WorldWideScience

Sample records for solids elemental analysis

  1. Analysis of Piezoelectric Solids using Finite Element Method

    Science.gov (United States)

    Aslam, Mohammed; Nagarajan, Praveen; Remanan, Mini

    2018-03-01

    Piezoelectric materials are extensively used in smart structures as sensors and actuators. In this paper, static analysis of three piezoelectric solids is done using general-purpose finite element software, Abaqus. The simulation results from Abaqus are compared with the results obtained using numerical methods like Boundary Element Method (BEM) and meshless point collocation method (PCM). The BEM and PCM are cumbersome for complex shape and complicated boundary conditions. This paper shows that the software Abaqus can be used to solve the governing equations of piezoelectric solids in a much simpler and faster way than the BEM and PCM.

  2. Finite Element Analysis of Circular Plate using SolidWorks

    International Nuclear Information System (INIS)

    Kang, Yeo Jin; Jhung, Myung Jo

    2011-01-01

    Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts

  3. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  4. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

    Directory of Open Access Journals (Sweden)

    C. Alkin

    2005-01-01

    Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed. 

  5. Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    , poplar) followed by enzymatic hydrolysis and fermentation. For all the different biomasses, the biorefinery process concentrated silicon, aluminium, and calcium in the solid fraction, while potassium and magnesium were solubilised in the process and removed from the solid fraction. Sodium concentrations....... Based on ultimate elemental analysis of all biomasses, the formula for biomass was C6H8.4O3.5, which was used for all types of samples (raw biomass, pretreated biomass, and lignin residue) and can be used in future XRF analysis of samples of similar process and biomass feedstock as those used...

  6. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    International Nuclear Information System (INIS)

    Sharifi, Hamid; Larouche, Daniel

    2015-01-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)

  7. Finite element analysis of propellant of solid rocket motor during ship motion

    Directory of Open Access Journals (Sweden)

    Kai Qu

    2013-03-01

    Full Text Available In order to simulate the stress and strain of solid rocket motors (SRMs, a finite element analysis model was established. The stress spectra of the SRM elements with respect to time in the case that the vessel cruises under a certain shipping condition were obtained by simulation. According to the analysis of the simulation results, a critical zone was confirmed, and the Mises stress amplitudes of the different critical zones were acquired. The results show that the maximum stress and strain of SRM are less than the maximum tensile strength and elongation, respectively, of the propellant. The cumulative damage of the motor must also be evaluated by random fatigue loading.

  8. Complex stiffness formulation for the finite element analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads

    International Nuclear Information System (INIS)

    Frater, J.; Lestingi, J.; Padovan, J.

    1977-01-01

    This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)

  9. A comparison study on the performance of lower order solid finite element for elastic analysis of plate and shell structures

    International Nuclear Information System (INIS)

    Lee, Young Jung; Lee, Sang Jin; Choun, Young Sun; Seo, Jeong Moon

    2003-05-01

    The objective of this research is to assess the performance of lower order solid finite elements which will be ultimately applied into the safety analysis of nuclear containment building. For the safety analysis of large structures such as nuclear containment building, efficient lower order finite element is necessarily required to calculate the structural response of containment building with low computational cost. In this study, the state of the art formulations of lower order solid finite element are throughly reviewed and the best possible solid finite element is adopted into the development of nuclear containment analysis system. Three 8-node solid finite elements based on standard strain-displacement relationship, B-bar method and EAS method are implemented as computer modules and completely tested with various plate and shell structures. The present results can be directly applied into the analysis code development for general reinforced concrete structures

  10. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.

  11. Finite Element Analysis of Mechanical Characteristics of Dropped Eggs Based on Fluid-Solid Coupling Theory

    Directory of Open Access Journals (Sweden)

    Song Haiyan

    2017-01-01

    Full Text Available It is important to study the properties and mechanics of egg drop impacts in order to reduce egg loss during processing and logistics and to provide a basis for the protective packaging of egg products. In this paper, we present the results of our study of the effects of the structural parameters on the mechanical properties of an egg using a finite element model of the egg. Based on Fluid-Solid coupling theory, a finite element model of an egg was constructed using ADINA, a finite element calculation and analysis software package. To simplify the model, the internal fluid of the egg was considered to be a homogeneous substance. The egg drop impact was simulated by the coupling solution, and the feasibility of the model was verified by comparison with the experimental results of a drop test. In summary, the modeling scheme was shown to be feasible and the simulation results provide a theoretical basis for the optimum design of egg packaging and egg processing equipment.

  12. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  13. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  14. Multi-element trace analysis of solid samples using one-photon two-step RIMS

    International Nuclear Information System (INIS)

    Telle, H. H.; Abraham, C. J.; Jones, O. R.; Krustev, T.

    1998-01-01

    In this study we have investigated the feasibility of multi-element analysis using a simple 1+1 photo-excitation/photo-ionization scheme. Although such schemes are usually far from ideal for optimum resonance ionization, they are the approach of choice if one wishes to maintain a simple, easy-to-operate laser set-up which is potentially suitable for routine analysis. In addition, we only made use of the second-harmonic tuning range of a single dye. While this limits the range of elements which are accessible in the 1+1 RIS scheme it further adds to the simplicity and allows for automation of sequential multi-element analysis

  15. A parallel finite element method for the analysis of crystalline solids

    DEFF Research Database (Denmark)

    Sørensen, N.J.; Andersen, B.S.

    1996-01-01

    A parallel finite element method suitable for the analysis of 3D quasi-static crystal plasticity problems has been developed. The method is based on substructuring of the original mesh into a number of substructures which are treated as isolated finite element models related via the interface...... conditions. The resulting interface equations are solved using a direct solution method. The method shows a good speedup when increasing the number of processors from 1 to 8 and the effective solution of 3D crystal plasticity problems whose size is much too large for a single work station becomes possible....

  16. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.; Morrison, Samuel S.; Corbey, Jordan F.; Grate, Jay W.

    2017-09-01

    Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. The degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.

  17. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    Science.gov (United States)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  18. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  19. Development of a large-solid-angle and multi-device detection system for elemental analysis

    International Nuclear Information System (INIS)

    Satoh, T.; Ishii, K.; Kamiya, T.; Sakai, T.; Oikawa, M.; Arakawa, K.; Matsuyama, S.; Yamazaki, H.

    2003-01-01

    A new detection apparatus for both low energy X-rays like 1 keV and back scattered protons of MeV energy was developed. The detection apparatus consists of a large-solid-angle multi-device Si detector and a data acquisition system. The detector has 45 detection devices which are arranged in the shape of a pentagonal pyramid and fully cover a sample. A micro-beam irradiates the sample through the center of the pentagonal pyramid and X-rays emitted from the sample are detected in a solid angle of about 1.0 sr. This novel detection setup has about five times higher sensitivity than a conventional micro-PIXE camera. In addition, not only X-rays but back scattered protons can be detected, since the counting rate of back scattered protons per detection device is small despite lack of a passive absorber

  20. A fluid-solid finite element method for the analysis of reactor safety problems

    International Nuclear Information System (INIS)

    Mitra, Santanu; Kumar, Ashutosh; Sinhamahapatra, K.P.

    2006-01-01

    The work presented herein can broadly be categorized as a fluid-structure interaction problem. The response of a circular cylindrical structure subjected to cross flow is examined using the finite element method for both the liquid and the structure domains. The cylindrical tube is mounted elastically at the ends and is free to move under the action of the unsteady flow-induced forces. The fluid is considered to be acoustic compressible and viscous. A Galerkin finite element method implemented on a triangular mesh is used to solve the time-dependent Navier-Stokes equations. The cylinder motion is modeled using a five-degrees of freedom generalized shell element structural dynamics model. The numerical simulations of the response of the calandria tubes/pressure tubes, adjustor rod and shut-off rod of a nuclear reactor are presented. A few typical results are presented to assess the accuracy and applicability of the developed modules

  1. Wind Turbine Cross-Sectional Stiffness Analysis Using Internally Layered Solid Elements

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2016-01-01

    An efficient finite element modeling approach is presented for analyzing the general cross-sectional stiffness properties and stress distribution of thin- and thick-walled sections with isotropic and general anisotropic materials. The procedure is based on discretizing the walls of the section...

  2. A two-dimensional finite element method for analysis of solid body contact problems in fuel rod mechanics

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1988-06-01

    Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de

  3. Heat transfer monitoring in solids by means of finite element analysis software

    International Nuclear Information System (INIS)

    Hernandez W, J.; Suarez, V.; Guarachi, J.; Calderon, A.; Juarez, A. G.; Rojas T, J. B.; Marin, E.

    2012-10-01

    We study the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this, we used hot wire photothermal technique in order to obtain the temperature distribution as a function of radial distance and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained with appropriate boundary conditions, by means of finite element technique. The comparison of the experimental and simulated results shows a good agree, which demonstrate the utility of this methodology in the investigation of the thermal response of substances, in the radial configuration. (Author)

  4. Solid Lubricated Rolling Element Bearings

    Science.gov (United States)

    1979-02-15

    lubricant into uneven patches of varnish . This varnish , along with the file-like action of the exposed ball carbides on the relatively softer races, can...its structure. Fluorine , one of the most reactive elements, reacts with graphite without combustion from about 790’F to 1022°F, forming a grey-colored...to allow for molding and machining after molding. 0 Method 2 (Hughes) Impregnating these dense weaves with a Thermid 600 polyimide varnish

  5. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  6. Effect of Degeneration on Fluid-Solid Interaction within Intervertebral Disk Under Cyclic Loading - A Meta-Model Analysis of Finite Element Simulations.

    Science.gov (United States)

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid-fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid-solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid-fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk.

  7. Advanced solid elements for sheet metal forming simulation

    Science.gov (United States)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  8. Melted Paraffin Wax as an Innovative Liquid and Solid Extractant for Elemental Analysis by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Papai, Rodrigo; Sato, Roseli Hiromi; Nunes, Lidiane Cristina; Krug, Francisco José; Gaubeur, Ivanise

    2017-03-07

    This work proposes a new development in the use of melted paraffin wax as a new extractant in a procedure designed to aggregate the advantages of liquid phase extraction (extract homogeneity, fast, and efficient transfer, low cost and simplicity) to solid phase extraction. As proof of concept, copper(II) in aqueous samples was converted into a hydrophobic complex of copper(II) diethyldithiocarbamate and subsequently extracted into paraffin wax. Parameters which affect the complexation and extraction (pH, DDTC, and Triton X-100 concentration, vortex agitation time and complexation time) were optimized in a univariate way. The combination of the extraction proposed procedure with laser-induced breakdown spectroscopy allowed the precise copper determination (coefficient of variation = 3.1%, n = 10) and enhanced detectability because of the concentration factor of 18 times. A calibration curve was obtained with a linear range of 0.50-10.00 mg L -1 (R 2 = 0.9990, n = 7), LOD = 0.12 mg L -1 , and LOQ = 0.38 mg L -1 under optimized conditions. An extraction procedure efficiency of 94% was obtained. The accuracy of the method was confirmed through the analysis of a reference material of human blood serum, by the spike and recovery trials with seawater, tap water, mineral water, and alcoholic beverages and by comparing with those results obtained by graphite furnace atomic absorption spectrometry.

  9. ELM - A SIMPLE TOOL FOR THERMAL-HYDRAULIC ANALYSIS OF SOLID-CORE NUCLEAR ROCKET FUEL ELEMENTS

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    ELM is a simple computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in nuclear thermal rockets. Written for the nuclear propulsion project of the Space Exploration Initiative, ELM evaluates the various heat transfer coefficient and friction factor correlations available for turbulent pipe flow with heat addition. In the past, these correlations were found in different reactor analysis codes, but now comparisons are possible within one program. The logic of ELM is based on the one-dimensional conservation of energy in combination with Newton's Law of Cooling to determine the bulk flow temperature and the wall temperature across a control volume. Since the control volume is an incremental length of tube, the corresponding pressure drop is determined by application of the Law of Conservation of Momentum. The size, speed, and accuracy of ELM make it a simple tool for use in fuel element parametric studies. ELM is a machine independent program written in FORTRAN 77. It has been successfully compiled on an IBM PC compatible running MS-DOS using Lahey FORTRAN 77, a DEC VAX series computer running VMS, and a Sun4 series computer running SunOS UNIX. ELM requires 565K of RAM under SunOS 4.1, 360K of RAM under VMS 5.4, and 406K of RAM under MS-DOS. Because this program is machine independent, no executable is provided on the distribution media. The standard distribution medium for ELM is one 5.25 inch 360K MS-DOS format diskette. ELM was developed in 1991. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation. Sun4 and SunOS are trademarks of Sun Microsystems, Inc. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.

  10. Recommended Auger-electron kinetic energies for 42 elemental solids

    International Nuclear Information System (INIS)

    Powell, C.J.

    2010-01-01

    An analysis is presented of Auger-electron kinetic energies (KEs) from four data sources for 65 Auger transitions in 45 elemental solids. For each data source, a single instrument had been used to measure KEs for many elements. In order to compare KEs from two sources, it was necessary to recalibrate the energy scales of each instrument using recommended reference data. Mean KEs are given for most of the Auger transitions for which there were at least two independent measurements and for which differences from the mean KEs were considered acceptably small. In several cases, comparisons were made to published KE data to resolve discrepancies. We are able to recommend mean KEs for 59 Auger transitions from 42 elemental solids and to provide estimates of the uncertainties of these KEs. This compilation should be useful for the determination of chemical shifts of Auger peaks in Auger electron spectroscopy and X-ray photoelectron spectroscopy.

  11. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    Science.gov (United States)

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  12. Dynamic steady-state analysis of crack propagation in rubber-like solids using an extended finite element method

    Science.gov (United States)

    Kroon, Martin

    2012-01-01

    In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.

  13. Surface Modeling, Solid Modeling and Finite Element Modeling. Analysis Capabilities of Computer-Assisted Design and Manufacturing Systems.

    Science.gov (United States)

    Nee, John G.; Kare, Audhut P.

    1987-01-01

    Explores several concepts in computer assisted design/computer assisted manufacturing (CAD/CAM). Defines, evaluates, reviews and compares advanced computer-aided geometric modeling and analysis techniques. Presents the results of a survey to establish the capabilities of minicomputer based-systems with the CAD/CAM packages evaluated. (CW)

  14. Non-drainage scleral buckling with solid silicone elements

    Directory of Open Access Journals (Sweden)

    Pukhraj Rishi

    2014-01-01

    Full Text Available Background: With the increasing number of cataract surgeries, incidence of posterior segment complications including rhegmatogenous retinal detachment (RRD is likely to rise. Scleral buckling (SB surgery is an effective and less expensive option. The primary advantage of non-drainage procedure is avoidance of possible complications associated with trans-choroidal drainage. The aim of present study is to describe the clinical profile of subjects undergoing non-drainage SB surgery with solid silicone elements for RRD and analyze their treatment outcomes. Materials and Methods: This was a retrospective, non-randomized, interventional study at a tertiary care center. Three hundred and six eyes of 298 patients undergoing non-drainage SB surgery with solid silicone elements from year 2000 to 2006 were included. Inclusion criteria were primary RRD, peripheral depressible retinal break, media clarity affording peripheral retinal view and proliferative vitreo-retinopathy (PVR up to grade C2. Uni- and multivariate analyses was done to analyze factors affecting anatomical and visual outcomes. Statistical analysis was performed using SPSS Version 10. Results: Mean follow-up was 303 ± 393.33 days. Primary anatomical success was obtained in 279 (91.2% eyes; primary functional success in 286 (93.5% eyes. PVR (grade B or C, intraocular pressure <10 mm Hg and the inability to find a retinal break were significantly associated with final anatomical failure. Baseline vision ≤3/60 was significantly associated with poor visual recovery. Conclusions: SB surgery is reasonably safe and highly efficacious. Solid silicone elements are effective in non-drainage SB surgery. However, case selection is important.

  15. Elements of real analysis

    CERN Document Server

    Sprecher, David A

    2010-01-01

    This classic text in introductory analysis delineates and explores the intermediate steps between the basics of calculus and the ultimate stage of mathematics: abstraction and generalization.Since many abstractions and generalizations originate with the real line, the author has made it the unifying theme of the text, constructing the real number system from the point of view of a Cauchy sequence (a step which Dr. Sprecher feels is essential to learn what the real number system is).The material covered in Elements of Real Analysis should be accessible to those who have completed a course in

  16. Finite element analysis of plastic recycling machine designed for ...

    African Journals Online (AJOL)

    ... design was evaluated using finite element analysis (FEA) tool in Solid Works Computer ... Also, a minimum factor of safety value of 5.3 was obtained for shredder shaft ... Machine; Design; Recycling; Sustainability; Finite Element; Simulation ...

  17. FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...

    African Journals Online (AJOL)

    eobe

    the stairs and to compare the finite element ana ... tual three dimensional behavior of the stair slab system. ..... due to its close relation of output with the propo .... flights. It is best not to consider any open well when .... thermodynamics of solids.

  18. Metallic elements fractionation in municipal solid waste incineration residues

    Science.gov (United States)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  19. ANSYS mechanical APDL for finite element analysis

    CERN Document Server

    Thompson, Mary Kathryn

    2017-01-01

    ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...

  20. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown for each problem in order to facilitate element selection when computer resources are limited.

  1. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  2. Modified emission-transmission method for determining trace elements in solid samples using the XRF techniques

    International Nuclear Information System (INIS)

    Poblete, V.; Alvarez, M.; Hermosilla, M.

    2000-01-01

    This is a study of an analysis of trace elements in medium thick solid samples, by the modified transmission emission method, using the energy dispersion X-ray fluorescence technique (EDXRF). The effects of absorption and reinforcement are the main disadvantages of the EDXRF technique for the quantitative analysis of bigger elements and trace elements in solid samples. The implementation of this method and its application to a variety of samples was carried out using an infinitely thick multi-element white sample that calculates the correction factors by absorbing all the analytes in the sample. The discontinuities in the masic absorption coefficients versus energies association for each element, with medium thick and homogenous samples, are analyzed and corrected. A thorough analysis of the different theoretical and test variables are proven by using real samples, including certified material with known concentration. The simplicity of the calculation method and the results obtained show the method's major precision, with possibilities for the non-destructive routine analysis of different solid samples, using the EDXRF technique (author)

  3. Trace elements in cocoa solids and chocolate: an ICPMS study.

    Science.gov (United States)

    Yanus, Rinat Levi; Sela, Hagit; Borojovich, Eitan J C; Zakon, Yevgeni; Saphier, Magal; Nikolski, Andrey; Gutflais, Efi; Lorber, Avraham; Karpas, Zeev

    2014-02-01

    The concentrations of eight trace elements: lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), cobalt (Co), arsenic (As), bismuth (Bi) and molybdenum (Mo), in chocolate, cocoa beans and products were studied by ICPMS. The study examined chocolate samples from different brands and countries with different concentrations of cocoa solids from each brand. The samples were digested and filtered to remove lipids and indium was used as an internal standard to correct matrix effects. A linear correlation was found between the level of several trace elements in chocolate and the cocoa solids content. Significant levels of Bi and As were found in the cocoa bean shells but not in the cocoa bean and chocolate. This may be attributed to environmental contamination. The presence of other elements was attributed to the manufacturing processes of cocoa and chocolate products. Children, who are big consumers of chocolates, may be at risk of exceeding the daily limit of lead; whereas one 10 g cube of dark chocolate may contain as much as 20% of the daily lead oral limit. Moreover chocolate may not be the only source of lead in their nutrition. For adults there is almost no risk of exceeding daily limits for trace metals ingestion because their digestive absorption of metals is very poor. © 2013 Published by Elsevier B.V.

  4. Finite element analysis of the cross-section of wind turbine blades; a comparison between shell and 2D-solid models

    DEFF Research Database (Denmark)

    Pardo, D.; Branner, K.

    2005-01-01

    line load. The results are compared with result from similar shell models, which typically are used for practical design. Usually, good agreement between the shell models and the detailed 2D-solid model is found for the deflections, strains and stresses in regions with loads from pure bending. However...

  5. The NSLS 100 element solid state array detector

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Beren, J.; Kraner, H.W.; Rogers, L.C.; Stephani, D.; Beuttenmuller, R.H.; Cramer, S.P.

    1992-01-01

    X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500 000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 elements Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10 x 10 matrix of 4 mm x 4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramming memory module provide for complete diagnostics and channel calibration. The entrie instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. (orig.)

  6. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    International Nuclear Information System (INIS)

    Arslan, Zikri; Paulson, Anthony J.

    2003-01-01

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO 3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences

  7. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  8. Analysis and Design of Rolling Stock Elements

    Directory of Open Access Journals (Sweden)

    M. V. Chugunov

    2014-01-01

    Full Text Available The work solves the problem of equal-strength design of the rolling stock elements in option of discrete equal-strength. For this purpose, has been developed the software built in SolidWorks and SolidWorks Simulation as an AddIn-application using necessary basic functionality and extending it in the specified part on the basis of API SolidWorks and COM technology.The SolidWorks software is used to develop a 3D-model for general force frame of the wagon as an assembly. As this assembly is quite complicated and includes many elements both standard, and non-standard type, 3D - specification is developed by 3Dvia Composer software, which is included in the article in the form of the gif-animation and via-roller. This means is very useful for the evident analysis of topology and geometrical properties of a design as a whole, facilitates a procedure of adequate formation of the FE model providing accuracy and profitability of computing. From the point of view of profitability and opportunities of definition of concentrators of stresses with a sufficient accuracy for practice the combined model including volume and shell FEM is optimum.In the work the analysis results of stress-strain state of a design are given in two options of static loading in the form of stress diagrams, the main areas of stress concentration are revealed.Results of equal-strength design in the form of thickness distribution on thin-walled elements of a design, considered within FEM as shells, are received. It is shown that the developed software doesn't allow optimum design results, however it is economically viable, simple in use and can be applied to the solution of problems of rational design in design practice.SolidWorks, as well as the majority of similar CADs, possess an open architecture and allow users to apply its functionality. This work continues a series of publications of the author of this paper and other authors concerning the API-based CAD/CAE adaptation and

  9. Composite beryllium-ceramics breeder pin elements for a gas cooled solid blanket

    International Nuclear Information System (INIS)

    Carre, F.; Chevreau, G.; Gervaise, F.; Proust, E.

    1986-06-01

    Helium coolant have main advantages compared to water for solid blankets. But limitations exist too and the development of attractive helium cooled blankets based on breeder pin assemblies has been essentially made possible by the derivation from recent CEA neutronic studies of an optimized composite beryllium/ceramics breeder arrangement. Description of the proposed toroidal blanket layout for Net is made together with the analysis of its main performance. Merits of the considered composite Be/ceramics breeder elements are discussed

  10. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  11. METHODOLOGICAL ELEMENTS OF SITUATIONAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tetyana KOVALCHUK

    2016-07-01

    Full Text Available The article deals with the investigation of theoretical and methodological principles of situational analysis. The necessity of situational analysis is proved in modern conditions. The notion “situational analysis” is determined. We have concluded that situational analysis is a continuous system study which purpose is to identify dangerous situation signs, to evaluate comprehensively such signs influenced by a system of objective and subjective factors, to search for motivated targeted actions used to eliminate adverse effects of the exposure of the system to the situation now and in the future and to develop the managerial actions needed to bring the system back to norm. It is developed a methodological approach to the situational analysis, its goal is substantiated, proved the expediency of diagnostic, evaluative and searching functions in the process of situational analysis. The basic methodological elements of the situational analysis are grounded. The substantiation of the principal methodological elements of system analysis will enable the analyst to develop adaptive methods able to take into account the peculiar features of a unique object which is a situation that has emerged in a complex system, to diagnose such situation and subject it to system and in-depth analysis, to identify risks opportunities, to make timely management decisions as required by a particular period.

  12. Analysis and control of erosion by solid particles in the elements of the flow system of steam turbines; Analisis y control de erosion por particulas solidas en los elementos del sistema de flujo de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Mazur Czerwiec, Zdzislaw; Campos Amezcua, Alfonso; Campos Amezcua, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2010-07-01

    The analysis of erosion by solid particles is presented of different elements of the flow channel of the steam turbines that operate in Mexico: nozzles, stop valves, blade bosses, labyrinth seals and rotor disc; using tools of of Computational Fluid Dynamics (CFD). In these main elements of turbines a strong problem of erosion was registered that threatens the reliable operation of the turbines, its availability and its optimal yield. With base on the results of the numerical analyses, the design modifications of the different elements were developed from the flow channel of the steam turbines, in order to reduce the erosion and thus diminishing the energy losses and increasing the steam turbine efficiency. This work presents the main benefits that the Thermoelectric Power Plants obtain with the reduction of the erosion by solid particles that affect the critical components of steam turbines: extension of the period between maintenance, replacement of components, reduction of operation and maintenance costs of the turbines, and extension of the useful life of the main components. [Spanish] Se presenta el analisis de erosion por particulas solidas de diferentes elementos del canal de flujo de las turbinas de vapor que operan en Mexico: toberas, valvula de paro, tetones de los alabes, sellos de laberinto y disco del rotor; utilizando herramientas de Dinamica de Fluidos Computacional (DFC). En estos elementos principales de turbinas se registro un fuerte problema de erosion que amenaza la operacion confiable de las turbinas, su disponibilidad y su rendimiento optimo. Con base en los resultados de los analisis numericos, se desarrollaron las modificaciones de diseno de los diferentes elementos del canal de flujo de las turbinas de vapor, con el proposito de reducir la erosion y asi, disminuir las perdidas de energia e incrementar el rendimiento de las turbinas de vapor. Este trabajo presenta los principales beneficios que obtienen las Centrales Termoelectricas con la

  13. Elements of abstract harmonic analysis

    CERN Document Server

    Bachman, George

    2013-01-01

    Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give

  14. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  15. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  16. Downhole Elemental Analysis with LIBS

    Science.gov (United States)

    Moreschini, Paolo; Zacny, Kris; Rickman, Doug

    2011-01-01

    In this paper we discuss a novel instrument, currently under development at Honeybee Robotics with SBIR funding from NASA. The device is designed to characterize elemental composition as a function of depth in non-terrestrial geological formations. The instrument consists of a miniaturized laser-induced breakdown spectrometer (LIBS) analyzer integrated in a 2" diameter drill string. While the drill provides subsurface access, the LIBS analyzer provides information on the elemental composition of the borehole wall. This instrument has a variety of space applications ranging from exploration of the Moon for which it was originally designed, to Mars, as well as a variety of terrestrial applications. Subsurface analysis is usually performed by sample acquisition through a drill or excavator, followed by sample preparation and subsequent sample presentation to an instrument or suite of instruments. An alternative approach consisting in bringing a miniaturized version of the instrument to the sample has many advantages over the traditional methodology, as it allows faster response, reduced probability of cross-contamination and a simplification in the sampling mechanisms. LIBS functions by focusing a high energy laser on a material inducing a plasma consisting of a small fraction of the material under analysis. Optical emission from the plasma, analyzed by a spectrometer, can be used to determine elemental composition. A triangulation sensor located in the sensor head determines the distance of the sensor from the borehole wall. An actuator modifies the position of the sensor accordingly, in order to compensate for changes due to the profile of the borehole walls. This is necessary because LIBS measurements are negatively affected by changes in the relative position of the focus of the laser with respect to the position of the sample (commonly referred to as the "lens to sample distance"). Profiling the borehole is done by adjusting the position of the sensor with a

  17. Trace Element Analysis of Selenium

    International Nuclear Information System (INIS)

    Soliman, M.S.A.

    2010-01-01

    The present thesis divided into four chapters as follows:Chapter (1):This chapter contains an introduction on different oxidation states of organic and inorganic species for selenium in environmental and biological samples, the process for separation of selenium from these samples and the importance of selenium as a component for these samples. Also gives notes about the techniques which are used in the elemental analysis for selenium species and the detection limits for selenium in these techniques, selenium species in human body and the importance of these species in protecting the body from the different types of cancer and the sources of selenium in environmental samples (soil and water) and distribution levels of selenium in these samples.Chapter (2):This chapter is divided into two parts :The first part deals with the sample collection process for environmental samples (underground water, soil) and the wet digestion ( microwave digestion ) process of soil samples. It also contains the theory of work of the closed microwave digestion system.The second part contains detailed information concerning the theoretical considerations of the used analytical techniques. These techniques include Hydride generation - Atomic Absorption Spectrometer (HG-AAS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Neutron Activation Analysis (NAA).Chapter (3): This chapter includes the methods of sampling, sample preparation, and sample digesition. The measures of quality assurance are disscused in this chapter. It describes in details the closed microwave digestion technique and the analytical methods used in this study which are present in Central Laboratory for Elemental and Isotopic Analysis (CLEIA) and the Egypt Second Research Reactor (ETRR-2). The described techniques are Atomic Absorption Spectrometer (AAS 6 vario, Analytical Jena GmbH, Germany), JMS-PLASMAX2 Mass Spectrometer (ICP-MS) and the Egypt Second Research Reactor (NAA).

  18. Stock flow diagram analysis on solid waste management in Malaysia

    Science.gov (United States)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  19. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  20. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  1. Error-controlled adaptive finite elements in solid mechanics

    National Research Council Canada - National Science Library

    Stein, Erwin; Ramm, E

    2003-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error-controlled Adaptive Finite-element-methods . . . . . . . . . . . . Missing Features and Properties of Today's General Purpose FE Programs for Structural...

  2. Correct use of Membrane Elements in Structural Analysis

    Directory of Open Access Journals (Sweden)

    Rothman Timothy

    2016-01-01

    Full Text Available Structural analysis of consumer electronic devices such as phones and tablets involves Finite Element Analysis (FEA. Dynamic loading conditions such as device dropping and bending dictate accurate FEA models to reduce design risk in many areas. The solid elements typically used in structural analysis do not have integration points on the surface. The outer surface is of most interest because that is where the cracks start. Analysts employ a post processing trick through using membranes to bring accurate stress/strain results to the surface. This paper explains numerical issues with implementation of membranes and recommends a methodology for accurate structural analysis.

  3. Trace elements in migrating high-temperature fluids: Effects of diffusive exchange with the adjoining solid

    Science.gov (United States)

    Kenyon, Patricia M.

    1993-01-01

    Trace element concentrations and isotopic ratios are frequently used to study the behavior of high-temperature fluids in both metamorphic and igneous systems. Many theoretical formulations of the effects of fluid migration on trace elements have assumed instantaneous reequilibration between the migrating fluid and the solid material through which it is passing. This paper investigates the additional effects which arise when equilibration is not instantaneous due to a limited rate of diffusion in the solid, using an analytical steady state solution to a set of partial differential equations describing the exchange of trace elements between the fluid and the solid during the migration of the fluid.

  4. Free vibration of thin axisymmetric structures by a semi-analytical finite element scheme and isoparametric solid elements

    International Nuclear Information System (INIS)

    Akeju, T.A.I.; Kelly, D.W.; Zienkiewicz, O.C.; Kanaka Raju, K.

    1981-01-01

    The eigenvalue equations governing the free vibration of axisymmetric solids are derived by means of a semi-analytical finite element scheme. In particular we investigated the use of an 8-node solid element in structures which exhibit a 'shell-like' behaviour. Bathe-Wilson subspace iteration algorithm is employed for the solution of the equations. The element is shown to give good results for beam and shell vibration problems. It is also utilised to solve a complex solid in the form of an internal component of a modern jet engine. This particular application is of considerable practical importance as the dynamics of such components form a dominant design constraint. (orig./HP)

  5. International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics

    CERN Document Server

    Tseng, Kadin

    1990-01-01

    The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary­ wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto­ dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas­ sive parallelism. This Symposium was sponsored by United ...

  6. Hexahedral connection element based on hybrid-stress theory for solid structures

    International Nuclear Information System (INIS)

    Wu, D; Sze, K Y; Lo, S H

    2010-01-01

    For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.

  7. Adaptation of a radiofrequency glow discharge optical emission spectrometer (RF-GD-OES) to the analysis of light elements (carbon, nitrogen, oxygen and hydrogen) in solids: glove box integration for the analysis of nuclear samples

    International Nuclear Information System (INIS)

    Hubinois, J.-C.

    2001-01-01

    The purpose of this work is to use the radiofrequency glow discharge optical emission spectrometry in order to quantitatively determine carbon, nitrogen, oxygen and hydrogen at low concentration (in the ppm range) in nuclear materials. In this study, and before the definitive contamination of the system, works are carried out on non radioactive materials (steel, pure iron, copper and titanium). As the initial apparatus could not deliver a RF power inducing a reproducible discharge and was not adapted to the analysis of light elements: 1- The radiofrequency system had to be changed, 2- The systems controlling gaseous atmospheres had to be improved in order to obtain analytical signals stemming strictly from the sample, 3- Three discharge lamps had to be tested and compared in terms of performances, 4- The system of collection of light had to be optimized. The modifications that were brought to the initial system improved intensities and stabilities of signals which allowed lower detection limits (1000 times lower for carbon). These latter are in the ppm range for carbon and about a few tens of ppm for nitrogen and oxygen in pure irons. Calibration curves were plotted in materials presenting very different sputtering rates in order to check the existence of a 'function of analytical transfer' with the purpose of palliating the lack of reference materials certified in light elements at low concentration. Transposition of this type of function to other matrices remains to be checked. Concerning hydrogen, since no usable reference material with our technique is available, certified materials in deuterium (chosen as a surrogate for hydrogen) were studied in order to exhibit the feasibility the analysis of hydrogen. Parallel to these works, results obtained by modeling a RF discharge show that the performances of the lamp can be improved and that the optical system must be strictly adapted to the glow discharge. (author) [fr

  8. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  9. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel

  10. Phytochemical screening, proximate and elemental analysis of ...

    African Journals Online (AJOL)

    Citrus sinensis was screened for its phytochemical composition and was evaluated for the proximate and elemental analysis. The phytochemical analysis indicated the presence of reducing sugar, saponins, cardiac glycosides, tannins and flavonoids. The elemental analysis indicated the presence of the following mineral ...

  11. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  12. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  13. Can laser-ionisation time-of-flight mass spectrometry be a promising alternative to laser ablation/inductively-coupled plasma mass spectrometry and glow discharge mass spectrometry for the elemental analysis of solids?

