2002-01-01

    Competitive limits on the weakly interacting massive particle (WIMP) spin-independent scattering cross section are currently being produced by 76 Ge detectors originally designed to search for neutrinoless double beta decay, such as the Heidelberg-Moscow and IGEX experiments. In the absence of background subtraction, limits on the WIMP interaction cross section are set by calculating the upper confidence limit on the theoretical event rate, given the observed event rate. The standard analysis technique involves calculating the 90% upper confidence limit on the number of events in each bin, and excluding any set of parameters (WIMP mass and cross section) which produces a theoretical event rate for any bin which exceeds the 90% upper confidence limit on the event rate for that bin. We show that, if there is more than one energy bin, this produces exclusion limits that are actually at a lower degree of confidence than 90%, and are hence erroneously tight. We formulate criteria which produce true 90% confidence exclusion limits in these circumstances, including calculating the individual bin confidence limit for which the overall probability that no bins exceed this confidence limit is 90% and calculating the 90% minimum confidence limit on the number of bins which exceed their individual bin 90% confidence limits. We then compare the limits on the WIMP cross section produced by these criteria with those found using the standard technique, using data from the Heidelberg-Moscow and IGEX experiments

  20. Calculator for the correction of the experimental specific migration for comparison with the legislative limit

    Petersen, Jens Højslev; Hoekstra, Eddo J.

    The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given experime......The EURL-NRL-FCM Taskforce on the Fourth Amendment of the Plastic Directive 2002/72/EC developed a calculator for the correction of the test results for comparison with the specific migration limit (SML). The calculator calculates the maximum acceptable specific migration under the given...... experimental conditions in food or food stimulant and indicates whether the test result is in compliance with the legislation. This calculator includes the Fat Reduction Factor, the simulant D Reduction Factor and the factor of the difference in surface-to-volume ratio between test and real food contact....

  1. Plutonium solubilities

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  2. Benefits of siderophore release lie in mediating diffusion limitation at low iron solubility

    Leventhal, Gabriel; Schiessl, Konstanze; Ackermann, Martin

    2016-01-01

    Siderophores are chelators released by many bacteria to take up iron. In contrast to iron receptors located at the cell surface, released siderophores are at risk of being lost to environmental sinks. Here, we asked the question whether the release itself is essential for the function of siderophores, which could explain why such a risky strategy is widespread. We developed a reaction-diffusion model to determine the impact of siderophore release on overcoming iron limitation caused by poor s...

  3. Discussion on the methods for calculation release limits for low-level radioactive waste

    Cao Fengbo; Liu Xiaochao

    2012-01-01

    The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)

  4. Lattice energy calculation - A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids

    Kuleshova, L. N.; Hofmann, D. W. M.; Boese, R.

    2013-03-01

    Cocrystals (or multicomponent crystals) have physico-chemical properties that are different from crystals of pure components. This is significant in drug development, since the desired properties, e.g. solubility, stability and bioavailability, can be tailored by binding two substances into a single crystal without chemical modification of an active component. Here, the FLEXCRYST program suite, implemented with a data mining force field, was used to estimate the relative stability and, consequently, the relative solubility of cocrystals of flavonoids vs their pure crystals, stored in the Cambridge Structural Database. The considerable potency of this approach for in silico screening of cocrystals, as well as their relative solubility, was demonstrated.

  5. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Smith, F.

    2016-01-01

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 ''Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site''.

  6. User Guide for GoldSim Model to Calculate PA/CA Doses and Limits

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-10-31

    A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.

  7. Solubility of actinides and surrogates in nuclear glasses; Solubilite des actinides et de leurs simulants dans les verres nucleaires. Limites d'incorporation et comprehension des mecanismes

    Lopez, Ch

    2003-07-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO{sub 2} at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  8. Implementation of upper limit calculation for a poisson variable by bayesian approach

    Zhu Yongsheng

    2008-01-01

    The calculation of Bayesian confidence upper limit for a Poisson variable including both signal and background with and without systematic uncertainties has been formulated. A Fortran 77 routine, BPULE, has been developed to implement the calculation. The routine can account for systematic uncertainties in the background expectation and signal efficiency. The systematic uncertainties may be separately parameterized by a Gaussian, Log-Gaussian or flat probability density function (pdf). Some technical details of BPULE have been discussed. (authors)

  9. Audit calculation of the limiting CESSAR feedwater-line-break transient with RELAP5/MOD1

    Chung, K.S.; Kennedy, M.F.; Guttmann, J.

    1983-01-01

    Argonne National Laboratory (ANL) performed a series of audit calculations of the limiting FLB transient presented in Appendix 15B to the CESSAR FSAR, supported by a limited number of additional calculations to investigate the sensitivity of the results (in terms of peak primary reactor system pressure) to break area and reactor trip time. The latter calculations were performed to quantify potential benefits in crediting reactor tip on low steam generator downcomer water level, which occurs earlier than the trip shown in the limiting FSAR transient, which tripped on high pressurizer pressure. These calculations were performed to verify the break spectrum results presented by C-E and to insure that C-E did indeed analyze the limiting transient. All of the ANL calculations were performed with RELAP5/MOD1 (cycle 18) using an input deck developed at ANL from CESSAR plant data provided by C-E. In this paper we compare the results and provide insight into the generic behavior of a Feedwater Line Break transient

  10. Computer Programs for Uncertainty Analysis of Solubility Calculations: Windows Version and Other Updates of the SENVAR and UNCCON. Program Description and Handling Instructions

    Ekberg, Christian; Oedegaard Jensen, Arvid

    2004-04-01

    Uncertainty and sensitivity analysis is becoming more and more important for testing the reliability of computer predictions. Solubility estimations play important roles for, e.g. underground repositories for nuclear waste, other hazardous materials as well as simple dissolution problems in general or industrial chemistry applications. The calculated solubility of a solid phase is dependent on several input data, e.g. the stability constants for the complexes formed in the solution, the enthalpies of reaction for the formation of these complexes and also the content of other elements in the water used for the dissolution. These input data are determined with more or less accuracy and thus the results of the calculations are uncertain. For the purpose of investigating the effects of these uncertainties several computer programs were developed in the 1990s, e.g. SENVAR, MINVAR and UNCCON. Of these SENVAR and UNCCON now exist as windows programs based on a newer speciation code. In this report we have given an explanation of how the codes work and also given some test cases as handling instructions. The results are naturally similar to the previous ones but the advantages are easier handling and more stable solubility calculations. With these improvements the programs presented here will be more publically accessible

  11. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    Marandet, Y.; Tsitrone, E.; Boerner, P.; Reiter, D.; Beaute, A.; Delchambre, E.; Escarguel, A.; Brezinsek, S.; Genesio, P.; Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B.

    2009-01-01

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  12. Calculation of poloidal rotation in the edge plasma of limiter tokamaks

    Gerhauser, H.; Claassen, H.A.

    1987-05-01

    The existing 2-d two-fluid code for computing the plasma profiles in the scrape-off layer of limiter tokamaks has been further developed to include the effect of poloidal rotation in the basic equations. This rotation is produced by radial electric fields which arise in the limiter shadow due to radial gradients in the Langmuir sheath potential in front of the limiter. As a consequence slight deviations from ambipolar motion must occur. A strong increase of rotation near the separatrix is connected with an electric current circuit closed via the limiter edge. The 2-d profiles of all relevant quantities are calculated and discussed for TEXTOR-typical parameters including also the effect of limiter recycled neutrals. The results agree well with the known experimental evidence on poloidal rotation and should be transferable to all limiter tokamaks. (orig.)

  13. An effect of cation functionalization on thermophysical properties of ionic liquids and solubility of glucose in them – Measurements and PC-SAFT calculations

    Paduszyński, Kamil; Okuniewski, Marcin; Domańska, Urszula

    2016-01-01

    Highlights: • Density, viscosity and DSC thermograms for four ionic liquids were measured. • New data on solubility of glucose in ionic liquids were presented. • An impact of cation functionalization on solubility was established. • Apparent thermodynamic functions of dissolution were determined. • Modeling of the studied systems with PC-SAFT equation of state was performed. - Abstract: This contribution is concerned with thermodynamic investigation on thermophysical properties of four ionic liquids based on dicyanamide anion. The ionic liquids under study differ in substituent attached to imidazolium cation, so that an impact of terminal functional groups on the considered properties is established. Discussion is presented in terms of molecular packing and interactions (polarity, hydrogen bonding) between molecules forming system. Differential scanning calorimetry thermograms, density and viscosity were the investigated properties of pure ionic liquids. Moreover, new data sets on solubility of glucose in ionic liquids are presented. Analysis of the temperature-dependent solubility data by means of modified Van’t Hoff equation is given and apparent thermodynamic functions of dissolution are calculated. Thermodynamic modeling of the (solid + liquid) equilibrium phase diagrams was carried out by means of perturbed-chain statistical associating fluid theory (PC-SAFT). It is evidenced that consistent and accurate thermodynamic description of complex cross-associating {ionic liquid + sugar} systems can be achieved by using simple (but physically grounded) molecular schemes, assuming that two adjustable binary corrections are introduced.

  14. On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors

    URS, Kusuma; Bhat, S. V.; Kamble, Vinayak

    2018-04-01

    The paper investigates the magnetic behavior of chromium doped SnO2 Dilute Magnetic Semiconductor (DMS) nanoparticles, through structural, spectroscopic, and magnetic studies. A non-equilibrium solution combustion method is adopted to synthesize 0-5 at. % Cr doped SnO2 nanoparticles. The detailed spectroscopic studies on the system using micro-Raman spectroscopy, x-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy along with the structural analysis confirm the presence of Cr in 3+ oxidation state, which substitutes at Sn4+ site in SnO6 octahedra of the rutile structure. This doping is found to enhance the defects in the system, i.e., oxygen vacancies. All the synthesized SnO2 nanoparticles (with or without dopants) are found to exhibit Room Temperature Ferromagnetism (RTFM). This occurrence of RTFM is attributed to the magnetic exchange interaction through F-centers of oxygen vacancies as well as dopant magnetic impurities and explained through the Bound Magnetic Polaron (BMP) model of DMS systems. Nonetheless, as the doping of Cr is further increased beyond 2%, the solubility limit is achieved. This antiferromagnetic exchange interaction from interstitial Cr dopants dominates over the BMP mechanism and, hence, leads to the decrease in the net magnetic moment drastically.

  15. Utilization of a statistical procedure for DNBR calculation and in the survey of reactor protection limits

    Pontedeiro, A.C.; Camargo, C.T.M.; Galetti, M.R. da Silva.

    1987-01-01

    A new procedure is applied to Angra 1 NPP, which is related to DNBR calculations, considering the design parameters statistically: Improved Thermal Design Procedure (ITDP). The ITDP application leads to the determination of uncertainties in the input parameters, the sensitivity factors on DNBR. The DNBR limit and new reactor protection limits. This was done to Angra 1 with the subchannel code COBRA-IIIP. The analysis of limiting accident in terms of DNB confirmed a gain in DNBR margin, and greater operation flexibility of the plant, decreasing unnecessary trips of the reactor. (author) [pt

  16. An analysis of confidence limit calculations used in AAPM Task Group No. 119

    Knill, Cory; Snyder, Michael

    2011-01-01

    Purpose: The report issued by AAPM Task Group No. 119 outlined a procedure for evaluating the effectiveness of IMRT commissioning. The procedure involves measuring gamma pass-rate indices for IMRT plans of standard phantoms and determining if the results fall within a confidence limit set by assuming normally distributed data. As stated in the TG report, the assumption of normally distributed gamma pass rates is a convenient approximation for commissioning purposes, but may not accurately describe the data. Here the authors attempt to better describe gamma pass-rate data by fitting it to different distributions. The authors then calculate updated confidence limits using those distributions and compare them to those derived using TG No. 119 method. Methods: Gamma pass-rate data from 111 head and neck patients are fitted using the TG No. 119 normal distribution, a truncated normal distribution, and a Weibull distribution. Confidence limits to 95% are calculated for each and compared. A more general analysis of the expected differences between the TG No. 119 method of determining confidence limits and a more time-consuming curve fitting method is performed. Results: The TG No. 119 standard normal distribution does not fit the measured data. However, due to the small range of measured data points, the inaccuracy of the fit has only a small effect on the final value of the confidence limits. The confidence limits for the 111 patient plans are within 0.1% of each other for all distributions. The maximum expected difference in confidence limits, calculated using TG No. 119's approximation and a truncated distribution, is 1.2%. Conclusions: A three-parameter Weibull probability distribution more accurately fits the clinical gamma index pass-rate data than the normal distribution adopted by TG No. 119. However, the sensitivity of the confidence limit on distribution fit is low outside of exceptional circumstances.

  17. Development of mathematical pediatric phantoms for internal dose calculations: designs, limitations, and prospects

    Cristy, M.

    1980-01-01

    Mathematical phantoms of the human body at various ages are employed with Monte Carlo radiation transport codes for calculation of photon specific absorbed fractions. The author has developed a pediatric phantom series based on the design of the adult phantom, but with explicit equations for each organ so that organ sizes and marrow distributions could be assigned properly. Since the phantoms comprise simple geometric shapes, predictive dose capability is limited when geometry is critical to the calculation. Hence, there is a demand for better phantom design in situations where geometry is critical, such as for external irradiation or for internal emitters with low energy photons. Recent advances in computerized axial tomography (CAT) present the potential for derivation of anatomical information, which is so critical to development of phantoms, and ongoing developmental work on compuer architecture to handle large arrays for Monte Carlo calculations should make complex-geometry dose calculations economically feasible within this decade

  18. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  19. Methodology of strength calculation under alternating stresses using the diagram of limiting amplitudes

    Konovodov, V. V.; Valentov, A. V.; Kukhar, I. S.; Retyunskiy, O. Yu; Baraksanov, A. S.

    2016-08-01

    The work proposes the algorithm to calculate strength under alternating stresses using the developed methodology of building the diagram of limiting stresses. The overall safety factor is defined by the suggested formula. Strength calculations of components working under alternating stresses in the great majority of cases are conducted as the checking ones. It is primarily explained by the fact that the overall fatigue strength reduction factor (Kσg or Kτg) can only be chosen approximately during the component design as the engineer at this stage of work has just the approximate idea on the component size and shape.

  20. Calculation of Savannah River K Reactor Mark-22 assembly LOCA/ECS power limits

    Fischer, S.R.; Farman, R.F.; Birdsell, S.A.

    1992-01-01

    This paper summarizes the results of TRAC-PF1/MOD3 calculations of Mark-22 fuel assembly of loss-of-coolant accident/emergency cooling system (LOCA/ECS) power limits for the Savannah River Site (SRS) K Reactor. This effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to perform confirmatory power limits calculations for the SRS K Reactor. A method using a detailed three-dimensional (3D) TRAC model of the Mark-22 fuel assembly was developed to compute LOCA/ECS power limits. Assembly power was limited to ensure that no point on the fuel assembly walls would exceed the local saturation temperature. The detailed TRAC model for the Mark-22 assembly consisted of three concentric 3D vessel components which simulated the two targets, two fuel tubes, and three main flow channels of the fuel assembly. The model included 100% eccentricity between the assembly annuli and a 20% power tilt. Eccentricity in the radial alignment of the assembly annuli arises because axial spacer ribs that run the length of the fuel and targets are used. Wall-shear, interfacial-shear, and wall heat-transfer correlations were developed and implemented in TRAC-PF1/MOD3 specifically for modeling flow and heat transfer in the narrow ribbed annuli encountered in the Mark-22 fuel assembly design. We established the validity of these new constitutive models using separate-effects benchmarks. TRAC system calculations of K Reactor indicated that the limiting ECS-phase accident is a double-ended guillonite break in a process water line at the pump discharge (i.e., a PDLOCA). The fuel assembly with the minimum cooling potential is identified from this system calculation. Detailed assembly calculations then were performed using appropriate boundary conditions obtained from this limiting system LOCA. Coolant flow rates and pressure boundary conditions were obtained from this system calculation and applied to the detailed assembly model

  1. Pretransplant soluble CD30 level has limited effect on acute rejection, but affects graft function in living donor kidney transplantation.

    Kim, Myoung Soo; Kim, Hae Jin; Kim, Soon Il; Ahn, Hyung Joon; Ju, Man Ki; Kim, Hyun Jung; Jeon, Kyung Ock; Kim, Yu Seun

    2006-12-27

    Serum soluble CD30 (sCD30) levels might be a useful marker of immunologic status in pre transplant (Tx) recipients. We retrospectively correlated preTx sCD30 levels (high versus low) on postTx graft survival, incidence of acute rejection, and graft function using stored preTx serum. Of 254 recipients who underwent kidney Tx, 120 recipients were enrolled under the uniform criteria (living donor, age >25 years, viral hepatitis free, diabetes free). The preTx sCD30 was not significantly associated with differences in graft survival rate during 47.5+/-11.4 months of follow-up (P = 0.5901). High sCD30 (> or =115 U/ml) was associated with a higher incidence of clinically or pathologically defined acute rejection than low sCD30, but the difference was not statistically significant (33.9% vs. 22.4%, P = 0.164). The response rate to antirejection therapy in patients with high sCD30 was inferior to those with low sCD30, but also was not statistically significant (33.3% vs. 7.7%, P = 0.087). However, mean serum creatinine levels in high sCD30 patients at one month, one year, and three years postTx were significantly different from those with low sCD30 (P acute rejection episodes, donor age, kidney weight/recipient body weight ratio, and preTx sCD30 levels were independent variables affecting the serum creatinine level three years postTx. PreTx sCD30 level has a limited effect on the incidence of acute rejection and response to antirejection treatment, but inversely and independently affects serum creatinine level after living donor kidney transplantation.

  2. use of the RESRAD-BUILD code to calculate building surface contamination limits

    Faillace, E.R.; LePoire, D.; Yu, C.

    1996-01-01

    Surface contamination limits in buildings were calculated for 226 Ra, 230 Th, 232 Th, and natural uranium on the basis of 1 mSv y -1 (100 mrem y -1 ) dose limit. The RESRAD-BUILD computer code was used to calculate these limits for two scenarios: building occupancy and building renovation. RESRAD-BUILD is a pathway analysis model designed to evaluate the potential radiological dose incurred by individuals working or living inside a building contaminated with radioactive material. Six exposure pathways are considered in the RESRAD-BUILD code: (1) external exposure directly from the source; (2) external exposure from materials deposited on the floor; (3) external exposure due to air submersion; (4) inhalation of airborne radioactive particles; (5) inhalation of aerosol indoor radon progeny; and (6) inadvertent ingestion of radioactive material, either directly from the sources or from materials deposited on the surfaces. The code models point, line, area, and volume sources and calculates the effects of radiation shielding, building ventilation, and ingrowth of radioactive decay products. A sensitivity analysis was performed to determine how variations in input parameters would affect the surface contamination limits. In most cases considered, inhalation of airborne radioactive particles was the primary exposure pathway. However, the direct external exposure contribution from surfaces contaminated with 226 Ra was in some cases the dominant pathway for building occupancy depending on the room size, ventilation rates, and surface release fractions. The surface contamination limits are most restrictive for 232 Th, followed by 230 Th, natural uranium, and 226 Ra. The results are compared with the surface contamination limits in the Nuclear Regulatory Commission's Regulatory Guide 1.86, which are most restrictive for 226 Ra and 230 Th, followed by 232 Th, and are least restrictive for natural uranium

  3. Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors

    Poncé, Samuel; Margine, Elena R.; Giustino, Feliciano

    2018-03-01

    We probe the accuracy limit of ab initio calculations of carrier mobilities in semiconductors, within the framework of the Boltzmann transport equation. By focusing on the paradigmatic case of silicon, we show that fully predictive calculations of electron and hole mobilities require many-body quasiparticle corrections to band structures and electron-phonon matrix elements, the inclusion of spin-orbit coupling, and an extremely fine sampling of inelastic scattering processes in momentum space. By considering all these factors we obtain excellent agreement with experiment, and we identify the band effective masses as the most critical parameters to achieve predictive accuracy. Our findings set a blueprint for future calculations of carrier mobilities, and pave the way to engineering transport properties in semiconductors by design.

  4. Impurity transport calculations for the limiter shadow region of a tokamak

    Claassen, H.A.; Repp, H.

    1981-01-01

    Impurity transport calculations are presented for the scrape-off layer of a tokamak with a poloidal ring limiter. The theory is based on the drift-kinetic equations for the impurity ions in their different ionization states. It is developed in the limit of low impurity concentrations under due consideration of electron impact ionization, Coulomb collisions with hydrogen ions streaming onto a neutralizing surface, a convection along the magnetic field, and a radial drift. The background plasma and the impurity sources at the walls enter the theory as input parameters. Numerical results are given for the radial profiles of density, temperature, particle flux, and energy flux of wall-released impurity ions as well as for the screening efficiency of the scrape-off layer neglecting impurity re-emission from the limiter. (author)

  5. Transport of soluble species in backfill and rock

    Chambre, P.L.; Lee, W.W.L.; Light, W.B.; Pigford, T.H.

    1992-03-01

    In this report we study the release and transport of soluble species from spent nuclear fuel. By soluble species we mean a fraction of certain fission product species. Our previously developed methods for calculating release rates of solubility-limited species need to be revised for these soluble species. Here we provide methods of calculating release rates of soluble species directly into rock and into backfill and then into rock. Section 2 gives a brief discussion of the physics of fission products dissolution from U0 2 spent fuel. Section 3 presents the mathematics for calculating release rates of soluble species into backfill and then into rock. The calculation of release rates directly into rock is a special case. Section 4 presents numerical illustrations of the analytic results

  6. Calculation of the detection limit in radiation measurements with systematic uncertainties

    Kirkpatrick, J.M.; Russ, W.; Venkataraman, R.; Young, B.M.

    2015-01-01

    The detection limit (L D ) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case

  7. Calculation of hydrogen outgassing rate of LHD by recombination limited model

    Akaishi, K.; Nakasuga, M.

    2002-04-01

    To simulate hydrogen outgassing in the plasma vacuum vessel of LHD, the recombination limited model is presented, where the time evolution of hydrogen concentration in the wall of the plasma vacuum vessel is described by a one-dimensional diffusion equation. The hydrogen outgassing rates when the plasma vacuum vessel is pumped down at room temperature and baked at 100 degC are calculated as a function of pumping time. The calculation shows that the hydrogen outgassing rate of the plasma vacuum vessel can be reduced at least by one order of magnitude due to pumping and baking. This prediction is consistent with the recent result of outgassing reduction observed in the pumping-down and baking of the plasma vacuum vessel in LHD. (author)

  8. A revised oceanographic model to calculate the limiting capacity of the ocean to accept radioactive waste

    Webb, G.A.M.; Grimwood, P.D.

    1976-12-01

    This report describes an oceanographic model which has been developed for the use in calculating the capacity of the oceans to accept radioactive wastes. One component is a relatively short-term diffusion model which is based on that described in an earlier report (Webb et al., NRPB-R14(1973)), but which has been generalised to some extent. Another component is a compartment model which is used to calculate long-term widespread water concentrations. This addition overcomes some of the short comings of the earlier diffusion model. Incorporation of radioactivity into deep ocean sediments is included in this long-term model as a removal mechanism. The combined model is used to provide a conservative (safe) estimate of the maximum concentrations of radioactivity in water as a function of time after the start of a continuous disposal operation. These results can then be used to assess the limiting capacity of an ocean to accept radioactive waste. (author)

  9. Study of solubility of some metal cyclohexane carbonates

    Niyazov, A.N.; Amanov, K.B.; Trapeznikova, V.F.; Kul'maksimov, A.; Kolosova, N.

    1978-01-01

    The solubility of calcium, magnesium, strontium, barium, cabalt, copper and aluminium cyclohexane, carbonates (CHC) in water has been studied at 25 deg C. The salt solubility has been calculated according to the metal ion concentration in saturated solutions. It has been established, that the cobalt and rare earth cyclohexane carbonates are relatively very soluble in water and have solubility products of SP > 1x10 -5 . The solubility of CHC of multivalent metals increases with the decrease of pH values. Each salt has some ''limiting'' pH value of a solution, below which it decomposes completely and can not exist in a solution in the form of solid phase

  10. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  11. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling

    Priest, N.D.; Hunt, B.W.

    1979-01-01

    Values of the annual limit intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0 to 32 μm yr -1 ), different amounts of plutonium retained in the marrow (0 to 60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 μCi and 136 μCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively. (author)

  12. The calculation of annual limits of intake for plutonium-239 in man using a bone model which allows for plutonium burial and recycling.

    Priest, N D; Hunt, B W

    1979-05-01

    Values of the annual limit of intake (ALI) for plutonium-239 in man have been calculated using committed dose equivalent limits as recommended by ICRP in Publication 26. The calculations were made using a multicompartment bone model which allows for plutonium burial and recycling in the skeleton. In one skeletal compartment, the growing surfaces of cortical bone, it is assumed that plutonium deposits are retained and are not subject to resorption or recycling. In the trabecular bone compartment plutonium is taken to be resorbed with either subsequent redeposition onto bone surfaces or retention in the bone marrow. ALIs for plutonium-239 have been calculated assuming a range of rates of bone accretion (0-32 micron yr-1), different amounts of plutonium retained in the marrow (0-60%) and a 20%, 45% or 70% deposition of plutonium in the skeleton from the blood. The calculations made using this bone model suggest that 750 Bq (20 nCi) is an appropriate ALI for the inhalation of class W and class Y plutonium compounds and that 830 kBq and 5 MBq (23 muCi and 136 muCi) are the appropriate ALIs for the ingestion of soluble and insoluble forms of plutonium respectively.

  13. Radionuclide solubilities to be used in SKB 91

    Bruno, J.; Sellin, P.

    1992-06-01

    We have performed thermodynamic calculations in order to assess the solubility limits (source term) for selected radionuclides. Equilibrium solubilities for U, Pu, Np, Am, Th, Ra, Sn, Tc, Zr, Sn, Ni, Sm, Pa, Nb and Pd have been calculated in four waters, representing average fresh and saline granitic groundwaters under oxidizing and reducing conditions, respectively. The results from the calculations have been compared with the measured radionuclide concentrations in natural waters as well as in spent fuel leaching tests. (26 refs.)

  14. An attempt to calculate in silico disintegration time of tablets containing mefenamic acid, a low water-soluble drug.

    Kimura, Go; Puchkov, Maxim; Leuenberger, Hans

    2013-07-01

    Based on a Quality by Design (QbD) approach, it is important to follow International Conference on Harmonization (ICH) guidance Q8 (R2) recommendations to explore the design space. The application of an experimental design is, however, not sufficient because of the fact that it is necessary to take into account the effects of percolation theory. For this purpose, an adequate software needs to be applied, capable of detecting percolation thresholds as a function of the distribution of the functional powder particles. Formulation-computer aided design (F-CAD), originally designed to calculate in silico the drug dissolution profiles of a tablet formulation is, for example, a suitable software for this purpose. The study shows that F-CAD can calculate a good estimate of the disintegration time of a tablet formulation consisting of mefenamic acid. More important, F-CAD is capable of replacing expensive laboratory work by performing in silico experiments for the exploration of the formulation design space according to ICH guidance Q8 (R2). As a consequence, a similar workflow existing as best practice in the automotive and aircraft industry can be adopted by the pharmaceutical industry: The drug delivery vehicle can be first fully designed and tested in silico, which will improve the quality of the marketed formulation and save time and money. Copyright © 2013 Wiley Periodicals, Inc.

  15. Calculation and analysis of generator limiting regimes with respect to stator end core heating

    Kostić Miloje

    2015-01-01

    Full Text Available A new simplified procedure for defining the limiting operating regimes on the generator capability curve, with respect to stator end core heating, is proposed and described in this paper. First of all, a simplified analysis of axial flux leakage that penetrates into the end plates of the stator is carried out and the corresponding power losses are calculated. Then the analysis of measured point temperature increases over the stator end core, and a qualitative and quantitative overview of the effects, are presented. A simplified procedure for defining the limiting regime with regard to the heating stator end core, which is illustrated for the case of an operating diagram for a given generator of apparent power of 727 MVA (B2 is also described. The given limiting line constructed using this method is similar to the appropriate line constructed on the basis of complex and lengthy factory and on-site tests performed by the manufacturer and the user. According to the results and the check, the proposed method has been proved and the application of the simplified procedure can be recommended for use along with other procedures, at least when it comes to similar synchronous generators in Serbia's Electric Power Industry.

  16. Methods for the calculation of derived working limits for surface contamination by low-toxicity radionuclides

    Gibson, J.A.B.; Wrixon, A.D.

    1979-01-01

    Surface contamination is often measured as an indication of the general spread of radioactive contamination in a particular place. Derived working limits, (DWLs) for surface contamination provide figures against which to assess the significance of measurements. Derived working limits for surface contamination were first established for use in the nuclear energy industry. They were designed to cope with a wide range of unspecified radionuclides and were therefore based on the assumption that the contamination was due to the presence of the most hazardous radionuclides, e.g. 90 Sr, 210 Pb, 226 Ra and 239 Pu. While this assumption may still be appropriate when the radionuclide mixture is unknown, there are now many specialized uses of particular low-toxicity radionuclides in universities, hospitals and general industry. If it is known that only a particular radionuclide is present, the general DWL can be replaced by a more specific value. The methods for calculating DWLs for some of the more commonly employed low-toxicity radionuclides are described. The exposure pathways considered are (a) external radiation of the skin and inhalation of airborne material from contaminated surfaces in active areas; (b) external irradiation of the skin and ingestion from contaminated skin. Some consideration is given to the effect of the revised dose equivalent limits in the most recent recommendations of ICRP. (author)

  17. Nitrogen solubility in nickel base multicomponent melts

    Bol'shov, L.A.; Stomakhin, A.Ya.; Sokolov, V.M.; Teterin, V.G.

    1984-01-01

    Applicability of various methods for calculation of nitrogen solubility in high-alloyed nickel base alloys, containing Cr, Fe, W, Mo, Ti, Nb, has been estimated. A possibility is shown to use the formUla, derived for the calculation of nitrogen solubility in iron on the basis of statistical theory for a grid model of solution which does not require limitations for the content of a solvent component. The calculation method has been used for nickel alloys, with the concentration of solvent, iron, being accepted equal to zero, and employing parameters of nitrogen interaction as determined for iron-base alloys

  18. Calculation of Upper Subcritical Limits for Nuclear Criticality in a Repository

    J.W. Pegram

    1998-01-01

    The purpose of this document is to present the methodology to be used for development of the Subcritical Limit (SL) for post closure conditions for the Yucca Mountain repository. The SL is a value based on a set of benchmark criticality multiplier, k eff results that are outputs of the MCNP calculation method. This SL accounts for calculational biases and associated uncertainties resulting from the use of MCNP as the method of assessing k eff . The context for an SL estimate include the range of applicability (based on the set of MCNP results) and the type of SL required for the application at hand. This document will include illustrative calculations for each of three approaches. The data sets used for the example calculations are identified in Section 5.1. These represent three waste categories, and SLs for each of these sets of experiments will be computed in this document. Future MCNP data sets will be analyzed using the methods discussed here. The treatment of the biases evaluated on sets of k eff results via MCNP is statistical in nature. This document does not address additional non-statistical contributions to the bias margin, acknowledging that regulatory requirements may impose additional administrative penalties. Potentially, there are other biases or margins that should be accounted for when assessing criticality (k eff ). Only aspects of the bias as determined using the stated assumptions and benchmark critical data sets will be included in the methods and sample calculations in this document. The set of benchmark experiments used in the validation of the computational system should be representative of the composition, configuration, and nuclear characteristics for the application at hand. In this work, a range of critical experiments will be the basis of establishing the SL for three categories of waste types that will be in the repository. The ultimate purpose of this document is to present methods that will effectively characterize the MCNP

  19. Calculation of high-rise construction limitations for non-resident housing fund in megacities

    Iliashenko Oksana

    2018-01-01

    Full Text Available The paper is devoted to topical issues of urban planning in terms of high-rise construction of a non-resident housing stock in relation to megacities. We consider this issue taking into account the limitations of natural, communal and social resources. The problem is especially acute for the overwhelming majority of the state capitals, as well as cities with historical heritage that are of great interest due to the rapid development of tourism and the high mobility of the population in the world. The growth of the population of many states capitals led to the use of high-rise buildings as a non-resident housing stock. However, there are a number of restrictions on the high-rise construction of non-resident housing stock in megacities. The authors formalize the problem of determining the optimal ratio of the volume of urban buildings belonging to the high-rise buildings types and intended for non-residents to a common housing fund. We conduct economic calculations to determine the quantitative indicators. It can be used as the basis for administrative measures aimed at limiting the people flow arriving with the intention of temporarily deploying in megacities.

