WorldWideScience

Sample records for solidified ti alloys

  1. Rapidly solidified Ti-25Al-Nb alloys

    International Nuclear Information System (INIS)

    Ward, C.H.; Broderick, T.F.; Jackson, A.G.; Rowe, R.G.; Froes, F.H.

    1987-01-01

    Alloys based on the Ti-25Al-Nb intermetallic system were studied to determine the effects of rapid solidification on structure. Compositions ranging from 12 to 30 at% niobium which are beyond the α/sub 2/ single phase field were evaluated. Alloys were prepared using a melt spinning process. The resulting ribbons were characterized using transmission electron microscopy and x-ray diffraction. The alloys were all found to have a retained ordered B2 structure in the melt spun condition with an antiphase domain size that significantly decreased with increasing niobium content. ''Tweed-like'' striations, indicating planar shear strain, were observed in all compositions. The characteristic diffraction pattern of an ordered ''omega-type'' phase was found to occur in the patterns taken from the 12 at% niobium alloy

  2. Microstructure of directionally solidified Ti-Fe eutectic alloy with low interstitial and high mechanical strength

    Science.gov (United States)

    Contieri, R. J.; Lopes, E. S. N.; Taquire de La Cruz, M.; Costa, A. M.; Afonso, C. R. M.; Caram, R.

    2011-10-01

    The performance of Ti alloys can be considerably enhanced by combining Ti and other elements, causing an eutectic transformation and thereby producing composites in situ from the liquid phase. This paper reports on the processing and characterization of a directionally solidified Ti-Fe eutectic alloy. Directional solidification at different growth rates was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample. The results obtained show that a regular fiber-like eutectic structure was produced and the interphase spacing was found to be a function of the growth rate. Mechanical properties were measured using compression, microindentation and nanoindentation tests to determine the Vickers hardness, compressive strength and elastic modulus. Directionally solidified eutectic samples presented high values of compressive strength in the range of 1844-3000 MPa and ductility between 21.6 and 25.2%.

  3. Solidification structure and dispersoids in rapidly solidified Ti-Al-Sn-Zr-Er-B alloys

    International Nuclear Information System (INIS)

    Rowe, R.G.; Broderick, T.F.; Koch, E.F.; Froes, F.H.

    1986-01-01

    The microstructure of melt extracted and melt spun titanium alloys containing erbium and boron revealed a duplex solidification structure of columnar grains leading to equiaxed and dendritic structures near the free surface of melt extracted and melt spun alloys. The solidification structure was revealed by apparent boride segregation to cellular, interdendritic and grain boundaries. Precipitation of needle or lath-like TiB particles occurred adjacent to Er/sub 2/O/sub 3/ dispesoid particles in as-rapidly solidified ribbon

  4. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  5. Evolution of the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under high pressure

    International Nuclear Information System (INIS)

    Wang, Hongwei; Zhu, Dongdong; Zou, Chunming; Wei, Zunjie

    2012-01-01

    Highlights: → The microstructure of Ti-48Al alloy changes under high pressure. → With increasing pressure, the amount of γ s phase decreases. → High pressure leads to the decreasing of lamellar spacing. → The nanohardness of lamellar structure increases with pressure. -- Abstract: In this work the microstructure and nanohardness of Ti-48 at.%Al alloy solidified under different pressures (normal pressure, 2 GPa, 4 GPa) were experimental investigated by using a tungsten-carbide six-anvil apparatus. The results indicate that high pressure does not change the phase constitution of Ti-48 at.%Al alloy. However, the microstructure changes under high pressure. With increasing pressure, the volume fraction of interdendritic γ (γ s ) phase decreases and Al concentration in lamellae increases. When the pressure is 4 GPa, there is only a little γ s embedded in lamellar structure. The volume fraction of γ s phase is approximately 17.0% for normal pressure, 8.73% for 2 GPa, 0.69% for 4 GPa. The lamellar spacings also decrease with pressure, which are 495 nm, 345 nm, 227 nm under normal pressure, 2 GPa, 4 GPa, respectively. The change in nanohardness was discussed based on the microstructural observations. It shows a certain increase of the nanohardness as the pressure increases from normal pressure to 4 GPa. When the pressure is 4 GPa, the nanohardness increases by 50.2% compared with that of normal pressure.

  6. A study on crystalline phases present in the as-solidified and crystallized microstructures in Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.

    2011-01-01

    In the present study the as-solidified and crystallized microstructures of Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy have been examined in detail. Solidification was carried out by melt spinning, suction casting and copper mould casting techniques. The last technique yielded a partially crystalline microstructure, whereas, the other two techniques resulted in amorphous microstructures. (author)

  7. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified

    International Nuclear Information System (INIS)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de

    2010-01-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  8. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible

    Science.gov (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi

    2017-12-01

    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  9. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  10. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  11. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  13. Phase transformations in the rapidly solidified Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N. [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yao Kefu [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: kfyao@tsinghua.edu.cn; Louzguine-Luzgin, D.V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Qiu Shengbao [Division of Engineering Materials, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Inoue, A. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2007-10-15

    We report that an approximant phase was initially obtained in amorphous Ti{sub 40}Zr{sub 20}Hf{sub 20}Pd{sub 20} alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (I) phase with a high thermal stability while the cF96 Zr{sub 2}Ni-type (space group Fd3-bar m with a=1.25nm and 96 atoms cell{sup -1}) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000K and then transforms into the Zr{sub 2}Ni-type phase with an endothermic reaction.

  14. Rapidly solidified long-range-ordered alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Koch, C.C.; Liu, C.T.

    1981-01-01

    The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures

  15. Evolution of morphology in solidifying aluminium alloys

    NARCIS (Netherlands)

    Dijkstra, W.O.

    2007-01-01

    In the thesis two different models of solidification of aluminum alloys are presented and analyzed. The first 1--D solidification model is derived from the conservation of solute, heat and mass. With numerical experiments it is shown that simulations with the Finite Difference discretization must

  16. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  17. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  18. Solidified structure of Al-Pb-Cu alloys

    International Nuclear Information System (INIS)

    Ikeda, Tetsuyuki; Nishi, Seiki; Kumeuchi, Hiroyuki; Tatsuta, Yoshinori.

    1986-01-01

    Al-Pb-Cu alloys were cast into bars or plates in different two metal mold casting processes in order to suppress gravity segregation of Pb and to achieve homogeneous dispersion of Pb phase in the alloys. Solidified structures were analyzed by a video-pattern-analyzer. Plate castings 15 to 20 mm in thickness of Al-Pb-1 % Cu alloy containing Pb up to 5 % in which Pb phase particles up to 10 μm disperse are achieved through water cooled metal mold casting. The plates up to 5 mm in thickness containing Pb as much as 8 to 10 % cast in this process have dispersed Pb particles up to 5 μm in diameter in the surface layer. Al-8 % Pb-1 % Cu alloy bars 40 mm in diameter and 180 mm in height in which gravity segregation of Pb is prevented can be cast by movable and water sprayed metal mold casting at casting temperature 920 deg C and mold moving speed 1.0 mm/s. Pb phase particles 10 μm in mean size are dispersed in the bars. (author)

  19. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  20. The use of Nb in rapid solidified Al alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Audebert, F., E-mail: metal@fi.uba.ar [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Galano, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Saporiti, F. [Advanced Materials Group, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina)

    2014-12-05

    Highlights: • The use of Nb in RS Al alloys and composites has been reviewed. • Nb was found to improve the GFA of rapid solidified Al–Fe and Al–Ni alloys. • Nb has higher effect in increasing the corrosion resistance than RE in Al–Fe alloys. • Nb improves the stability of the Al–Fe–Cr icosahedral phase. • Nb improves strength, ductility and toughness of nanoquasicrystalline Al matrix composites. - Abstract: The worldwide requirements for reducing the energy consumption and pollution have increased the demand of new and high performance lightweight materials. The development of nanostructured Al-based alloys and composites is a key direction towards solving this demand. High energy prices and decreased availability of some alloying elements open up the opportunity to use non-conventional elements in Al alloys and composites. In this work the application of Nb in rapid solidified Al-based alloys and Al alloys matrix composites is reviewed. New results that clarify the effect of Nb on rapid solidified Al alloys and composites are also presented. It is observed that Nb stabilises the icosahedral Al–Fe/Cr clusters, enhances the glass forming ability and shifts the icosahedral phase decomposition towards higher temperatures. Nb provides higher corrosion resistance with respect to the pure Al and Al–Fe–RE (RE: rare earth) alloys in the amorphous and crystalline states. The use of Nb as a reinforcement to produce new Al alloy matrix composites is explored. It is observed that Nb provides higher strength, ductility and toughness to the nanoquasicrystalline matrix composite. Nb appears as a new key element that can improve several properties in rapid solidified Al alloys and composites.

  1. Effect of titanium content and cooling rate on the microstructure and martensitic transformation of rapidly solidified Ti-Ni shape memory alloys; Influencia do Ti e da taxa de resfriamento na microestrutura e na temperatura M{sub S} em ligas Ni-Ti com EMF solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, George Carlos dos Santos; Castro, Walman Benicio de, E-mail: georgeanselmo@yahoo.com.br, E-mail: walman.castro@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2017-01-15

    One important challenge of microsystems design is the implementation of efficient principles of miniaturized actuation at the micro-scale. Shape memory alloys (SMAs) have early been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be micro-scale processed. Alloys of composition Ni-44,8wt%Ti and Ni- 45,3wt%Ti were produced using the melt spinning method in air atmosphere. Ribbons obtained in this process showed martensitic grain size between 5 and 30 μm, depending on the alloy composition and the linear velocity of the wheel. (author)

  2. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  3. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  4. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    Science.gov (United States)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  5. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  6. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    The Cu–Co system displays a metastable miscibility gap in the liquid state. A considerable amount of work has been performed to study phase separation and related microstructures showing that demixing of the liquid is followed by coagulation before dendritic solidification. Due to kinetic...... competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...... using a wide range of cooling rates achieved by forcing the liquid into cylindric and conic moulds and by melt spinning....

  7. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  8. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  9. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  10. Acoustic emission from a solidifying aluminum-lithium alloy

    Science.gov (United States)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  11. The influence of interfacial energies and gravitational levels on the directionally solidified structures in hypermonotectic alloys

    Science.gov (United States)

    Andrews, J. B.; Curreri, P. A.; Sandlin, A. C.

    1988-01-01

    Various Cu-Pb-Al alloys were directionally solidified under 1-g conditions and alternating high-g/low-g conditions (achieved using NSAS's KC-135 aircraft) as a means of studying the influence of interfacial energies and gravitational levels on the resulting microstructures. Directional solidification of low Al content alloys was found to result in samples with coarser more irregular microstructures than in alloys with high Al contents under all the gravity conditions considered. Structures are correlated with interfacial energies, growth rates, and gravitational levels.

  12. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    Science.gov (United States)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  13. Microstructure and orientation evolution in unidirectional solidified Al–Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhongwei, E-mail: chzw@nwpu.edu.cn; Wang, Enyuan; Hao, Xiaolei

    2016-06-14

    Morphological instability and growth orientation evolution during unidirectional solidification of Al–Zn alloys with different pulling speeds were investigated by X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) in scanning electron microscope (SEM). The experimental results show that, as the pulling speed increases, the primary dendrite spacing becomes smaller gradually and dendrite trunks incline to the heat flow direction perfectly in unidirectional solidified Al–9.8 wt%Zn and Al–89 wt%Zn alloys. However, regardless of the pulling speed in unidirectional solidified Al–Zn alloys under fixed thermal gradient, the regular dendrites with <100> directions of primary trunks and secondary arms in 9.8 wt% Zn composition are replaced by <110> dendrites of primary trunks and secondary arms in 89 wt% Zn composition. In unidirectional solidified Al–32 wt% Zn alloy, cellular, fractal seaweed, and stabilized seaweed structures were observed at high pulling speeds. At a high pulling speed of 1000 µm/s, seaweed structures transform to the columnar dendrites with <110> trunks and <100> arms. The above orientation evolution can be attributed to low anisotropy of solid-liquid interface energy and the seaweed structure is responsible for isotropy of {111} planes.

  14. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  15. Structure and transformation behaviour of a rapidly solidified Al-Y-Ni-Co-Pd alloy

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, D.V.; Inoue, A.

    2005-01-01

    An as-solidified structure and transformation behaviour on heating of the rapidly solidified Al-Y-Ni-Co-Pd alloy was studied by X-ray diffractometry (XRD), transmission electron microscopy (TEM), differential scanning and isothermal calorimetries. The Al-Y-Ni-Co-Pd ribbon samples have been produced by the melt spinning technique and heat treated using a differential scanning calorimeter (DSC). The addition of Pd to Al-Y-Ni-Co alloys caused disappearance of the supercooled liquid region as well as the formation of the highly dispersed primary α-Al nanoparticles about 3-7 nm in size homogeneously embedded in the glassy matrix upon solidification. An extremely high density of precipitates of the order of 10 24 m -3 is obtained. These particles start growing at the temperature below a glass-transition temperature. The results presented in this paper indicate that some of so-called 'marginal' glass-formers in as-solidified state are actually not glassy alloys with pre-existed nuclei but crystal-glassy nanocomposites

  16. Development of high temperature fasteners using directionally solidified eutectic alloys

    Science.gov (United States)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  17. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  18. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  19. Microstructure of amorphous and crystalline zirconium alloys rapiddly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.; Bezerra, G.H

    1986-01-01

    In this work we report microstructural studies of rapidly solification of Zr-30% at Cu alloy. This composition was chosen because it is the Zr rich limit of glass formation range. The ribbons were prepared by melt spinning system (cooling rate is estimated in 10 6 K/s) and the average thickness of the microscopy were prepared by double jet electropolishing to investigate the microstructure of the ribbon. It was observed amorphos and crystalline regions. In the crystalline regions occured a radial growth morphology with stress contrats. The beginning of solidification is a polimorphous reaction and the shape of the micrograins is similar to spherulitic form. The average diameter of the grains are 0,5 μm or less. (Author) [pt

  20. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  1. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  2. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  3. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  4. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  5. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  6. Phase composition of rapidly solidified Ag-Sn-Cu dental alloys

    International Nuclear Information System (INIS)

    Lecong Dzuong; Do Minh Nghiep; Nguyen van Dzan; Cao the Ha

    1996-01-01

    The phase composition of some rapidly solidified Ag-Sn-Cu dental alloys with different copper contents (6.22 wtpct) has been studied by XRD, EMPA and optical microscopy. The samples were prepared from melt-spun ribbons. The microstructure of the as-quenched ribbons was microcrystalline and consisted of the Ag sub 3 Sn, Ag sub 4 Sn, Cu sub 3 Sn and Cu sub 3 Sn sub 8 phases. Mixing with mercury (amalgamation) led to formation of the Ag sub 2 Hg sub 3, Sn sub 7 Hg and Cu sub 6 Sn sub 5 phases. The amount of copper atoms in the alloys played an important role in phase formation in the amalgams

  7. Microstructure and property of directionally solidified Ni-Si hypereutectic alloy

    Science.gov (United States)

    Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi

    2016-03-01

    This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.

  8. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    Science.gov (United States)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  9. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  10. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  11. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available C maximum in these alloys. A few researchers have studied the martensitic transformation in TiPt alloys using arc melted cast samples. In this work high temperature shape memory alloys are targeted using powder metallurgy as a processing route....

  12. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  13. Investigation on microstructure characterization and property of rapidly solidified Mg-Zn-Ca-Ce-La alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao, E-mail: tzhou1118@163.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Chen Zhenhua, E-mail: chenzhenhua45@hotmail.com [College of Material Science and Engineering, Hunan University, Changsha 410082 (China); Yang Mingbo, E-mail: yangmingbo@cqit.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Hu Jianjun, E-mail: hujj@qq.com [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China); Xia Hua, E-mail: xiahua@cqut.edu.cn [College of Material Science and Engineering, Chongqing University of Technology, Chongqing 400054 (China)

    2012-01-15

    Rapidly solidified (RS) Mg-Zn-Ca-Ce-La (wt.%) alloys have been produced via atomizing the alloy melt and subsequent splat-quenching on the water-cooled copper twin-rollers in the form of flakes. Microstructure characterization, phase compositions and thermal stability of the alloys have been systematically investigated. The results showed that with addition of RE (Ce and La) to the Mg-6Zn-5Ca alloy, the stable intermetallic compounds i.e. the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (about 3 at.%), shortened as the T Prime phase, were formed at the expense of the binary Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases, which was possibly beneficial to the enhanced thermal stability of the alloy. In the Mg-6Zn-5Ca-3Ce-0.5La alloy, the composition of the T Prime phase in the grain interior was different from that at the grain boundaries, in which the segregation of the La elements was found, and the atomic percentage ratio of Zn to Ce in the T Prime phase within the grains was close to 2. Moreover, the stable Mg{sub 2}Ca phases were detected around the T Prime phases at the grain boundaries in the alloy. - Research Highlights: Black-Right-Pointing-Pointer The phase constitution of RS Mg-6Zn-5Ca alloy can be improved by RE additions. Black-Right-Pointing-Pointer In the Mg-Zn-Ca-Ce-La alloys, the Mg{sub x}Zn{sub y}RE{sub z} phase with a few Ca (T Prime phase) is formed. Black-Right-Pointing-Pointer The formation of the T Prime phase leads to the loss of the Mg-Zn and Ca{sub 2}Mg{sub 6}Zn{sub 3} phases. Black-Right-Pointing-Pointer The composition of the T Prime phase differs from the grain interior to the grain boundary.

  14. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  15. Electron microscopy investigations of rapidly solidified Fe-Zr-B-Cu alloys

    International Nuclear Information System (INIS)

    Majumdar, B.; Arvindha Babu, D.; Akhtar, D.

    2010-01-01

    Rapidly solidified Fe-based nanocrystalline soft magnetic materials possess a unique combination of properties i,e high permeability, saturation and Curie temperature and very low coercivity which are otherwise not attainable in conventional soft magnetic materials. The alloys are processed by producing amorphous phase through melt spinning route followed by a partial devitrification for incorporation of nanocrystalline phase in the amorphous matrix. In this paper, detailed electron microscopic investigations of melt spun Fe-Zr-B-Cu alloys are presented. Melt spun ribbons of Fe 99-x-y Zr x BCu 1 alloys with x+y = 11 and x+y = 13 were prepared under different wheel speed conditions and then vacuum annealed for 1 h at different temperatures. The microstructure changes from completely amorphous to a cellular/dendritic bcc solid solution coexisting with the amorphous phase at intercellular/dendritic regions when Zr/B ratio or the process parameters are varied. Annealing leads to the precipitation of nanocrystalline bcc-Fe phase from both amorphous phase and already existing bcc solid solution. (author)

  16. Machinability of experimental Ti-Ag alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  17. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  18. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  19. ALLOY DESIGN AND PROPERTY EVALUATION OF TI ALLOY ...

    African Journals Online (AJOL)

    eobe

    1,2 DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA, NIGERIA. 2 DEPT ... a result of this structural change, titanium alloys fall ... the phase stability and mechanical behaviours of Ti-.

  20. Effect of processing on the microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ranganathan, S.; Ojha, S.N.

    1993-01-01

    An Al 80 Fe 10 Si 6 alloy has been rapidly solidified using melt spinning, gas atomization and spray forming processes. The effect of processing techniques on the microstructural characteristics of the alloy has ben evaluated. The melt spun alloy has shown an icosahedral quasicrystalline phase surrounded by a rational approximant structure of the icosahedral phase. The rational approximant structure has been identified as a crystalline cubic silicide phase. The atomized powders have exhibited cellular and dendritic morphology depending on the size of particles. In addition, the second phase particles of the silicide phase are observed to decorate the cell boundaries and interdendritic regions. In contrast, the alloy processed by spray deposition has revealed an equiaxed solidification morphology with a uniform dispersion of find silicon phase inside the grain. The origin of the microstructure in the alloy processed by these techniques is discussed. The results are compared wherever possible with the commercially available Al-Fe-V-Si alloys

  1. Microstructure and mechanical properties of a novel rapidly solidified, high-temperature Al-alloy

    Energy Technology Data Exchange (ETDEWEB)

    Overman, N.R., E-mail: Nicole.Overman@pnnl.gov [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Mathaudhu, S.N. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); University of California, Riverside, 3401 Watkins Dr., Riverside, CA 92521 (United States); Choi, J.P.; Roosendaal, T.J.; Pitman, S. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

    2016-02-15

    Rapid solidification (RS) processing, as a production method, offers a variety of unique properties based on far-from-equilibrium microstructures obtained through rapid cooling rates. In this study, we seek to investigate the microstructures and properties of a novel Al-alloy specifically designed for high temperature mechanical stability. Synthesis of, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} (wt.%), was performed by two approaches: rotating cup atomization (“shot”) and melt spinning (“flake”). These methods were chosen because of their ability to produce alloys with tailored microstructures due to their inherent differences in cooling rate. The as-solidified precursor materials were microstructurally characterized with electron microscopy. The results show that the higher cooling rate flake material exhibited the formation of nanocrystalline regions as well additional phase morphologies not seen in the shot material. Secondary dendritic branching in the flake material was on the order of 0.1–0.25 μm whereas branching in the shot material was 0.5–1.0 μm. Consolidated and extruded material from both precursor materials was mechanically evaluated at both ambient and high (300 °C) temperature. The consolidated RS flake material is shown to exhibit higher strengths than the shot material. The ultimate tensile strength of the melt spun flake was reported as 544.2 MPa at room temperature and 298.0 MPa at 300 °C. These results forecast the ability to design alloys and processing approaches with unique non-equilibrium microstructures with robust mechanical properties at elevated temperatures. - Highlights: • A novel alloy, AlFe{sub 11.4}Si{sub 1.8}V{sub 1.6}Mn{sub 0.9} was fabricated by rapid solidification. • Room temperature yield strength exceeded 500 MPa. • Elevated temperature (300 °C) yield strength exceeded 275 MPa. • Forging, after extrusion of the alloy resulted in microstructural coarsening. • Decreased strength and ductility was

  2. Modeling wear of cast Ti alloys.

    Science.gov (United States)

    Chan, Kwai S; Koike, Marie; Okabe, Toru

    2007-05-01

    The wear behavior of Ti-based alloys was analyzed by considering the elastic-plastic fracture of individual alloys in response to the relevant contact stress field. Using the contact stresses as the process driving force, wear was computed as the wear rate or volume loss as a function of hardness and tensile ductility for Ti-based cast alloys containing an alpha, alpha+beta or beta microstructure with or without the intermetallic precipitates. Model predictions indicated that wear of Ti alloys increases with increasing hardness but with decreasing fracture toughness or tensile ductility. The theoretical results are compared with experimental data to elucidate the roles of microstructure in wear and contrasted against those in grindability.

  3. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    Science.gov (United States)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  4. Effect of thermal cycling on the microstructure of a directionally solidified Fe, Cr, Al-TaC eutectic alloy

    Science.gov (United States)

    Harf, F. H.; Tewari, S. N.

    1977-01-01

    Cylindrical bars (1.2 cm diameter) of Fe-13.6Cr-3.7Al-9TaC (wt %) eutectic alloy were directionally solidified in a modified Bridgman type furnace at 1 cm/h. The alloy microstructure consisted of aligned TaC fibers imbedded in a bcc Fe-Cr-Al matrix. Specimens of the alloy were thermally cycled from 1100 to 425 C in a burner rig. The effects of 1800 thermal cycles on the microstructure was examined by scanning electron microscopy, revealing a zig-zag shape of TaC fibers aligned parallel to the growth direction. The mechanism of carbide solution and reprecipitation on the (111) easy growth planes, suggested previously to account for the development of irregular serrations in Co-Cr-Ni matrix alloys, is believed to be responsible for these zig-zag surfaces.

  5. Material characteristic of Ti alloy (Ti-6Al-4V)

    International Nuclear Information System (INIS)

    Toyoshima, Noboru

    1997-03-01

    In regard to material characteristic of Ti alloy (Ti-6Al-4V), the following matters are provided by experiments. 1) In high temperature permeation behavior of implanted deuterium ion (0.5keV, 6.4 x 10 18 D + ions/m 2 s, ∼760deg K), the ratio of permeation flux to incident flux ranges from 3.3 x 10 -3 at 633deg K to 4.8 x 10 -3 at 753deg K. The activation energy of permeation is 0.12eV in this temperature region above 600deg K. At temperatures below 600deg K, the permeation flux of deuterium decreases drastically and the implanted ions remain in the alloy. 2) Radioactivation analysis using 14MeV fast neutron shows that Ti-6Al-4V alloy contains higher values of principal ingredients, Al, V, Fe, than that recorded at the chemical composition of Ti alloy, and also, contains impurities with Ni, Co and Mn. 3) Fraction of about 0.095wt% H 2 were absorbed in the test specimens, and tensile strength test was carried out. Under the condition of the hydrogen pressure 50 torr and temperature ∼500degC. The results show that there is no degradation in mechanical properties for absorption of with less than 0.04wt% H 2 . The tensile strength of wilding specimens have almost the same as that without wilding. Ti alloy, as a material of vacuum vessel of nuclear fusion device, must be selected to that with less impurities, particularly Co, by radioactivation analysis, and must be used under the temperature of 200-300degC, where hydrogen absorption does not make too progress. It is considered that Ti alloy can be used with less than 0.04wt% H 2 absorption in viewpoint of material mechanical strength. (author)

  6. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  7. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  8. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti_3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    International Nuclear Information System (INIS)

    Liu, Hongxi; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-01-01

    High temperature anti-oxidation TiN/Ti_3Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO_2 laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti_3Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti_3Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti_3Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV_0_._2. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti_3Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti_3Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al_2O_3 and TiO_2. The laser cladding TiN/Ti_3Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti_3Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti_3Al intermetallic coating is mainly composed of α-Ti, TiN and Ti_3Al phases. • The

  9. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available Page 307 SMA alloys have been successfully used in several applications including medical, automotive and aerospace as stents, couplings and actuators. The most successful shape memory alloys currently are the NiTi alloys. These are however...

  10. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  11. Prediction of as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal conditions

    International Nuclear Information System (INIS)

    Du, Qiang; Li, Yanjun

    2015-01-01

    In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework. (paper)

  12. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  13. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material.

    Science.gov (United States)

    Gu, X N; Li, X L; Zhou, W R; Cheng, Y; Zheng, Y F

    2010-06-01

    Rapidly solidified (RS) Mg–3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s(-1), 30 m s(-1) and 45 m s(-1) with the as-cast Mg–3Ca alloy ingot as a raw material. The RS45 Mg–3Ca alloy ribbon showed a much more fine grain size feature (approximately 200–500 nm) in comparison to the coarse grain size (50–100 μm)of the original as-cast Mg–3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg–3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds(1.43 mm yr(-1) for RS15, 0.94 mm yr(-1) for RS30 and 0.36 mm yr(-1) for RS45). The RS Mg–3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg–3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg–3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells,whereas the as-cast Mg–3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg–3Ca alloy ribbons than that of the as-cast Mg–3Ca alloy ingot.