    NARCIS (Netherlands)

    Sysoev, AA; Sysoev, AA

    2002-01-01

    At the beginning of the age of laser-ionisation mass spectrometry (LIMS) increasing numbers of publications were observed. However, later the method began to run into obstacles associated with poor reproducibility of analysis and large variations in elemental sensitivities so that the wide interest

  14. Why do probabilistic finite element analysis ?

    CERN Document Server

    Thacker, Ben H

    2008-01-01

    The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.

  15. Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182

    Science.gov (United States)

    Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.

    2009-07-01

    The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.

  16. Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182

    International Nuclear Information System (INIS)

    Phillion, A B; Cockcroft, S L; Lee, P D

    2009-01-01

    The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model

  17. Elements of stock market analysis

    Directory of Open Access Journals (Sweden)

    Suciu, T.

    2013-12-01

    Full Text Available The paper represents a starting point in the presentation of the two types of stock/market analysis: the fundamental analysis and the technical analysis. The fundamental analysis consist in the assessment of the financial and economic status of the company together with the context and macroeconomic environment where it activates. The technical analysis deals with the demand and supply of securities and the evolution of their trend on the market, using a range of graphics and charts to illustrate the market tendencies for the quick identification of the best moments to buy or sell.

  18. Trace and ultratrace level elemental and speciation analysis

    International Nuclear Information System (INIS)

    Arunachalam, J.

    2012-01-01

    Accurate determination of elements present at parts per million and billion levels in various matrices is a growing requirement in different fields. In environmental sciences various trace elements need to be analyzed so as establish the dispersal models of pollutants or the adequacy of effluent treatment prior to discharge into water bodies. The issues of bioaccumulation and magnification are important in aquatic systems. In nutrition and biochemistry one has to establish the bio-availability of essential and toxic elemental species as toxic elements prevent assimilation of essential elements. Fission and fusion technologies use a variety of structural materials requiring many trace elements to be present at levels strictly below the specified levels. Ultra-pure bulk semiconductor materials are required for fabrication devices. In metallurgy and materials sciences too, various trace elements are known to influence the properties. In the emerging fields like nanotechnology, it is necessary to understand the passage and accumulation of nano-particles inside the cells, through trace analysis. Many analytical techniques exist which can provide the concentration information in the bulk materials with good accuracy. They include ICP-AES, FAAS, and ICP-MS, which are solution based techniques. Direct solid state analytical techniques are Glow Discharge Mass Spectrometry (GDMS) and XRF. Accelerator based ion-beam analysis techniques can provide information on concentration and depth profiles of different elements in layered structures. Hyphenated techniques such as HPLC/lC-ICPMS, are helpful in identifying various chemical oxidation states in which a given element might be present in a matrix, which is termed as speciation analysis. This presentation will include the existing analytical competencies and the laboratory requirements for trace and ultra trace element elemental and speciation analyses and their applications. (author)

  19. Finite element application to global reactor analysis

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1981-01-01

    The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de

  20. TAPIR, Thermal Analysis of HTGR with Graphite Sleeve Fuel Elements

    International Nuclear Information System (INIS)

    Weicht, U.; Mueller, W.

    1983-01-01

    1 - Nature of the physical problem solved: Thermal analysis of a reactor core containing internally and/or externally gas cooled prismatic fuel elements of various geometries, rating, power distribution, and material properties. 2 - Method of solution: A fuel element in this programme is regarded as a sector of a fuelled annulus with graphite sleeves of any shape on either side and optional annular gaps between fuel and graphite and/or within the graphite. It may have any centre angle and the fuelled annulus may become a solid cylindrical rod. Heat generation in the fuel is assumed to be uniform over the cross section and peripheral heat flux into adjacent sectors is ignored. Fuel elements and coolant channels are treated separately, then linked together to fit a specified pattern. 3 - Restrictions on the complexity of the problem: Maxima of: 50 fuel elements; 50 cooled channels; 25 fuel geometries; 25 coolant channel geometries; 10 axial power distributions; 10 graphite conductivities

  1. A proposal for a determination method of element division on an analytical model for finite element elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2010-01-01

    This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)

  2. Finite element analysis of tibial fractures

    DEFF Research Database (Denmark)

    Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner

    2010-01-01

    Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...

  3. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  4. A CAREM type fuel element dynamic analysis

    International Nuclear Information System (INIS)

    Magoia, J.E.

    1990-01-01

    A first analysis on the dynamic behaviour of a fuel element designed for the CAREM nuclear reactor (Central Argentina de Elementos Modulares) was performed. The model used to represent this dynamic behaviour was satisfactorily evaluated. Using primary estimations for some of its numerical parameters, a first approximation to its natural vibrational modes was obtained. Results obtained from fuel elements frequently used in nuclear power plants of the PWR (Pressurized Water Reactors) type, are compared with values resulting from similar analysis. (Author) [es

  5. Finite element analysis of piezoelectric materials

    International Nuclear Information System (INIS)

    Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)

  6. Crack nucleation in solid materials under external load - simulations with the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Klejment Piotr

    2018-01-01

    Full Text Available Numerical analysis of cracking processes require an appropriate numerical technique. Classical engineering approach to the problem has its roots in the continuum mechanics and is based mainly on the Finite Element Method. This technique allows simulations of both elastic and large deformation processes, so it is very popular in the engineering applications. However, a final effect of cracking - fragmentation of an object at hand can hardly be described by this approach in a numerically efficient way since it requires a solution of a problem of nontrivial evolving in time boundary conditions. We focused our attention on the Discrete Element Method (DEM, which by definition implies “molecular” construction of the matter. The basic idea behind DEM is to represent an investigated body as an assemblage of discrete particles interacting with each other. Breaking interaction bonds between particles induced by external forces imeditelly implies creation/evolution of boundary conditions. In this study we used the DEM approach to simulate cracking process in the three dimensional solid material under external tension. The used numerical model, although higly simplified, can be used to describe behaviour of such materials like thin films, biological tissues, metal coatings, to name a few.

  7. Analysis of biogenic carbonates by inductively coupled plasma-mass spectrometry (ICP-MS). Flow injection on-line solid-phase preconcentration for trace element determination in fish otoliths.

    Science.gov (United States)

    Arslan, Z; Paulson, A J

    2002-04-01

    The aragonite deposits within the ear bones (otoliths) of teleost fish retain a chemical signal reflecting the life history of fish (similar to rings of trees) and the nature of fish habitats. Otoliths dissolved in acid solutions contain high concentrations of calcium and a variety of proteins. Elimination of matrix salts and organic interferences during preconcentration is essential for accurate determination of trace elements in otolith solutions by inductively coupled plasma-quadrupole mass spectrometry. An iminodiacetate-based chelating resin (Toyopearl AF-Chelate 650 M) has been used for on-line preconcentration and matrix separation for the determination of 31 transition and rare elements. Successful preconcentration of the elements was achieved at pH 5 by on-line buffering, except Mn which required pH 8.8. Sample solutions were loaded on to the column for 1 min at 3.2 mL min(-1), and then eluted directly into the mass spectrometer with 4% v/v nitric acid. This procedure enabled up to 25-fold preconcentration with successful removal of the calcium matrix. The effect of heat-assisted oxidation with concentrated nitric acid was investigated to eliminate the organic matrix. It was found that heating to dryness after dissolution and further mineralization with the acid significantly improved the retention of the transition elements. The method was validated by analysis of a certified reference material produced from saggittal otoliths of emperor snapper ( Lutjanus sebae), and then applied to the determination of trace metal concentrations in juvenile bluefin tuna ( Thunnus thynnus) from the Western Pacific Ocean.

  8. Multidimensional elemental analysis with the Sandia nuclear microprobe

    International Nuclear Information System (INIS)

    Doyle, B.L.

    1988-01-01

    It is well known that many of the ion beam analysis techniques such as Rutherford backscattering spectrometry, elastic recoil detection, resonant and nonresonant nuclear reaction analysis can be used to nondestructively obtain concentration depth profiles of elements in solids. When these techniques are combined with the small beam spot capabilities of a scanned nuclear microprobe, sample composition can be determined in up to three dimensions. This paper will review the various procedures used to collect and analyze multidimensional data using the Sandia nuclear microprobe. In addition, examples of how these data are being used in the study of materials will be shown. (author)

  9. Elemental analysis with external-beam PIXE

    Science.gov (United States)

    Lin, E. K.; Wang, C. W.; Teng, P. K.; Huang, Y. M.; Chen, C. Y.

    1992-05-01

    A beamline system and experimental setup has been established for elemental analysis using PIXE with an external beam. Experiments for the study of the elemental composition of ancient Chinese potsherds (the Min and Ching ages) were performed. Continuum X-ray spectra from the samples bombarded by 3 MeV protons have been measured with a Si(Li) detector. From the analysis of PIXE data, the concentration of the main elements (Al, Si, K, and Ca) and of more than ten trace elements in the matrices and glazed surfaces were determined. Results for two different potsherds are presented, and those obtained from the glaze colorants are compared with the results of measurements on a Ching blue-and-white porcelain vase.

  10. Finite elements for analysis and design

    CERN Document Server

    Akin, J E; Davenport, J H

    1994-01-01

    The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee

  11. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  12. Elemental analysis techniques using proton microbeam

    International Nuclear Information System (INIS)

    Sakai, Takuro; Oikawa, Masakazu; Sato, Takahiro

    2005-01-01

    Proton microbeam is a powerful tool for two-dimensional elemental analysis. The analysis is based on Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE) techniques. The paper outlines the principles and instruments, and describes the dental application has been done in JAERI Takasaki. (author)

  13. Trace element analysis of nail polishes

    International Nuclear Information System (INIS)

    Misra, G.; Mittal, V.K.; Sahota, H.S.

    1999-01-01

    Instrumental neutron activation analysis (INAA) technique was used to measure the concentrations of various trace elements in nail polishes of popular Indian and foreign brands. The aim of the present experiment was to see whether trace elements could distinguish nail polishes of different Indian and foreign brands from forensic point of view. It was found that cesium can act as a marker to differentiate foreign and Indian brands. (author)

  14. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  15. Speciation and mobility of potentially toxic elements in municipal solid waste incineration bottom ash

    NARCIS (Netherlands)

    Schollbach, K.; Alam, Q.; Florea, M.V.A.; Brouwers, H.J.H.

    2017-01-01

    Bottom ash (BA) is the main residue from municipal solid waste incineration (MSWI), which can have some applications in construction materials, but is mostly landfilled in many countries. The main problem is the high concentration of potentially toxic elements (PTEs), particularly in the fine

  16. Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis

    OpenAIRE

    Abubakri, K.; Veladi, H.

    2016-01-01

    Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavior...

  17. Toward an accurate description of solid-state properties of superheavy elements

    Directory of Open Access Journals (Sweden)

    Schwerdtfeger Peter

    2016-01-01

    Full Text Available In the last two decades cold and hot fusion experiments lead to the production of new elements for the Periodic Table up to nuclear charge 118. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their potential chemical and physical behaviour. Here we report on first results of solid-state calculations for Og (element 118 to support future atom-at-a-time gas-phase adsorption experiments on surfaces such as gold or quartz.

  18. Limit analysis of solid reinforced concrete structures

    DEFF Research Database (Denmark)

    Larsen, Kasper Paaske

    2009-01-01

    Recent studies have shown that Semidefinite Programming (SDP) can be used effectively for limit analysis of isotropic cohesive-frictional continuums using the classical Mohr-Coulomb yield criterion. In this paper we expand on this previous research by adding reinforcement to the model and a solid...... reinforcement and it is therefore possible to analyze structures with complex reinforcement layouts. Tests are conducted to validate the method against well-known analytical solutions....

  19. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  20. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  1. PIXE - a new method for elemental analysis

    International Nuclear Information System (INIS)

    Johansson, S.A.E.

    1983-01-01

    With elemental analysis we mean the determination of which chemical elements are present in a sample and of their concentration. This is an old and important problem in chemistry. The earliest methods were purely chemical and many such methods are still used. However, various methods based on physical principles have gradually become more and more important. One such method is neutron activation. When the sample is bombarded with neutrons it becomes radioactive and the various radioactive isotopes produced can be identified by the radiation they emit. From the measured intensity of the radiation one can calculate how much of a certain element that is present in the sample. Another possibility is to study the light emitted when the sample is excited in various ways. A spectroscopic investigation of the light can identify the chemical elements and allows also a determination of their concentration in the sample. In the same way, if a sample can be brought to emit X-rays, this radiation is also characteristic for the elements present and can be used to determine the elemental concentration. One such X-ray method which has been developed recently is PIXE. The name is an acronym for Particle Induced X-ray Emission and indicates the principle of the method. Particles in this context means heavy, charged particles such as protons and a-particles of rather high energy. Hence, in PIXE-analysis the sample is irradiated in the beam of an accelerator and the emitted X-rays are studied. (author)

  2. Quantum chemistry of solids and materials technology: solid-phase compounds of d- and f-elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1988-01-01

    The results of studies aimed at the development of methods of theoretical calculations of the electronic structure of solid phase compounds of α- and f-elements and the modelling of physicochemical properties of materials developed on their basis, are presented. The possibilities of cluster and zone calculations of the electronic structure of refractory compounds of d-metals with light elements are considered. The regularities of changes in the chemical bond and properties during crystal lattice alloying with metals, metalloids are found. The methods of quantum chemical modeling of optically active and luminescent materials on the base of oxides, fluorides, chalcogenides of d- and f-metals are developed. The compositions of new optically active compositions and protective coatings are suggested. New approaches to the study of magnetic properties of metals, alloys and compounds are developed. The results of calculations of the energy spectra of high-temperature oxide superconductors are given

  3. Analysis of light elements by PIGE

    International Nuclear Information System (INIS)

    Kim, Y. S.; Choi, H. W.; Kim, D. K.; Woo, H. J.; Kim, N. B.; Park, K. S.

    2000-01-01

    The PIGE (Proton Induced Gamma ray Emission) method was applied for the measurement of light elements Li - K. A test measurement has been performed for geological, biological, environmental and material samples by using a standard sample for each element. The measurement was performed for the two proton energies of 2.4 and 3.4 MeV, and 3.4MeV was found to yield better result for multielemental analysis. The result shows a fair agreement within 15% for all elements with standard values. The detection limits of Li, B, F and Na are less than 100 ppm, while those of the other elements are from a few hundred ppm to a few percents. (author)

  4. Single cell elemental analysis using nuclear microscopy

    International Nuclear Information System (INIS)

    Ren, M.Q.; Thong, P.S.P.; Kara, U.; Watt, F.

    1999-01-01

    The use of Particle Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM) to provide quantitative elemental analysis of single cells is an area which has high potential, particularly when the trace elements such as Ca, Fe, Zn and Cu can be monitored. We describe the methodology of sample preparation for two cell types, the procedures of cell imaging using STIM, and the quantitative elemental analysis of single cells using RBS and PIXE. Recent work on single cells at the Nuclear Microscopy Research Centre,National University of Singapore has centred around two research areas: (a) Apoptosis (programmed cell death), which has been recently implicated in a wide range of pathological conditions such as cancer, Parkinson's disease etc, and (b) Malaria (infection of red blood cells by the malaria parasite). Firstly we present results on the elemental analysis of human Chang liver cells (ATTCC CCL 13) where vanadium ions were used to trigger apoptosis, and demonstrate that nuclear microscopy has the capability of monitoring vanadium loading within individual cells. Secondly we present the results of elemental changes taking place in individual mouse red blood cells which have been infected with the malaria parasite and treated with the anti-malaria drug Qinghaosu (QHS)

  5. Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements

    Science.gov (United States)

    Glavic, Artur; Summers, Brock; Dahal, Ashutosh; Kline, Joseph; Van Herck, Walter; Sukhov, Alexander; Ernst, Arthur

    2018-01-01

    Abstract The nature of magnetic correlation at low temperature in two‐dimensional artificial magnetic honeycomb lattice is a strongly debated issue. While theoretical researches suggest that the system will develop a novel zero entropy spin solid state as T → 0 K, a confirmation to this effect in artificial honeycomb lattice of connected elements is lacking. This study reports on the investigation of magnetic correlation in newly designed artificial permalloy honeycomb lattice of ultrasmall elements, with a typical length of ≈12 nm, using neutron scattering measurements and temperature‐dependent micromagnetic simulations. Numerical modeling of the polarized neutron reflectometry data elucidates the temperature‐dependent evolution of spin correlation in this system. As temperature reduces to ≈7 K, the system tends to develop novel spin solid state, manifested by the alternating distribution of magnetic vortex loops of opposite chiralities. Experimental results are complemented by temperature‐dependent micromagnetic simulations that confirm the dominance of spin solid state over local magnetic charge ordered state in the artificial honeycomb lattice with connected elements. These results enable a direct investigation of novel spin solid correlation in the connected honeycomb geometry of 2D artificial structure. PMID:29721429

  6. A study on the recovery of TRU elements by a container-aided solid cathode

    International Nuclear Information System (INIS)

    Kwon, S.W.; Lee, J.H.; Woo, M.S.; Shim, J.B.; Kim, E.H.; Yoo, J.H.; Park, S.W.; Park, H.S.

    2005-01-01

    Pyroprocessing is a very prominent way for the recovery of the long-lived elements from the spent nuclear fuel. Electrorefining is a key technology of pyroprocessing and generally composed of two recovery steps - deposit of uranium onto a solid cathode and the recovery of TRU (TRansUranic) elements by a liquid cadmium cathode. The liquid cadmium cathode has some problems such as a cadmium volatilization problem, a low separation factor, and a complicates structure. In this study, CASC (Container-Aided Solid Cathode) was proposed as a candidate for replacing a liquid cadmium cathode and the deposition behavior of the cathode was examined during the electrorefining experiments. The CASC is a solid cathode surrounded with a porous ceramic container, where the container is used to capture the dripped deposit from the cathode. In the electrorefining experiment, the uranium used as a surrogate for the TRU elements, was effectively separated from cerium. The anode material and surface area were also investigated during electrolysis experiments for the more efficient electrorefining system. From the results of this study, it is concluded that the container-aided solid cathode can be a potential candidate for replacing a liquid cadmium cathode and the cathode should be developed further for the better electrolysis operation. (author)

  7. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    International Nuclear Information System (INIS)

    Schauenburg, H.; Weigert, P.

    1992-01-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.)

  9. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  10. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  11. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  12. Orthodontic treatment: Introducing finite element analysis

    NARCIS (Netherlands)

    Driel, W.D. van; Leeuwen, E.J. van

    1998-01-01

    The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process

  13. Uncertainties in elemental quantitative analysis by PIXE

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Baptista, G.B.; Paschoa, A.S.; Barros Leite, C.V.

    1979-01-01

    The effects of the degree of non-uniformity of the particle beam, matrix composition and matrix thickness in a quantitative elemental analysis by particle induced X-ray emission (PIXE) are discussed and a criterion to evaluate the resulting degree of uncertainty in the mass determination by this method is established. (Auth.)

  14. Isogeometric finite element analysis of poroelasticity

    NARCIS (Netherlands)

    Irzal, F.; Remmers, J.J.C.; Verhoosel, C.V.; Borst, de R.

    2013-01-01

    We present an alternative numerical approach for predicting the behaviour of a deformable fluid-saturated porous medium. The conventional finite element technology is replaced by isogeometric analysis that uses non-uniform rational B-splines. The ability of these functions to provide higher-order

  15. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  16. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  17. Finite element elastic-plastic analysis of LMFBR components

    International Nuclear Information System (INIS)

    Levy, A.; Pifko, A.; Armen, H. Jr.

    1978-01-01

    The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)

  18. Multiply charged ions of the oxygen - produced at interaction of laser radiation with two-element solids

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Bedilov, R.M.; Kamalova, J.O.; Davletov, I.Yu.; Matnazarov, A.R.

    2007-01-01

    Full text: The interest to study of the oxygen multiply charged ions spectra produced at interaction laser radiation with one and two-element solids, is associate with possibility of creating laser and inertial thermonuclear syntheses, effective sources of multiply charged ions and nuclei atoms elements, plasma lasers, lasers on multiply charged transition, design of radiation-resistant materials and others. The present time many works is devoted to multiply charged ions, obtained from one element targets. Experimental results of study charge and energy spectra multiply charged ions of the oxygen, formed at interaction laser radiation with one and two-element solids are given in this work. Our experiments, we used installation, which is described in [1]. Neodymium laser had following parameters: wavelength 1.06 μm; intensity q = (0.1 h 1000) GW/sm 2 ; angle of incidence = 180. Were study one element Al, and two-element Al 2 O 3 , Y 2 O 3 targets by a diameter of 10 mm and thickness of 3 mm. Analysis obtained charge and energy spectra of multiply charged ions one (Al) and two-element (Al 2 O 3 , Y 2 O 3 ) targets depending on intensity of laser radiation and targets components reveal the following: - maximal charge number one element target (Al) at q 500 GW/sm 2 is equal Z max = 6 and all peaks corresponding to charge numbers Z = 1 - 6 well resolved, but two-element targets (Al 2 O 3 ) Z max ions Al decrease before 3. Also it is necessary to note that, Z max ions of the oxygen depend on target components. In case Al 2 O 3 and Y 2 O 3 maximal charge number of oxygen ions are equal Z max = 6 and 3, accordingly; - obtained charge and energy spectra of oxygen ions being included in two-element targets, are indicative of that, general regularities of the change Z max , E max and structures charge and energy spectra depending on q laser are saved. However they hang by target components; - common features and some differences of energy spectra multiply charged oxygen ions

  19. Use of the finite element displacement method to solve solid-fluid interaction vibration problems

    International Nuclear Information System (INIS)

    Brown, S.J.; Hsu, K.H.

    1978-01-01

    It is shown through comparison to experimental, theoretical, and other finite element formulations that the finite element displacement method can solve accurately and economically a certain class of solid-fluid eigenvalue problems. The problems considered are small displacements in the absence of viscous damping and are 2-D and 3-D in nature. In this study the advantages of the finite element method (in particular the displacement formulation) is apparent in that a large structure consisting of the cylinders, support flanges, fluid, and other experimental boundaries could be modeled to yield good correlation to experimental data. The ability to handle large problems with standard structural programs is the key advantage of the displacement fluid method. The greatest obstacle is the inability of the analyst to inhibit those rotational degrees of freedom that are unnecessary to his fluid-structure vibration problem. With judicious use of element formulation, boundary conditions and modeling, the displacement finite element method can be successfully used to predict solid-fluid response to vibration and seismic loading

  20. A discrete element model for the investigation of the geometrically nonlinear behaviour of solids

    Science.gov (United States)

    Ockelmann, Felix; Dinkler, Dieter

    2018-07-01

    A three-dimensional discrete element model for elastic solids with large deformations is presented. Therefore, an discontinuum approach is made for solids. The properties of elastic material are transferred analytically into the parameters of a discrete element model. A new and improved octahedron gap-filled face-centred cubic close packing of spheres is split into unit cells, to determine the parameters of the discrete element model. The symmetrical unit cells allow a model with equal shear components in each contact plane and fully isotropic behaviour for Poisson's ratio above 0. To validate and show the broad field of applications of the new model, the pin-pin Euler elastica is presented and investigated. The thin and sensitive structure tends to undergo large deformations and rotations with a highly geometrically nonlinear behaviour. This behaviour of the elastica can be modelled and is compared to reference solutions. Afterwards, an improved more realistic simulation of the elastica is presented which softens secondary buckling phenomena. The model is capable of simulating solids with small strains but large deformations and a strongly geometrically nonlinear behaviour, taking the shear stiffness of the material into account correctly.

  1. Finite element evaluation of elasto-plastic accommodation energies during solid state transformations: Coherent, spherical precipitate in finite matrix

    International Nuclear Information System (INIS)

    Sen, S.; Balasubramaniam, R.; Sethuraman, R.

    1996-01-01

    The molar volume difference between the matrix and the precipitate phases in the case of solid state phase transformations results in the creation of stain energy in the system due to the misfit strains. A finite element model based on the initial strain approach is proposed to evaluate elasto-plastic accommodation energies during solid state transformation. The three-dimensional axisymmetric model has been used to evaluate energies as a function of transformation for α-β hydrogen transformations in the Nb-H system. The transformation has been analyzed for the cases of transformation progressing both from the center to surface and from the surface to center of the system. The effect of plastic deformation has been introduced to make the model realistic, specifically to the Nb-NbH phase transformation which involves a 4% linear misfit strain. It has been observed that plastic deformation reduces the strain energies compared to the linear elastic analysis

  2. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  3. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  4. Introduction to nonlinear finite element analysis

    CERN Document Server

    Kim, Nam-Ho

    2015-01-01

    This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: ·         Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems ·         Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory ·    ...

  5. Finite element analysis of nonlinear creeping flows

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Guerreiro, J.N.C.

    1988-12-01

    Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt

  6. Trace-element analysis in environmental sciences

    International Nuclear Information System (INIS)

    Valkovic, V.; Moschini, G.

    1988-01-01

    The use of charged-particle accelerators in trace-element analysis in the field of environmental sciences is described in this article. Nuclear reactions, charged-particle-induced X-ray emission as well as other nuclear and atomic processes can be used individually, or combined, in developing adequate analytical systems. In addition to concentration levels, concentration levels, concentration profiles can be measured, resulting in unique information. Some examples of experiments performed are described together with the suggestions for future measurements [pt

  7. Simulation of granular and gas-solid flows using discrete element method

    Science.gov (United States)

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  8. Qualitative PIXE analysis of mineral elements in some dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Iordan, Andreea; Harangus, Livia; Ciortea, C.; Gugiu, M.; Moldovan, Maria

    2002-01-01

    Dental composites, made by particles of glass, ceramics and quartz embedded in an organic polymer, develop at a high rate. However, commercial composites are expensive and recently the 'Restacril' biomaterials company became prepared to offer a low-cost alternative. The durability of dental fillings depends not only on biomaterial's gross chemical composition, but also on impurities. These may influence the chemical, mechanical and surface properties of the inorganic particles and modify the composites' clinical behavior. Thus elemental analysis is necessary to improve the biomaterials' quality. Nuclear and atomic methods allow sensitive multielement detection, and we previously analyzed some commercial composites by particle-induced X-ray emission (PIXE). Here we applied PIXE in the qualitative analysis of six new Romanian biomaterials, aiming to compare their nominal and detected composition and paying attention to the impurities. The PIXE measurements were performed with 3 MeV protons at the 8.5 MV NIPNE-HH tandem accelerator, using a hyper pure Ge detector, normal to the beam and connected to a multichannel analyzer and to a computer. Solid samples of composites with a flat surface were fixed at 45 angle, absorber foil of Al 30 mm thick was used, and integration of beam current was done. In all composites PIXE detected mineral elements with Z > 19 down to trace levels. All major nominal elements with Z > 20 - Ca, Sr, Zr, Ba, and Yb - were detected by PIXE. In addition, many minor and trace elements absent from the nominal formulations were seen, including K, Ti, Mn, Fe, Ni, Cu, Zn, Ga, Ag, Cd, Hf, and As/Pb. Such impurities may come from rough materials and preparative technologies. The impurities in Romanian composites are comparable to those in some commercial biomaterials but higher than in other ones. Thus PIXE analysis of mineral elements in Romanian composites, even qualitative, appears useful for quality control and improvement. (authors)

  9. Finite element analysis of inelastic structural behavior

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1977-01-01

    The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model

  10. Application of synchrotron radiation to elemental analysis

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Hastings, J.B.; Howells, M.R.; Kraner, H.W.; Chen, J.R.

    1983-01-01

    The use of a synchrotron storage ring as a high brightness source for production of monoergic, variable energy, and highly polarized x-ray beams promises to revolutionize the field of elemental analysis. The results of exploratory work using the Cornell synchrotron facility, CHESS, will be described. Design considerations and features of the new X-Ray Microprobe Facility now under construction at the Brookhaven National Synchrotron Light Source will be presented. This facility will be used for bulk analysis and for microanalysis with an initial spatial resolution of the order of 30 μm

  11. Network application of PIXE trace element analysis

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Hattori, T.

    2003-01-01

    Particle Induced X-ray Emission (PIXE) is a very sensitive analytical technique for determinations of trace elements. But the number of users is limited because there are not so much accelerators which can be used easily. On the other hand, PIXE is a typical machine analysis which can easily analyze automatically and make online data acquisition system. If there is useful online data handling system then PIXE analysis should be more useful for many persons. Therefore we develop to online PIXE facility at Tokyo Institute of Technology VdG laboratory and use it for environmental educations. (author)

  12. Dynamic analysis of structures with solid-fluid interaction

    International Nuclear Information System (INIS)

    Nahavandi, A.N.; Pedrido, R.R.; Cloud, R.L.

    1977-01-01

    This study develops a finite element model for interaction between an elastic solid and fluid medium (flow-induced vibrations in nuclear reactor components). Plane triangular finite elements have been used separately for fluid, solid, and solid-fluid continuua and the equivalent mass, damping, and stiffness matrices and interaction load arrays for all elements are derived and assembled into global matrices. The global matrix differential equation of motion developed is solved in time to obtain the pressure and velocity distributions in the fluid, as well as the displacements in the solid. Two independent computer programs are used to obtain the dynamic solution. The first program is a finite element program developed for solid-fluid interaction studies. This program uses the modal superposition technique in which the eigenvalues and eigenvectors for the system are found and used to uncouple the equations. This approach allows an analytic solution in each integration time step. The second program is WECAN finite element program in which a new element library subroutine for solid-fluid interaction was incorporated. This program can employ a NASTRAN direct integration scheme based on a central difference formula for the acceleration and velocity terms and an implicit representation of the displacement term. This reduces the problem to a matrix equation whose right hand side is updated in every time step and is solved by a variation of the Gaussian elimination method known as the wave front technique. Results have been obtained for the case of water, between two flat elastic parallel plates, initially at rest and accelerated suddenly by applying a step pressure. The results obtained from the above-mentioned two independent finite element programs are in full agreement. This verification provides the confidence needed to initiate parametric studies. Both rigid wall (no solid-fluid interaction) and flexible wall (including solid-fluid interaction) cases were examined

  13. Elemental analysis of coal by proton-induced x-ray emission analysis

    International Nuclear Information System (INIS)

    Cronch, S.M.; Ehmann, W.D.; Laumer, H.W.; Gabbard, F.

    1976-01-01

    Proton-induced x-ray emission was used to determine elemental concentrations in solid coal samples. The coal samples were irradiated with 2.5 to 5.5 MeV protons. Concentrations were determined from characteristic x-ray yields taking into account matrix absorption. The precision is shown by replicate analysis and the accuracy by comparison with results obtained by other laboratories using different techniques

  14. Optical selection of trace elements for discriminant analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.; Erasmus, C.S.; Watterson, J.I.W.; Sellschop, J.P.F.

    This report describes different methods of element selection; a combination of stepwise multivariate analysis of variance for primary element selection, and principle component analysis regression for the element interrelationship analysis. These offer a satisfactory solution to the problem of element selection

  15. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Campos, R.C. de.

    1988-01-01

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author) [pt

  16. Elements of healthy death: a thematic analysis.

    Science.gov (United States)

    Estebsari, Fatemeh; Taghdisi, Mohammad Hossein; Mostafaei, Davood; Rahimi, Zahra

    2017-01-01

    Background: Death is a natural and frightening phenomenon, which is inevitable. Previous studies on death, which presented a negative and tedious image of this process, are now being revised and directed towards acceptable death and good death. One of the proposed terms about death and dying is "healthy death", which encourages dealing with death positively and leading a lively and happy life until the last moment. This study aimed to explain the views of Iranians about the elements of healthy death. Methods: This qualitative study was conducted for 12 months in two general hospitals in Tehran (capital of Iran), using the thematic analysis method. After conducting 23 in-depth interviews with 21 participants, transcription of content, and data immersion and analysis, themes, as the smallest meaningful units were extracted, encoded and classified. Results: One main category of healthy death with 10 subthemes, including dying at the right time, dying without hassle, dying without cost, dying without dependency and control, peaceful death, not having difficulty at dying, not dying alone and dying at home, inspired death, preplanned death, and presence of a clergyman or a priest, were extracted as the elements of healthy death from the perspective of the participants in this study. Conclusion: The study findings well explained the elements of healthy death. Paying attention to the conditions and factors causing healthy death by professionals and providing and facilitating quality services for patients in the end stage of life make it possible for patients to experience a healthy death.

  17. Finite element analysis of 2-Station hip himulator

    Science.gov (United States)

    Fazli, M. I. M.; Yahya, A.; Shahrom, A.; Nawawi, S. W.; Zainudin, M. R.; Nazarudin, M. S.

    2017-10-01

    This paper presented the analysis of materials and design architecture of 2-station hip simulator. Hip simulator is a machine used to conduct the joint and wear test of hip prosthetic. In earlier work, the hip simulator was modified and some improvement were made by using SolidWorks software. The simulator consists of 3DOF which controlled by separate stepper motor and a static load that set up by manual method in each station. In this work, finite element analysis (FEA) of hip simulator was implemented to analyse the structure of the design and selected materials used for simulator component. The analysis is completed based on two categories which are safety factor and stress tests. Both design drawing and FEA was done using SolidWorks software. The study of the two categories is performed by applying the peak load up to 4000N on the main frame that is embedded with metal-on-metal hip prosthesis. From FEA, the value of safety factor and degree of stress formation are successfully obtained. All the components exceed the value of 2 for safety factor analysis while the degree of stress formation shows higher value compare to the yield strength of the material. With this results, it provides information regarding part of simulator which are susceptible to destruct. Besides, the results could be used for design improvement and certify the stability of the hip simulator in real application.

  18. Dissipation element analysis of turbulent scalar fields

    International Nuclear Information System (INIS)

    Wang Lipo; Peters, Norbert

    2008-01-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field Φ'(x-vector,t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δφ ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δφ ' as well. A compensation-defect model is put forward in this work to show the dependence of Δφ ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  19. Perovskites as electrodes of solid cells in sensitive elements of oxygen ion

    International Nuclear Information System (INIS)

    Gandurska, J.; Sniezynska, I.; Marek, A.; Szwagierczak, D.; Kulawik, J.