  20. Calculation of high-rise construction limitations for non-resident housing fund in megacities

    Iliashenko, Oksana; Krasnov, Sergey; Sergeev, Sergey

    2018-03-01

    The paper is devoted to topical issues of urban planning in terms of high-rise construction of a non-resident housing stock in relation to megacities. We consider this issue taking into account the limitations of natural, communal and social resources. The problem is especially acute for the overwhelming majority of the state capitals, as well as cities with historical heritage that are of great interest due to the rapid development of tourism and the high mobility of the population in the world. The growth of the population of many states capitals led to the use of high-rise buildings as a non-resident housing stock. However, there are a number of restrictions on the high-rise construction of non-resident housing stock in megacities. The authors formalize the problem of determining the optimal ratio of the volume of urban buildings belonging to the high-rise buildings types and intended for non-residents to a common housing fund. We conduct economic calculations to determine the quantitative indicators. It can be used as the basis for administrative measures aimed at limiting the people flow arriving with the intention of temporarily deploying in megacities.

  1. The impact of solvent relative permittivity on the dimerisation of organic molecules well below their solubility limits: examples from brewed coffee and beyond.

    Bradley, Ellen S; Hendon, Christopher H

    2017-03-22

    The formation of aqueous intermolecular dimers is governed by both the nature and strength of the intermolecular interactions and the entropy of dissolution. The former interaction energies are determined by the polarity of the solvent and the functionality of the solute. Using quantum chemical methods, we probe the energetics of dimer formation of representative compounds found in coffee well below their solubility limits. We find that with the exclusion of entropy, the dimer formation is thermodynamically unfavorable with negligible dependence on the dielectric medium.

  2. Calculation of the deformation limits for failure affected wide plate tensile specimens

    Janssen, G T.M.; Meijers, P [TNO-IWECO, Delft (Netherlands); Lorenz, H [INTERATOM, Bergisch Gladbach (Germany)

    1977-07-01

    In 1972 the German reactor safety commission recommended, with respect to the safety concept of the SNR 300 concerning an hypothetical core disruptive accident (HCDA), to design the complete plant against an mechanical energy release of 370 MWs and the reactor vessel against 150 MWs. In 1976 it has been decided to design the reactor vessel system against the defined energy release of 370 MWs. This change greatly increased the extent of design activities with regard to HCDA questions. The integrity proof will be given by deformation analysis of the reactor vessel using continuous mechanical computer codes and by comparison of the maximum deformations to verified design limits. The deformation behavior of the vessel system during the HCDA has been analysed by computer codes which describe the pulse and pressure distribution for all elements by which the geometry has been modelled. Simultaneously the codes calculate the hydrodynamic processes and the time and position dependent stress and strain distributions. The accuracy of these complicated computer codes describing pressure and deformation behavior will be evaluated by an experimental series of explosion tests on vessels.

  3. Calculation of the deformation limits for failure affected wide plate tensile specimens

    Janssen, G.T.M.; Meijers, P.; Lorenz, H.

    1977-01-01

    In 1972 the German reactor safety commission recommended, with respect to the safety concept of the SNR 300 concerning an hypothetical core disruptive accident (HCDA), to design the complete plant against an mechanical energy release of 370 MWs and the reactor vessel against 150 MWs. In 1976 it has been decided to design the reactor vessel system against the defined energy release of 370 MWs. This change greatly increased the extent of design activities with regard to HCDA questions. The integrity proof will be given by deformation analysis of the reactor vessel using continuous mechanical computer codes and by comparison of the maximum deformations to verified design limits. The deformation behavior of the vessel system during the HCDA has been analysed by computer codes which describe the pulse and pressure distribution for all elements by which the geometry has been modelled. Simultaneously the codes calculate the hydrodynamic processes and the time and position dependent stress and strain distributions. The accuracy of these complicated computer codes describing pressure and deformation behavior will be evaluated by an experimental series of explosion tests on vessels

  4. Method for calculation of upper limit internal alpha dose rates to aquatic organisms with application of plutonium-239 in plankton

    Paschoa, A.S.; Baptista, G.B.

    1977-01-01

    A method for the calculation of upper limit internal alpha dose rates to aquatic organisms is presented. The mean alpha energies per disintegration of radionuclides of interest are listed to be used in standard methodologies to calculate dose to aquatic biota. As an application, the upper limits for the alpha dose rates from 239 Pu to the total body of plankton are estimated based on data available in open literature [pt

  5. Methods of calculation and determination of density and moisture of inhomogeneous materials within capacity of limited dimensions

    Mukanov, D.M.

    1996-01-01

    Both a definition of optimal sizes and an opinion about representation of assay present practical interest during process of physical characteristics calculation of inhomogeneous materials by neutron method. The opinion about calculation sphere is introduced for definition of necessary dependences. It presents limited by convex surface with center coinciding with center of initial measuring transformer. Sizes of calculation sphere have been defined by physical process character of neutral radiation interaction with measured substance and its nuclear-physical parameters. 3 figs

  6. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  7. Innovative methods for calculation of freeway travel time using limited data : executive summary report.

    2008-08-01

    ODOTs policy for Dynamic Message Sign : utilization requires travel time(s) to be displayed as : a default message. The current method of : calculating travel time involves a workstation : operator estimating the travel time based upon : observati...

  8. Solubilities of uranium for TILA-99

    Ollila, K.; Ahonen, L.

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters' compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO 2 and spent fuel. The latest literature includes studies on UO 2 solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR '97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO 2 dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author)

  9. Solubilities of uranium for TILA-99

    Ollila, K. [VTT Chemical Technology, Espoo (Finland); Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters` compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO{sub 2} and spent fuel. The latest literature includes studies on UO{sub 2} solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR `97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO{sub 2} dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author) 81 refs.

  10. Argon solubility in liquid steel

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  11. [Formal sample size calculation and its limited validity in animal studies of medical basic research].

    Mayer, B; Muche, R

    2013-01-01

    Animal studies are highly relevant for basic medical research, although their usage is discussed controversially in public. Thus, an optimal sample size for these projects should be aimed at from a biometrical point of view. Statistical sample size calculation is usually the appropriate methodology in planning medical research projects. However, required information is often not valid or only available during the course of an animal experiment. This article critically discusses the validity of formal sample size calculation for animal studies. Within the discussion, some requirements are formulated to fundamentally regulate the process of sample size determination for animal experiments.

  12. SITE-94. Radionuclide solubilities for SITE-94

    Arthur, R.; Apted, M. [QuantiSci, Denver, CO (United States)

    1996-12-01

    In this report, solubility constraints are evaluated on radioelement source-term concentrations supporting the SITE-94 performance assessment. Solubility models are based on heterogeneous-equilibrium, mass- and charge-balance constraints incorporated into the EQ3/6 geochemical software package, which is used to calculate the aqueous speciation behavior and solubilities of U, Th, Pu, Np, Am, Ni, Ra, Se, Sn, Sr, Tc and Zr in site groundwaters and near-field solutions. The chemical evolution of the near field is approximated using EQ3/6 in terms of limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe{sup o} corrosion products of the canister, and spent fuel. The calculations consider both low-temperature (15 deg C) and high-temperature (80 deg C) conditions in the near field, and the existence of either reducing or strongly oxidizing conditions in each of the bentonite, canister, and spent-fuel barriers. Heterogeneities in site characteristics are evaluated through consideration of a range of initial groundwaters and their interactions with engineered barriers. Aqueous speciation models for many radioelements are constrained by thermodynamic data that are estimated with varying degrees of accuracy. An important question, however, is how accurate do these models need to be for purposes of estimating source-term concentrations? For example, it is unrealistic to expect a high degree of accuracy in speciation models if such models predict solubilities that are below the analytical detection limit for a given radioelement. From a practical standpoint, such models are irrelevant if calculated solubilities cannot be tested by direct comparison to experimental data. In the absence of models that are both accurate and relevant for conditions of interest, the detection limit could define a pragmatic upper limit on radioelement solubility 56 refs, 25 tabs, 10 figs

  13. SITE-94. Radionuclide solubilities for SITE-94

    Arthur, R.; Apted, M.

    1996-12-01

    In this report, solubility constraints are evaluated on radioelement source-term concentrations supporting the SITE-94 performance assessment. Solubility models are based on heterogeneous-equilibrium, mass- and charge-balance constraints incorporated into the EQ3/6 geochemical software package, which is used to calculate the aqueous speciation behavior and solubilities of U, Th, Pu, Np, Am, Ni, Ra, Se, Sn, Sr, Tc and Zr in site groundwaters and near-field solutions. The chemical evolution of the near field is approximated using EQ3/6 in terms of limiting conditions at equilibrium, or steady state, in three closed systems representing fully saturated bentonite, Fe o corrosion products of the canister, and spent fuel. The calculations consider both low-temperature (15 deg C) and high-temperature (80 deg C) conditions in the near field, and the existence of either reducing or strongly oxidizing conditions in each of the bentonite, canister, and spent-fuel barriers. Heterogeneities in site characteristics are evaluated through consideration of a range of initial groundwaters and their interactions with engineered barriers. Aqueous speciation models for many radioelements are constrained by thermodynamic data that are estimated with varying degrees of accuracy. An important question, however, is how accurate do these models need to be for purposes of estimating source-term concentrations? For example, it is unrealistic to expect a high degree of accuracy in speciation models if such models predict solubilities that are below the analytical detection limit for a given radioelement. From a practical standpoint, such models are irrelevant if calculated solubilities cannot be tested by direct comparison to experimental data. In the absence of models that are both accurate and relevant for conditions of interest, the detection limit could define a pragmatic upper limit on radioelement solubility

  14. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  15. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Adams Mike

    2017-01-01

    Full Text Available For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP® on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  16. Shielding Calculations on Waste Packages - The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Adams, Mike; Smalian, Silva

    2017-09-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.

  17. Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating

    Krivtcov Artem

    2016-01-01

    Full Text Available This article is devoted to fireproof processing of steel structures. The main task is to consider different types of sections of rod elements and to choose the most effective section for a steel column from the point of view of fire protection. For the solution of this task the steel columns with various cross sections working in identical entry conditions were considered. All necessary calculations for all types of sections were carried out. Results of calculations were presented in the summary table according to which the comparative analysis was made. At the end of work the conclusion that the compound section from four equal corners is the most effective from the point of view of fire protection.

  18. The Positronium Radiative Combination Spectrum: Calculation in the Limit of Thermal Positrons and Low Densities

    Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.

    1996-01-01

    We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.

  19. Calculation of the single lepton SUSY analysis limits in the cMSSM m0-m1/2 plane

    Megas, Efstathios

    2014-01-01

    The goal of the summer student project was the calculation of the single lepton SUSY analysis limits in the cMSSM $m_0$-$m_{1/2}$ plane. To this end, the analysis code, the production of the ntuples and a familarization with the higgs combination tool was needed.

  20. Validity limits of fuel rod performance calculations from radiochemical data at operating LWRs

    Zaenker, H.; Nebel, D.

    1986-01-01

    There are various calculational models for the assessment of the fuel rod performance on the basis of the activities of gaseous and volatile fission products in the reactor coolant. The most important condition for the applicability of the calculational models is that a steady state release of the fission products into the reactor coolant takes place. It is well known that the models are not applicable during or shortly after reactor transients. The fact that 'unsteady states' caused by the fuel defection processes themselves can also occur in rare cases at steady reactor operation has not been taken into account so far. A test of validity is suggested with the aid of which the applicability of the calculational models can be checked in any concrete case, and the misleading of the reactor operators by gross misinterpretation of the radiochemical data can be avoided. The criteria of applicability are the fission product total activity, the slope tan α in the relationship lg (R/sub i//B/sub i/) proportional to lg lambda/sub i/ for the gaseous and volatile fission products, and the activity of the nonvolatile isotope 239 Np. (author)

  1. Nonperturbative non-Markovian quantum master equation: Validity and limitation to calculate nonlinear response functions

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2008-05-01

    Based on the influence functional formalism, we have derived a nonperturbative equation of motion for a reduced system coupled to a harmonic bath with colored noise in which the system-bath coupling operator does not necessarily commute with the system Hamiltonian. The resultant expression coincides with the time-convolutionless quantum master equation derived from the second-order perturbative approximation, which is also equivalent to a generalized Redfield equation. This agreement occurs because, in the nonperturbative case, the relaxation operators arise from the higher-order system-bath interaction that can be incorporated into the reduced density matrix as the influence operator; while the second-order interaction remains as a relaxation operator in the equation of motion. While the equation describes the exact dynamics of the density matrix beyond weak system-bath interactions, it does not have the capability to calculate nonlinear response functions appropriately. This is because the equation cannot describe memory effects which straddle the external system interactions due to the reduced description of the bath. To illustrate this point, we have calculated the third-order two-dimensional (2D) spectra for a two-level system from the present approach and the hierarchically coupled equations approach that can handle quantal system-bath coherence thanks to its hierarchical formalism. The numerical demonstration clearly indicates the lack of the system-bath correlation in the present formalism as fast dephasing profiles of the 2D spectra.

  2. Approaches to the calculation of limitations on nuclear detonations for peaceful purposes

    Whipple, G H [School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    1969-07-01

    The long-term equilibrium levels of tritium, krypton- 85 and carbon-14 which are acceptable in the environment have been estimated on the following premises: 1) the three isotopes reach the environment and equilibrate throughout it in periods shorter than their half lives, 2) nuclear detonations and nuclear power constitute the dominant sources of these isotopes, 3) the doses from these three isotopes add to one another and to the doses from other radioactive isotopes released to the environment, and 4) the United States, by virtue of its population, is entitled to 6% of the world's capacity to accept radioactive wastes. These premises lead to the conclusion that U.S. nuclear detonations are limited by carbon-14 to 60 megatons per year. The corresponding limit for U.S. nuclear power appears to be set by krypton-85 at 100,000 electrical megawatts, although data for carbon-14 production by nuclear power are not available. It is noted that if the equilibration assumed in these estimates does not occur, the limits will in general be lower than those given above. (author)

  3. Approaches to the calculation of limitations on nuclear detonations for peaceful purposes

    Whipple, G.H.

    1969-01-01

    The long-term equilibrium levels of tritium, krypton- 85 and carbon-14 which are acceptable in the environment have been estimated on the following premises: 1) the three isotopes reach the environment and equilibrate throughout it in periods shorter than their half lives, 2) nuclear detonations and nuclear power constitute the dominant sources of these isotopes, 3) the doses from these three isotopes add to one another and to the doses from other radioactive isotopes released to the environment, and 4) the United States, by virtue of its population, is entitled to 6% of the world's capacity to accept radioactive wastes. These premises lead to the conclusion that U.S. nuclear detonations are limited by carbon-14 to 60 megatons per year. The corresponding limit for U.S. nuclear power appears to be set by krypton-85 at 100,000 electrical megawatts, although data for carbon-14 production by nuclear power are not available. It is noted that if the equilibration assumed in these estimates does not occur, the limits will in general be lower than those given above. (author)

  4. Value and limitations of transpulmonary pressure calculations during intra-abdominal hypertension.

    Cortes-Puentes, Gustavo A; Gard, Kenneth E; Adams, Alexander B; Faltesek, Katherine A; Anderson, Christopher P; Dries, David J; Marini, John J

    2013-08-01

    To clarify the effect of progressively increasing intra-abdominal pressure on esophageal pressure, transpulmonary pressure, and functional residual capacity. Controlled application of increased intra-abdominal pressure at two positive end-expiratory pressure levels (1 and 10 cm H2O) in an anesthetized porcine model of controlled ventilation. Large animal laboratory of a university-affiliated hospital. Eleven deeply anesthetized swine (weight 46.2 ± 6.2 kg). Air-regulated intra-abdominal hypertension (0-25 mm Hg). Esophageal pressure, tidal compliance, bladder pressure, and end-expiratory lung aeration by gas dilution. Functional residual capacity was significantly reduced by increasing intra-abdominal pressure at both positive end-expiratory pressure levels (p ≤ 0.0001) without corresponding changes of end-expiratory esophageal pressure. Above intra-abdominal pressure 5 mm Hg, plateau airway pressure increased linearly by ~ 50% of the applied intra-abdominal pressure value, associated with commensurate changes of esophageal pressure. With tidal volume held constant, negligible changes occurred in transpulmonary pressure due to intra-abdominal pressure. Driving pressures calculated from airway pressures alone (plateau airway pressure--positive end-expiratory pressure) did not equate to those computed from transpulmonary pressure (tidal changes in transpulmonary pressure). Increasing positive end-expiratory pressure shifted the predominantly negative end-expiratory transpulmonary pressure at positive end-expiratory pressure 1 cm H2O (mean -3.5 ± 0.4 cm H2O) into the positive range at positive end-expiratory pressure 10 cm H2O (mean 0.58 ± 1.2 cm H2O). Despite its insensitivity to changes in functional residual capacity, measuring transpulmonary pressure may be helpful in explaining how different levels of positive end-expiratory pressure influence recruitment and collapse during tidal ventilation in the presence of increased intra-abdominal pressure and in

  5. Modifications of alpha processing software to improve calculation of limits for qualitative detection

    Kirkpatrick, J.R.

    1997-01-01

    The work described in this report was done for the Bioassay Counting Laboratory (BCL) of the Center of Excellence for Bioassay of the Analytical Services Organization at the Oak Ridge Y-12 Plant. BCL takes urine and fecal samples and tests for alpha radiation. An automated system, supplied by Canberra Industries, counts the activities in the samples and processes the results. The Canberra system includes hardware and software. The managers of BCL want to improve the accuracy of the results they report to their final customers. The desired improvements are of particular interest to the managers of BCL because the levels of alpha-emitting radionuclides in samples measured at BCL are usually so low that a significant fraction of the measured signal is due to background and to the reagent material used to extract the radioactive nuclides from the samples. Also, the background and reagent signals show a significant level of random variation. The customers at BCL requested four major modifications of the software. The requested software changes have been made and tested. The present report is in two parts. The first part describes what the modifications were supposed to accomplish. The second part describes the changes on a line-by-line basis. The second part includes listings of the changed software and discusses possible steps to correct a particular error condition. Last, the second part describes the effect of truncation errors on the standard deviations calculated from samples whose signals are very nearly the same.

  6. Modifications of alpha processing software to improve calculation of limits for qualitative detection

    Kirkpatrick, J.R.

    1997-01-01

    The work described in this report was done for the Bioassay Counting Laboratory (BCL) of the Center of Excellence for Bioassay of the Analytical Services Organization at the Oak Ridge Y-12 Plant. BCL takes urine and fecal samples and tests for alpha radiation. An automated system, supplied by Canberra Industries, counts the activities in the samples and processes the results. The Canberra system includes hardware and software. The managers of BCL want to improve the accuracy of the results they report to their final customers. The desired improvements are of particular interest to the managers of BCL because the levels of alpha-emitting radionuclides in samples measured at BCL are usually so low that a significant fraction of the measured signal is due to background and to the reagent material used to extract the radioactive nuclides from the samples. Also, the background and reagent signals show a significant level of random variation. The customers at BCL requested four major modifications of the software. The requested software changes have been made and tested. The present report is in two parts. The first part describes what the modifications were supposed to accomplish. The second part describes the changes on a line-by-line basis. The second part includes listings of the changed software and discusses possible steps to correct a particular error condition. Last, the second part describes the effect of truncation errors on the standard deviations calculated from samples whose signals are very nearly the same

  7. Equilibrium Limit of Boundary Scattering in Carbon Nanostructures: Molecular Dynamics Calculations of Thermal Transport

    Haskins, Justin; Kinaci, Alper; Sevik, Cem; Cagin, Tahir

    2012-01-01

    It is widely known that graphene and many of its derivative nanostructures have exceedingly high reported thermal conductivities (up to 4000 W/mK at 300 K). Such attractive thermal properties beg the use of these structures in practical devices; however, to implement these materials while preserving transport quality, the influence of structure on thermal conductivity should be thoroughly understood. For graphene nanostructures, having average phonon mean free paths on the order of one micron, a primary concern is how size influences the potential for heat conduction. To investigate this, we employ a novel technique to evaluate the lattice thermal conductivity from the Green-Kubo relations and equilibrium molecular dynamics in systems where phonon-boundary scattering dominates heat flow. Specifically, the thermal conductivities of graphene nanoribbons and carbon nanotubes are calculated in sizes up to 3 microns, and the relative influence of boundary scattering on thermal transport is determined to be dominant at sizes less than 1 micron, after which the thermal transport largely depends on the quality of the nanostructure interface. The method is also extended to carbon nanostructures (fullerenes) where phonon confinement, as opposed to boundary scattering, dominates, and general trends related to the influence of curvature on thermal transport in these materials are discussed.

  8. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev’s Periodic Table — Ele- ment No. 155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in or- der to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  9. Applying Adjacent Hyperbolas to Calculation of the Upper Limit of the Periodic Table of Elements, with Use of Rhodium

    Khazan A.

    2011-01-01

    Full Text Available In the earlier study (Khazan A. Upper Limit in Mendeleev's Periodic Table - Element No.155. 2nd ed., Svenska fysikarkivet, Stockholm, 2010 the author showed how Rhodium can be applied to the hyperbolic law of the Periodic Table of Elements in order to calculate, with high precision, all other elements conceivable in the Table. Here we obtain the same result, with use of fraction linear functions (adjacent hyperbolas.

  10. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  11. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils

    Groenenberg, J.E.; Bonten, L.T.C. [Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands); Dijkstra, J.J. [Energy research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands); De Vries, W. [Department of Environmental Systems Analysis, Wageningen University, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands); Comans, R.N.J. [Department of Soil Quality, Wageningen University, Wageningen UR, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2012-07-15

    Here we evaluate the performance and limitations of two frequently used model-types to predict trace element solubility in soils: regression based 'partition-relations' and thermodynamically based 'multisurface models', for a large set of elements. For this purpose partition-relations were derived for As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, Zn. The multi-surface model included aqueous speciation, mineral equilibria, sorption to organic matter, Fe/Al-(hydr)oxides and clay. Both approaches were evaluated by their application to independent data for a wide variety of conditions. We conclude that Freundlich-based partition-relations are robust predictors for most cations and can be used for independent soils, but within the environmental conditions of the data used for their derivation. The multisurface model is shown to be able to successfully predict solution concentrations over a wide range of conditions. Predicted trends for oxy-anions agree well for both approaches but with larger (random) deviations than for cations.

  12. Hydrothermal solubility of uraninite. Final technical report

    Parks, G.A.; Pohl, D.C.

    1985-01-01

    Experimental measurements of the solubility of UO 2 from 100 to 300 0 C under 500 bars H 2 , in NaCl solutions at pH from 1 to 8 do not agree with solubilities calculated using existing thermodynamic databases. For pH 2 (hyd) has precipitated and is controlling solubility. For pH > 8, solubilities at all temperatures are much lower than predicted, suggesting that the U(OH)/sub delta/ - complex is much weaker than predicted. Extrapolated to 25 0 C, high pH solubility agrees within experimental error with the upper limit suggested by Ryan and Rai (1983). In the pH range 2 to 6, solubilities are up to three orders of magnitude lower than predicted for temperatures exceeding 200 0 C and up to two orders higher than predicted at lower temperatures. pH dependence in this region is negligible suggesting that U(OH) 4 (aq) predominates, thus the stability of this species is higher than presently estimated at low temperatures, but the enthalpy of solution is smaller. A low maximum observed near pH approx. =3 is presently unexplained. 40 refs., 16 figs., 12 tabs

  13. Evaluation of limit feeding varying levels of distillers dried grains with solubles in non-feed-withdrawal molt programs for laying hens.

    Mejia, L; Meyer, E T; Studer, D L; Utterback, P L; Utterback, C W; Parsons, C M; Koelkebeck, K W

    2011-02-01

    An experiment was conducted with 672 Hy-Line W-36 Single Comb White Leghorn hens (69 wk of age) to evaluate the effects of feeding varying levels of corn distillers dried grains with solubles (DDGS) with corn, wheat middlings, and soybean hulls on long-term laying hen postmolt performance. The control molt treatment consisted of a 47% corn:47% soybean hulls (C:SH) diet fed ad libitum for 28 d. Hens fed the other 7 treatments were limit fed 65 g/hen per day for 16 d, and then fed 55 g/hen per day for 12 d. Hens on treatments 2 and 3 were fed 49% C:35% wheat middlings (WM) or SH:10% DDGS diets (C:WM:10DDGS, C:SH:10DDGS). Hens on treatments 4 and 5 were fed 49% C:25% WM or SH:20% DDGS diets (C:WM:20DDGS, C:SH:20DDGS). Those on treatments 6 and 7 were fed 47% C:47% DDGS (C:DDGS) or 47% WM:47% DDGS (WM:DDGS) diets. Those on treatment 8 were fed a 94% DDGS diet. At 28 d, all hens were fed a corn-soybean meal layer diet (16% CP) and production performance was measured for 36 wk. None of the hens fed the molt diets went completely out of production, and only the C:SH and C:SH:10DDGS molt diets decreased hen-day egg production to below 5% by wk 4 of the molt period. Postmolt egg production was lowest (P 0.05) in egg weights were detected among treatments throughout the postmolt period. In addition, no consistent differences were observed among treatments for egg mass throughout the postmolt period. Overall results of this study indicated that limit feeding diets containing DDGS at levels of 65 or 55 g/hen per day during the molt period did not cause hens to totally cease egg production.

  14. Calculation of the effects of pumping, divertor configuration and fueling on density limit in a tokamak model problem

    Stacey, W. M.

    2001-01-01

    Several series of model problem calculations have been performed to investigate the predicted effect of pumping, divertor configuration and fueling on the maximum achievable density in diverted tokamaks. Density limitations due to thermal instabilities (confinement degradation and multifaceted axisymmetric radiation from the edge) and to divertor choking are considered. For gas fueling the maximum achievable density is relatively insensitive to pumping (on or off), to the divertor configuration (open or closed), or to the location of the gas injection, although the gas fueling rate required to achieve this maximum achievable density is quite sensitive to these choices. Thermal instabilities are predicted to limit the density at lower values than divertor choking. Higher-density limits are predicted for pellet injection than for gas fueling

  15. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  16. Variational calculation of the limit cycle and its frequency in a two-neuron model with delay

    Brandt, Sebastian F.; Wessel, Ralf; Pelster, Axel

    2006-01-01

    We consider a model system of two coupled Hopfield neurons, which is described by delay differential equations taking into account the finite signal propagation and processing times. When the delay exceeds a critical value, a limit cycle emerges via a supercritical Hopf bifurcation. First, we calculate its frequency and trajectory perturbatively by applying the Poincare-Lindstedt method. Then, the perturbation series are resummed by means of the Shohat expansion in good agreement with numerical values. However, with increasing delay, the accuracy of the results from the Shohat expansion worsens. We thus apply variational perturbation theory (VPT) to the perturbation expansions to obtain more accurate results, which moreover hold even in the limit of large delays

  17. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  18. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Solubility Parameters of Ionic Liquids

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  20. The Solubility Parameters of Ionic Liquids

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  1. Evaluation of limit feeding corn and distillers dried grains with solubles in non-feed-withdrawal molt programs for laying hens.

    Mejia, L; Meyer, E T; Utterback, P L; Utterback, C W; Parsons, C M; Koelkebeck, K W

    2010-03-01

    An experiment was conducted using 504 Hy-Line W-36 Single Comb White Leghorn hens (69 wk of age) randomly assigned to 1 of 7 treatments. These treatments consisted of a 47% corn:47% soy hulls diet (C:SH) fed ad libitum; a 94% corn diet fed at a rate of 36.3, 45.4, or 54.5 g/hen per day (CORN 36, CORN 45, and CORN 54, respectively); and a 94% corn distillers dried grains with solubles (DDGS) diet fed at the same rates as the previous corn diets (DDGS 36, DDGS 45, and DDGS 54, respectively) during the molt period of 28 d. The intent was to feed the DDGS diets for 28 d; however, all hens on these diets had very low feed intakes and greater than anticipated BW loss. Thus, they were switched to a 16% CP corn-soybean meal layer diet on d 19 of the molt period. At d 28, hens on all treatments were fed the same corn-soybean meal layer diet for 39 wk (73 to 112 wk of age). All DDGS diets and the CORN 36 diet resulted in total cessation of egg production during the molt period and egg production of hens fed the CORN 45, CORN 54, and C:SH diets had decreased to 3 and 4%, respectively, by d 28. Body weight loss during the 28-d molt period ranged from 14% for the CORN 54 diet to approximately 23% for the 3 DDGS diets. Postmolt egg production (5 to 43 wk) was higher for hens fed the DDGS molt diets than those fed the corn diets. There were no consistent differences in egg mass, egg-specific gravity, feed efficiency, or layer feed consumption among molt treatments for the postmolt period. These results indicate that limit feeding corn diet and DDGS diet in non-feed-withdrawal molt programs will yield long-term postmolt performance that is comparable to that observed by ad libitum feeding a C:SH diet.

  2. Solubility limit and luminescence properties of Eu{sup 3+} ions in Al{sub 2}O{sub 3} powder

    Onishi, Yuya; Nakamura, Toshihiro, E-mail: tnakamura@gunma-u.ac.jp; Adachi, Sadao, E-mail: adachi@gunma-u.ac.jp

    2016-08-15

    Al–Eu–O compounds are synthesized from Al{sub 2}O{sub 3}:Eu{sub 2}O{sub 3}=(1–x):x mixtures (x=0–0.15) by the metal organic decomposition method and subsequently calcined at various temperatures from T{sub c}=750 to 1200 °C in dry O{sub 2} atmosphere. The structural and luminescence properties of these compounds are investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation spectroscopy, and luminescence lifetime measurements. The present study focuses on the effects of the Eu{sub 2}O{sub 3} addition (x) on the material and phosphor properties of Al{sub 2}O{sub 3}:Eu{sup 3+}. The stable phase of α-Al{sub 2}O{sub 3} is synthesized at T{sub c}>1100 °C and cubic γ-Al{sub 2}O{sub 3} phase at T{sub c}≤1100 °C. The calcination temperature dependence of the PL intensity yields an activation of E{sub a}~0.8 eV for Eu{sup 3+} ions in the Al{sub 2}O{sub 3} host. The luminescence decay time is determined to be ~0.8 ms, independent of x. Temperature dependence of the PL intensity at T=20–450 K exhibits thermal quenching behavior with energies of 17 meV and 0.28 eV at low (<200 K) and high temperatures (>200 K), respectively. The solubility limit of Eu{sup 3+} ions in α-Al{sub 2}O{sub 3} is determined to be ~1%. The schematic energy-level diagram of Eu{sup 3+} in α-Al{sub 2}O{sub 3} is also proposed for the sake of a better understanding of the luminescence process of this phosphor system.