  14. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zhou, W R; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Li, X L [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Y, E-mail: yfzheng@pku.edu.c [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2010-06-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s{sup -1}, 30 m s{sup -1} and 45 m s{sup -1}) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 {mu}m) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr{sup -1} for RS15, 0.94 mm yr{sup -1} for RS30 and 0.36 mm yr{sup -1} for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  15. Microstructure, biocorrosion and cytotoxicity evaluations of rapid solidified Mg-3Ca alloy ribbons as a biodegradable material

    International Nuclear Information System (INIS)

    Gu, X N; Zhou, W R; Zheng, Y F; Li, X L; Cheng, Y

    2010-01-01

    Rapidly solidified (RS) Mg-3Ca alloy ribbons were prepared by the melt-spinning technique at different wheel rotating speeds (15 m s -1 , 30 m s -1 and 45 m s -1 ) with the as-cast Mg-3Ca alloy ingot as a raw material. The RS45 Mg-3Ca alloy ribbon showed a much more fine grain size feature (approximately 200-500 nm) in comparison to the coarse grain size (50-100 μm) of the original as-cast Mg-3Ca alloy ingot. The corrosion electrochemical tests in simulated body fluid indicated that the corrosion rate of the as-cast Mg-3Ca alloy was strongly reduced by the RS procedure and tended to be further decreased with increasing wheel rotating speeds (1.43 mm yr -1 for RS15, 0.94 mm yr -1 for RS30 and 0.36 mm yr -1 for RS45). The RS Mg-3Ca alloy ribbons showed more uniform corrosion morphology compared with the as-cast Mg-3Ca alloy after polarization. The cytotoxicity evaluation revealed that the three experimental as-spun Mg-3Ca alloy ribbon extracts did not induce toxicity to the L-929 cells, whereas the as-cast Mg-3Ca alloy ingot extract did. The L-929 cells showed more improved adhesion on the surfaces of the three as-spun Mg-3Ca alloy ribbons than that of the as-cast Mg-3Ca alloy ingot.

  16. Laser polishing of additive manufactured Ti alloys

    Science.gov (United States)

    Ma, C. P.; Guan, Y. C.; Zhou, W.

    2017-06-01

    Laser-based additive manufacturing has attracted much attention as a promising 3D printing method for metallic components in recent years. However, surface roughness of additive manufactured components has been considered as a challenge to achieve high performance. In this work, we demonstrate the capability of fiber laser in polishing rough surface of additive manufactured Ti-based alloys as Ti-6Al-4V and TC11. Both as-received surface and laser-polished surfaces as well as cross-section subsurfaces were analyzed carefully by White-Light Interference, Confocal Microscope, Focus Ion Beam, Scanning Electron Microscopy, Energy Dispersive Spectrometer, and X-ray Diffraction. Results revealed that as-received Ti-based alloys with surface roughness more than 5 μm could be reduce to less than 1 μm through laser polishing process. Moreover, microstructure, microhardness and wear resistance of laser-polished zone was investigated in order to examine the thermal effect of laser polishing processing on the substrate of additive manufactured Ti alloys. This proof-of-concept process has the potential to effectively improve the surface roughness of additive manufactured metallic alloy by local polishing method without damage to the substrate.

  17. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    Science.gov (United States)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  18. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  19. Effect of Al substitution for Ga on the mechanical properties of directional solidified Fe-Ga alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-02-01

    Alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} (x=0, 4.5, 6, 9, 12, 13.5) were prepared by directional solidification technique and exhibited a <001> preferred orientation along the axis of alloy rods. The saturation magnetostriction value of the Fe{sub 82}Ga{sub 13.5}Al{sub 4.5} alloy was 247 ppm under no pre-stress. The tensile properties of alloys of Fe{sub 82}Ga{sub 18−x}Al{sub x} at room temperature were investigated. The results showed that tensile ductility of binary Fe-Ga alloy was significantly improved with Al addition. The fracture elongation of the Fe{sub 82}Ga{sub 18} alloy was only 1.3%, while that of the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy increased up to 16.5%. Addition of Al increased the strength of grain boundary and cleavage, resulting in the enhancement of tensile ductility of the Fe-Ga-Al alloys. Analysis of deformation microstructure showed that a great number of deformation twins formed in the Fe-Ga-Al alloys, which were thought to be the source of serrated yielding in the stress-strain curves. The effect of Al content in the Fe-Ga-Al alloys on tensile ductility was also studied by the analysis of deformation twins. It indicated that the joint effect of slip and twinning was beneficial to obtain the best ductility in the Fe{sub 82}Ga{sub 9}Al{sub 9} alloy. - Highlights: • Tensile ductility of directional solidified Fe-Ga alloys was significantly improved with Al addition. • The fracture elongation of binary Fe{sub 82}Ga{sub 18} alloy was only 1.3% at room temperature. • The fracture elongation of Fe{sub 82}Ga{sub 9}Al{sub 9} alloy was 16.5% at room temperature. • A great number of deformation twins formed in the Fe-Ga-Al alloys during tensile tests at room temperature.

  20. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  1. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  2. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  3. New Developments of Ti-Based Alloys for Biomedical Applications

    Science.gov (United States)

    Li, Yuhua; Yang, Chao; Zhao, Haidong; Qu, Shengguan; Li, Xiaoqiang; Li, Yuanyuan

    2014-01-01

    Ti-based alloys are finding ever-increasing applications in biomaterials due to their excellent mechanical, physical and biological performance. Nowdays, low modulus β-type Ti-based alloys are still being developed. Meanwhile, porous Ti-based alloys are being developed as an alternative orthopedic implant material, as they can provide good biological fixation through bone tissue ingrowth into the porous network. This paper focuses on recent developments of biomedical Ti-based alloys. It can be divided into four main sections. The first section focuses on the fundamental requirements titanium biomaterial should fulfill and its market and application prospects. This section is followed by discussing basic phases, alloying elements and mechanical properties of low modulus β-type Ti-based alloys. Thermal treatment, grain size, texture and properties in Ti-based alloys and their limitations are dicussed in the third section. Finally, the fourth section reviews the influence of microstructural configurations on mechanical properties of porous Ti-based alloys and all known methods for fabricating porous Ti-based alloys. This section also reviews prospects and challenges of porous Ti-based alloys, emphasizing their current status, future opportunities and obstacles for expanded applications. Overall, efforts have been made to reveal the latest scenario of bulk and porous Ti-based materials for biomedical applications. PMID:28788539

  4. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  5. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  6. Mechanical alloying and sitering of TI - 10WT.% MG powders

    CSIR Research Space (South Africa)

    Machio, Christopher N

    2009-06-01

    Full Text Available A Ti-10wt.%Mg powder alloy has been produced by mechanical alloying. Elemental powders of Ti and Mg were ball milled in a Zoz-Simoloyer CM01 for 16 and 20 hours under argon. Mechanical alloying was followed by XRD, SEM and particle size analysis...

  7. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, W., E-mail: witorw@gmail.com [Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Bolfarini, C., E-mail: cbolfa@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Kiminami, C.S., E-mail: kiminami@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil); Botta, W.J., E-mail: wjbotta@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, 13565-905 São Carlos, SP (Brazil)

    2016-12-15

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}, Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8}. The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al{sub 5}Co{sub 2} and Al{sub 13}Co{sub 4} and are quasicrystalline approximants. Although the Al{sub 5}Co{sub 2} phase has already been reported in the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the presence of the monoclinic Al{sub 13}Co{sub 4} is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al{sub 13}Co{sub 4} phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al{sub 71}Co{sub 13}Fe{sub 8}Cr{sub 8} alloy, the compositions Al{sub 77}Co{sub 11}Fe{sub 6}Cr{sub 6} and Al{sub 76}Co{sub 19}Fe{sub 4}Cr{sub 1} were chosen to be within the region of formation of the quaternary extension of the Al{sub 13}Co{sub 4} phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system

  8. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  9. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  10. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  11. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    A direct laser fabrication technique (DLF) has been used to fabricate near net shape samples of a -TiAl alloy using gas atomized Ti48A148Mn2Nb2 alloy powder as a feed stock material. The microstructures of these Ti48Al48Mn2Nb2 laser treated samples have been characterized using optical, scanning (SEM) and ...

  12. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  13. As-cast structure refinement of Ti-46Al alloy by hafnium and boron additions

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-05-01

    Full Text Available The infl uence of Hf and B on the solidifi cation structure of cast Ti-46Al alloys was investigated. The results show that the coupling effect of Hf and B changes the solidifi cation structure morphology and strongly refi nes the grain size. When the Hf+B contents were increased from 0 + 0.0 to 3 + 0.2, 5 + 0.6 and 7 + 1.0 (in at. %, the solidification structure morphology changed from coarse columnar dendrite to fine columnar dendrite, then to equiaxed dendrite, and further to fi ne near granular grain whilst the average grain size decreased to 20 μm. It is concluded that the columnar dendrite refinement is due to the effect of Hf and B on the decrease of Al diffusion coeffi cient in the melt. The fi ne near granular grain formation is attributed to the combined constitutional supercooling formed by Al and B segregation that is strengthened by Hf and B additions at the solid/liquid interface during solidifi cation, and the TiB2 precipitates acting as heterogeneous nuclei

  14. The martensitic transformation in Ti-rich TiNi shape memory alloys

    International Nuclear Information System (INIS)

    Lin, H.C.; Wu, S.K.; Lin, J.C.

    1994-01-01

    The martensitic (Ms) transformation temperatures and their ΔH values of Ti 51 Ni 49 and Ti 50.5 Ni 49.5 alloys are higher than those of equiatomic or Ni-rich TiNi alloys. The Ti-rich TiNi alloys exhibit good shape recovery in spite of a great deal of second phase Ti 2 Ni or Ti 4 Ni 2 O existing around B2 grain boundaries. The nearly identical transformation temperatures indicate that the absorbed oxygen in Ti-rich TiNi alloys may react with Ti 2 Ni particles, instead of the TiNi matrix, to form Ti 4 Ni 2 O. Martensite stabilization can be induced by cold rolling at room temperature. Thermal cycling can depress the transformation temperatures significantly, especially in the initial 20 cycles. The R-phase transformation can be promoted by both cold rolling and thermal cycling in Ti-rich TiNi alloys due to introduced dislocations depressing the Ms temperature. The strengthening effects of cold rolling and thermal cycling on the Ms temperature of Ti-rich TiNi alloys are found to follow the expression Ms = To - KΔσ y . The K values are affected by different strengthening processes and related to the as-annealed transformation temperatures. The higher the as-annealed Ms (or As), the larger the K value. (orig.)

  15. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  16. Irradiation response of rapidly solidified Path A type prime candidate alloys

    International Nuclear Information System (INIS)

    Imeson, E.; Tong, C.; Lee, M.; Vander Sande, J.B.; Harling, O.K.

    1981-01-01

    The objective of this study is to present a first assessment of the microstructural response to neutron irradiation shown by Path A alloys prepared by rapid solidification processing. To more fully demonstrate the potential of the method, alloys with increased titanium and carbon content have been used in addition to the Path A prime candidate alloy

  17. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  18. The influence of Si and V on the kinetics of phase transformation and microstructure of rapidly solidified Al-Fe-Zr alloys

    OpenAIRE

    Karpe B.; Kosec B.; Nagode A.; Bizjak M.

    2013-01-01

    The influence of Si and V on the precipitation kinetics of the rapidly solidified (RS) Al-Fe-Zr alloys is presented. Precipitation kinetics and microstructural development of RS Al-Fe-Zr alloys with Si or V addition have been investigated by the combination of four point electrical resistance measurement, optical microscopy, transmition electron microscopy (TEM) and scanning electron microscopy (SEM). For verification of the electrical resistivity measurement results differential scanni...

  19. Mechanical properties and grindability of experimental Ti-Au alloys.

    Science.gov (United States)

    Takahashi, Masatoshi; Kikuchi, Masafumi; Okuno, Osamu

    2004-06-01

    Experimental Ti-Au alloys (5, 10, 20 and 40 mass% Au) were made. Mechanical properties and grindability of the castings of the Ti-Au alloys were examined. As the concentration of gold increased to 20%, the yield strength and the tensile strength of the Ti-Au alloys became higher without markedly deteriorating their ductility. This higher strength can be explained by the solid-solution strengthening of the a titanium. The Ti-40%Au alloy became brittle because the intermetallic compound Ti3Au precipitated intensively near the grain boundaries. There was no significant difference in the grinding rate and grinding ratio among all the Ti-Au alloys and the pure titanium at any speed.

  20. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.

    Science.gov (United States)

    Wang, Song; Ma, Zheng; Liao, Zhenhua; Song, Jian; Yang, Ke; Liu, Weiqiang

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti-5Cu and Ti-6Al-4V-5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO2 counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti2Cu intermetallic compounds appeared in both Ti-5Cu and Ti-6Al-4V-5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti-5Cu and Ti-6Al-4V-5Cu alloys due to the precipitation of Ti2Cu. The results also indicated that both CP-Ti and Ti-5Cu behaved better wear resistance than Ti-6Al-4V and Ti-6Al-4V-5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti-5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti-6Al-4V and Ti-6Al-4V-5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Hydrogen storage in Ti-Mn-(FeV) BCC alloys

    International Nuclear Information System (INIS)

    Santos, S.F.; Huot, J.

    2009-01-01

    Recently, the replacement of vanadium by the less expensive (FeV) commercial alloy has been investigated in Ti-Cr-V BCC solid solutions and promising results were reported. In the present work, this approach of using (FeV) alloys is adopted to synthesize alloys of the Ti-Mn-V system. Compared to the V-containing alloys, the alloys containing (FeV) have a smaller hydrogen storage capacity but a larger reversible hydrogen storage capacity, which is caused by the increase of the plateau pressure of desorption. Correlations between the structure and the hydrogen storage properties of the alloys are also discussed.

  2. Morphological variants of carbides of solidification origin in the rapidly solidified powder particles of hypereutectic iron alloy

    International Nuclear Information System (INIS)

    Kusy, M.; Grgac, P.; Behulova, M.; Vyrostkova, A.; Miglierini, M.

    2004-01-01

    The paper deals with the analysis of the morphological variants of solidification microstructures and vanadium rich M 4 C 3 carbide phases in the rapidly solidified (RS) powder particles from hypereutectic Fe-C-Cr-V alloy prepared by the nitrogen gas atomisation. Five main types of solidification microstructures were identified in RS particles: microstructure with globular carbides, microstructure with globular and star-like carbides, microstructure with primary carbides in the centres of eutectic colonies, microstructure with eutectic colonies without primary carbides and microstructure with eutectic spherulites. Based on the morphological features of carbide phases and the thermal history of RS particles, the microstructures were divided into two groups - microstructures morphologically affected and non-affected during the post-recalescence period of solidification. Thermophysical reasons for the morphologically different M 4 C 3 carbide phases development in the RS powder particles are discussed

  3. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  4. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sun Tao, E-mail: taosun@hotmail.com.hk [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Institute of Microelectronics, Agency for Science, Technology and Research (A-STAR) (Singapore); Wang Langping, E-mail: aplpwang@hit.edu.cn [State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (China); Wang Min; Tong Howang [Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); Lu, William W. [Department of Orthopedics and Traumatology, University of Hong Kong, Sassoon Road (Hong Kong)

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples. - Highlights: Black-Right-Pointing-Pointer PIIID-formed coatings were fabricated on NiTi SMA to improve its biocompatibility. Black-Right-Pointing-Pointer Microstructure, mechanical properties and biocompatibility of coatings were investigated. Black-Right-Pointing-Pointer All PIIID-formed composite coatings were noncytotoxic and cytocompatible.

  5. Grain refining efficiency of Al-Ti-C alloys

    International Nuclear Information System (INIS)

    Birol, Yuecel

    2006-01-01

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al 3 Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate α-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al 3 Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified

  6. Grain refining efficiency of Al-Ti-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Birol, Yuecel [Materials Institute, Marmara Research Center, TUBITAK, 41470 Gebze, Kocaeli (Turkey)]. E-mail: yucel.birol@mam.gov.tr

    2006-09-28

    The problems associated with boride agglomeration and the poisoning effect of Zr in Zr-bearing alloys have created a big demand for boron-free grain refiners. The potential benefits of TiC as a direct nucleant for aluminium grains have thus generated a great deal of interest in TiC-bearing alloys in recent years. In Al-Ti-C grain refiners commercially available today, Al{sub 3}Ti particles are introduced into the melt along with the TiC particles. Since the latter are claimed to nucleate {alpha}-Al directly, it is of great technological interest to see if reducing the Ti:C ratio further, i.e., increasing the C content of the grain refiner, will produce an increase in the grain refining efficiency of these alloys. A series of grain refiner samples with the Ti concentration fixed at 3% and a range of C contents between 0 and 0.75 were obtained by appropriately mixing an experimental Al-3Ti-0.75C alloy with Al-10Ti alloy and commercial purity aluminium. The grain refining efficiency of these grain refiners was assessed to investigate the role of the insoluble TiC and the soluble Al{sub 3}Ti particles. The optimum chemistry for the Al-Ti-C grain refiners was also identified.

  7. Influence of micro-additions of bismuth on structures, mechanical and electrical transport properties of rapidly solidified Sn-3.5% Ag Alloy from melt

    International Nuclear Information System (INIS)

    El Bahay, M.M.; Mady, H.A.

    2005-01-01

    The present study was undertaken to investigate the influence of the Bi addition in the Sn-3.5 Ag rapidly solidified binary system for use as a Pb-free solder. The resulting properties of the binary system were extended to the Sn based ternary systems Sn 9 6.5-X Ag 3 .5 Bi x (0≤ X ≤ 2.5) solder. The structure and electrical resistivity of rapidly solidified (melt spun) alloys have been investigated. With the addition of up to 2.5 mass % Bi, the melting temperature decreases from 221.1 to 214.8 degree C. Wetting contact angle of the six alloys on Cu Zn 3 0 substrate are carried out at 573 K. Microhardness evaluations were also performed on the Sn-Ag-Bi alloys. The measured values and other researcher's results were compared with the calculated data

  8. Pore structure and mechanical properties of directionally solidified porous aluminum alloys

    Directory of Open Access Journals (Sweden)

    Komissarchuk Olga

    2014-01-01

    Full Text Available Porous aluminum alloys produced by the metal-gas eutectic method or GASAR process need to be performed under a certain pressure of hydrogen, and to carry over melt to a tailor-made apparatus that ensures directional solidification. Hydrogen is driven out of the melt, and then the quasi-cylindrical pores normal to the solidification front are usually formed. In the research, the effects of processing parameters (saturation pressure, solidification pressure, temperature, and holding time on the pore structure and porosity of porous aluminum alloys were analyzed. The mechanical properties of Al-Mg alloys were studied by the compressive tests, and the advantages of the porous structure were indicated. By using the GASAR method, pure aluminum, Al-3wt.%Mg, Al-6wt.%Mg and Al-35wt.%Mg alloys with oriented pores have been successfully produced under processing conditions of varying gas pressure, and the relationship between the final pore structure and the solidification pressure, as well as the influences of Mg quantity on the pore size, porosity and mechanical properties of Al-Mg alloy were investigated. The results show that a higher pressure of solidification tends to yield smaller pores in aluminum and its alloys. In the case of Al-Mg alloys, it was proved that with the increasing of Mg amount, the mechanical properties of the alloys sharply deteriorate. However, since Al-3%Mg and Al-6wt.%Mg alloys are ductile metals, their porous samples have greater compressive strength than that of the dense samples due to the existence of pores. It gives the opportunity to use them in industry at the same conditions as dense alloys with savings in weight and material consumption.

  9. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  10. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  11. Structure and grindability of dental Ti-Cr alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Chiang, T.-Y.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure and microhardness of a series of binary Ti-Cr alloys with Cr contents up to 30 wt%. In addition, the grindability was also evaluated using an electric dental handpiece with SiC wheels, with the goal of developing a titanium alloy with better mechanical properties and machinability than commercially pure titanium (c.p. Ti), a metal generally considered to be difficult to machine. This study evaluated the phase and structure of Ti-Cr alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min. Results indicated that the structure of Ti-Cr alloys is sensitive to the Cr content. The cast c.p. Ti has a hexagonal α phase. With 5 wt% Cr, metastable β phase starts to be retained. With Cr contents higher than 10 wt%, the equi-axed β phase is almost entirely retained. In addition, athermal ω phase was found in the Ti-5Cr and Ti-10Cr alloys. The largest quantity of ω phase and highest microhardness were found in Ti-10Cr alloy. The grinding rate of the Ti-Cr alloys showed a similar tendency to the microhardness. The Ti-10Cr alloy exhibited the best grindability, especially at 1000 m/min, which presumably due to the brittle nature of the alloy containing the ω phase in the β matrix.

  12. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.

    1987-01-01

    The abrasive wear of machine parts and tools used in the mining, earth moving, and transporting of mineral materials can be lowered by filler wire welding of hardfacing alloys. In this paper, the microstructures of Fe-Cr-C and Fe-Cr-C-Nb/Ti hardfacing alloys and deposits and those of newly developed Fe-Cr-C-B and Fe-Ti-Cr-C-B ones are described. They show up to 85 vol.% of primarily solidified coarse hard phases; i.e., Carbides of MC-, M/sub 7/C/sub 3/-, M/sub 3/C-type and Borides of MB/sub 2/-, M/sub 3/B/sub 2/-, M/sub 2/B-, M/sub 3/B-, M/sub 23/B/sub 6/-type, which are embedded in a hard eutectic. This itself consists of eutectic hard phases and a martensitic or austenitic metal matrix. The newly developed Fe-Cr-C-B alloys reach hardness values of up to 1200 HV and are harder than all purchased ones. The primary solidification of the MB/sub 2/-type phase of titanium requires such high amounts of titanium and boron that these alloys are not practical for manufacture as commercial filler wires

  13. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  14. Microstructure and magnetic properties of rapidly solidified nanocrystalline Fe81Zr7B12 alloy

    International Nuclear Information System (INIS)

    Xiong, X.Y.; Muddle, B.C.; Finlayson, T.R.

    2000-01-01

    Full text: Nanocrystalline Fe-Zr-B alloys have aroused extensive research interest due to their high saturation magnetization. There have been several studies [Suzuki et al., 1994; Kim et al., 1994] of the effect of boron on the formation of nanocrystalline structure and magnetic properties, showing that the addition of boron to Fe-Zr alloys improves the glass-forming ability and refines the primary bcc α-Fe grains during crystallization. However, when the boron content is increased to 8 at.%, the magnetic permeability is observed to decrease. There has been no detailed work to date concerning the microstructural evolution and magnetic properties in those alloys with higher boron content

  15. Electrical resistivity of V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Gubbi, A.N.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Room temperature electrical resistivity measurements have been performed on vanadium alloys containing 3-6%Cr and 3-6%Ti in order to evaluate the microstructural stability of these alloys. A nonlinear dependence on Cr and Ti concentration was observed, which suggests that either short range ordering or solute precipitation (perhaps in concert with interstitial solute clustering) has occurred in V-6Cr-6Ti.

  16. Modeling of TiAl Alloy Grating by Investment Casting

    OpenAIRE

    Yi Jia; Shulong Xiao; Jing Tian; Lijuan Xu; Yuyong Chen

    2015-01-01

    The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experimen...

  17. Design of high-temperature high-strength Al-Ti-V-Zr alloys

    International Nuclear Information System (INIS)

    Lee, H.M.

    1990-01-01

    This paper reports that it seems plausible to develop high-strength Al-base alloys useful up to 698K in view of the behavior of nickel base superalloys which resist degradation of mechanical properties to 75 pct of their absolute melting temperature. For high temperature Al alloys, the dispersed hardening phase must not undergo phase transformation to an undesirable phase during long time exposure at the temperature of interest. An additional factor to be considered is the stability of the hardening phase with respect to Ostwald ripening. This coarsening resistance is necessary so that the required strength level can be maintained after the long-time service at high temperatures. The equilibrium crystal structures of Al 3 Ti, Al 3 V and Al 3 Zr are tetragonal D0 22 , D0 22 and D0 23 , respectively. At the temperatures of interest, around 698K, vanadium and titanium are mutually substitutable in the form of Al 3 (Ti, V). Much of titanium and vanadium can be substituted for zirconium in the D0 23 - type Al 3 Zr compound, creating Al 3 (Ti, Zr) and Al 3 (V, Zr), respectively. In particular, it has been reported that fcc L1 2 -structured Al 3 M dispersoids form in the rapidly solidified Al-V-Zr and Al-Ti-Zr systems and both L1 2 and D0 23 -structured Al 3 M phases showed slow coarsening kinetics

  18. Method of treating Ti--Nb--Zr--Ta superconducting alloys

    International Nuclear Information System (INIS)

    Horiuchi, T.; Monju, Y.; Tatara, I.; Nagai, N.; Hisata, M.; Matsumoto, K.

    1975-01-01

    A superconducting alloy is formulated from 10 to 50 at. percent Ti, 20 to 50 at. percent Nb, 10 to 40 at. percent Zr, and 5 to 12 at. percent Ta. A Ti--Nb--Zr--Ta superconducting alloy with a fine, non-homogeneous structure is obtained by forming a β solid solution of Ti--Nb--Zr--Ta alloy by heating to a temperature within the β solid solution range, cooling, and then cold working the heated alloy. The cold worked alloy is heated to a temperature within the (β' + β'') alloy to maintain the peritectoid structure, cold worked, then heated to a temperature within the eutectoid range to form a multiphase alloy structure and then cooled and finally cold worked. (U.S.)

  19. Experimental study of directionally solidified ferromagnetic shape memory alloy under multi-field coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com [Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China); Chen, Tao; Teng, Yao [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Liu, Bingfei [Airport College, Civil Aviation University of China, Tianjin 300300 (China); Xue, Lijun [Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2016-11-01

    Directionally solidified, polycrystalline Ni–Mn–Ga is studied in this paper. The polycrystalline Ni–Mn–Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading–unloading cycle were measured. The experimental results show that the mechanical behavior during the loading–unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications. - Highlights: • The magnetic-induced strains in different directions are tested. • The temperature-induced strains in different directions are tested. • The effects of coupling factors on directional solidification samples are studied.