    1997-01-01

    The perovskite family comprises many compounds used in electronic applications. In this work perovskite materials based on LaCrO 3 were investigated, destined for electrodes of solid electrolyte oxygen sensors. lanthanum chromite powders modified by calcium, strontium and aluminium were prepared by the coprecipitation-calcination technique. The powders were examined using thermal analysis, x-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Introductory studies of electromotive force of oxygen cells with yttria stabilized zirconia as solid electrolyte and perovskite-based electrodes proved that it is possible to replace expensive Pt electrodes by much cheaper perovskite ones. (author)

  20. Finite element analysis of ARPS structures

    International Nuclear Information System (INIS)

    Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.

    1998-01-01

    Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent

  1. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  2. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  3. Inelastic analysis of solids and structures

    CERN Document Server

    Kojic, M; Bathe, K J; Koji?, Milo

    2005-01-01

    Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions.It is based on experimental observations and principles of mechanics, thus describing computational algorithms for stress calculation and presenting solved examples.The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials.The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations.The solved examples are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.

  4. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    Science.gov (United States)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  5. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  6. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    International Nuclear Information System (INIS)

    Morf, Leo S.; Gloor, Rolf; Haag, Olaf; Haupt, Melanie; Skutan, Stefan; Lorenzo, Fabian Di; Böni, Daniel

    2013-01-01

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  7. Stress distributions in finite element analysis of concrete gravity dam ...

    African Journals Online (AJOL)

    Gravity dams are solid structures built of mass concrete material; they maintain their stability against the design loads from the geometric shape, the mass, and the strength of the concrete. The model was meshed with an 8-node biquadratic plane strain quadrilateral (CPE8R) elements, using ABAQUS, a finite element ...

  8. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Science.gov (United States)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  9. Failure analysis for WWER-fuel elements

    International Nuclear Information System (INIS)

    Boehmert, J.; Huettig, W.

    1986-10-01

    If the fuel defect rate proves significantly high, failure analysis has to be performed in order to trace down the defect causes, to implement corrective actions, and to take measures of failure prevention. Such analyses are work-consuming and very skill-demanding technical tasks, which require examination methods and devices excellently developed and a rich stock of experience in evaluation of features of damage. For that this work specifies the procedure of failure analyses in detail. Moreover prerequisites and experimental equipment for the investigation of WWER-type fuel elements are described. (author)

  10. Finite element analysis of permanent magnet motors

    International Nuclear Information System (INIS)

    Boglietti, A.; Chiampi, M.; Tartaglia, M.; Chiarabaglio, D.

    1989-01-01

    The analysis of permanent magnet D.C. brushless motors, supplied by current control inverters, is developed employing a finite element package tailored for such devices. The study is devoted to predicting the performance of a set of four poles machines, under different operating conditions (no-load, rated load). The over-load conditions are also considered including the saturation effect. Moreover the influence of such design parameters, as the tooth shape and the number of magnet segments, is investigated. Computed results are found in satisfactory agreement with experimental ones

  11. Electronic structure of elements and compounds and electronic phases of solids

    International Nuclear Information System (INIS)

    Nadykto, B.A.

    2000-01-01

    The paper reviews technique and computed energies for various electronic states of many-electron multiply charged ions, molecular ions, and electronic phases of solids. The model used allows computation of the state energy for free many-electron multiply charged ions with relative accuracy ∼10 -4 suitable for analysis of spectroscopy data

  12. Nonconforming axisymmetric elements for the analysis of containment structures

    International Nuclear Information System (INIS)

    Choi, C.K.; Kim, S.Y.

    1989-01-01

    In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

  13. Optimized elemental analysis of fluorescence lamp shredder waste.

    Science.gov (United States)

    Hobohm, Julia; Kuchta, Kerstin; Krüger, Oliver; van Wasen, Sebastian; Adam, Christian

    2016-01-15

    Fluorescence lamps contain considerable amounts of rare earth elements (REE). Several recycling procedures for REE recovery from spent lamps have been established. However, despite their economic importance, the respective recycling is scarce so far, with an REE recovery rate of less than 1%. A reliable analysis of REE and other relevant metals like Yttrium is crucial for a thorough and complete recovery process. This applies both to the solid matter and aqueous phase, since most of the recycling processes include wet-chemical steps. We tested seven different reagent mixtures for microwave-assisted digestion of fluorescent lamp shredder, including hydrofluoric acid, perchloric acid, and hydrogen peroxide. We determined the concentrations of 25 of the most relevant rare earth and other trace elements (Al, P, Ti, V, Cr, Fe, Ni, Cu, Ga, Ge, As, Y, Ag, Cd, Sn, Sb, La, Ce, Eu, Gd, Tb, W, Au, Hg, and Pb) in the respective dilutions. Two independent digestions, one a mixture of perchlorid/nitric/hydrofluoric acid and the other aqua regia, showed the highest concentrations of 23 of these elements, excluding only Sn and Tb. The REE concentrations in the tested lamp shredder sample (stated in g/kg) were 10.2 (Y), 12.1 (La), 7.77 (Ce), 6.91 (Eu), 1.90 (Gd), and 4.11 (Tb). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Trace element analysis: a diagnostic tool

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Cheema, M.N.

    1976-09-01

    The human mody continuously assimilates a variety of elements from the environment, and the concentration of these elements in the blood is regulated by means of various homeostatic mechanisms. Some of the elements, though present in very small amounts, have highly specialized functions in initiating many biochemical reactions. These elements, known as essential trace elements, are closely related to human diseases since their deficiency or excess induces physiological changes. Many diseases such as hypertension, atherosclerosis, diabetes, etc., are related to an imbalance in trace element. The measurement of trace elements in body fluids and tissues can, therefore, be effectively employed for diagnostic tests

  15. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...... was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost...

  16. SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Jadhav, K.; Crowell, J.S.

    1969-01-01

    1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5

  17. Finite element analysis of multilayer coextrusion.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann

    2011-09-01

    Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.

  18. Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine

    DEFF Research Database (Denmark)

    Wong, Christian; Gehrchen, P Martin; Darvann, Tron

    2003-01-01

    A finite-element analysis (FEA) model of an intact lumbar disc-body unit was generated. The vertebral body of the FEA model consisted of a solid tetrahedral core of trabecular bone surrounded by a cortical shell. The disc consisted of an incompressible nucleus surrounded by nonlinear annulus fibe...

  19. Trace element analysis of common salt using neutron activation analysis

    International Nuclear Information System (INIS)

    Usman, K.

    1993-01-01

    Instrumental Fast Neutron Activation Analysis (IFNAA) technique has been used in the qualitative and quantitative determination of the impurity elements in common salt. Samples of the different types of common salt processed in Nigeria and some of those imported into the country were used. The type A711 KAMAN neutron generator and a high-purity Germanium (HpGe) gamma spectrometer available at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria has been used. The ORTEC ADCAM 100 Emulation Software (Maestro) was used in the qualitative measurement of the detected elements. The G.R.G Activation Analysis System by G. R. Gilmore, 1987, was used in the quantitative determination of the elements detected by relative method. Aluminium and arsenic were detected and measured

  20. Analysis of an ideal amorphous solid

    International Nuclear Information System (INIS)

    To, L.T.; Stachurski, Z.H.

    2004-01-01

    Full text: In geometrical terms, amorphous solids are fundamentally different from crystalline solids in that they can not be constructed by the crystallographic method of translation of the basis along a lattice. Therefore, to study amorphous structures we must invoke concepts and use measures different to those used for ordered structures. Nevertheless, an ideal amorphous solid must share together with the ideal crystalline solid in the same definition of the term 'ideal'. In both cases it must be a perfect body, in which perfection is carried through in every detail to an unlimited (infinite) size without fault or defect. The latest results on this research will be presented. To qualify for a solid, rigid body, close packing of the spheres is required. For an ideal amorphous solids composed of hard spheres of identical size, we impose a stricter condition for the packing, namely, to be such that all spheres are in fixed positions (no loose spheres). To define the ideal solid, we must define what we mean by a perfect amorphous structure. Here, perfection is defined by, first the definition of imperfections, and next by the requirement of absence of imperfections of any kind. We envisage two types of defects: (i) geometrical, and (ii) statistical. Geometrical defects are: a sphere of different size, a loose sphere, and a vacancy. A statistical defect is defined with respect to two statistical functions: Ψ(N C ), and Φ(S β ). The former describes the probability of a given sphere having nc number of touching contacts, and the latter describes the disposition of the contacts on the surface of the sphere. Defects relating to the two functions will be described. The results for the functions, Ψ(N C ), and Φ(S β ), for the corresponding radial distribution function, and so called blocking number will be presented from simulations of an ideal amorphous solid

  1. Sorption of redox-sensitive elements: critical analysis

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH - , CO -- 3 ) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states

  2. Sorption of redox-sensitive elements: critical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH/sup -/, CO/sup - -//sub 3/) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states.

  3. Spectrophotometric studies of transcurium element halides and oxyhalides in the solid state

    International Nuclear Information System (INIS)

    Young, J.P.; Haire, R.G.; Fellows, R. L.; Peterson, J.R.

    1978-01-01

    The present state of a microscale spectrophotometric technique is described. The application of spectrophotometry to transcurium elements (Bk, Cf, Es) requires some rather specialized microtechniques for the following reasons: only small amounts of these elements are available; their radioactivity makes the use of μg-sized samples desirable; and spectral study of solids requires thin samples. A schematic diagram of the microscope-spectrophotometer used for spectrophotometric study of the transcurium element compounds is shown. The spectrophotometer, of local design, consists of two microscopes equipped with Cassegrainian reflecting microscope objective lenses, a quartz field lens, and a Jarrell Ash 1/2 meter scanning monochromator equipped with a 1180 line/mm grating blazed at 4000 A. The photomultiplier used in this system is an S-1 type RCA 7102 operated at approximately -50 deg C. This grating-photomultiplier combination provides a continuous response free of discontinuities over the useful wavelength range of the system from 3000 to 11 000 A. The microscope-spectrophotometer is a single beam instrument. Each spectral trace is registered as photomultiplier current on a strip chart recorder. In order to obtain true absorption spectra, however, the output from the photometer is also simultaneously digitized for on-line processing. The unique advantages of applying both spectrophotometric and X-ray powder diffraction methods on the sample, in order to identify and characterize newly synthesized compounds, are also discussed. (T.G.)

  4. Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    T.S. Viswanathan

    2014-09-01

    Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.

  5. Investigation of the Behavior of Steel Shear Walls Using Finite Elements Analysis

    Directory of Open Access Journals (Sweden)

    K. Abubakri

    2016-10-01

    Full Text Available Currently, steel shear walls are considered by engineers as an economic method against lateral loads imposed by wind and earthquake in tall structures. Accordingly, there is a growing need to develop accurate methods alongside approximation methods to estimate the behavior of these structural elements. The finite element technique is one of the strongest numerical methods in analysis of solid mechanics problems. Finite element analysis however requires high technical knowledge of the behavioral models of materials. Therefore, it is less used by designers for certain structural elements such as steel shear walls. This study examines the failure mechanism of steel shear walls using finite elements analysis and validates this modeling by comparing the results with experimental studies.

  6. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1980-05-01

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  7. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    Science.gov (United States)

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  8. Municipal solid waste management system: decision support through systems analysis

    OpenAIRE

    Pires, Ana Lúcia Lourenço

    2010-01-01

    Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia for the degree of Doctor of Philosophy in Environmental Engineering The present study intends to show the development of systems analysis model applied to solid waste management system, applied into AMARSUL, a solid waste management system responsible for the management of municipal solid waste produced in Setúbal peninsula, Portugal. The model developed intended to promote sustainable decision making, ...

  9. Prediction and phylogenetic analysis of mammalian short interspersed elements (SINEs).

    Science.gov (United States)

    Rogozin, I B; Mayorov, V I; Lavrentieva, M V; Milanesi, L; Adkison, L R

    2000-09-01

    The presence of repetitive elements can create serious problems for sequence analysis, especially in the case of homology searches in nucleotide sequence databases. Repetitive elements should be treated carefully by using special programs and databases. In this paper, various aspects of SINE (short interspersed repetitive element) identification, analysis and evolution are discussed.

  10. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  11. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  12. Stability analysis of artificial synthetic overweight elements

    International Nuclear Information System (INIS)

    Zhou Jian

    1990-01-01

    Stability of artificial synthetic overweight elements has been analysed theoretically using a diagram of nuclear stability. It is indicated that overweight nucleus can be synthesized only when a certain amount of neutrons participate simultaneously in the synthesis. The maximum number of protons in overweight elements is 1002. The proton number of 'extreme overweight' elements of which the neutron star is possibly composed is in the range from 326 to 1002. It is expected that the mass number of the stable overweight elements with proton number 114 is in the range from 299 to 315

  13. Site suitability analysis and route optimization for solid waste ...

    African Journals Online (AJOL)

    Solid waste management system is a tedious task that is facing both developing and developed countries. Site Suitability analysis and route optimization for solid waste disposal can make waste management cheap and can be used for sustainable development. However, if the disposal site(s) is/are not sited and handle ...

  14. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  15. Ion sources for solids isotopic analysis

    International Nuclear Information System (INIS)

    Tyrrell, A.C.

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material. (Auth.)

  16. Ion sources for solids isotopic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, A. C. [Ministry of Defence, Foulness (UK). Atomic Weapons Research Establishment

    1978-12-15

    Of the dozen or so methods of producing ions from solid samples only the surface or thermal ionisation method has found general application for precise measurement of isotopic ratios. The author discusses the principal variables affecting the performance of the thermal source; sample preparation, loading onto the filament, sample pre-treatment, filament material.

  17. Trace element analysis of soy sauce

    International Nuclear Information System (INIS)

    Tomita, Michio; Haruyama, Yoichi; Saito, Manabu

    1994-01-01

    Trace elements in soy sauce have been measured by means of in-air PIXE. Six kinds of trace elements were detected, such as Mu, Fe, Ni, Zn, Cu and Br. Concentrations of Mn, Fe, Zn and Br which were observed in all samples, have been determined. Each analyzed sample contained considerable amount of bromine about 160 ppm. (author)

  18. Element composition of solid airborne particles deposited in snow in the vicinity of gas-fired heating plant

    OpenAIRE

    Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Filimonenko, Ekaterina Anatolievna; Samokhina, Nataljya Pavlovna; Shakhova, Tatiana Sergeevna; Parygina, Irina Alekseevna

    2016-01-01

    Local heating plants are the main pollution source of rural areas. Currently, there are few studies on the composition of local heating plants emissions. The article deals with the research results of air pollution level with solid airborne particles in the vicinity of local gas-fired heating plants of some districts of Tomsk region. The snow sampling was conducted for the purpose of solid airborne particles extraction from snow cover. The content of 28 chemical elements (heavy metals, rare e...

  19. A non-linear, finite element, heat conduction code to calculate temperatures in solids of arbitrary geometry

    International Nuclear Information System (INIS)

    Tayal, M.

    1987-01-01

    Structures often operate at elevated temperatures. Temperature calculations are needed so that the design can accommodate thermally induced stresses and material changes. A finite element computer called FEAT has been developed to calculate temperatures in solids of arbitrary shapes. FEAT solves the classical equation for steady state conduction of heat. The solution is obtained for two-dimensional (plane or axisymmetric) or for three-dimensional problems. Gap elements are use to simulate interfaces between neighbouring surfaces. The code can model: conduction; internal generation of heat; prescribed convection to a heat sink; prescribed temperatures at boundaries; prescribed heat fluxes on some surfaces; and temperature-dependence of material properties like thermal conductivity. The user has a option of specifying the detailed variation of thermal conductivity with temperature. For convenience to the nuclear fuel industry, the user can also opt for pre-coded values of thermal conductivity, which are obtained from the MATPRO data base (sponsored by the U.S. Nuclear Regulatory Commission). The finite element method makes FEAT versatile, and enables it to accurately accommodate complex geometries. The optional link to MATPRO makes it convenient for the nuclear fuel industry to use FEAT, without loss of generality. Special numerical techniques make the code inexpensive to run, for the type of material non-linearities often encounter in the analysis of nuclear fuel. The code, however, is general, and can be used for other components of the reactor, or even for non-nuclear systems. The predictions of FEAT have been compared against several analytical solutions. The agreement is usually better than 5%. Thermocouple measurements show that the FEAT predictions are consistent with measured changes in temperatures in simulated pressure tubes. FEAT was also found to predict well, the axial variations in temperatures in the end-pellets(UO 2 ) of two fuel elements irradiated

  20. Elemental analysis of bottom ash from municipal incinerator by neutron activation analysis

    International Nuclear Information System (INIS)

    Kim, S. H.; Jang, S. H.; Moon, J. H.; Jung, Y. S.; Kim, Y. J.

    2003-01-01

    Elemental analysis of bottom ash generated from municipal solid waste incinerator was performed by neutron activation analysis. For this study, ash samples monthly collected from incinerator in D city were sieved with 5 mm mesh size, dried, pulverized by agate mortar and finally re-sieved with 200μ mesh size. Prepared samples were irradiated by neutrons using NAA No.1 irradiation hole in Korea Atomic Energy Research Institute. Activated samples were measured by gamma-ray spectrometer according to the relevant nuclear properties of target nuclides and the concentration of 33 elements were determined from the collected ash samples. Quality control was conducted by comparative analysis with two NIST standard reference materials simultaneously. Mean values and standard deviations of hazardous elements such as As, Cr, Cu, Fe, Mn, Sb and Zn among the determined elements were 3.8±6.9mg/kg, 620±0.12 %, 4.76±0.37 %, 0.26±0.10 %, 115±29 mg/kg and 0.71±0.19 %, respectively

  1. Chemical analysis of solid residue from liquid and solid fuel combustion: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Trkmic, M. [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecturek Zagreb (Croatia); Curkovic, L. [University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb (Croatia); Asperger, D. [HEP-Proizvodnja, Thermal Power Plant Department, Zagreb (Croatia)

    2012-06-15

    This paper deals with the development and validation of methods for identifying the composition of solid residue after liquid and solid fuel combustion in thermal power plant furnaces. The methods were developed for energy dispersive X-ray fluorescence (EDXRF) spectrometer analysis. Due to the fuels used, the different composition and the location of creation of solid residue, it was necessary to develop two methods. The first method is used for identifying solid residue composition after fuel oil combustion (Method 1), while the second method is used for identifying solid residue composition after the combustion of solid fuels, i. e. coal (Method 2). Method calibration was performed on sets of 12 (Method 1) and 6 (Method 2) certified reference materials (CRM). CRMs and analysis test samples were prepared in pellet form using hydraulic press. For the purpose of method validation the linearity, accuracy, precision and specificity were determined, and the measurement uncertainty of methods for each analyte separately was assessed. The methods were applied in the analysis of real furnace residue samples. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles

    Science.gov (United States)

    Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.

    2007-12-01

    Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.

  3. Electromagnetic characteristics and static torque of a solid salient poles synchronous motor computed by 3D-finite element method magnetics

    International Nuclear Information System (INIS)

    Popnikolova Radevska, Mirka; Cundev, Milan; Petkovska, Lidija

    2002-01-01

    In these paper is presented a methodology for numerical determination and complex analysis of the electromagnetic characteristics of the Solid Salient Poles Synchronous Motor, with rated data: 2.5 kW, 240 V and 1500 r.p.m.. A mathematical model and original algorithm for the nonlinear and iterative calculations by using Finite Element Method in 3D domain will be given. The program package FEM-3D will be used to perform automatically mesh generation of the finite elements in the 3D domain, calculation of the magnetic field distribution, as well as electromagnetic characteristics and Static torque in SSPSM. (Author)

  4. Trace element analysis in soy sauce. 2

    International Nuclear Information System (INIS)

    Haruyama, Yoichi; Saito, Manabu; Tomita, Michio; Yoshida, Koji.

    1994-01-01

    Trace elements in four kinds of soybean and three kinds of salt have been measured by means of in-air PIXE. In soybeans, which were made in Japan, America, Canada and China, six kinds of trace elements were detected, such as Mn, Fe, Ni, Cu, Zn and Br. The concentration of these elements varied depending on the place they were made. American soybean showed characteristic feature compared with other soybeans. As to the bromine concentration, American soybean contains ten times as much as Japanese one. In salts Br and Sr were detected. (author)

  5. Elemental Analysis and Biological Activities of Chrysophyllum ...

    African Journals Online (AJOL)

    Sapotaceae) Leaves. ... The plant material could be used as a source of important elements required for the body. In suitable form, the plant could be used in the prevention and treatment of dental caries, oxidative damage, obesity and cancer.

  6. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    Science.gov (United States)

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  7. Instrumental trace element analysis of California market milk

    International Nuclear Information System (INIS)

    Ragaini, R.C.; Langhorst, A.L.; Ralston, H.R.; Heft, R.

    1975-01-01

    Trace element analysis for 15 elements (Zn, Na, Br, Rb, Sr, Mg, Al, Ca, Cl, I, K, Fe, Co, Se, Cs) was carried out on 32 samples of California market milk and 6 samples of Colorado milk in a pilot study of toxic and nutrient trace elements in the soil-forage-cow-milk food chain. The techniques of instrumental neutron activation analysis and x-ray fluorescence analysis are described. Sample collection, preparation, analysis, and data reduction procedures are discussed. The mean values and variations of trace element concentrations in milk are compared to data from other studies. (U.S.)

  8. Prompt gamma-ray spectroscopy and its use for the elemental chemical analysis

    International Nuclear Information System (INIS)

    Deconninck, G.; Demortier, G.; Bodart, F.

    The elemental chemical analysis by nuclear techniques has been widely developed since a quarter of century. In this review the analysis by irradiation of the the sample (solid or liquid) of a majority of chemical elements by means of the charged particles and the detection during this irradiation of the gamma photons characteristic of the element are considered. After a brief account of the physical phenomena peculiar to the prompt detection of photons in comparison with the activation methods where a delayed activity is measured, a brief description of the experimental equipment for this kind of analysis is given. A comprehensive critical survey of the recent applications to the analysis of metals, semiconductors and electric insulating substances is presented. The necessary informations for the choice of the nuclear reaction to use for a specific analysis are contained in a set of tables. (AF)

  9. Numerical Analysis of Solids at Failure

    Science.gov (United States)

    2011-08-20

    vector fields, leading to singular distributions of the fluid contents (fluid accumulation and drainage along the failure surface) while the fluid...and Environmental Engineering, University of Illinois at Urbana - Champaign, September 29 2008. Final Report, FA9550-08-1-0410 19 6. “Finite Elements

  10. Finite element analysis theory and application with ANSYS

    CERN Document Server

    Moaveni, Saeed

    2015-01-01

    For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...

  11. Trace elements in termites by PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T. E-mail: tsuyoshi@termite.kuwri.kyoto-u.ac.jp; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 {mu}g/g) than in a worker termite (10 000 {mu}g/g). A block of wood (Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 {mu}g/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 {mu}g/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  12. Elemental PIXE analysis of oolong tea

    International Nuclear Information System (INIS)

    Watanabe, M.; Ishii, K.; Matsuyama, S.

    2008-01-01

    The contamination of heavy metals in food becomes a serious problem. We analyzed oolong tea from different production areas by PIXE using very simple sample preparation and examined trace elements contained in these samples. From the results of this experiment, we could know oolong tea which analyzed in this experiment contains various minerals such as K, Ca, P, S, Cl, Fe, Mn, Cu and Cr but not toxic element of As which detection limit of PIXE was lower than the standard values given by the food hygiene law in Japan. (author)

  13. Trace element analysis in soy sauce

    International Nuclear Information System (INIS)

    Haruyama, Yoichi; Saito, Manabu; Tomiya, Michio

    1993-01-01

    Trace elements in soy sauce have been measured by means of in-air PIXE. Six kinds of trace elements were detected, such as Mn, Fe, Ni, Zn, Cu and Br. Concentrations of Mn, Fe, Zn and Br which were observed in all samples, have been determined. Each analyzed sample contained considerable amount of Br about 160 ppm. Comparison of Br content of the imported raw materials with those of the domestic ones suggested that the large amount of Br was the residual fumigation chemicals in the imported raw materials. (author)

  14. Thermodynamic analysis of light-actinide elements

    International Nuclear Information System (INIS)

    Brosh, Eli; Makov, Guy; Shneck, Roni Z.

    2005-01-01

    The thermophysical properties of the alpha phases of the light actinide elements Th, U, Np and Pu were analysed. For each of the analysed elements, the Gibbs free-energy was modelled by an explicit function of temperature T and pressure P over the whole relevant T-P range, in a manner compatible with the CALPHAD (Calculation of Alloy Phase Diagrams) method. Several adjustable model-parameters were fitted to available experimental results. The model is based on a new semi-empirical equation of state, which interpolates with Thomas-Fermi type models for the volume and with the Dulong-Petit value for the heat capacity, at extreme pressures

  15. Finite-element analysis of dynamic fracture

    Science.gov (United States)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  16. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering

    NARCIS (Netherlands)

    Meima, J.A.; Comans, R.N.J.

    1999-01-01

    For a proper assessment of the environmental impact of the utilisation and disposal of Municipal Solid Waste Incinerator (MSWI) bottom ash it is necessary to understand weathering processes and their effects on (trace) element leaching. The authors have investigated the processes that control the

  17. Elemental analysis of samples of rare earths

    International Nuclear Information System (INIS)

    Lopez M, J.; Ramirez T, J.J.; Sandoval J, R.A.; Aspiazu F, J.; Villasenor S, P.; Lugo L, M.F.

    2003-01-01

    Applying the PIXE technique (Particle Induced X-Ray Emission) it was analyzed the purity of the samples that will be used to measure the production section of X rays with Li and B beams. It is not necessary to determine the concentrations of the pollutant elements. (Author)

  18. Elemental analysis of atmospheric aerosols in Gaborone

    African Journals Online (AJOL)

    ELO

    amount more than 90% were copper, lead, nickel and gold. Key words: Atmospheric particles, elements, ... Selebi-Phikwe area, gold and nickel in Francis town and soda ash in Sowa. Gaborone is the capital of ... a stub three times a week with an exposure time of four hours. The exposed stubs were collected and kept ...

  19. Analysis on the Three Elements in Communication

    Institute of Scientific and Technical Information of China (English)

    李霞

    2014-01-01

    In public communication,people may have no troubles to epress themselves grammatically correctly,but sometimes the sentences just sound not pragmatically proper. Through analyzing and comprehending those Elements in English to avoid the misunderstanding and misusing in the communication is significant.

  20. Analysis on 9 Elements in English Pragmatics

    Institute of Scientific and Technical Information of China (English)

    李霞

    2014-01-01

    College Students may have no troubles to compose grammatically correct sentences to express themselves,but sometimes the sentences just seem not pragmatically proper.Through analyzing and comprehending the 9 Elements in English Pragmatics to avoid the misunderstanding and misusing in the communication is significant for English learners,special to one who intends to use English as a communicating medium.

  1. Analysis on the Three Elements in Communication

    Institute of Scientific and Technical Information of China (English)

    李霞

    2014-01-01

    In public communication,people may have no troubles to epress themselves grammatically correctly,but sometimes the sentences just sound not pragmatically proper.Through analyzing and comprehending those Elements in English to avoid the misunderstanding and misusing in the communication is significant.

  2. Study of bioavailability of Mn in soil manured with bio solids using neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Mateus, Natalina de Fatima; Madi Filho, Tufic

    2010-01-01

    Full text: This work evaluated, using neutron activation analysis (NAA), the behavior of Mn absorption by Eucalyptus manured with bio solids. Manganese is an important micro nutrient because it is an activator of enzymes, controller of oxy reduction reactions, essential to the photosynthesis and synthesis of chlorophyll and protein. Its lack causes a decrease in photosynthesis, which reduces growth and productivity. In alkaline soils there is manganese deficiency. The critical level of Mn is 675 μg:g -1 , above this value manganese is toxic to the plant, but the bio solids applied had a concentration of 300 μg:g -1 , below the critical level. 16 samples were analyzed, and various elements were detected. But the interest in this work was to evaluate the behavior of Mn with increasing the amount of bio solids used as manure. Three different concentrations of bio solids: 10 kg:ha -1 ; 20 kg:ha -1 and 40 kg:ha -1 were applied. Alkaline bio solids provides an increase of the soil pH, which cause the reduction of the manganese availability. The bio solid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown into sanitary lands. The level of pH above 5.5 causes the Mn reduction. The values obtained showed this reduction of Mn phytoavailability with the bio solids increase. (author)

  3. Study of bioavailability of Mn in soil manured with bio solids using neutron activation analysis (NAA)

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Natalina de Fatima [Secretaria da Educacao do Estado de Sao Paulo, SP (Brazil); Madi Filho, Tufic [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Full text: This work evaluated, using neutron activation analysis (NAA), the behavior of Mn absorption by Eucalyptus manured with bio solids. Manganese is an important micro nutrient because it is an activator of enzymes, controller of oxy reduction reactions, essential to the photosynthesis and synthesis of chlorophyll and protein. Its lack causes a decrease in photosynthesis, which reduces growth and productivity. In alkaline soils there is manganese deficiency. The critical level of Mn is 675 {mu}g:g{sup -1}, above this value manganese is toxic to the plant, but the bio solids applied had a concentration of 300 {mu}g:g{sup -1}, below the critical level. 16 samples were analyzed, and various elements were detected. But the interest in this work was to evaluate the behavior of Mn with increasing the amount of bio solids used as manure. Three different concentrations of bio solids: 10 kg:ha{sup -1}; 20 kg:ha{sup -1} and 40 kg:ha{sup -1} were applied. Alkaline bio solids provides an increase of the soil pH, which cause the reduction of the manganese availability. The bio solid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown into sanitary lands. The level of pH above 5.5 causes the Mn reduction. The values obtained showed this reduction of Mn phytoavailability with the bio solids increase. (author)

  4. Discrete element method (DEM) simulations of stratified sampling during solid dosage form manufacturing.

    Science.gov (United States)

    Hancock, Bruno C; Ketterhagen, William R

    2011-10-14

    Discrete element model (DEM) simulations of the discharge of powders from hoppers under gravity were analyzed to provide estimates of dosage form content uniformity during the manufacture of solid dosage forms (tablets and capsules). For a system that exhibits moderate segregation the effects of sample size, number, and location within the batch were determined. The various sampling approaches were compared to current best-practices for sampling described in the Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) guidelines. Sampling uniformly across the discharge process gave the most accurate results with respect to identifying segregation trends. Sigmoidal sampling (as recommended in the PQRI BUWG guidelines) tended to overestimate potential segregation issues, whereas truncated sampling (common in industrial practice) tended to underestimate them. The size of the sample had a major effect on the absolute potency RSD. The number of sampling locations (10 vs. 20) had very little effect on the trends in the data, and the number of samples analyzed at each location (1 vs. 3 vs. 7) had only a small effect for the sampling conditions examined. The results of this work provide greater understanding of the effect of different sampling approaches on the measured content uniformity of real dosage forms, and can help to guide the choice of appropriate sampling protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Development of LIBS for online analysis of solid nuclear materials

    International Nuclear Information System (INIS)

    Picard, Jessica

    2015-01-01

    With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials. LIBS based on laser-material interaction, it is relevant to seek a surrogate of material of interest from the viewpoint of the ablated mass. Thus, a complete study of laser ablation of several metals was enabled to build a predictive model of the ablation efficiency. Titanium and stainless steel were defined as surrogate materials of plutonium and uranium for laser ablation. Secondly, the VUV-LIBS setup analytical performances were optimized for several elements of interest in four metals. Then, two calibration methods are used to determine the analytical performances. The limits of quantification are of the order of a few hundreds of ppm for all studied matrices, which validates the objective of impurities quantitation in the 500-5000 ppm range. Uncertainty is lower than 3% in the best cases. Finally, the calibration transfer between the four matrices was studied. A normalization of the nickel net signal measured in three matrices was presented. (author) [fr

  6. Phosphogypsum analysis: total content and extractable element concentrations

    International Nuclear Information System (INIS)

    Gennari, Roseli F.; Medina, Nilberto H.; Garcia, Isabella; Silveira, Marcilei A.G.

    2011-01-01

    Phosphogypsum stand for the chemical origin gypsum generated in fertilizers production, in which phosphate rock is attacked by sulfuric acid resulting in phosphoric acid (H 3 PO 4 ) and phosphate fertilizers. Phosphogypsum is not a commercial product and it is stocked in large open areas or accumulated in lakes inducing to a major environmental problem due to the presence of toxic and radioactive elements. The increasing world agricultural demand is the real responsible for the severity of this environmental problem. Nevertheless, there are some possibilities for the application of this reject material, such as civil construction, waste water treatment, and in cultivated lands, etc. In the agriculture the phosphogypsum is commonly used as a nutrient source due to its large amounts of phosphorus, calcium and sulfur. However, there are still some environmental questions related to the use of this by-product since phosphogypsum is classified as TENORM (Technologically Enhanced Naturally Occurring Radioactive Material), which is a solid waste containing heavy metals and naturally occurring radioactive elements from the rock matrix. In this work, Plasma Mass Spectrometry (ICP-MS) was used to study phosphogypsum samples. Several acid solutions for samples digestion were evaluated in order to be feasible the chemical analysis. BCR sequential extractions were also performed. The results showed analyte concentrations are highly dependent on the acid solution used. The BCR guidelines could not be applied as used for soil, since the phosphogypsum solubility is different. So, it would be necessary to use different mass aliquots in the extractions, to be feasible an environmental evaluation. (author)

  7. Finite Element Analysis of Pipe T-Joint

    OpenAIRE

    P.M.Gedkar; Dr. D.V. Bhope

    2012-01-01

    This paper reports stress analysis of two pressurized cylindrical intersection using finite element method. The different combinations of dimensions of run pipe and the branch pipe are used to investigate thestresses in pipe at the intersection. In this study the stress analysis is accomplished by finite element package ANSYS.

  8. Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements

    Science.gov (United States)

    Song, Yeo-Ul; Youn, Sung-Kie; Park, K. C.