  3. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    Wolery, T.J.

    1992-09-14

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desired electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.

  4. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user's guide, and related documentation (Version 7.0)

    Wolery, T.J.

    1992-01-01

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desired electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = -2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file

  5. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  6. Shielding Calculations on Waste Packages – The Limits and Possibilities of different Calculation Methods by the example of homogeneous and inhomogeneous Waste Packages

    Adams Mike; Smalian Silva

    2017-01-01

    For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like “Monte-Carlo N-Particle Transport Code System” (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The prob...

  7. Radiochemical investigations on the solubility of molybdatophosphate in phosphate determination

    Noack, S.

    1975-01-01

    The solubility of various molybdatophosphates was determined under the conditions of a gravimetric phosphate determination by radiochemical means by labelling PO 4 3- with P-32. Starting with various conditions for phosphate determination via the molybdatophosphate of quinoline, 8-hydroxyquinoline, dimorpholino ethane, N,N,N',N'-tetrakis-β-hydroxypropyl ethylene diamine and N,N,N',N'-tetrakis-β-hydroxybutyl ethylene diamine, a general working rule was developed to determine the solubility. Taking the example of quinoline molybdatophosphates, a series of influencing factors - work, concentration and measuring parameters - were investigated in order to be able to limit the reliability region of the gravimetric phosphate determination. Depending on the conditions, the measured solubilities were between 10 -10 and 10 -6 Mol/l, the corresponding degrees of precipitation between 99.0 and 99.9999%. Apparent solubility products were calculated for the different molybdatophosphates using computer programmes especially developed for this purpose. (orig./RB) [de

  8. Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3

    Mumtaz, Fiza; Jaffari, G. Hassnain; Hassan, Qadeer ul; Shah, S. Ismat

    2018-06-01

    We present detailed comparative study of effect of isovalent i.e. Eu+3 substitution at A-site and tetra (Ti+4, Zr+4), penta (V+5) and hexavalent (W+6) substitutions at B-site in BiFeO3. Eu+3 substitution led to phase transformation and exhibited mixed phases i.e. rhombohedral and orthorhombic, while tetravalent substituents (Ti+4 and Zr+4) led to stabilization of cubic phase. In higher valent (i.e. V+5 and W+6) cases solubility limit was significantly reduced where orthorhombic phase was observed as in the case of parent compound. Phase transformation as a consequence of increase in microstrain and chemical pressure induced by the substituent has been discussed. Solubility limit of different B-site dopants i.e. Zr, W and V was extracted to 5%, 2% and 2%, respectively. Extra phases in various cases were Bi2Fe4O9, Bi25FeO40, Bi14W2O27, and Bi23V4O44.5 and their fractional amount have been quantified. Ti was substituted up to 15% and has been observed to be completely soluble in the parent compound. Solubility limits depends on ionic radii mismatch and valance difference of Fe+3 and dopant, in which valance difference plays more dominant role. Solubility limit and phase transformation has been explained in terms of change in bond strength and tolerance factor induced by incorporation of dopant which depend on its size and valence state. Detail optical, dielectric, ferroelectric, magnetic and transport properties of Eu and Ti co-doped samples and selected low concentration B-site doped compositions (i.e. 2%) have presented and discussed. Two d-d transitions and three charge transfer transitions were observed within UV-VIS range. Both change in cell volume for the same phase and transformation in crystal structure affects the band gap. Increase in room temperature dielectric constant and saturation polarization was also found to increase in case of Eu-Ti co-doped samples with increasing concentration of Ti. Substitution of Eu at A-site and Ti at B-site led to

  9. Solubility of Carbon in Nanocrystalline -Iron

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  10. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-05-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

  11. Heat transfer calculations for the High Flux Isotope Reactor (HFIR). Technical specifications: bases for safety limits and limiting safety system settings

    Sims, T.M.; Swanks, J.H.

    1977-09-01

    Heat transfer analyses, in support of the preparation of the HFIR technical specifications, were made to establish the bases for the safety limits and limiting safety system settings applicable to the HFIR. The results of these analyses, along with the detailed bases, are presented

  12. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn2+ ions: Quantum chemical calculations and detection of bacteria

    Subha, L.; Balakrishnan, C.; Natarajan, Satheesh; Theetharappan, M.; Subramanian, Balanehru; Neelakantan, M. A.

    2016-01-01

    An amino acid Schiff base (R) capable of recognizing Zn2+ ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn2+ ions, the receptor exhibits fluorescence intensity enhancements ( 40 fold) at 460 nm (quantum yield, Φ = 0.05 for R and Φ = 0.18 for R-Zn2+) and can be detected by naked eye under UV light. The receptor can recognize the Zn2+ (1.04 × 10- 8 M) selectively for other metal ions in the pH range of 7.5-11. The Zn2+ chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn2+ was investigated by 1H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn2+. Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus.

  13. Cyclodextrin Controlled Release of Poorly Water-Soluble Drugs from Hydrogels

    Woldum, Henriette Sie; Madsen, Flemming; Larsen, Kim Lambertsen

    2008-01-01

    The effect of 2-hydroxypropyl- -cyclodextrin and -cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation...... and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all -cyclodextrin complexes was limited. The load also was increased...

  14. Dissolved Concentration Limits of Radioactive Elements

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  15. Dissolved Concentration Limits of Radioactive Elements

    Y. Chen; E.R. Thomas; F.J. Pearson; P.L. Cloke; T.L. Steinborn; P.V. Brady

    2003-06-20

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of radioactive elements under possible repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, and measurements made in laboratory experiments and field work. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 radioactive elements (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium), which are important to calculated dose. Model outputs are mainly in the form of look-up tables plus one or more uncertainty terms. The rest are either in the form of distributions or single values. The results of this analysis are fundamental inputs for total system performance assessment to constrain the release of these elements from waste packages and the engineered barrier system. Solubilities of plutonium, neptunium, uranium, americium, actinium, thorium, protactinium, lead, and radium have been re-evaluated using the newly updated thermodynamic database (Data0.ymp.R2). For all of the actinides, identical modeling approaches and consistent environmental conditions were used to develop solubility models in this revision. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, activity coefficients, and selection of solubility controlling phase have been quantified or otherwise addressed. Moreover, a new blended plutonium solubility model has been developed in this revision, which gives a mean solubility that is three orders of magnitude lower than the plutonium solubility model used for the Total System Performance Assessment for the Site Recommendation. Two alternative neptunium solubility models have also been

  16. A computer program for calculation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. III

    Hansen, F.Y.

    1978-01-01

    This program calculates the final pair distribution functions of non-crystalline materials on the basis of the experimental structure factor as calculated in part I and the parameters of the small distance part of the pair distribution function as calculated in part II. In this way, truncation error may be eliminated from the final pair distribution function. The calculations with this program depend on the results of calculations with the programs described in parts I and II. The final pair distribution function is calculated by a Fourier transform of a combination of an experimental structure factor and a model structure factor. The storage requirement depends on the number of data points in the structure factor, the number of data points in the final pair distribution function and the number of peaks necessary to resolve the small distance part of the pair distribution function. In the present set-up a storage requirement is set to 8860 words which is estimated to be satisfactory for a large number of cases. (Auth.)

  17. Feasibility study of SMART core with soluble boron

    Kim, Kang Seog; Lee, Chung Chan; Zee, Sung Quun

    2000-11-01

    The excess reactivity of SMART core without soluble boron is effectively controlled by 49 CEDM. We suggest another method to control the core excess reactivity using both the checkerboard type of 25 CEDM and soluble boron and perform a feasibility calculation. The soluble boron operation is categorized into the on-line and the off-line mechanisms. The former is to successively control the boron concentration according to the excess reactivity during operation and the latter is to add and change some soluble boron during refueling and repairing. Since the on-line soluble boron control system of SMART is conceptually identical to that of the commercial pressurized water reactor, we did not perform the analysis. Since the soluble boron in the complete off-line system increases the moderator temperature coefficient, the reactivity defect between hot and cold moderator temperature is decreased. However, the decrease of the reactivity is not big to satisfy the core reactivity limits. When using 25 CEDM, the possible mechanism is to control the excess reactivity by both control rod and on-line boron control mechanism between cold and hot zero power and by only control rod at hot full power. We selected the loading pattern satisfying the requirement in the view of nuclear design

  18. Sensitivity analysis of uranium solubility under strongly oxidizing conditions

    Liu, L.; Neretnieks, I.

    1999-01-01

    To evaluate the effect of geochemical conditions in the repository on the solubility of uranium under strongly oxidizing conditions, a mathematical model has been developed to determine the solubility, by utilizing a set of nonlinear algebraic equations to describe the chemical equilibria in the groundwater environment. The model takes into account the predominant precipitation-dissolution reactions, hydrolysis reactions and complexation reactions that may occur under strongly oxidizing conditions. The model also includes the solubility-limiting solids induced by the presence of carbonate, phosphate, silicate, calcium, and sodium in the groundwater. The thermodynamic equilibrium constants used in the solubility calculations are essentially taken from the NEA Thermochemical Data Base of Uranium, with some modification and some uranium minerals added, such as soddyite, rutherfordite, uranophane, uranyl orthophosphate, and becquerelite. By applying this model, the sensitivities of uranium solubility to variations in the concentrations of various groundwater component species are systematically investigated. The results show that the total analytical concentrations of carbonate, phosphate, silicate, and calcium in deep groundwater play the most important role in determining the solubility of uranium under strongly oxidizing conditions

  19. Solubility limit of Mn{sup 2+} ions in Zn{sub 1−x}Mn{sub x}Te nanocrystals grown within an ultraviolet-transparent glass template

    Silva, Alessandra dos Santos, E-mail: alemestrado@gmail.com [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil); Silva, Sebastião William da; Morais, Paulo Cesar de [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Dantas, Noelio Oliveira [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil)

    2016-05-15

    This paper reports on the synthesis of Zn{sub 1−x}Mn{sub x}Te nanocrystals (NCs) (with 0 ≤ x ≤ 0.800) within a PZABP glass system (P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO) using the fusion method. The as-grown samples were investigated by optical absorption measurements, atomic force microscopy, X-ray diffraction, and Raman spectroscopy. The mean radius of the as-produced NCs (around R ≈ 2.2 nm) was well below the exciton Bohr radius of the bulk ZnTe (5.2 nm). All the characterization techniques employed in this report confirmed the successful inclusion of Mn{sup 2+} ions in the ZnTe-based NCs (Zn{sub 1−x}Mn{sub x}Te NCs) up to the nominal solubility limit of x = 0.100. Above this solubility limit (around x = 0.100), one can observe the formation of MnO and α-MnO{sub 2} NCs, since the nucleation rate for the formation of these NCs is greater than that of Zn{sub 1−x}Mn{sub x}Te NCs, at high x concentrations.Graphical abstract.

  20. Determination of calcium salt solubility with changes in pH and P(CO(2)), simulating varying gastrointestinal environments.

    Goss, Sandra L; Lemons, Karen A; Kerstetter, Jane E; Bogner, Robin H

    2007-11-01

    The amount of calcium available for absorption is dependent, in part, on its sustained solubility in the gastrointestinal (GI) tract. Many calcium salts, which are the calcium sources in supplements and food, have pH-dependent solubility and may have limited availability in the small intestine, the major site of absorption. The equilibrium solubility of four calcium salts (calcium oxalate hydrate, calcium citrate tetrahydrate, calcium phosphate, calcium glycerophosphate) were determined at controlled pH values (7.5, 6.0, 4.5 and solubility of calcium carbonate was also measured at pH 7.5, 6.0 and 4.5 with two CO(2) environments (0.3 and 152 mmHg) above the solution. The precipitation profile of CaCO(3) was calculated using in-vivo data for bicarbonate and pH from literature and equilibrium calculations. As pH increased, the solubility of each calcium salt increased. However, in distilled water each salt produced a different pH, affecting its solubility value. Although calcium citrate does have a higher solubility than CaCO(3) in water, there is little difference when the pH is controlled at pH 7.5. The partial pressure of CO(2) also played a role in calcium carbonate solubility, depressing the solubility at pH 7.5. The calculations of soluble calcium resulted in profiles of available calcium, which agreed with previously published in-vivo data on absorbed calcium. The experimental data illustrate the impact of pH and CO(2) on the solubility of many calcium salts in the presence of bicarbonate secretions in the intestine. Calculated profiles using in-vivo calcium and bicarbonate concentrations demonstrate that large calcium doses may not further increase intestinal calcium absorption once the calcium carbonate solubility product has been reached.

  1. Calculation of risk-based detection limits for radionuclides in the liquid effluents from Korean nuclear power plants

    Cheong, Jae Hak

    2017-01-01

    In order to review if present detection limits of radionuclides in liquid effluent from nuclear power plants are effective enough to warrant compliance with regulatory discharge limits, a risk-based approach is developed to derive a new detection limit for each radionuclide based on radiological criteria. Equations and adjustment factors are also proposed to discriminate the validity of the detection limits for multiple radionuclides in the liquid effluent with or without consideration of the nuclide composition. From case studies to three nuclear power plants in Korea with actual operation data from 2006 to 2015, the present detection limits have turned out to be effective for Hanul Unit 1 but may not be sensitive enough for Kori Unit 1 (8 out of 14 radionuclides) and Wolsong Unit 1 (9 out of 42 radionuclides). However, it is shown that the present detection limits for the latter two nuclear power plants can be justified, if credit is given to the radionuclide composition. Otherwise, consideration should be given to adjustment of the present detection limits. The risk-based approach of this study can be used to determine the validity of established detection limits of a specific nuclear power plant. (author)

  2. Possibilities and limitations of analogue methods for studying the dynamics of nuclear power stations; Possibilites et limitations du calcul analogique pour les etudes dynamiques de centrales nucleaires

    Caillet, C; Deat, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1. Introduction: the present paper is devoted to analog simulation of problems related to nuclear reactors other than the simulation of the kinetic equations which is well known. 2. Thermodynamic problems: various problems relative to temperature evolution in a reactor, in a pipe, in an exchanger, in a turbine, are studied, and simulation techniques used by earlier authors are critically reviewed. 3. Pipe simulators: it is shown that this problem can be solved by the use of specialized simulators which will be described and analysed. 4. Rotating machine simulators: the particular aspect of rotating machine calculations introducing frequent use of diagrams is emphasized. A simulator requiring both digital and analogue methods is described. 5. The study of a nuclear power station: as an example it is proposed to discuss problems a rising in connection with the preceding elements (a, b, c, d) when simulating the behaviour of large nuclear plants. The part played by ordinary computing elements for the simulation of the different servomechanism transfer functions is considered and process of regulation is outlined. 6. Conclusion: the necessity of the use of high quality simulators and computers is underlined and the accuracy of the solutions is discussed. (author)Fren. [French] 1. Cinetique des reacteurs: la simulation des equations cinetiques d'un reacteur nucleaire ne pose desormais plus de probleme. II est donc possible de faire le point des differentes applications de la technique analogique dans ce domaine. 2. Les problemes thermodynamiques: on discute les differents problemes poses par l'evolution des temperatures dans un reacteur, dans une tuyauterie, dans un echangeur, dans une turbine, et on passe en revue les techniques de simulation proposees jusqu'a ce jour. 3s simulateurs de tuyauteries: on montre comment les differents problemes poses ci-dessus peuvent etre resolus, pour une classe tres vaste de reacteurs par l'emploi de simulateurs speciaux que l

  3. CLASSICAL CALCULATION METHODS OF COSTS AND THEIR LIMITS IN ACTUAL FRAME OF ROMANIAN ECONOMY. PRESENT TENDENCIES IN COSTS ACCOUNTANCY

    Simona Dragomirescu

    2008-12-01

    Full Text Available Classical accountancy shaped and coagulated in an informational system grafted on traditional production systems, characterized by mass productions, planning etc. The powerful concentrations and grouping, economies globalization, both as offer and as demand, the new restrictions and economical opportunities and global environment technologies lead to a redefining of enterprises’ objectives. From the well-known “quantity and productivity”, the enterprise faced a new system of objectives: quality’s increase; terms and costs decrease; productivity; flexibility. In such conditions the need of “defining new methods” appeared, the need of adapting the fundamental calculation methods, their improvement – respective the appearance of modern methods of costs calculation.

  4. Determination and assessment of the concentration limits to be used in SR-Can

    Duro, L; Grive, M; Cera, E; Gaona, X; Domenech, C; Bruno, J [Enviros Spain S.L., Barcelona (Spain)

    2006-12-15

    This report presents the results for solubility limit calculations for the SR-Can assessment. It has been organized into five chapters that constitute the core of the report, supported by several appendices containing additional and supporting information. The updated thermodynamic database used to conduct the solubility calculations has been issued as a separate report. The near field system for which the concentration limits of the radionuclides are assessed and the scenarios selected by SKB to calculate the solubility limits are thoroughly described. Several sources of information have been used to support the calculated solubility limits. In particular results from selected spent fuel dissolution experiments and natural analogue data are discussed to introduce the proper perspective to the results from the thermodynamic calculations. In addition, the main conceptual and numerical uncertainties associated to the assessment of the concentration limits of each element are numerically evaluated and discussed. Equilibrium calculations have been conducted to select the solubility limiting solid phase for each element. Furthermore a sensitivity analysis of parameters of interest for each element is presented and the impact of the uncertainties identified on the solubility of each element quantified. The results are presented in a series of tables containing the calculated solubility for each radionuclide under the reference conditions. Finally concentration limits that are recommended result from the expert judgement built-up around the various sources of information together with the quantification of radionuclide solubility data and their associated uncertainties. The results are compared to previous solubility limits determination performed by SKB in SR 97, as well as the recommended values from other HLNW management organisations.

  5. Determination and assessment of the concentration limits to be used in SR-Can

    Duro, L.; Grive, M.; Cera, E.; Gaona, X.; Domenech, C.; Bruno, J.

    2006-12-01

    This report presents the results for solubility limit calculations for the SR-Can assessment. It has been organized into five chapters that constitute the core of the report, supported by several appendices containing additional and supporting information. The updated thermodynamic database used to conduct the solubility calculations has been issued as a separate report. The near field system for which the concentration limits of the radionuclides are assessed and the scenarios selected by SKB to calculate the solubility limits are thoroughly described. Several sources of information have been used to support the calculated solubility limits. In particular results from selected spent fuel dissolution experiments and natural analogue data are discussed to introduce the proper perspective to the results from the thermodynamic calculations. In addition, the main conceptual and numerical uncertainties associated to the assessment of the concentration limits of each element are numerically evaluated and discussed. Equilibrium calculations have been conducted to select the solubility limiting solid phase for each element. Furthermore a sensitivity analysis of parameters of interest for each element is presented and the impact of the uncertainties identified on the solubility of each element quantified. The results are presented in a series of tables containing the calculated solubility for each radionuclide under the reference conditions. Finally concentration limits that are recommended result from the expert judgement built-up around the various sources of information together with the quantification of radionuclide solubility data and their associated uncertainties. The results are compared to previous solubility limits determination performed by SKB in SR 97, as well as the recommended values from other HLNW management organisations

  6. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  7. The Hildebrand solubility parameters of ionic liquids-part 2.

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  8. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Andrzej Marciniak

    2011-06-01

    Full Text Available The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  9. 75 FR 27564 - Final Notice on Ending the “Hold-Harmless” Policy in Calculating Section 8 Income Limits Under...

    2010-05-17

    ... face serious cash flow problems. Such a decrease in rental income would result in insufficient cash... funds will face serious cash flow issues if the hold-harmless policy is eliminated. These commenters... from Section 8 income limits, while well intentioned, would create a massive administrative problem...

  10. New calculation of derived limits for the 1960 radiation protection guides reflecting updated models for dosimetry and biological transport

    Eckerman, K.F.; Watson, S.B.; Nelson, C.B.; Nelson, D.R.; Richardson, A.C.B.; Sullivan, R.E.

    1984-12-01

    This report presents revised values for the radioactivity concentration guides (RCGs), based on the 1960 primary radiation protection guides (RPGs) for occupational exposure (FRC 1960) and for underground uranium miners (EPA 1971a) using the updated dosimetric models developed to prepare ICRP Publication 30. Unlike the derived quantities presented in Publication 30, which are based on limitation of the weighted sum of doses to all irradiated tissues, these RCGs are based on the ''critical organ'' approach of the 1960 guidance, which was a single limit for the most critically irradiated organ or tissue. This report provides revised guides for the 1960 Federal guidance which are consistent with current dosimetric relationships. 2 figs., 4 tabs

  11. Contribution and limits of geochemical calculation codes to evaluate the long term behavior of nuclear waste glasses

    Fritz, B.; Crovisier, J.L.

    1997-01-01

    Geochemical models have been intensively developed by researchers since more than twenty five years in order to be able to better understand and/or predict the long term stability/instability of water-rock systems. These geochemical codes were ail built first on a thermodynamic approach deriving from the application of Mass Action Law. The resulting first generation of models allowed to detect or predict the possible mass transfers (thermodynamic models) between aqueous and mineral phases including irreversible dissolutions of primary minerals and/or precipitation near equilibrium of secondary mineral phases. The recent development of models based on combined thermodynamics and kinetics opens the field of Lime dependent reactions prediction. This is crucial if one thinks to combine geochemical and hydrological studies in the so-called coupled models for transport and reaction calculations. All these models are progressively applied to the prediction of long term behavior of mineral phases, and more specifically glasses. In order to succeed in chat specific extension of the models, but also the data bases, there is a great need for additional new data from experimental approaches and from natural analogues. The modelling approach appears than also very useful in order to interpret the results of experimental data and to relate them to long term data extracted from natural analogues. Specific functions for modelling solid solution phases mat' also be used for describing the products of glasses alterations. (authors)

  12. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  13. Preliminary considerations concerning actinide solubilities

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  14. Applying ISO 11929:2010 Standard to detection limit calculation in least-squares based multi-nuclide gamma-ray spectrum evaluation

    Kanisch, G., E-mail: guenter.kanisch@hanse.net

    2017-05-21

    The concepts of ISO 11929 (2010) are applied to evaluation of radionuclide activities from more complex multi-nuclide gamma-ray spectra. From net peak areas estimated by peak fitting, activities and their standard uncertainties are calculated by weighted linear least-squares method with an additional step, where uncertainties of the design matrix elements are taken into account. A numerical treatment of the standard's uncertainty function, based on ISO 11929 Annex C.5, leads to a procedure for deriving decision threshold and detection limit values. The methods shown allow resolving interferences between radionuclide activities also in case of calculating detection limits where they can improve the latter by including more than one gamma line per radionuclide. The co'mmon single nuclide weighted mean is extended to an interference-corrected (generalized) weighted mean, which, combined with the least-squares method, allows faster detection limit calculations. In addition, a new grouped uncertainty budget was inferred, which for each radionuclide gives uncertainty budgets from seven main variables, such as net count rates, peak efficiencies, gamma emission intensities and others; grouping refers to summation over lists of peaks per radionuclide.

  15. Gas solubilities widespread applications

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  16. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin

    2016-01-01

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.

  17. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  18. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory

    Vegge, Tejs

    2004-01-01

    The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located usi...... to be rate-limiting for the ab- and desorption of hydrogen, respectively. Zero-point energy contributions are found to be substantial for the diffusion of atomic hydrogen, but classical rates are still found to be within an order of magnitude at room temperature.......The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located using...

  19. Neptunium (IV) oxalate solubility

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  20. Thermodynamic Approach to Boron Nitride Nanotube Solubility and Dispersion

    Tiano, A. L.; Gibbons, L.; Tsui, M.; Applin, S. I.; Silva, R.; Park, C.; Fay, C. C.

    2016-01-01

    Inadequate dispersion of nanomaterials is a critical issue that significantly limits the potential properties of nanocomposites and when overcome, will enable further enhancement of material properties. The most common methods used to improve dispersion include surface functionalization, surfactants, polymer wrapping, and sonication. Although these approaches have proven effective, they often achieve dispersion by altering the surface or structure of the nanomaterial and ultimately, their intrinsic properties. Co-solvents are commonly utilized in the polymer, paint, and art conservation industries to selectively dissolve materials. These co-solvents are utilized based on thermodynamic interaction parameters and are chosen so that the original materials are not affected. The same concept was applied to enhance the dispersion of boron nitride nanotubes (BNNTs) to facilitate the fabrication of BNNT nanocomposites. Of the solvents tested, dimethylacetamide (DMAc) exhibited the most stable, uniform dispersion of BNNTs, followed by N,N-dimethylformamide (DMF), acetone, and N-methyl-2-pyrrolidone (NMP). Utilizing the known Hansen solubility parameters of these solvents in comparison to the BNNT dispersion state, a region of good solubility was proposed. This solubility region was used to identify co-solvent systems that led to improved BNNT dispersion in poor solvents such as toluene, hexane, and ethanol. Incorporating the data from the co-solvent studies further refined the proposed solubility region. From this region, the Hansen solubility parameters for BNNTs are thought to lie at the midpoint of the solubility sphere: 16.8, 10.7, and 9.0 MPa(exp 1/2) for delta d, delta p, and delta h, respectively, with a calculated Hildebrand parameter of 21.8 MPa)exp 1/2).

  1. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    NA

    2004-11-22

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  2. Solubility of Nd in brine

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  3. Rode's iterative calculation of surface optical phonon scattering limited electron mobility in N-polar GaN devices

    Ghosh, Krishnendu; Singisetti, Uttam

    2015-01-01

    N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO 2 and ZrO 2 high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al 2 O 3 , the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density

  4. A computer program for calculation of parameters necessary for the computation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. II

    Hansen, F.Y.

    1978-01-01

    The pair distribution function of non-crystalline materials may be obtained by a Fourier transform of the structure factor as calculated in part I of this series. The structure factor is often limited in the sense that it shows significant oscillations at the maximal wave vector transfers obtainable. The Fourier transform of such functions, therefore, introduces truncation errors in the transformed function. With this program a parametrization of the small distance part of the pair distribution function is obtained according to a method described which enables one to eliminate truncation error from the final pair distribution function. It is based on a least squares fit calculation of the small distance part of the pair distribution function obtained by a direct transform of the experimental structure factor and a model pair distribution function obtained from a model structure factor truncated at the same wave vector transfers as the experimental factor. The storage requirement depends on the number of structure factor data and the number of peaks used to resolve the small distance part of the pair distribution function. In the present set-up storage requirement is set to 15083 words, which is estimated to be satisfactory for a large number of cases. (Auth.)

  5. Calculating and reporting effect sizes on scientific papers (1: p < 0.05 limitations in the analysis of mean differences of two groups

    Helena Espirito Santo

    2015-02-01

    Since p-values from the results of the statistical tests do not indicate the magnitude or importance of a difference, then effect sizes (ES should reported. In fact, ES give meaning to statistical tests; emphasize the power of statistical tests; reduce the risk of interpret mere sampling variation as real relationship; can increase the reporting of “non-significant"results, and allow the accumulation of knowledge from several studies using meta-analysis. Thus, the objectives of this paper are to present the limits of the significance level; describe the foundations of presentation of ES of statistical tests to analyze differences between two groups; present the formulas to calculate directly ES, providing examples of our own previous studies; show how to calculate confidence intervals; provide the conversion formulas for the review of the literature; indicate how to interpret the ES; and show that, although interpretable, the meaning (small, medium or large effect for an arbitrary metric could be inaccurate, requiring that interpretation should be made in the context of the research area and in the context of real world variables.

  6. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  7. NEARSOL, Aqueous Speciation and Solubility of Actinides for Waste Disposal

    Leach, S.J.; Pryke, D.C.

    1989-01-01

    A - Description of program or function: NEARSOL models the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. B - Method of solution: The program draws information from a thermodynamic data base consisting of solubility products and complex formation constants for all known species, and standard electrode potentials, at 25 C, corrected for ionic strength effects. By minimising the free energy of the system through a series of iterations, a precipitating solid phase is predicted which limits the solubility, and the concentration of the main aqueous species are calculated as a function of pH. Initially the program evaluates only hydroxide and carbonate species, but the effect of sulphate, phosphate and fluoride anions can also be included. The program is simple to use, requiring inputs of: 1. Actinide(s); 2. pH range; 3. Ionic strength; 4. Redox conditions; 5. Ligand concentrations. Functions are included to calculate the distribution of the protonated and un-protonated forms of carbonate and phosphate and the value of Eh as a function of pH under disposal conditions as required. The program can further evaluate the role of free calcium ions. C - Restrictions on the complexity of the problem: None

  8. Determination of Fe-55 and Ni-63 in Environmental Samples. Analytical Problems. Characteristic Limits. Automatized Calculation; Determinacion de 55{sup F}e y 63{sup N}i en Muestras Ambientales. Problemas Analiticos. Limites Caracteristicos. Calculo Automatizado

    Gasco, C; Navarro, N; Gonzalez, P; Heras, M C; Gapan, M P; Alonso, C; Calderon, A; Sanchez, D; Morante, R; Fernandez, M; Gajate, A; Alvarez, A

    2008-08-06

    The Department of Vigilance Radiologica y Radiactividad Ambiental from CIEMAT has developed an appropriate analytical methodology for Fe-55 and Ni-63 sequential determination in environmental samples based on the procedure used by RIS0 Laboratories. The experimental results obtained in the mayor and minor elements behaviour (soil and air constituents) in the different types of resins used for separating Fe-55 and Ni-63 are showed in this report. The measuring method of both isotopes by scintillation counting has been optimized with Ultima Gold liquid with different concentrations of stable element Fe and Ni. The decontamination factors of different gamma-emitters are experimentally determined in this method with the presence of soil matrix. The Fe-55 and Ni-63 activity concentrations and their associated uncertainties have been calculated from the counting data and sample preparation. A computer application has been implemented in Visual Basic in excel sheets for: (I) obtaining the counting data from spectrometer and counts in each window, (II) representing graphically the background and sample spectrums, (III) determining the activity concentration and its associated uncertainty and (IV) calculating the characteristic limits using ISO 11929 (2007) with various confidence levels. (Author) 30 refs.

  9. Effect of composition of simulated intestinal media on the solubility of poorly soluble compounds investigated by design of experiments

    Madsen, Cecilie Maria; Feng, Kung-I; Leithead, Andrew

    2018-01-01

    The composition of the human intestinal fluids varies both intra- and inter-individually. This will influence the solubility of orally administered drug compounds, and hence, the absorption and efficacy of compounds displaying solubility limited absorption. The purpose of this study was to assess...... studies feasible compared to single SIF solubility studies. Applying this DoE approach will lead to a better understanding of the impact of intestinal fluid composition on the solubility of a given drug compound....