  20. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  1. Grindability of cast Ti-Hf alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  2. HRTEM characterization of melt-spun Al-Si-Cu-Mg alloys solidified at different rates

    International Nuclear Information System (INIS)

    Alfonso, Ismeli; Maldonado, Cuauhtemoc; Medina, Ariosto; Gonzalez, Gonzalo; Bejar, Luis

    2006-01-01

    Six quaternary alloys Al-6Si-3Cu-xMg (x = 0.59, 3.80 and 6.78 wt.%) were produced by melt spinning using two different tangential speeds of the copper wheel (30 and 45 ms -1 ), and characterized using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness. At 30 ms -1 , XRD and TEM investigations revealed the presence of Al 2 Cu (θ) for the alloy with 0.59%Mg and Al 5 Cu 2 Mg 8 Si 6 (Q) for the alloys with 3.80 and 6.78%Mg. The increase in microhardness of the alloys with higher Mg content is attributed to the presence of nanosized a-Al particles and a higher content of Q nanoparticles. At 45 ms -1 the alloying element content in solid solution is increased due to the fact that the quantity of free second phases (θ and Q nanoparticles) has decreased. For this rotation speed, amorphous regions of α -Al were observed, increasing microhardness compared to the 30 ms -1 ribbons

  3. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.

    Science.gov (United States)

    V V, Anusha Thampi; Bendavid, Avi; Martin, P J; Vaithilingam, Vijay; Bean, Penelope A; Evans, Margaret D M; Subramanian, B

    2017-07-01

    Surface modifications of metallic implants are important in order to protect the underlying metals from the harsh corrosive environment inside the human body and to minimize the losses caused by wear. Recently, researches are carried out in developing bioactive surfaces on metallic implants, which supports the growth and proliferation of cells on to these surfaces. Titanium silicon nitride (TiSiN) hard nanocomposites thin films were fabricated on Ti alloys (Ti-6Al-4V) by pulsed direct current (DC) reactive magnetron sputtering. The films were characterized for its microstructural and electrochemical behavior. The higher charge transfer resistance (Rct) and positive shift in Ecorr value of TiSiN/Ti alloys than the bare Ti-alloys indicates a better corrosion resistance offered by the TiSiN thin films to the underlying substrates. The biological response to TiSiN/Ti alloys and control bare Ti-alloys was measured in vitro using cell-based assays with two main outcomes. Firstly, neither the Ti alloy nor the TiSiN thin film was cytotoxic to cells. Secondly, the TiSiN thin film promoted differentiation of human bone cells above the bare control Ti alloy as measured by alkaline phosphatase and calcium production. TiSiN thin films provide better corrosion resistance and protect the underlying metal from the corrosive environment. The thin film surface is both biocompatible and bioactive as indicated from the cytotoxicity and biomineralization studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Lamellar boundary alignment of DS-processed TiAl-W alloys by a solidification procedure

    Science.gov (United States)

    Jung, In-Soo; Oh, Myung-Hoon; Park, No-Jin; Kumar, K. Sharvan; Wee, Dang-Moon

    2007-12-01

    In this study, a β solidification procedure was used to align the lamellae in a Ti-47Al-2W (at.%) alloy parallel to the growth direction. The Bridgman technique and the floating zone process were used for directional solidification. The mechanical properties of the directionally solidified alloy were evaluated in tension at room temperature and at 800°C. At a growth rate of 30 mm/h (with the floating zone approach), the lamellae were well aligned parallel to the growth direction. The aligned lamellae yielded excellent room temperature tensile ductility. The tensile yield strength at 800°C was similar to that at room temperature. The orientation of the γ lamellar laths in the directionally solidified ingots, which were manufactured by means of a floating zone process, was identified with the aid of electron backscattered diffraction analysis. On the basis of this analysis, the preferred growth direction of the bcc-β dendrites that formed at high temperatures close to the melting point was inferred to be [001]β at a growth rate of 30 mm/h and [111]β at a growth rate of 90 mm/h.

  5. Thermal and microstructural analysis of an aluminium A356 alloy solidified by magnetic agitation

    International Nuclear Information System (INIS)

    Bustos, O; Ordonez, S; Jarami, Dario; Colas, R

    2008-01-01

    A magnetic agitation device was designed using a permanently rotating magnetic field, in order to study the effect of applying a variable magnetic field to agitate cast metals during the solidification process. The procedure used to verify the machine's functioning involved smelting and casting a predefined amount of A356 alloy in the device with and without the application of the magnetic field and then characterizing the material obtained with standard procedures of metallographic analysis. The results obtained show that the application of a permanently rotating magnetic field produces a destruction of the cast dendritic structure. This is explained by the fact that a magnetic field that varies over time induces a f.e.m. in a fluid conductor that becomes an increased convective transport through the Lorentz force. This work also studied the kinetics of solidification. The alloy was heated to 680 o C and was cast in molds preheated to 200 o C. Tests were carried out with and without the application of magnetic agitation. The cooling curves were recorded to evaluate the effect of the magnetic agitation on the alloy's form of solidification. The thermal analysis of the cooling curves shows a decrease in the temperatures under which the formation of dendrites from the primary phase as well as from the eutectic Al-Si phase begins when a magnetic field is imposed. A series of intermetallic AlFeSi type compounds appear in these alloys, which display noticeable refining and redistribution from the magnetic agitation (au)

  6. Elevated temperature mechanical properties of a rapidly solidified A1-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Mitra, S.

    1992-01-01

    Dispersion strengthened Al alloys based on the Al-Fe-V-Si quartenary system have recently been developed using rapid solidification techniques. Rapid solidification techniques which resulted in the above mentioned alloys have also been used to manufacture another commercial alloy, FVS 1212, with 37 volume % of dispersoid. The alloy has shown excellent resistance to coarsening at high temperatures and to creep deformation. Elevated temperature exposure of FVS 1212, for times up to 100 hours, resulted in a significant loss in room temperature mechanical properties only beyond 500 degrees C while 1000 hours at 425 degrees C did not result in any degradation of mechanical but no detailed study of the tensile behavior of FVS 1212 at slow strain rates and elevated temperatures has been reported to date. This paper reports that the present study was undertaken to investigate the tensile behavior of FVS 1212 from room temperature to 400 degrees C at strain rates of 6.56 x 10 - 5/sec and 6.56 x 10 -6 /sec. The study focussed on dynamic strain aging effects and strain hardening behavior, while the effect of strain rate on the flow behavior at elevated temperatures was also evaluated

  7. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  8. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  9. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  10. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  11. Sulfide phase in the Fe-Ti-S and Fe-C-Ti-S alloys

    International Nuclear Information System (INIS)

    Malinochka, Ya.N.; Balakina, N.A.; Shmelev, Yu.S.

    1976-01-01

    The nature of the sulfide phases in Fe-Ti-S and Fe-C-Ti-S alloys was studied. The carbide and the sulfide phase were identified the aid of X-ray spectral microanalysis. It was established that for a small content of titanium and sulfur in ternary Fe-Ti-S alloys the solidification of the γ-solution on the boundaries of dendritic branches is accompanied, along with the precipitation of a sulfide rich in iron of the (Fe, Ti) S type where a small quantity of titanium is dissolved, by the formation of a titanium-bearing sulfide eutectic γ + TiS. The amount of the sulfide eutectic increases with the contents of titanium and sulfur until a purely eutectic alloy is formed. Both carbides and sulfides may be formed in the solidification of quaternary alloys Fe-C-Ti-S

  12. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  13. Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    FANG Zhi-hao

    2017-12-01

    Full Text Available The AZ91D magnesium alloy samples were scanned by millisecond pulse Nd:YAG laser under high pure argon protection. The surface morphology, microstructure and composition of the treated magnesium alloy were studied by X-ray diffraction, optical microscopy, scanning electron microscopy, atomic force microscopy. In addition, the corrosion surface which was corroded using simulated body fluid and the mass fraction of 3.5%NaCl solution was observed and material corrosion rate was calculated. The results show that, at the same corrosion time, compared with the untreated samples, the surface corrosion resistance is improved by the enrichment of Al at the irradiated surface by the joint effect of the combination of refined homogeneous microstructure of α-Mg phase and β-Mg17Al12 phase and the selective vaporization and the chemical composition of base metal in the laser-treated AZ91D alloy; the solidification equation is obtained by calculating the relation between the size of the dendrite cell and the cooling rate in laser melting zone.

  14. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti{sub 3}Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com; Zhang, Xiaowei; Jiang, Yehua; Zhou, Rong

    2016-06-15

    High temperature anti-oxidation TiN/Ti{sub 3}Al intermetallic composite coatings were fabricated with the powder and AlN powder on Ti6Al4V titanium alloy surface by 6 kW transverse-flow CO{sub 2} laser apparatus. The chemical composition, morphology and microstructure of the TiN/Ti{sub 3}Al composite coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high temperature oxidation resistance of TiN/Ti{sub 3}Al coating, the isothermal oxidation test was performed in a high temperature resistance furnace at 600 °C and 800 °C, respectively. The result shows that the composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like or dendrites), with an even distribution in Ti{sub 3}Al matrix. It indicates that a physical and chemical reaction between Ti powder and AlN powder has completely occurred under the laser irradiation condition. In addition, the microhardness of the TiN/Ti3Al intermetallic composite coating is 3.4 times higher than that of the Ti6Al4V alloy substrate and reaches 844 HV{sub 0.2}. The high temperature oxidation behavior test reveals that the high temperature oxidation resistance of TiN/Ti{sub 3}Al composite coating is much better than that of titanium alloy substrate. The excellent high temperature oxidation resistance of TiN/Ti{sub 3}Al intermetallic composite coating is attributed to the formation of reinforced phases TiN, Al{sub 2}O{sub 3} and TiO{sub 2}. The laser cladding TiN/Ti{sub 3}Al intermetallic composite coating is anticipated to be a promising high temperature oxidation resistance coating for Ti6Al4V alloy. - Highlights: • In-situ TiN/Ti{sub 3}Al composite coating was synthesized on Ti6Al4V alloy by laser cladding. • The influence of Ti and AlN molar ratio on the microstructure of the coating was studied. • The TiN/Ti{sub 3}Al intermetallic

  15. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy

    International Nuclear Information System (INIS)

    Matsuda, M.; Ii, S.; Kawamura, Y.; Ikuhara, Y.; Nishida, M.

    2005-01-01

    The long-period stacking order (LPSO) structures in rapidly solidified Mg 97 Zn 1 Y 2 alloy have been studied by conventional and high-resolution transmission electron microscopes (HRTEMs). There are four kinds of stacking sequences in the LPSO structures, i.e., 18R of ABABABCACACABCBCBC, 14H of ACBCBABABABCBC, 10H of ABACBCBCAB and 24R of ABABABABCACACACABCBCBCBC. The 18R structure is dominantly observed in the present study. The rest three are occasionally observed in places. The 10H and 24R structures are recently discovered. The lattice constants of 18R(1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 , 14H(2-bar -bar 1-bar 2-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2-bar 1-bar -bar 2), 10H(1-bar 3-bar -bar 1-bar 1-bar -bar 3-bar 1-bar ) and 24R(1-bar 1-bar -bar 1-bar 1-bar -bar 1-bar 1-bar -bar 2) 3 structures are estimated to be a=0.320nm and c=4.678nm, a=0.325nm and c=3.694nm, a=0.325nm and c=2.603nm, a=0.322nm and c=6.181nm for the hexagonal structure, respectively

  16. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  17. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  18. Effect of a high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys

    International Nuclear Information System (INIS)

    Li, Xi; Gagnoud, Annie; Wang, Jiang; Li, Xiaolong; Fautrelle, Yves; Ren, Zhongming; Lu, Xionggang; Reinhart, Guillaume; Nguyen-Thi, Henri

    2014-01-01

    The effect of an axial high magnetic field on the microstructures in directionally solidified Zn–Cu peritectic alloys was investigated. The experimental results indicated that the magnetic field induced the destabilization of the liquid–solid interface and the formation of a band-like structure. The magnetic field also caused the disruption of the columnar η-Zn and ε-Zn 5 Cu dendrites. As the applied magnetic field increased, the columnar-to-equiaxed transition occurred, and the size of the equiaxed grains gradually decreased. The magnetic effects, the magnetic moment and the thermoelectric magnetic effects during the directional solidification of Zn–Cu peritectic alloys under an axial magnetic field were studied. Regular ε-Zn 5 Cu hexagons appeared on the transverse section of the sample fabricated with a high magnetic field (i.e. 16 T). In addition, electron backscatter diffraction analysis revealed that the 〈0 0 0 1〉-crystal direction of the Zn 5 Cu crystal is not only its easy magnetization direction but also its preferred growth direction. The thermoelectric magnetic effects were numerically simulated. The results indicated that a thermoelectric magnetic force acts on the solid near the liquid–solid interface and increases linearly with an increase in the magnetic field. As the effect of the magnetic moment arising from the magnetic crystalline anisotropy is eliminated, the thermoelectric magnetic effect has a substantial effect on the solidification structure. Therefore, the destabilization of the liquid–solid interface and the disruption of the dendrites during directional solidification under the magnetic field are primarily due to the thermoelectric magnetic force acting on the solid

  19. Microstructures and mechanical properties of grain refined Al-Li-Mg casting alloy by containing Zr and Ti

    International Nuclear Information System (INIS)

    Saikawa, Seiji; Nakai, Kiyoshi; Sugiura, Yasuo; Kamio, Akihiko.

    1995-01-01

    Mechanical properties and microstructures of various Al-Li-Mg alloy castings containing small amount of Zr and/or Ti were investigated. The δ(AlLi) phase was observed to crystallize in the dendrite-cell gaps as well as on the grain boundaries. Microsegregation of Mg also occurred in the solidified castings. The β(Al 3 Zr) or Al-Zr-Ti compounds crystallize during solidification and remain even after solid solution treatment at 803 K for 36 ks. The grain sizes of Al-2.5%Li-2%Mg alloy castings become finer by the addition of 0.15%Zr and 0.12%Ti compared with each addition of 0.15%Zr or 0.12%Ti. The age hardening is accelerated by the addition of 0.15%Zr. In an Al-2.5%Li-2%Mg-0.15%Zr-0.12%Ti alloy casting poured into a metallic mold and aged at 453 K for 36 ks, ultimate tensile strength, Young's modulus and density were 417 MPa, 80 GPa and was 2.52 g/cm 3 , respectively. Its specific strength and modulus are higher by 50.3 and 13.9% than those of the conventional AC4C-T6 casting. (author)

  20. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy

    Science.gov (United States)

    Li, Zongbin; Hu, Wei; Chen, Fenghua; Zhang, Mingang; Li, Zhenzhuang; Yang, Bo; Zhao, Xiang; Zuo, Liang

    2018-04-01

    Polycrystalline Ni44.5Co5.1Mn37.1In13.3 alloy with coarse columnar-shaped grains and 〈0 0 1〉A preferred orientation was prepared by directional solidification. Due to the strong magnetostructural coupling, inverse martensitic transformation can be induced by the magnetic field, resulting in large negative magnetoresistance up to -58% under the field of 3 T. Such significant field controlled functional behaviors should be attributed to the coarse grains and strong preferred orientation in the directionally solidified alloy.

  1. Rapidly solidified prealloyed powders by laser spin atomization

    Science.gov (United States)

    Konitzer, D. G.; Walters, K. W.; Heiser, E. L.; Fraser, H. L.

    1984-01-01

    A new technique, termed laser spin atomization, for the production of rapidly solidified prealloyed powders is described. The results of experiments involving the production of powders of two alloys, one based on Ni, the other on Ti, are presented. The powders have been characterized using light optical metallography, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Auger elec-tron spectroscopy, and these various observations are described.

  2. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  3. Surface of Ti-Ni alloys after their preparation

    International Nuclear Information System (INIS)

    Saldan, I.; Frenzel, J.; Shekhah, O.; Chelmowski, R.; Birkner, A.; Woell, Ch.

    2009-01-01

    The Ti 3.87 Ni 1.73 Fe 0.7 O 0.3, Ti 3.87 Ni 1.73 Fe 0.4 N 0.3 and Ti 3.87 Ni 1.73 Fe 0.4 C 0.3 alloys were investigated regarding their surface characteristics. The scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used for phase characterization. The X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical composition of alloy surface. The atomic force microscopy (AFM) to observe alloy surface topography after cutting and electrochemical polishing separately has been done. The transmission electron microscopy (TEM) with X-ray diffraction was carried out to get a high contrast images and the diffraction pattern from alloy surface. The results clearly shown, that all alloys were multiphase, and their surface was totally oxidized with no pure metals

  4. Modeling of TiAl Alloy Grating by Investment Casting

    Directory of Open Access Journals (Sweden)

    Yi Jia

    2015-12-01

    Full Text Available The investment casting of TiAl alloys has become the most promising cost-effective technique for manufacturing TiAl components. This study aimed to investigate a series of problems associated with the investment casting of TiAl alloys. The mold filling and solidification of this casting model were numerically simulated using ProCAST. Shrinkage porosity was quantitatively predicted by a built-in feeding criterion. The results obtained from the numerical simulations were compared with experiments, which were carried out on Vacuum Skull Furnace using an investment block mold. The investment casting of TiAl grating was conducted for verifying the correctness and feasibility of the proposed method. The tensile test results indicated that, at room temperature, the tensile strength and elongation were approximately 675 MPa and 1.7%, respectively. The microstructure and mechanical property of the investment cast TiAl alloy were discussed.

  5. Microstructure and martensitic transformation of Ni-Ti-Pr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunwang [Inner Mongolia University of Technology, College of Science, Hohhot (China); Shanghai Maritime University, College of Arts and Sciences, Shanghai (China); Zhao, Shilei; Jin, Yongjun; Hou, Qingyu [Inner Mongolia University of Technology, College of Science, Hohhot (China); Guo, Shaoqiang [Beihang University, Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), Department of Physics, Beijing (China)

    2017-09-15

    The effect of Pr addition on the microstructure and martensitic transformation behavior of Ni{sub 50}Ti{sub 50-x}Pr{sub x} (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) alloys were investigated experimentally. Results show that the microstructures of Ni-Ti-Pr alloys consist of the NiTi matrix and the NiPr precipitate with the Ti solute. The martensitic transformation start temperature decreases gradually with the increase in Pr fraction. The stress around NiPr precipitates is responsible for the decrease in martensitic transformation temperature with the increase in Pr fraction in Ni-Ti-Pr alloys. (orig.)

  6. High-temperature deformation behavior and mechanical properties of rapidly solidified Al-Li-Co and Al-Li-Zr alloys

    International Nuclear Information System (INIS)

    Sastry, S.M.L.; Oneal, J.E.

    1984-01-01

    The deformation behavior at 25-300 C of rapidly solidified Al-3Li-0.6Co and Al-3Li-0.3Zr alloys was studied by tensile property measurements and transmission electron microscopic examination of dislocation substructures. In binary Al-3Li and Al-3Li-Co alloys, the modulus normalized yield stress increases with an increase in temperature up to 150 C and then decreases. The yield stress at 25 C of Al-3Li-0.3Zr alloys is 180-200 MPa higher than that of Al-3Li alloys. However, the yield stress of the Zr-containing alloy decreases drastically with increasing temperatures above 75 C. The short-term yield stresses at 100-200 C of the Al-3Li-based alloys are higher than that of the conventional high-temperature Al alloys. The temperature dependences of the flow stresses of the alloys were analyzed in terms of the magnitudes and temperature dependences of the various strengthening contributions in the two alloys. The dislocation substructures at 25-300 C were correlated with mechanical properties. 19 references

  7. Effect of Ti solute on the recovery of cold-rolled V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Munoz, A.; Pareja, R.

    1999-01-01

    The recovery characteristics of cold-rolled pure V and V-Ti alloys with compositions of 0.3, 1 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. The recovery is accomplished in two stages. Fifty percent cold rolling induces the formation of microvoids in V-0.3Ti and V-1Ti but not in V-4.5Ti. The first recovery stage in pure V, V-0.3Ti and V-1Ti starts with the dissolution of microvoids. The recovery curves of the annihilation parameters for the alloys indicate the formation of Ti-rich precipitates during the first recovery stage. These precipitates act as very efficient vacancy sinks. The second recovery stage starting for annealing temperatures above ≅1150 K is attributed to annealing of vacancies associated to the precipitates. (orig.)

  8. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  9. Thermal conductivity of Cu–4.5 Ti alloy

    Indian Academy of Sciences (India)

    The thermal conductivity (TC) of peak aged Cu–4.5 wt% Ti alloy was measured at different temperatures and studied its variation with temperature. It was found that TC increased with increasing temperature. Phonon and electronic components of thermal conductivity were computed from the results. The alloy exhibits an ...

  10. Early stages of the mechanical alloying of TiC–TiN powder mixtures

    International Nuclear Information System (INIS)

    Mura, Giovanna; Musu, Elodia; Delogu, Francesco

    2013-01-01

    The present work focuses on the alloying behavior of TiC–TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: ► Mechanically processed TiC–TiN powder mixtures form two solid solutions. ► An analytical model was developed to describe the mechanical alloying kinetics. ► The amount of powder alloyed at collision was indirectly estimated. ► A few nanomoles of material participate in the alloying process at each collision. ► The chemical composition of the solid solutions was shown to change discontinuously.

  11. Early stages of the mechanical alloying of TiC-TiN powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Mura, Giovanna [Dipartimento di Ingegneria Elettrica ed Elettronica, Universita degli Studi di Cagliari, via Marengo 2, 09123 Cagliari (Italy); Musu, Elodia [Industrial Telemicroscopy Laboratory, Sardegna Ricerche, Polaris, Technology Park of Sardinia, Edificio 3, Loc. Piscinamanna, 09010 Pula (Italy); Delogu, Francesco, E-mail: francesco.delogu@dimcm.unica.it [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Universita degli Studi di Cagliari, via Marengo 2, I-09123 Cagliari (Italy)

    2013-01-15

    The present work focuses on the alloying behavior of TiC-TiN powder mixtures submitted to mechanical processing by ball milling. Accurate X-ray diffraction analyses indicate a progressive modification of the unit cell parameters of the TiC and TiN phases, suggesting the formation of TiC- and TiN-rich solid solutions with an increasingly larger content of solutes. Once the discrete character of the mechanical treatment is taken into due account, the smooth change of the unit cell parameters can be explained by a sequence of mutual dissolution stages related to individual collisions. At each collision, the average chemical composition of small amounts of TiC- and TiN-rich phases changes discontinuously. The discontinuous changes can be tentatively ascribed to local mass transport processes activated by the mechanical deformation of powders at collisions. -- Highlights: Black-Right-Pointing-Pointer Mechanically processed TiC-TiN powder mixtures form two solid solutions. Black-Right-Pointing-Pointer An analytical model was developed to describe the mechanical alloying kinetics. Black-Right-Pointing-Pointer The amount of powder alloyed at collision was indirectly estimated. Black-Right-Pointing-Pointer A few nanomoles of material participate in the alloying process at each collision. Black-Right-Pointing-Pointer The chemical composition of the solid solutions was shown to change discontinuously.

  12. Effect of Bi-content on hardness and micro-creep behavior of Sn-3.5Ag rapidly solidified alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M. [Metal Physics Laboratory, Faculty of Science, Mansoura University (Egypt); Gouda, El Said [Metal Physics Laboratory, Department of Solid State Physics, Physics Division, National Research Center, Dokki, Giza (Egypt); Marei, L.K. [Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2009-12-15

    In the present paper, the influence of 1, 3, 5 and 10 % Bi (weight %) as ternary additions on structure, melting and mechanical properties of rapidly solidified Sn-3.5Ag alloy has been investigated. The effect of Bi was discussed based on the experimental results. The experimental results showed that the alloys of Sn-3.5Ag, Sn-3.5Ag-1Bi and Sn-3.5Ag-3Bi are composed of two phases; Ag{sub 3}Sn IMC embedded in Sn matrix phase, which indicated that the solubility of Bi phase in Sn-matrix was extended to 3 % as a result of rapid solidification. Bi precipitation in Sn matrix was only observed in Sn-3.5Ag-5Bi and Sn-3.5Ag-10Bi alloys. Also, addition of Bi decreased continuously the melting point of the eutectic Sn-3.5Ag alloy to 202.6 C at 10 % Bi. Vickers hardness of Sn-3.5Ag rapidly solidified alloy increased with increasing Bi content up to 3 % due to supersaturated solid solution strengthening hardening mechanism of Bi phase in Sn matrix, while the alloys contain 5 and 10 % Bi exhibited lower values of Vickers hardness. The lower values can be attributed to the precipitation of Bi as a secondary phase which may form strained regions due to the embrittlement of Bi atom. In addition, the effect of Bi addition on the micro-creep behavior of Sn-3.5Ag alloy as well as the creep rate have been described and has been calculated at room temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Grindability of dental cast Ti-Ag and Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okabe, Toru; Okuno, Osamu

    2003-06-01

    Experimental Ti-Ag alloys (5, 10, and 20 mass% Ag) and Ti-Cu alloys (2, 5, and 10 mass% Cu) were cast into magnesia molds using a dental casting machine, and their grindability was investigated. At the lowest grinding speed (500 m min(-1)), there were no statistical differences among the grindability values of the titanium and titanium alloys. The grindability of the alloys increased as the grinding speed increased. At the highest grinding speed (1500 m x min(-1)), the grindability of the 20% Ag, 5% Cu, and 10% Cu alloys was significantly higher than that of titanium. It was found that alloying with silver or copper improved the grindability of titanium, particularly at a high speed. It appeared that the decrease in elongation caused by the precipitation of small amounts of intermetallic compounds primarily contributed to the favorable grindability of the experimental alloys.

  14. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures

    International Nuclear Information System (INIS)

    Klein, T.; Usategui, L.; Rashkova, B.; Nó, M.L.; San Juan, J.; Clemens, H.; Mayer, S.

    2017-01-01

    Advanced intermetallic γ-TiAl based alloys, which solidify via the disordered β phase, such as the TNM"+ alloy, are considered as most promising candidates for structural applications at high temperatures in aero and automotive industries, where they are applied increasingly. Particularly creep resistant microstructures required for high-temperature application, i.e. fine fully lamellar microstructures, can be attained via two-step heat-treatments. Thereby, an increasing creep resistance is observed with decreasing lamellar interface spacing. Once lamellar structures reach nano-scaled dimensions, deformation mechanisms are altered dramatically. Hence, this study deals with a detailed characterization of the elevated temperature deformation phenomena prevailing in nano-lamellar TiAl alloys by the use of tensile creep experiments and mechanical spectroscopy. Upon creep exposure, microstructural changes occur in the lamellar structure, which are analyzed by the comparative utilization of X-ray diffraction, scanning and transmission electron microscopy as well as atom probe tomography. Creep activation parameters determined by mechanical characterization suggest the dominance of dislocation climb by a jog-pair formation process. The dislocations involved in deformation are, in nano-lamellar TiAl alloys, situated at the lamellar interfaces. During creep exposure the precipitation of β_o phase and ζ-silicide particles is observed emanating from the α_2 phase, which is due to the accumulation of Mo and Si at lamellar interfaces.