    2017-10-01

    A method for three-dimensional non-matching interface treatment with a virtual gap element is developed. When partitioned structures contain curved interfaces and have different brick meshes, the discretized models have gaps along the interfaces. As these gaps bring unexpected errors, special treatments are required to handle the gaps. In the present work, a virtual gap element is introduced to link the frame and surface domain nodes in the frame work of the mortar method. Since the surface of the hexahedron element is quadrilateral, the gap element is pyramidal. The pyramidal gap element consists of four domain nodes and one frame node. Zero-strain condition in the gap element is utilized for the interpolation of frame nodes in terms of the domain nodes. This approach is taken to satisfy the momentum and energy conservation. The present method is applicable not only to curved interfaces with gaps, but also to flat interfaces in three dimensions. Several numerical examples are given to describe the effectiveness and accuracy of the proposed method.

  9. Trace elements in aero transported solid particles in urban and rural atmosphere using PIXE

    International Nuclear Information System (INIS)

    Salazar Matarrita, A.

    1997-01-01

    For the present study, multi schedule collectors (type Streaker) were located, in four places selected by their relative location, to possible fountains of identifiable s particles. The cooperation among the Nuclear Laboratory PIXE of the State University of Florida, U.S.A. Permitted the irradiation of the collected samples, using the facilities of the Accelerator Van der Graaff of 4 MeV. The x-rays spectra emission,were valued in the Laboratory LAFNA and the Laboratory PIXE, using the Hex computational code. They were determined among 12 and 15 chemical elements to level of plans, quantity that depends on the place of recollection. The statistical analysis of the data recollected, was carried out applying a nalysis of factors . This statistical program of analysis, permits the regroup of the elements, depending on the systematic variation of the concentrations. A graphic analysis of distribution was carried out, besides, schedule of the hours of I continuous monitoring. This permits to observe its own singularities. Giving the opportunity to determine, possible fountains of origin of the collected particles. (author) [es

  10. Efficient formulation of the finite element method for heat conduction in solids

    International Nuclear Information System (INIS)

    Sandsmark, N.; Aamodt, B.; Medonos, S.

    1977-01-01

    The purpose of the paper is to describe efficient methods and computer programs for analysis of heat conduction problems related to design and control of components of nuclear power plants and similar structures where thermal problems are of interest. A short presentation of basic equations and the finite element formulation of three-dimensional stationary and transient heat conduction is given. The finite element types that are used are isoparametric hexahedrons with eight or twenty nodes. The use of consistent as well as diagonal capacity matrices is discussed. Reduction of the transient heat conduction problem may be accomplished by means of the 'master-slave' technique. Furthermore, the superelement technique is discussed for both stationary and transient heat conduction. For the solution of transient problems, the trapezoidal time integration scheme is used. The methods and principles outlined in the paper are materialized in a computer program, NV615, which is one of the application programs in the program system SESAM-69. A brief description is given of NV615. Furthermore, attention is given to combined heat conduction and subsequent thermal stress analysis. Data representing geometry, calculated temperature distribution etc. may be transferred automatically from the heat conduction program to stress analysis programs. As an example of practical application the temperature distribution versus time in a turbine wheel during start up is analysed. Thermal stresses are calculated at selected time instants

  11. VIRTUAL EXPERIMENTAL ANALYSIS ON CLEANING ELEMENT OF SUGARCANE HARVESTER

    Institute of Scientific and Technical Information of China (English)

    Ma Fanglan; Li Shangping; He Yulin; Meng Yanmei; Chen Weixu

    2005-01-01

    The laws of influence of different factors have been analyzed in order to enhance the working efficiency and fatigue life of the cleaning element in brush shape of the sugarcane harvester.Based on the principle of orthogonal experiment design, the virtual-orthogonal-experimental analysis for the cleaning element is carried out on the finite element analysis (FEA) software-ANSYS after analyzing the nonlinear structural behavior in the working procedure. The results are analyzed with the overall balancing method, and then the optimal combination is got, which is made up of different levels of different factors. Also the optimal combination of design parameters of the cleaning element received from the virtual experimental analysis is conducted an experiment to confirm that the virtual analysis model and results are right, and the effect of factors on the function of the cleaning element is obtained by more analysis and further optimizing.

  12. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  13. Finite element analysis of human joints

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.

  14. Finite element analysis of human joints

    International Nuclear Information System (INIS)

    Bossart, P.L.; Hollerbach, K.

    1996-09-01

    Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described

  15. Elemental analysis: Reduction to SI units; Rueckfuehrung in der Elementanalytik

    Energy Technology Data Exchange (ETDEWEB)

    Rienitz, O.; Jaehrling, R.; Schiel, D. [PTB-Arbeitsgruppe ' ' Anorganische Analytik' ' , Braunschweig (Germany); Matschat, R.; Kipphardt, H. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Gernand, W.; Oeter, D. [MercK KGaA (Germany)

    2005-12-15

    In a joint project, PTB, BAM and Merck KGaA worked on a metrological reduction system for all elements relevant to analysis. The BAM certified primary pure substances with a relative error of U{sub rel} {<=} 0.01% for the mass of the main element. This was achieved by measuring the mass components of all potential impurities, i.e. practically all elements of the periodic system except the main element. These pure substances are the national reference standards of elemental analysis. From them, PTB produces primary elementa solutions and transfer solutions which are passed on as reference standards. The industrial partner constructed the DKD calibration laboratory, which certifies commercial secondary calibration solutions on the basis of the reference standard solutions produced by PTB. With this final product, measurements in elemental analysis can be reduced to the SI units system as a routine procedure. (orig.)

  16. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    Science.gov (United States)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  17. Elemental hair analysis: A review of procedures and applications

    International Nuclear Information System (INIS)

    Pozebon, D.; Scheffler, G.L.; Dressler, V.L.

    2017-01-01

    Although exogenous contamination and unreliable reference values have limited the utility of scalp hair as a biomarker of chemical elements exposure, its use in toxicological, clinical, environmental and forensic investigations is growing and becoming more extensive. Therefore, hair elemental analysis is reviewed in the current manuscript which spans articles published in the last 10 years. It starts with a general discussion of history, morphology and possible techniques for elemental analysis, where inductively coupled plasma-mass spectrometry (ICP-MS) is clearly highlighted since this technique is leading quantitative ultra-trace elemental analysis. Emphasis over sampling, quality assurance, washing procedures and sample decomposition is given with detailed protocols compiled in tables as well as the utility of hair to identify human gender, age, diseases, healthy conditions, nutrition status and contamination sites. Isotope ratio information, chemical speciation analysis and analyte preconcentration are also considered for hair. Finally, the potential of laser ablation ICP-MS (LA-ICP-MS) to provide spatial resolution and time-track the monitoring of elements in hair strands instead of conventional bulk analysis is spotlighted as a real future trend in the field. - Highlights: • Elemental analysis of hair is critically reviewed, with focus on ICP-MS employment. • Standards protocols of hair washing and sample decomposition are compiled. • The usefulness of elemental and/or isotopic analysis of hair is demonstrated. • The potential of LA-ICP-MS for elemental time tracking in hair is highlighted.

  18. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    Science.gov (United States)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence

  19. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  20. Neutron-activation analysis of trace elements in thyroids

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Petri, H.; Kanash, N.V.; Malenchenko, A.F.

    1999-01-01

    Neutron activation analysis was used for routine measurement of trace elements in thyroids of inhabitants of Belarus as well as in thyroids of people operated for thyroid cancer. The method chosen allowed the analysis of 28 elements, among them essential and toxic ones, with a good accuracy. The results obtained showed significant differences in the elemental composition of thyroid from the different regions. The changes of elemental composition of thyroids of inhabitants of the Gomel region, where goiter is endemic, seem to be identical to those in the tumor tissue. (author)

  1. Representing the Past by Solid Modeling + Golden Ratio Analysis

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes the procedures of reconstructing ancient architecture using solid modeling with geometric analysis, especially the Golden Ratio analysis. In the past the recovery and reconstruction of ruins required bringing together fragments of evidence and vast amount of measurements from archaeological site. Although researchers and…

  2. An Integrated Approach to Thermal Analysis of Pharmaceutical Solids

    Science.gov (United States)

    Riley, Shelley R. Rabel

    2015-01-01

    A three-tiered experiment for undergraduate Instrumental Analysis students is presented in which students characterize the solid-state thermal behavior of an active pharmaceutical ingredient (acetaminophen) and excipient (a-lactose hydrate) using differential scanning calorimetry, thermogravimetric analysis, and thermal microscopy. Students are…

  3. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  4. On constitutive modelling in finite element analysis

    International Nuclear Information System (INIS)

    Bathe, K.J.; Snyder, M.D.; Cleary, M.P.

    1979-01-01

    This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)

  5. SEM and elemental analysis of composite resins

    International Nuclear Information System (INIS)

    Hosoda, H.; Yamada, T.; Inokoshi, S.

    1990-01-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use

  6. Trace element analysis in liquids by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Deconninck, G.

    Proton induced x-ray emission (PIXE) from liquid has been developed for quantitative and simultaneous analysis of trace elements. Liquid drops and trickles are bombarded at atmospheric pressure, x-rays are detected in a non dispersive Si(Li) solid state detector. Absolute determinations are made by comparison with standard solutions. Detection limits in a 5 minutes run are in the ppm range for a single drop (0.05 ml). The application of this technique to the determination of trace elements in biological liquids is investigated (Cr, Mn, Fe, Co, Ni, Cu, Zn, in plant extracts, haemocyanine, albumins...). (author)

  7. Application of neutron activation analysis to the monitoring of trace elements in Brazilian foodstuffs

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Maihara, V.A.; Munita, C.J.A.S.; Favaro, D.I.T.; Armelin, M.J.A.

    1994-01-01

    Due to lack of data on trace element levels in Brazilian foodstuffs, nuclear analytical techniques were used to determine about twenty elements in foods samples collected from local markets of the city of Sao Paulo. Drinking water was also analyzed. The methods employed were mainly instrumental and radiochemical neutron activation analysis. In the case of the analysis of toxic elements, such as mercury, selenium, arsenic and antimony, the purely instrumental approach failed in yielding results for very low concentrations of these elements. For INAA, samples and multielemental synthetic standards were irradiated in the IEA R1 research reactor for periods of time ranging from minutes to several hours, under thermal neutron fluxes from 10 11 to 10 13 n·cm -2 ·s -1 ; after suitable cooling times, γ-ray spectra were measured using a Ge(Li) or Ge solid state detector. The RNAA approach involved the distillation of mercury and selenium in HBr medium; selenium was then reduced to the metal form with sodium metabisulphide and mercury was precipitated as sulphide with thioacetamide. For water analysis, a preconcentration procedure based on retention of several elements in a Chelex-100 resin was employed. The elements retained were Hg, Cr, Zn, Fe, Co while Se was measured in the effluent after absorption on active charcoal. The levels of the trace inorganic elements determined in the Brazilian foodstuffs analyzed were always below the levels established by the existing regulations in our country. (author). 16 refs, 18 tabs

  8. Neutron activation analysis of trace elements in foodstuffs

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1976-05-01

    A neutron activation method for multielement determination in biological material was developed. The individual steps of the method include radiochemical processing as well as nondestructive techniques. In order to develop a high resolution gamma spectrometric method the indispensable assumptions were the application of Ge(Li)-semiconductor detectors, multi-channel pulse height analyzers and the use of electronic data evaluation with mini-computers for the automatic evaluation of complex gamma spectra. After radiochemical separation (RNAA) 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements can be determined in biological materials and by application of nondestructive, purely instrumental techniques (INAA) 25 elements. The time required for the analysis of 33 elements is 4 days. The neutron activation method is used routinely for the determination of trace elements in foodstuffs and in the field of nutrition research. (orig.) [de

  9. Alphavirus replicon approach to promoterless analysis of IRES elements.

    Science.gov (United States)

    Kamrud, K I; Custer, M; Dudek, J M; Owens, G; Alterson, K D; Lee, J S; Groebner, J L; Smith, J F

    2007-04-10

    Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.

  10. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    1980-01-01

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  11. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  12. PIXE methodology of rare earth element analysis and its applications

    International Nuclear Information System (INIS)

    Ma Xinpei

    1992-01-01

    The Proton Induced X-ray Emission (PIXE) methodology of rare earth element (REEs) analysis is discussed, including the significance of REE analysis, the principle of PIXE applied to REE, selection of characteristic X-ray for Lanthanide series elements, deconvolution of highly over lapped PIXE spectrum and minimum detection limit (MDL) of REEs. Some practical applications are presented. And the specialities of PIXE analysis to the high pure REE chemicals are discussed. (author)

  13. A computer program for structural analysis of fuel elements

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-01-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  14. 2. Methods of elemental analysis of materials

    International Nuclear Information System (INIS)

    Musilek, L.

    1992-01-01

    The principles of activation analysis are outlined including the preparation of samples and reference materials, the choice of suitable activation sources, interfering effects, detection of radiation emitted and analysis of mixtures of emitters, and the potential of activation analysis in various fields of science and technology. The principles of X-ray fluorescence analysis and the associated instrumentation are also dealt with, and examples of applications are given. Described are also the physical nature of the Moessbauer effect, Moessbauer sources and spectrometers, and the applicability of this effect in physical research and in the investigation of iron-containing materials. (Z.S.). 1 tab., 20 figs., 90 refs

  15. Multi-element analysis of small biological samples

    International Nuclear Information System (INIS)

    Rokita, E.; Cafmeyer, J.; Maenhaut, W.

    1983-01-01

    A method combining PIXE and INAA was developed to determine the elemental composition of small biological samples. The method needs virtually no sample preparation and less than 1 mg is sufficient for the analysis. The method was used for determining up to 18 elements in leaves taken from Cracow Herbaceous. The factors which influence the elemental composition of leaves and the possible use of leaves as an environmental pollution indicator are discussed

  16. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  17. X-ray fluorescent elemental analysis. Ch. 16

    International Nuclear Information System (INIS)

    Baryshev, V.; Kulipanov, G.; Skrinsky, A.

    1991-01-01

    X-ray fluorescence analysis (XFA) is used worldwide to define a quantitative content of the elements as well as to visualize the distribution of elements in different regions (element mapping). Utilization of synchrotron radiation (SR) to excite X-ray fluorescence enables the XFA method to be qualitatively improved. This chapter reviews the experimental work in especially the last decade (author). 71 refs.; 24 figs.; 3 tabs

  18. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, Eric M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed

  19. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    Science.gov (United States)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  20. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  1. Application of trace element analysis to determine trace element concentrations in the field of medicine

    International Nuclear Information System (INIS)

    Kasperek, K.; Feinendegen, L.E.

    1976-01-01

    Applied trace elements research in medicine requires a sensitive and efficient technique of trace elements analysis such as, e.g., neutron activation analysis. Essential trace elements act as stabilisators (iron in haem), structural elements (silicium in fibrous tissue), in hormones (iodine in thyroid hormone), in vitamins (cobalt in vitamin B 12), and in enzymes. Most of the essential trace elements act as coenzymes or in coenzymes or directly as metabolic catalysators. For example, selenium deficiency in PKU and maple syrup patients receiving dietary treatment can be detected by determining the selenium content of the serum, while low selenium values in the whole blood indicate liver cirrhosis. Acrodermatitis enteropathica can be diagnosed by determinig zinc in the serum, and pancreatic insufficiency by determining zinc in the pancreatic juice. Zinc also plays a part in disturbances of growth, in the healing of wounds, and in the insulin metabolism. Cobalt is important in some types of anaemia and in myocardiopathies. Trace elements are also necessary in the treatment of diseases, e.g. iron cobalt in some types of anaemia, and zinc in the delayed healing of wounds in the postoperative phase and in acrodermatitis enteropathica. Chromium is now being tested for the treatment of diabetes mellitus, and fluorides may be of interest in the treatment of osteoporosis. Finally, trace elements are important in the aetiology of acute poisoning, in nutrition, and in environmental protection. (orig./AK) [de

  2. Application of trace element analysis to determine trace element concentrations in the field of medicine. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasperek, K; Feinendegen, L E

    1976-01-01

    Applied trace elements research in medicine requires a sensitive and efficient technique of trace elements analysis, such as neutron activation analysis. Essential trace elements act as stabilizators (iron in haem), structural elements (silicon in fibrous tissue), in hormones (iodine in thyroid hormone), in vitamins (cobalt in vitamin B 12), and in enzymes. Most of the essential trace elements act as coenzymes or in coenzymes or directly as metabolic catalyzers. For example, selenium deficiency in PKU and maple syrup patients receiving dietary treatment can be detected by determining the selenium content of the serum, while low selenium values in the whole blood indicate liver cirrhosis. Acrodermatitis enteropathica can be diagnosed by determinig zinc in the serum, and pancreatic insufficiency by determining zinc in the pancreatic juice. Zinc also plays a part in disturbances of growth, in the healing of wounds, and in the insulin metabolism. Cobalt is important in some types of anaemia and in myocardiopathies. Trace elements are also necessary in the treatment of diseases, e.g. iron cobalt in some types of anaemia, and zinc in the delayed healing of wounds in the postoperative phase and in acrodermatitis enteropathica. Chromium is now being tested for the treatment of diabetes mellitus, and fluorides may be of interest in the treatment of osteoporosis. Finally, trace elements are important in the aetiology of acute poisoning, in nutrition, and in environmental protection.

  3. A suitable low-order, eight-node tetrahedral finite element for solids

    Energy Technology Data Exchange (ETDEWEB)

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.

  4. Finite element stress analysis of brick-mortar masonry under ...

    African Journals Online (AJOL)

    Stress analysis of a brick-mortar couplet as a substitute for brick wall structure has been performed by finite element method, and algorithm for determining the element stiffness matrix for a plane stress problem using the displacement approach was developed. The nodal displacements were derived for the stress in each ...

  5. Trace elements in Australian opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Fardy, J.J.

    1994-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 42 samples of black, grey and white opals taken from a number of recognised Australian field. The results were evaluated to determine if a relationship exited between trace element content and opal colour. (author) 12 refs.; 12 figs.; 3 tabs

  6. Probing Trace-elements in Bitumen by Neutron Activation Analysis

    NARCIS (Netherlands)

    Nahar, S.N.; Schmets, A.J.M.; Scarpas, Athanasios

    Trace elements and their concentrations play an important role in both chemical and physical properties of bitumen. Instrumental Neutron Activation Analysis (INAA) has been applied to determine the concentration of trace elements in bitumen. This method requires irradiation of the material with

  7. Imaging of elements in leaves of tobacco by solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Masson, Pierre, E-mail: masson@bordeaux.inra.fr

    2014-12-01

    Plants take up and store elements according to the environment in which they are growing. Because plants are at the base of the food chain, the determination of essential elements or toxic elements in plant materials is of importance. However, it is assumed that the element content determined on selected tissues may provide more specific information than that derived from the whole plant analysis. In this work, we assessed the feasibility of solid sampling–electrothermal vaporization–inductively coupled plasma-optical emission spectrometry analyses for quantitative imaging of Cd and Mg in plant leaves. Leaves of tobacco (Nicotiana tabacum) were selected to be used as samples. To produce a two dimensional image, sections cut from leaf samples were analyzed. Cellulose doped with multi-element solution standards was used as calibration samples. Two certified reference materials (NIST SRM 1547 Peach Leaves and NIST SRM 1573a Tomato leaves) were used to verify the accuracy of measurements with good agreement between the measured concentrations and the certified values. Quantitative imaging revealed the inhomogeneous distribution of the selected elements. Excess of Cd and Mg tended to be focused on peripheral regions and the tip of the leaf.

  8. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy.

    Science.gov (United States)

    Nannoni, Francesco; Santolini, Riccardo; Protano, Giuseppe

    2015-09-01

    This paper presents the results of a biomonitoring study to evaluate the environmental impact of airborne emissions from a municipal solid waste landfill in central Italy. Concentrations of 11 heavy elements, as well as photosynthetic efficiency and cell membrane integrity were measured in Evernia prunastri lichens transplanted for 4months in 17 monitoring sites around the waste landfill. Heavy element contents were also determined in surface soils. Analytical data indicated that emissions from the landfill affected Cd, Co, Cr, Cu, Ni, Pb, Sb and Zn concentrations in lichens transplanted within the landfill and along the fallout direction. In these sites moderate to severe accumulation of these heavy elements in lichens was coupled with an increase in cell membrane damage and decrease in photosynthetic efficiency. Nevertheless, results indicated that landfill emissions had no relevant impact on lichens, as heavy element accumulation and weak stress symptoms were detected only in lichen transplants from sites close to solid waste. The appropriate management of this landfill poses a low risk of environmental contamination by heavy elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Introduction to finite element analysis using MATLAB and Abaqus

    CERN Document Server

    Khennane, Amar

    2013-01-01

    There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA

  10. Shakedown analysis by finite element incremental procedures

    International Nuclear Information System (INIS)

    Borkowski, A.; Kleiber, M.

    1979-01-01

    It is a common occurence in many practical problems that external loads are variable and the exact time-dependent history of loading is unknown. Instead of it load is characterized by a given loading domain: a convex polyhedron in the n-dimensional space of load parameters. The problem is then to check whether a structure shakes down, i.e. responds elastically after a few elasto-plastic cycles, or not to a variable loading as defined above. Such check can be performed by an incremental procedure. One should reproduce incrementally a simple cyclic process which consists of proportional load paths that connect the origin of the load space with the corners of the loading domain. It was proved that if a structure shakes down to such loading history then it is able to adopt itself to an arbitrary load path contained in the loading domain. The main advantage of such approach is the possibility to use existing incremental finite-element computer codes. (orig.)

  11. Axisymmetric solid-of-revolution finite elements with rotational degrees of freedom

    CSIR Research Space (South Africa)

    Long, CS

    2009-01-01

    Full Text Available , based on a Hellinger–Reissner like formulation, possesses an additional assumed stress field. Furthermore, an element correction, often employed in membrane elements with drilling degrees of freedom to alleviate membrane-bending locking, is adapted...

  12. Optical strain measurements and its finite element analysis of cold ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Online video images of square grid were recorded during the deformation ... Finite element software ANSYS has been applied for the analysis of the upset forming process.

  13. Elemental analysis of combustion products by neutron activation

    International Nuclear Information System (INIS)

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification

  14. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    Nigerian Journal of Clinical Practice • Jan-Feb 2016 • Vol 19 • Issue 1. Abstract ... Key words: Amalgam, finite element method, glass ionomer cement, resin composite, thermal stress ... applications for force analysis and assessment of different.

  15. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  16. Comparative analysis of solid waste management in 20 cities

    NARCIS (Netherlands)

    Wilson, D.C.; Rodic-Wiersma, L.; Scheinberg, A.; Velis, C.A.; Alabaster, G.

    2012-01-01

    This paper uses the ‘lens’ of integrated and sustainable waste management (ISWM) to analyse the new data set compiled on 20 cities in six continents for the UN-Habitat flagship publication Solid Waste Management in the World’s Cities. The comparative analysis looks first at waste generation rates

  17. Solid-phase microextraction for the analysis of biological samples

    NARCIS (Netherlands)

    Theodoridis, G; Koster, EHM; de Jong, GJ

    2000-01-01

    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a

  18. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping site suitability analysis using geographic information system (GIS) and remote sensing for Bahir Dar Town, North Western Ethiopia. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  19. Experimental analysis of nonlinear problems in solid mechanics

    International Nuclear Information System (INIS)

    1982-01-01

    The booklet presents abstracts of papers from the Euromech Colloqium No. 152 held from Sept. 20th to 24th, 1982 in Wuppertal, Federal Republic of Germany. All the papers are dealing with Experimental Analysis of Nonlinear Problems in Solid Mechanics. (RW)

  20. Analysis and design of lumped element Marchand baluns

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2008-01-01

    In this paper a novel design procedure for lumped element Marchand baluns is proposed. An analysis is performed on the balun structure in order to determine the conditions for ideal balun performance in terms of the lumped element values. The analysis is verified by two broadband designs centered...... around 22.75 GHz and differing only in terms of their impedance transformation ratio. EM simulation results on our proposed lumped element Marchand balun structure predicts an insertion loss of 4 dB and return loss of 40 dB at the design frequency of 22.75 GHz. The amplitude and phase imbalance...

  1. Finite element analysis of tubular joints in offshore structures ...

    African Journals Online (AJOL)

    ... representing a 2-D model of the joint between the brace and the chord walls. This was subsequently followed but finite element analysis of six tubular joints. A global analysis was initially undertaken, then the submodel analysis carried in the areas of stress concentration. Journal of Civil Engineering, JKUAT (2001) Vol 6, ...

  2. A suitable low-order, eight-node tetrahedral finite element for solids

    International Nuclear Information System (INIS)

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties

  3. ANALYSIS OF DESIGN ELEMENTS IN SKI SUITS

    Directory of Open Access Journals (Sweden)

    Birsen Çileroğlu

    2014-06-01

    Full Text Available Popularity of Ski Sport in 19th century necessitated a new perspective on protective skiing clothing ag ainst the mountain climates and excessive cold. Winter clothing were the basis of ski attire during this period. By the beginning of 20th century lining cloth were used to minimize the wind effect. The difference between the men and women’s ski attire of the time consisted of a knee - length skirts worn over the golf trousers. Subsequent to the First World War, skiing suit models were influenced by the period uniforms and the producers reflected the fashion trends to the ski clothing. In conformance with th e prevailing trends, ski trousers were designed and produced for the women thus leading to reduction in gender differences. Increases in the ski tourism and holding of the first winter olympics in 1924 resulted in variations in ski attires, development of design characteristics, growth in user numbers, and enlargement of production capacities. Designers emphasized in their collections combined presence of elegance and practicality in the skiing attire. In 1930s, the ski suits influenced by pilots’ uniforms included characteristics permitting freedom of motion, and the design elements exhibited changes in terms of style, material and aerodynamics. In time, the ski attires showed varying design features distinguishing professionals from the amateurs. While protective functionality was primary consideration for the amateurs, for professionals the aerodynamic design was also a leading factor. Eventually, the increased differences in design characteristics were exhibited in ski suit collections, World reknown brands were formed, production and sales volumes showed significant rise. During 20th century the ski suits influenced by fashion trends to acquire unique styles reached a position of dominance to impact current fashion trends, and apart from sports attir es they became a style determinant in the clothing of cold climates. Ski suits

  4. Analysis of concrete beams using applied element method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.

  5. Dynamic relaxation method in analysis of reinforced concrete bent elements

    Directory of Open Access Journals (Sweden)

    Anna Szcześniak

    2015-12-01

    Full Text Available The paper presents a method for the analysis of nonlinear behaviour of reinforced concrete bent elements subjected to short-term static load. The considerations in the range of modelling of deformation processes of reinforced concrete element were carried out. The method of structure effort analysis was developed using the finite difference method. The Dynamic Relaxation Method, which — after introduction of critical damping — allows for description of the static behaviour of a structural element, was used to solve the system of nonlinear equilibrium equations. In order to increase the method effectiveness in the range of the post-critical analysis, the Arc Length Parameter on the equilibrium path was introduced into the computational procedure.[b]Keywords[/b]: reinforced concrete elements, physical nonlinearity, geometrical nonlinearity, dynamic relaxation method, arc-length method

  6. Analysis of trace elements in opal using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ruth, E-mail: ruth.hinrichs@ufrgs.br [Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Bertol, A.P.L. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física, UFRGS, Porto Alegre, RS (Brazil)

    2015-11-15

    Particle induced X-ray emission (PIXE) analysis is particularly important for the analysis of trace elements of precious samples, being one of the few methods to determine elements with ppm concentration that does not affect sample integrity. A PIXE methodology for trace element analysis in opal was developed. To avoid detector count saturation due to the high number of Si-Kα X-rays generated in the sample, several filters were employed to optimize the reduction of the Si-Kα signal, while maintaining acceptable intensities of the other relevant X-ray lines. Two proton beam energies were tested, to establish the signal to noise ratio in different X-ray energies. Spectra were fitted with the software GUPIX, using a matrix composition determined with electron beam excited energy dispersive X-ray spectrometry. Above the energy of the silicon X-ray, several trace elements were quantified.

  7. Using the ion microprobe mass analyser for trace element analysis

    International Nuclear Information System (INIS)

    Schilling, J.H.

    1978-01-01

    Most techniques for the analysis of trace elements are capable of determining the concentrations in a bulk sample or solution, but without reflecting their distribution. In a bulk analysis therefore elements which occur in high concentration in a few precipitates would still be considered trace elements even though their local concentration greatly exceed the normally accepted trace elements concentration limit. Anomalous distribution is also shown by an oxide layer, a few hundred Angstrom thick, on an aluminium sample. A low oxide concentration would be reported if it were included in the bulk analysis, which contradicts the high surface concentration. The importance of a knowledge of the trace element distribution is therefore demonstrated. Distributional trace element analysis can be carried out using the ion microprobe mass analyser (IMMA). Since the analytical technique used in this instrument, namely secondary ion mass spectrometry (SIMS), is not universally appreciated, the instrument and its features will be described briefly followed by a discussion of quantitative analysis and the related subjects of detection limit and sample consumption. Finally, a few examples of the use of the instrument are given

  8. Elements of stochastic calculus and analysis

    CERN Document Server

    Stroock, Daniel W

    2018-01-01

    This book gives a somewhat unconventional introduction to stochastic analysis. Although most of the material covered here has appeared in other places, this book attempts to explain the core ideas on which that material is based. As a consequence, the presentation is more an extended mathematical essay than a ``definition, lemma, theorem'' text. In addition, it includes several topics that are not usually treated elsewhere. For example, Wiener's theory of homogeneous chaos is discussed, Stratovich integration is given a novel development and applied to derive Wong and Zakai's approximation theorem, and examples are given of the application of Malliavin's calculus to partial differential equations. Each chapter concludes with several exercises, some of which are quite challenging. The book is intended for use by advanced graduate students and research mathematicians who may be familiar with many of the topics but want to broaden their understanding of them.

  9. SANTOS - a two-dimensional finite element program for the quasistatic, large deformation, inelastic response of solids

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.

    1997-07-01

    SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.

  10. Contact stress analysis of involute spur gear by Finite Element ...

    African Journals Online (AJOL)

    In this paper the contact stress in rolling-sliding contact of involute spur gear and the effect of coefficient of friction was analyzed. To achieve this, first, three dimensional involute spur gear pairs were developed in Solid works 2012 Premium and the 3D model was exported to ANSYS workbench 14.5. Next, the analysis was ...

  11. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    Science.gov (United States)

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High sensitivity analysis of atmospheric gas elements

    International Nuclear Information System (INIS)

    Miwa, Shiro; Nomachi, Ichiro; Kitajima, Hideo

    2006-01-01

    We have investigated the detection limit of H, C and O in Si, GaAs and InP using a Cameca IMS-4f instrument equipped with a modified vacuum system to improve the detection limit with a lower sputtering rate We found that the detection limits for H, O and C are improved by employing a primary ion bombardment before the analysis. Background levels of 1 x 10 17 atoms/cm 3 for H, of 3 x 10 16 atoms/cm 3 for C and of 2 x 10 16 atoms/cm 3 for O could be achieved in silicon with a sputtering rate of 2 nm/s after a primary ion bombardment for 160 h. We also found that the use of a 20 K He cryo-panel near the sample holder was effective for obtaining better detection limits in a shorter time, although the final detection limits using the panel are identical to those achieved without it

  13. High sensitivity analysis of atmospheric gas elements

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shiro [Materials Analysis Lab., Sony Corporation, 4-16-1 Okata, Atsugi 243-0021 (Japan)]. E-mail: Shiro.Miwa@jp.sony.com; Nomachi, Ichiro [Materials Analysis Lab., Sony Corporation, 4-16-1 Okata, Atsugi 243-0021 (Japan); Kitajima, Hideo [Nanotechnos Corp., 5-4-30 Nishihashimoto, Sagamihara 229-1131 (Japan)

    2006-07-30

    We have investigated the detection limit of H, C and O in Si, GaAs and InP using a Cameca IMS-4f instrument equipped with a modified vacuum system to improve the detection limit with a lower sputtering rate We found that the detection limits for H, O and C are improved by employing a primary ion bombardment before the analysis. Background levels of 1 x 10{sup 17} atoms/cm{sup 3} for H, of 3 x 10{sup 16} atoms/cm{sup 3} for C and of 2 x 10{sup 16} atoms/cm{sup 3} for O could be achieved in silicon with a sputtering rate of 2 nm/s after a primary ion bombardment for 160 h. We also found that the use of a 20 K He cryo-panel near the sample holder was effective for obtaining better detection limits in a shorter time, although the final detection limits using the panel are identical to those achieved without it.

  14. Thermomechanical analysis of nuclear fuel elements

    International Nuclear Information System (INIS)

    Hernandez L, H.

    1997-01-01

    This work presents development of a code to obtain the thermomechanical analysis of fuel rods in the fuel assemblies inserted in the core of BWR reactors. The code uses experimental correlations developed in several laboratories. The development of the code is divided in two parts: a) the thermal part and b) the mechanical part, extending both the fuel and the cladding materials. The thermal part consists of finding the radial distribution of temperatures in the pellet, from the fuel centerline up to the coolant, along the total active length, considering one and two phase flow in the coolant, as a result of the pressure drop in the system. The mechanical part analyzes the effects of temperature gradients, pressure and irradiation, to which the fuel rod is subjected. The strains produced by swelling, creep and thermal stress in the fuel material are analyzed. In the same way the strains in the cladding are analyzed, considering the effects produced by the pressure exerted on the cladding by pellet swelling, by the pressure caused by fission gas release toward the cavities, and by the strain produced on the cladding by the pressure changes of the system. (Author)

  15. Perspectives on clinical possibility: elements of analysis.

    Science.gov (United States)

    Chiffi, Daniele; Zanotti, Renzo

    2016-08-01

    Possibility is one of the most common modalities in reasoning and argumentation. Various kinds of modal concepts have been identified in philosophical and logical discussion of the metaphysics of modality. We focus here on the concept of clinical possibility. A critical analysis of what is intended as clinical possibility has not yet received sufficient examination, although the concept is extensively used in clinical reasoning. We present arguments to emphasize some desirable features associated with the concept of clinical possibility. We argue that almost all clinical possibilities are potentialities, that is, possibilities that may be actualized by effective, appropriate and feasible interventions. However, in some limited cases, even mere possibilities - which may or may not be actualized, since we do not have the required knowledge - may be involved in clinical reasoning, and we present some examples in this paper. We then introduce some basic views on the nature of possibility showing their validity and limitations when applied to the concept of clinical possibility. Lastly, we conjecture that clinical possibility is a normative modality that can be formalized in a multimodal system with epistemic and deontic logical operators. © 2015 John Wiley & Sons, Ltd.