  10. Solubility and speciation calculation for uranium, plutonium, neptunium and thorium in natural groundwaters. Theory, thermodynamic data bases and first applications. Loeslichkeits- und Speziationsberechnungen fuer U, Pu, Np und Th in natuerlichen Grundwaessern. Theorie, thermodynamische Dateien und erste Anwendungen

    Schweingruber, M

    1981-11-01

    The computer code MINEQL was adapted and extended to assess the solubility and speciation of radioactive waste nuclides in groundwaters under conditions which are expected to exist in the surroundings of planned underground repositories. By means of an additional data base including standard reaction enthalpies and heat capacities at 25 degrees C, the relevant equilibrium constants at 25 degrees C can be converted to other temperatures using Ulich's formulae. The activity coefficients for dissolved species are modelled with a temperature dependent function of the Davies' approximation type. The report is segmented in three main parts: (1) a review of the MINEQL fundamentals and a summary of the theory needed for the extensions; (2) an outline of the general programme structure and of criteria applied to the selection of thermodynamic data; (3) a discussion of the results from first model applications to evaluate the solubility and speciation of U, Pu, Np and Th in two Swiss groundwaters, based either on the approach of negligible chemical disturbance or on a solid/solution titration concept. All thermodynamic data involved in this study are collected in an appendix, together with a compilation of references.

  11. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  12. Uranium solubility and speciation in ground water

    Ollila, K.

    1985-04-01

    The purpose of this study has been to assess the solubility and possible species of uranium in groundwater at the disposal conditions of spent fuel. The effects of radiolysis and bentonite are considered. The assessment is based on the theoretical calculations found in the literature. The Finnish experimental results are included. The conservative estimate for uranium solubility under the oxidizing conditions caused by alpha radiolysis is based on the oxidation of uranium to the U(VI) state and formation of carbonate complex. For the groundwater with the typical carbonate content of 275 mg/l and the high carbonate content of 485 mg/l due to bentonite, the solubility values of 360 mg u/l and 950 mg U/l, are obtained, respectively. The experimental results predict considerably lower values, 0.5-20 mg U/l. The solubility of uranium under the undisturbed reducing conditions may be calculated based on the hydrolysis, carbonate complexation and redox reactions. The results vary considerably depending on the thermodynamic data used. The wide ranges of the most important groundwater parameters are seen in the solubility values. The experimental results show the same trends. As a conservative value for the solubility in reducing groundwater 50-500 μg U/l is estimated. (author)

  13. Sibutramine characterization and solubility, a theoretical study

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  14. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  15. A framework for API solubility modelling

    Conte, Elisa; Gani, Rafiqul; Crafts, Peter

    . In addition, most of the models are not predictive and requires experimental data for the calculation of the needed parameters. This work aims at developing an efficient framework for the solubility modelling of Active Pharmaceutical Ingredients (API) in water and organic solvents. With this framework......-SAFT) are used for solubility calculations when the needed interaction parameters or experimental data are available. The CI-UNIFAC is instead used when the previous models lack interaction parameters or when solubility data are not available. A new GC+ model for APIs solvent selection based...... on the hydrophobicity, hydrophilicity and polarity information of the API and solvent is also developed, for performing fast solvent selection and screening. Eventually, all the previous developments are integrated in a framework for their efficient and integrated use. Two case studies are presented: the first...

  16. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe

    2016-01-01

    measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease...

  17. Radionuclide solubility control by solid solutions

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  18. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    P. Bernot

    2005-01-01

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO 2 as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with 231 Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise

  19. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or

  20. Solubility of hydrogen in water in a broad temperature and pressure range

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  1. Solubility data for cement hydrate phases (25oC)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  2. Towards Improved Optical Limiters

    Huffman, Peter

    2002-01-01

    .... The first approach was to synthesize and study soluble thallium phthalocyanines. Thallium, due to its proximity to lead and indium on the periodic table, should exhibit favorable optical limiting properties...

  3. Molecular dynamics simulations of zinc oxide solubility: From bulk down to nanoparticles

    Escorihuela, Laura; Fernández, Alberto; Rallo, Robert; Martorell, Benjamí

    2018-02-01

    The solubility of metal oxides is one of the key descriptors for the evaluation of their potential toxic effects, both in the bulk form and in nanoparticulated aggregates. Current work presents a new methodology for the in silico assessment of the solubility of metal oxides, which is demonstrated using a well-studied system, ZnO. The calculation of the solubility is based on statistical thermodynamics tools combined with Density Functional Tight Binding theory for the evaluation of the free energy exchange during the dissolution process. Models of small ZnO clusters are used for describing the final dissolved material, since the complete ionic dissolution of ZnO is hindered by the formation of O2- anions in solution, which are highly unstable. Results show very good agreement between the computed solubility values and experimental data for ZnO bulk, up to 0.5 mg·L-1 and equivalents of 50 g·L-1 for the free Zn2+ cation in solution. However, the reference model for solid nanoparticles formed by free space nanoparticles can only give a limited quantitative solubility evaluation for ZnO nanoparticles.

  4. Effect of amides on lithium tetraborate solubility

    Tsekhanskij, R S; Skvortsov, V C; Molodkin, A K; Sadetdi-pov, Sh V [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-03-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systems lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethyl-formamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations.

  5. Effect of amides on lithium tetraborate solubility

    Tsekhanskij, R.S.; Skvortsov, V.C.; Molodkin, A.K.; Sadetdi- pov, Sh.V.

    1983-01-01

    Using the methods of solubility, densi- and refractometry at 25 deg C, it has been established that the systemS lithium tetraborate-formamide (acetamide, dimethyl-formamide)-water are of a simple eutonic type. Amides decrease the salt solubility. Lyotropic effect, as calculated for molar concentrations (-Lsub(M)) relative to the absolute value, increases from formamide to dimethylformamide. The sequence is determined by the fact that, when there is one or two hydrophilic methyl groups in amide molecules which are in contact with tetraborate, they decrease the hydration energy of lithium cations

  6. A methodology for calculating transport emissions in cities with limited traffic data: Case study of diesel particulates and black carbon emissions in Murmansk.

    Kholod, N; Evans, M; Gusev, E; Yu, S; Malyshev, V; Tretyakova, S; Barinov, A

    2016-03-15

    This paper presents a methodology for calculating exhaust emissions from on-road transport in cities with low-quality traffic data and outdated vehicle registries. The methodology consists of data collection approaches and emission calculation methods. For data collection, the paper suggests using video survey and parking lot survey methods developed for the International Vehicular Emissions model. Additional sources of information include data from the largest transportation companies, vehicle inspection stations, and official vehicle registries. The paper suggests using the European Computer Programme to Calculate Emissions from Road Transport (COPERT) 4 model to calculate emissions, especially in countries that implemented European emissions standards. If available, the local emission factors should be used instead of the default COPERT emission factors. The paper also suggests additional steps in the methodology to calculate emissions only from diesel vehicles. We applied this methodology to calculate black carbon emissions from diesel on-road vehicles in Murmansk, Russia. The results from Murmansk show that diesel vehicles emitted 11.7 tons of black carbon in 2014. The main factors determining the level of emissions are the structure of the vehicle fleet and the level of vehicle emission controls. Vehicles without controls emit about 55% of black carbon emissions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Prediction of the solubility in lipidic solvent mixture: Investigation of the modeling approach and thermodynamic analysis of solubility.

    Patel, Shruti V; Patel, Sarsvatkumar

    2015-09-18

    Self-micro emulsifying drug delivery system (SMEDDS) is one of the methods to improve solubility and bioavailability of poorly soluble drug(s). The knowledge of the solubility of pharmaceuticals in pure lipidic solvents and solvent mixtures is crucial for designing the SMEDDS of poorly soluble drug substances. Since, experiments are very time consuming, a model, which allows for solubility predictions in solvent mixtures based on less experimental data is desirable for efficiency. Solvents employed were Labrafil® M1944CS and Labrasol® as lipidic solvents; Capryol-90®, Capryol-PGMC® and Tween®-80 as surfactants; Transcutol® and PEG-400 as co-solvents. Solubilities of both drugs were determined in single solvent systems at temperature (T) range of 283-333K. In present study, we investigated the applicability of the thermodynamic model to understand the solubility behavior of drugs in the lipiodic solvents. By using the Van't Hoff and general solubility theory, the thermodynamic functions like Gibbs free energy, enthalpy and entropy of solution, mixing and solvation for drug in single and mixed solvents were understood. The thermodynamic parameters were understood in the framework of drug-solvent interaction based on their chemical similarity and dissimilarity. Clotrimazole and Fluconazole were used as active ingredients whose solubility was measured in single solvent as a function of temperature and the data obtained were used to derive mathematical models which can predict solubility in multi-component solvent mixtures. Model dependent parameters for each drug were calculated at each temperature. The experimental solubility data of solute in mixed solvent system were measured experimentally and further correlated with the calculates values obtained from exponent model and log-linear model of Yalkowsky. The good correlation was observed between experimental solubility and predicted solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Physico-chemical characterization antituberculosis thioacetazone: Vapor pressure, solubility and lipophilicity

    Sharapova, Angelica; Ol'khovich, Marina; Blokhina, Svetlana; Perlovich, German

    2017-01-01

    Highlights: • Vapor pressures of antituberculosis thioacetazone were determined by transpiration method. • Solubilities of the TAZ in four modeling solvents were measured at different temperatures. • Temperature dependence of octanol/buffer pH 7.4 partition coefficients was obtained. • Thermodynamics parameters of solubility, sublimation, solvation and transfer were calculated. - Abstract: Vapor pressure of thioacetazone (TAZ) has been determined in the temperature range of 404.15–429.15 K by the transpiration method. The obtained data were used to calculate the standard molar enthalpy of sublimation that was found to be 164.1 kJ/mol at T = 298.15 K. The drug solubility was measured at seven temperatures from 288.15 to 318.15 K in modeling solvents: octanol, hexane and aqueous buffers pH 2.0 and 7.4 by the saturation shake-flask method by using spectrophotometric analysis. It has been found that TAZ has poor solubility in hexane and buffer solutions and limited solubility in octanol. The experimental data were well correlated by van’t Hoff and modified Apelblat equations. A temperature dependence of TAZ partition coefficient in the octanol/buffer pH 7.4 system has been derived. The partition coefficient value in this system (logP = 1.82) refers to the optimal interval for oral absorption drugs. The thermodynamic parameters of sublimation, solubility, solvation and transfer have been determined based on experimental data. The dominant effect of enthalpy and entropy contributions to the Gibbs energy of the investigated processes has been revealed.

  9. Soluble CD163

    Møller, Holger J

    2012-01-01

    CD163 is an endocytic receptor for haptoglobin-hemoglobin complexes and is expressed solely on macrophages and monocytes. As a result of ectodomain shedding, the extracellular portion of CD163 circulates in blood as a soluble protein (sCD163) at 0.7-3.9 mg/l in healthy individuals. The function o...

  10. Solubility Part 1

    Tantra, Ratna; Bolea, Eduardo; Bouwmeester, H.; Rey-Castro, Carlos; David, C.A.A.; Dogné, Jean Michel; Laborda, Francisco; Laloy, Julie; Robinson, Kenneth N.; Undas, A.K.; Zande, van der M.

    2016-01-01

    This chapter gives an overview of different methods that can potentially be used to determine the solubility of nanomaterials. In general, the methods presented can be broadly divided into four categories: separation methods, methods to quantify free ions, methods to quantify total dissolved

  11. Accumulation of nitrogen - a critical parameter for the calculation of load limits from nitrogen in forests; Akkumulering av nitrogen - en kritisk parameter for beregning av taalegrenser for nitrogen i skog

    Sogn, T A; Stuanes, A O; Abrahamsen, G

    1996-01-01

    The conference paper deals with the accumulation of nitrogen in forests in Norway. The level of accumulation is a critical factor for the calculation of load limits. The paper compares the average rapidity values of accumulation since the last glacial age with the calculated values from the more short-lasting period based on data from surveying programs of the State Pollution Control Authority, manuring experiments, and other relevant research programs in this field. 8 refs., 1 fig., 1 tab.

  12. The solubilities and solubility products of zirconium hydroxide and oxide after aging at 278, 313, and 333 K

    Kobayashi, Taishi; Uemura, Takuya; Sasaki, Takayuki; Takagi, Ikuji [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Moriyama, Hirotake [Kyoto Univ. (Japan). Research Reactor Inst.

    2016-07-01

    The solubilities of zirconium hydroxide and oxide after aging at 278, 313, and 333 K were measured at 278, 298, 313, and 333 K in the pH{sub c} range of 0.3-7 in a 0.5 M ionic strength solution of NaClO{sub 4} and HClO{sub 4}. Size distributions of the colloidal species were investigated by ultrafiltration using membranes with different pore sizes, and the solid phases were examined by X-ray diffraction. The apparent solubility of zirconium amorphous hydroxide (Zr(OH){sub 4}(am)), prepared by the oversaturation method, decreased with increasing aging temperature (T{sub a}), and the size distributions obtained after aging at elevated temperatures indicated the growth of the colloidal species. We, therefore, suggested that agglomeration of the colloidal species and dehydration and crystallization of Zr(OH){sub 4}(am) as the solubility-limiting solid phase occurred over the course of aging at elevated temperatures. For sample solutions of the crystalline oxide (ZrO{sub 2}(cr)), the aging temperature had no significant effect on the solubility, but the solubility data at lower temperatures were found to be slightly higher than those at higher temperatures, implying a small fraction of the amorphous components. In the analysis of different solid phases (Zr(OH){sub 4}(s,T{sub a}), T{sub a} = 278, 313, and 333 K) depending on the aging temperatures, the solubility products (K{sub sp}, T{sub a}) were determined at different measurement temperatures, and the enthalpy change (Δ{sub r}H {sup circle}) for Zr{sup 4+} 4OH{sup -} <=> Zr(OH){sub 4}(s,T{sub a}) was calculated using the van't Hoff equation. The solid-phase-transformation process at elevated temperatures was also analyzed based on the obtained K{sub sp}, T{sub a} and Δ{sub r}H {sup circle} values.

  13. Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy

    Fraass, Benedick A.; Smathers, James; Deye, James

    2003-01-01

    Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies. Based on these discussions, the workshop developed recommendations for future NCI-funded research and development efforts. This paper briefly summarizes the issues presented at the workshop and the recommendations developed by the group

  14. Dose calculations for intakes of ore dust

    O'Brien, R.S.

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these 'ores' contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another 'parent' radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures

  15. Further development of the calculation approaches for the basic activity limits related to transport regulations. Final report. Working package 5; Weiterentwicklung der Ansaetze zur Berechnung der grundlegenden Aktivitaetsgrenzwerte der Transportvorschriften. Abschlussbericht. Arbeitspaket 5

    Endres, Janis; Eberhardt, Holger

    2017-10-15

    Within the scope of work package 5 of this project 3614R03343, basic approaches of calculations for activity limits related to transport regulations have been developed fur- ther. Firstly, the calculation tool BerQATrans has been upgraded. This tool has been developed in order to calculate Q- and A-values according to the current Q-system. Secondly, an international working group has been supported that is currently reviewing the current Q-system on the basis of new nuclear data from ICRP 107 and conversion coefficients from ICRP 116. Furthermore, the calculation method is under review regarding state of the art Monte-Carlo simulation tools. Hence, GRS started the development of a code for calculating Q- and A{sub 1}-values based on this new basis. First preliminary results as well as discussions are presented in this report.

  16. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations

    Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub

    2013-01-01

    , estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...

  17. Alternate source term models for Yucca Mountain performance assessment based on natural analog data and secondary mineral solubility

    Murphy, W.M.; Codell, R.B.

    1999-01-01

    Performance assessment calculations for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, were conducted using the Nuclear Regulatory Commission Total-System Performance Assessment (TPA 3.2) code to test conceptual models and parameter values for the source term based on data from the Pena Blanca, Mexico, natural analog site and based on a model for coprecipitation and solubility of secondary schoepite. In previous studies the value for the maximum constant oxidative alteration rate of uraninite at the Nopal I uranium body at Pena Blanca was estimated. Scaling this rate to the mass of uranium for the proposed Yucca Mountain repository yields an oxidative alteration rate of 22 kg/y, which was assumed to be an upper limit on the release rate from the proposed repository. A second model was developed assuming releases of radionuclides are based on the solubility of secondary schoepite as a function of temperature and solution chemistry. Releases of uranium are given by the product of uranium concentrations at equilibrium with schoepite and the flow of water through the waste packages. For both models, radionuclides other than uranium and those in the cladding and gap fraction were modeled to be released at a rate proportional to the uranium release rate, with additional elemental solubility limits applied. Performance assessment results using the Pena Blanca oxidation rate and schoepite solubility models for Yucca Mountain were compared to the TPA 3.2 base case model, in which release was based on laboratory studies of spent fuel dissolution, cladding and gap release, and solubility limits. Doses calculated using the release rate based on natural analog data and the schoepite solubility models were smaller than doses generated using the base case model. These results provide a degree of confidence in safety predictions using the base case model and an indication of how conservatism in the base case model may be reduced in future analyses

  18. Alternate source term models for Yucca Mountain performance assessment based on natural analog data and secondary mineral solubility

    Murphy, W.M.; Codell, R.B.

    1999-07-01

    Performance assessment calculations for the proposed high level radioactive waste repository at Yucca Mountain, Nevada, were conducted using the Nuclear Regulatory Commission Total-System Performance Assessment (TPA 3.2) code to test conceptual models and parameter values for the source term based on data from the Pena Blanca, Mexico, natural analog site and based on a model for coprecipitation and solubility of secondary schoepite. In previous studies the value for the maximum constant oxidative alteration rate of uraninite at the Nopal I uranium body at Pena Blanca was estimated. Scaling this rate to the mass of uranium for the proposed Yucca Mountain repository yields an oxidative alteration rate of 22 kg/y, which was assumed to be an upper limit on the release rate from the proposed repository. A second model was developed assuming releases of radionuclides are based on the solubility of secondary schoepite as a function of temperature and solution chemistry. Releases of uranium are given by the product of uranium concentrations at equilibrium with schoepite and the flow of water through the waste packages. For both models, radionuclides other than uranium and those in the cladding and gap fraction were modeled to be released at a rate proportional to the uranium release rate, with additional elemental solubility limits applied. Performance assessment results using the Pena Blanca oxidation rate and schoepite solubility models for Yucca Mountain were compared to the TPA 3.2 base case model, in which release was based on laboratory studies of spent fuel dissolution, cladding and gap release, and solubility limits. Doses calculated using the release rate based on natural analog data and the schoepite solubility models were smaller than doses generated using the base case model. These results provide a degree of confidence in safety predictions using the base case model and an indication of how conservatism in the base case model may be reduced in future analyses.

  19. Predictive calculations to assess the long-term effect of cementitious materials on the pH and solubility of uranium(VI) in a shallow land disposal environment

    Criscenti, L.J.; Serne, R.J.; Krupka, K.M.; Wood, M.I.

    1996-09-01

    One proposed method of low-level radioactive waste (LLW) disposal is to mix the radioactive waste streams with cement, place the mixture in steel barrels, and dispose of the barrels in near-surface unsaturated sediments. Cement or concrete is frequently used in burial grounds, because cement porewaters are buffered at high pH values and lanthanides and actinides; are very insoluble in highly alkaline environments. Therefore, leaching of these contaminants from the combined cement/low-level radioactive waste streams will at least initially be retarded. The calculations performed in this study demonstrate that the pH of cement porewaters will be maintained at a value greater than 10 for 10,000 years under Hanford specific hydrogeochemical conditions. Ten thousand years is the period generally studied in longterm performance assessments per regulatory guidance. The concentrations of dissolved hexavalent uranium [U(VI)], the valence form of dissolved U usually present in oxidizing surface and groundwaters, are also constrained by the high pH and predicted solution compositions over the 10,000-year period, which is favorable from a long-term performance perspective

  20. Water soluble and efficient amino acid Schiff base receptor for reversible fluorescence turn-on detection of Zn²⁺ ions: Quantum chemical calculations and detection of bacteria.

    Subha, L; Balakrishnan, C; Natarajan, Satheesh; Theetharappan, M; Subramanian, Balanehru; Neelakantan, M A

    2016-01-15

    An amino acid Schiff base (R) capable of recognizing Zn(2+) ions selectively and sensitively in an aqueous medium was prepared and characterized. Upon addition of Zn(2+) ions, the receptor exhibits fluorescence intensity enhancements (~40 fold) at 460 nm (quantum yield, Φ=0.05 for R and Φ=0.18 for R-Zn(2+)) and can be detected by naked eye under UV light. The receptor can recognize the Zn(2+) (1.04×10(-8) M) selectively for other metal ions in the pH range of 7.5-11. The Zn(2+) chelation with R decreases the loss of energy through non-radiative transition and leads to fluorescence enhancement. The binding mode of the receptor with Zn(2+) was investigated by (1)H NMR titration and further validated by ESI-MS. The elemental color mapping and SEM/EDS analysis were also used to study the binding of R with Zn(2+). Density functional theory calculations were carried out to understand the binding mechanism. The receptor was applied as a microbial sensor for Escherichia coli and Staphylococcus aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. HOME Income Limits

    Department of Housing and Urban Development — HOME Income Limits are calculated using the same methodology that HUD uses for calculating the income limits for the Section 8 program. These limits are based on HUD...

  2. Uranyl Oxalate Solubility

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  3. Dry season aerosol iron solubility in tropical northern Australia

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  4. Solubility study of Tc(IV) oxides

    Liu, D.J.; Fan, X.H.

    2005-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 ·nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2 + . The solubility of Tc(IV) oxide has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49-1.86) x 10 -9 mol/(L·d) under aerobic conditions, but Tc(IV) in simulated groundwater and redistilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  5. Solubility and stability of inorganic carbonates

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  6. Calculator calculus

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  7. Solubility of pllutonium in alkaline salt solutions

    Hobbs, D.T.; Edwards, T.B.

    1993-01-01

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model

  8. Soluble theory with massive ghosts

    Pisarski, R.D.

    1983-01-01

    To investigate the unitarity of asymptotically free, higher-derivative theories, like certain models of quantum gravity, I study a prototype in two space-time dimensions. The prototype is a kind of higher-derivative nonlinear sigma model; it is asymptotically free, exhibits dimensional transmutation, and is soluble in a large-N expansion. The S-matrix elements, constructed from the analytic continuation of the Euclidean Green's functions, conserve probability to approx.O(N -1 ), but violate unitarity at approx.O(N -2 ). The model demonstrates that in higher-derivative theories unitarity, or the lack thereof, cannot be decided without explicit control over the infrared limit. Even so, the results suggest that there may exist some (rather special) asymptotically free, higher-derivative theories which are unitary

  9. Solubility of cefoxitin acid in different solvent systems

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  10. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  11. On the Necessity of Using Element No.155 in the Chemical Physical Calculations: Again on the Upper Limit in the Periodic Table of Elements

    Khazan A.

    2010-10-01

    Full Text Available It is shown how the properties of different elements of the Periodic System of Elements can be obtained using the properties of the theoretically predicted heaviest element No.155 (it draws the upper principal limit of the Table, behind which stable elements cannot exist. It is suggested how the properties of element No.155 can be used in the synthesis of superheavy elements. An analysis of nuclear reactions is also produced on the same basis.

  12. Thermal degradation of organo-soluble polyimides

    黄俐研; 史燚; 金熹高

    1999-01-01

    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  13. Soluble porphyrin polymers

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  14. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  15. Addition of soluble and insoluble neutron absorbers to the reactor coolant system of TMI-2

    Hansen, R.F.; Silverman, J.; Queen, S.P.; Ryan, R.F.; Austin, W.E.

    1984-07-01

    The physical and chemical properties of six elements were studied and combined with cost estimates to determine the feasibility of adding them to the TMI-2 reactor coolant to depress k/sub eff/ to less than or equal to 0.95. Both soluble and insoluble forms of the elements B, Cd, Gd, Li, Sm, and Eu were examined. Criticality calculations were performed by Oak Ridge National Laboratory to determine the absorber concentration required to meet the 0.95 k/sub eff/ criterion. The conclusion reached is that all elements with the exception of boron have overriding disadvantages which preclude their use in this reactor. Solubility experiments in the reactor coolant show that boron solubility is the same as that of boron in pure aqueous solutions of sodium hydroxide and boric acid; consequently, solubility is not a limiting factor in reaching the k/sub eff/ criterion. Examination of the effect of pH on sodium requirements and costs for processing to remove radionuclides revealed a sharp dependence; small decreases in pH lead to a large decrease in both sodium requirements and processing costs. Boron addition to meet any contemplated reactor safety requirements can be accomplished with existing equipment; however, this addition must be made with the reactor coolant system filled and pressurized to ensure uniform boron concentration

  16. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  17. Calculation of limits for significant unidirectional changes in two or more serial results of a biomarker based on a computer simulation model

    Lund, Flemming; Petersen, Per Hyltoft; Fraser, Callum G

    2015-01-01

    BACKGROUND: Reference change values (RCVs) were introduced more than 30 years ago and provide objective tools for assessment of the significance of differences in two consecutive results from an individual. However, in practice, more results are usually available for monitoring, and using the RCV...... the presented factors. The first result is multiplied by the appropriate factor for increase or decrease, which gives the limits for a significant difference.......BACKGROUND: Reference change values (RCVs) were introduced more than 30 years ago and provide objective tools for assessment of the significance of differences in two consecutive results from an individual. However, in practice, more results are usually available for monitoring, and using the RCV......,000 simulated data from healthy individuals, a series of up to 20 results from an individual was generated using different values for the within-subject biological variation plus the analytical variation. Each new result in this series was compared to the initial measurement result. These successive serial...

  18. Contribution and limits of geochemical calculation codes to evaluate the long term behavior of nuclear waste glasses; Apports et limites des modeles geochimiques pour l'evaluation du comportement a long terme des verres de confinement des dechets radioactifs

    Fritz, B; Crovisier, J L [Universite Louis Pasteur, Centre de Geochimie de la Surface, CNRS ULP, Ecole et Observatoire des Sciences de la Terre, 67 - Strasbourg (France)

    1997-07-01

    Geochemical models have been intensively developed by researchers since more than twenty five years in order to be able to better understand and/or predict the long term stability/instability of water-rock systems. These geochemical codes were ail built first on a thermodynamic approach deriving from the application of Mass Action Law. The resulting first generation of models allowed to detect or predict the possible mass transfers (thermodynamic models) between aqueous and mineral phases including irreversible dissolutions of primary minerals and/or precipitation near equilibrium of secondary mineral phases. The recent development of models based on combined thermodynamics and kinetics opens the field of Lime dependent reactions prediction. This is crucial if one thinks to combine geochemical and hydrological studies in the so-called coupled models for transport and reaction calculations. All these models are progressively applied to the prediction of long term behavior of mineral phases, and more specifically glasses. In order to succeed in chat specific extension of the models, but also the data bases, there is a great need for additional new data from experimental approaches and from natural analogues. The modelling approach appears than also very useful in order to interpret the results of experimental data and to relate them to long term data extracted from natural analogues. Specific functions for modelling solid solution phases mat' also be used for describing the products of glasses alterations. (authors)

  19. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type

    Lucatero, M.A.; Hernandez L, H.

    2003-01-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  20. Carcinogenicity assessment of water-soluble nickel compounds.

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  1. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  2. Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid.

    Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D

    1996-10-01

    The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.

  3. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  4. Effect of the structure, solid state and lipophilicity on the solubility of novel bicyclic derivatives

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.

    2014-01-01

    Highlights: • The solubility in buffer pH 7.4 of novel bicyclo-derivatives of amine were measured. • The influence of melting parameters and lipophilicity on the solubility was studied. • The thermodynamic parameters of the solubility process were calculated. - Abstract: Novel bicyclic derivatives have been synthesized. The solubility of drug-like substances in phosphate buffer rH 7.4 has been measured within the range of (9.02 · 10 −5 to 1.05 · 10 −4 ) mol/l. The relationship between the chemical nature and the structure of the aryl substituents and the solubility parameter was investigated. The fusion temperatures, enthalpies and entropies have been determined experimentally. The influence of thermophysical characteristics and lipophilicity on the solubility was studied using regression analysis. The calculations by the solubility/lipophilicity equation showed an overall improvement of the predictions equal to 0.5 log units. It was concluded that the solvation has a considerable influence on the solubility of the compounds under consideration. It was also determined that the alkyl- and halogen-derivatives solubility values correlate with HYBOT descriptors characterizing the (donor + acceptor) properties of the substances. The thermodynamic parameters of the solubility process were calculated using the temperature dependences. The study also revealed that the solubility of the bicyclic compounds is characterized by high endothermicity of the processes and negative entropies

  5. Water-soluble vitamins.

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  6. Determination and correlation of solubility and thermodynamic properties of pyraclostrobin in pure and binary solvents

    Yang, Peng; Du, Shichao; Qin, Yujia; Zhao, Kaifei; Li, Kangli; Hou, Baohong; Gong, Junbo

    2016-01-01

    Highlights: • The solubility data of pyraclostrobin in pure and binary solvents were determined and correlated. • The theory of solubility parameter was used to explain the cosolvency in binary solvents. • A modified mixing rule was proposed to calculate the solubility parameter of binary solvents. • The dissolution thermodynamic properties were calculated and discussed. - Abstract: The solubility of pyraclostrobin in five pure solvents and two binary solvent mixtures was measured from 283.15 K to 308.15 K using a static analytical method. Solubility in five pure solvents was well correlated by the modified Apelblat equation and Wilson model. While the CNIBS/R–K model was applied to correlate the solubility in two binary solvent mixtures, the correlation showed good agreement with experimental results. The solubility of pyraclostrobin reaches its maximum value at a certain cyclohexane mole fraction in the two binary solvent mixtures. The solubility parameter of pyraclostrobin was calculated by the Fedors method and a new modified mixing rule with preferable applicability was proposed to determine the solubility parameter of solvents. Then the co-solvency in the binary solvent mixtures can be explained based on the obtained solubility parameters. In a addition, the dissolution thermodynamic properties were calculated from the experimental values using the Wilson model.

  7. A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogPO/W, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability

    Rudolf Naef

    2015-10-01

    Full Text Available A generally applicable computer algorithm for the calculation of the seven molecular descriptors heat of combustion, logPoctanol/water, logS (water solubility, molar refractivity, molecular polarizability, aqueous toxicity (protozoan growth inhibition and logBB (log (cblood/cbrain is presented. The method, an extendable form of the group-additivity method, is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood. The contribution of the resulting atom groups to the descriptor values is calculated using the Gauss-Seidel fitting method, based on experimental data gathered from literature. The plausibility of the method was tested for each descriptor by means of a k-fold cross-validation procedure demonstrating good to excellent predictive power for the former six descriptors and low reliability of logBB predictions. The goodness of fit (Q2 and the standard deviation of the 10-fold cross-validation calculation was >0.9999 and 25.2 kJ/mol, respectively, (based on N = 1965 test compounds for the heat of combustion, 0.9451 and 0.51 (N = 2640 for logP, 0.8838 and 0.74 (N = 1419 for logS, 0.9987 and 0.74 (N = 4045 for the molar refractivity, 0.9897 and 0.77 (N = 308 for the molecular polarizability, 0.8404 and 0.42 (N = 810 for the toxicity and 0.4709 and 0.53 (N = 383 for logBB. The latter descriptor revealing a very low Q2 for the test molecules (R2 was 0.7068 and standard deviation 0.38 for N = 413 training molecules is included as an example to show the limits of the group-additivity method. An eighth molecular descriptor, the heat of formation, was indirectly calculated from the heat of combustion data and correlated with published experimental heat of formation data with a correlation coefficient R2 of 0.9974 (N = 2031.

  8. Students’ misconceptions on solubility equilibrium

    Setiowati, H.; Utomo, S. B.; Ashadi

    2018-05-01

    This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.