  15. Nanotubular surface and morphology of Ti-binary and Ti-ternary alloys for biocompatibility

    International Nuclear Information System (INIS)

    Choe, Han-Cheol

    2011-01-01

    The nanotubular surface of Ti-binary and Ti-ternary alloys for biomaterials has been investigated using various methods of surface characterization. Binary Ti-xNb (x = 10, 20, 30, and 40 wt.%) and ternary Ti-30Ta-xNb (x = 3, 7 and 15 wt.%) alloys were prepared by using the high-purity sponges; Ti, Ta and Zr spheres. The nanotube on the alloy surface was formed in 1.0 M H 3 PO 4 with small additions of NaF (0.5 and 0.8 wt.%), using a potentiostat. For cell proliferation, an MC3T3-E1 mouse osteoblast was used. The surface characteristics were investigated using field-emission scanning electron microscope, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Binary Ti-xZr alloys had a lamellar and a needle-like structure, whereas, ternary Ti-30Ta-xZr alloys had equiaxed grains with a lamellar martensitic α' structure. The thickness of the needle-like laths of the α-phase increased as the Zr content increased. The nanotubes formed on the α phase and β phase showed a different size and shape appearance with Zr content. As the Zr content increased from 3 to 40 wt.%, the diameter of the nanotubes in Ti-xZr and Ti-30Ta-xZr alloy decreased from 200 nm to 50 nm. The nanotubular Ti-30Ta-15Zr alloy surface with a diameter of 50 nm provided a good osseointegration; cell proliferation, migration and differentiation.

  16. Effect of B addition to hypereutectic Ti-based alloys

    International Nuclear Information System (INIS)

    Louzguina-Luzgina, Larissa V.; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2009-01-01

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 β-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied

  17. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  18. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaoguang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn; Ding Haimin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2009-03-05

    Because flake-like TiAl{sub 3} particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl{sub 3} particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of {alpha}-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption.

  19. A united refinement technology for commercial pure Al by Al-10Ti and Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Liu Xiangfa; Ding Haimin

    2009-01-01

    Because flake-like TiAl 3 particles in Al-Ti-C master alloys prepared in a melt reaction method dissolve slowly when they are added into Al melt at 720 deg. C, Ti atoms cannot be released rapidly to play the assistant role of grain refinement, leading to a poor refinement efficiency of Al-Ti-C master alloys. A united refinement technology by Al-10Ti and Al-Ti-C master alloys was put forward in this paper. The rational combination of fine blocky TiAl 3 particles in Al-10Ti and TiC particles in Al-Ti-C can improve the nucleation rate of α-Al. It not only improves the grain refinement efficiency of Al-Ti-C master alloys, but also reduces the consumption

  20. Elementary characterization of Ti metal alloys used in implant dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Deniak, Valeriy [Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR (Brazil); Camargo, Liliane [Universidade Paranaense, Umuarama, PR (Brazil); Assis, J.T, E-mail: cata-montenegro@bol.com.br, E-mail: spaschuk@gmail.com, E-mail: denyak@gmail.com, E-mail: lili_camargo2@hotmail.com, E-mail: joaquim@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)

    2017-07-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  1. Elementary characterization of Ti metal alloys used in implant dentistry

    International Nuclear Information System (INIS)

    Torres, Catarina A. M. P.; Paschuk, Sergei A.; Rocha, Anna S. S.; Corrêa, Janine Nicolosi; Deniak, Valeriy; Camargo, Liliane; Assis, J.T

    2017-01-01

    The main goal of present work is analytical characterization of standard dental implants broadly used by Brazilian dentists. An ideal biological alloy for dental implants must have very high biocompatibility, which means that such material should not provoke any serious adverse tissue response. Dental implants are generally marketed as commercially pure titanium (TiCP) due to their excellent mechanical and physical properties. However, sometimes other alloys are employed and consequently it is essential to study the chemical elements present in those alloys that could bring prejudice for the health. Present work investigated TiCP metal alloys used for dental implant manufacturing and evaluated the presence of elements. For alloy characterization and identification of elements it was used EDXRF technique. This method allows to perform the qualitative and quantitative analysis of the materials using the spectra of the characteristic X-rays emitted by the elements present in the metal samples. The experimental setup was based on two X- ray tubes, Mini X model with Ag and Au targets and X-123SDD detector (AMPTEK) and a 0.5 mm Cu collimator, developed due to specific sample geometrical and topography characteristics. Obtained results showed that implant alloys are not exactly TiCP but were manufactured using Ti-Al-V alloy, which contained Fe, Ni, Cu and Zn. The presence of such metals as Al and V in all studied samples shows very clear that studied implants were not manufactured from TiCP alloy. Moreover, according to the American Society for Testing and Materials (ASTM), these elements should not be present in TiCP. (author)

  2. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  3. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  4. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  5. Ti-25Ta-Zr alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia; Quadros, Fernanda Freitas; Grandini, Carlos Roberto, E-mail: pedro@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias

    2016-07-01

    Full text: The most widely used titanium alloy for biomedical applications is Ti-6Al-4V, however, previous studies showed that vanadium cause allergic reactions in human tissue and aluminum has been associated with neurological disorders. Then, to solve this problem, new titanium alloys without the presence of these elements are being developed, with the addition of different elements, usually the β-stabilizers, which can change its microstructure and mechanical properties, and may make the titanium and its alloys, most promising for use as biomaterial. In this paper the development and characterization of Ti-25Ta-(10-40)Zr alloys, for biomedical applications are discussed. X-ray diffraction results show the coexistence of α', α” and β phases, which are corroborated by SEM results. The results of microhardness and elastic modulus present an anomaly for the alloy with 10 wt% Zr, due, probably the presence of ω phase. (author)

  6. High temperature oxidation of β-NbTi alloys

    International Nuclear Information System (INIS)

    Parida, S.C.; Gupta, N.K.; Rama Rao, G.A.; Sen, B.K.; Krishnan, K.

    2008-01-01

    The isothermal oxidation kinetics of pure Ti metal and two different β-NbTi alloys with compositions of 85 and 75 at.% Ti were studied using thermogravimetric technique in the temperature range of 1073-1323 K at an interval of 50 K. The value of the power exponent n of the rate equation was found to be close to one suggesting that each reaction follows first order kinetic rate law. X-ray diffraction analysis of oxidation products at each temperature revealed the simultaneous formation of TiO 2 and TiNb 2 O 7 . The rate constants and the activation energies of oxidation reactions for each alloy compositions were evaluated. (author)

  7. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    Science.gov (United States)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  8. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  9. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  10. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  11. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    Science.gov (United States)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  12. Review of the Methods for Production of Spherical Ti and Ti Alloy Powder

    Science.gov (United States)

    Sun, Pei; Fang, Zhigang Zak; Zhang, Ying; Xia, Yang

    2017-10-01

    Spherical titanium alloy powder is an important raw material for near-net-shape fabrication via a powder metallurgy (PM) manufacturing route, as well as feedstock for powder injection molding, and additive manufacturing (AM). Nevertheless, the cost of Ti powder including spherical Ti alloy has been a major hurdle that prevented PM Ti from being adopted for a wide range of applications. Especially with the increasing importance of powder-bed based AM technologies, the demand for spherical Ti powder has brought renewed attention on properties and cost, as well as on powder-producing processes. The performance of Ti components manufactured from powder has a strong dependence on the quality of powder, and it is therefore crucial to understand the properties and production methods of powder. This article aims to provide a cursory review of the basic techniques of commercial and emerging methods for making spherical Ti powder. The advantages as well as limitations of different methods are discussed.

  13. Structure, mechanical properties, and grindability of dental Ti-Zr alloys.

    Science.gov (United States)

    Ho, Wen-Fu; Chen, Wei-Kai; Wu, Shih-Ching; Hsu, Hsueh-Chuan

    2008-10-01

    Structure, mechanical properties and grindability of a series of binary Ti-Zr alloys with zirconium contents ranging from 10 to 40 wt% have been investigated. Commercially pure titanium (c.p. Ti) was used as a control. Experimental results indicated that the diffraction peaks of all the Ti-Zr alloys matched those for alpha Ti. No beta-phase peaks were found. The hardness of the Ti-Zr alloys increased as the Zr contents increased, and ranged from 266 HV (Ti-10Zr) to 350 HV (Ti-40Zr). As the concentration of zirconium in the alloys increased, the strength, elastic recovery angles and hardness increased. Moreover, the elastically recoverable angle of Ti-40Zr was higher than of c.p. Ti by as much as 550%. The grindability of each metal was found to be largely dependent on the grinding conditions. The Ti-40Zr alloy had a higher grinding rate and grinding ratio than c.p. Ti at low speed. The grinding rate of the Ti-40Zr alloy at 500 m/min was about 1.8 times larger than that of c.p. Ti, and the grinding ratio was about 1.6 times larger than that of c.p. Ti. Our research suggested that the Ti-40Zr alloy has better mechanical properties, excellent elastic recovery capability and improved grindability at low grinding speed. The Ti-40Zr alloy has a great potential for use as a dental machining alloy.

  14. Microtexture formation of Ni99B1 alloys solidified on an ESL and an EML-a study based on the EBSP technique

    International Nuclear Information System (INIS)

    Li Mingjun; Ishikawa, Takehiko; Nagashio, Kosuke; Kuribayashi, Kazuhiko; Yoda, Shinichi

    2007-01-01

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni 99 B 1 (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL

  15. Microtexture formation of Ni{sub 99}B{sub 1} alloys solidified on an ESL and an EML-a study based on the EBSP technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingjun [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)], E-Mail: li.mingjun@aist.go.jp; Ishikawa, Takehiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan); Nagashio, Kosuke [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Kuribayashi, Kazuhiko [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara Campus, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yoda, Shinichi [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Tsukuba Space Center, ISS Science Project Office, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2007-03-25

    We employed an electrostatic levitator (ESL) and an electromagnetic levitator (EML) to solidify Ni{sub 99}B{sub 1} (at.%) alloys at various undercoolings. The microstructures and microtextures were revealed by using the electron backscatter diffraction pattern (EBSP) technique in a scanning electron microscope. It is found that that no significant refinement can be identified at the low and medium undercooling regimes for the primary trunk in the sample solidified on the ESL, while the fragmentation of the secondary and even tertiary branches may take place to generate equiaxed grains. Further investigation by the EBSP reveals that neighboring grains have small misorientation angles, which may be ascribed to the absence of mechanical stirring from electromagnetic eddy current. A sharp contrast is that the samples solidified on the EML at low and medium undercoolings have refined equiaxed microstructures. The EBSP mapping reveals that the equiaxed grains yielded on the EML have a random distribution in crystallographic orientations among neighboring grains, indicating that electromagnetic stirring (EMS) induced by the electromagnetic field in the EML plays a vital role in promoting fragmentation and thus generating refined grains and random distribution in orientation. Regarding to the refined microstructure at high undercoolings, no significant difference arises in the samples processed between the EML and ESL.

  16. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  17. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  18. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  19. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy.

  20. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    International Nuclear Information System (INIS)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy

  1. Morphology, deformation, and defect structures of TiCr2 in Ti-Cr alloys

    International Nuclear Information System (INIS)

    Chen, K.C.; Allen, S.M.; Livingston, J.D.

    1992-01-01

    The morphologies and defect structures of TiCr 2 in several Ti-Cr alloys have been examined by optical metallography, x-ray diffraction, and transmission electron microscopy (TEM), in order to explore the room-temperature deformability of the Laves phase TiCr 2 . The morphology of the Laves phase was found to be dependent upon alloy composition and annealing temperature. Samples deformed by compression have also been studied using TEM. Comparisons of microstructures before and after deformation suggest an increase in twin, stacking fault, and dislocation density within the Laves phase, indicating some but not extensive room-temperature deformability

  2. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Directory of Open Access Journals (Sweden)

    L. Quintino

    2013-09-01

    Full Text Available Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic NiTi and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to assess the type of fracture and the capability of achieving bonding and involved mechanisms are discussed.

  3. Fracture analysis of Ag nanobrazing of NiTi to Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quintino, L., E-mail: lquirino@ist.utl.pt [Universidade Tecnica de Lisboa (IST/UTL) (Portugal). Instituto Superior Tecnico. Dept. de Engenharia Mecanica; Liu, L., E-mail: ray.plasma@gmail.com [Tsinghua Univ., Beijing (China). Dept. of Mechanical Engineering; Hu, A.; Zhou, Y., E-mail: anming.hu@uwaterloo.ca, E-mail: nzhou@uwaterloo.ca [University of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering; Miranda, R.M., E-mail: rmiranda@fct.unl.pt [Universidade Nova de Lisboa (UNIDEMI), Caparica (Portugal). Dept. de Engenharia Mecanica e Industrial

    2013-07-15

    Dissimilar joining of shape memory alloys to Ti alloys has long been attempted by several research groups due to the foreseen potential industrial applications. However, the very dissimilar thermo-physical properties of both materials place several difficulties. Brazing can be a solution since the base materials are subjected to a less sharp thermal cycle. In the present study brazed overlap joints of 1 mm thick plates of equiatomic Ni Ti and Ti6Al4V were produced using nano silver based filler materials. Surfaces were analyzed to asses the type of fracture and the capability of achieving bonding and involved mechanisms are discussed. (author)

  4. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  6. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  7. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  8. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Schwaighofer, Emanuel, E-mail: emanuel.schwaighofer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)

    2014-09-22

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  9. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    International Nuclear Information System (INIS)

    Schwaighofer, Emanuel; Clemens, Helmut; Lindemann, Janny; Stark, Andreas; Mayer, Svea

    2014-01-01

    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s −1 up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti 5 Si 3 silicides and h-type carbides Ti 2 AlC enhance the dynamic recrystallization behavior during deformation within

  10. Charge transfers in complex transition metal alloys (Ti2Fe)

    International Nuclear Information System (INIS)

    Abramovici, G.

    1998-01-01

    We introduce a new non-orthogonal tight-binding model, for complex alloys, in which electronic structure is characterized by charge transfers. We give the analytic calculation of a charge transfer, in which overlapping two-center terms are rigorously taken into account. Then, we apply numerically this result to an approximant phase of a quasicrystal of Ti 2 Fe alloy. This model is more particularly adapted to transition metals, and gives realistic densities of states. (orig.)

  11. Preparation and mechanical properties of in situ TiC{sub x}–Ni (Si, Ti) alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjuan [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhai, Hongxiang, E-mail: hxzhai@sina.com [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Lin; Huang, Zhenying [Institute of Materials Science and Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Bei, Guoping; Baumgärtner, Christoph; Greil, Peter [Department of Materials Science (Glass and Ceramics), University of Erlangen-Nuernberg, Martensstr. 5, 91058 Erlangen (Germany)

    2014-10-20

    Novel in situ TiC{sub x} reinforced Ni (Si, Ti) alloy composites with superior mechanical properties were prepared at 1250 °C for 30 min by pressureless sintering Ti{sub 3}SiC{sub 2} (10 and 20 vol%) and Ni as precursors. The Ti{sub 3}SiC{sub 2} particles decomposed into substoichiometric TiC{sub x} phase, while the additional Si and partial Ti atoms derived from Ti{sub 3}SiC{sub 2} diffused into Ni matrix to form Ni (Si, Ti) alloy. The in situ formed TiC{sub x} phases are mainly dispersed on the grain boundaries of the Ni (Si, Ti) alloying, forming a strong skeleton and refining the microstructures of the metal matrix. The hardness, the yield stress σ{sub 0.2%} and ultimate compressive strength of 20.6 vol%TiC{sub x}–Ni(Si, Ti) composite can reach 2.15±0.04 GPa, 466.8±55.8 MPa and 733.3±78.4 MPa, respectively. The enhanced mechanical properties of TiC{sub x}–Ni(Si, Ti) composites are due to the in situ formation of TiC{sub x} skeleton, the refined microstructures of Ni (Si, Ti) alloys and solid solution effects as well as good wettability between TiC{sub x} and Ni (Si, Ti) matrix.

  12. Effects of high energy ball milling on synthesis and characteristics of Ti-Mg alloys

    CSIR Research Space (South Africa)

    Chikwanda, HK

    2008-01-01

    Full Text Available The synthesis of Ti-Mg alloys using mechanical alloying method has been investigated. Effects of the mechanical alloying parameters on the resultant microstructural features have been studied. This work presents the effects of milling speed...

  13. Layered Composite of TiC-TiB2 to Ti-6Al-4V in Graded Composition by Combustion Synthesis in High-gravity Field

    International Nuclear Information System (INIS)

    Huang Xuegang; Zhao Zhongmin; Zhang Long

    2013-01-01

    By taking combustion synthesis to prepare solidified TiB 2 matrix ceramic in high-gravity field, the layered composite of TiC-TiB 2 ceramic to Ti-6Al-4V substrate in graded composition was achieved. XRD, FESEM and EDS results showed that the bulk full-density solidified TiC-TiB 2 composite was composed of fine TiB 2 platelets, TiC irregular grains, a few of α-Al 2 O 3 inclusions and Cr alloy phases, and α'-Ti phases alternating with Ti-enriched carbides constituted the matrix of the joint in which fine TiB platelets were embedded, whereas some C, B atoms were also detected at the heat-affected zone of Ti-6A1-4V substrate. The layered composite of the solidified ceramic to Ti-6Al-4V substrate in graded composition with continuous microstructure was considered a result of fused joint and inter-diffusion between liquid ceramic and surface-molten Ti alloy, followed by TiB 2 -Ti peritectic reaction and subsequent eutectic reaction in TiC-TiB-Ti ternary system.

  14. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study

    International Nuclear Information System (INIS)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-01-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5–216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO 2  phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets. (paper)

  15. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study.

    Science.gov (United States)

    Ribeiro, Ana Lúcia Roselino; Hammer, Peter; Vaz, Luís Geraldo; Rocha, Luís Augusto

    2013-12-01

    The main aim of this work was to assess the electrochemical behavior of new Ti35Nb5Zr and Ti35Nb10Zr alloys in artificial saliva at 37 °C to verify if they are indicated to be used as biomaterials in dentistry as alternatives to Ti6Al4V alloys in terms of corrosion protection efficiency of the material. Electrochemical impedance spectroscopy (EIS) experiments were carried out for different periods of time (0.5-216 h) in a three-electrode cell, where the working electrode (Ti alloys) was exposed to artificial saliva at 37 °C. The near-surface region of the alloys was investigated using x-ray photoelectron spectroscopy (XPS). All alloys exhibited an increase in corrosion potential with the immersion time, indicating the growth and stabilization of the passive film. Ti35Nb5Zr and Ti6Al4V alloys had their EIS results interpreted by a double-layer circuit, while the Ti35Nb10Zr alloy was modeled by a one-layer circuit. In general, the new TiNbZr alloys showed similar behavior to that observed for the Ti6Al4V. XPS results suggest, in the case of the TiNbZr alloys, the presence of a thicker passive layer containing a lower fraction of TiO2 phase than that of Ti6Al4V. After long-term immersion, all alloys develop a calcium phosphate phase on the surface. The new TiNbZr alloys appear as potential candidates to be used as a substitute to Ti6Al4V in the manufacturing of dental implant-abutment sets.

  16. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  17. Recovery characteristics of neutron-irradiated V-Ti alloys

    International Nuclear Information System (INIS)

    Leguey, T.; Pareja, R.

    2000-01-01

    The recovery characteristics of neutron-irradiated pure V and V-Ti alloys with 1.0 and 4.5 at.% Ti have been investigated by positron annihilation spectroscopy. Microvoid formation during irradiation at 320 K is produced in pure V and V-1Ti but not in V-4.5Ti. The results are consistent with a model of swelling inhibition induced by vacancy trapping by solute Ti during irradiation. The temperature dependencies of the parameter S in the range 8-300 K indicate a large dislocation bias for vacancies and solute Ti. This dislocation bias prevents the microvoid nucleation in V-4.5Ti, and the microvoid growth in V-1Ti, when vacancies become mobile during post-irradiation annealing treatments. A characteristic increase of the positron lifetime is found during recovery induced by isochronal annealing. It is attributed to a vacancy accumulation into the lattice of Ti oxides precipitated during cooling down, or at their matrix/precipitate interfaces. These precipitates could be produced by the decomposition of metastable phases of Ti oxides formed during post-irradiation annealing above 1000 K

  18. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  19. Comparative Study on the Grain Refinement of Al-Si Alloy Solidified under the Impact of Pulsed Electric Current and Travelling Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yunhu Zhang

    2016-07-01

    Full Text Available It is high of commercial importance to generate the grain refinement in alloys during solidification by means of electromagnetic fields. Two typical patterns of electromagnetic fields, pulsed electric currents (ECP and traveling magnetic field (TMF, are frequently employed to produce the finer equiaxed grains in solidifying alloys. Various mechanisms were proposed to understand the grain refinement in alloys caused by ECP and TMF. In this paper, a comparative study is carried out in the same solidification regime to investigate the grain refinement of Al-7 wt. %Si alloy driven by ECP and TMF. Experimental results show that the application of ECP or TMF can cause the same grain refinement occurrence period, during which the refinement of primary Al continuously occurs. In addition, the related grain refinement mechanisms are reviewed and discussed, which shows the most likely one caused by ECP and TMF is the promoted dendrite fragmentation as the result of the ECP-induced or TMF-induced forced flow. It suggests that the same grain refinement process in alloys is provoked when ECP and TMF are applied in the same solidification regime, respectively.

  20. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  1. Microstructure and refinement performance of Al-Ti-C master alloy: Effect of excess Ti on the growth and nucleating ability of TiC particles

    Science.gov (United States)

    Svynarenko, Kateryna; Zhang, Yubo; Jie, Jinchuan; Kutsova, Valentyna; Li, Tingju

    2017-09-01

    Al-5Ti-0.2C, Al-0.8Ti-0.2C, Al-8Ti-2C, and Al-10Ti master alloys were prepared and used to investigate the influence of excess Ti on the growth of TiC particles and its ability to nucleate Al-grains. The results of a microstructure analysis of TiC-containing alloys and refined CPAl were interrelated to the results of a refinement test. It was found that the presence of excess Ti is essential at the stage of master alloy preparation, as it facilitates the growth and uniform distribution of TiC within the structure. In Al-5Ti-0.2C alloy containing excess Ti, carbide particles grow faster and to a higher extent (from 0.29 μm to 0.44 μm) compared to Al-0.8Ti-0.2C alloy produced without excess Ti (from 0.29 μm to 0.32 μm). The results support the "Ti-transition zone theory" as the mechanism of grain refinement by TiC-containing master alloys. The refinement performance of Al-5Ti-0.2C is superior compared to the one achieved by adding Al-8Ti-2C and Al-10Ti master alloys in corresponding concentrations. For the TiC particles to become favourable nucleating sites, they must undergo certain interaction with excess Ti at the stage of master alloy preparation.

  2. Multifunctional Beta Ti Alloy with Improved Specific Strength

    Science.gov (United States)

    Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek

    2017-12-01

    Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.

  3. Grain refinement of Al wrought alloys with newly developed AlTiC master alloys; Kornfeinung von Al-Knetlegierungen mit neu entwickelten AlTiC-Vorlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, W. [Vereinigte Aluminium-Werke AG, Bonn (Germany). Forschung und Entwicklung

    2000-10-01

    AlTiC master alloys are a new grain refiner type to produce an equiaxed grain structure of cast extrusion and rolling ingots. These master alloys contain Ti carbides which act as nucleants of the {alpha} solid solution during solidification. The TiC content is lower than the TiB{sub 2} content of the industrial proved AlTiB master alloys. Benefits of the AlTiC master alloys are the low agglomeration tendency of the Ti carbides in the melt and that no Zr poisoning takes place. Despite of the low Ti carbide content the grain refinement performance can be very efficient, if low melt temperatures during casting will be used and as result of this a sufficient constitutional supercooling at the solidification front is achieved. (orig.)

  4. Corrosion Characteristics of Ti-xTa Alloys with Ta contents

    International Nuclear Information System (INIS)

    Kim, H. J.; Choe, H. C.

    2013-01-01

    The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at 1000 .deg. C and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at 36.5 ± 1 .deg. C. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy

  5. Thermal conductivity of Cu–4⋅5 Ti alloy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The thermal conductivity (TC) of peak aged Cu–4⋅5 wt% Ti alloy was measured at different tem- peratures and studied its variation with temperature. It was found that TC increased with increasing tem- perature. Phonon and electronic components of thermal conductivity were computed from the results. The.

  6. Microstructure of two phases alloy Al3Ti/Al3Ti0.75Fe0.25

    International Nuclear Information System (INIS)

    Angeles, C.; Rosas, G.; Perez, R.

    1998-01-01

    The titanium-aluminium system presents three intermetallic compounds from those Al 3 Ti is what less attention has received. The objective of this work is to generate and characterize the microstructure of multiphase alloys nearby to Al 3 Ti compound through Fe addition as alloying. This is because it has been seen that little precipitates of Al 2 Ti phase over Al 3 Ti intermetallic compound increases its ductility. (Author)

  7. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  8. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  9. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  10. Design and properties of advanced {gamma}(TiAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appel, F; Clemens, H; Oehring, M [Institute for Materials Research, GKSS Research Centre, Max-Planck-Strasse, D-21502 Geesthacht (Germany)

    2001-07-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  11. Design and properties of advanced γ(TiAl) alloys

    International Nuclear Information System (INIS)

    Appel, F.; Clemens, H.; Oehring, M.

    2001-01-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  12. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  13. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    Energy Technology Data Exchange (ETDEWEB)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B., E-mail: givmartins@yahoo.com.br, E-mail: vladimir@las.inpe.br, E-mail: joaopaulo@las.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Brasilia, DF (Brazil); Nunes, C.A., E-mail: cnunes@demar.eel.usp.br [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Polo Urbo Industrial; Borges Junior, L.A., E-mail: borges.jr@itelefonica.com.br [Centro Universitario de Volta Redond (UNIFOA), Volta Redonda, RJ (Brazil)

    2009-07-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  14. Beta Ti-45Nb and Ti-50Nb alloys produced by powder metallurgy for aerospace application

    International Nuclear Information System (INIS)

    Martins, G.V.; Trava-Airoldi, V.J.; Machado, J.P.B.; Silva, C.R.M.; Nunes, C.A.