  16. Investigation of trace elements in Elbe water by means of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Motamedi, K.

    1977-01-01

    Investigations of trace elements in Elbe water were carried out as a contribution to environmental research, hydrology, and geochemistry. The method applied - instrumental neutron activation analysis - is described, and problems connected with the course of analysis - sample taking, handling and preparation as well as optimization of in-pile irradiation and measurement by means of γ spectrometry - are discussed and presented one by one. The computer programme set up for automatic evaluation is described in more detail. This programme AKAN has a very general concept which makes it applicable for general use. The reliability of the evaluation procedure - monostandard method - and the reproducibility of the results are discussed. For the studies, samples were taken at different times, every time from 8 positions along a long section of the Elbe. The content of solids was analyzed; in a number of samples, this was done by separating suspended and dissolved materials. Up to 38 elements were analyzed, whose local and time-dependent concentration curves are given. The contents of some elements are compared with the few available data from literature. Correlation calculations indicate a similar behaviour of single element groups and yield information on the natural origin of the trace elements and on anthropogenic influence to be noticed in the trace element contents. (orig.) [de

  17. A GIS- Based suitability analysis for siting a solid waste in an urban area

    Directory of Open Access Journals (Sweden)

    M. Salemi

    2017-01-01

    Full Text Available An appropriate solid waste disposal has been a major problem in municipal environment. The use of landfills is the most economical and environmentally acceptable method for the disposal of solid waste all over the world. The analysis of spatial data and consideration of regulation and accepted criteria are part of the important elements in the site selection. The aim of this paper is to show how application of geographic information system could be used for siting solid waste disposal in Abadan city. In this paper, we consider types of soil suitable for solid waste disposals, land use/ land cover, transportation routes and proximity to surface water. Relative importance weight of each criteria in the geographic information system was determined and finally suitability map was prepared. Based on the final suitability map, appropriate solid waste landfill site was located in north east part of the study area. Select the best landfill site among the candidate ones, and   the output results can enable decision makers to make appropriate decisions to reduce the costs both in   economic and environmental criteria.

  18. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  19. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  20. Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit

    Science.gov (United States)

    Wu, Jufei; Wang, Qian; Han, Yunfei

    2017-12-01

    In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.

  1. Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis

    CERN Document Server

    Laursen, Tod A

    2003-01-01

    This book comprehensively treats the formulation and finite element approximation of contact and impact problems in nonlinear mechanics. Intended for students, researchers and practitioners interested in numerical solid and structural analysis, as well as for engineers and scientists dealing with technologies in which tribological response must be characterized, the book includes an introductory but detailed overview of nonlinear finite element formulations before dealing with contact and impact specifically. Topics encompassed include the continuum mechanics, mathematical structure, variational framework, and finite element implementations associated with contact/impact interaction. Additionally, important and currently emerging research topics in computational contact mechanics are introduced, encompassing such topics as tribological complexity, conservative treatment of inelastic impact interaction, and novel spatial discretization strategies.

  2. Thermal Analysis of Fission Moly Target Solid Waste Storage

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Park, Jonghark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    There are various ways to produce Mo-99. Among them, nuclear transmutation of uranium target became the major one owing to its superior specific activity. After the fission molybdenum (FM) target is irradiated, it is transported to treatment facility to extract wanted isotope. During the process, various forms of wastes are produced including filter cake and other solid wastes. The filter cake is mostly consisted of decaying uranium compounds. The solid wastes are then packaged and moved to storage facility which will stay there for considerable amount of time. Being the continuous source of heat, the solid wastes are required to be cooled for the certain amount of time before transported to the storage area. In this study, temperature evaluation of the storage facility is carried out with pre-cooling time sensitivity to check its thermal integrity. In this study, thermal analysis on the FM target solid waste storage is performed. Finite volume method is utilized to numerically discretize and solve the geometry of interest. Analysis shows that the developed method can simulate temperature behavior during storage process, but needs to be checked against other code to see calculation accuracy. Highest temperature distribution is observed when every hole is filled with waste containers. Sensitivity results on pre-cooling time shows that at least 13 months of cooling is necessary to keep the structure integrity.

  3. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  4. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  5. Elemental content of Vietnamese rice. Part 2. Multivariate data analysis.

    Science.gov (United States)

    Kokot, S; Phuong, T D

    1999-04-01

    Rice samples were obtained from the Red River region and some other parts of Vietnam as well as from Yanco, Australia. These samples were analysed for 14 elements (P, K, Mg, Ca, Mn, Zn, Fe, Cu, Al, Na, Ni, As, Mo and Cd) by ICP-AES, ICP-MS and FAAS as described in Part 1. This data matrix was then submitted to multivariate data analysis by principal component analysis to investigate the influences of environmental and crop cultivation variables on the elemental content of rice. Results revealed that geographical location, grain variety, seasons and soil conditions are the most likely significant factors causing changes in the elemental content between the rice samples. To assess rice quality according to its elemental content and physio-biological properties, a multicriteria decision making method (PROMETHEE) was applied. With the Vietnamese rice, the sticky rice appeared to contain somewhat higher levels of nutritionally significant elements such as P, K and Mg than the non-sticky rice. Also, rice samples grown during the wet season have better levels of nutritionally significant mineral elements than those of the dry season, but in general, the wet season seemed to provide better overall elemental and physio-biological rice quality.

  6. A finite-element for the analysis of shell intersections

    International Nuclear Information System (INIS)

    Koves, W.J.; Nair, S.

    1994-01-01

    The analysis of discontinuity stresses at shell intersections is a problem of great importance in several major industries. Some of the major areas of interest are pressure-containing equipment, such as reactors and piping, in the nuclear and fossil power industry; pressure vessels and heat exchangers in the petrochemical industry; bracing in offshore oil platforms; and aerospace structures. A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed that has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections. The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems

  7. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  8. Element analysis of Japanese traditional papers by PIXE method

    International Nuclear Information System (INIS)

    Suzuki, Tatsuya; Yasuda, Keisuke; Tani, Teruhiro

    2000-01-01

    The Japanese papers, 'washi', are made from the bast fibers of the plants. Since washi have the informations of the raw material plants, there is potentiality of the identification of the production place by the element analysis of the washi. Three kinds of washi made of kozo, which have different habitats, were prepared. The elements in their washi were measured by the PIXE. It was confirmed that the amount of elements included in the washi depend on the habitats of their raw material plants. (author)

  9. High accuracy 3D electromagnetic finite element analysis

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1997-01-01

    A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics

  10. Toxic trace elements in solid airborne particles and ecological risk assessment in the vicinity of local boiler house plants

    Science.gov (United States)

    Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.

    2017-11-01

    The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.

  11. Nonlinear nonstationary analysis with the finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.

    1981-01-01

    In this paper, after some introductory remarks on numerical methods for the integration of initial value problems, the applicability of the finite element method for transient diffusion analysis as well as dynamic and inelastic analysis is discussed, and some examples are presented. (RW) [de

  12. a finite element model for the analysis of bridge decks

    African Journals Online (AJOL)

    Dr Obe

    A FINITE ELEMENT MODEL FOR THE ANALYSIS OF BRIDGE DECKS. NIGERIAN JOURNAL OF TECHNOLOGY, VOL. 27 NO.1, MARCH 2008. 59. (a) Beam-plate system. (b) T-beam structural model. Fig. 1 Beam-plate structure idealisations. The matrix displacement method of analysis is used. The continuum structure is.

  13. PIXE analysis of trace elements in cetacean teeth

    International Nuclear Information System (INIS)

    Mitani, Yoko; Arai, Nobuaki; Sakamoto, Wataru; Yoshida, Koji

    1997-01-01

    PIXE was adopted for analysis of trace elements in teeth of two species of cetaceans, sperm whale (Physeter microcephalus) and pantropical spotted dolphin (Stenella attenuata). The analyses were performed along with the growth layer of the teeth, which is formed annually, suitable for age determination. Mn, Fe, Cu, Zu and Sr were detected in the teeth of sperm whale and pantropical spotted dolphin. Among these trace elements, gradual increase was observed for Zn/Ca ratio in the sperm whale's teeth. (author)

  14. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1995-01-01

    Neutron activation analysis was used to determine the concentration of trace elements in 50 samples of orange, yellow, honey, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were evaluated to determine the relationship between trace elements content and opal colour. (author). 10 refs., 10 figs., 3 tabs

  15. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  16. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone, E-mail: wspereira@inb.gov.br [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Protecao Radiologica. Grupo Multidisciplinar de Radioprotecao; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Radiobiologia e Radiometria Pedro Lopes dos Santos; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Coordenacao de Desenvolvimento de Processos; Dores, Luis Augusto de Carvalho Bresser [Unidade de Tratamento de Minerio (UTM/INB), Pocos de Caldas, MG (Brazil). Gerencia de Descomissionamento

    2011-07-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  17. Cluster analysis to evaluate stable chemical elements and physical-chemical parameters behavior on uranium mining waste

    International Nuclear Information System (INIS)

    Pereira, Wagner de Souza; Py Junior, Delcy de Azevedo; Goncalves, Simone; Kelecom, Alphonse; Morais, Gustavo Ferrari de; Campelo, Emanuele Lazzaretti Cordova; Dores, Luis Augusto de Carvalho Bresser

    2011-01-01

    The Ore Treating Unit (UTM, in portuguese) is a deactivated uranium mine. A cluster analysis was used to evaluate the behavior of stable chemical elements and physical-chemical parameters in their effluents. The utilization of the cluster analysis proved itself effective in the assessment, allowing the identification of groups of chemical elements, physical-chemical parameters and their joint analysis (elements and parameters). As a result we may assert, based on data analysis, that there is a strong link between calcium and magnesium and between aluminum and rare-earth oxides on UTM's effluents. Sulphate was also identified as strongly linked to total and dissolved solids, and those to electrical conductivity. There were other associations, but not so strongly linked. Further gathering, to seasonal evaluation, are required in order to confirm those analysis. Additional statistical analysis (factor analysis) must be used to try to identify the origin of the identified groups on this analysis. (author)

  18. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    Science.gov (United States)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  19. Integral finite element analysis of turntable bearing with flexible rings

    Science.gov (United States)

    Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng

    2018-03-01

    This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.

  20. A Fourth Order Formulation of DDM for Crack Analysis in Brittle Solids

    Directory of Open Access Journals (Sweden)

    Abolfazl Abdollahipour

    2017-01-01

    Full Text Available A fourth order formulation of the displacement discontinuity method (DDM is proposed for the crack analysis of brittle solids such as rocks, glasses, concretes and ceramics. A fourth order boundary collocation scheme is used for the discretization of each boundary element (the source element. In this approach, the source boundary element is divided into five sub-elements each recognized by a central node where the displacement discontinuity components are to be numerically evaluated. Three different formulating procedures are presented and their corresponding discretization schemes are discussed. A new discretization scheme is also proposed to use the fourth order formulation for the special crack tip elements which may be used to increase the accuracy of the stress and displacement fields near the crack ends. Therefore, these new crack tips discretizing schemes are also improved by using the proposed fourth order displacement discontinuity formulation and the corresponding shape functions for a bunch of five special crack tip elements. Some example problems in brittle fracture mechanics are solved for estimating the Mode I and Mode II stress intensity factors near the crack ends. These semi-analytical results are compared to those cited in the fracture mechanics literature whereby the high accuracy of the fourth order DDM formulation is demonstrated.

  1. A unified approach to model uptake kinetics of trace elements in complex aqueous – solid solution systems

    International Nuclear Information System (INIS)

    Thien, Bruno M.J.; Kulik, Dmitrii A.; Curti, Enzo

    2014-01-01

    Highlights: • There are several models able to describe trace element partitioning in growing minerals. • To describe complex systems, those models must be embedded in a geochemical code. • We merged two models into a unified one suitable for implementation in a geochemical code. • This unified model was tested against coprecipitation experimental data. • We explored how our model reacts to solution depletion effects. - Abstract: Thermodynamics alone is usually not sufficient to predict growth-rate dependencies of trace element partitioning into host mineral solid solutions. In this contribution, two uptake kinetic models were analyzed that are promising in terms of mechanistic understanding and potential for implementation in geochemical modelling codes. The growth Surface Entrapment Model (Watson, 2004) and the Surface Reaction Kinetic Model (DePaolo, 2011) were shown to be complementary, and under certain assumptions merged into a single analytical expression. This Unified Uptake Kinetics Model was implemented in GEMS3K and GEM-Selektor codes ( (http://gems.web.psi.ch)), a Gibbs energy minimization package for geochemical modelling. This implementation extends the applicability of the unified uptake kinetics model to accounting for non-trivial factors influencing the trace element partitioning into solid solutions, such as the changes in aqueous solution composition and speciation, or the depletion effects in closed geochemical systems

  2. Mineral elements in dental composites by atomic and nuclear analytical methods. II. Improved analysis by PIXE

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Ciortea, C.; Fluerasu, D.; Enescu, S.E.; Preoteasa, Elena

    2000-01-01

    In the corrosive environment of the mouth, a diversity of interactions take place at the solid-solid and solid-liquid interfaces of a tooth's filling. Moreover, the mineral elements of the restorative material may induce a complex response of the organism. The approach of these problems requires sensitive surface elemental analysis of the composite and of the dental enamel and dentine. Particle-induced X-ray emission (PIXE) is such a method and has been applied in investigations of hard dental tissues; however, it was not used so far in the study of dental composites. We continue our study by evaluating the potential of PIXE for analysis of these materials. Three types of composites with two color shades each have been studied. The measurements were performed with 3 MeV protons, using a hyperpure Ge detector in a spectroscopic chain connected to a computer. The spectra were processed with the dedicated program Leone. PIXE without additional Al absorbent foil allowed the detection of Z > 14 elements in composites. In two glass- and ceramics-based materials we found: Ca, Zr, Ba, Yb and traces of Sr and In in Tetric Ceram (Vivadent); and Ca, Zr, Ba, Hf, possibly Mn, and traces of Ni, Ho, Ti, Fe, Cr in Valux Plus (3M Dental), after elimination of the escape peaks. In quartz-based Evicrol (Spofa), Si, Ca, Ti, Fe and traces of K, Cr, Ni, Cu, Zn were seen. Materials with different color shades showed variations of Ti, Cr, Fe, Ni and Cu in Evicrol, as contrasted to Tetric Ceram and Valux Plus whose spectra were color-invariant. By its sensitivity and low background, PIXE enables the detection of many trace elements in dental composites; it could serve also in new materials' development and forensic expertise. (authors)

  3. Analysis of Solid Waste Management and Strategies for Bangkok Metropolitan

    Directory of Open Access Journals (Sweden)

    Palika Wannawilai

    2017-04-01

    Full Text Available This study aimed to examine and analyze strategic gaps and the environment of waste management of Bangkok Metropolitan Administration (BMA in order to suggest suitable waste management strategies for Bangkok Metropolitan. The study was conducted by interviewing BMA and districts’ administrators and officers, local leaders and people, and private sectors, conducting a focus group, as well as reviewing relevant documents. The data was analyzed by applying Gap analysis and SWOT analysis. The proposed five strategies are: 1 enhancement of efficiency in solid waste and hazardous waste management; 2 discipline, participation and responsibility of citizens and all sectors related to waste management; 3 appropriate and integrated waste management; 4 capacity building for BMA’s staff and improvement of solid waste management system; and 5 research and development of knowledge and technology in waste management. The study also suggested driving approaches for effective implementation of the strategies.

  4. Elemental Study in Soybean and Products by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Vorapot, Permnamtip; Arporn Busamongkol; Sirinart, Laoharojanaphand

    2009-07-01

    Full text: Elements were analyzed in soybean and products by Instrumental Neutron Activation Analysis (INAA), Pseudo-Cyclic Instrumental Neutron Activation Analysis (PCINAA) and Epithermal Instrumental Neutron Activation Analysis (EINAA). Elements detected in sample were include Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn. The result showed that the nutritional contents changed after food processing. From experiments (n = 2), it was found that after food processing, the concentration of Cl and Na in soy bean curd increased from 0.0045 and 0.0011% to found 0.91 and 0.39 %, respectively. Other elements did not differ from soybean. Limits of detection for Al, Br, Ca, Cl, Cu, Fe, I, K, Mg, Mn Na, Se and Zn were 0.05, 0.2, 50, 6, 10, 15, 0.05, 30, 40, 5, 5, 0.05 and 1 mg.kg - 1, respectively

  5. Probabilistic finite elements for transient analysis in nonlinear continua

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  6. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  7. Ring-element analysis of layered orthotropic bodies

    DEFF Research Database (Denmark)

    Jørgensen, O.

    1993-01-01

    For the analysis of arbitrarily laminated circular bodies, a displacement-based ring-element is presented. The analysis is performed in a cylindrical coordinate system. The method of analysis requires the boundary conditions as well as the external forces to be pi-periodic. The element formulation...... accounts for a desired degree of approximation of the displacement field in the direction of the circumference. This is done by a truncated Fourier expansion of the angular dependence of the displacements in terms of trigonometric functions. Thus the Fourier expansion coefficients are the unknowns...... to that of solutions obtained by traditional 3D elements. A scheme for analytical integration of the angular dependence of the stiffness matrix is given....

  8. Solid-phase reductive amination for glycomic analysis.

    Science.gov (United States)

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  9. An NPT Monte Carlo Molecular Simulation-Based Approach to Investigate Solid-Vapor Equilibrium: Application to Elemental Sulfur-H2S System

    KAUST Repository

    Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu; Sherik, Abdelmounam

    2013-01-01

    In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique

  10. Finite Element Analysis and Design of Experiments in Engineering Design

    OpenAIRE

    Eriksson, Martin

    1999-01-01

    Projects with the objective of introducing Finite Element Analysis (FEA) into the early phases of the design process have previously been carried out at the Department of Machine Design, see e.g. the Doctoral thesis by Burman [13]. These works clearly highlight the usefulness of introducing design analysis early in the design process. According to Bjärnemo and Burman [10] the most significant advantage of applying design analysis early in the design process was the shift from verification to ...

  11. Determination of mutually interfering elements in activation analysis

    International Nuclear Information System (INIS)

    Figueiredo, A.M.G.

    1979-01-01

    The determination of the elements present in the groups scandium-zinc, mercury-selenium and arsenic-antimony-bromine represents a classical problem in thermal neutron activation analysis because the gamma-ray peaks of the radioisotopes produced from these elements by activation appear very close in the spectrum. A study is made of the possibility of simultaneous instrumental determination of these elements by means of the spectrum stripping technique, using a 400-channel analyser coupled to a Nal(Tl) detector and a 4096-channel analyser coupled to a Ge(Li) detector. Artificial mixtures of the interfering elements in varying proportions are prepared, so as to reproduce possible real samples, where the elements may be present at several concentrations. Radiochemical separation techniques for the cited elements are studied with the use of tracers. For the separation of scadium and zinc, the technique of extraction chromatography is applied. The separation of mercury and selenium is accomplished by means of ion exchange. The technique of coprecipitation is used to separate bromine from arsenic and antimony followed by ion exchange to isolate these two elements from each other. The precision and the accuracy of the results are discussed. (Author) [pt

  12. Chemical analysis of useful trace elements in sea water

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Fujii, Ayako; Miyai, Yoshitaka; Sakane, Kohji; Ogata, Noboru.

    1983-01-01

    The methods for the analysis of useful trace elements in sea water which have been tried so far are reviewed, and these methods are described briefly from the standpoint of studying the collection of resources. Ag and Au can be determined by concentrating sea water by ion-exchange method, solvent extraction method and electrodeposition method, then the elements are measured quantitatively by activation analysis and atomic absorption spectrochemical analysis. Sr, B and Li, which exist in relatively high concentration in sea water, are determined easily by atomic absorption spectrochemical analysis and absorption spectrometry. U, Mo and V are measured suitably by concentrating the elements by coprecipitation or solvent extraction method, and measuring by fluorescence analysis and arsenazo-3 method for U and through graphite-atomic absorption analysis for Mo and V. It has been revealed that the concentration of Ag and Au in sea water is extremely low, accordingly the recovery study is not conducted recently. On the other hand, the adsorption method using hydrated titanium oxide and amidoxim adsorbents for U, Mo and V, the adsorption method using aluminum adsorbent for Li, and the adsorption method using magnesium oxide and zirconium hydroxide and the solvent extraction method for B are hopeful to recover these elements. (Yoshitake, I.)

  13. Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS

    Science.gov (United States)

    Jenner, Frances E.; Arevalo, Ricardo D., Jr.

    2016-01-01

    Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).

  14. Analysis of trace elements in human hair by PIXE

    International Nuclear Information System (INIS)

    Baptista, G.B.; Montenegro, E.C.; Paschoa, A.S.; Barros Leite, C.V. de.

    1980-10-01

    The PIXE method was applied to the analysis of trace elements in scalp hair using two methods for target preparation. In the first method eigth hair strands each with nearly cylindrical geommetry and approximately the same diameter were selected and placed on an aluminum frame. In the second method a given mass of hair was dissolved with nitric acid and a known amount of strontium was added to the solution and dripped on a membrane filter using a micropipet. The results for the concentrations of trace elements in hair obtained by the two methods are compared and several aspects of the analysis is discussed. (Author) [pt

  15. PIXE trace element analysis of a selection of wines

    International Nuclear Information System (INIS)

    Houdayer, A.; Hinrichsen, P.F.; Martin, J.P.; Belhadfa, A.

    1987-01-01

    The University of Montreal EN Tandem accelerator and a Si (Li) X-ray detector were used for a PIXE (Proton Induced X-ray emission) trace element analysis of a selection of wines. Quantitative measurements of the concentrations of the sixteen trace elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Cr, Mn, Fe, Co, Cu, Zn, and Br were made. To optimize the sensitivity, spectra were recorded at 1.0 MeV proton energy for elements with Z 19. The absolute concentrations of the trace elements were determined by doping the samples of wine with 1000 ppm of vanadium for the 1.0 MeV bombardments, and 1000 ppm of yttrium for the 3.0 MeV irradiations. The targets were prepared by depositing a few microliters of the wine onto a Nuclepore filter

  16. Finite element analysis of rotating beams physics based interpolation

    CERN Document Server

    Ganguli, Ranjan

    2017-01-01

    This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.

  17. A new instrumental method for the analysis of rare earth elements

    International Nuclear Information System (INIS)

    Santos, A.N. dos.

    1975-01-01

    A method for the simultaneous elemental analysis of the rare earths is proposed and empirically verified. It is based on the analysis of the escape peaks, generated by the characteristic X-rays of these elements in a xenon proportional counter. The peaks are well resolved and intense, in contrast to the photopeak which is lost in the background. The spectra are generated by a radioisotope such as Co 57 , and the equipment is simple, portable and low cost, although resolution challenges that of the best solid state detectors. Since X-rays are utilized, matrix, granulometric or mineralogical effects are minimal, and the method is rapid, sensitive, non-destructive and requires little or no sample preparation. The results are preliminary and an improvement in resolution of up to fourfold seems possible; precision is better than 0,1% in concentrated samples and sensitivity is about 20 μg

  18. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Bamford, S.A.; Osae, E.K.; Aboh, I.J.; Serfor-Armah, Y.; Nyarko, B.; Odamtten, G.T.

    1999-01-01

    Studies are being carried out to determine the potential and reliability in the use of local lichen species for biomonitoring air pollution in Ghana. The location of most of the gold mines in forest areas of the country presents the gold mining industry as a suitable setting for such investigations. The nuclear-related techniques being used in the multielement analysis of lichen samples and air filter samples are instrumental neutron activation analysis (Miniature Neutron Source Reactor) and energy dispersive x-ray fluorescence analysis (tube-excitation). Validation of the quantitative methods of the INAA through analysis of standard and certified reference materials of orchard leaves NBS SRM 1571 and BCR-CRM No. 279 gave very good results for most elements analyzed. Elemental analysis of identified lichen samples will be done beating in mind microclimatic factors, specie type and nature of soil. (author)

  19. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Bamford, S.A.; Osae, E.K.; Aboh, I. J.; Serfor-Armah, Y.; Nyarko, B.; Ofosu, F.; Odamtten, G.T.

    1999-04-01

    Studies are being carried out to determine the potential and reliability in the use of local lichen species for biomonitoring air pollution in Ghana. The location of most of the gold mines in forest areas of the country presents the gold mining industry as a suitable setting for such investigations. The nuclear-related techniques being used in the multielement analysis of lichen samples and air filter samples are instrumental neutron activation analysis (Miniature Neutron Source Reactor) and energy dispersive x-ray fluorescence analysis (tube-excitation). Validation of the quantitative methods of the INAA through analysis of standard certified reference materials of orchard leaves NBS SRM 1571 and BCR-CRM No. 279 gave very good results for most elements analyzed. Elemental analysis of identified lichen samples will be done bearing in mind microclimatic factors, specie type and nature of soil. (author)

  20. Elemental analysis of hair using PIXE-tomography and INAA

    International Nuclear Information System (INIS)

    Beasley, D.; Gomez-Morilla, I.; Spyrou, N.

    2008-01-01

    3D quantitative elemental maps of a section of a strand of hair were produced using a combination of PIXE-Tomography and simultaneous On/Off Axis STIM-Tomography at the University of Surrey Ion Beam Centre. The distributions of S, K, Cl, Ca, Fe and Zn were determined using the PIXE-T reconstruction package DISRA. The results were compared with conventional bulk PIXE analysis of tomographic data as determined using Dan32. The overall concentrations determined by PIXE were compared with elemental concentrations held in the University of Surrey Hair Database. All the entries currently in the database were produced using INAA. The merits and possible contributions of tomographic PIXE analysis to analysis of hair are discussed. The conclusions drawn from the PIXE-Tomography analysis can be used to argue for more stringent procedures for hair analysis at the University of Surrey. (author)

  1. Linear and nonlinear dynamic analysis by boundary element method. Ph.D. Thesis, 1986 Final Report

    Science.gov (United States)

    Ahmad, Shahid

    1991-01-01

    An advanced implementation of the direct boundary element method (BEM) applicable to free-vibration, periodic (steady-state) vibration and linear and nonlinear transient dynamic problems involving two and three-dimensional isotropic solids of arbitrary shape is presented. Interior, exterior, and half-space problems can all be solved by the present formulation. For the free-vibration analysis, a new real variable BEM formulation is presented which solves the free-vibration problem in the form of algebraic equations (formed from the static kernels) and needs only surface discretization. In the area of time-domain transient analysis, the BEM is well suited because it gives an implicit formulation. Although the integral formulations are elegant, because of the complexity of the formulation it has never been implemented in exact form. In the present work, linear and nonlinear time domain transient analysis for three-dimensional solids has been implemented in a general and complete manner. The formulation and implementation of the nonlinear, transient, dynamic analysis presented here is the first ever in the field of boundary element analysis. Almost all the existing formulation of BEM in dynamics use the constant variation of the variables in space and time which is very unrealistic for engineering problems and, in some cases, it leads to unacceptably inaccurate results. In the present work, linear and quadratic isoparametric boundary elements are used for discretization of geometry and functional variations in space. In addition, higher order variations in time are used. These methods of analysis are applicable to piecewise-homogeneous materials, such that not only problems of the layered media and the soil-structure interaction can be analyzed but also a large problem can be solved by the usual sub-structuring technique. The analyses have been incorporated in a versatile, general-purpose computer program. Some numerical problems are solved and, through comparisons

  2. Elemental analysis of cotton by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Emily R.; Almirall, Jose R.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the elemental characterization of unprocessed cotton. This research is important in forensic and fraud detection applications to establish an elemental fingerprint of U.S. cotton by region, which can be used to determine the source of the cotton. To the best of our knowledge, this is the first report of a LIBS method for the elemental analysis of cotton. The experimental setup consists of a Nd:YAG laser that operates at the fundamental wavelength as the LIBS excitation source and an echelle spectrometer equipped with an intensified CCD camera. The relative concentrations of elements Al, Ba, Ca, Cr, Cu, Fe, Mg, and Sr from both nutrients and environmental contributions were determined by LIBS. Principal component analysis was used to visualize the differences between cotton samples based on the elemental composition by region in the U.S. Linear discriminant analysis of the LIBS data resulted in the correct classification of >97% of the cotton samples by U.S. region and >81% correct classification by state of origin.

  3. Finite element analysis of FRP-strengthened RC beams

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2004-05-01

    Full Text Available This paper presents a non-linear finite element analysis of reinforced concrete beam strengthened with externally bonded FRP plates. The finite element modeling of FRP-strengthened beams is demonstrated. Concrete and reinforcing bars are modeled together as 8-node isoparametric 2D RC element. The FRP plate is modeled as 8-node isoparametric 2D elastic element. The glue is modeled as perfect compatibility by directly connecting the nodes of FRP with those of concrete since there is no failure at the glue layer. The key to the analysis is the correct material models of concrete, steel and FRP. Cracks and steel bars are modeled as smeared over the entire element. Stress-strain properties of cracked concrete consist of tensile stress model normal to crack, compressive stress model parallel to crack and shear stress model tangential to crack. Stressstrain property of reinforcement is assumed to be elastic-hardening to account for the bond between concrete and steel bars. FRP is modeled as elastic-brittle material. From the analysis, it is found that FEM can predict the load-displacement relation, ultimate load and failure mode of the beam correctly. It can also capture the cracking process for both shear-flexural peeling and end peeling modes similar to the experiment.

  4. Qualitative PIXE analysis of mineral elements in some phytopharmaceutic drugs

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Harangus, Livia; Gugiu, M; Iordan, Andreea; Ciortea, C.

    2002-01-01

    A large number of phytopharmaceutic drugs are being developed, due to positive effects in various diseases and to high tolerance by the organism. While their medicinally active compounds have been identified, little attention has been paid to their mineral micro- and trace elements. The mineral elements in the drug may have therapeutic or toxic effects which should be properly assessed. Nuclear and atomic methods allow sensitive multielement detection and we previously performed nuclear activation analysis of some Romanian drugs made by plants. Despite this method's high sensitivity, its use is limited by the availability of a nuclear reactor. Particle-induced X-ray emission (PIXE) provides an alternative, and here we examined its potential for the analysis of mineral elements in three commercial phytopharmaceutical preparations, namely, Liv52, Mentat, and Geriforte. The PIXE measurements were performed with 3 MeV protons at the 8.5 MV NIPNE-HH tandem accelerator, using a hyper pure Ge detector, normally oriented and connected to a multichannel analyzer and to a computer; the drug pills were fixed at 45 angle with respect to the beam. In all drugs PIXE detected mineral elements with Z > 16 down to trace levels. Major elements included K, Ca, Fe, Cu, and Zn, and minor/trace amounts of S, Cl, Ti, Cr, Mn, Ni, Ga, Br, Rb, Sr, Hg, and As/Pb were detected. Some differences were seen between the three drugs. Although at trace levels Ga, As, Hg and Pb are not toxic, one should consider that their accumulation might be harmful and caution seems recommendable on long-term cure. Most of the other elements are known to exert a positive biological role, and both in major and trace levels they may contribute to the therapeutic action. Thus PIXE analysis of mineral elements in phytopharmaceutic drugs, even qualitative, is useful for evaluating the benefits and risks in the therapy. (authors)

  5. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  6. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    1999-09-01

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  7. Unloaded polyether type polyurethane foams as solid extractants for trace elements

    International Nuclear Information System (INIS)

    Palagyi, S.; Braun, T.

    1992-01-01

    Polyether type polyurethane foams (PU) are regular stacks of solid quasi-spherical membranes produced by the reaction of polyisocyanates with polyols of polyether nature in the presence of a catalyst and a blowing agent. Contrary to conventional membrane separations, where a solid membrane is merely a differentially separating agent, or a transport medium, PU foams, apart from separation and preconcentration, also retain, i.e., sorb the species on, or in the membranes. Therefore, PU foam membranes can be considered to act as true sorbents. The membrane properties of PU foam sorbents offer unique advantages over conventional bulk type granular sorbents in rapid, versatile and effective separations and preconcentrations of different compounds from fluid samples. Unloaded PU foam sorbents have received considerable attention in the separation of different trace inorganic species. (author) 74 refs.; 1 fig.; 1 tab

  8. Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    Czech Academy of Sciences Publication Activity Database

    Ciricosta, O.; Vinko, S.M.; Barbrel, B.; Rackstraw, D.S.; Preston, T.R.; Burian, Tomáš; Chalupský, Jaromír; Cho, B.I.; Chung, H.-K.; Dakovski, G.L.; Engelhorn, K.; Hájková, Věra; Heimann, P.; Holmes, M.; Juha, Libor; Krzywinski, J.; Lee, R. W.; Toleikis, S.; Turner, J.J.; Zastrau, U.; Wark, J.

    2016-01-01

    Roč. 7, May (2016), 1-7, č. článku 11713. ISSN 2041-1723 R&D Projects: GA ČR GAP205/11/0571 Institutional support: RVO:68378271 Keywords : solid-density plasmas * X-ray * Linac Coherent Light Source * ionization potential depression (IPD) * equation of state (EOS) Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 12.124, year: 2016

  9. Neutron activation analysis for bulk and trace elements in urine

    International Nuclear Information System (INIS)

    Cornelis, R.; Speecke, A.; Hoste, J.

    1975-01-01

    Problems in sampling urine for trace element analysis by neutron activation are systematically examined. Collection, storage, sample preparation and contamination hazards during irradiation are studied in detail. Three different sizes of urine samples are prepared for analysis, depending on the concentration and nuclear properties of the elements, and suitable multielement doped urine standards are used. As, Br, Ca, Cl, Co, Cr, Cs, Cu, Hg, I, K, Mg, Mn, Na, Rb, Se and Zn are determined. The extreme care given to sample collection, use of ''ultra-clean'' vials, and work in a dust-free room allows consistent values to be obtained over long periods of time. A literature review of the amounts of forty elements present in urine per day is also given

  10. Adaptive finite-element ballooning analysis of bipolar ionized fields

    International Nuclear Information System (INIS)

    Al-Hamouz, Z.M.