  9. On the americium oxalate solubility

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  10. Measurement and correlation of solubility of carbon dioxide in triglycerides

    Howlader, Md Shamim; French, William Todd; Toghiani, Hossein; Hartenbower, Ben; Pearson, Larry; DuBien, Janice; Rai, Neeraj

    2017-01-01

    Graphical abstract: Comparison of experimental results with correlation for solubility of CO 2 in triglycerides as a function pressure at two different temperatures of 289.15 and 303.15 K, respectively. - Highlights: • New pressure drop gas apparatus was developed to determine the solubility of gases in liquids. • Solubility of CO 2 in triglycerides was measured at different temperatures and pressures. • Experimental solubility data were correlated using three thermodynamic models. • Enthalpy, entropy and Gibbs energy of dissolution for CO 2 -triglyceride were determined. - Abstract: A new pressure drop solubility gas apparatus was developed to determine the solubility of carbon dioxide in canola oil, a triglyceride consisting primarily of oleic, linoleic, and alpha linoleic acid radicals. Solubility of CO 2 in triglycerides was determined at different temperatures (283.2–303.2 K) and pressures (600–2450 kPa). It was found that the solubility of CO 2 in triglycerides is higher than that of pure water because triglycerides lack strong hydrogen bond networks that exist in liquid water at the ambient conditions. The experimental solubility was correlated using Krichevsky–Kasarnovsky (KK), Mather-Jou (MJ), and Carvalho-Coutinho (CC) correlations. We find that KK and MJ equations can predict the solubility with higher accuracy. The enthalpy and entropy of absorption of CO 2 were calculated using the van’t Hoff plot and were found to be −7.165 kJ.mol −1 , and −28.791 J.mol −1 .K −1 , respectively.

  11. Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs

    Fong, Sophia Yui Kau; Martins, Susana A. M.; Brandl, Martin

    2016-01-01

    Celecoxib (CXB) is a Biopharmaceutical Classification System class II drug in which its oral bioavailability is limited by poor aqueous solubility. Although a range of formulations aiming to increase the solubility of CXB have been developed, it is not completely understood, whether (1) an increase...... the importance of evaluating both, solubility and permeability, and the use of biorelevant medium for testing the candidate-enabling performance of liposomal formulations. Mechanisms at molecular level that may explain the effect of PL formulations on the permeability of CXB are also discussed....

  12. Solubility of Tc(IV) oxides

    Liu, D.J.; Fan, X.H.

    2005-01-01

    Full text of publication follows: The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. The solubility of Tc(IV) is used as a source term in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) oxide has been determined in simulated groundwater and re-distilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and re-distilled water is about (1.49∼1.86) x 10 -9 mol/(L.d) under aerobic conditions, but Tc(IV) in simulated groundwater and re-distilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and re-distilled water is equal on the whole after centrifugation or ultrafiltration. The solubility of Tc(IV) oxide decreases with the increase of pH at pH 10 and is pH independent in the range 2 -8 to 10 -9 mol/L at 2 3 2- concentration. These data could be used to estimate the Tc(IV) solubility for cases where solubility limits transport of technetium in reducing environments of high-level waste repositories. (authors)

  13. Calculational limitations in PWR system simulation

    Abramson, P.B.; Kennedy, M.F.; Speis, T.P.

    1982-01-01

    Engineering transient analysis codes, which are in general more accurate than the present generation of simulator software, can be expected to yield reasonably accurate results (+-20% or so on system pressure) if carefully utilized and if the two-phase and transient flow conditions are not severe. As the severity of the transient increases, the confidence that one may have in the results decreases. None of the existing engineering analysis codes is well assessed or verified for transient analysis, but all give qualitatively the same results lending credence to their results. Recent comparisons to transients in LOFT and SEMISCALE are encouraging as are various comparisons to actual plant data

  14. Exactly soluble matrix models

    Raju Viswanathan, R.

    1991-09-01

    We study examples of one dimensional matrix models whose potentials possess an energy spectrum that can be explicitly determined. This allows for an exact solution in the continuum limit. Specifically, step-like potentials and the Morse potential are considered. The step-like potentials show no scaling behaviour and the Morse potential (which corresponds to a γ = -1 model) has the interesting feature that there are no quantum corrections to the scaling behaviour in the continuum limit. (author). 5 refs

  15. Research on solubility characteristics of gaseous methyl iodide

    Zhou Yanmin; Sun Zhongning; Gu Haifeng; Wang Junlong

    2014-01-01

    With the deionized water as the absorbent, the solubility characteristics of the gaseous methyl iodide were studied under different temperature and pressure conditions, using a dynamic measuring method. The results show that within the range of experiment parameters, namely temperature is below 80℃ and pressure is lower than 0.3 MPa, the physical dissolution process of gaseous methyl iodide in water obeys Henry's law. The solubility coefficient under different temperature and pressure conditions was calculated based on the measurement results. Further research indicates that at atmospheric pressure, the solubility coefficient of methyl iodide in water decreases exponentially with the increase of temperature. While the pressure changes from 0.1 MPa to 0.3 MPa with equal interval, the solubility coefficient also increases linearly. The variation of the solubility coefficient with temperature under different pressure conditions all decreases exponentially. An equation is given to calculate the solubility coefficient of methyl iodide under different pressure and temperature conditions. (authors)

  16. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  17. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Magnusson, Hans; Frisk, Karin

    2013-04-01

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu 2 S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P 4 O 10 and copper phosphates (Cu 2 P 2 O 7 and Cu 3 (PO 4 ) 2 ) are all more stable than copper oxide Cu 2 O. With hydrogen present at atmospheric pressure, copper phosphates Cu 2 P 2 O 7 and Cu 3 (P 2 O 6 OH) 2 are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu 3 P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen containing phosphate Cu 3 (P 2 O 6 OH) 2 can become stable. Measured hydrogen

  18. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Magnusson, Hans; Frisk, Karin [Swerea KIMAB, Kista (Sweden)

    2013-04-15

    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu{sub 2}S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P{sub 4}O{sub 10} and copper phosphates (Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(PO{sub 4}){sub 2}) are all more stable than copper oxide Cu{sub 2}O. With hydrogen present at atmospheric pressure, copper phosphates Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(P{sub 2}O{sub 6}OH){sub 2} are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu{sub 3}P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen

  19. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules

    Sonam Choudhary

    2017-05-01

    Full Text Available Adequate aqueous solubility has been one of the desired properties while selecting drug molecules and other bio-actives for product development. Often solubility of a drug determines its pharmaceutical and therapeutic performance. Majority of newly synthesized drug molecules fail or are rejected during the early phases of drug discovery and development due to their limited solubility. Sufficient permeability, aqueous solubility and physicochemical stability of the drug are important for achieving adequate bioavailability and therapeutic outcome. A number of different approaches including co-solvency, micellar solubilization, micronization, pH adjustment, chemical modification, and solid dispersion have been explored toward improving the solubility of various poorly aqueous-soluble drugs. Dendrimers, a new class of polymers, possess great potential for drug solubility improvement, by virtue of their unique properties. These hyper-branched, mono-dispersed molecules have the distinct ability to bind the drug molecules on periphery as well as to encapsulate these molecules within the dendritic structure. There are numerous reported studies which have successfully used dendrimers to enhance the solubilization of poorly soluble drugs. These promising outcomes have encouraged the researchers to design, synthesize, and evaluate various dendritic polymers for their use in drug delivery and product development. This review will discuss the aspects and role of dendrimers in the solubility enhancement of poorly soluble drugs. The review will also highlight the important and relevant properties of dendrimers which contribute toward drug solubilization. Finally, hydrophobic drugs which have been explored for dendrimer assisted solubilization, and the current marketing status of dendrimers will be discussed.

  20. Transport code calculations concerning the plasma parameters in the scrape-off layer of poloidal limiter and the possible advantage of high Z wall materials in the cool plasma blanket approach

    Nicolai, A.; Fuchs, G.

    1978-01-01

    The plasma parameters in the scrape-off layer (SoL) of a tokamak are calculated by introducing appropriate particles and energy loss terms into the six-regime version of Duechs code. These terms take secondary electron smission from the limiter surface and a potential sheath in front of it into account. In the SoL Bohn diffusion is assumed. Limiter materials with large secondary emission coefficients (SEC)(e.g. Mo) give lower potential steps (U = 90 V) than low SEC materials (e.g. Be) which cause (U = 250 V). The flux of the sputtered liner material and the resulting radiation losses can be decreased by neutral gas influx. When the same neutral gas influx and the same additional heating are used, it is found that radiation losses due to molybdenum are lower than those due to iron, although Mo is more toxic. (Auth.)

  1. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  2. Noble gases solubility in water

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  3. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  4. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  5. Extrapolation procedures for calculating high-temperature gibbs free energies of aqueous electrolytes

    Tremaine, P.R.

    1979-01-01

    Methods for calculating high-temprature Gibbs free energies of mononuclear cations and anions from room-temperature data are reviewed. Emphasis is given to species required for oxide solubility calculations relevant to mass transport situations in the nuclear industry. Free energies predicted by each method are compared to selected values calculated from recently reported solubility studies and other literature data. Values for monatomic ions estimated using the assumption anti C 0 p(T) = anti C 0 p(298) agree best with experiment to 423 K. From 423 K to 523 K, free energies from an electrostatic model for ion hydration are more accurate. Extrapolations for hydrolyzed species are limited by a lack of room-temperature entropy data and expressions for estimating these entropies are discussed. (orig.) [de

  6. Solubility of radionuclides in a concrete environment for provisional safety analyses for SGT-E2

    Berner, U.

    2014-08-15

    Within stage 2 of the sectoral plan for deep geological repositories for radioactive waste in Switzerland, safety analyses are carried out. In the case of the repository for long lived intermediate level waste (ILW) retention mechanisms include the concentration limits of safety relevant elements in the pore water of the engineered concrete system. The present work describes the evaluation of solubility limits for the safety relevant elements Be, C, Cl, K, Ca, Co, Ni, Se, Sr, Zr, Nb, Mo, Tc, Pd, Ag, Sn, I, Cs, Sm, Eu, Ho, Pb, Po, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm in the pore water of a concrete system corresponding to a degradation stage characterised by portlandite saturation and by the absence of (Na,K)OH solutes. The term solubility limit denotes the maximum amount of an element dissolving in the pore solution of the considered chemical reference system. For a given solid phase equilibrium, thermodynamics predicts the amount of substance dissolving in the solution and describes the speciation of the considered element in solution. The principles of chemical equilibrium will be the primary work hypothesis in the present work. Solubility calculations were performed with the most recent version of GEMS/PSI using the PSI/Nagra Chemical Thermodynamic Data Base 12/07. The database was complemented with other datasets for elements that were not considered in the mentioned update. Reference values solubilities as well as lower and upper guideline values are evaluated. For many formation constants of solids and solutes, uncertainties are known and allow conveying lower and upper guideline values. In many cases it is not clear whether the most stable solid is formed. In such cases the (kinetically driven) formation of alternative solid phases is included in the derivation of reference and guideline values. Corresponding justifications are given for the individual elements and are an important part of this work. A similar report for an almost identical chemical

  7. Solubility of radionuclides in a concrete environment for provisional safety analyses for SGT-E2

    Berner, U.

    2014-08-01

    Within stage 2 of the sectoral plan for deep geological repositories for radioactive waste in Switzerland, safety analyses are carried out. In the case of the repository for long lived intermediate level waste (ILW) retention mechanisms include the concentration limits of safety relevant elements in the pore water of the engineered concrete system. The present work describes the evaluation of solubility limits for the safety relevant elements Be, C, Cl, K, Ca, Co, Ni, Se, Sr, Zr, Nb, Mo, Tc, Pd, Ag, Sn, I, Cs, Sm, Eu, Ho, Pb, Po, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm in the pore water of a concrete system corresponding to a degradation stage characterised by portlandite saturation and by the absence of (Na,K)OH solutes. The term solubility limit denotes the maximum amount of an element dissolving in the pore solution of the considered chemical reference system. For a given solid phase equilibrium, thermodynamics predicts the amount of substance dissolving in the solution and describes the speciation of the considered element in solution. The principles of chemical equilibrium will be the primary work hypothesis in the present work. Solubility calculations were performed with the most recent version of GEMS/PSI using the PSI/Nagra Chemical Thermodynamic Data Base 12/07. The database was complemented with other datasets for elements that were not considered in the mentioned update. Reference values solubilities as well as lower and upper guideline values are evaluated. For many formation constants of solids and solutes, uncertainties are known and allow conveying lower and upper guideline values. In many cases it is not clear whether the most stable solid is formed. In such cases the (kinetically driven) formation of alternative solid phases is included in the derivation of reference and guideline values. Corresponding justifications are given for the individual elements and are an important part of this work. A similar report for an almost identical chemical

  8. Thermodynamic properties of soddyite from solubility and calorimetry measurements

    Gorman-Lewis, Drew; Mazeina, Lena; Fein, Jeremy B.; Szymanowski, Jennifer E.S.; Burns, Peter C.; Navrotsky, Alexandra

    2007-01-01

    The release of uranium from geologic nuclear waste repositories under oxidizing conditions can only be modeled if the thermodynamic properties of the secondary uranyl minerals that form in the repository setting are known. Toward this end, we synthesized soddyite ((UO 2 ) 2 (SiO 4 )(H 2 O) 2 ), and performed solubility measurements from both undersaturation and supersaturation. The solubility measurements rigorously constrain the value of the solubility product of synthetic soddyite, and consequently its standard-state Gibbs free energy of formation. The log solubility product (lg K sp ) with its error (1σ) is (6.43 + 0.20/-0.37), and the standard-state Gibbs free energy of formation is (-3652.2 ± 4.2 (2σ)) kJ mol -1 . High-temperature drop solution calorimetry was conducted, yielding a calculated standard-state enthalpy of formation of soddyite of (-4045.4 ± 4.9 (2σ)) kJ . mol -1 . The standard-state Gibbs free energy and enthalpy of formation yield a calculated standard-state entropy of formation of soddyite of (-1318.7 ± 21.7 (2σ)) J . mol -1 . K -1 . The measurements and associated thermodynamic calculations not only describe the T = 298 K stability and solubility of soddyite, but they also can be used in predictions of repository performance through extrapolation of these properties to repository temperatures

  9. Declination Calculator

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  10. Thermodynamic approach to improving solubility prediction of co-crystals in comparison with individual poorly soluble components

    Perlovich, German L.

    2014-01-01

    Highlights: • Thermodynamic approach for solubility improvement of co-crystal was developed. • The graphical technique for estimation of co-crystal solubility was elaborated. • Hydration enthalpies of some drugs and amino acids were calculated. • Applicability/operability of the approach was exemplified by some drugs and amino acids. - Abstract: A novel thermodynamic approach to compare poorly soluble components (active pharmaceutical ingredient (API)) both in co-crystals and individual compounds was developed. An algorithm of choosing potential co-crystals with improved solubility characteristics on the basis of the known solvation/hydration API and co-former enthalpies is described. The applicability and operability of the algorithm were tested exemplified by some drugs and amino acids

  11. Calculation of the linear heat generation rates which violate the thermomechanical limit of plastic deformation of the fuel cladding in function of the burn up of a BWR fuel rod type; Calculo de las razones de generacion de calor lineal que violen el limite termomecanico de deformacion plastica de la camisa en funcion del quemado de una barra combustible tipo BWR

    Lucatero, M.A.; Hernandez L, H. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mal@nuclear.inin.mx

    2003-07-01

    The linear heat generation rates (LHGR) for a BWR type generic fuel rod, as function of the burnup that violate the thermomechanical limit of circumferential plastic deformation of the can (canning) in nominal operation in stationary state of the fuel rod are calculated. The evaluation of the LHGR in function of the burnt of the fuel, is carried out under the condition that the deformation values of the circumferential plastic deformation of the can exceeds in 0.1 the thermomechanical value operation limit of 1%. The results of the calculations are compared with the generation rates of linear operation heat in function of the burnt for this fuel rod type. The calculations are carried out with the FEMAXI-V and RODBURN codes. The results show that for exhibitions or burnt between 0 and 16,000 M Wd/tU a minimum margin of 160.8 W/cm exists among LHGR (439.6 W/cm) operation peak for the given fuel and maximum LHGR of the fuel (calculated) to reach 1.1% of circumferential plastic deformation of the can, for the peak factor of power of 1.40. For burnt of 20,000 MWd/tU and 60,000 MWd/tU exist a margin of 150.3 and 298.6 W/cm, respectively. (Author)

  12. Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures

    Shakeel, Faiyaz; Salem-Bekhit, Mounir M.; Iqbal, Muzaffar; Haq, Nazrul

    2015-01-01

    Ibrutinib is a recently approved anticancer drug recommended for the treatment of mantle cell lymphoma and chronic lymphocytic leukemia. It has been reported as practically insoluble in water and hence it is available in the market at higher doses. Poor solubility of ibrutinib limits its development to oral solid dosage forms only. In this work, the solubilities of ibrutinib were measured in various 2-(2-ethoxyethoxy)ethanol (Carbitol) + water mixtures at T = (298.15 to 323.15) and p = 0.1 MPa. The solubility of ibrutinib was measured using an isothermal method. The thermodynamics function of ibrutinib was also studied. The measured solubilities of ibrutinib were correlated and fitted with Van’t Hoff, the modified Apelblat and Yalkowsky models. The results of curve fitting of all three models showed good correlation of experimental solubilities of ibrutinib with calculated ones. The mole fraction solubility of ibrutinib was observed highest in pure 2-(2-ethoxyethoxy)ethanol (2.67 · 10 −2 at T = 298.15 K) and lowest in pure water (1.43 · 10 −7 at T = 298.15 K) at T = (298.15 to 323.15) K. Thermodynamics data of ibrutinib showed an endothermic, spontaneous and an entropy-driven dissolution behavior of ibrutinib in all 2-(2-ethoxyethoxy)ethanol + water mixtures. Based on these results, ibrutinib has been considered as practically insoluble in water and freely soluble in 2-(2-ethoxyethoxy)ethanol. Therefore, 2-(2-ethoxyethoxy)ethanol could be used as a physiologically compatible cosolvent for solubilization and stabilization of ibrutinib in an aqueous media. The solubility data of this work could be extremely useful in preformulation studies and formulation development of ibrutinib

  13. Solubility of actinides and surrogates in nuclear glasses

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  14. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  15. Mass transport of soluble species through backfill into surrounding rock

    Kang, Chul Hyung; Park, Hun Hwee

    1992-01-01

    Some soluble species may not be solubility-limited or congruent-released with the matrix species. For example, during the operation of the nuclear reactor, the fission products can be accumulated in the fuel-cladding gap, void, and grain boundaries of the fuel rods. In the waste package for spent-fuel placed in a geologic repository, the high solubility species of these fission products accumulated in the 'gap', e.g. cesium or iodine are expected to dissolve rapidly when ground water penetrates fuel rods. The time and space dependent mass transport for high solubility nuclides in the gap is analyzed, and its numerical illustrations are demonstrated. The approximate solution that is valid for all times is developed, and validated by comparison with an asymptotic solution and the solution obtained by the numerical inversion of Laplace transform covering the entire time span. (Author)

  16. Experimental solubility measurements of lanthanides in liquid alkalis

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  17. Overview of milling techniques for improving the solubility of poorly water-soluble drugs

    Zhi Hui Loh

    2015-07-01

    Full Text Available Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a “top–down” approach in the production of fine particles. Fine drug particulates are especially desired in formulations designed for parenteral, respiratory and transdermal use. Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents, often to enhance processability or solubility especially for drugs with limited aqueous solubility. The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size, specific surface area and shape of the drug particles as well as milling-induced amorphization and/or structural disordering of the drug crystal (mechanochemical activation. Technology advancements in milling now enable the production of drug micro- and nano-particles on a commercial scale with relative ease. This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs. Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.

  18. Radioimmunological determination of soluble immune complexes

    Falck, P; Meffert, H; Diezel, W; Schmidt, E; Soennichsen, N [Humboldt-Universitaet, Berlin (German Democratic Republic). Bereich Medizin (Charite)

    1979-04-01

    Soluble immune complexes were determined in sera from patients with systemic lupus erythematosus, using /sup 125/I-labelled anti-Ig-antibody and plastics-fixed C1q (component of complement). The detection limit of the method is 0.1 ..mu..g of aggregated human IgG and the range is between 0.1 ..mu..g and 10 ..mu..g per 0.5 ml serum. In 58% of the sera tested an increase of the number of immune complexes was found.

  19. Ajuste de las simulaciones de flujos continuados para el cálculo del Límite de Potencia Eólica; Calculation of Wind Power Limit adjusting the Continuation Power Flow

    Ariel Santos Fuentefria

    2012-07-01

    Full Text Available La integración de la energía eólica en los sistemas eléctricos puede provocar problemas de estabilidad ligados fundamentalmente a la variación aleatoria del viento y que se reflejan en la tensión y la frecuencia del sistema. Por lo que conocer el Límite de Potencia Eólica (LPE que puede insertarse en la red sin que esta pierda la estabilidad es un aspecto de extrema importancia, en el cual se han realizando métodos de cálculo para encontrar dicho límite. Estos métodos se desarrollan teniendo en cuenta las restricciones del sistema en estado estacionario, en estado dinámico o ambos. En el siguiente trabajo se desarrolla un método para el cálculo de LPE teniendo en cuenta las restricciones en estado estacionario del sistema. El método propuesto se basa en un análisis de flujo continuado, complementado con el método de Producción Mínima de Potencia Activa, desarrollado en la bibliografía. Se prueba en el sistema eléctrico de la Isla de la Juventud, Cuba y se usa elsoftware libre PSAT para la realización de estos estudios.  The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very importantmatter. Existing In bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT.

  20. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  1. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  2. Some thermodynamic aspects of the solubility of iron in sodium

    Awasthi, S.P.; Sundaresan, M.

    1984-01-01

    Because of the use of liquid sodium as a heat transfer fluid in fast breeder reactors, its interaction with Fe and some alloying elements, has assumed great importance. Solubility is an important manifestation of this interaction, but there exists in literature a wide divergence in the data on the solubility of iron, which is known to have an intimate relationship with temperature and the concentration of available oxygen in sodium. An attempt has been made, here, to arrive at the mechanism of the observed enhanced solubility of iron in presence of oxygen by analysing the available experimental isothermal and athermal data on solubilities in literature by computing the relevant thermodynamic parameters for various probable interactions in the Na-O-Fe system. From comparison of these with the sign and magnitude of the theoretically calculated thermodynamic values, it has been shown that the predominant iron species existing in liquid sodium in presence of higher concentrations of oxygen is the soluble compound Na 4 FeO 3 . The most probable mechanism of the enhanced solubility of iron can be explained in terms of a sequence involving the initial formation of iron oxide (FeO) in liquid sodium, followed by its conversion to the compound Na 4 FeO 3 . (author)

  3. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Berner, U.

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In this case, significant

  4. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Berner, U

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In

  5. Using urinary solubility data to estimate the level of safety concern of low levels of melamine (MEL) and cyanuric acid (CYA) present simultaneously in infant formulas.

    Dominguez-Estevez, Manuel; Constable, Anne; Mazzatorta, Paolo; Renwick, Andrew G; Schilter, Benoit

    2010-01-01

    Melamine (MEL) and cyanuric acid (CYA) may occur simultaneously in milk products. There is no health based guidance value for the mixture of MEL+CYA. Limited toxicological data indicate that MEL+CYA toxicity occurs at levels lower than the toxic doses of the single compounds. The key adverse effect of MEL+CYA is the formation of crystals in the urinary tract, which is dependent on the solubility of the MEL+CYA complex. Urinary concentrations resulting from oral doses of MEL+CYA and MEL alone have been calculated from published data from animal studies. A human exposure scenario assuming consumption of infant formula contaminated at a level of 1 ppm of MEL and CYA each (2 ppm of MEL+CYA) was also analyzed. Margins of more than two orders or magnitude were observed between estimated urine concentrations known to be without detectable effects in rats and calculated human urine concentrations. Because the hazard is related to the physico-chemical characteristics of the mixture, there would be a negligible concern associated with crystal formation if the urinary concentration of the complex is within the solubility range. The solubility of MEL+CYA was higher in urine than in water. A strong pH-dependency was observed with the lowest solubility found at pH 5-5.5. The calculated human urinary concentration was about 30 times less than the solubility limit for MEL+CYA in adult human urine. Altogether, these data provide preliminary evidence suggesting that the presence of 1 ppm of MEL and CYA each in infant formula is unlikely to be of significant health concern. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Review of speciation and solubility of radionuclides in the near and far field. Pt. 2

    Smith-Briggs, J.L.

    1992-01-01

    This report represents Part 2 in a series of three reports which review the speciation and solubility of radionuclides in the near and far field. Part 2 is a general bibliography from 1978 to 1991. This report contains the bibliography for the review of speciation and solubility radionuclides in the near and far field from 1978 to 1991. The importance of the solubility and speciation of radionuclides in relation to the safety assessment of the repository is discussed. Solubility is defined, both theoretically and pragmatically, and the factors which influence solubility and speciation are discussed. The literature search was performed using the INIS database. The UKAEA RECAP database, the NIREX report bibliography and a list of DOE reports provided by the DOE were also used. The bibliography is divided into five sections, solubility and speciation experimental data, basic thermodynamic data, solubility limiting solid phases, experimental design and review and overview articles. Some references appear in more than one section. (Author)

  7. On nitrogen solubility in water

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  8. Thorium oxalate solubility and morphology

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  9. Solubility database for TILA-99

    Vuorinen, U.; Carlsson, T. [VTT Chemical Technology, Espoo (Finland); Kulmala, S.; Hakanen, M. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water ({approx}70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites

  10. Solubility database for TILA-99

    Vuorinen, U.; Carlsson, T.; Kulmala, S.; Hakanen, M.

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water (∼70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites. The

  11. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  12. On the solubility of yttrium in RuO2

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M.

    2011-01-01

    We have investigated the solubility of Y in rutile RuO 2 using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO 2 alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  13. Actinide solution equlibria and solubilities in geologic systems

    Allard, B.

    1983-04-01

    Stability constants and solubility products for actinide (Th, U, Np, Pu and Am) hydroxide and carbonate complexes have been collected, and total solubilities have been calculated under conditions representative of deep granitic groundwaters (pH 7-9.5; high total carbonate concentration according to log (CO 3 )=0.76pH-10.83; redox potentials corresponding to oxic systems, Eh>0.8-0.06pH, and reducing systems, Eh 2 (s), UO 2 (s), NpO 2 (s), PuO 2 (s) and Am 2 (CO 3 ) 3 (s)m, respectively, and the corresponding calculated maximum solubilities are 3 times 10- 10 M(0.07 μg/1) for Th, 0.3-250 times 10- 10 M (0.01-6 μg/1) for U (depending on the carbonate concentration), 1 times 10- 10 M(0.03 μg/1) for Np, 1-3 times 10- 9 M (0.2-0.7 μg/1) for Pu and 0.6-2 times 10- 7 M (15-50 μg/1) for Am. The calculated solubilities for U are in fair agreement with observed uranium concentrations in natural deep groundwaters. Hexavalent uranium carbonate species would dominate in solution except under highly reducing conditions (Eh 5 -10- 6 M (mg/1-level). (author)

  14. CONTAIN calculations

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  15. Optimizing solubility and permeability of a biopharmaceutics classification system (BCS) class 4 antibiotic drug using lipophilic fragments disturbing the crystal lattice.

    Tehler, Ulrika; Fagerberg, Jonas H; Svensson, Richard; Larhed, Mats; Artursson, Per; Bergström, Christel A S

    2013-03-28

    Esterification was used to simultaneously increase solubility and permeability of ciprofloxacin, a biopharmaceutics classification system (BCS) class 4 drug (low solubility/low permeability) with solid-state limited solubility. Molecular flexibility was increased to disturb the crystal lattice, lower the melting point, and thereby improve the solubility, whereas lipophilicity was increased to enhance the intestinal permeability. These structural changes resulted in BCS class 1 analogues (high solubility/high permeability) emphasizing that simple medicinal chemistry may improve both these properties.

  16. pH-metric solubility. 3. Dissolution titration template method for solubility determination.

    Avdeef, A; Berger, C M

    2001-12-01

    The main objective of this study was to develop an effective potentiometric saturation titration protocol for determining the aqueous intrinsic solubility and the solubility-pH profile of ionizable molecules, with the specific aim of overcoming incomplete dissolution conditions, while attempting to shorten the data collection time. A modern theory of dissolution kinetics (an extension of the Noyes-Whitney approach) was applied to acid-base titration experiments. A thermodynamic method was developed, based on a three-component model, to calculate interfacial, diffusion-layer, and bulk-water reactant concentrations in saturated solutions of ionizable compounds perturbed by additions of acid/base titrant, leading to partial dissolution of the solid material. Ten commercial drugs (cimetidine, diltiazem hydrochloride, enalapril maleate, metoprolol tartrate, nadolol, propoxyphene hydrochloride, quinine hydrochloride, terfenadine, trovafloxacin mesylate, and benzoic acid) were chosen to illustrate the new titration methodology. It was shown that the new method is about 10 times faster in determining equilibrium solubility constants, compared to the traditional saturation shake-flask methods.

  17. Solubility of hydrogen isotopes in stressed hydride-forming metals

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  18. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  19. CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3-: The effects of electrostricted water and ion hydration thermodynamics

    Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will; Zhang, Tongwei; Romanak, Katherine D.

    2016-01-01

    Dissolution of CO 2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO 2 entering the atmosphere. Ions in solution partially control the amount of CO 2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO 2 solubility is difficult to predict. In this study, CO 2 solubility was experimentally determined in water, NaCl, CaCl 2 , Na 2 SO 4, and NaHCO 3 solutions and a mixed brine similar to the Bravo Dome natural CO 2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO 2 pressures to 35.5 MPa. Increasing ionic strength decreased CO 2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO 2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO 2 was strongly correlated (R 2  = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO 2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO 2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl 2 brine and a natural Na + , Ca 2+ , Cl − type brine with minor amounts of Mg 2+ , K + , Sr 2+ and Br − ). - Highlights: • Measured CO 2 solubility in Na + , Cl − , HCO 3 - , Ca 2+ and SO 4 2− solutions at high PCO 2 . • A new equation calculates electrostricted water (mol/kgw) from hydration number. • CO 2 solubility strongly correlates (R 2  = 0.96) to electrostricted water. • Ion electrostriction of water limits its availability for CO 2 caging and solvation. • Correlations predict CO 2 solubility of several mixed brines to within 1–9%.

  20. A new soluble and bioactive polymorph of praziquantel.

    Zanolla, Debora; Perissutti, Beatrice; Passerini, Nadia; Chierotti, Michele R; Hasa, Dritan; Voinovich, Dario; Gigli, Lara; Demitri, Nicola; Geremia, Silvano; Keiser, Jennifer; Cerreia Vioglio, Paolo; Albertini, Beatrice

    2018-01-30

    Praziquantel is the only available drug to treat Schistosomiasis. However, its utilization is limited by many drawbacks, including the high therapeutic dose needed, resulting in large tablets and capsules difficult to be swallowed, especially from pediatric patients. In this study, an alternative option to overcome these disadvantages is proposed: to switch to a novel crystalline polymorph of racemic compound praziquantel. The preparation of the crystalline polymorph was realized via a neat grinding process in a vibrational mill. The new phase (Form B) was chemically identical to the starting material (as proved by HPLC, 1 H-NMR, and polarimetry), but showed different physical properties (as evaluated by SEM, differential scanning calorimetry, thermogravimetry, ATR-FTIR spectroscopy, X-ray powder diffraction, and solid-state NMR). Furthermore, the crystal structure of the new phase was solved from the powder synchrotron X-ray diffraction pattern, resulting in a monoclinic C2/c cell and validated by DFT-D calculation. Moreover the simulated solid-state NMR 13 C chemical shifts were in excellent agreement with the experimental data. The conversion of original praziquantel into Form B showed to affect positively the water solubility and the intrinsic dissolution rate of praziquantel. Both the in vitro and in vivo activity against Schistosoma mansoni were maintained. Our findings suggest that the new phase, that proved to be physically stable for at least one year, is a promising product for designing a new praziquantel formulation. Copyright © 2018. Published by Elsevier B.V.