    2009-01-01

    Beta titanium alloys parts are used on advanced aerospace systems because of their high strength to weight ratio and excellent corrosion resistance. Production of powder metallurgy titanium alloys components may lead to a substantial reduction in the cost, compared to those produced by conventional cast and wrought processes, because additional working operations and material waste can be avoided. In this work, beta Ti-45Nb and Ti- 50Nb were produced by the blended elemental technique, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering. Sintered samples were characterized for phase composition by XRD, microstructure by SEM, hardness by Vickers indentation, specific mass by the Archimedes method and elastic modulus by resonance ultrasound. The sintered samples presented only the beta phase, higher hardness and lower elastic modulus when compared to Ti6Al4V alloy and experimental specific mass value near theoretical specific mass. These characteristics are adequate for application on several aerospace parts. (author)

  15. Oxidation behaviour of U2Ti alloy in dry air

    International Nuclear Information System (INIS)

    Roy, S.P.; Gupta, N.K.; Jat, Ram Avtar; Parida, S.C.; Mukerjee, S.K.

    2016-01-01

    U 2 Ti alloy is being considered as promising storage material for storage of hydrogen isotopes. However, the absorption capacity of this reactive alloy can be affected due to presence of oxygen in the process gas. Hence, it is necessary to know the kinetic of this alloy in presence of oxygen. In this study, U 2 Ti alloy was prepared by arc melting method followed by vacuum annealing. The alloy was characterized by XRD, SEM and EDX methods. The isothermal oxidation behaviour of U 2 Ti alloy was investigated in the temperature range of 548-623 K in dry air for 24 hours by using thermo gravimetric technique. The oxidation curves are shown. The oxidation curves were analysed using the rate equation: (Δm/a) n = kt, where, (Δm/a) is the mass gain per unit area, n is the power exponent, k is the rate constant and t is time in (seconds). Analysis of the results shows that the oxidation reaction follows linear rate law (n ~ 1). Using the linear rate law, the rate constant (k) of oxidation reaction was evaluated at each temperature in the range 548-623 K. The variation of (ln k) with reciprocal temperature is shown. The activation energy of this oxidation reaction in the temperature range 548-623 K was calculated using the Arrhenius equation and found to be 76 kJ/mol. The XRD analysis of the oxidation products was found to be U 3 O 8 and TiO 2 . (author)

  16. Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al-20wt%Cu-12wt%Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Çankırı Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Çolak, Hakan [Çankırı Karatekin University, Faculty of Sciences, Department of Chemistry, 18100 Çankırı (Turkey)

    2016-11-15

    The present work examines the effect of Mg contents and cooling rate on the morphology and mechanical properties of Al{sub 20}Cu{sub 12}Fe quasicrystalline alloy. The microstructure of the alloys was analyzed by scanning electron microscopy and the phase composition was identified by X-ray diffractometry. The melting characteristics were studied by differential thermal analysis under an Ar atmosphere. The mechanical features of the melt-spun and conventionally solidified alloys were tested by tensile-strength test and Vickers micro-hardness test. It was found that the final microstructure of the Al{sub 20}Cu{sub 12}Fe samples mainly depends on the cooling rate and Mg contents, which suggests that different cooling rates and Mg contents produce different microstructures and properties. The average grain sizes of the melt spun samples were about 100–300 nm at 35 m/s. The nanosize, dispersed, different shaped quasicrystal particles possessed a remarkable effect to the mechanical characteristics of the rapidly solidified ribbons. The microhardness values of the melt spun samples were approximately 18% higher than those of the conventionally counterparts. - Highlights: •Quasicrystal-creating materials have high potential for applications. •Different shaped nanosize quasicrystal particles were observed. •The addition of Mg has an important impact on the mechanical properties. •H{sub V} values of the MS0, MS3 and MS5 samples at 35 m/s were 8.56, 8.66 and 8.80 GPa. •The volume fraction of IQC increases with increasing cooling rates.

  17. Explosive device of conduit using Ti Ni alloy

    Directory of Open Access Journals (Sweden)

    A. Yu. Kolobov

    2014-01-01

    Full Text Available Presently, materials have been developed which are capable at changing temperate to return significant inelastic deformations, exhibit rubber-like elasticity, convert heat into mechanical work, etc. The aggregate of these effects is usually called the shape memory effect.At present a great number of compounds and alloys with a shape memory effect has been known.These are alloys based on titanium nickelide (TiNi, copper-based alloys (Cu-Al, Cu-Sn, Cu-Al-Ni, Cu-Zn-Si, etc., gold and silver (Ag-Cd, Au-Ag-Cd, Au-Cd-Cu, Au-Zn-Cu, etc., manganese (Mn-Cr, Fe-Cu, Mn-Cu-Ni, Mn-Cu-Zr, Mn-Ni, etc., iron (Fe-Mn, Fe-Ni, Fe-Al, etc., and other compounds.The alloys based on titanium nickelide (nitinol are the most widely used.Alloys with shape memory effect find various applications in engineering and medicine, namely connecting devices, actuators, transformable design, multipurpose medical implants, etc.There is a task of breaking fuel conduit during separating the spacecraft from the rocket in space technology.The paper examines the procedure for design calculation of the separating device of conduit with the use of Ti-Ni alloy. This device can be used instead of the pyro-knives.The device contains two semi-rings from Ti-Ni alloy. In the place of break on the conduit an annular radius groove is made.At a temperature of martensite passage the semi-rings undergo deformation and in the strained state are set in the device. With heating to the temperature of the austenitic passage of bushing macro-deformation the energy stored by the nitinol bushing is great enough to break the conduit on the neck.The procedures of design calculation and response time of device are given.

  18. High performance Ti-6Al-4V + TiC alloy by blended elemental powder metallurgy

    International Nuclear Information System (INIS)

    Fujii, H.; Yamazaki, T.; Horiya, T.; Takahashi, K.

    1993-01-01

    The blended elemental powder metallurgy (BE) of titanium alloys is one of the most cost saving technologies, in which the blending of titanium powder and alloying element powders (or master alloy powders), precise compaction at room temperature, and consolidation are conducted in turn. In addition to some economical and material saving advantages, the BE has a noteworthy feature, that is, the synthesis of special alloy systems which are difficult to be produced by the ingot metallurgy. A particle or fiber reinforced metal matrix composite (MMC) is one of the examples, and the addition of TiC particles to the extensively used Ti-6Al 4V has succeeded in obtaining higher tensile strength, Young's modulus, and elevated temperature properties. However, the raising up of some properties sometimes deteriorates other ones in MMC, and it often prevents the practical use. In this research work, the improvement of tensile ductility and fatigue properties of Ti-6Al-4V+TiC alloys without lowering other mechanical properties is aimed through the microstructural control

  19. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol [Chosun University, Gwangju (Korea, Republic of); Yu, Jin Woo [Shingyeong University, Hwaseong (Korea, Republic of)

    2010-02-15

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

  20. Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

    International Nuclear Information System (INIS)

    Saji, Viswanathan S.; Jeong, Yong Hoon; Choe, Han Cheol; Yu, Jin Woo

    2010-01-01

    Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy

  1. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  2. Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure

    Science.gov (United States)

    Bartholomeusz, Michael F.; Wert, John A.

    1994-10-01

    A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.

  3. Microstructure and electrochemical characterization of laser melt-deposited Ti2Ni3Si/NiTi intermetallic alloys

    International Nuclear Information System (INIS)

    Dong Lixin; Wang Huaming

    2008-01-01

    Corrosion and wear resistant Ti 2 Ni 3 Si/NiTi intermetallic alloys with Ti 2 Ni 3 Si as the reinforcing phase and the ductile NiTi as the toughening phase were designed and fabricated by the laser melt-deposition manufacturing process. Electrochemical behavior of the alloys was investigated using potentiodynamic polarization testing and electrochemical impedance spectroscopy in an NaOH solution. The results showed that the alloys have outstanding corrosion resistance due to the formation of a protective passive surface film of Ni(OH) 2 as well as the high chemical stability and strong inter-atomic bonds inherent to Ti 2 Ni 3 Si and NiTi intermetallics. The Ti 2 Ni 3 Si content has a significant influence on the microstructure of the alloys but only a slight effect on electrochemical corrosion properties

  4. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Cupid, Damian M. [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States); Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Seifert, Hans J. [Freiberg University of Mining and Technology, Institute of Materials Science, Freiberg (Germany); Ebrahimi, Fereshteh, E-mail: febra@mse.ufl.edu [University of Florida, Materials Science and Engineering, P.O. Box 116400, Gainesville, FL 32611 (United States)

    2010-05-15

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  5. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Michael [University of Florida, Gainesville; Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Cupid, Damian M [Freiberg University of Mining and Technology; Seifert, Hans J [Freiberg University of Mining and Technology; Ebrahimi, Fereshteh [University of Florida, Gainesville

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 C to 1600 C. Both alloys solidified as single {beta}-phase and transformed to {gamma} + {sigma} phases upon slow cooling. The addition of Cr did not affect the {beta} {yields} {gamma} transformation temperature upon slow cooling. In contrast, the temperature, at which the {sigma}-phase formed, was reduced noticeably. Upon heating, the temperature at which the {beta}-phase evolves from the {gamma} + {sigma} microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the {gamma}-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the {beta}-phase to room temperature. These results are explained by the partitioning of Cr into the {beta}-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  6. A study of phase transformation in a TiAlNb alloy and the effect of Cr addition

    International Nuclear Information System (INIS)

    Kesler, Michael S.; Goyel, Sonalika; Rios, Orlando; Cupid, Damian M.; Seifert, Hans J.; Ebrahimi, Fereshteh

    2010-01-01

    The phase transformation paths, transformation temperatures and phase equilibria of Ti-45Al-27Nb and Ti-45Al-22Nb-5Cr (at%) alloys were evaluated over a temperature range from 865 deg. C to 1600 deg. C. Both alloys solidified as single β-phase and transformed to γ + σ phases upon slow cooling. The addition of Cr did not affect the β → γ transformation temperature upon slow cooling. In contrast, the temperature, at which the σ-phase formed, was reduced noticeably. Upon heating, the temperature at which the β-phase evolves from the γ + σ microstructure was found to decrease significantly with the addition of Cr. In the ternary alloy the formation of the γ-phase could not be retarded on quenching, however, the substitution of Nb with Cr allowed for the retainment of the β-phase to room temperature. These results are explained by the partitioning of Cr into the β-phase, which in addition to thermodynamic stability reduces the kinetics of transformations at lower temperatures.

  7. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  8. In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering.

    Science.gov (United States)

    Hieda, Junko; Niinomi, Mitsuo; Nakai, Masaaki; Cho, Ken

    2015-09-01

    Ti-xMg (x=17, 33, and 55 mass%) alloy films, which cannot be prepared by conventional melting processes owing to the absence of a solid-solution phase in the phase diagram, were prepared by direct current magnetron sputtering in order to investigate their biocompatibility. Ti and Mg films were also prepared by the same process for comparison. The crystal structures were examined by X-ray diffraction (XRD) analysis and the surfaces were analyzed by X-ray photoelectron spectroscopy. The Ti, Ti-xMg alloy, and Mg films were immersed in a 0.9% NaCl solution at 310 K for 7d to evaluate the dissolution amounts of Ti and Mg. In addition, to evaluate the formation ability of calcium phosphate in vitro, the Ti, Ti-xMg alloy, and Mg films were immersed in Hanks' solution at 310 K for 30 d. Ti and Mg form solid-solution alloys because the peaks attributed to pure Ti and Mg do not appear in the XRD patterns of any of the Ti-xMg alloy films. The surfaces of the Ti-17 Mg alloy and Ti-33 Mg alloy films contain Ti oxides and MgO, whereas MgO is the main component of the surface oxide of the Ti-55 Mg alloy and Mg films. The dissolution amounts of Ti from all films are below or near the detection limit of inductively coupled plasma-optical emission spectroscopy. On the other hand, the Ti-17 Mg alloy, Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films exhibit Mg dissolution amounts of approximately 2.5, 1.4, 21, and 41 μg/cm(2), respectively. The diffraction peaks attributed to calcium phosphate are present in the XRD patterns of the Ti-33 Mg alloy, Ti-55 Mg alloy, and Mg films after the immersion in Hanks' solution. Spherical calcium phosphate particles precipitate on the surface of the Ti-33 Mg film. However, many cracks are observed in the Ti-55 Mg film, and delamination of the film occurs after the immersion in Hanks' solution. The Mg film is dissolved in Hanks' solution and calcium phosphate particles precipitate on the glass substrate. Consequently, it is revealed that the Ti-33 Mg

  9. Crystallization and Martensitic Transformation Behavior of Ti-Ni-Si Alloy Ribbons Prepared via Melt Spinning.

    Science.gov (United States)

    Park, Ju-Wan; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    Ti-(50-x)Ni-xSi (at%) (x = 0.5, 1.0, 3.0, 5.0) alloy ribbons were prepared via melt spinning and their crystallization procedure and transformation behavior were investigated using differential scanning calorimtry, X-ray diffraction, and transmission electron microscopy. Ti-Ni-Si alloy ribbons with Si content less than 1.0 at% were crystalline, whereas those with Si content more than 3.0 at% were amorphous. Crystallization occurred in the sequence of amorphous →B2 → B2 → Ti5Si4 + TiNi3 → B2 + Ti5Si4 + TiNi3 + TiSi in the Ti-47.0Ni-3.0Si alloy and amorphous →R → R + Ti5Si4 + TiNi3 → R + Ti5Si4 + TiNi3 + TiSi in the Ti-45.0Ni-5.0Si alloy. The activation energy for crystallization was 189 ±8.6 kJ/mol for the Ti-47Ni-3Si alloy and 212±8.6 kJ/mol for the Ti-45Ni-5Si alloy. One-stage B2-R transformation behavior was observed in Ti-49.5Ni-0.5Si, Ti-49.0Ni-1.0Si, and Ti-47.0Ni- 3.0Si alloy ribbons after heating to various temperatures in the range of 873 K to 1073 K. In the Ti-45.0Ni-5.0Si alloy, one-stage B2-R transformation occurred after heating to 893 K, two-stage B2-R-B19' occurred after heating to 973 K, and two-stage B2-R-B19' occurred on cooling and one-stage B19'-B2 occurred on heating, after heating to 1073 K.

  10. Corrosion Characteristics of Ti-29Nb-xHf Ternary Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sun Young; Choi, Han Chul [Chosun Univ., Kwangju (Korea, Republic of)

    2015-12-15

    The Cp-Ti and Ti-6Al-4V alloys were widely used for dental materials due to their mechanical properties and good corrosion resistance. However, Cp-Ti was known as bio-inert materials, Ti-6Al-4V alloy has a problem such as high Young modulus, potential loss of the surrounding bone, and to the release of potentially toxic ions from the alloy. To overcome this problem, Ti alloys containing Nb and Hf elements have been used for biomaterials due to low toxicity and high corrosion resistance. Especially, alloying element of Nb was known as β phase stabilizer. The β phase alloy was widely used to replace currently used implant materials. The corrosion resistances of Ti-29Nb-xHf ternary alloys were dependent on Hf content in oral environment solution.

  11. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  12. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  13. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  14. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  15. Structure and grindability of cast Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Pan, C.-H.; Wu, S.-C.; Ho, W.-F.

    2009-01-01

    The purpose of this study was to investigate the structure, microhardness and grindability of Ti-5Cr and a series of ternary Ti-5Cr-xFe alloys with 0.1, 0.5, 1, 3 and 5 wt.% Fe, respectively. This study evaluated the phase and structure of Ti-5Cr and Ti-5Cr-xFe alloys, using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. In addition, grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min), with the goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The results showed that the structure of Ti-5Cr-xFe alloys is sensitive to the Fe content. With Fe contents higher than 0.5 wt.%, the equi-axed β phase is entirely retained, while ω phase was found in the Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The largest quantity of ω phase and highest microhardness were found in Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys. The grinding rates of the Ti-5Cr and Ti-5Cr-xFe alloys showed a similar tendency to the microhardness. The Ti-5Cr, Ti-5Cr-0.1Fe, Ti-5Cr-0.5Fe and Ti-5Cr-1Fe alloys exhibited the best grindability, especially at 500, 750 and 1000 m/min. Furthermore, the grindability of the tested metals increased in proportion to grinding speed up to 1000 m/min, with a decrease after 1200 m/min. This study concluded that Fe may be used to harden titanium and improve the grindability

  16. The shock Hugoniot of the intermetallic alloy Ti-46.5Al-2Nb-2Cr

    International Nuclear Information System (INIS)

    Millett, Jeremy; Gray, George T. Rusty III; Bourne, Neil

    2000-01-01

    Plate impact experiments were conducted on a γ-titanium aluminide (TiAl) based ordered intermetallic alloy. Stress measurements were recorded using manganin stress gauges supported on the back of TiAl targets using polymethylmethacrylate windows. The Hugoniot in stress-particle velocity space for this TiAl alloy was deduced using impedance matching techniques. The results in this study are compared to the known Hugoniot data of the common alpha-beta engineering Ti-based alloy Ti-6Al-4V. The results of the current study on the intermetallic alloy TiAl support that TiAl possesses a significantly higher stress for a given particle velocity than the two-phase Ti-6Al-4V alloy. (c) 2000 American Institute of Physics

  17. Prospect of Ti-Ni shape memory alloy applied in reactor structures

    International Nuclear Information System (INIS)

    Duan Yuangang

    1995-01-01

    Shape memory effect mechanism, physical property, composition, manufacturing process and application in mechanical structure of Ti-Ni shape memory alloy are introduced. Applications of Ti-Ni shape memory alloy in reactor structure are prospected and some necessary technical conditions of shape memory alloy applied in the reactor structure are put forward initially

  18. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  19. Lave phase precipitation in Nb- and Ti-based alloys

    International Nuclear Information System (INIS)

    Tewari, R.; Vishwanadh, B.; Dey, G.K.

    2010-01-01

    In multicomponent Nb-based alloys system, which are potential candidate materials for high temperature applications, the presence of Laves phase was noticed along with the silicides in equilibrium with the soft β-matrix. In Ti-Cr alloys, which show a tendency for inverse melting, the formation of the phase was noticed in the β matrix upon aging. The Laves phase being topologically closed pack structure appears to have strong tendency for the formation provided the criterion of atomic size factor is met

  20. Selective Laser Melting of Ti-45Nb Alloy

    Directory of Open Access Journals (Sweden)

    Holger Schwab

    2015-04-01

    Full Text Available Ti-45Nb is one of the potential alloys that can be applied for biomedical applications as implants due to its low Young’s modulus. Ti-45Nb (wt.% gas atomized powders were used to produce bulk samples by selective laser melting with three different parameter sets (energy inputs. A β-phase microstructure consisting of elliptical grains with an enriched edge of titanium was observed by scanning electron microscopy and X-ray diffraction studies. The mechanical properties of these samples were evaluated using hardness and compression tests, which suggested that the strength of the samples increases with increasing energy input within the range considered.

  1. PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti3Al/Fe3Al + TiN/TiB2 COMPOSITE COATING ON TITANIUM ALLOY

    OpenAIRE

    JIANING LI; CHUANZHONG CHEN; CUIFANG ZHANG

    2011-01-01

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be...

  2. Powder metallurgy Al–6Cr–2Fe–1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    International Nuclear Information System (INIS)

    Dám, Karel; Vojtěch, Dalibor; Průša, Filip

    2013-01-01

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 °C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 °C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  3. Powder metallurgy Al-6Cr-2Fe-1Ti alloy prepared by melt atomisation and hot ultra-high pressure compaction

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Karel, E-mail: Karel.Dam@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Vojtech, Dalibor; Prusa, Filip [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2013-01-10

    Al--6Cr--2Fe--1Ti alloy was prepared by melt atomisation into rapidly solidified powder. The powder was compacted using uniaxial hot compression at an ultra-high pressure (6 GPa). The samples were pressed at 300, 400 and 500 Degree-Sign C. The structure, mechanical properties and thermal stability were examined and compared with those of the commercially available Al--12Si--1Cu--1Mg--1Ni casting alloy, which is considered thermally stable. It was shown that the hot compression at ultra-high pressure results in a compact and pore-free material with excellent mechanical properties. The elevated pressing temperatures were found to be effective at increasing the mechanical stability after applying the ultra-high pressure. The results of thermal stability testing revealed that the mechanical properties do not change significantly at high temperature, even after 100 h of annealing at 400 Degree-Sign C. In addition, the Al--6Cr--2Fe--1Ti alloy exhibited very good creep resistance. A comparison between the commercial Al--12Si--1Cu--1Mg--1Ni alloy and the powder metallurgy alloy shows that this alloy has significantly better mechanical properties and thermal stability.

  4. Osteoblast Cell Response on the Ti6Al4V Alloy Heat-Treated

    Directory of Open Access Journals (Sweden)

    Mercedes Paulina Chávez-Díaz

    2017-04-01

    Full Text Available In an effort to examine the effect of the microstructural changes of the Ti6Al4V alloy, two heat treatments were carried out below (Ti6Al4V800 and above (Ti6Al4V1050 its β-phase transformation temperature. After each treatment, globular and lamellar microstructures were obtained. Saos-2 pre-osteoblast human osteosarcoma cells were seeded onto Ti6Al4V alloy disks and immersed in cell culture for 7 days. Electrochemical assays in situ were performed using OCP and EIS measurements. Impedance data show a passive behavior for the three Ti6Al4V alloys; additionally, enhanced impedance values were recorded for Ti6Al4V800 and Ti6Al4V1050 alloys. This passive behavior in culture medium is mostly due to the formation of TiO2 during their sterilization. Biocompatibility and cell adhesion were characterized using the SEM technique; Ti6Al4V as received and Ti6Al4V800 alloys exhibited polygonal and elongated morphology, whereas Ti6Al4V1050 alloy displayed a spherical morphology. Ti and O elements were identified by EDX analysis due to the TiO2 and signals of C, N and O, related to the formation of organic compounds from extracellular matrix. These results suggest that cell adhesion is more likely to occur on TiO2 formed in discrete α-phase regions (hcp depending on its microstructure (grains.

  5. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  6. Enhanced upper critical fields in binary Nb-Ti alloys

    International Nuclear Information System (INIS)

    Hariharan, Y.; Sastry, V.S.; Janawadkar, M.P.; Radhakrishnan, T.S.

    1986-01-01

    The authors report the enhancement of H/sub c2/ in quenched and suitably heat treated binary Nb-65 at % Ti alloys. The inherent metastability of the bcc β phase and its instability towards athermal ω are used to realise high values of normal state resistivity ε/sub n/. The consequences of this on the upper critical field have been experimentally determined by the measurement of dH/sub c2//dT at T/sub c/ and of T/sub c/. These together with our similar measurements on Nb-83 at % Ti alloy to which at 1 at % N was added (to retain it in the β phase) are analysed in terms of the existing theories for upper critical fields. It is shown that a peak in H/sub c2/(o) occurs at 17 - 18 T when ε/sub n/ has a value of approximately 100 μΩcm

  7. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  8. Phase transformation and precipitation in aged Ti-Ni-Hf high-temperature shape memory alloys

    International Nuclear Information System (INIS)

    Meng, X.L.; Cai, W.; Zheng, Y.F.; Zhao, L.C.

    2006-01-01

    More attention has been paid to ternary Ti-Ni-Hf high-temperature shape memory alloys (SMAs) due to their high phase transformation temperatures, good thermal stability and low cost. However, the Ti-Ni-Hf alloys have been found to have low ductility and only about 3% shape memory effect and these have hampered their applications. It is well known that there are three methods to improve the shape memory properties of high-temperature SMAs: (a) cold rolling + annealing; (b) adding another element to the alloy; (c) aging. These methods are not suitable to improve the properties of Ti-Ni-Hf alloys. In this paper, a method of conditioning Ni-rich Ti-Ni-Hf alloys as high-temperature SMAs by aging is presented. For Ni-rich Ti 80-x Ni x Hf 20 alloys (numbers indicate at.%) the phase transformation temperatures are on average increased by more than 100 K by aging at 823 K for 2 h. Especially for those alloys with Ni contents less than 50.6 at.%, the martensitic transformation start temperatures (M s ) are higher than 473 K after aging. Transmission electron microscopy shows the presence of (Ti + Hf) 3 Ni 4 precipitates after aging. Compared with the precipitation of Ti 3 Ni 4 particles in Ni-rich Ti-Ni alloys, the precipitation of (Ti + Hf) 3 Ni 4 particles in Ni-rich Ti-Ni-Hf alloys needs higher temperatures and longer times

  9. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.

    Science.gov (United States)

    Wang, Pan; Feng, Yan; Liu, Fengchao; Wu, Lihong; Guan, Shaokang

    2015-06-01

    The Ti-15Zr-xCr (0≤x≤10, wt.%) alloys were investigated to develop new biomedical materials. It was found that the phase constitutions and mechanical properties strongly depended on the Cr content. The Ti-15Zr alloy was comprised of α' phase and a small fraction of β phase was detected with adding 1wt.% Cr. With addition of 5wt.% or more, the β phase was completely retained. In addition, the ω phase was detected in the Ti-15Zr-5Cr alloy and Ti-15Zr-7Cr alloy which exhibited the highest compressive Young's modulus and the lowest ductility. On the other hand, all the Ti-15Zr-xCr alloys without ω phase exhibited high microhardness, high yield strength and superior ductility. Furthermore, the elastic energy of Ti-15Zr-10Cr alloy (5.89MJ/m(3)) with only β phase and that of Ti-15Zr-3Cr alloy (4.04MJ/m(3)) with α' phase and small fraction of β phase was higher than the elastic energy of c.p. Ti (1.25MJ/m(3)). This study demonstrated that Ti-15Zr-3Cr alloy and Ti-15Zr-10Cr alloy with superior mechanical properties are potential materials for biomedical applications. Copyright © 2015. Published by Elsevier B.V.

  10. A Review Corrosion of TI Grade 7 and Other TI Alloys in Nuclear Waste Repository Environments

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; K. Mon; P. Pasupathi; G. Gordon

    2004-05-11

    Titanium alloy degradation modes are reviewed in relation to their performance in repository environments. General corrosion, localized corrosion, stress corrosion cracking, hydrogen induced cracking, microbially influenced corrosion, and radiation-assisted corrosion of Ti alloys are considered. With respect to the Ti Grade 7 drip shields selected for emplacement in the repository at Yucca Mountain, general corrosion, hydrogen induced cracking, and radiation-assisted corrosion will not lead to failure within the 10,000 year regulatory period; stress corrosion cracking (in the absence of disruptive events) is of no consequence to barrier performance; and localized corrosion and microbially influenced corrosion are not expected to occur. To facilitate the discussion, Ti Grades 2, 5, 7, 9, 11, 12, 16, 17, 18, and 24 are included in this review.

  11. A Review Corrosion of TI Grade 7 and Other TI Alloys in Nuclear Waste Repository Environments

    International Nuclear Information System (INIS)

    Hua, F.; Mon, K.; Pasupathi, P.; Gordon, G.