    1995-01-01

    This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch's assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson's equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors' surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis

  11. Isotope ratio analysis by a combination of element analyzer and mass spectrometer

    International Nuclear Information System (INIS)

    Pichlmayer, F.

    1987-06-01

    The use of stable isotope ratios of carbon, nitrogen and sulfur as analytical tool in many fields of research is of growing interest. A method has therefore been developed, consisting in essential of coupling an Elemental Analyzer with an Isotope Mass Spectrometer, which enables the gas preparation of carbon dioxide, nitrogen and sulfur dioxide from any solid or liquid sample in a fast and easy way. Results of carbon isotope measurements in food analysis are presented, whereat it is possible to check origin and treatment of sugar, oils, fats, mineral waters, spirituous liquors etc. and to detect adulterations as well. Also applications in the field of environmental research are given. (Author)

  12. Solid breeder test blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: ying@fusion.ucla.edu; Abdou, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Calderoni, P. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Sharafat, S. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Youssef, M. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); An, Z. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Abou-Sena, A. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Kim, E. [University of California Los Angeles, Los Angeles, CA 90095-1597 (United States); Reyes, S. [LANL, Livermore, CA (United States); Willms, S. [LANL, Los Alamos, NM (United States); Kurtz, R. [PNNL, Richland, WA (United States)

    2006-02-15

    This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration of fusion break-in phenomena and configuration scoping. Specific emphasis is placed on first wall structural response, evaluation of neutronic parameters, assessment of thermomechanical behavior and characterization of tritium release. The tests will be conducted with three unit cell arrays/sub-modules. The development approach includes: (1) design the unit cell/sub-module for low temperature operations and (2) refer to a reactor blanket design and use engineering scaling to reproduce key parameters under ITER wall loading conditions, so that phenomena under investigation can be measured at a reactor-like level.

  13. Contribution to the analysis of light elements using x fluorescence excited by radio-elements

    International Nuclear Information System (INIS)

    Robert, A.

    1964-01-01

    In order to study the possibilities of using radioactive sources for the X-fluorescence analysis of light elements, the principle is given, after a brief description of X-fluorescence, of the excitation of this phenomenon by X, β and α emission from radio-elements. The operation and use of the proportional gas counter for X-ray detection is described. A device has been studied for analysing the elements of the 2. and 3. periods of the Mendeleev table. It makes it possible to excite the fluorescence with a radioactive source emitting X-rays or a particles; the X-ray fluorescence penetrates into a window-less proportional counter, this being made possible by the use of an auxiliary electric field in the neighbourhood of the sample. The gas detection pressure leading to the maximum detection yield is given. The spectra are given for the K α lines of 3. period elements excited by 55 Fe, 3 H/Zr and 210 Po sources; for the 2. period the K α spectra of carbon and of fluorine excited by the α particles of 210 Po. (author) [fr

  14. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    Science.gov (United States)

    Elliott, T. S.; Majdalani, J.

    2014-11-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.

  15. Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors

    International Nuclear Information System (INIS)

    Elliott, T S; Majdalani, J

    2014-01-01

    Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion

  16. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G.D.; Smallwood, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  17. Trace elements in coloured opals using neutron activation analysis

    International Nuclear Information System (INIS)

    McOrist, G.D.; Smallwood, A.

    1996-01-01

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs

  18. Trace elements in coloured opals using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    McOrist, G D; Smallwood, A [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    Neutron activation analysis (NAA) is a technique particularly suited to analysing opals since it is non-destructive and the silica matrix of opals is not prone to significant activation. It was used to determine the concentration of trace elements in 50 samples of orange, yellow, green, blue and pink opals as well as 18 samples of colourless opals taken from a number of recognised fields in Australia, Peru, Mexico and USA. The results were then evaluated to determine if a relationship existed between trace element content and opal colour. The mean concentration of most of the elements found in orange, yellow and colourless opals were similar with few exceptions. This indicated that, for these samples, colour is not related to the trace elements present. However, the trace element profile of the green, pink and blue opals was found to be significantly different with each colour having a much higher concentration of certain trace elements when compared with all other opals analysed. 7 refs.

  19. Nonlinear Finite Element Analysis of Pull-Out Test

    DEFF Research Database (Denmark)

    Saabye Ottesen, N

    1981-01-01

    A specific pull-out test used to determine in-situ concrete compressive strength is analyzed. This test consists of a steel disc that is extracted from the structure. The finite element analysis considers cracking as well as strain hardening and softening in the pre- and post-failure region...

  20. Trace element analysis of archaeological artefacts from Pella, Jordan

    International Nuclear Information System (INIS)

    Clayton, E.

    1985-01-01

    A brief history of the site at Pella, Jordan is presented, as a prelude to an analysis of the element composition of 82 pottery sherds. Statistical results from this data support the archaeological evidence for occupation during the Late Bronze and Early Iron Age

  1. Neutron activation analysis as an element of sculpture provenance establishing

    International Nuclear Information System (INIS)

    Panczyk, E.; Rowinska, L.; Walis, L.; Ligeza, M.; Nalepa, B.

    1998-01-01

    Investigation was carried out on the subject named ''Madonna Jackowa'' (XV cent.). The investigation object was to answer whether ''Madonna Jackowa'' was made of a native alabaster. Alabaster derived from five carious mines situated at the Cracow - Lvov line and ''Madonna Jackowa'' were analysed and the trace elements contents were compared. Instrumental neutron activation method was used for analysis of the trace. (author)

  2. Multivariate statistical analysis of major and trace element data for ...

    African Journals Online (AJOL)

    Multivariate statistical analysis of major and trace element data for niobium exploration in the peralkaline granites of the anorogenic ring-complex province of Nigeria. PO Ogunleye, EC Ike, I Garba. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 107-117. Full Text: EMAIL FULL TEXT EMAIL ...

  3. Microlocal methods in the analysis of the boundary element method

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    The application of the boundary element method in numerical analysis is based upon the use of boundary integral operators stemming from multiple layer potentials. The regularity properties of these operators are vital in the development of boundary integral equations and error estimates. We show...

  4. Three-dimensional wake field analysis by boundary element method

    International Nuclear Information System (INIS)

    Miyata, K.

    1987-01-01

    A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

  5. Analysis of Trace Elements in South African Clinkers using Latent ...

    African Journals Online (AJOL)

    The trace element content of clinkers (and possibly of cements) can be used to identify the manufacturing factory. The Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content of clinkers give detailed information for the determination of the origin of clinkers produced in different factories. However, for the analysis of such complex data there ...

  6. GRIZ: Visualization of finite element analysis results on unstructured grids

    International Nuclear Information System (INIS)

    Dovey, D.; Loomis, M.D.

    1994-01-01

    GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations

  7. Advanced chemical analysis service for elements, radionuclides and phases

    International Nuclear Information System (INIS)

    Sansoni, B.

    1986-01-01

    A review is given on the structure, organisation and performance of the chemical analysis service of the Central Department for Chemical Analysis at the Kernforschungsanlage Juelich GmbH. The research and development programs together with the infrastructure of the Centre afford to analyse almost all stable elements of the periodical table in almost any material. The corresponding chemical analysis service has been organized according to a new modular system of analytical steps. According to this, the most complicated and, therefore, most general case of an analytical scheme for element and radionuclide analysis in any type of material can be differentiated into about 14 different steps, the modules. They are more or less independent of the special problem. The laboratory is designed and organized according to these steps. (orig./PW) [de

  8. Method of removing arsenic and/or other amphoteric elements from sludge and solid waste materials

    NARCIS (Netherlands)

    Van Breemen, A.N.

    1990-01-01

    Abstract of WO 9006820 (A1) The noxious element arsenic may be removed with high efficiency from iron hydroxide sludge by first subjecting that sludge first to a thermal treatment in the presence of air or oxygen and of an alkaline reagent and next extracting the treated material with water. The

  9. Welding of sule elements for nuclear reactors with solid state YAG laser using instrumentated testing equipments

    International Nuclear Information System (INIS)

    Bourgault, F.; Lacoste, J.; Schley, R.; Kluzinski, C.; Piednoir, P.

    1985-09-01

    The instrumentation of the equipment for carrying out safety tests on fuel elements for nuclear reactors requires special thermocouples adapted to the prevailing agressive medium. The investigations described deal essentially with the operational and metallurgical weldability tests out on the safety test zircaloy piping in the pressurized water circuit (PHEBUS-programme) [fr

  10. Temporal variation of trace elements in waters polluted by municipal solid waste landfill leachate

    Czech Academy of Sciences Publication Activity Database

    Ettler, V.; Mihaljevič, M.; Matura, M.; Skalková, M.; Šebek, O.; Bezdička, Petr

    2008-01-01

    Roč. 80, č. 3 (2008), s. 274-279 ISSN 0007-4861 R&D Projects: GA AV ČR KJB3111402 Institutional research plan: CEZ:AV0Z40320502 Keywords : trace elements * landfill leachate * temporal variation Subject RIV: DD - Geochemistry Impact factor: 0.609, year: 2008

  11. Stress recovery techniques for natural element method in 2-D solid mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin Rae [Dept. of Naval Architecture and Ocean Engineering, Hongik University, Sejong (Korea, Republic of)

    2016-11-15

    This paper is concerned with the stress recovery for the natural element method in which the problem domain is discretized with Delaunay triangles and the structural behavior is approximated with Laplace interpolation functions. Basically, the global and local patch recovery techniques based on the L2-projection method are adopted. For the local patch recovery, the local element patches are defined by the supports of each Laplace interpolation function. For the comparison purpose, the local stress recovery is also performed using Lagrange-type basis functions that are used for 3- and 6-node triangular elements. The stresses that are recovered by the present global and local recovery techniques are compared each other and compared with the available analytic solution, in terms of their spatial distributions and the convergence rates. As well, the dependence of the recovered stress field on the type of test basis functions that are used forbnov-Galerkin (BG) and Petrov-Galerkin (PG) natural element methods is also investigated.

  12. Colloid generation and solid-liquid distribution of transuranic elements in natural aquifier systems

    International Nuclear Information System (INIS)

    Rommel, H.; Kim, J.I.

    1986-01-01

    The sorption and desorption behaviour of transuranic elements in the presence of their pseudocolloids has been investigated in deep geological aquifer systems at Gorleben area. The generation of transuranic colloids and their influence on the determination of distribution coefficients in a laboratory experimental system are evaluated quantitatively. Discussion is made on the possible extrapolation of laboratory results to natural systems. (author)

  13. Colloid generation and solid-liquid distribution of transuranic elements in natural aquifer systems

    International Nuclear Information System (INIS)

    Kim, J.I.; Rommel, H.

    1986-01-01

    The sorption and desorption behaviour of transuranic elements in the presence of their pseudocolloids has been investigated in deep geological aquifer systems at Gorleben area. The generation of transuranic colloids and their influence on the determination of distribution coefficients in a laboratory experimental system are evaluated quantitatively. Discussion is made on the possible extrapolation of laboratory results to natural systems. (orig.)

  14. Self-Assessment of Finite Element Solutions Applied to Transient Phenomena in Solid Continuum Mechanics

    Czech Academy of Sciences Publication Activity Database

    Okrouhlík, Miloslav; Pták, Svatopluk; Valdek, U.

    2009-01-01

    Roč. 16, č. 2 (2009), s. 103-121 ISSN 1802-1484 R&D Projects: GA AV ČR 1ET400760509 Institutional research plan: CEZ:AV0Z20760514 Keywords : stress wave propagation * finite element method * validity of models Subject RIV: BI - Acoustics

  15. 8. International conference of solid compounds of transition elements. Extended abstracts

    International Nuclear Information System (INIS)

    Komarek, K.; Boller, H.; Neckel, A.

    1985-03-01

    32 oral contributions and 126 posters on transition elements compounds and alloys are presented by Extended Abstracts; 86 thereof are of INIS relevance. Topics treated are mainly phase diagrams, crystal structure, structural chemistry and physical properties, e.g. conductivity, magnetism and superconductivity. (G.Q.)

  16. Developments in Dynamic Analysis for quantitative PIXE true elemental imaging

    International Nuclear Information System (INIS)

    Ryan, C.G.

    2001-01-01

    Dynamic Analysis (DA) is a method for projecting quantitative major and trace element images from PIXE event data-streams (off-line or on-line) obtained using the Nuclear Microprobe. The method separates full elemental spectral signatures to produce images that strongly reject artifacts due to overlapping elements, detector effects (such as escape peaks and tailing) and background. The images are also quantitative, stored in ppm-charge units, enabling images to be directly interrogated for the concentrations of all elements in areas of the images. Recent advances in the method include the correction for changing X-ray yields due to varying sample compositions across the image area and the construction of statistical variance images. The resulting accuracy of major element concentrations extracted directly from these images is better than 3% relative as determined from comparisons with electron microprobe point analysis. These results are complemented by error estimates derived from the variance images together with detection limits. This paper provides an update of research on these issues, introduces new software designed to make DA more accessible, and illustrates the application of the method to selected geological problems.

  17. Biological reference materials and analysis of toxic elements

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R; Sukumar, A

    1988-12-01

    Biological monitoring of toxic metal pollution in the environment requires quality control analysis with use of standard reference materials. A variety of biological tissues are increasingly used for analysis of element bioaccumulation, but the available Certified Reference Materials (CRMs) are insufficient. An attempt is made to review the studies made using biological reference materials for animal and human tissues. The need to have inter-laboratory studies and CRM in the field of biological monitoring of toxic metals is also discussed.

  18. Piezoelectric Analysis of Saw Sensor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Vladimír KUTIŠ

    2013-06-01

    Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.

  19. Leachability of rare earth elements (REEs) from solid wastes generated during chemical processing of monazite

    International Nuclear Information System (INIS)

    Radhakrishnan, Sujata; Pillai, P.M.B.

    2001-01-01

    Studies have been carried out to assess the leachability of REEs from solid wastes generated in monazite processing. Leachability of REEs (La, Ce, Nd, Pr, Sm, Gd) and Y from PbS-Ba(Ra)SO 4 (Mixed cake) and Effluent Treatment Plant cake (calcium hydroxy apatite) has been studied using rain water as the leachant. Studies indicate that 23 -60 % of the REEs gets leached out from the mixed cake in the first 24 hours. From the ETP cake, the percentage of REEs leached out were negligible. The results provide inputs for hazards evaluation in accidental situations resulting in breach of integrity of the waste storages. (author)

  20. Analysis of Tire Tractive Performance on Deformable Terrain by Finite Element-Discrete Element Method

    Science.gov (United States)

    Nakashima, Hiroshi; Takatsu, Yuzuru

    The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.

  1. KEY ELEMENTS OF CHARACTERIZING SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE INSOLUBLES THROUGH SAMPLING AND ANALYSIS

    International Nuclear Information System (INIS)

    Reboul, S; Barbara Hamm, B

    2007-01-01

    Characterization of HLW is a prerequisite for effective planning of HLW disposition and site closure performance assessment activities. Adequate characterization typically requires application of a combination of data sources, including process knowledge, theoretical relationships, and real-waste analytical data. Consistently obtaining high quality real-waste analytical data is a challenge, particularly for HLW sludge insolubles, due to the inherent complexities associated with matrix heterogeneities, sampling access limitations, radiological constraints, analyte loss mechanisms, and analyte measurement interferences. Understanding how each of these complexities affects the analytical results is the first step to developing a sampling and analysis program that provides characterization data that are both meaningful and adequate. A summary of the key elements impacting SRS HLW sludge analytical data uncertainties is presented in this paper, along with guidelines for managing each of the impacts. The particular elements addressed include: (a) sample representativeness; (b) solid/liquid phase quantification effectiveness; (c) solids dissolution effectiveness; (d) analyte cross contamination, loss, and tracking; (e) dilution requirements; (f) interference removal; (g) analyte measurement technique; and (h) analytical detection limit constraints. A primary goal of understanding these elements is to provide a basis for quantifying total propagated data uncertainty

  2. Elemental characterization of Brazilian beans using neutron activation analysis

    International Nuclear Information System (INIS)

    Lilian Seiko Kato; Nadai Fernandes, E.A. De; Marcio Arruda Bacchi; Gabriel Adrian Sarries; Andres Enrique Lai Reyes

    2015-01-01

    Beans are important for many developing countries as a source of protein and mineral nutrients. Here, ten commercial types of Brazilian beans, from the species Phaseolus vulgaris (common beans) and Vigna unguiculata (cowpeas), were analyzed by neutron activation analysis for the determination of Br, Ca, Co, Cs, Fe, K, Mo, Na, Rb, Sc and Zn. There were statistical differences (p/0.05) amongst the commercial types, except for Br, Rb and Sc. In general, non-essential elements showed high variability, indicating that the origin of beans had a strong influence on the mass fraction of such elements. (author)

  3. Fast XRF analysis of mineral elements in dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E. A.; Constantinescu, B.; Preoteasa, E.

    2001-01-01

    Dental composites, made of particles of glass, ceramics or quartz embedded in an organic polymer matrix, extensively replaced silver amalgam in tooth fillings and enabled new applications for restorative dentistry. Long-term alteration of dental fillings together with market pressure motivates the development of composites at a high rate, largely by progress of materials forming their mineral phase. Therefore, dental composites constantly bring at the interface with enamel and dentine new elements foreign to the organism, whose biological action has not been studied. Atomic and nuclear methods for surface multielemental analysis have been used in dental research but not for composites. X-ray fluorescence (XRF) is suited for the fast microanalytical screening of the elements and of their changes at the biomaterial's surface. The potential of radioisotope-excited XRF for the analysis of dental composites has been examined. Flat disk-shaped samples of composites have been prepared and polymerized chemically or by irradiation with intense 420-500 nm light. The measurements were performed with a spectrometric chain containing a 30 mCi source of 241 Am, a Si(Li) detector, and a multichannel analyzer. The spectra were built up for 2000-6000 sec. The characteristic X lines were integrated and normalized to source lines. The following Z ≥ 20 elements were detected in the studied composites: Ba only in Charisma (Kulzer) and Pekafill (Bayer); Zr, Ba, Yb in Tetric Ceram, and Ca, Ba, Yb together with traces of possibly Ti and Fe in Ariston (both from Vivadent); Zr, Hf in Valux Plus (3M Dental); and Sr, Ba together with some trace element, seemingly Cu, in F2000 Compomer (3M Dental) and with other trace elements like Ca, Fe in Surefil (Dentsply). Among older materials, Concise (3M Dental) contained only light (Z 3 that releases F for protection of enamel and dentine. Yb, Zr, Ba, Hf improve the radiological opacity of the materials. Some elements may accompany others as

  4. Analytical and statistical analysis of elemental composition of lichens

    International Nuclear Information System (INIS)

    Calvelo, S.; Baccala, N.; Bubach, D.; Arribere, M.A.; Riberio Guevara, S.

    1997-01-01

    The elemental composition of lichens from remote southern South America regions has been studied with analytical and statistical techniques to determine if the values obtained reflect species, growth forms or habitat characteristics. The enrichment factors are calculated discriminated by species and collection site and compared with data available in the literature. The elemental concentrations are standardized and compared for different species. The information was statistically processed, a cluster analysis was performed using the three first principal axes of the PCA; the three groups formed are presented. Their relationship with the species, collection sites and the lichen growth forms are interpreted. (author)

  5. Finite elements for non-linear analysis of pipelines

    International Nuclear Information System (INIS)

    Benjamim, A.C.; Ebecken, N.F.F.

    1982-01-01

    The application of a three-dimensional lagrangian formulation for the great dislocations analysis and great rotation of pipelines systems is studied. This formulation is derived from the soil mechanics and take into account the shear stress effects. Two finite element models are implemented. The first, of right axis, uses as interpolation functions the conventional gantry functions, defined in relation to mobile coordinates. The second, of curve axis and variable cross sections, is obtained from the degeneration of the three-dimensional isoparametric element, and uses as interpolation functions third degree polynomials. (E.G.) [pt

  6. Trace element analysis in rheumatoid arthritis under chrysotherapy

    International Nuclear Information System (INIS)

    Lecomte, R.; Paradis, P.; Monaro, S.; Barrette, M.; Lamoureux, G.; Menard, H.A.

    1981-01-01

    Proton induced X-ray emission (PIXE) analysis is used to measure trace element concentrations in blood serum from patients with rheumatoid arthritis. Initially trace element contaminations in blood-collecting and storing devices are determined. Then mean values and nyctemeral cycles are measured both in normal subjects and patients with rheumatoid arthritis and other similar pathologies. Abnormal concentrations of Cu and Zn and anomalies in the nyctemeral cycle are found in the patients. In the second phase of the project, the special case of chrysotherapeutically treated (gold salt treatment) rheumatoid arthritis patients is studied for extended periods of time (up to 53 weeks). (orig.)

  7. Stress analysis of heated concrete using finite elements

    International Nuclear Information System (INIS)

    Majumdar, P.; Gupta, A.; Marchertas, A.

    1994-01-01

    Described is a finite element analysis of concrete, which is subjected to rapid heating. Using thermal mass transport calculation, the moisture content, temperature and pore pressure distribution over space and time is obtained first. From these effects, stress at various points of the concrete are computed using the finite element method. Contribution to the stress formulation comes from three components, namely the thermal expansion, pore pressure, and the shrinkage of concrete due to moisture loss (from dehydration). The material properties of concrete are assumed to be homogeneous, elastic, and cracking is not taken into consideration. (orig.)

  8. Fourier analysis of finite element preconditioned collocation schemes

    Science.gov (United States)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  9. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  10. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  11. Sodium lauryl sulfate - a biocide for controlling acidity development in bulk commercially formed solid elemental sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Hyne, J. B. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1996-04-01

    Acidification of bulk elemental sulfur caused by Thiobacillus species which consume elemental sulfur by converting it into oxidized sulfur forms, was studied. Contributory factors, such as length of time in transit or in storage, warm temperatures, the presence of air and moisture, particle size and form of sulfur, and the presence of sources of carbon, nitrogen and phosphorus nutrients, were reviewed. Laboratory experiments with adding sodium lauryl sulfate (SLS), a known biocide, to sulfur inoculated with Thiobacillus, proved to be an efficient method for controlling acidity development. At the concentration required for effectiveness SLS did not interfere with purity specifications, had negligible effect on moisture, and appeared to be compatible with current dust suppression application practices. 2 tabs., 3 figs.

  12. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha; Papadopoulos, Panayiotis; Taylor, Robert L.

    2012-01-01

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  13. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  14. Sample preparation procedure for PIXE elemental analysis on soft tissues

    International Nuclear Information System (INIS)

    Kubica, B.; Kwiatek, W.M.; Dutkiewicz, E.M.; Lekka, M.

    1997-01-01

    Trace element analysis is one of the most important field in analytical chemistry. There are several instrumental techniques which are applied for determinations of microscopic elemental content. The PIXE (Proton Induced X-ray Emission) technique is one of the nuclear techniques that is commonly applied for such purpose due to its multielemental analysis possibilities. The aim of this study was to establish the optimal conditions for target preparation procedure. In this paper two different approaches to the topic are presented and widely discussed. The first approach was the traditional pellet technique and the second one was mineralization procedure. For the analysis soft tissue such as liver was used. Some results are also presented on water samples. (author)

  15. OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING

    Directory of Open Access Journals (Sweden)

    Asterios KOSMARAS

    2017-05-01

    Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.

  16. Finite Element Residual Stress Analysis of Planetary Gear Tooth

    Directory of Open Access Journals (Sweden)

    Jungang Wang

    2013-01-01

    Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.

  17. Probabilistic finite elements for fracture and fatigue analysis

    Science.gov (United States)

    Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.

    1989-01-01

    The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.

  18. Trace elemental analysis of the aerosol particulates in northern Punjab

    International Nuclear Information System (INIS)

    Iqbal, M.Z.

    2002-01-01

    Trace elemental analysis of the aerosol particulates was studied in the atmosphere of Lahore, Faisalabad, Islamabad, Sheikhupura, Wah Cantt. And Khanispur. The amount of the aerosol particulates in the above mentioned areas was compared to the U.S. EPA maximum permissible limits. Scavenging mechanism of the aerosol particulates through precipitation was studied in the atmosphere of Lahore and Sheikhupura by using HPLC and ICP-AES techniques. The site distribution and morphological structure of the aerosol particulates was studied by using Scanning Electron Microscope model JSM-35CF. Trace elemental composition of the aerosol particulates in the atmosphere of the selected areas of Pakistan was carried out by using NAA. The elements thus studied were Ce, Yb, Se, Cr, Hf, Cs, Sc, Fe, Co, Eu, Sb, Mo, Ba, Zn, Hg, Br, Na, Gd, Sm, Nd and In while Pb and Cd were estimated by using ASS technique. (author)

  19. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation

    Science.gov (United States)

    Koschinsky, A.; Hein, J.R.

    2003-01-01

    Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and

  20. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  1. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    Science.gov (United States)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  2. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  3. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)

    1995-10-01

    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  4. Elemental misinterpretation in automated analysis of LIBS spectra.

    Science.gov (United States)

    Hübert, Waldemar; Ankerhold, Georg

    2011-07-01

    In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s(1)S-3p(1)P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.

  5. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  6. Nonlinear Finite Element Analysis of Reinforced Concrete Shells

    Directory of Open Access Journals (Sweden)

    Mustafa K. Ahmed

    2013-05-01

    Full Text Available This investigation is to develop a numerical model suitable for nonlinear analysis of reinforced concrete shells. A nine-node Lagrangian element Figure (1 with enhanced shear interpolation will be used in this study. Table (1 describes shape functions and their derivatives of this element.An assumed transverse shear strain is used in the formulation of this element to overcome shear locking. Degenerated quadratic thick plate elements employing a layered discrelization through the thickness will be adopted. Different numbers of layers for different thickness can be used per element. A number of layers between (6 and 10 have proved to be appropriate to represent the nonlinear material behavior in structures. In this research 8 layers will be adequate. Material nonlinearities due to cracking of concrete, plastic flow or crushing of concrete in compression and yield condition of reinforcing steel are considered. The maximum tensile strength is used as a criterion for crack initiation. Attention is given to the tension stiffening phenomenon and the degrading effect of cracking on the compressive and shear strength of concrete. Perfect bond between concrete and steel is assumed. Attention is given also to geometric nonlinearities. An example have been chosen in order to demonstrate the suitability of the models by comparing the predicted behaviour with the experimental results for shell exhibiting various modes of failure.

  7. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  8. An NPT Monte Carlo Molecular Simulation-Based Approach to Investigate Solid-Vapor Equilibrium: Application to Elemental Sulfur-H2S System

    KAUST Repository

    Kadoura, Ahmad Salim

    2013-06-01

    In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique for the gas phase and a continuum model for the solid phase. This method avoids the difficulty of having to deal with high rejection rates that are usually encountered when simulating using Gibbs ensemble. The application of this method is tested with a system made of pure hydrogen sulfide gas (H2S) and solid elemental sulfur. However, this technique may be used for other solid-vapor systems provided the fugacity of the solid phase is known (e.g., through experimental work). Given solid fugacity at the desired pressure and temperature, the mole fraction of the solid dissolved in gas that would be in chemical equilibrium with the solid phase might be obtained. In other words a set of MC molecular simulation experiments is conducted on a single box given the pressure and temperature and for different mole fractions of the solute. The fugacity of the gas mixture is determined using the Widom insertion method and is compared with that predetermined for the solid phase until one finds the mole fraction which achieves the required fugacity. In this work, several examples of MC have been conducted and compared with experimental data. The Lennard-Jones parameters related to the sulfur molecule model (ɛ, σ) have been optimized to achieve better match with the experimental work.

  9. Medical and health-related trace element analysis by TXRF

    International Nuclear Information System (INIS)

    Greaves, E.D.

    2000-01-01

    The advantages offered with TXRF analysis by direct irradiation with monochromatic X-rays of tissue homogenates and body fluids make the technique appropriate for a number of medical and health related applications. The ability to detect low levels of toxic heavy elements is being used as an aid in accidental poisoning diagnosis and treatment, in treatment-induced toxicity control and as an accessory in medical and health research. Thus lead-in-whole-blood analysis is used in confirmation of diagnosis of victims of poisoning, or monitoring the evolution and efficiency of the clinical treatment. Measurement and control of plasma platinum levels of cancer patients undergoing chemotherapy with Pt-containing drugs includes: establishment of the drug level-tumor remission response, measurement of Pt plasma level curves and establishment of optimum dosage to minimize the nephrotoxicity of platinum, and bioequivalence comparisons of different commercially available platinum containing anticancer drugs. Analysis as an aid in clinical research applications includes: trace element determination of amniotic fluid in fetus malformation studies; analysis of brain specimens and cerebrospinal fluid in diagnosis of central nervous system disorders; the influence of trace elements in cataract genesis and the influence of heavy elements in semen quality in human reproduction studies. Human body samples require the use of monochromatized beams of x-rays in order to derive the special advantage of its use: i) The reduction in the spectrum background allowing direct irradiation of organic matter specimens. Hence human tissue and body fluids are prepared by simple procedures involving dilution, homogenization and standard addition avoiding the need for specimen digestion. This results in faster, cheaper methods that decrease sample contamination problems. ii) The presence of a large Compton scattered signal in the spectrum and its use as an internal standard reference allows further

  10. PHARMACOPOEIA METHODS FOR ELEMENTAL ANALYSIS OF MEDICINES: A COMPARATIVE STUDY

    Directory of Open Access Journals (Sweden)

    Tetiana M. Derkach

    2018-01-01

    Full Text Available The article is devoted to the problem of quality assurance of medicinal products, namely the determination of elemental impurity concentration compared to permitted daily exposures for and the correct choice analytical methods that are adequate to the formulated tasks. The paper goal is to compare characteristics of four analytical methods recommended by the Pharmacopoeia of various countries to control the content of elemental impurities in medicines, including medicinal plant raw materials and herbal medicines. Both advantages and disadvantages were described for atomic absorption spectroscopy with various atomising techniques, as well as atomic emission spectroscopy and mass spectrometry with inductively coupled plasma. The choice of the most rational analysis method depends on a research task and is reasoned from the viewpoint of analytical objectives, possible complications, performance attributes, and economic considerations. The methods of ICP-MS and GFAAS were shown to provide the greatest potential for determining the low and ultra-low concentrations of chemical elements in medicinal plants and herbal medicinal products. The other two methods, FAAS and ICP-AES, are limited to the analysis of the main essential elements and the largest impurities. The ICP-MS is the most efficient method for determining ultra-low concentrations. However, the interference of mass peaks is typical for ICP-MS. It is formed not only by impurities but also by polyatomic ions with the participation of argon, as well as atoms of gases from the air (C, N and O or matrices (O, N, H, P, S and Cl. Therefore, a correct sample preparation, which guarantees minimisation of impurity contamination and loss of analytes becomes the most crucial stage of analytical applications of ICP-MS. The detections limits for some chemical elements, which content is regulated in modern Pharmacopoeia, were estimated for each method and analysis conditions of medicinal plant raw

  11. XRF analysis of portland cement for major and trace elements

    International Nuclear Information System (INIS)

    Abdunnabi, A. R.

    2012-12-01

    Libyan portland cement produced in several factories around the country, in Lip tis, Zoltan, Souq-Elkamis, Dernah and El-Fatach, were analyzed for quantitative major and trace elements and mineral content, which were compered with those imported from Spain, Romania, Cyprus, and Egypt. X-ray fluorescence spectro X lab 2000 spectrometer equipped with Rh-and X-ray tube was used for the analysis of various samples. The detector Si(Li) with a resolution of 148 eV at Mn K-a=5.9 keV facilitates the determination of a wide range of elements from sodium to uranium, with a detection limit at sub levels. Cement samples in the powder form were analyzed using the pellet-technique. The pellets were prepared by mixing 4g of the cement powder with 0.9 g of binder (HWC) and pressed at high pressure. A ful analysis including, background counting, matrix correction and all relevant corrections were achieved automatically by XLAB 2000 software package. For major and trace elements X RF results were higher for most of the elements than those analyzed with atomic absorption spectrometry. The mineral content showed that Libyan cement is comparable to the imported ones, also the Libyan cement meets the requirements of the international specifications of the portland cement. (Author)

  12. Electromagnetic analysis of control element drive mechanism for KSNP

    International Nuclear Information System (INIS)

    Kim, H. M.; Kim, I. G.; Kim, I. Y.

    2002-01-01

    The magnetic jack type Control Element Drive Mechanism (CEDM) for Korean Standard Nuclear Power Plant (KSNP) is an electromechanical device which provides controlled linear motion to the Control Element Assembly (CEA) through the Extension Shaft Assembly (ESA) in response to operational signals received from the Control Element Drive Mechanism Control System (CEDMCS). The CEDM is operated by applying localized magnetic flux fields to movable latch and lift magnets, which are in the coolant pressure boundary. The CEDM design had been developed through electromechanical testing of the system including the magnetic force lifting the ESA. But it will be inefficient if parametric studies should be performed to improve the CEDM by test due to the consumption of high cost and long duration. So it becomes necessary to develop a computational model to simulate the electromagnetic characteristics of the CEDM to improve the CEDM design efficiently. In this paper, the electromagnetic analysis using a 2D finite element model has been carried out to simulate magnetic force of the lift magnet of the CEDM, to provide effective evaluation between leakage flux and lift force and to compare with test results. Analysis results show the lift force satisfied the test results and design requirement and the lift force depend on the shape of the components, leakage flux and B-H curve

  13. Characteristic and analysis of structural elements of corporate social responsibility

    Directory of Open Access Journals (Sweden)

    J. S. Bilonog

    2015-04-01

    Full Text Available In this article attention is focused on social responsibility of business and on necessity to estimate its condition in Ukraine. Materials regarding elements and the principles of corporate social responsibility are structured. On this basis unification of quantitative elements of business social responsibility is offered according to which it is possible to carry out the analysis of the non­financial reporting. It is proposed to use not only quantitative techniques of data analysis but also refer to the qualitative ones. As a result of this, the analysis of social reports will be more productive and would minimize subjectivity of the researcher or representatives of the company which are responsible for presenting the information to the general public. The basic principles by which the companies can realize the strategy of corporate social responsibility are considered. Due to the empirical analysis of corporate reports expediency to use specified elements is proved. Reports of the companies in producing and non­productive sector are analyzed in more detail; features of displaying information on corporate social responsibility are defined. The attention to need of carrying out monitoring researches in the sphere of the corporate social reporting is updated.