  1. Measurement and correlation of solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures

    Wang, Jinxiu; Xie, Chuang; Yin, Qiuxiang; Tao, Linggang; Lv, Jun; Wang, Yongli; He, Fang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of cefmenoxime hydrochloride in pure and binary solvents was determined. • The experimental solubility data were correlated by thermodynamic models. • A model was employed to calculate the melting temperature of cefmenoxime hydrochloride. • Mixing thermodynamic properties of cefmenoxime hydrochloride were calculated. - Abstract: The solubility of cefmenoxime hydrochloride in pure solvents and binary solvent mixtures was measured at temperatures from (283.15 to 313.15) K by using the UV spectroscopic method. The results reveal that the solubility of cefmenoxime hydrochloride increases with increasing temperature in all solvent selected. The solubility of cefmenoxime hydrochloride reaches its maximum value when the mole fraction of isopropanol is 0.2 in the binary solvent mixtures of (isopropanol + water). The modified Apelblat equation and the NRTL model were successfully used to correlate the experimental solubility in pure solvents while the modified Apelblat equation, the CNIBS/R–K model and the Jouyban–Acree model were applied to correlate the solubility in binary solvent mixtures. In addition, the mixing thermodynamic properties of cefmenoxime hydrochloride in different solvents were also calculated based on the NRTL model and experimental solubility data.

  2. Lung diffusion of soluble radioaerosols in scleroderma

    Chopra, S.K.; Taplin, G.V.; Tashkin, D.P.; Elam, D.

    1978-01-01

    Diffusion rates of soluble radioaerosols of sodium pertechnetate (/sup 99m/TcO 4 ; mol. wt. 163) and diethylentriaminepentaacetate (/sup 99m/Tc-DTPA; mol. wt. 492) were determined in ten normal subjects and ten patients with scleroderma having lung involvement. Twenty millicuries (mCi) each of /sup 99m/TcO 4 and /sup 99m/Tc-DTPA in 5 ml saline were aerosolized and inhaled on two different days. Initial lung retention after three minutes of administration was approximately 2 mCi. Two regions of interest over each posterior lung field were monitored with a scintillation camera and data were stored on magnetic tape. Decreasing levels of radioactivity were plotted semilogarithmically and half time (T 1 / 2 ) removal rates were calculated

  3. Solubility of radionuclides in a bentonite environment for provisional safety analyses for SGT-E2

    Berner, U.

    2014-08-01

    Within stage 2 of the sectoral plan for deep geological repositories for radioactive waste in Switzerland provisional safety analyses are carried out. In the case of the repository for spent fuel and vitrified high level waste considered, retention mechanisms include the concentration limits of safety relevant elements in the pore water of the buffer material (bentonite). The present work describes the solubility limits of the safety relevant elements Be, C_i_n_o_r_g, Cl, K, Ca, Co, Ni, Se, Sr, Zr, Nb, Mo, Tc, Pd, Ag, Sn, I, Cs, Sm, Eu, Ho, Pb, Po, Ra, Ac, Th, Pa, U, Np, Pu, Am and Cm in the pore water of bentonite after diffusive solution exchange with the host rock Opalinus Clay. The term solubility limit denotes the maximum amount of an element dissolving in the pore solution of the considered chemical reference system. Chemical equilibrium thermodynamics is the classical tool used for quantifying such considerations. For a given solid phase equilibrium thermodynamics predict the amount of substance dissolving in the solution and describe the speciation of the considered element in solution. The principles of chemical equilibrium will also be the primary work hypothesis in the present work. Solubility calculations were performed with the most recent version of GEMS/PSI (GEMS3.2 v.890) using the PSI/Nagra Chemical Thermodynamic Data Base 12/07, which is an update of the former Nagra/PSI Chemical Thermodynamic Data Base 01/01. The database was complemented with datasets from the ThermoChimie v. 7b for elements that were not considered in the mentioned update (Ag, Co, Sm, Ho, Pa, Be), with data from Iupac (Pb) and with data from the literature (Mo). Differing sources for thermodynamic data are noted. Reference values as well as lower and upper guideline values are evaluated. For many formation constants of solids and solutes uncertainties are known and allow conveying lower and upper guideline values. In many cases it is not clear whether the most stable solid is

  4. Project-90 Near-field calculations using CALIBRE

    Worgan, K.; Robinson, P.

    1992-02-01

    A comprehensive set of near-field calculations for the Swedish Nuclear Power Inspectorates Project-90 safety assessment has been performed using the CALIBRE model. In the majority of cases considered the redox front migrates through the bentonite buffer and into the rock, where it becomes effectively immobilised. The fracture remains in a reducing state, which means that for solubility-limited nuclides, the concentration at the bentonite/fracture interface can never be greater than the reducing solubility limit. The calculations also show that significant retardation occurs for nuclides which are even moderately sorbed. The effect is less pronounced in the wider fracture and high flow cases, as the opportunity for diffusion from the fracture to the rock matrix is reduced. In contrast, the release from the near-field of poorly-sorbed nuclides which are not solubility limited is governed by the release rate from the fuel, the diffusive mass transfer resistance of the buffer, rock matrix and fracture, the initial inventories and the nuclide half-lives. In the reference case, the maximum dose potential of nuclides emerging from the near-field occur for I-129 and was 3.2 x 10 -7 Sv per canister-year, assuming the flux to be discharged directly into the wall receptor biosphere. The parameters which have the most impact on the reference base results are high flow, wide aperture and poor chemistry (i.e. high solubility limits and low sorption distribution coefficients). The effects of combining extreme values of parameters does not give results which are in proportion to their effect when applied in isolation. In the worst case variant (early canister failure high flow, wide aperture and poor chemistry) the maximum dose potential is 1.0 x 10 -4 Sv per canister-year, compared with 8.9 x 10 -6 Sv in the high flow case, 4.5 x 10 -7 in the wide aperture case, 2.3 x 10 -6 in the poor chemistry case and 3.9 x 10 -6 in the early failure, wide aperture and high flow case. (au)

  5. Solubility of simulated PWR primary circuit corrosion products

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  6. Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2).

    Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K

    2015-06-14

    This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.

  7. Evaluation of thermodynamic properties of solubility of noble gases in nitrogen tetroxide

    Drugachenok, M.A.; Baklaj, A.A.; Basharina, L.P.

    1986-01-01

    The Henry constants and Gibbs energies of dissolution of noble gases in nitrogen tetroxide have been calculated on the basis of the theory of infinitely dilute solutions. A satisfactory agreement between the calculated and experimental results has been obtained. With the increase of the gas atomic mass, enthalpy of solubility decreases monotonously, so that the process of krypton and xenon slubility in nitrogen tetroxide occurs with heat release. Xenon solubility rises with the increase of temperature. Argon solubility in the condition of operation of the loop plant condenser involves investigation of kinetic behaviour of this process

  8. Nanonization strategies for poorly water-soluble drugs.

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  9. Near-field solubility studies

    Thomason, H.P.; Williams, S.J.

    1992-02-01

    Experimental determinations of the solubilities of americium, plutonium, neptunium, protactinium, thorium, radium, lead, tin, palladium and zirconium are reported. These elements have radioactive isotopes of concern in assessments of radioactive waste disposal. All measurements were made under the highly alkaline conditions typical of the near field of a radioactive waste repository which uses cementitious materials for many of the immobilisation matrices, the backfill and the engineered structures. Low redox potentials, typical of those resulting from the corrosion of iron and steel, were simulated for those elements having more than one accessible oxidation state. The dissolved concentrations of the elements were defined using ultrafiltration. In addition, the corrosion of iron and stainless steel was shown to generate low redox potentials in solution and the solubility of iron(II) at high pH was measured and found to be sufficient for it to act as a redox buffer with respect to neptunium and plutonium. (author)

  10. Solubilities of Actinide Oxides in the KURT Groundwater

    Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won

    2009-12-01

    For the estimation of solubilities of actinides in a deep underground condition, The solubilities of UO 2 , ThO 2 , NpO 2 and Am(OH) 3 in the KURT ground water have been measured under various redox conditions, and their solubilities and aqueous species in the same conditions as the experimental solutions were also calculated by using a geochemical code. Then these results were compared with each other as well as with literature results. For the calculation of solubility of a radionuclide, the thermodynamic data of the radionuclide complex from OECD/NEA, Nagra/PSI, KAERI, JAEA, SKB and recent literatures were collected and compared. Additionally, the methods for the correction of ionic strength and temperature of the solution were described in this report. The analysis techniques and recent research for measurement of species of actinides were also introduced. The concentrations of U, Th and Np dissolved were less than 10 -7 mol/L under Eh≤-0.2 of reducing condition from experiment and calculation, and the solubility of PuO 2 (cr) was estimated as lower than that of UO 2 (cr) by 1 ∼ 2 orders. However if amount of carbonate ion in the ground water increased, the concentration of tetra-valance actinides at pH 8 ∼ 11 would be greatly increased. The 1x10 -6 mol/L of americium might be a little conservative value in KURT groundwater. While carbonate or hydroxo-carbonatec complexes were presumed to be the dominant aqueous species in -0.2 ∼ -0.3 V of Eh and weakly alkaline solution, hydroxo complexes are dominant in strong reducing and high pH solution

  11. Iron solubility in highly boron-doped silicon

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  12. Solubility study of Tc(IV) in a granitic water

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  13. Solubilization of poorly water-soluble drugs using solid dispersions.

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  14. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  15. Burnout calculation

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  16. Basin scale survey of marine humic fluorescence in the Atlantic: relationship to iron solubility and H2O2

    Heller, Maija; Gaiero, Diego; Croot, Peter

    2013-01-01

    Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with para...

  17. Evaluation of experimental data for wax and diamondoids solubility in gaseous systems

    Mohammadi, Amir H.; Gharagheizi, Farhad; Eslamimanesh, Ali

    2012-01-01

    The Leverage statistical approach is herein applied for evaluation of experimental data of the paraffin waxes/diamondoids solubility in gaseous systems. The calculation steps of this algorithm consist of determination of the statistical Hat matrix, sketching the Williams Plot, and calculation......-Santiago and Teja correlations are used to calculate/estimate the solubility of paraffin waxes (including n-C24H50 to n-C33H68) and diamondoids (adamantane and diamantane) in carbon dioxide/ethane gases, respectively. It can be interpreted from the obtained results that the applied equations for calculation...

  18. Measurement of soluble nuclide dissolution rates from spent fuel

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  19. Polymerized soluble venom--human serum albumin

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  20. Polymerized soluble venom--human serum albumin

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  1. Exactly soluble QCD and confinement of quarks

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  2. Solubilities of some gases in four immidazolium-based ionic liquids

    Afzal, Waheed; Liu, Xiangyang; Prausnitz, John M.

    2013-01-01

    Graphical abstract: Experimental apparatus based on the synthetic-volumetric method for measuring solubilities of gases in liquids. Highlights: • We constructed an apparatus for measuring solubilities of sparingly-soluble gases. • We measured solubilities of five gases in four immidazolium-based ionic liquids. • We calculated Henry’s constants for gases in the ionic liquids studied in this work. -- Abstract: The synthetic-volumetric method is used for rapidly measuring solubilities of sparingly-soluble gases in monoethylene glycol and in four ionic liquids. Known molar quantities of solute and solvent are charged into an equilibrium vessel. Measured quantities at equilibrium include: temperature, pressure, quantities of fluids, and volumes of the gas and liquid phases in the equilibrium vessel. These measurements enable calculation of equilibrium compositions using material balances. No sampling or chemical analyses are required. Solubilities are reported for carbon dioxide, krypton, oxygen, and hydrogen in monoethylene glycol, l-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4], l-n-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf 2 N], or 1-ethyl-3-methylimidazolium acetate [EMIM][AC]. Solubilities were measured over the temperature range (298 to 355) K and for pressures up to about 7 MPa using two different pieces of equipment, both based on the volumetric method: a low-pressure glass apparatus and a high-pressure stainless-steel apparatus. Special emphasis is given to experimental reliability to assure consistent data

  3. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    Hobart, D.E. [Sandia National Labs., Albuquerque, NM (United States)]|[Glenn T. Seaborg Inst. for Transactinium Science, Livermore, CA (United States); Bruton, C.J. [Sandia National Labs., Albuquerque, NM (United States)]|[Lawrence Livermore National Lab., CA (United States). Earth Sciences Dept.; Millero, F.J. [Sandia National Labs., Albuquerque, NM (United States)]|[Univ. of Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Chou, I.M. [Sandia National Labs., Albuquerque, NM (United States)]|[Geological Survey, Reston, VA (United States); Trauth, K.M.; Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  5. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    Hobart, D.E.; Bruton, C.J.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer's equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs

  6. Universality, marginal operators, and limit cycles

    Glazek, Stanislaw D.; Wilson, Kenneth G.

    2004-01-01

    The universality of renormalization-group limit-cycle behavior is illustrated with a simple discrete Hamiltonian model. A nonperturbative renormalization-group equation for the model is soluble analytically at criticality and exhibits one marginal operator (made necessary by the limit cycle) and an infinite set of irrelevant operators. Relevant operators are absent. The model exhibits an infinite series of bound-state energy eigenvalues. This infinite series approaches an exact geometric series as the eigenvalues approach zero--also a consequence of the limit cycle. Wegner's eigenvalues for irrelevant operators are calculated generically for all choices of parameters in the model. We show that Wegner's eigenvalues are independent of location on the limit cycle, in contrast with Wegner's operators themselves, which vary depending on their location on the limit cycle. An example is then used to illustrate numerically how one can tune the initial Hamiltonian to eliminate the first two irrelevant operators. After tuning, the Hamiltonian's bound-state eigenvalues converge much more quickly than otherwise to an exact geometric series

  7. Solubility is the most important mass transfer factor

    Slobodov, A.A.; Zarembo, V.I.

    1992-01-01

    The existence of the quantitative correlation between mass transfer and equilibrium solubility of corrosion products of construction materials in water circuits of power plants is shown. Thermodynamic and mathematical methods of modeling and calculating for these processes are developed. The results for iron based materials - aqueous solution systems in a wide range of temperature, pH, oxygen-hydrogen concentrations are presented. The optimization conditions for mass transfer, sedimentation of corrosion products for BWR, PWR reactors, etc. have been obtained

  8. Determination and assessment of the concentration limits to be used in SR-Can. Supplement to TR-06-32

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara

    2010-09-01

    This document complements and updates the report TR-06-32, Determination and assessment of the concentration limits to be used in SR-Can, in which the solubility limits of different radionuclides in the near field system and under the different scenarios selected by SKB were assessed. Since 2006, several important changes in different fields affecting solubility assessment calculations have been reported. These changes basically concern some of the thermodynamic data used in the calculations and the groundwater compositions for scenarios of interest defined by SKB. In this document we update the thermodynamic data corresponding to Ni, Zr, Th and U and we describe the thermodynamic database selected for Pb. This document also reports the update of the assessment of the concentration limits to be used in SR-Can, which has been done considering the recent thermodynamic database updates and the new groundwater compositions of interest supplied by SKB. Finally, we also present the Simple Functions spreadsheet tool, born from the need of having a confident and easy-to-handle tool to calculate solubility limits of some radionuclides under determined conditions in an agile and relatively fast manner

  9. Determination and assessment of the concentration limits to be used in SR-Can. Supplement to TR-06-32

    Grive, Mireia; Domenech, Cristina; Montoya, Vanessa; Garcia, David; Duro, Lara

    2010-09-15

    This document complements and updates the report TR-06-32, Determination and assessment of the concentration limits to be used in SR-Can, in which the solubility limits of different radionuclides in the near field system and under the different scenarios selected by SKB were assessed. Since 2006, several important changes in different fields affecting solubility assessment calculations have been reported. These changes basically concern some of the thermodynamic data used in the calculations and the groundwater compositions for scenarios of interest defined by SKB. In this document we update the thermodynamic data corresponding to Ni, Zr, Th and U and we describe the thermodynamic database selected for Pb. This document also reports the update of the assessment of the concentration limits to be used in SR-Can, which has been done considering the recent thermodynamic database updates and the new groundwater compositions of interest supplied by SKB. Finally, we also present the Simple Functions spreadsheet tool, born from the need of having a confident and easy-to-handle tool to calculate solubility limits of some radionuclides under determined conditions in an agile and relatively fast manner

  10. Reliability calculations

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  11. Calculation of burnable cells-Hammer versus Leopard

    Dias, A.M.; Almeida, C.U.C. de; Pina, C.M. de; Prestes, L.F.; Lederman, L.; Nunes, N.P.; Branco, W.H.

    1977-02-01

    The nuclear parameters for the Angra-1 reactor core are obtained from the cross sections of soluble boron and burnable boron, calculated by the code CITHAM. The results are compared with those developed by the code LEOCIT [pt

  12. Cellulose nanofibers as excipient for the delivery of poorly soluble drugs

    Löbmann, Korbinian; Svagan, Anna J

    2017-01-01

    Poor aqueous solubility of drugs is becoming an increasingly pronounced challenge in the formulation and development of drug delivery systems. To overcome the limitations associated with these problematic drugs, formulation scientists are required to use enabling strategies which often demands...

  13. Solubility of magnetite in coolant of NPP boiling reactor

    Zarembo, V.I.; Kritskij, V.G.; Slobodov, A.A.; Puchkov, L.V.

    1988-01-01

    To improve water-chemical NPP regimes calculations of iron solubility up to 600 K temperature in Fe 3 O 4 -H 2 O-O 2 and Fe(OH) 3 -H 2 O systems are performed using a system of selected and consistent values of thermal constants of various chemical iron forms in standard aqueous solution state. Calculations have shown that up to 423 K in aqueous medium containing oxygen, magnetite is unstable and is oxidized first up to Fe(OH) 3 and then - up to Fe OOH and Fe 2 O 3 . Calculations complying with experimental data have demonstrated the presence of maximum on the curve solubility-temperature in desalinized water containing 10 μkg/kg of oxygen. A sequence of processes of oxygen effect on water regime and corrosion prduct deposition in a condensate-feed circuit of NPP boiling reactor is proposed. It is proved that under oxygen water chemistry of condensate-feed circuit after magnetite transfomation into gematite, reduction of soluble iron form inlet to reactor loop occurs, which allows one to expect reduction of γ-radiation dose rate buildup around the primary loop pipelines

  14. Summary of Dissolved Concentration Limits

    Yueting Chen

    2001-01-01

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M and O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits

  15. Summary of Dissolved Concentration Limits

    Yueting Chen

    2001-06-11

    According to the Technical Work Plan titled Technical Work Plan for Waste Form Degradation Process Model Report for SR (CRWMS M&O 2000a), the purpose of this study is to perform abstractions on solubility limits of radioactive elements based on the process-level information and thermodynamic databases provided by Natural Environment Program Operations (NEPO) and Waste Package Operations (WPO). The scope of this analysis is to produce solubility limits as functions, distributions, or constants for all transported radioactive elements identified by the Performance Assessment Operations (PAO) radioisotope screening. Results from an expert elicitation for solubility limits of most radioactive elements were used in the previous Total System Performance Assessments (TSPAs). However, the elicitation conducted in 1993 does not meet the criteria set forth by the U.S. Nuclear Regulatory Commission (NRC) due to lack of documentation and traceability (Kotra et al. 1996, Section 3). Therefore, at the Waste Form Abstraction Workshop held on February 2-4, 1999, at Albuquerque, New Mexico, the Yucca Mountain Site Characterization Project (YMP) decided to develop geochemical models to study solubility for the proposed Monitored Geologic Repository. WPO/NEPO is to develop process-level solubility models, including review and compilation of relevant thermodynamic data. PAO's responsibility is to perform abstractions based on the process models and chemical conditions and to produce solubility distributions or response surfaces applicable to the proposed repository. The results of this analysis and conceptual model will feed the performance assessment for Total System Performance Assessment--Site Recommendation (TSPA-SR) and Total System Performance Assessment--License Application (TSPA-LA), and to the Waste Form Degradation Process Model Report section on concentration limits.

  16. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media.

    Alhalaweh, Amjad; Roy, Lilly; Rodríguez-Hornedo, Naír; Velaga, Sitaram P

    2012-09-04

    Cocrystals constitute an important class of pharmaceutical solids for their remarkable ability to modulate solubility and pH dependence of water insoluble drugs. Here we show how cocrystals of indomethacin-saccharin (IND-SAC) and carbamazepine-saccharin (CBZ-SAC) enhance solubility and impart a pH-sensitivity different from that of the drugs. IND-SAC exhibited solubilities 13 to 65 times higher than IND at pH values of 1 to 3, whereas CBZ-SAC exhibited a 2 to 10 times higher solubility than CBZ dihydrate. Cocrystal solubility dependence on pH predicted from mathematical models using cocrystal K(sp), and cocrystal component K(a) values, was in excellent agreement with experimental measurements. The cocrystal solubility increase relative to drug was predicted to reach a limiting value for a cocrystal with two acidic components. This limiting value is determined by the ionization constants of cocrystal components. Eutectic constants are shown to be meaningful indicators of cocrystal solubility and its pH dependence. The two contributions to solubility, cocrystal lattice and solvation, were evaluated by thermal and solubility determinations. The results show that solvation is the main barrier for the aqueous solubility of these drugs and their cocrystals, which are orders of magnitude higher than their lattice barriers. Cocrystal increase in solubility is thus a result of decreasing the solvation barrier compared to that of the drug. This work demonstrates the favorable properties of cocrystals and strategies that facilitate their meaningful characterization.

  17. Reliability Calculations

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  18. Computing and physical methods to calculate Pu

    Mohamed, Ashraf Elsayed Mohamed

    2013-01-01

    Main limitations due to the enhancement of the plutonium content are related to the coolant void effect as the spectrum becomes faster, the neutron flux in the thermal region tends towards zero and is concentrated in the region from 10 Ke to 1 MeV. Thus, all captures by 240 Pu and 242 Pu in the thermal and epithermal resonance disappear and the 240 Pu and 242 Pu contributions to the void effect became positive. The higher the Pu content and the poorer the Pu quality, the larger the void effect. The core control in nominal or transient conditions Pu enrichment leads to a decrease in (B eff.), the efficiency of soluble boron and control rods. Also, the Doppler effect tends to decrease when Pu replaces U, so, that in case of transients the core could diverge again if the control is not effective enough. As for the voiding effect, the plutonium degradation and the 240 Pu and 242 Pu accumulation after multiple recycling lead to spectrum hardening and to a decrease in control. One solution would be to use enriched boron in soluble boron and shutdown rods. In this paper, I discuss and show the advanced computing and physical methods to calculate Pu inside the nuclear reactors and glovebox and the different solutions to be used to overcome the difficulties that effect, on safety parameters and on reactor performance, and analysis the consequences of plutonium management on the whole fuel cycle like Raw materials savings, fraction of nuclear electric power involved in the Pu management. All through two types of scenario, one involving a low fraction of the nuclear park dedicated to plutonium management, the other involving a dilution of the plutonium in all the nuclear park. (author)

  19. Chemistry of tetravalent plutonium and zirconium. Hydrolysis, solubility, colloid formation and redox reactions

    Cho, Hye-Ryun

    2006-01-01

    The chemical properties of plutonium and zirconium are important in order to assess nuclear waste disposals with respect to isolation and immobilization of radionuclides. In this study, the hydrolysis, solubility and colloid formation of tetravalent plutonium and zirconium are investigated in 0.5 M HCl/NaCl solution using several complementary methods and the redox behavior of plutonium is investigated in acidic conditions as well. The solubilities of Pu(IV) and Zr(IV) are determined from the onset of colloid formation as a function of pH and metal concentration using LIBD (laser-induced breakdown detection). The investigation of the solubility of Zr(IV) is carried out at different concentrations (log [Zr] = -3 ∝ -7.6) and in a wide pH range (pH = 3 - 9) yielding log K sp (Zr(IV)) = -53.1 ± 0.5 based on the assumption that only mononuclear hydrolysis species exist in solution. Comparing the present results with literature data, the solubilities of Zr can be split in two groups, a crystalline phase with lower solubility and an amorphous phase (Zr(OH) 4 (am)) with higher solubility. The data obtained in the present work set an upper limit for the solubility of freshly formed Zr(OH) 4 (am). To understand this difference of solubilities, the geometrical structure of the dominant solution species is investigated as a function of pH using XAFS (X-ray absorption fine structure). The samples at pH >2, still below the solubility limit determined by LIBD, contain the polynuclear Zr(IV) species probably due to the high concentration ([Zr] = 1 mM) and their structure do not resemble any reported simple ZrO 2 structure. The Zr(IV) colloid species in oversaturated solution under this experimental condition resembles amorphous Zr(IV) hydroxide rather than crystalline ZrO 2 . The solubility of Pu(IV) is investigated in acidic solution below pH 2. Considering only mononuclear hydrolysis species, log K sp (Pu(IV)) = -58.3 ± 0.4 is obtained. Since Pu(IV) is not redox stable even

  20. A molecular study of gas solubility in nitrile rubber

    Khawaja, Musab; Mostofi, Arash; Sutton, Adrian

    2015-03-01

    One of the most important uses of elastomers in the oil industry is for seals to encase and protect sensitive monitoring equipment from contamination by gases and liquids at the high pressures and temperatures in the well. Failure of such seals sometimes occurs on decompression when they are returned to the surface. The conditions in the well lead to gases being absorbed by Nitrile rubber (NBR) seals. NBR exhibits a strong permselectivity towards CO2 compared to other gases; something attributed experimentally to the enhanced solubility of CO2. In this study an explanation is sought at the molecular level for this phenomenon. A series of molecular mechanics calculations are performed to compute solubilities of different gases in NBR. The effect of acrylonitrile content on their solubilities is studied for the first time by simulation, and we discuss the important issue of convergence with respect to the sampling of different elastomer configurations. It is observed that the presence of cyano groups has a marked impact on the solubility of CO2 and an explanation is offered.

  1. The solubility and diffusion coefficient of helium in uranium dioxide

    Nakajima, Kunihisa; Serizawa, Hiroyuki; Shirasu, Noriko; Haga, Yoshinori; Arai, Yasuo

    2011-01-01

    Highlights: ► The solubility and diffusivity of He in single-crystal UO 2 were determined. ► The determined He solubility lay within the scatter of the available data. ► The determined He diffusivity was in good agreement with recent experimental data. ► The He behavior was analyzed in terms of a simple interstitial diffusion mechanism. ► The experimental diffusivity was much lower than that analyzed theoretically. - Abstract: The solubility and diffusion coefficient of helium in the single-crystal UO 2 samples were determined by a Knudsen-effusion mass-spectrometric method. The measured helium solubilities were found to lie within the scatter of the available data, but to be much lower than those for the polycrystalline samples. The diffusion analysis was conducted based on a hypothetical equivalent sphere model and the simple Fick’s law. The helium diffusion coefficient was determined by using the pre-exponential factor and activation energy as the fitting parameters for the measured and calculated fractional releases of helium. The optimized diffusion coefficients were in good agreement with those obtained by a nuclear reaction method reported in the past. It was also found that the pre-exponential factors of the determined diffusion coefficients were much lower than those analyzed in terms of a simple interstitial diffusion mechanism.

  2. Solubility of salicylic acid in pure alcohols at different temperatures

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  3. Solubility correlation of anthraquinone derivatives in supercritical carbon dioxide

    Alwi, Ratna Surya; Tamura, Kazuhiro; Tanaka, Tatsuro; Shimizu, Keisuke

    2017-05-01

    In this work, solubilites of anthraquinone dyestuffs in supercritical carbon dioxide (sc-CO2) were correlated by semiempirical models, expressed in terms of CO2 density. All solubility data used, experimentally measured by us, and were described in details elsewhere; namely, 1,4-diaminoanthraquinone and 1,4-bis(ethylamino)anthraquinone [J. Chem. Thermo-dyn. 74, 119-125 (2014)]; 1-amino-4-hydroxyanthraquinone and 1-hydroxy-4-nitroanthraquionone [Dyes Pigm.113, 351-356 (2015)]; 1,4-diamino-2,3-dichloroanthraquinone and 1,8-dihydroxy-4,5-dinitroanthraquinone [J. Chem. Eng. Data 60, 3046-3052 (2015)], and 1-aminoanthraquinone and 1-nitroanthraquinone [J. Chem. Thermodyn. 104, 162-168 (2017)]. It was found that 1-aminoanthraquinone shows the highest solubility at 383,15 K and pressure of 25 MPa, and the solubility of anthraquinone derivatives in sc-CO2 changed by the substituent groups. Satisfactory agreement between the experimental data used and calculated solubilities of the anthraquinone derivatives was obtained.

  4. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  5. Solubility of chromate in a hydrated OPC

    Leisinger, Sabine M.; Bhatnagar, Amit; Lothenbach, Barbara; Johnson, C. Annette

    2014-01-01

    Highlights: • Solid solutions exist between gypsum and calcium chromate. • The cementitious matrix can bind chromate concentrations up to 0.1 mol/kg. • The chromate binding phase in the cementitious matrix is CrO 4 -ettringite. - Abstract: The knowledge of the chromate binding mechanisms is essential for the prediction of the long-term leachability of cement-based solidified waste containing increased chromate concentrations because of its toxicity and high mobility. In this paper pore water concentrations from OPC doped with varying CaCrO 4 concentrations (0.01–0.8 mol/kg), equilibrated for 28 days were reported. It could be shown that the cementitious matrix can bind chromate concentrations up to 0.1 mol/kg and that the chromate solubility limiting phase was CrO 4 -ettringite, while chromate containing AFm (monochromate) was unstable. Comparison with thermodynamic modelling indicated that at lower chromate dosages chromate was mainly bound by CrO 4 -ettringite while at very high dosages also a mixed CaCrO 4 –CaSO 4 ·2H 2 O phase precipitated. Additional experiments indicated a solubility product of 10 −3.66 for CaCrO 4 and verified the solid solution formation with CaSO 4 ·2H 2 O. Leaching tests indicated a strong chromate binding mainly in the pH range 10.5–13.5, while at pH < 10 very little chromate was bound as ettringite, monocarbonate and C–S–H phases were destabilized. Generally the thermodynamic modeling underestimated chromate uptake indicating that an additional chromate binding possibly on C–S–H or on mixed chromate–carbonate–hydroxide AFm phases

  6. The role of carbon solubility in Fe-C nano-clusters on the growth of small single-walled carbon nanotubes

    Curtarolo, Stefano; Awasthy, Neha; Setyawan, Wahyu; Mora, Elena; Tokune, Toshio; Bolton, Kim; Harutyunyan, Avetik

    2008-03-01

    Various diameters of alumina-supported Fe catalysts are used to grow single-walled carbon nanotubes (SWCNTs) with chemical vapor decomposition. We find that the reduction of the catalyst size requires an increase of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe nanoclusters and, by using first principles calculations, we devise a simple model to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We show that, as a function particles size, there are three scenarios compatible with steady state-, limited- and no-growth of SWCNTs, corresponding to unaffected, reduced and no solubility of C in the particles. The result raises previously unknown concerns about the growth feasibility of small and very-long SWCNTs within the current Fe CVD technology, and suggests new strategies in the search of better catalysts. Research supported by Honda R.I. and NSF.