    2004-01-01

    Titanium alloy degradation modes are reviewed in relation to their performance in repository environments. General corrosion, localized corrosion, stress corrosion cracking, hydrogen induced cracking, microbially influenced corrosion, and radiation-assisted corrosion of Ti alloys are considered. With respect to the Ti Grade 7 drip shields selected for emplacement in the repository at Yucca Mountain, general corrosion, hydrogen induced cracking, and radiation-assisted corrosion will not lead to failure within the 10,000 year regulatory period; stress corrosion cracking (in the absence of disruptive events) is of no consequence to barrier performance; and localized corrosion and microbially influenced corrosion are not expected to occur. To facilitate the discussion, Ti Grades 2, 5, 7, 9, 11, 12, 16, 17, 18, and 24 are included in this review

  12. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  13. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  14. Effect of composition on the structure and properties of Ti-Co-Cr alloys

    Directory of Open Access Journals (Sweden)

    T. Matković

    2010-01-01

    Full Text Available The present work is a study of six as-cast Ti-Co-Cr alloys in the Ti-rich region with the purpose of examining the possibility of obtaining a new β-type Ti-alloys. Two experimental alloys Ti80Co10Cr10 and Ti70Co10Cr20 are nearly single-phases and are identified as bcc β-Ti phase. They also display the lowest hardness values and the best corrosion properties. The present study indicates that the region of biomedically-acceptable ternary Ti-rich alloys is situated within lower concentrations of alloying elements, i.e. about 10 at.% Co and 20 at. % Cr.

  15. Corrosion behavior of Ti-39Nb alloy for dentistry.

    Science.gov (United States)

    Fojt, Jaroslav; Joska, Ludek; Malek, Jaroslav; Sefl, Vaclav

    2015-11-01

    To increase an orthopedic implant's lifetime, researchers are now concerned on the development of new titanium alloys with suitable mechanical properties (low elastic modulus-high fatigue strength), corrosion resistance and good workability. Corrosion resistance of the newly developed titanium alloys should be comparable with that of pure titanium. The effect of medical preparations containing fluoride ions represents a specific problem related to the use of titanium based materials in dentistry. The aim of this study was to determine the corrosion behavior of β titanium alloy Ti-39Nb in physiological saline solution and in physiological solution containing fluoride ions. Corrosion behavior was studied using standard electrochemical techniques and X-ray photoelectron spectroscopy. It was found that corrosion properties of the studied alloy were comparable with the properties of titanium grade 2. The passive layer was based on the oxides of titanium and niobium in several oxidation states. Alloying with niobium, which was the important part of the alloy passive layer, resulted in no significant changes of corrosion behavior. In the presence of fluoride ions, the corrosion resistance was higher than the resistance of titanium. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Instability of TiC and TiAl3 compounds in Al-10Mg and Al-5Cu alloys by addition of Al-Ti-C master alloy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The performance of Al-Ti-C master alloy in refining Al-10Mg and A1-5Cu alloys was studied by using electron probe micro-analyzer (EPMA) and X-ray diffractometer (XRD) analysis.The results indicate that there are obvious fading phenomena in both Al-10Mg and Al-5Cu alloys with the addition of Al-5Ti-0.4C refiner which contains TiC and TiAl3 compounds.Mg element has no influence on the stability of TiC and TiAl3, while TiC particles in Al-10Mg alloy react with Al to form Al4C3 particles, resulting in the refinement fading.However, TiC particles are relatively stable in Al-5Cu alloy, while TiAl3 phase reacts with Al2Cu to produce a new phase Ti(Al, Cu)2, which is responsible for the refinement fading in Al-5Cu alloy.These indicate that the refinement fading will not occur only when both the TiC particles and TiAl3 compound of Al-Ti-C refiner are stable in Al alloys.

  17. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  18. Dynamic globularization of a-phase in Ti6Al4V alloy during hot compression

    CSIR Research Space (South Africa)

    Mutombo, K

    2013-12-01

    Full Text Available composition dependence of the martensite start temperature (Ms) has been done for Ti-Fe, Ti-Cr, Ti-Mo, Ti-V, Ti-Nb, Ti-Zr and Ti-Al alloys [1], [2]. The beneficial effect on the formation of hexagonal-structured martensite (α′) of Al, Mn, Cr, Sn and Fe... alloying elements, has been discussed by Lin et al [4]. However, the formation of the orthorhombic-structured martensite (α′′) which is favoured by elements such as Nb, Mo, Zr, W and V (strong β stabilizers) or H (a strong β stabilizer), has been reported...

  19. Hydrogen uptake characteristics of mechanically alloyed Ti-V-Ni

    International Nuclear Information System (INIS)

    Cauceglia, Dorian; Hampton, Michael D.; Lomness, Janice K.; Slattery, Darlene K.; Resan, Mirna

    2006-01-01

    It has been well established that hydrogen will react directly and reversibly with a large number of metals and alloys to form metallic hydrides. Extensive research has been done over the years to improve properties of these hydrogen purification and recovery media and in developing new compounds for this purpose. In the present study, the hydrogen uptake characteristics of mechanically alloyed titanium-vanadium-nickel have been studied. Thermal and composition data were obtained for the Ti-V-Ni system prepared by mechanical alloying at a ball-to-powder mass ratio of 10:1. It was found that this material would absorb up to approximately 1.0 wt% hydrogen at near ambient temperature and ambient pressure of hydrogen

  20. Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners

    Directory of Open Access Journals (Sweden)

    ZHAO Qing-yun

    2017-10-01

    Full Text Available The effect of heat treatment on microstructure and mechanical properties of Ti-5553 alloy was investigated by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results show that when the alloy is treated in α+β phase zone, tensile strength decreases with raising solution temperature due to decreasing the content of primary α-phase and increasing the size and volume fraction of β phase. A lot of secondary α-phase precipitates from grain boundary and intragranular with β phase transformation during aging treatment. The size of secondary α-phase has significant influence on tensile strength, secondary α-phase coarsens gradually with the increase of aging temperature, resulting in the decrease of tensile strength. It is suggested that for 1240MPa aerospace fasteners the solution temperature of Ti-5553 should be under Tβ, thus adequate β phase, where a lot of secondary α phase precipitates from, is good for the required high strength. Meanwhile, a certain percentage of primary α-phase is kept for acquiring good ductility and toughness. After solution treatment at 810-820℃ for 1.5h, water quenching plus aging at 510℃ for 10h, Ti-5553 shows a better mechanical property with tensile strength 1500MPa, elongation 14.8% and reduction of cross-section area 38.6%. Lots of dimples can be found in tensile fracture after solution treatment and solution+aging treatment, which demonstrate Ti-5553 with good ductility and toughness.

  1. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuaki [Toyota Motor Corp., Shizuoka (Japan). Materials Engineering Div. III; Flemings, M.C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1998-06-01

    A particulate Al-30 wt pct TiC composite was employed as a grain refiner for the Al-4.5 wt pct Cu alloy. The composite contains submicron TiC particles. The addition of the TiC grain refiner to the metal alloy in the amount of 0.1 Ti wt pct effected a remarkable reduction in the average grain size in Al-4.5 wt pct Cu alloy castings. With the content of over 0.2 Ti wt pct, the grain refiner maintained its refining effectiveness even after a 3,600-second holding time at 973 K. The TiC particles in the resulting castings were free of interfacial phases. It is concluded that the TiC are the nucleating agents and that they are resistant to the fading effect encountered with most grain refiners.

  2. Glass formation and crystallization of Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.; Ranganathan, S.

    2010-01-01

    In the present study, transmission electron microscopy techniques, like micro-diffraction, high resolution and fluctuation microscopy, have been employed to carry out detailed investigation of as-solidified and crystallized microstructures of the Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy synthesized using melt spinning, suction casting and copper mould casting techniques. Samples produced by copper mould casting technique showed partially crystalline microstructure whereas the other techniques resulted in complete amorphous microstructures. High-resolution microscopy established that the dendrites of the big cube phase in partially crystalline glass grew by atomistic ledges. The other crystalline bct Zr 2 Ni phase, present in partially crystalline glass and also in all the crystallized microstructures, showed various types of internal faults depending upon the crystallite size. Fluctuation microscopy established that oxygen plays a major role in determining the degree of medium range order in glassy phases. In addition, variation in oxygen content changed the crystallization behaviour of glasses from a single to multiple events

  3. On the mechanism of crack propagation resistance of fully lamellar TiAl alloy

    International Nuclear Information System (INIS)

    Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.

    2006-01-01

    The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious

  4. Nanotube formation and morphology change of Ti alloys containing Hf for dental materials use

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Lee, Kang; Choe, Han-Cheol; Ko, Yeong-Mu; Brantley, William A.

    2009-01-01

    In this paper, Ti-Hf (10, 20, 30 and 40 wt.%) alloys were prepared by arc melting, and subjected to heat treatment for 24 h at 1000 o C in an argon atmosphere. Formation of surface nanotubes was achieved by anodizing a Ti-Hf alloy in 1.0 M H 3 PO 4 electrolytes with small amounts of NaF at room temperature. Microstructures of the alloys and nanotube morphology were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The homogenized Ti-Hf alloys had a needle-like microstructure of α phase, and nanotubes formed on Ti-xHf alloys had the anatase phase after treatment that promoted crystallization. Uniform nanotubes formed for Hf contents up to 20 wt.%. Irregular nanotubes formed on the Ti-30Hf and Ti-40Hf alloys. The structure of the irregular layers on the Ti-30Hf and Ti-40Hf alloys had nanotubes of two sizes. Increasing the Hf content in Ti led to the formation of nanotubes with more narrow size. The pores in the nanotubes typically had a diameter ranging from 80-120 nm and a length of approximately 1.7 μm. It is concluded that nanotube morphology on Ti-Hf alloys can controlled by varying the amount of Hf.

  5. Inhibitory effect of Ti-Ag alloy on artificial biofilm formation.

    Science.gov (United States)

    Nakajo, Kazuko; Takahashi, Masatoshi; Kikuchi, Masafumi; Takada, Yukyo; Okuno, Osamu; Sasaki, Keiichi; Takahashi, Nobuhiro

    2014-01-01

    Titanium-silver (Ti-Ag) alloy has been improved for machinability and mechanical properties, but its anti-biofilm properties have not been elucidated yet. Thus, this study aimed to evaluate the effects of Ti-Ag alloy on biofilm formation and bacterial viability in comparison with pure Ti, pure Ag and silver-palladium (Ag-Pd) alloy. Biofilm formation on the metal plates was evaluated by growing Streptococcus mutans and Streptococcus sobrinus in the presence of metal plates. Bactericidal activity was evaluated using a film contact method. There were no significant differences in biofilm formation between pure Ti, pure Ag and Ag-Pd alloy, while biofilm amounts on Ti-20% Ag and Ti-25% Ag alloys were significantly lower (p<0.05). In addition, Ti-Ag alloys and pure Ti were not bactericidal, although pure Ag and Ag-Pd alloy killed bacteria. These results suggest that Ti-20% Ag and Ti-25% Ag alloys are suitable for dental material that suppresses biofilm formation without disturbing healthy oral microflora.

  6. Identification of ultra-fine Ti-rich precipitates in V-Cr-Ti alloys irradiated below 300 deg. C by using positron CDB technique

    International Nuclear Information System (INIS)

    Fukumoto, Ken-ichi; Matsui, Hideki; Ohkubo, Hideaki; Tang, Zheng; Nagai, Yasuyoshi; Hasegawa, Masayuki

    2008-01-01

    Irradiation-induced Ti-rich precipitates in V-Ti and V-4Cr-4Ti alloys are studied by TEM and positron annihilation methods (positron lifetime, and coincidence Doppler broadening (CDB)). The characteristics of small defect clusters formed in V alloys containing Ti at irradiation temperatures below 300 deg. C have not been identified by TEM techniques. Strong interaction between vacancy and Ti solute atoms for irradiated V alloys containing Ti at irradiation temperatures from 220 to 350 deg. C are observed by positron lifetime measurement. The vacancy-multi Ti solute complexes in V-alloys containing Ti are definitely identified by using CDB measurement. It is suggested that ultra-fine Ti-rich precipitates or Ti segregation at periphery of dislocation loops are formed in V alloys containing Ti at irradiation temperatures below 300 deg. C

  7. On the elasto-viscoplastic behavior of the Ti5553 alloy

    OpenAIRE

    Ben Bettaieb , Mohamed; VAN HOOF , Thibaut; Pardoen , Thomas; Dufour , Philippe; LENAIN , Astrid; JACQUES , Pascal J.; Habraken , Anne-Marie

    2014-01-01

    International audience; The elastoviscoplastic behavior of the Ti5553 alloy is characterized and compared to the classical Ti–6Al–4V alloy. The true stress–strain curves are determined based on tensile tests performed under different strain rates at room temperature and at 1501C, from which the elastic constants and the parameters of a Norton–Hoff viscoplastic model are identified. The strength of the Ti5553 alloy is 20–40% higher than the strength of the Ti–6Al–4V alloy. The Ti5553 alloy con...

  8. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  9. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  10. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shufeng, E-mail: shufengli@hotmail.com [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Imai, Hisashi; Kondoh, Katsuyoshi [Joining and Welding Research Institute, Osaka University, Osaka (Japan); Kojima, Akimichi; Kosaka, Yoshiharu [San-Etsu Metals Co. LTD., 1892 OHTA, Tonami, Toyama (Japan); Yamamoto, Koji; Takahashi, Motoi [Nippon Atomized Metal Powders Corporation, 87-16, Nishi-Sangao, Noda, Chiba (Japan)

    2012-08-15

    Effect of Ti and Sn alloying elements on microstructure and mechanical properties of 60/40 brass has been studied via the powder metallurgy (P/M) route. The water-atomized BS40-0.6Sn1.0Ti (Cu40wt%Zn-0.6wt%Sn1.0wt%Ti) pre-alloyed powder was consolidated at various temperatures within range of 400-600 Degree-Sign C using spark plasma sintering (SPS) and hot extrusion was carried out at 500 Degree-Sign C. Effects of extrusion temperature on microstructure and tensile strength were investigated by employing SEM-EDS/EBSD, TEM, XRD and tensile test. Results indicated that super-saturated solid solution Ti and Sn elements created high chemical potential for a precipitate reaction in rapidly solidified brass powder, which showed significant strengthening effects on the extruded sample consolidated at lower temperature. Solid solubility of Ti in brass matrix decreased with increasing of sintering temperature, thus resulted in degradation of mechanical properties. Consequently, lower hot processing temperature is necessary to obtain excellent mechanical properties for BS40-0.6Sn1.0Ti during sintering and extrusion. An yield strength of 398 MPa and ultimate tensile strength of 615 MPa were achieved, they respectively showed 31.3% and 22.9% higher values than those of extruded Cu40Zn brass. -- Graphical abstract: The Ti and Sn alloying elements additions showed significant grain refinement on Cu40Zn-0.6Sn1.0Ti brass (b) as comparing with that of the conventional Cu40Zn brass (a), detected by electron backscatter diffraction (EBSD) technique. The grain boundaries maps of (a) BS40 (b) BS40-0.6Sn1.0Ti SPS compact sintered at 400 Degree-Sign C reveals by electron backscatter diffraction (EBSD) technique. Highlights: Black-Right-Pointing-Pointer Alloying elements Ti and Sn are proposed as additives in 60/40 brass. Black-Right-Pointing-Pointer Super-saturated Ti in powder creates high chemical potential for precipitation. Black-Right-Pointing-Pointer CuSn{sub 3}Ti{sub 5

  11. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy

    International Nuclear Information System (INIS)

    Ojo, O.A.; Ding, R.G.; Chaturvedi, M.C.

    2006-01-01

    The laser beam weld heat affected zone (HAZ) microstructure of a newly developed aerospace alloy, IC 6, was examined. HAZ microfissuring was observed and found to be associated with grain boundary liquation facilitated by subsolidus eutectic-type transformation of the alloy's major phase, γ' precipitates, and interfacial melting of M 6 C-type carbide and (Mo 2 Ni)B 2 -type boride particles

  12. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr–Ti–Cu–Ni amorphous alloy ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.H. [University of Science and Technology, Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lim, C.H. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, J.G., E-mail: jglee88@kaeri.re.kr [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of); Lee, M.K.; Rhee, C.K. [Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI), Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr{sub 48}Ti{sub 16}Cu{sub 17}Ni{sub 19} (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr{sub 2}Ni and particulate Zr{sub 2}Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr{sub 2}Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr{sub 2}Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C)

  13. The massive transformation in Ti-Al alloys: mechanistic observations

    International Nuclear Information System (INIS)

    Zhang, X.D.; Godfrey, S.; Weaver, M.; Strangwood, M.; Kaufman, M.J.; Loretto, M.H.

    1996-01-01

    The massive α→γ m transformation, as observed using analytical transmission electron microscopy, in Ti-49Al, Ti-48Al-2Nb-2Mn, Ti-55Al-25Ta and Ti-50Al-20Ta alloys is described. Conventional solution heating and quenching experiments have been combined with the more rapid quenching possible using electron beam melting in order to provide further insight into the early stages of the transformation of these alloys. It is shown that the γ develops first at grain boundaries as lamellae in one of the grains and that these lamellae intersect and spread into the adjacent grain in a massive manner. Consequently, there is no orientation relationship between the massive gamma (γ m ) and the grain being consumed whereas there is the expected relation between the γ m and the first grain which is inherited from the lamellae. It is further shown that the γ m grows as an f.c.c. phase after initially growing with the L1 0 structure. Furthermore, it is shown that the massive f.c.c. phase then orders to the L1 0 structure producing APDB-like defects which are actually thin 90 degree domains separating adjacent domains that have the same orientation yet are out of phase. The advancing γ m interface tends to facet parallel either to one of its four {111} planes or to the basal plane in the grain being consumed by impinging on existing γ lamellae. Thin microtwins and α 2 platelets then form in the γ m presumably due, respectively, to transformation stresses and supersaturation of the γ m with titanium for alloys containing ∼48% Al; indeed, there is a local depletion in aluminium across the α 2 platelets as determined using fine probe microanalysis

  14. The structure and mechanical properties of as-cast Zr-Ti alloys

    International Nuclear Information System (INIS)

    Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F.

    2009-01-01

    This study has investigated the structure and mechanical properties of pure Zr and a series of binary Zr-Ti alloys in order to determine their potential application as dental implant materials. The titanium contents of these alloys range from 10 to 40 wt.% and were prepared by arc melting in inert gas. This study evaluated the phase and structure of these Zr-Ti alloys using an X-ray diffraction (XRD) for phase analysis, and an optical microscope for microstructure analysis of the etched alloys. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that the pure Zr and Zr-10Ti comprised entirely of an acicular hexagonal structure of α' phase. When the Ti content increased to 20 wt.%, a significant amount of β phase was retained. However, when the Ti content increased to 40 wt.%, only the equi-axed, retained β phase was observed in the cast alloy. Moreover, the hardness values and bending strengths of the Zr-Ti alloys decreased with an increasing Ti content. Among pure Zr and Zr-Ti alloys, the α'-phase Zr-10Ti alloy has the greatest hardness and bending strength. The pure Zr and Zr-Ti alloys exhibit a similar elastic modulus ranging from 68 GPa (Zr-30Ti) to 78 GPa (Zr-40Ti). Based on the results of elastic moduli, pure Zr and Zr-Ti alloys are found to be suitable for implant materials due to lower modulus. Like bending strength, the elastically recoverable angle of Zr-Ti alloys decreased as the concentration of Ti increased. In the current search for a better implant material, the Zr-10Ti alloy exhibited the highest bending strength/modulus ratios as large as 25.3, which are higher than that of pure Zr (14.9) by 70%, and commercially pure Ti (8.7) by 191%. Thus, Zr-Ti alloy's low modulus, ductile property, excellent elastic recovery capability and impressive strength confirm that it is a promising candidate for dental implant materials.

  15. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    Science.gov (United States)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  16. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  17. Hydrogen absorption study of Ti-based alloys performed by melt-spinning

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.M.; Lemus, L.F.; Santos, D.S. dos, E-mail: rafaella@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    The hydrogen absorption and desorption of Ti{sub 53}Zr{sub 27}Ni{sub 20} icosahedral quasicrystal (ICQ) and Ti{sub 50}Ni{sub 50} shape memory alloy (SMA) melt-spun ribbons was studied. Samples were exposed to hydrogen gas at 623 K and 4 MPa for 1000 minutes. The total capacity of hydrogen obtained for Ti{sub 53}Zr{sub 27}Ni{sub 20} and Ti{sub 50}Ni{sub 50} was 3.2 and 2.4 wt. % respectively. The Thermal Desorption Spectrometry (TDS) of the hydrogenated alloys shows that both alloys start to desorb hydrogen around 750 K. X-ray diffraction (XRD) patterns, performed after hydrogenation, indicate a complete amorphization of the Ti{sub 53}Zr{sub 27}Ni{sub 20} i-phase alloy, while the Ti{sub 50}Ni{sub 50} alloy remained crystalline after hydride formation. (author)

  18. Effects of Ce Addition and Isothermal Aging on the Elevated Temperature Tensile Properties of Mechanically Alloyed Al-Ti Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunKi; Oh, YoungMin; Kim, YongDeog; Kim, SeonJin [Hanyang Univ., Seoul (Korea, Republic of); Kim, ByungChul [KOREA ATOMIC RESEARCH INSTITUTE, TAEJON (Korea, Republic of)

    1997-05-01

    The room and elevated temperature tensile strength of mechanically alloyed Al-8wt%. Ti alloy increased by substituting Ce for Ti up to 25at.%. However, further substitution of Ce for Ti decreased the tensile strength. It was considered to be due to the decrease of volume fraction of Ce contained dispersoid. In the meantime, the decrease of tensile strength due to the isothermal aging was effectively reduced by the addition of Ce at 400 deg. C but not 510 deg. C. The activation energies for the deformation of Al-80wt.%(Ti+Ce)alloys measured at the temperature between 300 deg. C{approx}510 deg. C were about 1.3{approx}1.9 times higher than that for pure Al self-diffusion(142 kJ/mole). Thus, it was considered that the elevated temperature deformation of Al-8wt.%(Ti+Ce)alloys was governed by Orowan mechanism (author). 9 refs. 6 figs.

  19. Microstructure and grain refining performance of melt-spun Al-5Ti-1B master alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan; Liu Xiangfa

    2003-01-01

    In the present work, the microstructure and grain refining performance of the melt-spun Al-5Ti-1B (wt%) master alloy have been investigated, using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and grain refining tests. It has been found that the microstructure of the melt-spun Al-5Ti-1B master alloy is mainly composed of two phases: metastable, supersaturated α-Al solid solution and uniformly dispersed TiB 2 particles, quite different from that of the rod-like alloy consisting of three phases: α-Al, blocky TiAl 3 , and clusters of TiB 2 particles. Quenching temperatures and wheel speeds (cooling rates), however, have no obvious effect on the microstructure of the melt-spun Al-5Ti-1B alloy. Grain refining tests show that rapid solidification has a significant effect on the grain refining performance of Al-5Ti-1B alloy and leads to the great increase of nucleation rate of the alloy. Nevertheless, the melt-spun Al-5Ti-1B master alloy prepared at different wheel speeds and quenching temperatures possesses the similar grain refining performance. The reasons for the microstructure formation and the improvement of the grain refining performance of the melt-spun Al-5Ti-1B master alloy have been also discussed

  20. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  1. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.

    Science.gov (United States)

    Qiu, K J; Liu, Y; Zhou, F Y; Wang, B L; Li, L; Zheng, Y F; Liu, Y H

    2015-03-01

    In this study, the microstructure, mechanical properties, castability, electrochemical behaviors, cytotoxicity and hemocompatibility of Ti-Bi alloys with pure Ti as control were systematically investigated to assess their potential applications in the dental field. The experimental results showed that, except for the Ti-20Bi alloy, the microstructure of all other Ti-Bi alloys exhibit single α-Ti phase, while Ti-20Bi alloy is consisted of mainly α-Ti phase and a small amount of BiTi2 and BiTi3 phases. The tensile strength, hardness and wear resistance of Ti-Bi alloys were demonstrated to be improved monotonically with the increase of Bi content. The castability test showed that Ti-2Bi alloy increased the castability of pure Ti by 11.7%. The studied Ti-Bi alloys showed better corrosion resistance than pure Ti in both AS (artificial saliva) and ASFL (AS containing 0.2% NaF and 0.3% lactic acid) solutions. The concentrations of both Ti ion and Bi ion released from Ti-Bi alloys are extremely low in AS, ASF (AS containing 0.2% NaF) and ASL (AS containing 0.3% lactic acid) solutions. However, in ASFL solution, a large number of Ti and Bi ions are released. In addition, Ti-Bi alloys produced no significant deleterious effect to L929 cells and MG63 cells, similar to pure Ti, indicating a good in vitro biocompatibility. Besides, both L929 and MG63 cells perform excellent cell adhesion ability on Ti-Bi alloys. The hemolysis test exhibited that Ti-Bi alloys have an ultra-low hemolysis percentage below 1% and are considered nonhemolytic. To sum up, the Ti-2Bi alloy exhibits the optimal comprehensive performance and has great potential for dental applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Two-step nucleation of the g-phase in a Ti-45Al-18Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Goyel, Sonalika [University of Florida, Gainesville; Rios, Orlando [ORNL; Kesler, Michael [University of Florida, Gainesville; Ebrahimi, Fereshteh [University of Florida, Gainesville

    2010-01-01

    Phase transformations in a high Nb TieAleNb alloy (Ti-45Al-18Nb at%) upon cooling were studied. This alloy solidifies as single b-phase, which upon cooling under equilibrium conditions, is expected to follow the b / b g / b g s / g s transformation path. The DTA analysis confirmed two transformation events as manifested by two peaks upon cooling. However, compositional and structural characterization of samples with different heat treatment schedules, including slow cooling (9 C/min), revealed that the s-phase did not form upon cooling. The two DTA peaks observed in the cooling cycle of the alloy are proven to be associated with the two-stage formation of the g-phase. Detailed microstructural evaluations showed that the g-phase nucleated in two discrete stages and exhibited two different morphologies. The absence of the s-phase is believed to be due to the lack of enough driving force at high temperatures. The aging of a fast cooled sample, yielding an equilibrated microstructure, substantiated the presence of the s-phase.

  3. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same

  4. Experimental characterization of behavior laws for titanium alloys: application to Ti5553

    OpenAIRE

    Wagner , Vincent; Baili , Maher; Dessein , Gilles; Lallement , Daniel

    2010-01-01

    International audience; The aim of this paper is to study the machinability of a new titanium alloy: Ti-5AL-5Mo-5V-3CR used for the production of new landing gear. First, the physical and mechanical properties of this material will be presented. Second, we show the relationship between material properties and machinability. Third, the Ti5553 will be compared to Ti64. Unless Ti64 is α+β alloy group and Ti5553 is a metastable, we have chosen to compare these two materials. Ti64 is the most popu...