  14. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan

    International Nuclear Information System (INIS)

    Al-Jundi, J.; Al-Tarazi, E.

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36 μSv a -1 in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91 μSv a -1 . The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70 μSv a -1 . Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn = 2.52 and Ba = 1.33; old landfill site: Cr = 1.88, Zn = 3.64, and Ba = 1.26; and recent landfill site: Cr = 1.57, Zn = 2.19, and Ba = 1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste

  15. High-performance quantum-dot solids via elemental sulfur synthesis

    KAUST Repository

    Yuan, Mingjian

    2014-03-21

    An elemental-sulfur-based synthesis is reported, which, combined with processing to improve the size dispersion and passivation, results in a low-cost high-quality platform for small-bandgap PbS-CQD-based devices. Size-selective precipitation and cadmium chloride passivation are used to improve the power conversion efficiency of 1 eV bandgap CQD photovoltaic devices dramatically, which leads to record power conversion efficiency for a 1 eV PbS CQD solar cell of 5.4%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  17. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  18. PIXE analysis of caries related trace elements in tooth enamel

    International Nuclear Information System (INIS)

    Annegarn, H.J.; Jodaikin, A.; Cleaton-Jones, P.E.; Sellschop, J.P.F.; Madiba, C.C.P.; Bibby, D.; University of the Witwatersrand, Johannesburg

    1981-01-01

    PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas suceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surface), with the aim of determining the possible roles of trace elements in the carious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and capability of localised surface analysis compared with the pooled samples require for neutron activation analysis, makes it a powerful and useful technique in dental analysis. (orig.)

  19. PIXE analysis of caries related trace elements in tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Annegarn, H J; Jodaikin, A; Cleaton-Jones, P E; Sellschop, J P.F.; Madiba, C C.P.; Bibby, D [University of the Witwatersrand, Johannesburg (South Africa). Nuclear Physics Research Unit; University of the Witwatersrand, Johannesburg (South Africa). Dental Research Unit)

    1981-03-01

    PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas suceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surface), with the aim of determining the possible roles of trace elements in the carious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and capability of localised surface analysis compared with the pooled samples require for neutron activation analysis, makes it a powerful and useful technique in dental analysis.

  20. Proposal for element size and time increment selection guideline by 3-D finite element method for elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2008-01-01

    This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)

  1. Accurate determination of light elements by charged particle activation analysis

    International Nuclear Information System (INIS)

    Shikano, K.; Shigematsu, T.

    1989-01-01

    To develop accurate determination of light elements by CPAA, accurate and practical standardization methods and uniform chemical etching are studied based on determination of carbon in gallium arsenide using the 12 C(d,n) 13 N reaction and the following results are obtained: (1)Average stopping power method with thick target yield is useful as an accurate and practical standardization method. (2)Front surface of sample has to be etched for accurate estimate of incident energy. (3)CPAA is utilized for calibration of light element analysis by physical method. (4)Calibration factor of carbon analysis in gallium arsenide using the IR method is determined to be (9.2±0.3) x 10 15 cm -1 . (author)

  2. Sensitivity analysis overlaps of friction elements in cartridge seals

    Directory of Open Access Journals (Sweden)

    Žmindák Milan

    2018-01-01

    Full Text Available Cartridge seals are self-contained units consisting of a shaft sleeve, seals, and gland plate. The applications of mechanical seals are numerous. The most common example of application is in bearing production for automobile industry. This paper deals with the sensitivity analysis of overlaps friction elements in cartridge seal and their influence on the friction torque sealing and compressive force. Furthermore, it describes materials for the manufacture of sealings, approaches usually used to solution of hyperelastic materials by FEM and short introduction into the topic wheel bearings. The practical part contains one of the approach for measurement friction torque, which results were used to specifying the methodology and precision of FEM calculation realized by software ANSYS WORKBENCH. This part also contains the sensitivity analysis of overlaps friction elements.

  3. Forensic Comparison of Soil Samples Using Nondestructive Elemental Analysis.

    Science.gov (United States)

    Uitdehaag, Stefan; Wiarda, Wim; Donders, Timme; Kuiper, Irene

    2017-07-01

    Soil can play an important role in forensic cases in linking suspects or objects to a crime scene by comparing samples from the crime scene with samples derived from items. This study uses an adapted ED-XRF analysis (sieving instead of grinding to prevent destruction of microfossils) to produce elemental composition data of 20 elements. Different data processing techniques and statistical distances were evaluated using data from 50 samples and the log-LR cost (C llr ). The best performing combination, Canberra distance, relative data, and square root values, is used to construct a discriminative model. Examples of the spatial resolution of the method in crime scenes are shown for three locations, and sampling strategy is discussed. Twelve test cases were analyzed, and results showed that the method is applicable. The study shows how the combination of an analysis technique, a database, and a discriminative model can be used to compare multiple soil samples quickly. © 2016 American Academy of Forensic Sciences.

  4. Improved PIXE analysis of micro- and trace elements in dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E. A.; Ciortea, C.; Fluerasu, D.; Enescu, S. E.; Preoteasa, E.

    2001-01-01

    Due to the interactions occurring at the solid-solid and solid-liquid interfaces of a tooth's filling, the mineral elements of the restorative composite may induce a complex response of the organism. To study such problems, sensitive surface trace element analysis is required. Particle-induced X-ray emission (PIXE) has a detection limit one order of magnitude lower than XRF and has been used for hard dental tissues, but not yet for dental composites. We evaluated the potential of PIXE in a study of ten types of composites used in restorative dentistry, some of them with two color shades each. The samples were prepared as described for XRF. The measurements were performed with 3 MeV protons from a van de Graaff tandem linear accelerator, using a hyper pure Ge detector and collecting the spectra for 1.5-4 hours. The spectra were processed with the program Leone. The proton route in the sample calculated with the Trim program (∼ 50-100 μm) exceeded the size of mineral particles (0.02-30 μm), thus granularity did not affect the analysis. The PIXE analysis detected Z ≥ 19 elements in all composites, and Z≥14 elements in only one low Z material. PIXE detected generally the same dominant elements, but many more trace elements than XRF. Thus both Charisma (Kulzer) and Pekafill (Bayer) contained Ba as the major element, but trace elements were Ni, Zn, In, in the first, and Fe, Cu, Zn, Sr, Ag in the second. In other glass- and ceramics-based materials we found: Ca, Zr, Ba, Yb and traces of Sr, In, and possibly Ti in Tetric Ceram and in Ariston (both from Vivadent); Ca, Zr, Ba, Hf, possibly Mn, and traces of Ni, Ho, Ti, Fe, Cr in Valux Plus (3M Dental); Sr, Ba (major), K, Fe, Mn (minor), and traces of Ni, Zn, In, in F2000 Compomer (3M Dental); Ba (major) and traces of Fe, Ni, Sr in Surefil (Dentsply). In quartz-based materials we detected: Si, Ca, Ti, Fe and traces of K, Cl, Cr, Ni, Cu, Zn in Evicrol (Spofa); low and trace levels of Ca, Ti, Cr, Mn, Fe, Cu in

  5. Twenty years of analysis of light elements at the LARN

    International Nuclear Information System (INIS)

    Demortier, G.

    1992-01-01

    We review the applications of ion beam analysis of light elements performed in the LARN during the last twenty years. The works mainly concern: helium bubbles in aluminum foils, Li in aluminum alloys, carbon in high purity MgO crystals and in olivines, nitrogen bubbles in glass and implanted nitrogen in iron and aluminum, oxygen in YBaCuO superconductors, fluorine in tooth enamel and implanted fluorine in metals. (orig.)

  6. Instrumental neutron activation analysis in environmental studies of trace elements

    International Nuclear Information System (INIS)

    Salmon, L.

    1975-06-01

    The application of a routine instrumental nuclear method is described in relation to environmental surveys and studies. A working rather than formal review is made of the techniques applied with particular reference to the data processing methods involved. The elements measured by instrumental activation analysis were: Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Cd, Co, Cr, Cs, Cu, Fe, Hg, I, In, La, Mn, Na, Ni, Pb, Rb, Sb, Sc, Se, Th, Ti, U, V, W, Zn. (author)

  7. Preparation of hair and nail samples for trace element analysis

    International Nuclear Information System (INIS)

    Scoble, H.A.; Litman, R.

    1978-01-01

    The method of washing of human hair and nail samples is examined by neutron activation and γ-ray analysis. The amounts of Na, K, Br, Au, Zn, and La that are removed by successive washings determine the optimum number of washing for removing these trace elements as surface contaminants. A total solution contact time with the nails is 5 minutes, and leaching effcts are observed after 6 washings

  8. Elemental analysis of sub-hourly ambient aerosol collections

    Energy Technology Data Exchange (ETDEWEB)

    Kidwell, C.B.; Ondov, J.M. [University of Maryland, College Park, MD (USA). Dept. of Chemical & Biochemistry

    2004-03-01

    Simultaneous multielement graphite furnace atomic absorption spectrometry was used to determine Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Se, and Zn in ambient air sampled at 170 L.min{sup -1} for 30 min and collected as a slurry after dynamic preconcentration. Analyses of slurries of NIST SRM 1648, Urban Particulate Matter, were typically within 10% of expected values for all elements except Al, Cr, and Fe, elements for which deviations were mostly due to difficulties in transferring large particles. This problem will be reduced for urban fine particulate matter samples (PM2.5). Trends in the concentrations of elemental source markers were readily correlated with wind direction and other meteorological factors to identify the influences of local industrial emissions, including motor vehicle traffic, coal- and oil-fired power plants, and municipal incinerators. Factor analysis was applied to the 88-sample data set to extract 7 factors: urban dust, meteorological factors, incinerators, coal- fired power plants, Tour Bus emission, unknown As source, and oil-fired power plants. Factor analysis was also applied to an 18-sample data set representing 2.5 h averages of the 30 min data to simulate the effect of longer sample collection times. Only 6 factors were extracted from this data set, which shows that increased temporal resolution enhances the power of factor analysis to resolve sources. These results indicate that a wealth of detailed information is revealed at this level of temporal resolution.

  9. Finite element analysis of the cyclic indentation of bilayer enamel

    International Nuclear Information System (INIS)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  10. Finite element analysis of the cyclic indentation of bilayer enamel

    Science.gov (United States)

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  11. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  12. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  13. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  14. Complex of the equipment for instrumental element analysis

    International Nuclear Information System (INIS)

    Borisov, G.I.; Komkov, M.M.; Kuz'michev, V.A.

    1986-01-01

    Complex of the equipment for instrumental element analysis at the IR-8 reactor is designed, fabricated and taken into operation. The complex is provided with a multichannel system of vacuum pneumatic transport with radiation positions in the reactor horizontal tangential channel for neutron-activation analysis by short-lived isotopes; specialized dry vertical channels in a beryllium reflector of the reactor and remote system of radioactive sample replacement for neutron-activation analysis by long-lived isotopes; a specialized horizontal tangential channel for neutron beam extraction by means of a beryllium converter and remote device for studied sample replacement under radiation and measurement of prompt γ-radiation for neutron-radiation analysis; a measuring center using minicomputers for experimental data accumulation and processing and analysis control

  15. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  16. A Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2014-01-01

    A capability to couple NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This paper summarizes the efforts in applying the installed coupling software to demonstrate/investigate fluid-structure interaction (FSI) between pressure wave and flexible inhibitor inside reusable solid rocket motor (RSRM). First a unified governing equation for both fluid and structure is presented, then an Eulerian-Lagrangian framework is described to satisfy the interfacial continuity requirements. The features of fluid solver, Loci/CHEM and structural solver, CoBi, are discussed before the coupling methodology of the solvers is described. The simulation uses production level CFD LES turbulence model with a grid resolution of 80 million cells. The flexible inhibitor is modeled with full 3D shell elements. Verifications against analytical solutions of structural model under steady uniform pressure condition and under dynamic condition of modal analysis show excellent agreements in terms of displacement distribution and eigen modal frequencies. The preliminary coupled result shows that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor.

  17. Macro elemental analysis of food samples by nuclear analytical technique

    Science.gov (United States)

    Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.

    2017-06-01

    Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.

  18. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  19. A Study on the Effect of Cohesive Laws on Finite Element Analysis of Crack Propagation Using Cohesive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyeongseok; Baek, Hyungchan; Kim, Hyungyu [Seoul Nat' l Univ. of Sci. and Tech., Seoul (Korea, Republic of)

    2014-04-15

    In this paper, the effect of cohesive laws on the finite element analysis of crack propagation using cohesive elements is investigated through three-point bending and double cantilever beam problems. The cohesive elements are implemented into ABAQUS/Standard user subroutines(UEL), and the shape of cohesive law is varied by changing parameters in polynomial functions of cohesive traction-separation relations. In particular, crack propagation behaviors are studied by comparing load-displacement curves of the analysis models which have different shapes of cohesive laws with the same values of fracture energy and cohesive strength. Furthermore, the influence of the element size on crack propagation is discussed in this study.

  20. characterization and composition analysis of municipal solid waste

    African Journals Online (AJOL)

    userpc

    ABSTRACT. Municipal Solid Waste (MSW) is produced through human activities and in the last two ... Solid waste samples were collected and analysed from the four major dumpsites in ..... Technology, Ueberlandstrasse 133,. Switzerland.

  1. Qualitative and quantitative analysis of plutonium in solid waste drums

    International Nuclear Information System (INIS)

    Anno, Jacques; Escarieux, Emile

    1977-01-01

    An assessment of the results given by a study carried out for the development of qualitative and quantitative analysis, by γ spectrometry, of plutonium in solid waste drums is presented. After having reminded the standards and their incidence on the quantities of plutonium to be measured (application at industrial Pu: 20% of Pu 240 ) the equipment used is described. Measurement station provided with a mechanical system consisting of: a rail and a pulley block to bring the drums; a pit and a hydraulic jack with a rotating platform. The detection instrumentation consisting of: a high volume coaxial Ge(Li) detector with a γ ray resolution of 2 keV; an associated electronic; a processing of data by a 'Plurimat 20' minicomputer. Principles of the identification and measurements are specified and supported by experimental results. They are the following: determination of the quality of Pu by measuring the ratio between the γ ray intensities of the 239 Pu 129 keV and of the 241 Pu 148 keV; measurement of the 239 Pu mass by estimating the γ ray counting rate of the 375 keV from the calibrating curves given by plutonium samples varying from 32 mg to 80 g; correction of the results versus the source position into the drum and versus the filling in plastic materials into this drum. The experimental results obtained over 40 solid waste drums are presented along with the error estimates [fr

  2. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  3. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  4. In-vivo elemental analysis at Birmingham 1968-1981

    International Nuclear Information System (INIS)

    Chettle, D.R.; Scott, M.C.

    1986-01-01

    Techniques have been developed to measure a number of elements in-vivo. Some have been measured by producing a radioactive isotope in the body by neutron bombardment and subsequently counting γ-rays given off during its decay. Measurements of calcium and sodium have been those most frequently used; copper, iron and phosphorus have also been measured in this way. Gamma-rays emitted 10 -18 s-10 -12 s following neutron capture have also been used for elemental analysis. This method, which involved detectors being in position by the subject during the neutron irradiation, has been widely applied to measurements of both nitrogen and cadmium. Preliminary studies of nuclear resonance scattering have suggested that this could be used for in-vivo elemental analysis, provided technical difficulties in source preparation could be overcome. Recently the use of X-ray fluorescence has been investigated for in-vivo analyses of lead in bone; the extension of this technique to measure mercury in the kidney is under consideration. (author)

  5. Optimization of deformation monitoring networks using finite element strain analysis

    Science.gov (United States)

    Alizadeh-Khameneh, M. Amin; Eshagh, Mehdi; Jensen, Anna B. O.

    2018-04-01

    An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.

  6. Principle of neutron activation analysis and its use for determination of trace elements in sediment

    International Nuclear Information System (INIS)

    Verma, Rakesh

    2012-01-01

    Neutron Activation analysis (NAA) is a multi element analysis technique, often non-destructive in nature where approximately 75 elements can be measured with the detection limits ranging from 10 -6 to 10 -12 g of element in a sample. Typical sample sizes range from 1 mg to 1 g, however in principle much larger samples can be activated and the size is only limited by the capacity of the neutron irradiation facility. In NAA, a sample (solid or liquid or gas) is exposed to neutrons and radiations emitted by the radioactive products, formed during the nuclear reaction, are measured using a suitable detector. The energy of the emitted radiation is a characteristic of a radioisotope whereas the intensity of the emitted radiation is proportional to the mass of the analyte. NAA can be carried out by measurement of (i) prompt gamma rays emitted by compound nucleus, called prompt gamma ray NAA (PGNAA) and (ii) β rays emitted from radioactive product or delayed gamma rays emitted subsequent to β decay, called conventional NAA or simply NAA. PGNAA is an online measurement method. PGNAA is complementary to conventional NAA in terms of analyzing low Z elements. Conventional NAA is an offline method and is easy to perform. Depending upon the nature of matrix and analyte to be determined, three approaches are possible in NAA namely, (i) instrumental neutron activation analysis (INAA), (ii) radiochemical neutron activation analysis (RNAA), and (iii) chemical neutron activation analysis (CNAA). Quantification is accomplished by any of the three standardisation methodologies namely (i) absolute method (ii) relative method and (iii) single comparator method. The relative method is most precise and simple to perform. Natural processes responsible for the formation of bottom sediments can be altered by anthropogenic activities. Bottom sediments are a sink as well as a source of contaminants in the aquatic environment. Analysis of-sediments provides environmentally significant

  7. Simultaneous speciation neutron activation analysis for trace elements

    International Nuclear Information System (INIS)

    Chatt, A.; Kiceniuk, J.W.; Menendez Sanchez, W.; Bottaro, C.

    2006-01-01

    Among the various forms of neutron activation technique being developed in our laboratory, much emphasis has been placed over the last ten years or so on the development of simultaneous speciation neutron activation analysis (SSNAA). This technique can now be used for the simultaneous determination of various species of a number of elements. Almost all speciation techniques consist of two steps. The first step involves the separation of species from the sample followed by the second step of element-specific detection. A number of characteristic features of NAA, which other techniques normally do not possess, can be advantageously exploited in SSNAA. For example, SSNAA can be used for: (i) multielement speciation with high specificity, (ii) speciation of chemically dissimilar elements such as Cd, Mn and Se, (iii) speciation of elements such as Cl, Br and I which are rather difficult to determine by most other techniques, etc. We have developed SSNAA methods for assaying various arsenic species, namely As(III), As(V), dimethyl arsonic acid (DMA), monomethylarsinic acid (MMA), arsenobetaine (AsB), organically bound arsenic (OBAs), and lipid-soluble arsenic (LSAs) in marine fish samples. We have extended these methods to include simultaneous determination of various species of As, Sb and Se in water. We have also developed SSNAA methods employing biochemical techniques for the simultaneous separation, preconcentration and characterization of metalloproteins and protein-bound trace element species of As, Br, Cd, Cu, Mn, Se, and Zn. We have developed methods for the simultaneous separation and characterization of organohalogen compounds in fish. An overview of the SSNAA methods being developed in our laboratory will be presented. (author)

  8. Structural optimisation of cage induction motors using finite element analysis

    Science.gov (United States)

    Palko, S.

    The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.

  9. Grouping and analysis of chair quality and their basic elements

    Directory of Open Access Journals (Sweden)

    Skakić Dušan

    2009-01-01

    Full Text Available Both the scientific experience and the engineering practice indicate that the decision making processes in the course of solving complex designing problems require an analysis of a great number of different construction variants. These types of decision-making processes are time consuming and do not always result in the selection of an optimal solution. That is why the methods of numerical optimization are applied in a wide range of technical sciences to assist in the selection of the best solution. The first step in solving the problem by using the Finite element method is to determine the type of chair earmarked for modeling, and to determine the dimensions of the chair elements.

  10. Elemental analysis of Kuwaiti petroleum and combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.S.; Cahill, T.A.; Gearhart, E.A.; Flocchini, R.G. (California Univ., Davis, CA (United States). Crocker Nuclear Lab.); Schweitzer, J.S.; Peterson, C.A. (Schlumberger-Doll Research Center, Ridgefield, CT (United States))

    1993-03-01

    Crude oil from eight Kuwaiti fields and aerosols generated by their combustion in the laboratory have been analyzed by composition and particulate size. Liquid petroleum and petroleum combustion products were subjected to elemental analysis by proton induced x-ray techniques and by x-ray fluorescence techniques. The mean sulfur content of the burning wells was weighted by their production rates to obtain the mean sulfur content of the burning oil, 2.66%. The liquid samples were also analyzed by neutron activation analyses. Results show that Kuwaiti oil and smoke aerosols from laboratory combustion generally contain very low amounts of chlorine, contrary to what is found in airborne samples above Kuwait. Trace element signatures were developed to aid in tracing smoke from the oil fires. (Author).

  11. Study on Tourist Carrying Capacity Based on Matter Element Analysis

    Institute of Scientific and Technical Information of China (English)

    LiuYunguo; FanTing; LiXin; ZhouMing; WangXianhai

    2005-01-01

    This paper proposes that it is necessary to implement the concept of tourist carrying capacity to facilitate the tourism planning, and presents a method to evaluate the carrying capacity. The method called matter element analysis can solve the uncertain and incompatible problem of the evaluated factors in assessing carrying capacity.The current state of a destination's carrying capacity can be determined by establishing the standard indexes and the matter element model. Through the evaluating of the travel industry zones of the Autonomous Prefecture of Western Hunan, the method is proved to be simple and feasible, and it is improved to be significant for the tourism planning and determination as well as the sustainable development of the regional tourism.

  12. Probabilistic finite elements for fatigue and fracture analysis

    Science.gov (United States)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  13. Nonlinear dynamic analysis using Petrov-Galerkin natural element method

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Cho, Jin Rae

    2004-01-01

    According to our previous study, it is confirmed that the Petrov-Galerkin Natural Element Method (PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin Natural Element Method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem

  14. Fingerprint elements scatter analysis on ancient chinese Ru porcelains samples

    International Nuclear Information System (INIS)

    Gao Zhengyao; Wang Jie; Chen Xiande

    1997-01-01

    Altogether 28 samples, mainly including glazes and bodies of ancient Chinese Ru porcelain, were analyzed by NAA technique and the contents of 36 elements were compared. The scatter analysis for nine fingerprint-elements indicates that almost all ancient Chinese Ru porcelain samples had nearly identical and long-term stable source of raw materials although they were fired in different kilns, at varying time and with distinct colors, and moreover, the source of raw materials for modern Ru porcelain seems to approach that for ancient one. The close provenance relation between ancient Jun porcelain and ancient Ru porcelain is also preliminarily verified. The glaze material of Jingdezhen white porcelain is totally different from all other samples. It shows that the former came from a separate source

  15. Multi-element analysis of crude-oil samples by 14.6 MeV neutron activation

    International Nuclear Information System (INIS)

    Cam, N.F.; Cigeroglu, F.; Erduran, M.N.

    1997-01-01

    The instrumental neutron activation technique, using the SAMEST T-400 neutron generator with 14.6 MeV neutrons produced from 3 H(d,n) 4 He reaction, is demonstrated for multi-element analysis of Saudi-Arabian crude-oil samples. The system parameters for the absolute method (e.g., the counting solid-angle, intrinsic efficiency of the γ-ray detector, effective neutron flux, activation cross sections, etc.)were determined and the results of elemental concentrations were presented with the corrections for all possible interferences having been carefully considered. (author)

  16. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis

    International Nuclear Information System (INIS)

    El-Sweify, F.H.; Metwally, E.; Abdel-Khalik, H.

    2007-01-01

    This paper comprises the application of instrumental neutron activation analysis (INAA) for multi-element determination in some edible pulse samples. These edible pulses are usually daily used in the Egyptian kitchen. These were: anise, cumin, coriander, caraway, black cumin, white kidney bean, lupine, lentil, chickpea, broad bean, peanut, almond, and fenugreek. The pulses have been analyzed as dehulled pulses, in the case of legume and oil pulses with simultaneous analysis of their respective skins. The determined elements were: Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Th and Zn. The element content in the dehulled pulses and their respective skins has been compared. Some elements were major or minor elements where others were trace elements. Standard reference materials were used to assure quality control, accuracy and precision of the technique. (author)

  17. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Vassilev, S.V.; Braekman-Danheux, C.; Laurent, P.; Thiemann, T.; Fontana, A. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Mineralogy and Crystallography

    1999-08-01

    An investigation of refuse-derived char (RDC) generated by thermolysis of municipal solid waste (MSW) was undertaken to elucidate the behaviour of some toxic and potentially toxic trace elements (Cr, Cu, Mn, Ni, Pb, Sb and Zn) plus Fe during combustion of RDC. About 87% of Sb, 66% of Pb, 60% of Cu and significant parts of Fe{gt}Zn{gt}Ni{gt}Mn{gt}Cr from the RDC are volatile at 1200{degree}C, and their behaviour in the temperature interval 500-1200{degree}C is characterized. The use of sorbents (zeolite, kaolinite, montmorillonite, coals enriched in kaolinite and calcite, and lime plus portlandite) for capture, solidification and inertization of the most volatile elements during combustion of RDC is also described. Perspective sorbents and inertants for a retention of the most volatile Pb, Sb and Cu in RDC ash are kaolinite and montmorillonite or coals enriched in these minerals. In addition, when there is an effective RDC washing (dechlorination and desulphurization), the use of sorbents for capture of some metals could be reduced or even avoided. Recommendations are given for RDC utilization and improvisation of the collection, separation procedures and removal efficiency of some heavy-metal, chloride and sulphate compounds from MSW and RDC prior to their use. The results show that a long-term strategy based on detailed understanding of the source, formation, behaviour and fate of the elements and their modes of occurrence in MSW, RDC and combustion waste residues is required in order to validate a perspective waste pyrolytic processes development. 55 refs., 3 figs., 6 tabs.

  18. Measurement of fertilizers induced radioactivity in tobacco plants and elemental analysis using ICAP–AES

    International Nuclear Information System (INIS)

    Chauhan, Pooja; Chauhan, R.P.

    2014-01-01

    It is widely accepted that tobacco smoke is the leading cause of lung cancer worldwide. The alpha radioactive content present in tobacco smoke and increasing number of lung cancer cases explain the importance of investigation. The use of different fertilizers may cause alteration in the metabolism of plants causing different response towards uptake of different element and radionuclides. In the present study, the estimation of alpha radioactivity induced by use of different fertilizers in tobacco leaves was made using solid state nuclear track detector (LR-115) to identify the relative presence of radionuclides in the plants. The radon exhalation rates from the tobacco plant were carried out to confirm the presence of radium or emission of radon from plant. The elemental analysis of tobacco plant by inductively coupled argon plasma atomic emission spectrometry provides a way to understand the difference occurred in metabolism caused by the use of fertilizers. The alpha track densities were found to vary with nature of fertilizers added to the soil and an increase was also observed with time. The radon mass exhalation rates in various tobacco plants were found to vary with type of fertilizers used. - Highlights: • The study is related to alpha radioactivity measurements in tobacco plants. • The radon mass exhalation rates in various tobacco plants were also measured. • Study is related to analysis of chemical elements in different fertilized tobacco samples

  19. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    Science.gov (United States)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor

  20. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  1. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  2. Montecarlo simulation for a new high resolution elemental analysis methodology

    International Nuclear Information System (INIS)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto

    1996-01-01

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2π solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  3. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    type of material, e.g. amorphous solids, liquids, solutions, gases, polymers and surfaces ( ... mechanical components of the beamline under exposure to synchrotron radiation would be ..... Under this model, the energy transfer from fluid to solid.

  4. Quantitative analysis of light elements in aerosol samples by PIGE

    International Nuclear Information System (INIS)

    Mateus, R.; Reis, M.A.; Jesus, A.P.; Ribeiro, J.P.

    2006-01-01

    Quantitative PIGE analysis of aerosol samples collected on nuclepore polycarbonate filters was performed by a method that avoids the use of comparative standards. Nuclear cross sections and calibration parameters established before in an extensive work on thick and intermediate samples were employed. For these samples, the excitation functions of nuclear reactions, induced by the incident protons on target's light elements, were used as input for a code that evaluates the gamma-ray yield integrating along the depth of the sample. In the present work we apply the same code to validate the use of an effective energy for thin sample analysis. Results pertaining to boron, fluorine and sodium concentrations are presented. In order to establish a correlation with sodium values, PIXE results related to chlorine are also presented, giving support to the reliability of this PIGE method for thin film analysis

  5. Storage and pre-neutron-activation-analysis treatment for trace-element analysis in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1985-01-01

    The problems regarding storage and pre-neutron-activation-analysis treatment for the elements aluminum, calcium, vanadium, selenium, copper, iodine, zinc, manganese, and magnesium in a urine matrix are reviewed. The type of collection and storage procedure and pre-neutron activation analysis treatment of urine depend on the specific trace element; that is, its inherent physical and chemical properties. Specifically polyethylene in teflon containers are the most suitable for general determinations. Whether any preservative is added would depend upon the stability of the trace element and its tendency for surface adsorption. Preferably, preservatives should contain no radioactivatable elements for maximum efficacy. Freeze drying or packing urine shipments under dry ice needs to be explored on an individual basis. Each pre- or post-neutron activation analysis treatment is specific and optimized for the trace element analyzed

  6. Strength Analysis on Ship Ladder Using Finite Element Method

    Science.gov (United States)

    Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.

    2018-01-01

    In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.

  7. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    International Nuclear Information System (INIS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-01-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress

  8. Distributed Finite Element Analysis Using a Transputer Network

    Science.gov (United States)

    Watson, James; Favenesi, James; Danial, Albert; Tombrello, Joseph; Yang, Dabby; Reynolds, Brian; Turrentine, Ronald; Shephard, Mark; Baehmann, Peggy

    1989-01-01

    The principal objective of this research effort was to demonstrate the extraordinarily cost effective acceleration of finite element structural analysis problems using a transputer-based parallel processing network. This objective was accomplished in the form of a commercially viable parallel processing workstation. The workstation is a desktop size, low-maintenance computing unit capable of supercomputer performance yet costs two orders of magnitude less. To achieve the principal research objective, a transputer based structural analysis workstation termed XPFEM was implemented with linear static structural analysis capabilities resembling commercially available NASTRAN. Finite element model files, generated using the on-line preprocessing module or external preprocessing packages, are downloaded to a network of 32 transputers for accelerated solution. The system currently executes at about one third Cray X-MP24 speed but additional acceleration appears likely. For the NASA selected demonstration problem of a Space Shuttle main engine turbine blade model with about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24 required 23.9 seconds to obtain a solution while the transputer network, operated from an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the $80,000 transputer network demonstrated a cost-performance ratio about 60 times better than the $15,000,000 Cray X-MP24 system.

  9. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  10. Head of detector for multi-element analysis

    International Nuclear Information System (INIS)

    Frynta, Z.

    1983-01-01

    The detector head mounted on the scintillation counter consists of a hollow hexagonal rotary support axially arranged with the photomultiplier of the scintillation counter. In the walls of the hexagonal rotary support there are openings in which are inserted absorption filters. The mounting of the absorption filters on the rotary support allows the analysis of a greater number of elements without the dismantling of the head and the replacement of filters. The suitable geometry of the head is retained so that it is possible to insert the head into the hollows similarly as the scintillation counter. (J.P.)

  11. Neutron activation analysis of trace elements in rain water

    International Nuclear Information System (INIS)

    Luten, J.B.

    1977-01-01

    In this thesis the principles and practical aspects of activation analysis which are of direct importance in the analysis of rain water, are presented together with recent literature data on other techniques. Problems due to the storage of rain water samples are discussed. A multi-element method for the determination of trace elements in rain water by instrumental neutron activation analysis is described. Gamma ray spectrometry using Ge(Li) detectors offers the possibility to determine Na, Al, Cl, V, Mn, Co, Cu, Br and I in rain water samples of 2.5 ml after a 4-min irradiation in a thermal neutron flux of 5 x 10 13 n cm -2 s -1 . In residues of rain water samples of 100 ml, irradiated during 2 days in a thermal neutron flux of >5 x 10 13 n cm -2 s -1 Cr, Fe, Co, Zn and Sb can be determined after a cooling period of approximately 21 days. The detection limits are lower than those reported in previous investigations except for Cu. The precision is about 10% or better, except for Co, Cu and I. A routine method for the determination of bromine and iodine in rain water by n.a.a. is presented. The elements are isolated by isotope exchange between the irradiated sample and a solution of Br 2 or I 2 in CCl 4 . The method is not sensitive to the chemical species in which the halogen is present. Irradiation of solutions of iodine compounds in a high thermal neutron flux gives rise to the formation of iodate. Results of a further investigation of this phenomenon are given, as well as the determination of iodate in rain water by n.a.a. Iodate is separated by anion exchange. The combination of n.a.a. and solvent extraction is used for the determination of five trace elements (V, Co, Cu, Zn and In) in 10-ml rain water samples. For V, Co and Cu this method is more sensitive and reproducible than instrumental n.a.a. The results of the analysis of eleven sequential 30-ml samples from the beginning of the shower are presented as an illustration of possible applications of the

  12. Applications of finite-element scaling analysis in primatology.

    Science.gov (United States)

    Richtsmeier, J T

    1989-01-01

    The study of biological shape in three dimensions using landmark data can now be accomplished using several alternative methods. This report focuses on the use of finite-element scaling analysis in primate craniofacial morphology. The method is particularly useful in its ability to localize the differences between forms, thereby indicating those loci that differ most between specimens. Several examples of this feature are provided from primatological research. Particulars of the methods are also discussed in an attempt to provide the reader with cautionary knowledge for prudent application of the method in future research.

  13. Finite element analysis of reticulated ceramics under compression

    International Nuclear Information System (INIS)

    D’Angelo, Claudio; Ortona, Alberto; Colombo, Paolo

    2012-01-01

    Graphical abstract: - Abstract: This paper shows how finite element analysis can be used to study the effect of the morphological features of reticulated ceramics on their mechanical properties under compression. Quantitative morphological data, obtained by X-ray computed tomography (XCT) for a commercially available Si–SiC foam produced by the replica method, have been linked to a set of computer generated cells in which one morphological parameter was varied at a time. The findings indicate how the modification of some morphological features, which depend on the careful selection of appropriate and specific processing parameters, would enable the production of ceramic foams possessing higher strength for a given total porosity value.