  7. Solubility and viscosity for CO_2 capture process using MEA promoted DEAE aqueous solution

    Fu, Dong; Wang, LeMeng; Zhang, Pan; Mi, ChenLu

    2016-01-01

    Highlights: • Solubility of CO_2 in MEA promoted DEAE aqueous solution was measured. • Mass fraction and temperature dependences of solubility were illustrated. • Viscosities of carbonated MEA–DEAE solutions were measured and calculated. • Temperature, mass fraction and CO_2 loading dependences of viscosity were illustrated. - Abstract: The saturated solubility of CO_2 in monoethanolamine (MEA) promoted 2-diethylaminoethanol (DEAE) aqueous solution was investigated at temperatures ranging from (303.2 to 323.2) K. The mass fraction and temperature dependences of the saturated solubility and CO_2 loading are illustrated. The viscosities of both CO_2-unloaded and CO_2-loaded DEAE–MEA aqueous solutions were measured and then calculated by using the Weiland equation. The effects of temperature, mass fraction and CO_2 loading on viscosities are demonstrated.

  8. Thermodynamic analysis and evaluation of the nitrogen solubility in liquid Nb and Fe-Nb alloys

    Qiu Caian

    1994-01-01

    Experimental information on the nitrogen solubility in liquid Nb and Fe-Nb alloys has been critically analysed and then utilized to evaluate the thermodynamic properties of the Nb-N and Fe-Nb-N liquid phases on the basis of thermodynamic models of Gibbs energy. A thermodynamic description of the Fe-Nb-N liquid phase was obtained, which has been used to calculate the N solubility in comparison with experimental results. The effect of an addition of Nb on the temperature dependence of the N solubility in liquid Fe has been examined by comparing with the effect of the Cr and V additions. It has been shown that the N solubility in liquid Nb and Fe-Nb alloys under various conditions is well described by the present calculation. (orig.)

  9. The determination of solubility parameters of solvents and polymers by means of correlations with other physical quantities

    Koenhen, D.M.; Smolders, C.A.

    1975-01-01

    Correlations of solvent solubility parameters with molar attraction constants and with properties like surface tension, dipole moment, and index of refraction have been explored. From relations found to be valid for solvents, it is possible to calculate the solubility parameters for polymers. A

  10. Measurement and correlation of solubility of ciclesonide in seven pure organic solvents

    Zhou, Lina; Yin, Qiuxiang; Guo, Zhiqiang; Lu, Haijiao; Liu, Mingyan; Chen, Wei; Hou, Baohong

    2017-01-01

    Highlights: • The solubility of ciclesonide in seven pure organic solvents was determined by gravimetric method. • The solubility order was interpreted by virtue of density function theory (DFT). • The experimental solubility of ciclesonide was correlated by four thermodynamic models. • Mixing thermodynamic properties of ciclesonide were calculated and discussed. - Abstract: The solubility of ciclesonide in seven organic solvents (ethanol, 2-propanol, 1-propanol, 1-butanol, acetonitrile, toluene and ethyl acetate) in the temperature range from 278.15 K to 313.15 K was measured by gravimetrical method under atmospheric pressure. The results indicate that the solubility of ciclesonide increases with elevating temperature in all investigated solvents. The solubility order in different solvents was interpreted through comparing interaction force between solute and solvent molecules by virtue of density function theory (DFT). Thermodynamic equations including the modified Apelblat equation, λh equation, Wilson equation and NRTL equation are all suitable to correlate the solubility results. Based on the Wilson equation, the thermodynamic parameters from the mixing process are calculated, and the results indicate the mixing process of ciclesonide in the selected pure solvents is spontaneous and entropy-driven.

  11. Nanosuspension Technology for Solubilizing Poorly Soluble Drugs

    Deoli Mukesh

    2012-01-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. It is estimated that around 40% of drugs in the pipeline cannot be delivered through the preferred route or in some cases, at all owing to poor water solubility. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor1 EL). To date, nanoscale systems f...

  12. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  13. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  14. Factors affecting actinide solubility in a repository for spent fuel, 1

    Snellman, Margit

    1986-07-01

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  15. Application of various water soluble polymers in gas hydrate inhibition

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges...

  16. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  17. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  18. Dissolution rates and solubility of some metals in liquid gallium and aluminum

    Yatsenko, S P; Sabirzyanov, N A; Yatsenko, A S

    2008-01-01

    The effect of liquid gallium and aluminum on some hard metals leading to dissolution and formation of intermetallic compounds (IMC) under static conditions and rotation of a specimen is studied. The solubility parameters from the Clapeyron-Clausius equation were considered to estimate the stability of still not studied metals. The presented experimental data on solubility and corrosion in a wide temperature range allow to calculate a number of parameters useful in manufacturing and application of master-alloys

  19. Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K

    Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.

    2017-12-01

    Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.

  20. Retrograde curves of solidus and solubility

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  1. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona

    2016-01-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer...... solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does...... not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both...

  2. Temperature and curing time affect composite sorption and solubility

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  3. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  4. Solubility Temperature Dependence Predicted from 2D Structure

    Alex Avdeef

    2015-12-01

    Full Text Available The objective of the study was to find a computational procedure to normalize solubility data determined at various temperatures (e.g., 10 – 50 oC to values at a “reference” temperature (e.g., 25 °C. A simple procedure was devised to predict enthalpies of solution, ΔHsol, from which the temperature dependence of intrinsic (uncharged form solubility, log S0, could be calculated. As dependent variables, values of ΔHsol at 25 °C were subjected to multiple linear regression (MLR analysis, using melting points (mp and Abraham solvation descriptors. Also, the enthalpy data were subjected to random forest regression (RFR and recursive partition tree (RPT analyses. A total of 626 molecules were examined, drawing on 2040 published solubility values measured at various temperatures, along with 77 direct calori    metric measurements. The three different prediction methods (RFR, RPT, MLR all indicated that the estimated standard deviations in the enthalpy data are 11-15 kJ mol-1, which is concordant with the 10 kJ mol-1 propagation error estimated from solubility measurements (assuming 0.05 log S errors, and consistent with the 7 kJ mol-1 average reproducibility in enthalpy values from interlaboratory replicates. According to the MLR model, higher values of mp, H‑bond acidity, polarizability/dipolarity, and dispersion forces relate to more positive (endothermic enthalpy values. However, molecules that are large and have high H-bond basicity are likely to possess negative (exothermic enthalpies of solution. With log S0 values normalized to 25 oC, it was shown that the interlaboratory average standard deviations in solubility measurement are reduced to 0.06 ‑ 0.17 log unit, with higher errors for the least-soluble druglike molecules. Such improvements in data mining are expected to contribute to more reliable in silico prediction models of solubility for use in drug discovery.

  5. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: Band gaps of MoS2, h-BN, and phosphorene

    Rasmussen, Filip Anselm; Schmidt, Per Simmendefeldt; Winther, Kirsten Trøstrup

    2016-01-01

    Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q = 0 that calls for a much denser...

  6. Solubility study of Tc(Ⅳ) in a granitic water

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  7. Determination of soluble protein contents from RVNRL

    Wan Manshol Wan Zin; Nurulhuda Othman

    1996-01-01

    This project was carried out to determine the soluble protein contents on RVNRL film vulcanisates, with respect to the RVNRL storage time, gamma irradiation dose absorbed by the latex and the effect of different leaching time and leaching conditions. These three factors are important in the hope to determine the best possible mean of minimizing the soluble protein contents in products made from RVNRL. Within the nine months storage period employed in the study, the results show that, the longer the storage period the less the soluble protein extracted from the film samples. Gamma irradiation dose absorbed by the samples, between 5.3 kGy to 25.2 kGy seems to influence the soluble protein contents of the RVNRL films vulcanisates. The higher the dose the more was the soluble protein extracted from the film samples. At an absorbed dose of 5.3 kGy and 25.2 kGy, the soluble contents were 0. 198 mg/ml and 0.247 mg/ml respectively. At a fixed leaching temperature, the soluble proteins increases with leaching time and at a fixed leaching time, the soluble proteins increases with leaching temperature. ne highest extractable protein contents was determined at a leaching time of 10 minutes and leaching temperature of 90'C The protein analysis were done by using Modified Lowry Method

  8. Solubility Study of Curatives in Various Rubbers

    Guo, R.; Talma, Auke; Datta, Rabin; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2008-01-01

    The previous works on solubility of curatives in rubbers were mainly carried out in natural rubber. Not too much information available on dissimilar rubbers and this is important because most of the compounds today are blends of dissimilar rubbers. Although solubility can be expected to certain

  9. Solubility Products of M(II) - Carbonates

    Grauer, Rolf; Berner, Urs

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author)

  10. Hansen Solubility Parameters for Octahedral Oligomeric Silsesquioxanes

    2012-08-28

    1997, 80, 386-&. 5. Hansen, C. M. The three-dimensional solubility parameter -- key to paint component affinities I. J. Paint Technol. 1967, 39, 104...Chai, J.; Zhang, Q. X.; Han, D. X.; Niu, L. Synthesis and Application of Widely Soluble Graphene Sheets. Langmuir 2010, 26, 12314-12320. 12. Hansen, C

  11. A Colorful Solubility Exercise for Organic Chemistry

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  12. The Apparent Solubility Of Aluminum(III) In Hanford High-Level Waste Tanks

    Reynolds, J.G.

    2012-01-01

    The solubility of aluminum in Hanford nuclear waste impacts on the process ability of the waste by a number of proposed treatment options. For many years, Hanford staff has anecdotally noted that aluminum appears to be considerably more soluble in Hanford waste than the simpler electrolyte solutions used as analogues. There has been minimal scientific study to confirm these anecdotal observations, however. The present study determines the apparent solubility product for gibbsite in 50 tank samples. The ratio of hydroxide to aluminum in the liquid phase for the samples is calculated and plotted as a function of total sodium molarity. Total sodium molarity is used as a surrogate for ionic strength, because the relative ratios of mono, di and trivalent anions are not available for all of the samples. These results were compared to the simple NaOH-NaAl(OH 4 )H 2 O system, and the NaOH-NaAl(OH 4 )NaCl-H 2 O system data retrieved from the literature. The results show that gibbsite is apparently more soluble in the samples than in the simple systems whenever the sodium molarity is greater than two. This apparent enhanced solubility cannot be explained solely by differences in ionic strength. The change in solubility with ionic strength in simple systems is small compared to the difference between aluminum solubility in Hanford waste and the simple systems. The reason for the apparent enhanced solubility is unknown, but could include. kinetic or thermodynamic factors that are not present in the simple electrolyte systems. Any kinetic explanation would have to explain why the samples are always supersaturated whenever the sodium molarity is above two. Real waste characterization data should not be used to validate thermodynamic solubility models until it can be confirmed that the apparent enhanced gibbsite solubility is a thermodynamic effect and not a kinetic effect.

  13. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  14. Removal of soluble toxic metals from water

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  15. Sodium tetraphenylborate solubility and dissolution rates

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  16. Solubility effects in waste-glass/demineralized-water systems

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  17. The PHREEQE Geochemical equilibrium code data base and calculations

    Andersoon, K.

    1987-01-01

    Compilation of a thermodynamic data base for actinides and fission products for use with PHREEQE has begun and a preliminary set of actinide data has been tested for the PHREEQE code in a version run on an IBM XT computer. The work until now has shown that the PHREEQE code mostly gives satisfying results for specification of actinides in natural water environment. For U and Np under oxidizing conditions, however, the code has difficulties to converge with pH and Eh conserved when a solubility limit is applied. For further calculations of actinide and fission product specification and solubility in a waste repository and in the surrounding geosphere, more data are needed. It is necessary to evaluate the influence of the large uncertainties of some data. A quality assurance and a check on the consistency of the data base is also needed. Further work with data bases should include: an extension to fission products, an extension to engineering materials, an extension to other ligands than hydroxide and carbonate, inclusion of more mineral phases, inclusion of enthalpy data, a control of primary references in order to decide if values from different compilations are taken from the same primary reference and contacts and discussions with other groups, working with actinide data bases, e.g. at the OECD/NEA and at the IAEA. (author)

  18. Analysis of chemical concepts as the basic of virtual laboratory development and process science skills in solubility and solubility product subject

    Syafrina, R.; Rohman, I.; Yuliani, G.

    2018-05-01

    This study aims to analyze the concept characteristics of solubility and solubility products that will serve as the basis for the development of virtual laboratory and students' science process skills. Characteristics of the analyzed concepts include concept definitions, concept attributes, and types of concepts. The concept analysis method uses concept analysis according to Herron. The results of the concept analysis show that there are twelve chemical concepts that become the prerequisite concept before studying the solubility and solubility and five core concepts that students must understand in the solubility and Solubility product. As many as 58.3% of the definitions of the concepts contained in high school textbooks support students' science process skills, the rest of the definition of the concept is memorized. Concept attributes that meet three levels of chemical representation and can be poured into a virtual laboratory have a percentage of 66.6%. Type of concept, 83.3% is a concept based on principle; and 16.6% concepts that state the process. Meanwhile, the science process skills that can be developed based on concept analysis are the ability to observe, calculate, measure, predict, interpret, hypothesize, apply, classify, and inference.

  19. Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Korean Native Steers Supplemented with Soluble Proteins

    C. W. Choi

    2012-09-01

    Full Text Available An experiment was conducted to study the effect of soluble protein supplements on concentration of soluble non-ammonia nitrogen (SNAN in the liquid phase of ruminal (RD and omasal digesta (OD of Korean native steers, and to investigate diurnal pattern in SNAN concentration in RD and OD. Three ruminally cannulated Korean native steers in a 3×3 Latin square design consumed a basal diet of rice straw and corn-based concentrate (control, and that supplemented (kg/d DM basis with intact casein (0.24; IC or acid hydrolyzed casein (0.46; AHC. Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 2.0 h intervals after a morning feeding. The SNAN fractions (free amino acid (AA, peptide and soluble protein in RD and OD were assessed using the ninhydrin assay. Concentrations of free AA and total SNAN in RD were significantly (p<0.05 lower than those in OD. Although free AA concentration was relatively high, mean peptide was quantitatively the most important fraction of total SNAN in both RD and OD, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis of Korean native steers. Diurnal variation in peptide concentration in OD for the soluble protein supplemented diets during the feeding cycle peaked 2 h post-feeding and decreased thereafter whereas that for the control was relatively constant during the entire feeding cycle. Diurnal variation in peptide concentration was rather similar between RD and OD.

  20. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Estimation of the effective distribution coefficient from the solubility constant

    Wang, Yug-Yea; Yu, C.

    1994-01-01

    An updated version of RESRAD has been developed by Argonne National Laboratory for the US Department of Energy to derive site-specific soil guidelines for residual radioactive material. In this updated version, many new features have been added to the, RESRAD code. One of the options is that a user can input a solubility constant to limit the leaching of contaminants. The leaching model used in the code requires the input of an empirical distribution coefficient, K d , which represents the ratio of the solute concentration in soil to that in solution under equilibrium conditions. This paper describes the methodology developed to estimate an effective distribution coefficient, Kd, from the user-input solubility constant and the use of the effective K d for predicting the leaching of contaminants

  2. Investigations on the safety of radioactive materials transport. Pt. 1.2. Calculation of activity limits - permitted limits. Final report on the working package 4; Untersuchungen zur Sicherheit bei der Befoerderung radioaktiver Stoffe. T. 1.2. Berechnung von Aktivitaetsgrenzwerten - Freigrenzen. Abschlussbericht zum Arbeitspaket 4

    Richter, Cornelia; Eich, Patrick

    2014-09-15

    One aim of this project 3611R03300 was the analysis of the methods for the calculation of exemption values and the development of software for the calculation following the EU Principles and Methods of Radiation Protection 65 (RP 65). A program was devel-oped using Microsoft Excel-VBA. In this document, the development and underlying model is described. A comparison of the newly calculated values with the tabulated values of RP 65 shows a very good agreement. During the development a lot of deficiencies of the RP 65 documentation became evi-dent, precluding the expansion of the program for the calculation of new exemption values. Especially the methods for the calculation of nuclide specific parameters could not be reproduced partly.

  3. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  4. Solubility of metallic elements in LBE under extra low oxygen potential. JFY2003 joint research report

    Sano, Hiroyuki; Fujisawa, Toshiharu; Furukawa, Tomohiro; Aoto, Kazumi

    2004-03-01

    Lead-Bismuth eutectic alloy (LBE) has been considered as a prospective coolant for a fast-breeder reactor. However a corrosion of cooling pipe is anticipated when it is used at the similar temperature as sodium coolant. In this study, solubility of major metallic elements in LBE was measured under extra low oxygen potential. The interactive effect of those elements on the solubility was also to be examined. (1) The solubility of oxygen in LBE was measured by the gas equilibrium method (1223 k-1323 K). The standard Gibbs free energy change of oxygen solution reaction and the self-interaction parameter of oxygen in LBE were calculated, respectively. (2) The solubility of iron in LBE was measured by both the gas equilibrium method and the oxide equilibrium method (873 K-1323 K). The standard Gibbs free energy change of iron solution reaction, interaction parameter of oxygen on iron and self-interaction parameter of iron in LBE were calculated, respectively. (3) The interactive effect of iron and oxygen on the solubility in LBE was considered thermodynamically. (4) The solubility of chromium and nickel in LBE were measured under Ar-H 2 atmosphere. (author)

  5. Prediction of aqueous and nonaqueous solubilities of chemicals with environmental interest by UNIFAC

    Kan, A.T.; Tomson, M.B.

    1995-01-01

    This paper is to investigate the accuracy and precision of predicting the aqueous and non-aqueous solubilities of a vast number of chemicals with significant environmental roles using the latest version of UNIFAC group interaction parameters. A few critical measurements to test specific UNIFAC calculations of nonaqueous solubilities are also reported. The chemicals included in the calculation have aqueous solubilities that span eleven orders of magnitude. Good agreement was observed between the UNIFAC predicted and literature reported aqueous solubilities for eleven groups of compounds. Similarly, UNIFAC successfully predicts the co-solvency of PCB in methanol/water solutions. The error between predicted and literature reported aqueous solubilities was larger for three groups of chemicals: long chain alkanes, phthalates, and chlorinated alkenes. The average absolute error in UNIFAC precision of aqueous solubilities is about 0.5 log units, but the average absolute error is only about 0.2 log units for chlorinated aromatic compounds in organic solvents. The application of UNIFAC approach to predict the fate of hydrocarbons and PCBs in soil column flushing, cosolvency and in natural gas pipeline liquids will be discussed

  6. Serum Soluble Corin is Decreased in Stroke.

    Peng, Hao; Zhu, Fangfang; Shi, Jijun; Han, Xiujie; Zhou, Dan; Liu, Yan; Zhi, Zhongwen; Zhang, Fuding; Shen, Yun; Ma, Juanjuan; Song, Yulin; Hu, Weidong

    2015-07-01

    Soluble corin was decreased in coronary heart disease. Given the connections between cardiac dysfunction and stroke, circulating corin might be a candidate marker of stroke risk. However, the association between circulating corin and stroke has not yet been studied in humans. Here, we aimed to examine the association in patients wtith stroke and community-based healthy controls. Four hundred eighty-one patients with ischemic stroke, 116 patients with hemorrhagic stroke, and 2498 healthy controls were studied. Serum soluble corin and some conventional risk factors of stroke were examined. Because circulating corin was reported to be varied between men and women, the association between serum soluble corin and stroke was evaluated in men and women, respectively. Patients with ischemic and hemorrhagic stroke had a significantly lower level of serum soluble corin than healthy controls in men and women (all P values, stroke than men in the highest quartile. Women in the lowest quartile of serum soluble corin were also more likely to have ischemic (OR, 3.10; 95% confidence interval, 1.76-5.44) and hemorrhagic (OR, 8.54; 95% confidence interval, 2.35-31.02) stroke than women in the highest quartile. ORs of ischemic and hemorrhagic stroke were significantly increased with the decreasing levels of serum soluble corin in men and women (all P values for trend, stroke compared with healthy controls. Our findings raise the possibility that serum soluble corin may have a pathogenic role in stroke. © 2015 American Heart Association, Inc.

  7. Balance of attraction and repulsion in nucleic-acid base stacking: CCSD(T)/complete-basis-set-limit calculations on uracil dimer and a comparison with the force-field description

    Morgado, C.A.; Jurečka, P.; Svozil, Daniel; Hobza, Pavel; Šponer, Jiří

    2009-01-01

    Roč. 5, č. 6 (2009), s. 1524-1544 ISSN 1549-9618 R&D Projects: GA AV ČR(CZ) IAA400040802; GA AV ČR(CZ) IAA400550701; GA MŠk(CZ) LC06030 Grant - others:GA ČR(CZ) GA203/09/1476 Program:GA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702; CEZ:AV0Z40550506 Keywords : quantum chemical calculations * nucleic acids * force field Subject RIV: BO - Biophysics Impact factor: 4.804, year: 2009

  8. The use of isothermal titration calorimetry to assess the solubility enhancement of simvastatin by a range of surfactants

    Patel, Rajesh; Buckton, Graham; Gaisford, Simon

    2007-01-01

    Surfactants are commonly used to increase the solubility of poorly water soluble drugs but the interactions between drug and surfactant can be complex and quantitative relationships can be hard to derive. One approach is to quantify the thermodynamics of interaction and relate these parameters to known solubility or dissolution rate enhancement data. Isothermal titration calorimetry (ITC) was used to measure the enthalpy and free energy of transfer of a model drug (simvastatin) to a number of surfactant (SDS, HTAB, SDCH and Brij 35) micelles. These data were then compared with the solubility enhancements determined for each surfactant using HPLC assays. As expected, there was correlation between the free energy of transfer for the drug to each surfactant and the solubility enhancement of that surfactant. Although the data set is limited, the results suggest that ITC screening of a range of surfactants against a poorly water soluble drug may allow the selection of the best potential solubilising surfactants

  9. Solubility of krypton in hydrofracture grout at elevated pressures

    Fitzgerald, C.L.; Mailen, J.C.

    1982-01-01

    The solubilities of krypton in water, simulated waste solution, and simulated grout at about 25 0 C and to pressures of 150 atm have been determined. The results of these studies show that preliminary calculations of krypton solubility based on the aqueous component of the hydrofracture grout were overly pessimistic. The volume of noble gas generated annually by the reference reprocessing plant would be soluble in the annual hydrofracture grout injection at ORNL at about 10 atm. The amount of krypton in the gas phase would depend on the amount of air in the hydrofracture grout mixture. At 34 atm, and with a small air volume relative to the injected krypton, the krypton would constitute about 30% of the gas bubbles. The disposal of krypton via injection with hydrofracture grout seems to be a viable process. The next logical steps would be to determine the krypton diffusion rate at injection conditions, and possibly to perform a test injection. At present, the schedule for future work is uncertain since funds for this project have been reduced significantly

  10. Methodology for calculating the thickness free of sigma phase in duplex stainless steels large section parts during hiperquenching; Metodologia para el calculo de espesores limite libres de fase sigma durante el hipertemple en piezas de aceros duplex de gran seccion

    Jimbert, P.; Guraya, T.; Torregary, A.; Bravo, P.

    2013-06-01

    To achieve the mechanical properties and corrosion resistance desired by duplex stainless steels used by the petrochemical and nuclear industry, parts are subjected to a hiperquenching heat treatment from about 1050 degree centigrade. This avoids the risk of intermetallic precipitation which drastically reduces the properties of these materials. However with increasing depth to which the deposits are present, the thicknesses for such pipes have been increased, resulting in higher levels of demand on all its manufacturing process, including the heat treatment. To avoid the precipitation of intermetallic phases such as sigma phase it is necessary to know the cooling profile in the center of the work piece and for this purpose to know the value of the Surface Heat Transfer Coefficient (h) is essential. This coefficient changes during the hiperquenching and its value is determined experimentally as it depends on several process parameters. Studies reveal that its value is stabilized within a few seconds. We can then assume that to know the cooling profile in the center of large sections it is only necessary to know the stabilized value of h. However, all the studies found in the literature are referred to diameters smaller than 100 mm. This paper has developed a methodology to predict the precipitation of intermetallic phases in duplex stainless steel parts with large thicknesses in industrial facilities from the calculation of h. This methodology allows us to calculate the cooling profiles without wasting any work piece using one or more sensorized patterns with thermocouples and a subsequent simulation with ANSYS. (Author)

  11. Dosimetric calculation of I-131 activity for the treatment to patients having differentiated thyroid cancer. Benefits and limitations; Calculo dosimetrico de la actividad de I-131 para tratamiento de pacientes con cancer diferenciado de tiroides (CADT). Beneficios y limitaciones

    Cabrejas, R. C.; Chebel, G. M.; Fadel, A. M.; Rojo, A. M.; Deluca, G.; Degross, O. J.; Valdivieso, C. M.; Carbejas, M. L.

    2006-07-01

    Maximum safe activity calculation, that has to be administered for treatment to patients having Differentiated Thyroid Cancer (CADT). No important side effects should be produced. Post treatment evolution was analysed. 23 Dosimetric studies were performed determining blood and whole body uptake curves (CE)during 5 days. Using the MIRDOSE software, the maximum safe activity in the whole body (CE)was calculated. The retained activity in the body (AR), 48 hs. post tracer dose. Should have been less than 2.96 GBq so as to avoid lung fibrosis. 17 patients that received activities<11.1 GBq, had no side effects. Three patients presents special situations: high AR, users in the mouth, and plaque to and leucopenia. This methodology has benefits because AT can be estimated. This was possible for 85% of the patients. When AR was high at 48 hr, AT was diminished to avoid pulmonary lesions. Tumor absorbed dose estimation, will allow the administration of AT>11.1 GBq in the future. (Author)

  12. Residual nilpotence and residual solubility of groups

    Mikhailov, R V

    2005-01-01

    The properties of the residual nilpotence and the residual solubility of groups are studied. The main objects under investigation are the class of residually nilpotent groups such that each central extension of these groups is also residually nilpotent and the class of residually soluble groups such that each Abelian extension of these groups is residually soluble. Various examples of groups not belonging to these classes are constructed by homological methods and methods of the theory of modules over group rings. Several applications of the theory under consideration are presented and problems concerning the residual nilpotence of one-relator groups are considered.

  13. Water Soluble Polymers for Pharmaceutical Applications

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  14. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  15. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  16. CO2 Solubilities in Amide-based Brφnsted Acidic Ionic Liquids

    Palgunadi, Jelliarko; Im, Jin Kyu; Kang, Je Eun; Kim, Hoon Sik; Cheong, Min Serk

    2010-01-01

    A distinguished class of hydrophobic ionic liquids bearing a Brφnsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and ε-caprolactam with trifluoroacetic acid and physical absorptions of CO 2 in these ionic liquids were demonstrated and evaluated. CO 2 solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that CO 2 solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility

  17. Solubility of Aragonite in Subduction Water-Rich Fluids

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  18. Determination of hydrogen solubility in Fe-Mn-C melts

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)

    2011-02-15

    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  1. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  2. Solubility of carbohydrates in heavy water.

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Enhancement of Solubility and Bioavailability of Candesartan ...

    Purpose: To enhance the otherwise poor solubility and bioavailability of candesartan cilexetil (CDS). Methods: This ... PEG 6000-based solid dispersions showed 1st order drug release kinetics. ..... the liver due to quercetin's inhibitory effect on.

  4. An Introduction to the Understanding of Solubility.

    Letcher, Trevor M.; Battino, Rubin

    2001-01-01

    Explores different solubility processes and related issues, including the second law of thermodynamics and ideal mixtures, real liquids, intermolecular forces, and solids in liquids or gases in liquids. (Contains 22 references.) (ASK)

  5. Progress in the research of neptunium solubility

    Jiang Tao; Liu Yongye; Yao Jun

    2012-01-01

    237 Np is considered a possible long-term potential threat for environment, because of its long half-life, high toxicity and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state. Therefore 237 Np is considered as one of high-level radioactive waste and need to be disposed in deep geologic disposal repository. The dissolution behavior is an important aspect of migration research. The solubility is considered very important for high level waste geological disposal safety and environmental evaluation. The solubility determines the maximum concentration of the discharge, and then it is initial concentration of the radionuclides migration to the environment. The solubility impact directly on radionuclides migration in host rock, and can be used to predict the concentration and speciation of radionuclides in groundwater around disposal sites many years later. This paper focused on research results of the solubility, some proposals for Np dissolution chemistry research were also been suggested. (authors)

  6. Terminal solid solubility of hydrogen in titanium

    Giroldi, J.P.; Vizcaino, Pablo; Banchik, Abraham David

    2003-01-01

    A Research and Development program to build a data base is currently under progress to support the local titanium fabrication. In the present work the temperature of the Terminal Solid Solubility on dissolution (TSSd) and precipitation (TSSp) of titanium hydrides in the Ti α-phase were both measured in the same thermal cycle with a Differential Scanning Calorimeter (DSC). The local titanium producer (FAESA) provided ASTM grade 1 pure Ti bars of about 2,5 cm in diameter. Samples weighting between 50 to 200 mg were cut with a diamond disc and the parallelepiped faces were all carefully ground with SiC papers, then picked in a HNO 3 plus HF aqueous solution and finally dried out with ethanol and hot air. Pairs of (TSSd, TSSp) values for α + δ → α and α → α + δ transformation temperatures in titanium were determined with the same calorimetric procedure already used to calculate the TSS values in zirconium. Data were taken from the same sample during the heating up and cooling down cycle of the second calorimeter run made with the same rate of 20 C degrees / minute. The Cathodic Charging technique was used to charge the samples at different hydrogen concentrations between the 'as fabricated' value and the concentration corresponding to the eutectoid temperature. A mixture of glycerin and phosphoric acid in a 2:1 ratio and a current density of 0,05 to 0,1 Amp/cm 2 were applied to different samples during 24 to 96 hours to get a wide range of hydrogen concentrations. A homogenization heat treatment at 400 C degrees for 45 minutes -made at open air in an electric furnace- was applied to each sample to dissolve the massive hydrides at the sample surfaces and diffuse them into the bulk of the sample. The hydrogen concentration of each sample was measured after the final calorimetric run using the Extraction Method in Liquid State under an inert atmosphere using a Leco RH-404 model Hydrogen Determinator. The experimental data follows a linear relationship -with a

  7. Solubility Products of M(II) - Carbonates

    Grauer, Rolf; Berner, Urs [ed.

    1999-01-01

    Many solubility data for M(II) carbonates commonly compiled in tables are contradictory and sometimes obviously wrong. The quality of such data has been evaluated based on the original publications and reliable solubility constants have been selected for the carbonates of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb with the help of cross-comparisons. (author) translated from a PSI internal report written in German in 1994 (TM-44-94-05). 5 figs., 1 tab., 68 refs.

  8. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  9. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  10. Correlation of Helium Solubility in Liquid Nitrogen

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2012-01-01

    A correlation has been developed for the equilibrium mole fraction of soluble gaseous helium in liquid nitrogen as a function of temperature and pressure. Experimental solubility data was compiled and provided by National Institute of Standards and Technology (NIST). Data from six sources was used to develop a correlation within the range of 0.5 to 9.9 MPa and 72.0 to 119.6 K. The relative standard deviation of the correlation is 6.9 percent.