  5. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  6. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments.

    Science.gov (United States)

    Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki

    2017-09-24

    Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti-6Al-4V, Ti-15Mo-5Zr-3Al and Ti-15Zr-4Nb-4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone.

  7. Enhancing the high temperature capability of Ti-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Donchev, Alexander; Schuetze, Michael [DECHEMA-Forschungsinstitut, Frankfurt/Main (Germany); Kolitsch, Andreas; Yankov, Rossen [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden (Germany)

    2012-08-15

    Titanium is a widely used structural material for applications below approximately 500 C but right now it cannot be used at higher temperatures. Titanium forms a fast growing rutile layer under these conditions. Furthermore enhanced oxygen uptake into the metal subsurface zone leads to embrittlement which deteriorates the mechanical properties. To overcome this problem a combined Al- plus F-treatment was developed. The combination of Al-enrichment in the surface zone so that intermetallic Ti{sub x}Al{sub y}-layers are produced which form a protective alumina layer during high temperature exposure plus stabilization of the Al{sub 2}O{sub 3}-scale by the fluorine effect led to significantly improved resistance against increased oxidation and embrittlement in high temperature exposure tests of several Ti-alloys. In this paper, the experimental procedures and achieved improvements are described. The results will be discussed for the use of Ti-alloys at elevated temperatures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Volatility of V15Cr5Ti fusion reactor alloy

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.

    1986-01-01

    One potential hazard from the presence of activation products in fusion facilities is accidental oxidation-driven volatility of those activation products. Scoping experiments were conducted to investigate the oxidation and elemental volatility of candidate fusion reactor alloy V15Cr5Ti as a function of time, temperature, and test atmosphere. Experiments in air and in argon carrier gases containing 10 4 to 10 1 Pa (10 -1 to 10 -4 atm) oxygen were conducted to investigate the lower oxygen partial pressure limit for the formation of a low melting point (approximately 650 0 C), high volatility, oxide layer and its formation rate. Experiments to determine the elemental volatility of alloy constituents in air at temperatures of 700 0 C to greater than 1600 0 C. Some of these volatility experiments used V15Cr5Ti that was arc-remelted to incorporate small quantities (<0.1 wt. %) of Sc and Ca. Incorporation of Sc and Ca in test specimens permitted volatility measurement of radioactive constituents present only after activation of V15Cr5Ti

  9. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    Science.gov (United States)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  10. Oxidation performance of V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.

    2000-01-01

    Vanadium-base alloys are being considered as candidates for the first wall in advanced V-Li blanket concepts in fusion reactor systems. However, a primary deterrent to the use of these alloys at elevated temperatures is their relatively high affinity for interstitial impurities, i.e., O, N, H, and C. The authors conducted a systematic study to determine the effects of time, temperature, and oxygen partial pressure (pO 2 ) in the exposure environment on O uptake, scaling kinetics, and scale microstructure in V-(4--5) wt.% Cr-(4--5) wt.% Ti alloys. Oxidation experiments were conducted on the alloys at pO 2 in the range of 5 x 10 -6 -760 torr (6.6 x 10 -4 -1 x 10 5 Pa) at several temperatures in the range of 350--700 C. Models that describe the oxidation kinetics, oxide type and thickness, alloy grain size, and depth of O diffusion in the substrate of the two alloys were determined and compared. Weight change data were correlated with time by a parabolic relationship. The parabolic rate constant was calculated for various exposure conditions and the temperature dependence of the constant was described by an Arrhenius relationship. The results showed that the activation energy for the oxidation process is fairly constant at pO 2 levels in the range of 5 x 10 -6 -0.1 torr. The activation energy calculated from data obtained in the air tests was significantly lower, whereas that obtained in pure-O tests (at 760 torr) was substantially higher than the energy obtained under low-pO 2 conditions. The oxide VO 2 was the predominant phase that formed in both alloys when exposed to pO 2 levels of 6.6 x 10 -4 to 0.1 torr. V 2 O 5 was the primary phase in specimens exposed to air and to pure O 2 at 760 torr. The implications of the increased O concentration are increased strength and decreased ductility of the alloy. However, the strength of the alloy was not a strong function of the O concentration of the alloy, but an increase in O concentration did cause a substantial decrease

  11. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chang-Sheng [School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159 (China); Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Liu, Tie, E-mail: liutie@epm.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China)

    2017-02-15

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  12. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    Science.gov (United States)

    Bettaieb, Mohamed Ben; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal J.; Habraken, Anne Marie

    2015-03-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential for further optimization of the damage resistance of the Ti5553 alloy. The damage model is combined with an elastoviscoplastic law in order to predict failure in a wide range of loading conditions. In particular, a specific application involving bolted sectors is addressed in order to determine the potential of replacing the Ti-6Al-4V by the Ti5553 alloy.

  13. Porous Nb-Ti based alloy produced from plasma spheroidized powder

    OpenAIRE

    Li, Qijun; Zhang, Lin; Wei, Dongbin; Ren, Shubin; Qu, Xuanhui

    2017-01-01

    Spherical Nb-Ti based alloy powder was prepared by the combination of plasma spheroidization and mechanical alloying. Phase constituents, microstructure and surface state of the powder, and pore characteristics of the resulting porous alloy were investigated. The results show that the undissolved W and V in the mechanically alloyed powder is fully alloyed after spheroidization, and single β phase is achieved. Particle size of the spheroidized powder is in the range of 20–110 μm. With the decr...

  14. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  15. Thermomechanical behavior of Ti-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Paula, A.S.; Mahesh, K.K.; Santos, C.M.L. dos; Braz Fernandes, F.M.; Costa Viana, C.S. da

    2008-01-01

    Phase transformations associated with shape memory effect in nickel-titanium (NiTi) alloys can be one-stage, B19' (martensite) ↔ B2 (austenite), two-stage including an intermediate R-phase stage, or multiple-stage depending on the thermal and/or mechanical history of the alloy. In the present paper, we highlight the effect of (i) deformation by cold-rolling (from 10% to 40% thickness reduction) and (ii) final annealing on the transformation characteristics of a Ti-rich NiTi shape memory alloy. For this purpose, one set of samples initially heat treated at 773 K followed by cold-rolling (10-40% thickness reduction), has been further heat treated at various temperatures between 673 and 1073 K. Another sample was subjected to heat treatment at 1040 K for 300 s followed by hot rolling (50%) after cooling in air to 773 K and water quenching to room temperature (T room ). Phase transformations were studied using differential scanning calorimetry, electrical resistivity measurements and in situ X-ray diffraction. A specific pattern of transformation sequences is found as a result of combination of the competing effects due to mechanical-working and annealing

  16. Fusion zone microstructure of laser beam welded directionally solidified Ni3Al-base alloy IC6

    International Nuclear Information System (INIS)

    Ding, R.G.; Ojo, O.A.; Chaturvedi, M.C.

    2006-01-01

    The fusion zone microstructure of laser welded alloy IC6 was examined. Extensive weld-metal cracking was observed to be closely associated with non-equilibrium eutectic-type microconstituents identified as consisting of γ, γ' and NiMo (Y) phases. Their formation has been related to modification of primary solidification path due to reduced solutal microsegregation

  17. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    Directory of Open Access Journals (Sweden)

    Ting Li

    2017-10-01

    Full Text Available Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  18. 微量TiC对Mo-Ti-Zr-TiC合金性能与显微组织的影响%Effect of Trace TiC on Property and Microstructure of Mo-Ti-Zr-TiC Alloy

    Institute of Scientific and Technical Information of China (English)

    钱昭; 范景莲; 成会朝; 田家敏

    2012-01-01

    采用粉末冶金方法制备Mo-Ti-Zr-TiC合金,研究微量TiC的添加对Mo-Ti-Zr-TiC合金的拉伸性能和显微组织的影响.结果表明,在Mo-Ti-Zr合金中添加微量TiC(0.1%~0.5%,质量分数)后,合金的相对密度和室温抗拉强度得到了提高,当TiC添加量为0.4%时,合金强度最高,较Mo-Ti-Zr合金提高了28.1%.微量TiC的添加,阻碍了合金烧结过程中的晶粒长大,合金晶粒尺寸随TiC添加量的增加而降低.添加的细小TiC粒子在高温烧结过程中或与坯体中的微量氧发生反应形成了由Mo、Ti、C及O 4种元素组成的(Mo,Ti)xOyCz细小复合第二相粒子,或发生团聚结成大颗粒,对合金起到净化晶界氧和弥散强化的作用,因而合金的性能相比Mo-Ti-Zr合金有了较明显的提高.%Mo-Ti-Zr-TiC alloy was prepared via powder metallurgy method. The effects of trace TiC additive on the mechanical properties and microstructure of TiC reinforced Mo-Ti-Zr-TiC alloy were studied. The results indicate that the relative density and the tensile strength at room temperature of Mo-Ti-Zr-TiC alloy is effectively enhanced by adding trace TiC (0.1wt%~0.5wt%). The tensile strength achieves the highest value when the content of TiC is 0.4wt%, which is 28.1% higher than that of Mo-Ti-Zr alloy. The adding of trace TiC can inhibit the grain growth during alloy sintering process, which leads to the decrease of grain sizes with the rise of TiC content. A part of the fine TiC particles react with trace oxygen in molybdenum matrix to form (Mo,Ti)xOyC2 compound second phase particles during high temperature sintering, while the other part are agglomerated into large particles, which play a role in grain boundaries purification and dispersion-strengthening.

  19. Use of equimolar cysteine/ascorbic acids to recover MCP synthesized Ti(Mg) alloy

    CSIR Research Space (South Africa)

    Mushove, T

    2010-10-01

    Full Text Available Dissolution of waste by-products of mechanochemical processing (MCP) synthesis of Ti(Mg) alloy, from TiO2 and 15 wt.% excess Mg, was conducted in equimolar cysteine/ascorbic acids. The synthesized alloy is inherently mixed with MgO and other oxides...

  20. A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing

    Directory of Open Access Journals (Sweden)

    J.J.S. Dilip

    2017-04-01

    Full Text Available The present work explores the feasibility of fabricating porous 3D parts in TiAl intermetallic alloy directly from Ti–6Al–4V and Al powders. This approach uses a binder jetting additive manufacturing process followed by reactive sintering. The results demonstrate that the present approach is successful for realizing parts in TiAl intermetallic alloy.

  1. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Cheng, C.-H.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    This study aimed to investigate the structure, mechanical properties and grindability of a binary Ti-Zr alloy added to a series of alloying elements (Nb, Mo, Cr and Fe). The phase and structure of Ti-10Zr-X alloys were evaluated using an X-ray diffraction (XRD) for phase analysis and optical microscope for microstructure of the etched alloys. Three-point bending tests were performed using a desk-top mechanical tester. Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1 min at each of the four rotational speeds of the wheel (500, 750, 1000 or 1200 m/min). Results were compared with c.p. Ti, which was chosen as a control. Results indicated that the phase/crystal structure, microstructure, mechanical properties and grindability of the Ti-10Zr alloy can be significantly changed by adding small amounts of alloying elements. The alloying elements Nb, Mo, Cr and Fe contributed significantly to increasing the grinding ratio under all grinding conditions, although the grinding rate of all the metals was found to be largely dependent on grinding speed. The Ti-10Zr-1Mo alloy showed increases in microhardness (63%), bending strength (40%), bending modulus (30%) and elastic recovery angle (180%) over those of c.p. Ti, and was also found to have better grindability. The Ti-10Zr-1Mo alloy could therefore be used for prosthetic dental applications if other conditions necessary for dental casting are met

  2. Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Miyazaki, Shuichi; Inamura, Tomonari; Hosoda, Hideki

    2008-01-01

    Recently, the Ti-Zr-Nb alloys have been developed as Ni-free shape memory and superelastic alloys. In this study, the effect of Nb and nitrogen (N) contents on martensitic transformation behavior, shape memory effect and superelasticity in Ti-18Zr-(12-16)Nb-(0-1.0)N (at%) alloys were investigated using tensile tests, optical microscopy and X-ray diffraction. Shape memory effect was observed in Ti-18Zr-(12-13)Nb and Ti-18Zr-12Nb-0.5N alloys at room temperature. The superelastic behavior appeared by the increase of Nb or N content. The Ti-18Zr-(14-15)Nb, Ti-18Zr-(13-14)Nb-0.5N and Ti-18Zr-(12-14)Nb-1.0N alloys exhibited the superelasticity at room temperature. The martensitic transformation start temperature (M s ) decreased by 75 K with 1 at% increase of N content for Ti-18Zr-13Nb alloy. The critical stress for slip deformation and the stress for inducing the martensitic transformation increased with increasing N content. The superelastic recovery strain was also increased by adding N. The maximum recovery strain of 5.0% was obtained in the Ti-18Zr-14Nb-0.5N alloy. (author)

  3. Angular distributions of sputtered particles from NiTi alloy

    International Nuclear Information System (INIS)

    Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.

    1993-01-01

    The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)

  4. Mechanical alloying of TiFe intermetallic for hydrogen storage

    International Nuclear Information System (INIS)

    Vega, L.E.R.; Leiva, D.R.; Silva, W.B.; Ishikawa, T.T.; Botta, W.J.; Leal Neto, R.M.

    2016-01-01

    Elementary powders of Ti and Fe in the stoichiometric ratio 50:50 were submitted to mechanical alloying for 2, 6, 10 and 20 h in a planetary ball mill. The synthesis of TiFe intermetallic with high yield was achieved for all milling times. The structural characterization of the samples revealed the trend of the particles to form agglomerates and the formation of cracks. H-absorption capacities of 0,74; 0,90; 0,97 and 0,95 wt. % (at room temperature and 20 bar of H2) were obtained for processing times of 2, 6, 10 and 20 h, respectively, without using a thermal activation process after milling. (author)

  5. Electrochemical machining of burn-resistant Ti40 alloy

    Directory of Open Access Journals (Sweden)

    Xu Zhengyang

    2015-08-01

    Full Text Available This study investigates the feasibility of using electrochemical machining (ECM to produce critical aeroengine components from a new burn-resistant titanium alloy (Ti40, thereby reducing costs and improving efficiency relative to conventional mechanical machining. Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of 1 kHz rather than a direct current. Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration. By optimizing these parameters, a surface roughness of 0.371 μm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A·min.

  6. Shape memory properties in NiTi alloys

    International Nuclear Information System (INIS)

    Airoldi, G.; Vicentini, B.; Ranucci, T.; Rivolta, B.

    1991-01-01

    Mechanical properties of shape memory NiTi alloys are here examined in the frame of literature's results. The operating temperature respect to the intrinsic transformation temperatures explains thoroughly the different stress-strain behaviour, ascribed to different deformation mechanisms acting and to their interplay. Attention is moreover paid to the stress-strain behaviour consequent to a different physical state (martensite phase or parent phase), obtained within the hysteresis cycle, at the same temperature. Evidence of oriented variants, selected by the applied stress, is also given

  7. Relaxation peak near 200 K in NiTi alloy

    Science.gov (United States)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  8. A TEM Study on the Ti-Alloyed Grey Iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tiedje, Niels Skat; Grumsen, Flemming Bjerg

    2014-01-01

    The microstructure of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. Dual beam SEM/FIB has been used for TEM sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction. Based...... and that there is a high proportion of twins in the fine grained graphite. It appears that twinning and stacking faults are involved in the fine grained structure of the graphite. It is discussed how Ti addition affect crystal growth and may lead to formation of superfine graphite....

  9. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available stream_source_info chikosha_2011.pdf.txt stream_content_type text/plain stream_size 4354 Content-Encoding UTF-8 stream_name chikosha_2011.pdf.txt Content-Type text/plain; charset=UTF-8 PHASE CHARACTERISATION IN SPARK... to form “necks”  Radiant Joule heat and pressure drives “neck” growth and material transfer © CSIR 2006 www.csir.co.za Page 6 Objective  Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic...

  10. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  11. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phase transformation and microstructure evolution of the deformed Ti-30Zr-5Nb shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao, E-mail: wtqu@xsyu.edu.cn [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Nie, Yongsheng [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2017-04-15

    The phase transformation and microstructures of the deformed Ti-30Zr-5Nb shape memory alloy were investigated. The X-ray diffraction measurements indicated that the Ti-30Zr-5Nb alloy was composed of a single orthorhombic α″-martensite phase. The alloy exhibited one yielding behavior in the tensile test, with a critical stress of ~ 600 MPa and a tensile strain of approximately 15%. A shape memory recovery accompanied by a permanent strain was exhibited in the deformed alloys when heated at 873 K. The permanent strain increased with increasing pre-strain. The microstructure evolution of the deformed alloy was investigated by transmission electron microscopy. The results showed that the martensite reorientation occurred and the dislocations were generated during deformation. The alloy displayed a reversible martensite transformation start temperature as high as 763 K. However, no strain-induced martensite stabilization was found in the deformed alloy with different pre-strain levels, potentially because the large chemical energy of the Ti-30Zr-5Nb alloy depressed the effects of the elastic energy and the dissipative energy. - Highlights: • Ti-30Zr-5Nb alloy is composed of single orthorhombic α″-martensite phase with M{sub s} of 721 K. • No martensite stabilization has been found in Ti-30Zr-5Nb alloy with different pre-strain. • Ti-30Zr-5Nb shows the maximum shape memory effect of 2.75% with a pre-strain of 8%.

  13. Solidification Rate Dependence of Microstructures and Transformation Behavior of Ti-Ni-Hf Alloys.

    Science.gov (United States)

    Kim, Dong-Jo; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    The microstructures and transformation behavior of Ti-49Ni-20Hf, Ti-49.5Ni-20Hf and Ti-50.3Ni- 20Hf alloys, when prepared by conventional casting, were investigated and compared with the properties of the alloys prepared by melt spinning. The area fraction of (Ti,Hf)2Ni in Ti-Ni-Hf alloys decreased to 3.9% from 9.4% as Ni content rose to 50.3 at% from 49 at%. Several cracks were observed in the hot-rolled Ti-49Ni-20Hf alloy sheet but none were found in the Ti-50.3Ni-20Hf alloy sheet. The B2-B19' transformation start temperature (Ms) decreased to 476 K from 580 K as Ni content increased to 50.3 at% from 49 at%. All the as-spun ribbons were amorphous, and the activation energy for crystallization ranged from 167.8 kJ/mol to 182.7 kJ/mol based on Ni content. When annealing temperature ranged from 810 K to 873 K, crystalline Ti-Ni-Hf alloys without (Ti,Hf)2Ni particles were obtained. At annealing temperatures higher than 873 K, very fine (Ti,Hf)2Ni particles, less than 20 nm in size, were found embedded in a crystalline matrix.

  14. Relationship of microstructure and mechanical properties for V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Gazda, J.; Nowicki, L.J.; Smith, D.L.; Danyluk, S.

    1993-08-01

    Relation of composition, number density, and diameter of precipitates in microstructures of unalloyed V and V-Cr-Ti alloys to the yield strength, hardness, creep stress, and ductile-brittle transition temperature (DBTT) for these materials was determined from analytical electron microscopy analyses of precipitates in these materials and from mechanical properties data. Unalloyed V and V-Cr-Ti alloys with ≤3 wt. % Ti contained VC and TI(CNO) precipitates that were coherent with the matrix. The most common precipitates in the alloys were Ti(C 1-x-y N x O y ) that were non-coherent with the matrix. The number density of non-coherent precipitates was maximum in V-3Ti and V-5Cr-3Ti alloys, and the average diameter of non-coherent precipitates was minimum in V-(1--3)Ti and V-5Cr-3Ti alloys. The increase of yield strength and hardness of V on alloying with Ti and Cr was shown to be primarily due to coherent precipitate, solute-atom misfit, and shear-modulus difference effects. The creep stress for rupture in 1000 hours was related to the number density of precipitates, whereas the DBTT was related to the volume fraction of precipitates

  15. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  16. Hydrogen isotopes mobility and trapping in V-Cr-Ti alloys

    International Nuclear Information System (INIS)

    Budylkin, N.; Voloschin, L.; Mironova, E.; Riazantseva, N.; Tebus, V.

    1996-01-01

    In the last years the V-Ti-Cr alloys were considered as candidate materials for different structures of fusion reactors (blanket, first wall, divertor and so on) due to their advantages over other structure materials. Mobility and trapping parameters of hydrogen are essential characteristics for an assessment of using the V-Ti-Cr alloys in FR. In this paper: hydrogen problems for V-Ti-Cr alloys are formulated; V-H system data base is analyzed; study results of the hydrogen mobility and trapping in V-4Ti-4Cr and V-10Ti-5Cr alloys are given; the classification of V-alloys as radioactive waste according to the Russian Federation waste management rules is developed taking into account the residual amount of tritium ('inventory'). (orig.)

  17. High-strength Ti Alloy Prepared via Promoting Interstitial-Carbon Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Young; Lee, Jae-Chul [Korea University, Seoul (Korea, Republic of); Ko, Se-Hyun [KITECH, Incheon (Korea, Republic of)

    2017-05-15

    Feasibility studies are performed to determine the suitability of a novel simple synthesis technique for fabricating a new Ti alloy with improved strength and ductility, while exhibiting lower cell toxicity. Through consolidating pure Ti powders under a C atmosphere at elevated temperatures, a bulk form of the Ti alloy, in which a quantifiable amount of C is dissolved, is synthesized. While the alloy is free from toxic elements such as Al and V, the strength and ductility of the developed alloy are comparable to, or better than, those of its commercial Ti-6Al-4V alloy counterpart. In this study, the method to design the alloy, its synthesis, and the resultant properties are reported.

  18. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys

    International Nuclear Information System (INIS)

    Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S.

    2005-01-01

    Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys were investigated by using tensile tests and X-ray diffraction (XRD) measurement. The alloy ingots were fabricated by an arc melting method. The ingots were cold-rolled by a reduction up to 95% in thickness at room temperature. All the alloys were solution-treated at 1173 K for 1.8 ks. The alloys subjected to the solution treatment exhibited large elongations ranging between 28 and 40%. The martensitic transformation temperature decreased by 38 K with 1 at.% increase of Zr content. The maximum recovered strain of 4.3% was obtained in the Ti-22Nb-4Zr(at.%) alloy. Ti-22Nb-(2-4)Zr(at.%) and Ti-22Nb-6Zr(at.%) alloys exhibited stable shape memory effect and superelastic behavior at room temperature, respectively

  19. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al–Cu–Ni alloys

    International Nuclear Information System (INIS)

    Kundin, Julia; Pogorelov, Evgeny; Emmerich, Heike

    2015-01-01

    We have investigated the microstructure evolution during the isothermal and non-isothermal solidification of ternary Al–Cu–Ni alloys by means of a general multi-phase-field model for an arbitrary number of phases. The stability requirements for the model functions on every dual interface guarantee the absence of “ghost” phases. The aim was to generate a realistic microstructure by coupling the thermodynamic parameters of the phases and the thermodynamically consistent phase-field evolution equations. It is shown that the specially constructed thermal noise terms disturb the stability on the dual interfaces and can produce heterogeneous nucleation of product phases at energetically favorable points. Similar behavior can be observed in triple junctions where the heterogeneous nucleation of a fourth phase is more favorable. Finally, the model predicts the growth of a combined eutectic-like and peritectic-like structure that is comparable to the observed experimental microstructure in various alloys

  20. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.

    Science.gov (United States)

    do Prado, Renata Falchete; Esteves, Gabriela Campos; Santos, Evelyn Luzia De Souza; Bueno, Daiane Acácia Griti; Cairo, Carlos Alberto Alves; Vasconcellos, Luis Gustavo Oliveira De; Sagnori, Renata Silveira; Tessarin, Fernanda Bastos Pereira; Oliveira, Felipe Eduardo; Oliveira, Luciane Dias De; Villaça-Carvalho, Maria Fernanda Lima; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; De Vasconcellos, Luana Marotta Reis

    2018-01-01

    Titanium (Ti) and Ti-6 Aluminium-4 Vanadium alloys are the most common materials in implants composition but β type alloys are promising biomaterials because they present better mechanical properties. Besides the composition of biomaterial, many factors influence the performance of the biomaterial. For example, porous surface may modify the functional cellular response and accelerate osseointegration. This paper presents in vitro and in vivo evaluations of powder metallurgy-processed porous samples composed by different titanium alloys and pure Ti, aiming to show their potential for biomedical applications. The porous surfaces samples were produced with different designs to in vitro and in vivo tests. Samples were characterized with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and elastic modulus analyses. Osteogenic cells from newborn rat calvaria were plated on discs of different materials: G1-commercially pure Ti group (CpTi); G2-Ti-6Al-4V alloy; G3-Ti-13 Niobium-13 Zirconium alloy; G4-Ti-35 Niobium alloy; G5-Ti-35 Niobium-7 Zirconium-5 Tantalum alloy. Cell adhesion and viability, total protein content, alkaline phosphatase activity, mineralization nodules and gene expression (alkaline phosphatase, Runx-2, osteocalcin and osteopontin) were assessed. After 2 and 4 weeks of implantation in rabbit tibia, bone ingrowth was analyzed using micro-computed tomography (μCT). EDS analysis confirmed the material production of each group. Metallographic and SEM analysis revealed interconnected pores, with mean pore size of 99,5μm and mean porosity of 42%, without significant difference among the groups (p>0.05). The elastic modulus values did not exhibit difference among the groups (p>0.05). Experimental alloys demonstrated better results than CpTi and Ti-6Al-4V, in gene expression and cytokines analysis, especially in early experimental periods. In conclusion, our data suggests that the experimental alloys can be used for biomedical

  1. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  2. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    Science.gov (United States)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  3. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  4. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  5. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  6. Structure and mechanical properties of TiZr binary alloy after Al addition

    International Nuclear Information System (INIS)

    Jiang, X.J.; Jing, R.; Liu, C.Y.; Ma, M.Z.; Liu, R.P.

    2013-01-01

    Microstructure and mechanical properties of hot-rolled TiZrAl alloys were studied. The results showed that the microstructure of all alloys mainly consisted of lamellar α phase. The thickness of the lamellar α phase gradually increased with increasing aluminum content. Moreover, large numbers of stacking faults was observed in Ti–25Zr–15Al (at%) alloy. The aluminum addition strongly affected the mechanical properties of the TiZrAl alloys. With increased aluminum contents, the strength increased evidently, whereas, the elongation decreased. Ti–25Zr–15Al (at%) with the highest aluminum contents in all alloys, possessed the highest tensile strength (σ b =1319 MPa), i.e. strengthened by 41% compared with Ti–25Zr (at%) alloy, and still retained the elongation of 5.5%. According to the classical size and/or modulus misfits model, the effect of aluminum addition was significant in TiZr alloys because of the considerable misfits between aluminum and zirconium

  7. Formation of amorphous Ti-50at.%Pt by solid state reactions during mechanical alloying

    CSIR Research Space (South Africa)

    Mahlatji, ML

    2013-10-01

    Full Text Available Mechanical alloying of an equiatomic mixture of crystalline elemental powders of Ti and Pt in a high-energy ball mill results in formation of an amorphous alloy by solid-state reactions. Mechanical alloying was carried out in an argon atmosphere...