  14. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  15. A comparative finite elemental analysis of glass abutment supported and unsupported cantilever fixed partial denture.

    Science.gov (United States)

    Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur

    2015-05-01

    The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    Science.gov (United States)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  17. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  18. Multi-element analysis of unidentified fallen objects from Tatale in ...

    African Journals Online (AJOL)

    A multi-element analysis has been carried out on two fallen objects, # 01 and # 02, using instrumental neutron activation analysis technique. A total of 17 elements were identified in object # 01 while 21 elements were found in object # 02. The two major elements in object # 01 were Fe and Mg, which together constitute ...

  19. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods.

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).

  20. Determination of ultratrace elements in natural waters by solid-phase extraction and atomic spectrometry methods

    Energy Technology Data Exchange (ETDEWEB)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto [Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso, 31-16146, Genoa (Italy)

    2003-01-01

    A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min{sup -1}, elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L{sup -1} using ETAAS and 12, 122, 3.4, 17, and 21 ng L{sup -1} using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-{mu}g L{sup -1} concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater). (orig.)

  1. SOLIDS PRECIPITATION EVENT IN MCU CAUSAL ANALYSIS AND RECOMMENDATIONS FROM SOLIDS RECOVERY TEAM

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, A.; Aponte, C.

    2014-08-15

    A process upset occurred in the Modular Caustic-Side Solvent Extraction Unit (MCU) facility on April 6th, 2014. During recovery efforts, a significant amount of solids were found in the Salt Solution Feed Tank (SSFT), Salt Solution Receipt Tanks (SSRTs), two extraction contactors, and scrub contactors. The solids were identified by Savannah River National Laboratory (SRNL) as primarily sodium oxalate and sodium alumina silicate (NAS) with the presence of some aluminum hydroxide. NAS solids have been present in the SSFT since simulant runs during cold chemical startup of MCU in 2007, and have not hindered operations since that time. During the process upset in April 2014, the oxalate solids partially blocked the aqueous outlet of the extraction contactors, causing salt solution to exit through the contactor organic outlet to the scrub contactors with the organic phase. This salt solution overwhelmed the scrub contactors and passed with the organic phase to the strip section of MCU. The partially reversed flow of salt solution resulted in a Strip Effluent (SE) stream that was high in Isopar™ L, pH and sodium. The primary cause of the excessive solids accumulation in the SSRTs and SSFT at MCU is attributed to an increase in the frequency of oxalic acid cleaning of the 512-S primary filter. Agitation in the SSRTs at MCU in response to cold weather likely provided the primary mechanism to transfer the solids to the contactors. Sources of the sodium oxalate solids are attributed to the oxalic acid cleaning solution used to clean the primary filter at the Actinide Removal Process (ARP) filtration at 512-S, as well as precipitation from the salt batch feed, which is at or near oxalate saturation. The Solids Recovery Team was formed to determine the cause of the solids formation and develop recommendations to prevent or mitigate this event in the future. A total of 53 recommendations were generated. These recommendations were organized into 4 focus areas: • Improve

  2. Analysis of TRU waste for RCRA-listed elements

    International Nuclear Information System (INIS)

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-01-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization

  3. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  4. Investigation of Apple Vibration Characteristics Using Finite Element Modal Analysis

    Directory of Open Access Journals (Sweden)

    R Mirzaei

    2013-02-01

    Full Text Available The most important quality indicator of fruits is the flesh firmness which is well correlated to their young’s modulus. In this research variation of vibration characteristics (shape modes, natural frequency of apple due to change of material characteristics (density, young's models, Poisson ratio and apple volume was investigated using Finite Element simulation. An image processing technique was used to obtain an unsymmetrical and non-spherical geometric model of apple. The exact three-dimensional shape of the fruit was created by determining the coordinates of apple surface and forming uneven rotational curvatures. Modal analysis with no boundary constraints has been applied. The first 20 Eigen frequencies and the corresponding mode shape were determined. Six rigid body modes possess zero resonant frequency which is related to the degree of freedom of a rigid body in space indicated the validity of finite element model. The modal analysis results showed that resonant frequency increased by increasing young's modulus of the fruit, while it decreased by increasing apple density. First mode torsion has a mean resonant frequency of 584 Hz. Variations of natural frequency due to change in young's modulus, density, and Poisson ratio were 80%, 11% and 4%, respectively. Coefficient of variation of resonant frequency in response to changing young's modulus was 2-3 times of that of density which shows the greatest effect of young modulus changes on natural frequency of fruits. Consequently with determination of fruits' natural frequency, their young modulus and firmness can be estimated.

  5. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  6. Multi-element neutron activation analysis of Brazilian coal samples

    International Nuclear Information System (INIS)

    Atalla, L.T.; Requejo, C.S.

    1982-09-01

    The elements U, Th, La, Ce, Nd, Sm, Eu, Dy, Tb, Yb, Lu, Sc, Ta, Hf, Co, Ni, Cr, Mo, Ti, V, W, In, Ga, Mn, Ba, Sr, Mg, Rb, Cs, K, Cl, Br, As, Sb, Au, Ca, Al and Fe were determined in coal samples by instrumental neutron activation analysis, by using both thermal and epithermal neutron irradiations. The irradiation times were 10 minutes and 8 or 16 hours in a position where the thermal neutron flux was about 10 12 n.cm - 2 .s - 1 and 72 non-consecutive hours for epithermal irradiation at a flux of about 10 11 n.Cm - 2 .s - 1 . After the instrumental analysis of the above mentioned elements, Zn and Se were determined with chemical separation. The relative standard deviation of, at least, 4 determinations was about + - 10% for the majority of the results. The coal samples analysed were supplied by: Cia. Estadual da Tecnologia e Saneamento Basico (CETESB-SP), Cia. de Pesquisas e Lavras Minerais (COPELMI-RS), Cia. Carbonifera Urussunga (SC), Cia. Carbonifera Prospera (SC), Cia. Carbonifera Treviso (SC), Cia. Nacional de Mineracao de Carvao do Barro Branco (SC) and Comissao Nacional de Energia Nuclear (CNEN-RJ). (Author) [pt

  7. Analysis of Atorvastatin in Commercial Solid Drugs using the TT-PIGE Technique

    International Nuclear Information System (INIS)

    Younes, G; Zahraman, K; Nsouli, B; Bejjani, A; Mahmoud, R; El-Yazbi, F

    2008-01-01

    The quantification of the active ingredient (Al) in drugs is a crucial and important step in the drug quality control process. This is usually performed by using wet chemical techniques like LC-MS, UV spectrophotometry and other appropriate organic analytical methods. In the case of an active ingredient contains specific heteroatoms (F, S, Cl), elemental IBA techniques can be explored for molecular quantification. IBA techniques permit the analysis of the sample under solid form, without any laborious sample preparations. This is an advantage when the number of sample is relatively large. In this work, we demonstrate the ability of the Thick Target PIGE technique for rapid and accurate quantification of low concentration AtorvastatinTM in three commercial anti-hyperlipidemic drugs (Lipitor, Liponorm and Storvas). (author)

  8. Analysis of Atorvastatin in Commercial Solid Drugs using the TT-PIGE Technique

    Energy Technology Data Exchange (ETDEWEB)

    Younes, G [Beirut Arab University, Faculty of Science, Chemistry Department Beirut (Lebanon); Zahraman, K; Nsouli, B; Bejjani, A [Lebanese Atomic Energy Commission, National Council for Scientific Research, Beirut (Lebanon); Mahmoud, R; El-Yazbi, F [Beirut Arab University, Faculty of Pharmacy, Department of Pharmaceutical and Analytical Chemistry, Beirut (Lebanon)

    2008-07-01

    The quantification of the active ingredient (Al) in drugs is a crucial and important step in the drug quality control process. This is usually performed by using wet chemical techniques like LC-MS, UV spectrophotometry and other appropriate organic analytical methods. In the case of an active ingredient contains specific heteroatoms (F, S, Cl), elemental IBA techniques can be explored for molecular quantification. IBA techniques permit the analysis of the sample under solid form, without any laborious sample preparations. This is an advantage when the number of sample is relatively large. In this work, we demonstrate the ability of the Thick Target PIGE technique for rapid and accurate quantification of low concentration AtorvastatinTM in three commercial anti-hyperlipidemic drugs (Lipitor, Liponorm and Storvas). (author)

  9. Elemental analysis by IBA and NAA — A critical comparison

    Science.gov (United States)

    Watterson, J. I. W.

    1988-12-01

    In this review neutron activation analysis (NAA) and ion beam analysis (IBA) have been compared in the context of the entire field of analytical science using the discipline of scientometrics, as developed by Braun and Lyon. This perspective on the relative achievements of the two methods is modified by considering and comparing their particular attributes and characteristics, particularly in relation to their differing degree of maturity. This assessment shows that NAA, as the more mature method, is the most widely applied nuclear technique, but the special capabilities of IBA give it the ability to provide information about surface composition and elemental distribution that is unique, while it is still relatively immature and it is not yet possible to define its ultimate role with any confidence.

  10. Finite element analysis of elasto-plastic tee joints

    International Nuclear Information System (INIS)

    Powell, G.H.

    1974-09-01

    The theory and computational procedures used in the computer program B169TJ/EP for the analysis of elasto-plastic tee joints are described, and detailed user's guide is presented. The program is particularly applicable to joints conforming to the ANSI B16.9 Manufacturing Standard, but can also be applied to other joint geometries. The joint may be loaded by internal pressure and by arbitrary combinations of applied forces and moments at the ends of the branch and run pipes, and the loading sequence may be arbitrary. The joint material is assumed to yield according to the von Mises criterion, and to exhibit either linear kinematic hardening or nonlinear isotropic hardening after yield. The program makes use of the finite element and mesh generation procedures previously applied in the elastic stress analysis program B16.9TJ/ SA, with minor modifications. (U.S.)

  11. Biomonitoring of air pollution through trace element analysis

    International Nuclear Information System (INIS)

    Akoto Bamford, Samuel; Osae, E.K.; Serfor-Armah, Y.; Nyarko, B.; Ofosu, F.; Aboh, I.J.; Odamtten, G.T.

    2001-01-01

    Research work is currently going on to determine the suitability in the use of local lichen species for biomonitoring air pollution in Ghana. The study areas being investigated are the gold-mining areas situated in the Moist Evergreen and Semi-Deciduous forests in Ghana. The nuclear analytical techniques being used in this work are instrumental neutron activation analysis and tube-excited x-ray fluorescence spectrometry. The present report covers results of quality control exercise carried out to validate the quantitative methods being used. This includes our participation in an intercomparison exercise carried out among participants of the IAEA coordinated research project. The samples analyzed were two lichen samples from two completely different areas using neutron activation analysis. Only short- and medium-lived irradiations were carried out. Satisfactory results were obtained for most of the elements identified and quantified. (author)

  12. Development of environmental education system using online element analysis

    International Nuclear Information System (INIS)

    Niizeki, T.; Yoshihara, T.; Tsuchiya, K.; Kawasaki, K.; Komiya, K.

    2007-01-01

    We have constructed a network system which enables one to access and analyze environmental data obtained at different and distant laboratories. As a preliminary feasibility test of the system, we studied the elements in the water of the Tesio River using PIXE and ion chromatography. Students used the data online to carry out analysis via internet. We found two factors with different features in calcium from the factor analysis. The comparison of the specific result and relevant geology information has revealed a remarkable presence of Ca 2+ which might come from dissolution of limestone in the upper Tesio River. PIXE data gave crucial information to draw such a conclusion. The present system has been found useful in environmental education in universities, online sharing of PIXE data in particular. (author)

  13. Automatic measurement system for light element isotope analysis

    International Nuclear Information System (INIS)

    Satake, Hiroshi; Ikegami, Kouichi.

    1990-01-01

    The automatic measurement system for the light element isotope analysis was developed by installing the specially designed inlet system which was controlled by a computer. The microcomputer system contains specific interface boards for the inlet system and the mass spectrometer, Micromass 602 E. All the components of the inlet and the computer system installed are easily available in Japan. Ten samples can be automatically measured as a maximum of. About 160 minutes are required for 10 measurements of δ 18 O values of CO 2 . Thus four samples can be measured per an hour using this system, while usually three samples for an hour using the manual operation. The automatized analysis system clearly has an advantage over the conventional method. This paper describes the details of this automated system, such as apparatuses used, the control procedure and the correction for reliable measurement. (author)

  14. Composite analysis for solid waste storage area 6

    International Nuclear Information System (INIS)

    Lee, D.W.

    1997-09-01

    The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions

  15. Solid-phase glycan isolation for glycomics analysis.

    Science.gov (United States)

    Yang, Shuang; Zhang, Hui

    2012-12-01

    Glycosylation is one of the most significant protein PTMs. The biological activities of proteins are dramatically changed by the glycans associated with them. Thus, structural analysis of the glycans of glycoproteins in complex biological or clinical samples is critical in correlation with the functions of glycans with diseases. Profiling of glycans by HPLC-MS is a commonly used technique in analyzing glycan structures and quantifying their relative abundance in different biological systems. Methods relied on MS require isolation of glycans from negligible salts and other contaminant ions since salts and ions may interfere with the glycans, resulting in poor glycan ionization. To accomplish those objectives, glycan isolation and clean-up methods including SPE, liquid-phase extraction, chromatography, and electrophoresis have been developed. Traditionally, glycans are isolated from proteins or peptides using a combination of hydrophobic and hydrophilic columns: proteins and peptides remain on hydrophobic absorbent while glycans, salts, and other hydrophilic reagents are collected as flowthrough. The glycans in the flowthrough are then purified through graphite-activated carbon column by hydrophilic interaction LC. Yet, the drawback in these affinity-based approaches is nonspecific binding. As a result, chemical methods by hydrazide or oxime have been developed for solid-phase isolation of glycans with high specificity and yield. Combined with high-resolution MS, specific glycan isolation techniques provide tremendous potentials as useful tools for glycomics analysis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Seismic Analysis of Concrete Dam by Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Rozaina Ismail

    2017-01-01

    Full Text Available This paper reports a brief study on linear seismic analysis of Sg. Kinta Concrete Dam. The analysis was conducted in order to determine the performance and behaviour of the dam under seismic excitation. The dam was modelled as two-dimensional and developed based on the design drawing that is obtained from Angkasa Consulting Services Sdn. Bhd. The seismic analysis of the dam is conducted using finite element analysis software package LUSAS 14.3 and the dam has been analyse as a plain stress problem with a linear consideration. A set of historic data, with E1 Centro earthquake acceleration of about 0.50g is used as an earthquake excitation. The natural frequency and mode shape up to fifth mode of the dam has been obtained from the analysis to show the differences of the stress and deformation between each mode. The maximum horizontal and vertical stress of Sg. Kinta dam was found and the distribution of them was discussed in form of contours. The deformation of the dam were also been discussed by comparing the maximum displacement for each mode shaped.

  17. Toenail elemental analysis of Korean young adults by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Lee, O.

    2016-01-01

    The element contents in toenail clippings of healthy Korean young adults were measured using an instrumental neutron activation analysis. The average contents of elements such as Na, K, Cl, Ca, Fe, Se, and Zn are 449, 474, 1024, 1677, 66, 0.7 and 94 mg/kg in men, whereas those contents in women respectively 332, 476, 836, 1097, 66, 0.8 and 104 mg/kg. The correlation analysis of toenail elements with chronic disease risks showed positive associations between Na and serum HDL-cholesterol, blood pressure, and negative associations between Se and Hs-CRP, between Zn and hemoglobin level. (author)

  18. Multi-element analysis of emeralds and associated rocks by k0 neutron activation analysis

    International Nuclear Information System (INIS)

    Acharya, R.N.; Mondal, R.K.; Burte, P.P.; Nair, A.G.C.; Reddy, N.B.Y.; Reddy, L.K.; Reddy, A.V.R.; Manohar, S.B.

    2000-01-01

    Multi-element analysis was carried out in natural emeralds, their associated rocks and one sample of beryl obtained from Rajasthan, India. The concentrations of 21 elements were assayed by Instrumental Neutron Activation Analysis using the k 0 method (k 0 INAA method) and high-resolution gamma ray spectrometry. The data reveal the segregation of some elements from associated (trapped and host) rocks to the mineral beryl forming the gemstones. A reference rock standard of the US Geological Survey (USGS BCR-1) was also analysed as a control of the method

  19. Finite element analysis of car hood for impact test by using ...

    African Journals Online (AJOL)

    Finite element analysis of car hood for impact test by using solidworks software ... high safety and at the same time can be built according to market demands. ... Keywords: finite element analysis; impact test; Solidworks; automation, car hood.

  20. Effect of material variation on the biomechanical behaviour of orthodontic fixed appliances: a finite element analysis.

    Science.gov (United States)

    Papageorgiou, Spyridon N; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas; Bourauel, Christoph

    2016-06-01

    Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Molecular composition of recycled organic wastes, as determined by solid-state {sup 13}C NMR and elemental analyses

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, S.M., E-mail: simon.eldridge@dpi.nsw.gov.au [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); NSW Department of Primary Industries, Bruxner Highway, Wollongbar, NSW 2477 (Australia); Chen, C.R. [Environmental Futures Centre, School of Environment, Griffith University, Nathan, QLD 4111 (Australia); Xu, Z.H. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Nelson, P.N. [School of Earth and Environmental Sciences, James Cook University, Cairns, QLD 4870 (Australia); Boyd, S.E. [Environmental Futures Centre, School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111 (Australia); Meszaros, I. [Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia); Chan, K.Y. [Graduate School of Environment, Macquarie University, North Ryde, NSW 2109 (Australia); Formerly NSW Department of Primary Industries, Richmond, NSW 2753 (Australia)

    2013-11-15

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state {sup 13}C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.

  2. Molecular composition of recycled organic wastes, as determined by solid-state 13C NMR and elemental analyses

    International Nuclear Information System (INIS)

    Eldridge, S.M.; Chen, C.R.; Xu, Z.H.; Nelson, P.N.; Boyd, S.E.; Meszaros, I.; Chan, K.Y.

    2013-01-01

    Highlights: • Model estimated the molecular C components well for most RO wastes. • Molecular nature of organic matter in RO wastes varied widely. • Molecular composition by NMR modelling preferable to extraction techniques. • Some model shortcomings in estimating molecular composition of biochars. • Waste molecular composition important for carbon/nutrient outcomes in soil. - Abstract: Using solid state 13 C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes

  3. Use of X-ray fluorescence analysis in studying vertical element migration in weathering zone

    International Nuclear Information System (INIS)

    Houdkova, Z.; Hally, J.

    1980-01-01

    The vertical migration of elements was studied in a model area of the Zelivka river basin. The VRS 2 Zeiss GDR analyzer, connected to automatic processor KSR 4 100, were used for the study of concentration variations. Soil samples were taken from bore holes drilled to a depth of the solid bedrock (0 to 6 m). The contents of SiO 2 , Al 2 O 3 , Fe 2 O 3 , K 2 O, CaO, TiO 2 , P 2 O 5 and MnO were determined in concentration ranges from 10 -2 to 10 1 %. The method was tested in comparative measurements against conventional methods of chemical analysis. (author)

  4. Fracture tolerance analysis of the solid rocket booster servo-actuator for the space shuttle

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.H.; Ghadiali, N.D.; Zahoor, A.; Wilson, M.R.

    1982-01-01

    The results of an evaluation of the fracture tolerance of three components of the thrust vector control servo-actuator for the solid rocket booster of the space shuttle are described. These components were considered as being potentially fracture critical and therefore having the potential to fall short of a desired service life of 80 missions (that is, a service life factor of 4.0 on a basic service life of 20 missions). Detailed stress analysis of the rod end, cylinder, and feedback link components was accomplished by three-dimensional finite-element stress analysis methods. A dynamic structural model of the feedback system was used to determine the dynamic inertia loads and reactions to apply to the finite-element model of the feedback link. Twenty mission stress spectra consisting of lift-off, boost, re-entry, and water impact mission segments were developed for each component based on dynamic loadings. Most components were determined to have the potential of reaching a service life of 80 missions or service life factor of 4.0. 22 refs.

  5. Trace element analysis of silicate rocks by XRF. Pt. 2

    International Nuclear Information System (INIS)

    Orihashi, Yuji; Yuhara, Masaki; Kagami, Hiroo; Honma, Hiroji

    1993-01-01

    Quantitative X-ray fluorescence analysis of six trace elements (Ce, Ba, Ga, Co, Cr, V) in silicate rocks has been investigated, using pressed powder pellets. Ga analysis was performed using a Cr tube, whereas a Au tube was used for the remaining five elements. Corrections were made for the interference of BaKα on CeKα, FeKβ on CoKα, CrKα on VKβ and VKα on TiKβ. Mass absorption functions were estimated from background intensities at 2θ=35.5deg and that of FeKα at wavelengths longer than the iron absorption edge for a Au tube, and from the value of net intensity/background one for a Cr tube. Calibration lines were constructed using twenty-four U.S. Geological Survey and Geological Survey of Japan igneous rock reference samples. For each line, the correction coefficient is greater than 0.993 except for Ga and Ce (>0.985), indicating that the correction and calibration procedures are appropriate for accurate analysis over a wide compositional range. Analytical results for igneous, sedimentary and metamorphic reference samples (U. S. Geological Survey, Institute of Geophysical and Geochemical Exploration, South-African Bureau of Standards) accord well with recommended or proposed values, respectively. The results of this study and those of Orihashi et al. (1993) show Ce, Ba, Nb, Zr, Y, Sr, Rb, Th, Ga, Zn, Cu, Ni, Co, Cr and V in silicate rocks can be quantitatively determined by XRF at ISEI. (author)

  6. Quantitative analysis of light elements in thick samples by PIGE

    International Nuclear Information System (INIS)

    Mateus, R.; Jesus, A.P.; Ribeiro, J.P.

    2004-01-01

    PIGE analysis of thick and intermediate samples is usually performed with the help of standards, but this method gives only good results when the standard is very similar to the sample to be analysed. In this work, we present an alternative method for PIGE analysis of light elements in thick samples. This method is based on a code that integrates the nuclear reaction excitation function along the depth of the sample. For the integration procedure the sample is divided in sublayers, defined by the energy steps that were used to measure accurately the excitation function. This function is used as input. Within each sublayer the stopping power cross-sections may be assumed as constant. With these two conditions the calculus of the contribution of each sublayer for the total yield becomes an easy task. This work presents results for the analysis of lithium, boron, fluorine and sodium in thick samples. For this purpose, excitation functions of the reactions 7 Li(p,p ' γ) 7 Li, 19 F(p,p ' γ) 19 F, 10 B(p,αγ) 7 Be and 23 Na(p,p ' γ) 23 Na were employed. Calculated γ-ray yields were compared, at several proton energy values, with experimental yields for thick samples made of inorganic compounds of the referred elements. The agreement is better than 7.5%. Taking into consideration the experimental uncertainty of the measured yields and the errors related to the stopping power values used, this agreement shows that effects as the beam energy straggling, ignored in the calculation, seem to play a minor role

  7. Finite element analysis of prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Smith, P.D.; Cook, W.A.; Anderson, C.A.

    1977-01-01

    This paper discusses the development of a finite element code suitable for the safety analysis of prestressed concrete reactor vessels. The project has involved modification of a general purpose computer code to handle reinforced concrete structures as well as comparison of results obtained with the code against published experimental data. The NONSAP nonlinear structural analysis program was selected for the ease with which it can be modified to encompass problems peculiar to nuclear reactors. Pre- and post-processors have been developed for mesh generation and for graphical display of response variables. An out-of-core assembler and solver have been developed for the analysis of large three dimensional problems. The constitutive model for short term loads forms an orthotropic stress-strain relationship in which the concrete and the reinforcing steel are treated as a composite. The variation of stiffness and strength of concrete under multiaxial stress states is accounted for. Cracks are allowed to form at element integration points based on a three dimensional failure envelope in stress space. Composite tensile and shear properties across a crack are modified to account for bond degradation and for dowel action of the reinforcement. The constitutive law for creep is base on the expansion of the usual creep compliance function in the form of a Dirichlet exponential series. Empirical creep data are then fit to the Dirichlet series approximation by means of a least squares procedure. The incremental deformation process is subsequently reduced to a series of variable stiffness elasticity problems in which the past stress history is represented by a finite number of hidden material variables

  8. Neutron activation analysis for uranium and associated elements

    International Nuclear Information System (INIS)

    Bowman, W.W.

    1977-01-01

    The samples obtained by the Savannah River Laboratory as part of the National Uranium Resource Evaluation program are activated in the intense neutron flux from a Savannah River Plant production reactor. A pilot-scale facility was installed at the reactor site to provide analyses of samples through the initial phase of the program and to develop design data for a full-scale facility. Sediments are analyzed by direct activation of 0.5-g samples. However, to analyze ground or surface water samples, mineral elements from 1-liter samples are concentrated on ion exchange resin and then approximately 5-g samples of resin are activated. Uranium concentration is determined by counting neutrons emitted from specific short-lived products of fission induced in 235 U by the primary neutron flux. Repetitive short cycles of irradiation and counting permit detection and determination of <0.1 μg of uranium. Elements associated with uranium are determined by spectral analysis of the gamma ray activities induced by the cyclic and subsequent longer irradiations. The pilot facility consists of four irradiation positions (plus 2 spare positions), a sample loader and unloader, and counting stations with neutron and gamma ray detectors, all interconnected with a pneumatic sample transport system. A computer controls both the transport system and the data acquisition devices. Gamma ray counting data are stored on magnetic tape for further processing by a large central computer. Facility hardware and software are described. Repetitive analyses of standards have shown an accuracy within +-10% for uranium values and within +-25% for associated elements. A quality assurance program has been developed to maintain these levels of reliability

  9. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  10. Storage element performance optimization for CMS analysis jobs

    International Nuclear Information System (INIS)

    Behrmann, G; Dahlblom, J; Guldmyr, J; Happonen, K; Lindén, T

    2012-01-01

    Tier-2 computing sites in the Worldwide Large Hadron Collider Computing Grid (WLCG) host CPU-resources (Compute Element, CE) and storage resources (Storage Element, SE). The vast amount of data that needs to processed from the Large Hadron Collider (LHC) experiments requires good and efficient use of the available resources. Having a good CPU efficiency for the end users analysis jobs requires that the performance of the storage system is able to scale with I/O requests from hundreds or even thousands of simultaneous jobs. In this presentation we report on the work on improving the SE performance at the Helsinki Institute of Physics (HIP) Tier-2 used for the Compact Muon Experiment (CMS) at the LHC. Statistics from CMS grid jobs are collected and stored in the CMS Dashboard for further analysis, which allows for easy performance monitoring by the sites and by the CMS collaboration. As part of the monitoring framework CMS uses the JobRobot which sends every four hours 100 analysis jobs to each site. CMS also uses the HammerCloud tool for site monitoring and stress testing and it has replaced the JobRobot. The performance of the analysis workflow submitted with JobRobot or HammerCloud can be used to track the performance due to site configuration changes, since the analysis workflow is kept the same for all sites and for months in time. The CPU efficiency of the JobRobot jobs at HIP was increased approximately by 50 % to more than 90 %, by tuning the SE and by improvements in the CMSSW and dCache software. The performance of the CMS analysis jobs improved significantly too. Similar work has been done on other CMS Tier-sites, since on average the CPU efficiency for CMSSW jobs has increased during 2011. Better monitoring of the SE allows faster detection of problems, so that the performance level can be kept high. The next storage upgrade at HIP consists of SAS disk enclosures which can be stress tested on demand with HammerCloud workflows, to make sure that the I

  11. In-situ elemental analysis of coal by neutron activation

    International Nuclear Information System (INIS)

    Mikesell, J.L.; Senftle, F.E.; Tanner, A.B.

    1986-01-01

    The U.S. Geological Survey (USGS) has worked to develop neutron techniques for the borehole measurement of the elemental composition of ores since 1969, and first demonstrated a borehole ultimate analysis of coal in 1977. Borehole measurements such as these permit real-time evaluation of coal quality without the expense of coring or the delays associated with laboratory analyses. Two technological innovations make such measurements possible: the availability, from Savannah River Operations Office, DOE, of small californium-252 (/sup 252/Cf) fission neutron sources, and the development, by USGS and Princeton Gamma-Techn, of the melting-cryogen-cooled high-purity germanium borehole gamma-ray detector. A technique of relating mass fractions to measured gamma-ray intensities, which eliminates the need for detailed knowledge of the geometry of the neutron distribution, is used to calculate elemental compositions without resorting to the test pits or computer borehole modeling. In coal, all of the major constituents (C, H, N, S, Si, Al, Fe, Ti) except oxygen can be determined quantitatively by thermal neutron capture gamma-ray spectroscopy

  12. Essential trace elements in edible mushrooms by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Patricia L.C.; Maihara, Vera A.; Castro, Lilian P. de [Instituto de Pesquisa e Energetica e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: patricialandim@ig.com.br; vmaihara@ipen.br; lilian.Pavanelli@terra.com.br; Figueira, Rubens C.L. [Universidade Cruzeiro do Sul, Sao Paulo, SP (Brazil)]. E-mail: figueiraru@yahoo.com.br

    2007-07-01

    Mushrooms are excellent nutritional sources since they provide proteins, fibers and mineral, such as K, P, Fe. They have also been the focus of medical research. In Brazil mushrooms are not consumed in large quantities by the general population since people know little about the nutritional and medicinal benefits that mushrooms offer. Hence, this study intends to contribute to a better understanding of the essential element content in edible mushrooms, which are currently commercialized in Sao Paulo state. Br Fe, K, Na and Zn concentrations were determined by Instrumental Neutron Activation Analysis in the following mushroom species: Shitake (Lentinus edodes), Shimeji (Pleurotus ssp), Paris Champignon (Agaricus bisporus), Hiratake ( Pleurotus ssp) and Eringue (Pleurotus Eryngu. The mushroom samples were acquired from commercial establishments in the city of Sao Paulo and directly from the producers. Essential element contents in mushrooms varied between Br 0.03 to 4.1 mg/kg; Fe 20 to 267 mg/kg; K 1.2 to 5.3 g/kg, Na 10 to 582 mg/kg and Zn 60 to 120 mg/kg. The results confirm that mushrooms can be considered a good source of K, Fe and Zn. The low Na level is a good nutritional benefit for the consumer. (author)

  13. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  14. Non-linear analysis of solid propellant burning rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)

    2000-07-01

    The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)

  15. Impression creep properties of a semi-solid processed magnesium-aluminum alloy containing calcium and rare earth elements

    International Nuclear Information System (INIS)

    Nami, B.; Razavi, H.; Miresmaeili, S.M.; Mirdamadi, Sh.; Shabestari, S.G.

    2011-01-01

    The creep properties of a thixoformed magnesium-aluminum alloy containing calcium and rare earth elements were studied under shear modulus-normalized stresses ranging from 0.0225 to 0.035 at temperatures of 150-212 o C using the impression creep technique. Analysis of the creep mechanism based on a power-law equation indicated that pipe diffusion-controlled dislocation climb is the dominant mechanism during creep. The alloy has a better creep resistance than high-pressure die-cast magnesium-aluminum alloy.

  16. Analysis of semi-solid processing for metal matrix composite synthesis using factorial design

    Directory of Open Access Journals (Sweden)

    Kratus Ranieri

    2012-02-01

    Full Text Available The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semi-solid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.

  17. Obtaining local reciprocal lattice vectors from finite-element analysis.

    Science.gov (United States)

    Sutter, John P; Connolley, Thomas; Hill, Tim P; Huang, Houcheng; Sharp, Doug W; Drakopoulos, Michael

    2008-11-01

    Finite-element analysis is frequently used by engineers at synchrotron beamlines to calculate the elastic deformation of a single crystal undergoing mechanical bending or thermal load. ANSYS Workbench software is widely used for such simulations. However, although ANSYS Workbench software provides useful information on the displacements, strains and stresses within the crystal, it does not yield the local reciprocal lattice vectors that would be required for X-ray diffraction calculations. To bridge this gap, a method based on the shape functions and interpolation procedures of the software itself has been developed. An application to the double-crystal bent Laue monochromator being designed for the I12 (JEEP) wiggler beamline at the Diamond Light Source is presented.

  18. Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...

  19. Finite element analysis of mechanical stability of coarsened nanoporous gold

    International Nuclear Information System (INIS)

    Cho, Hoon-Hwe; Chen-Wiegart, Yu-chen Karen; Dunand, David C.

    2016-01-01

    The mechanical stability of nanoporous gold (np-Au) at various stages of thermal coarsening is studied via finite element analysis under volumetric compression using np-Au architectures imaged via X-ray nano-tomography. As the np-Au is coarsened thermally over ligament sizes ranging from 185 to 465 nm, the pore volume fraction is determinant for the mechanical stability of the coarsened np-Au, unlike the curvature and surface orientation of the ligaments. The computed Young's modulus and yield strength of the structures are compared with the Gibson–Ashby model. The geometry of the structures determines the locations where stress concentrations occur at the onset of yielding.

  20. Neutron activation analysis of trace elements in biological tissue

    Energy Technology Data Exchange (ETDEWEB)

    Velandia, J A; Perkons, A K

    1974-01-01

    Thermal Neutron Activation Analysis with Instrumental Ge(Li) Gamma Spectrometry was used to determine the amounts of more than 30 trace constituents in heart tissue of rats and kidney tissue of rabbits. The results were confirmed by a rapid ion-exchange group separation method in the initial stages of the experiments. The samples were exposed to thermal neutrons for periods between 3 minutes and 14 hours. Significant differences in the amounts and types of trace elements in the two different tissue types are apparent, however, are probably due to specific diets. Tables of relevant nuclear data, standard concentrations, radiochemical separation recoveries, and quantitative analytical results are presented. The ion-exchange group separation scheme and typical examples of the instrumental gamma ray spectra are shown. The techniques developed in this study are being used for a large scale constituent survey of various diseased and healthy human tissues.