  11. Current limiters

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  12. Protein solubility and folding enhancement by interaction with RNA.

    Seong Il Choi

    Full Text Available While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo.

  13. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Solubility of gases and solvents in silicon polymers: molecular simulation and equation of state modeling

    Economou, Ioannis; Makrodimitri, Zoi A.; Kontogeorgis, Georgios

    2007-01-01

    of gas and solvent solubilities using the test particle insertion method of Widom. Polymer chains are modelled using recently developed realistic atomistic force fields. Calculations are performed at various temperatures and ambient pressure. A crossover in the temperature dependence of solubility......) and also the phase equilibria of these mixtures over a wide composition range. In all cases, the agreement between model predictions/correlations and literature experimental data, when available, is excellent.......The solubility of n-alkanes, perfluoroalkanes, noble gases and light gases in four elastomer polymers containing silicon is examined based on molecular simulation and macroscopic equation of state modelling. Polymer melt samples generated from molecular dynamics ( MD) are used for the calculation...

  15. Biocompatible choline based ionic salts: Solubility in short-chain alcohols

    Lopes, Joana M.; Paninho, Ana B.; Môlho, Marta F.; Nunes, Ana V.M.; Rocha, Angelo; Lourenço, Nuno M.T.; Najdanovic-Visak, Vesna

    2013-01-01

    Highlights: • Biocompatible ionic liquids based on choline esters were synthesized in this work. • Solubility of choline and choline esters based ionic salt in alcohols were measured. • Activity coefficients were calculated. • Experimental data were correlated by means of the semi-empirical Grant equation. -- Abstract: In this work, we report data on solubility of choline chloride and choline acetate in short-chain linear alcohols (ethanol, 1-propanol and 1-butanol) at various temperatures. Furthermore, we synthesize two choline derivatives: hydrogen choline chloride glutarate ([CholGlut][Cl]) and hydrogen choline chloride succinate ([CholSucc][Cl]). Their characterization and solubility in short-chain alcohols as a function of temperature are also included. Activity coefficients were calculated and their comparisons with ideal solutions were discussed. The experimental data were correlated successfully by means of the semi-empirical Grant equation

  16. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin.

    Mohanty, Chandana; Das, Manasi; Sahoo, Sanjeeb K

    2012-11-01

    Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.

  17. Iron solubility driven by speciation in dust sources to the ocean

    Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.

    2009-01-01

    Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.

  18. Solubility relations in the ternary system NaCl-CsCl-H2O at 1 atm. 1. Solubilities of halite from 20 to 100 °C

    Chou, I.-Ming; Lee, R.D.

    1983-01-01

    Solubilities of halite in the ternary system NaCl-CsCl-H2O have been determined by the visual polythermal method at 1 atm from 20 to 100??C along five constant CsCl/(CsCl + H2O) weight ratio lines. These five constant weight ratios are 0.1, 0.2, 0.3, 0.4, and 0.5. The maximum uncertainties in these measurements are ??0.02 wt % NaCl and ??0.15??C. The data along each constant CsCl/(CsCl + H2O) weight ratio line were regressed to a smooth curve. The maximum deviation of the measured solubilities from the smooth curves is 0.06 wt % NaCl. Isothermal solubilities of halite were calculated from smoothed curves at 25, 50, and 75??C.

  19. Experimental Determination of the Solubility of Industrial UF4 Particles

    Chazel, V.; Houpert, P.; Paquet, F.; Ansoborlo, E.; Henge-Napoli, M.H.

    2000-01-01

    The chemical solubility in cell culture medium and in Gamble's solution and the biokinetic behaviour on rats of an industrial UF 4 compound have been studied in order to predict experimentally absorption parameters (f r , s r , s s ) after inhalation and to provide data for interpreting bioassay data. According to these results, this compound has been found to have an intermediate type of absorption between Types F and M as designated by ICRP for the human respiratory tract. A dose coefficient of 1.4 μSv.Bq -1 has been calculated for an inhaled aerosol with an AMAD of 5.1 μm (σg 2.5), which corresponded to the mean value encountered at the fluorination workplace. Predictive urinary and faecal excretion and lung retention curves have also been deduced to calculate the incorporated activity and the received dose in case of an inhalation of UF 4 by workers. (author)

  20. Quench limits

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  1. Solubility of ferrocyanide compounds. Ferrocyanide Safety Project, Interim report FY1994

    Rai, D.; Felmy, A.R.; Smith, S.C.; Ryan, J.L.

    1994-10-01

    The solubility of Cs 2 NiFe(CN) 6 (c) [1] as a function of NaOH and temperature was determined to ascertain whether [1] shows retrograde solubility (i.e., decreasing solubility with increasing temperature), which would have bearing on the possible formation of ''hot spots'' in the tanks and thus the safety of the ferrocyanide tanks. The results show that the aqueous concentrations of Cs in equilibrium with [1] at 25, 60, 75 and 90 C are similar (within the limits of experimental error), indicating that [1] does not show retrograde solubility. To understand general solubility relationships of Ni 2 Fe(CN) 6 (c) [2] and to determine the influence on solubility of high electrolyte concentrations (e.g., NaNO 3 ) that are commonly encountered in the ferrocyanide tanks, the solubility of [2] as a function of CsNO 3 , NiCl 2 , and NaNO 3 was determined. In general, [2] is fairly insoluble and shows slightly increased solubility at high electrolyte concentrations only. For [2] in NiCl 2 , the aqueous Fe concentrations show first a decrease and then an increase with the increase in NiCl 2 concentrations. The increase in Fe concentrations at high Ni concentrations appears to be the result of replacement of Fe by Ni in the [2] structure. For [2] in CsNO 3 and at 0.001 M Na 4 Fe(CN) 6 , the Cs is quantitatively removed from solution at low added Cs concentrations and appears to approach the final solid composition of [1]. The solubility of [2] in NaNO 3 and at 0.001 M Na 4 Fe(CN) 6 shows an increase in Ni concentrations to about 0.5 mg/l at NaNO 3 concentrations > 1.0 M. These increased Ni concentrations may be the result of substitution of Na for Ni in the solid phase

  2. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  3. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  4. Shielding calculations for NET

    Verschuur, K.A.; Hogenbirk, A.

    1991-05-01

    In the European Fusion Technology Programme there is only a small activity on research and development for fusion neutronics. Never-the-less, looking further than blanket design now, as ECN is getting involved in design of radiation shields for the coils and biological shields, it becomes apparent that fusion neutronics as a whole still needs substantial development. Existing exact codes for calculation of complex geometries like MCNP and DORT/TORT are put over the limits of their numerical capabilities, whilst approximate codes for complex geometries like FURNACE and MERCURE4 are put over the limits of their modelling capabilities. The main objective of this study is just to find out how far we can get with existing codes in obtaining reliable values for the radiation levels inside and outside the cryostat/shield during operation and after shut-down. Starting with a 1D torus model for preliminary parametric studies, more dimensional approximation of the torus or parts of it including the main heterogeneities should follow. Regular contacts with the NET-Team are kept, to be aware of main changes in NET design that might affect our calculation models. Work on the contract started 1 July 1990. The technical description of the contract is given. (author). 14 refs.; 4 figs.; 1 tab

  5. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Appelo, C.A.J.; Parkhurst, David L.; Post, V.E.A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich–Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson–Kirkham–Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye–Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich–Rosenfeld equation were fitted by least-squares on measured solution densities.The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng–Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The

  7. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures

    Appelo, C. A. J.; Parkhurst, D. L.; Post, V. E. A.

    2014-01-01

    Calculating the solubility of gases and minerals at the high pressures of carbon capture and storage in geological reservoirs requires an accurate description of the molar volumes of aqueous species and the fugacity coefficients of gases. Existing methods for calculating the molar volumes of aqueous species are limited to a specific concentration matrix (often seawater), have been fit for a limited temperature (below 60 °C) or pressure range, apply only at infinite dilution, or are defined for salts instead of individual ions. A more general and reliable calculation of apparent molar volumes of single ions is presented, based on a modified Redlich-Rosenfeld equation. The modifications consist of (1) using the Born equation to calculate the temperature dependence of the intrinsic volumes, following Helgeson-Kirkham-Flowers (HKF), but with Bradley and Pitzer’s expression for the dielectric permittivity of water, (2) using the pressure dependence of the extended Debye-Hückel equation to constrain the limiting slope of the molar volume with ionic strength, and (3) adopting the convention that the proton has zero volume at all ionic strengths, temperatures and pressures. The modifications substantially reduce the number of fitting parameters, while maintaining or even extending the range of temperature and pressure over which molar volumes can be accurately estimated. The coefficients in the HKF-modified-Redlich-Rosenfeld equation were fitted by least-squares on measured solution densities. The limiting volume and attraction factor in the Van der Waals equation of state can be estimated with the Peng-Robinson approach from the critical temperature, pressure, and acentric factor of a gas. The Van der Waals equation can then be used to determine the fugacity coefficients for pure gases and gases in a mixture, and the solubility of the gas can be calculated from the fugacity, the molar volume in aqueous solution, and the equilibrium constant. The coefficients for the

  8. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  9. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  10. Dose limits

    Fitoussi, L.

    1987-12-01

    The dose limit is defined to be the level of harmfulness which must not be exceeded, so that an activity can be exercised in a regular manner without running a risk unacceptable to man and the society. The paper examines the effects of radiation categorised into stochastic and non-stochastic. Dose limits for workers and the public are discussed

  11. JET pump limiter

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  12. An odd–even effect on solubility of dicarboxylic acids in organic solvents

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubilities of the homologous series of C2–C10 dicarboxylic acids were determined in four selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The odd–even effect of solubility was found and explained. • The enthalpy, entropy and the molar Gibbs free energy of solution were predicted. - Abstract: The solubility of the homologous series of dicarboxylic acids, HOOC-(CH 2 ) n−2 -COOH (n = 2 to 10), in ethanol, acetic acid, acetone and ethyl acetate was measured at temperatures ranging from (278.15 to 323.15) K by a static analytic method at atmospheric pressure. Dicarboxylic acids with even number of carbon atoms exhibit lower values of solubility than adjacent homologues with odd carbon numbers. This odd–even effect of solubility is attributed to the twist of molecules and interlayer packing in solid state as explained in our previous work. The alternation varies in different solvents, which is believed to be associated with the properties of solvents. Finally, the dissolution enthalpy, dissolution entropy and the molar Gibbs free energy were calculated using the fitting parameters of the modified Apelblat equation. The molar Gibbs free energy also showed apparent odd–even alternation in keeping with the alternation of solubility

  13. Advanced limiters for ISX

    Mioduszewski, P.K.; Edmonds, P.H.; Sheffield, J.

    1982-01-01

    Continuous removal of heat and particles becomes a vital necessity in future steady-state fusion devices. The pump limiter seems to be an attractive concept to combine these two tasks. On ISX, various schemes of pump limiters are being explored with the final goal to furnish the ISX--C device with a pump limiter to handle heat removal and particle control in steady state. The emphasis of the present paper is on pump limiters based on ballistic particle collection. If this concept turns out to be successful in supplying sufficient pumping efficiency, it may be possible to design pump limiters without a leading edge. Analytical calculations of the particle collection efficiency are given for various limiter configurations. Pumping efficiencies of approximately 4--10%, depending on the specific configuration, seem to be feasible and should be sufficient for steady-state operation. Initial experimental results on pump limiter studies in ISX--B confirm the calculated collection efficiencies. By measuring the ion saturation current to the limiter blade and the pressure buildup simultaneously, we found a correlation between the incident particle flux and the pressure rise that agrees well with a simple model

  14. Influence of milling process on efavirenz solubility

    Erizal Zaini

    2017-01-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of the milling process on the solubility of efavirenz. Materials and Methods: Milling process was done using Nanomilling for 30, 60, and 180 min. Intact and milled efavirenz were characterized by powder X-ray diffraction, scanning electron microscopy (SEM, spectroscopy infrared (IR, differential scanning calorimetry (DSC, and solubility test. Results: The X-ray diffractogram showed a decline on peak intensity of milled efavirenz compared to intact efavirenz. The SEM graph depicted the change from crystalline to amorphous habit after milling process. The IR spectrum showed there was no difference between intact and milled efavirenz. Thermal analysis which performed by DSC showed a reduction on endothermic peak after milling process which related to decreasing of crystallinity. Solubility test of intact and milled efavirenz was conducted in distilled water free CO2with 0.25% sodium lauryl sulfate media and measured using high-performance liquid chromatography method with acetonitrile: distilled water (80:20 as mobile phases. The solubility was significantly increased (P < 0.05 after milling processes, which the intact efavirenz was 27.12 ± 2.05, while the milled efavirenz for 30, 60, and 180 min were 75.53 ± 1.59, 82.34 ± 1.23, and 104.75 ± 0.96 μg/mL, respectively. Conclusions: Based on the results, the solubility of efavirenz improved after milling process.

  15. Solubility of lithium deuteride in liquid lithium

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1977-01-01

    The solubility of LiD in liquid lithium between the eutectic and monotectic temperatures was measured using a direct sampling method. Solubilities were found to range from 0.0154 mol.% LiD at 199 0 C to 3.32 mol.% LiD at 498 0 C. The data were used in the derivation of an expression for the activity coefficient of LiD as a function of temperature and composition and an equation relating deuteride solubility and temperature, thus defining the liquidus curve. Similar equations were also derived for the Li-LiH system using the existing solubility data. Extrapolation of the liquidus curves yielded the eutectic concentrations (0.040 mol.% LiH and 0.035 mol.% LiD) and the freezing point depressions (0.23 0 C for Li-LiH and 0.20 0 C for Li-LiD) at the eutectic point. The results are compared with the literature data for hydrogen and deuterium. The implications of the relatively high solubility of hydrogen isotopes in lithium just above the melting point are discussed with respect to the cold trapping of tritium in fusion reactor blankets. (Auth.)

  16. Solubility studies of Np(IV)

    Zhang Yingjie; Yao Jun; Jiao Haiyang; Ren Lihong; Zhou Duo; Fan Xianhua

    2001-01-01

    The solubility of Np(IV) in simulated underground water and redistilled water has been measured with the variations of pH(6-12) and storage time (0-100 d) in the presence of reductant (Na 2 S 2 O 4 , metallic Fe). All experiments are performed in a low oxygen concentration glove box containing high purity Ar(99.99%), with an oxygen content of less than 5 x 10 -6 mol/mol. Experimental results show that the variation of pH in solution has little effect on the solubility of Np(IV) in the two kinds of water; the measured solubility of Np(IV) is affected by the composition of solution; with Na 2 S 2 O 4 as a reductant, the solubility of Np(IV) in simulated underground water is (9.23 +- 0.48) x 10 -10 mol/L, and that in redistilled water is (8.31 +- 0.35) x 10 -10 mol/L; with metallic Fe as a reductant, the solubility of Np(IV) in simulated underground water is (1.85 +- 0.56) x 10 -9 mol/L, and that in redistilled water is (1.48 +- 0.66) x 10 -9 mol/L

  17. 40 CFR Table 7 to Subpart Vvvvvv... - Partially Soluble HAP

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Partially Soluble HAP 7 Table 7 to... Pt. 63, Subpt. VVVVVV, Table 7 Table 7 to Subpart VVVVVV of Part 63—Partially Soluble HAP As required... partially soluble HAP listed in the following table. Partially soluble HAP name CAS No. 1. 1,1,1...

  18. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions.

    Granero, Gladys E; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2005-10-01

    The solubility of fenofibrate in pH 6.8 McIlvaine buffers containing varying concentrations of sodium lauryl sulfate was determined. The dissolution behavior of fenofibrate was also examined in the same solutions with rotating disk experiments. It was observed that the enhancement in intrinsic dissolution rate was approximately 500-fold and the enhancement in solubility was approximately 2000-fold in a pH 6.8 buffer containing 2% (w/v) sodium lauryl sulfate compared to that in buffer alone. The micellar solubilization equilibrium coefficient (k*) was estimated from the solubility data and found to be 30884+/-213 L/mol. The diffusivity for the free solute, 7.15x10(-6) cm2/s, was calculated using Schroeder's additive molal volume estimates and Hayduk-Laurie correlation. The diffusivity of the drug-loaded micelle, estimated from the experimental solubility and dissolution data and the calculated value for free solute diffusivity, was 0.86x10(-6) cm2/s. Thus, the much lower enhancement in dissolution of fenofibrate compared to its enhancement in solubility in surfactant solutions appears to be consistent with the contribution to the total transport due to enhanced micellar solubilization as well as a large decrease (approximately 8-fold) in the diffusivity of the drug-loaded micelle.

  19. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  20. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  1. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  2. Solubility of 1-aminoanthraquinone and 1-nitroanthraquinone in supercritical carbon dioxide

    Tamura, Kazuhiro; Alwi, Ratna Surya; Tanaka, Tatsuro; Shimizu, Keisuke

    2017-01-01

    Highlights: • Solubility of 1-aminoanthraquinone and 1-nitroanthraquinone in scCO 2 were measured. • Temperature ranges of (323.15–383.15) K and pressures of (12.5–25.0) MPa. • Solubility of 1-aminoanthraquinone was higher than that of 1-nitroanthraquinone. • Demonstrated effect of amino and nitro groups on the solubility of anthraquinones. • Correlated well by CO 2 density models and thermodynamic models. - Abstract: The solubility of 1-aminoanthraquinone (Smoke Orange G) and 1-nitroanthraquinone in supercritical carbon dioxide (scCO 2 ) was measured at the temperatures (323.15, 353.15 and 383.15) K and over the pressure range of (12.5–25.0) MPa by a flow type apparatus. Mole fraction solubility of 1-aminoanthraquinone, 3.51 × 10 −5 , was significantly higher than that of 1-nitroanthraquinone, 2.52 × 10 −5 , as compared at 383.15 K and 25 MPa. It was found that amino group in 1-aminoanthraquinone effects to enhance the solubility of anthraquinone derivatives in supercritical carbon dioxide in comparison with nitro group in 1-nitroanthraquinone. Seven different kinds of semi-empirical models, expressed in terms of CO 2 density, were used to correlate the experimental results. Moreover, the solubilities of anthraquinone derivatives were analysed thermodynamically by the regular solution model with the Flory–Huggins theory and by the Peng–Robinson equation of state with a modification of Stryjek and Vera (PRSV-EOS). Good agreement with slightly less than 15 per cent of relative deviation between the experimental and calculated solubilities of the anthraquinone derivatives was obtained.

  3. HIGH PRESSURE PHASE EQUILIBRIUM: PREDICTION OF ESSENTIAL OIL SOLUBILITY

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available This work describes a method to predict the solubility of essential oils in supercritical carbon dioxide. The method is based on the formulation proposed in 1979 by Asselineau, Bogdanic and Vidal. The Peng-Robinson and Soave-Redlich-Kwong cubic equations of state were used with the van der Waals mixing rules with two interaction parameters. Method validation was accomplished calculating orange essential oil solubility in pressurized carbon dioxide. The solubility of orange essential oil in carbon dioxide calculated at 308.15 K for pressures of 50 to 70 bar varied from 1.7± 0.1 to 3.6± 0.1 mg/g. For same the range of conditions, experimental solubility varied from 1.7± 0.1 to 3.6± 0.1 mg/g. Predicted values were not very sensitive to initial oil composition.Este trabalho descreve uma metodologia para o cálculo da solubilidade de óleos essenciais em dióxido de carbono a altas pressões baseada na formulação proposta em 1979 por Asselineau, Bogdanic e Vidal. Foram utilizadas as equações cúbicas de estado de Peng-Robinson e Soave-Redlich-Kwong com regras de mistura de van der Waals com dois parâmetros de interação. O cálculo da solubilidade do óleo essencial de laranja em dióxido de carbono pressurizado foi usado para validação do método. A solubilidade calculada a 308,15 K para pressões entre 50 e 70 bar variou entre 1,5 e 4,1 mg/g. Valores experimentais para as mesmas condições variam entre 1,7± 0.1 a 3,6± 0.1 mg/g. Os valores preditos não são muito sensíveis à composição inicial do óleo essencial.

  4. Inverse Limits

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  5. DMol3/COSMO-RS prediction of aqueous solubility and reactivity of selected Azo dyes: Effect of global orbital cut-off and COSMO segment variation

    Wahab, OO

    2018-01-01

    Full Text Available Aqueous solubility and reactivity of four azo dyes were investigated by DMol3/COSMO-RS calculation to examine the effects of global orbital cut-off and COSMO segment variation on the accuracies of theoretical solubility and reactivity. The studied...

  6. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  7. Solubilities of boric acid in heavy water

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  8. Resveratrol cocrystals with enhanced solubility and tabletability.

    Zhou, Zhengzheng; Li, Wanying; Sun, Wei-Jhe; Lu, Tongbu; Tong, Henry H Y; Sun, Changquan Calvin; Zheng, Ying

    2016-07-25

    Two new 1:1 cocrystals of resveratrol (RES) with 4-aminobenzamide (RES-4ABZ) and isoniazid (RES-ISN) were synthesized by liquid assisted grinding (LAG) and rapid solvent removal (RSR) methods using ethanol as solvent. Their physiochemical properties were characterized using PXRD, DSC, solid state and solution NMR, FT-IR, and HPLC. Pharmaceutically relevant properties, including tabletability, solubility, intrinsic dissolution rate, and hygroscopicity, were evaluated. Temperature-composition phase diagram for RES-ISN cocrystal system was constructed from DSC data. Both cocrystals show higher solubility than resveratrol over a broad range of pH. They are phase stable and non-hygroscopic even under high humidity conditions. Importantly, both cocrystals exhibit improved solubility and tabletability compared with RES, which make them more suitable candidates for tablet formulation development. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. AW-101 entrained solids - Solubility versus temperature

    GJ Lumetta; RC Lettau; GF Piepel

    2000-01-01

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan

  10. Solubility of iron in liquid lead

    Ali-Khan, I.

    1981-01-01

    The use of liquid lead in high temperature chemical and metallurgical processes is well known. The structural materials applied for the containment of these processes are either iron base alloys or possess iron as an alloying element. Besides that, lead itself is alloyed in some steels to achieve some very useful properties. For understanding the effect of liquid lead in such structural materials, it is important to determine the solubility of iron in liquid lead which would also be indicative of the stability of these alloys. At the institute of reactor materials of KFA Juelich, investigations have been conducted to determine the solubility of iron in liquid lead up to a temperature of about 1000 0 C. In this presentation the data concerning the solubility of iron in liquid lead are brought up to date and discussed including the results of our previous investigations. (orig.)

  11. Equilibrium Solubility of CO2 in Alkanolamines

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2014-01-01

    Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....

  12. Limited hydrolysis of soybean protein concentrate and isolate with ...

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... world, since its proteins have high biological value while its cost is ... literatures that limited proteolysis of soybean protein pro- ducts offered a ..... hydrolysis of soluble protein present in waste liquors from soy processing.

  13. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  14. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)], E-mail: Adel.anoubigh@ipest.rnu.tn; Cherif, Mourad [IPEIEM, Universite de Tunis-El Manar, BP244. 2096. El Manar II (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France); Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)

    2008-11-15

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO{sub 3} and NaNO{sub 3}) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr}G{sup 0}) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive {delta}{sub tr}G{sup 0} value which is mainly of enthalpic origin.

  15. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola

    2010-11-01

    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  16. Closure and Sealing Design Calculation

    T. Lahnalampi; J. Case

    2005-01-01

    The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not

  17. Hydrogen terminal solubility in Zircaloy-4

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  18. Effect of amides on sodium tetraborate solubility

    Tsekhanskij, R.S.; Skvortsov, V.G.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1986-01-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate

  19. Effect of amides on sodium tetraborate solubility

    Tsekhanskij, R S; Skvortsov, V G; Molodkin, A K; Sadetdinov, Sh V

    1986-11-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate.

  20. Modeling of Salt Solubilities in Mixed Solvents

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  1. The solubility of U, Np, Pu, Th and Tc in a geological disposal vault for used nuclear fuel

    Lemire, R.J.; Garisto, F.

    1989-12-01

    This document describes the solubility model used to calculate the concentrations of uranium, thorium, technetium, neptunium and plutonium in a geological disposal vault for used nuclear fuel. This model is incorporated in the vault model of SYVAC3-CC3 - the third generation of the Systems Variability Analysis Code used to assess the long-term safety of the disposal of Canada's nuclear fuel waste. The data for the solubility model and the sources for these data are also reported

  2. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  3. Fundamental data: Solubility of nickel and oxygen and diffusivity of iron and oxygen in molten LBE

    Abella, J.; Verdaguer, A.; Colominas, S.; Ginestar, K.; Martinelli, L.

    2011-01-01

    Experiments for determining nickel solubility limit and iron diffusion coefficient are presented and their results are discussed. Nickel solubility limit is determined by two methods: ex situ by solid sampling followed by ICP-AES analysis and in situ by Laser Induced Breakdown Spectroscopy and their results are compared. The iron diffusion coefficient is obtained using the technique of rotating specimen dissolution. Also a method to determine the oxygen solubility and diffusivity in LBE is developed and results at 460, 500 and 540 deg. C are presented. It is based on the following electrochemical cell: O 2 (reference mixture), Pt //YSZ//O 2 (LBE) which can work as an oxygen sensor or as a coulometric pump.

  4. On the solubility of yttrium in RuO{sub 2}

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany)

    2011-09-01

    We have investigated the solubility of Y in rutile RuO{sub 2} using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO{sub 2} alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  5. Calculation of radon concentration in water by toluene extraction method

    Saito, Masaaki [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-02-01

    Noguchi method and Horiuchi method have been used as the calculation method of radon concentration in water. Both methods have two problems in the original, that is, the concentration calculated is changed by the extraction temperature depend on the incorrect solubility data and the concentration calculated are smaller than the correct values, because the radon calculation equation does not true to the gas-liquid equilibrium theory. However, the two problems are solved by improving the radon equation. I presented the Noguchi-Saito equation and the constant B of Horiuchi-Saito equation. The calculating results by the improved method showed about 10% of error. (S.Y.)

  6. Solubility determination and thermodynamic modelling of allisartan isoproxil in different binary solvent mixtures from T = (278.15 to 313.15) K and mixing properties of solutions

    Yang, Yaoyao; Yang, Peng; Du, Shichao; Li, Kangli; Zhao, Kaifei; Xu, Shijie; Hou, Baohong; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of allisartan isoproxil in binary solvent mixtures were determined. • Apelblat, CNIBS/R-K and Jouyban-Acree models were used to correlate the solubility. • Solubility parameter theory was used to explain the co-solvency phenomenon. • Regular mixing rules were used to calculate solubility parameter of binary solvents. • The mixing thermodynamics were calculated and discussed based on NRTL model. - Abstract: In this work, the solubility of allisartan isoproxil in binary solvent mixtures, including (acetone + water), (acetonitrile + water) and (methanol + water), was determined by a gravimetric method with the temperature ranging from (278.15 to 313.15) K at atmospheric pressure (p = 0.1 MPa). The solubility of allisartan isoproxil in three binary solvent mixtures all increased with the rising of temperature at a constant solvent composition. For the binary solvent mixtures of (methanol + water), the solubility increased with the increasing of methanol fraction, while it appeared maximum value at a certain solvent composition in the other two binary solvent mixtures (acetone + water and acetonitrile + water). Based on the theory of solubility parameter, Fedors method and two mixing rules were employed to calculate the solubility parameters, by which the proximity of solubility parameters between allisartan isoproxil and binary solvent mixtures explained the co-solvent phenomenon. Additionally, the modified Apelblat equation, CNIBS/R-K model and Jouyban-Acree model were used to correlate the solubility data in binary solvent mixtures, and it turned out that all the three correlation models could give a satisfactory result. Furthermore, the mixing thermodynamic properties were calculated based on NRTL model, which indicated that the mixing process was spontaneous and exothermic.

  7. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  8. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 6 (pyridoxine), B 7 , B 9 and B 12 while the fat-soluble vitamin method detected vitamins A, D 3 , 25(OH)D 3, E and K 1 . These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  9. Mice take calculated risks.

    Kheifets, Aaron; Gallistel, C R

    2012-05-29

    Animals successfully navigate the world despite having only incomplete information about behaviorally important contingencies. It is an open question to what degree this behavior is driven by estimates of stochastic parameters (brain-constructed models of the experienced world) and to what degree it is directed by reinforcement-driven processes that optimize behavior in the limit without estimating stochastic parameters (model-free adaptation processes, such as associative learning). We find that mice adjust their behavior in response to a change in probability more quickly and abruptly than can be explained by differential reinforcement. Our results imply that mice represent probabilities and perform calculations over them to optimize their behavior, even when the optimization produces negligible material gain.

  10. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  11. Weldon Spring dose calculations

    Dickson, H.W.; Hill, G.S.; Perdue, P.T.

    1978-09-01

    In response to a request by the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) for assistance to the Department of the Army (DA) on the decommissioning of the Weldon Spring Chemical Plant, the Health and Safety Research Division of the Oak Ridge National Laboratory (ORNL) performed limited dose assessment calculations for that site. Based upon radiological measurements from a number of soil samples analyzed by ORNL and from previously acquired radiological data for the Weldon Spring site, source terms were derived to calculate radiation doses for three specific site scenarios. These three hypothetical scenarios are: a wildlife refuge for hunting, fishing, and general outdoor recreation; a school with 40 hr per week occupancy by students and a custodian; and a truck farm producing fruits, vegetables, meat, and dairy products which may be consumed on site. Radiation doses are reported for each of these scenarios both for measured uranium daughter equilibrium ratios and for assumed secular equilibrium. Doses are lower for the nonequilibrium case

  12. Revisiting Hansen Solubility Parameters by Including Thermodynamics

    Louwerse, Manuel J; Fernández-Maldonado, Ana María; Rousseau, Simon; Moreau-Masselon, Chloe; Roux, Bernard; Rothenberg, Gadi

    2017-01-01

    The Hansen solubility parameter approach is revisited by implementing the thermodynamics of dissolution and mixing. Hansen's pragmatic approach has earned its spurs in predicting solvents for polymer solutions, but for molecular solutes improvements are needed. By going into the details of entropy

  13. Solubility of hydrogen in delta iron

    Shapovalov, V.I.; Trofimenko, V.V.

    1979-01-01

    The solubility of hydrogen in iron (less than 0.002 % impurities) at temperatures of 800-1510 deg C and a pressure of 100 atm was measured. The heat of solution of hydrogen in delta-Fe, equal to 73 kJ/g-atom, is by far greater than the corresponding values for α- and γ-Fe

  14. Solubility of ethylene in methyl propionate

    Shariati - Sarabi, A.; Florusse, L.J.; Peters, C.J.

    2015-01-01

    In this work, the solubility of ethylene in methyl propionate was measured within a temperature range of 283.5–464.8 K and pressures up to 10.7 MPa. Experiments were carried out using the Cailletet apparatus, which uses a synthetic method for the experiments. The critical points of several isopleths

  15. Radiculography with water-soluble contraste medium

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  16. Solubility of heavy metals added to MSW

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  17. Solubility of heavy metals added to MSW

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  18. Anomalous Solubility Behavior of Several Acidic Drugs

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  19. Changes in protein solubility, fermentative capacity, viscoelasticity ...

    Frozen dough should be stored for fewer than 21 days; time in which the loaf volume of bread made from frozen dough was approximately 40.84% smaller than that of fresh bread dough formulation. Keywords: French type bread, frozen dough, protein solubility, baking quality, viscoelasticity. African Journal of Biotechnology ...

  20. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.