  8. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    Science.gov (United States)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  9. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  10. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    Energy Technology Data Exchange (ETDEWEB)

    Akmal, Muhammad, E-mail: muhammad.akmal@giki.edu.pk [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Raza, Ahmad, E-mail: ahmadrazac@yahoo.com [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Khan, Muhammad Mudasser; Khan, M. Imran [Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Hussain, Muhammad Asif [Department of Chemical Engineering, Kangwon National University, Samcheok, 25913 (Korea, Republic of)

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi{sub 2}, Ni{sub 3}Ti, and Ni{sub 4}Ti{sub 3}. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni{sub 3}Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi{sub 2}, Ni{sub 3}Ti and Ni{sub 4}Ti{sub 3} were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  11. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    Science.gov (United States)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  12. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    International Nuclear Information System (INIS)

    Liu, D R; Mangelinck-Noël, N; Thi, H Nguyen; Billia, B; Gandin, Ch-A; Zimmermann, G; Sturz, L

    2016-01-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement. (paper)

  13. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  14. The Effect of Toluene Solution on the Hydrogen Absorption of the Mg-Ti Alloy Prepared by Synthetic Alloying

    Directory of Open Access Journals (Sweden)

    H. Suwarno

    2009-07-01

    Full Text Available The synthesis and characterization of the Mg–Ti alloy have been carried out through a mechanical alloying technique under toluene solution. The Mg and Ti powders are milled for 10, 20, and 30 h in a high energy ball mill. The milled alloys are then hydrided at a temperature of 300 oC in order to investigate the possibility used for hydrogen storage materials. The refinement analyses of the x-ray diffraction patterns show that mechanical alloying of the Mg–Ti powders under toluene solution results in the formation of the TiH2 and Mg2Ti phases. Quantitative analyses indicate that the mass fractions of the TiH2 and Mg2Ti phases are 62.90 % and 30.60 %, while the value for Mg and Ti amount to 2.6 wt% and 1.25 wt%. On hydriding at a temperature of 300 oC, the milled powders are transformed into Mg2TiH4, TiH2 and γ-MgH2 phases with the mass fractions of 25.48 wt%, 64.0 wt%, and 10.52 wt%, respectively. Microstructure analyses show that before milling the shape of particle is mostly a ball shape, after 30 h of milling the shape of particles changes into polygonal shape, and upon hydriding the shape of particles changes from a polygonal shape into an irregular one. The final composition of the specimen after hydriding exhibits that Mg-Ti alloy can be promoted as a hydrogen storage material.

  15. Short range order and phase separation in Ti-rich Ti-Al alloys

    International Nuclear Information System (INIS)

    Liew, H.J.

    1999-01-01

    Many metals and alloys are used in service under conditions in which they are metastable or unstable with respect to phase separation or transformation. Analytical and numerical models exist for relatively simple decomposition processes, such as nucleation and growth mechanisms and spinodal decomposition. In reality, however, more complex phase transformations may occur which are less well understood. For example, reactions involving coupled ordering and phase separation, such as the 'conditional spinodal mechanism', have been predicted. A 'conditional spinodal' is defined as a reaction in which compositional phase separation is thermodynamically possible only after a prior process, such as ordering at the parent composition. There is some debate regarding which real alloy systems exhibit such complex behaviour. Previous atom probe field ion microscopy work on titanium-rich titanium-aluminium based alloys has led to the suggestion that formation of the α 2 phase in this system may occur by a complex phase separation process. As well as being of interest from the point of view of fundamental materials science, this has potential engineering significance as the Ti-Al system forms the basis of the current generation of high-temperature Ti-based alloys for compressor applications in jet engines. This thesis describes an investigation into the phase decomposition process taking place in a titanium-rich Ti-Al alloy lying in the two-phase α+α 2 region. Experimentally, a binary alloy containing 15at% aluminium was heat-treated and examined using electron microscopy, X-ray diffraction, atom probe field ion microscopy and mechanical testing methods. Neutron diffraction experiments were also completed on this system for the first time. In addition, fully three-dimensional atomistic simulations were conducted using a Monte Carlo computer model based on first principles thermodynamic stability calculations of the Ti-Al system. The results provide an insight into many aspects

  16. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  17. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    International Nuclear Information System (INIS)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching; Lee, Chih-Jhan; Ho, Wen-Fu

    2010-01-01

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable β phase began. However, when 4 mass% Fe or greater was added, the β phase was entirely retained with a bcc crystal structure. Moreover, the ω phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of ω phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9 o ) and Ti-5Nb-5Fe (29.5 o ) alloys were greater than that of c.p. Ti (2.7 o ) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  18. Structure and mechanical properties of as-cast Ti-5Nb-xFe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsueh-Chuan; Hsu, Shih-Kuang; Wu, Shih-Ching [Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan (China); Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, Changhua 51591, Taiwan (China); Lee, Chih-Jhan [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Ho, Wen-Fu, E-mail: fujii@mail.dyu.edu.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China)

    2010-09-15

    In this study, as-cast Ti-5Nb and a series of Ti-5Nb-xFe alloys were investigated and compared with commercially pure titanium (c.p. Ti) in order to determine their structure and mechanical properties. The series of Ti-5Nb-xFe alloys contained an iron content ranging from 1 to 5 mass% and were prepared by using a commercial arc-melting vacuum-pressure casting system. Additionally, X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer, and three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that these alloys possessed a range of different structures and mechanical properties dependent upon the various additions of Fe. With an addition of 1 mass% Fe, retention of the metastable {beta} phase began. However, when 4 mass% Fe or greater was added, the {beta} phase was entirely retained with a bcc crystal structure. Moreover, the {omega} phase was only detected in the Ti-5Nb-2Fe, Ti-5Nb-3Fe and Ti-5Nb-4Fe alloys. The largest quantity of {omega} phase and the highest bending modulus were found in the Ti-5Nb-3Fe alloy. The Ti-5Nb-2Fe alloy had the lowest bending modulus, which was lower than that of c.p. Ti by 20%. This alloy exhibited the highest bending strength/modulus ratio of 26.7, which was higher than that of c.p. Ti by 214%, and of the Ti-5Nb alloy (14.4 ) by 85%. Additionally, the elastically recoverable angles of the ductile Ti-5Nb-1Fe (19.9{sup o}) and Ti-5Nb-5Fe (29.5{sup o}) alloys were greater than that of c.p. Ti (2.7{sup o}) by as much as 637% and 993%, respectively. Furthermore, the preliminary cell culturing results revealed that the Ti-5Nb-xFe alloys were not only biocompatible, but also supported cell attachment.

  19. Heat treatments of TiAl-Cr-V casting alloy

    International Nuclear Information System (INIS)

    Pu, Z.J.; Ma, J.L.; Wu, K.H.

    1995-01-01

    The need to investigate various kinds of fine microstructure based on casting TiAl alloy led to development of a multiple-stage heat treatment procedure. The first stage required the transformation of as-cast lamellar structure into near-gamma structure, followed by required transformation of near-gamma structure into various kinds of fine microstructure. The as-cast lamellar structure can be changed into near-gamma structure by annealing the alloy at 1,200 C for at least 50 hours. During the annealing process, two mechanisms are involved in transforming the lamellar structure into a near-gamma structure. One is the discontinuous coarsening (DC) process, and the other is the continuous coarsening (CC) process. With the near-gamma structure as an initial structure, the alloy being heat-treated in the γ + α and in the α fields can produce various kinds of microstructure with fine grain size. These microstructure significantly differ from the microstructure produced by heat-treating the deformed lamellar structure. Results of the investigation show that careful control of the time of the heat-treatment process in the single a field can produce a fine fully lamellar structure

  20. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  1. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  2. Fatigue failure analysis of V-4Ti-4Cr alloy

    International Nuclear Information System (INIS)

    Aglan, H.; Gan, Y.X.; Grossbeck, M.

    1999-01-01

    In the present work, the fatigue fracture and failure behavior of a V-4Ti-4Cr has been studied. Static tests were conducted to study the overloading behavior and to select the magnitude of the stress level for the fatigue studies. Fatigue tests were performed using single edge notched (SEN) specimens under tension-tension load control conditions. Fatigue crack propagation (FCP) data such as the crack length, number of cycles, and hysteresis loops were recorded to calculate the crack speed, the energy release rate, and the change in work expended on damage formation and dissipative processes within the material. Parameters characterizing the fatigue fracture resistance of V-4Ti-4Cr alloy, namely the specific energy of damage (γ'), and the dissipative coefficient (β'), were determined from the fatigue data using the modified crack layer (MCL) theory. Fracture surface examination using scanning electron microscopy (SEM) revealed ductile failure mechanisms under tensile overloading conditions. The fatigue fracture surface of the V-4Ti-4Cr consists of three distinct regions, corresponding to the threshold, stable and unstable crack propagation stages. (orig.)

  3. Impaired bacterial attachment to light activated Ni-Ti alloy

    International Nuclear Information System (INIS)

    Chrzanowski, Wojciech; Valappil, Sabeel P.; Dunnill, Charles W.; Abou Neel, Ensanya A.; Lee, Kevin; Parkin, Ivan P.; Wilson, Michael; Armitage, David A.; Knowles, Jonathan C.

    2010-01-01

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  4. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    Science.gov (United States)

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  5. Influence of (TiC+TiB) on the microstructure and tensile properties of Ti-B20 matrix alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahoma, H.K.S. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Chen, Y.Y., E-mail: yychen@hit.edu.cn [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, X.P.; Xiao, S.L. [National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-05

    Highlights: • After forging, the microstructure was significantly refined and uniform. • The presence of carbide and boride also led to uniform and finer precipitation of α during aging as compared to the matrix alloy. • The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility. - Abstract: A hybrid of (TiB+TiC) reinforced beta titanium matrix (Ti-B20) were produced by non-consumable arc-melting technology and hot-forging. Microstructures of the composites were observed by optical microscopy (OM), transmission electron microscope (TEM) and scanning electron microscopy (SEM). The results show that both the TiB whiskers and TiC particles tend to segregate at β boundaries. The β grain size and secondary α lath width are refined by reinforcements and aging treatment. Evolution of tensile properties shows that enhancement in yield strength and ultimate tensile strength with the addition of reinforcements, as well as the remarkable increase in the ductility can be attributed to aging treatment at 600 °C and 650 °C. The size of secondary α phase increased with the increase of aging temperature. This trend leads to the decrease of strength and the increase of ductility to get good balance of properties. The fracture mechanism of the composite can be attributed to the cracking of the reinforcements.

  6. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Niobium alloys production with elements of high steam pressure and high ductilidate Nb46,5%Ti, Nb 1%Zr, Nb 1%Ti and Nb20% Ta

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Baldan, C.A.; Dainesi, C.R.; Sandim, H.R.Z.

    1988-01-01

    The melting technology of niobium alloys with high ductilidade and high steam pressure, having the Ti, Zr and Ta as alloying elements is described. The electron beam technique for production of Nb 46,5%Ti, Nb 1%Zr and Nb 20%Ta alloys is analysed, aiming a product with high grade and low cost. (C.G.C.) [pt

  8. The studies of the martensite transformations in a Ti36.5Ni48.5Hf15 alloy

    International Nuclear Information System (INIS)

    Han, S.; Jin, S.; Chinese Academy of Sciences, Beijing; Zou, W.; Zhang, Z.; Yang, D.

    1995-01-01

    In recent years, high temperature shape memory alloy (SMA) has attracted much interest by many groups of researchers. Many kinds of alloys, such as TiNiPd and NiAL alloys were reported to have shape memory effect in high temperatures. But for different kinds of reasons, these alloys were not put to practical use. TiNi alloys have been considered the best shape memory materials until now. Adding a third element whose characteristics are similar to Ti or Ni in TiNi binary alloys can produce a new style SMA, which has been done in many cases. In most circumstances, Ni was substituted and only a few investigations on the TiNi alloys was Ti replaced. But in recent years, many investigators have given more attention to this subject. In 1976, Eckelmeyer showed that Zr was one of the element that can raise the phase transformation temperatures of TiNi alloys. In 1990, Krupp obtained a patent on TiNiZr SMA with high transformation temperatures for TiNi alloys. J.H. Mulder also published his work on TiNiZr alloys in 1992. In their previous work, a new type of high temperature SMA Ti 36.5 Ni 48.5 Hf 15 alloy were investigated in more detail by DSC measurement, TEM and high-resolution observations

  9. Corrosion behavior of amorphous and crystalline Cu50Ti50 and Cu50Zr50 alloys

    International Nuclear Information System (INIS)

    Naka, M.; Hoshimoto, K.; Masumoto, T.

    1978-01-01

    Corrosion rates and anodic polarization curves of amorphous and crystalline Cu 50 Ti 50 and Cu 50 Zr 50 alloys have been examined in various acidic, neutral and alkaline solutions. The amorphous alloys are very stable in acidic and alkaline solutions, but unstable in agressive chloride solutions. The corrosion resistance of these amorphous alloys is higher than that of the crystallized alloys. The high corrosion resistance of amorphous alloys is attributable to the high chemical homogeneity of amorphous alloys without localized crystalline defects such as precipitates, segregates, grain boundaries, etc. Metalloid elements play an important role in the corrosion behavior of amorphous alloys; the addition of phosphorus to amorphous Cu-Ti alloy greatly increases the corrosion resistance, even in 1N HCl. (Auth.)

  10. Estimation of Transformation Temperatures in Ti-Ni-Pd Shape Memory Alloys

    Science.gov (United States)

    Narayana, P. L.; Kim, Seong-Woong; Hong, Jae-Keun; Reddy, N. S.; Yeom, Jong-Taek

    2018-03-01

    The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti-Ni-Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti-Ni-Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti-rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.

  11. Mechanical characterization of Ti-12Mo-13Nb alloy for biomedical application hot swaged and aged

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema; Rezende, Monica Castro; Almeida, Luiz Henrique de, E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Dille, Jean [Universite Libre de Bruxelles, Brussels (Belgium); Mei, Paulo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Departamento de Engenharia Mecanica; Baldan, Renato; Nunes, Carlos Angelo [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Departamento de Engenharia de Materiais

    2015-07-01

    Beta titanium alloys were developed for biomedical applications due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance, good ductility and with excellent corrosion resistance. With this perspective a metastable beta titanium alloy Ti-12Mo-13Nb was developed with the replacement of both vanadium and aluminum from the traditional alloy Ti-6Al-4V. This paper presents the microstructure, mechanical properties of the Ti-12Mo-13Nb hot swaged and aged at 500 deg C for 24 h under high vacuum and then water quenched. The alloy structure was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of a fine dispersed α phase in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-12Mo-13Nb alloy can be a promising alternative for biomedical application. (author)

  12. Thermo-physical Properties and Mechanical Properties of Burn-resistant Titanium Alloy Ti40

    Directory of Open Access Journals (Sweden)

    LAI Yunjin

    2017-10-01

    Full Text Available As a functional material of burn-resistant titanium alloy, the physical properties of Ti40 alloy were first reported. The chemical compositions of Ti40 alloy ingots by VAR were uniform. The microstructures of Ti40 alloy slab manufactured by HEFF+WPF were uniform. The results show that the room temperature tensile strength of Ti40 alloy is 950 MPa degree. The properties of high temperature heat exposure, creep resistance and lasting time are good at 500 ℃. In the range from room temperature to 600 ℃, Young's modulus and shear modulus are decreased linearly with increasing the temperature, Poisson's ratio is increases slowly as the temperature rises, and linear thermal expansion coefficient and average linear expansion coefficient is increase as the temperature rises.

  13. Martensitic transformation and shape memory effect in polycomponent TiNi-based alloys

    International Nuclear Information System (INIS)

    Khachin, V.N.; Voronin, V.P.; Sivokha, V.P.; Pushin, V.G.

    1995-01-01

    The results of martesitic transformation (MT) and shape memory effect (SME) in quaternary Ti 50 (NiCoCu) 50 , Ti 50 (NiFeCu) 50 and (TiAl) 50 (NiCu) 50 alloys studies are generalized in this paper. On alloying TiNi simultaneously by two elements, their individual effect on MT and SME is conserved. Martensitic transformations B2→R and B2→B19' are almost simultaneously realizing in a binary TiNi. One can selectively control each of two MT channels by selecting property of alloying elements. As a result, the alloys having any sequences of MT and their realizations temperatures, including simultaneous realization of two MTs at low temperatures, which was not observed earlier, can be produced. (orig.)

  14. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.

    Science.gov (United States)

    Medvedev, Alexander E; Molotnikov, Andrey; Lapovok, Rimma; Zeller, Rolf; Berner, Simon; Habersetzer, Philippe; Dalla Torre, Florian

    2016-09-01

    Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Stress-induced phase transformation and room temperature aging in Ti-Nb-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J.E. [Fort Wayne Metals Research Products Corp, 9609 Ardmore Ave., Fort Wayne, IN 46809 (United States); Ren, Y. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2017-01-05

    Room temperature deformation behavior of Ti-17Nb-1Fe and Ti-17Nb-2Fe alloys was studied by synchrotron X-ray diffraction and tensile testing. It was found that, after proper heat treatment, both alloys were able to recover a deformation strain of above 3.5% due to the Stress-induced Martensite (SIM) phase transformation. Higher Fe content increased the beta phase stability and onset stress for SIM transformation. A strong {110}{sub β} texture was produced in Ti-17Nb-2Fe compared to the {210}{sub β} texture that was observed in Ti-17Nb-1Fe. Room temperature aging was observed in both alloys, where the formation of the omega phase increased the yield strength (also SIM onset stress), and decreased the ductility and strain recovery. Other metastable beta Ti alloys may show a similar aging response and this should draw the attention of materials design engineers.

  16. Microstructural, mechanical characterisation and fractography of As-cast Ti-Al alloy

    International Nuclear Information System (INIS)

    Hamzah, E.; Ong, W.R.; Tamin, M.N.

    2007-01-01

    The effect of alloying element, namely chromium (Cr) on the microstructures, mechanical characterization and fracture surface of gamma titanium aluminide (Ti Al) has been studied. Micro-hardness and fatigue crack growth tests were performed on as-cast samples with composition of Ti-48at%Al and Ti-48%Al-2at%Cr. Prior to the micro-hardness tests; samples were metallurgically prepared for microstructural and structural analysis using optical microscope and scanning electron microscope. Field emission scanning electron microscope (FESEM) technique was employed to investigate the fracture surface of sample after fatigue crack growth test. Micro-hardness tests results showed increasing hardness value of Ti-48Al alloys when chromium is added. Both titanium aluminide alloys exhibited a nearly lamellae microstructure. However, finer laths of plates in lamellar structure have been observed in Ti-48at%Al-2at%Cr. FESEM micrograph of surface fracture indicates a mixed mode of failure for both alloys. (author)

  17. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    Directory of Open Access Journals (Sweden)

    Aritza Brizuela-Velasco

    2017-01-01

    Full Text Available The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young’s modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration.

  18. Neutron irradiation effect on the strength of jointed Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro; Miya, Naoyuki

    2002-01-01

    In order to investigate applicability of Ti alloy to large scaled structural material for fusion reactors, irradiation effect on the mechanical properties of Ti-6Al-4V alloy and its TIG welded material was investigated after neutron irradiation (temperature: 746-788K, fluence: 2.8 x 10 23 n/m 2 (>0.18 MeV). The following results were obtained. (1) Irradiated Ti alloy shows about 20-30% increase of its tensile strength and large degradation of fracture elongation, comparing with those of unirradiated Ti alloy. (2) TIG welded material behaves as Ti alloy in its tensile test, however, shows 30% increase of area reduction in 373-473K, whereas 1/2 degradation of area reduction over 600K. (3) Irradiated TIG welded material behaves heavier embrittlement than that of irradiated Ti alloy. (4) Charpy impact properties of un- and irradiated Ti alloys shift to ductile from brittle fracture and transition temperature shift, ΔT was estimated as about 100K. (5) Remarkable increase of hardness was found, especially in HAZ of TIG welded material after irradiation. (author)

  19. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  20. Effect of Ti3+ ion on the Corrosion Behavior of Alloy 600

    International Nuclear Information System (INIS)

    Lee, Chang Bong; Lim, Han Gwi; Kim, Bok Hee; Kim, Ki Ju

    1999-01-01

    Alloy 600 has been widely used as a steam generator tubing material in pressurized water reactors(PWRs) nuclear power plants. Corrosion of steam generator tubing mainly occurs on the secondary water side. The purpose of this work is primarily concerned with examining the effect of Ti 3+ ion concentrations on the corrosion behavior of the Alloy 600 steam generator tubing material. Corrosion behavior of the Alloy 600 steam generator tubing material was studied in aqueous solutions with varying Ti 3+ ion concentration at room temperature. Potentiodynamic and potentiostatic polarization techniques were used to determine the corrosion and pitting potentials for the Alloy 600 test material. The addition of Ti 3+ ion to 1000ppm, showed inhibition effect on the corrosion of Alloy 600. But the corrosion of Alloy 600 was accelerated when the concentration of Ti 3+ ion exceeded 1000ppm, it is assumed that the effect of general corrosion of Alloy 600 is more sensitive than pitting corrosion. It is considered that the passive film which was formed on the Alloy 600 surface in the 100ppm Ti 3+ ion containing solution is mainly consisted of TiO 2

  1. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying

    International Nuclear Information System (INIS)

    Cai, Zhaobing; Jin, Guo; Cui, Xiufang; Liu, Zhe; Zheng, Wei; Li, Yang; Wang, Liquan

    2016-01-01

    Ni-Cr-Co-Ti-V-Al high-entropy alloy coating on Ti-6Al-4V was synthesized by laser surface alloying. The coating is composed of a B2 matrix and (Co, Ni)Ti 2 compounds with few β-Ti phases. Focused ion beam technique was utilized to prepare TEM sample and TEM observations agree well with XRD and SEM results. The formation of HEA phases is due to high temperature and rapid cooling rate during laser surface alloying. The thermodynamic parameters, ΔH mix , ΔS mix and δ as well as Δχ, should be used to predict the formation of the BCC solid solution, but they are not the strict criteria. Especially when Δχ reaches a high value (≥ 10%), BCC HEA will be partially decomposed, leading to the formation of (Co, Ni)Ti 2 compound phases. - Highlights: •Preparing HEA coating on Ti-6Al-4V by laser surface alloying is successful. •The synthesized HEA coating mainly consists of BCC HEA and (Co, Ni)Ti 2 compounds. •FIB technology was used to prepare the sample for TEM analysis. • ΔH mix , ΔS mix and δ as well as Δχ, should be all used to predict the formation of solid solution.

  2. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    International Nuclear Information System (INIS)

    García-Rosales, C.; López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N.; Koch, F.; Brinkmann, J.

    2014-01-01

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO 3 in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr 2 O 3 layer is found at the outer surface, below which a Cr 2 WO 6 scale and Ti 2 CrO 5 layers alternating with WO 3 are formed. The Cr 2 O 3 , Cr 2 WO 6 and Ti 2 CrO 5 scales act as protective barriers against fast inward O 2− diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W

  3. Oxidation behaviour of bulk W-Cr-Ti alloys prepared by mechanical alloying and HIPing

    Energy Technology Data Exchange (ETDEWEB)

    García-Rosales, C., E-mail: cgrosales@ceit.es [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); López-Ruiz, P.; Alvarez-Martín, S.; Calvo, A.; Ordás, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Koch, F.; Brinkmann, J. [Max-Planck-Institut für Plasmaphysik (IPP), EURATOM Association, D-85748 Garching (Germany)

    2014-10-15

    Self-passivating tungsten based alloys are expected to provide a major safety advantage compared to pure tungsten when used as first wall armour of future fusion reactors, due to the formation of a protective oxide scale, preventing the formation of volatile and radioactive WO{sub 3} in case of a loss of coolant accident with simultaneous air ingress. In this work results of isothermal oxidations tests at 800 and 1000 °C on bulk alloy WCr12Ti2.5 performed by thermogravimetric analysis (TGA) and by exposure to flowing air in a furnace are presented. In both cases a thin, dense Cr{sub 2}O{sub 3} layer is found at the outer surface, below which a Cr{sub 2}WO{sub 6} scale and Ti{sub 2}CrO{sub 5} layers alternating with WO{sub 3} are formed. The Cr{sub 2}O{sub 3}, Cr{sub 2}WO{sub 6} and Ti{sub 2}CrO{sub 5} scales act as protective barriers against fast inward O{sup 2−} diffusion. The oxidation kinetics seems to be linear for the furnace exposure tests while for the TGA tests at 800 °C the kinetics is first parabolic, transforming into linear after an initial phase. The linear oxidation rates are 2–3 orders of magnitude lower than for pure W.

  4. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Argonne National Lab., IL (United States); Uz, M. [Lafayette College, Easton, PA (United States); Ulie, T.

    1997-08-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature.

  5. Oxidation and microstrucure of V-Cr-Ti alloys exposed to oxygen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Uz, M.; Ulie, T.

    1997-01-01

    The objectives of this task are to (a) evaluate the oxygen uptake of several V-Cr-Ti alloys as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen trapped at the grain boundaries in the substrate alloys, and (c) evaluate the influence of alloy composition on oxygen uptake and develop correlation(s) between alloy composition, exposure environment, and temperature

  6. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Corrosion behavior of Ti-13Nb-13Zr alloy used as a biomaterial

    International Nuclear Information System (INIS)

    Niemeyer, T.C.; Grandini, C.R.; Pinto, L.M.C.; Angelo, A.C.D.; Schneider, S.G.

    2009-01-01

    Titanium alloys were developed as an alternative to stainless steels and have been extensively used as biomaterials ever since. One of these alloys is Ti-13Nb-13Zr (TNZ), a near-beta phase alloy containing elements with excellent biocompatibility. The main advantage of the TNZ alloy, compared to other titanium alloys, such as Ti-6Al-4V and Ti-6Al-7Nb, widely used as biomaterials, is its low elasticity modulus, closer to that of bone, and the absence of aluminum and vanadium, which have been reported to cause long-term adverse effects. In this paper, the corrosion and electrochemical behavior of TNZ alloy (as cast and after oxygen charge) was studied in a PBS solution. The results showed that, with the oxygen load, there is a significant reduction of the anodic current in almost the whole potential spam explored in this work, meaning that the corrosion rate decreases when the doping is performed.

  8. Thermomechanical processing of In-containing β-type Ti-Nb alloys.

    Science.gov (United States)

    Pilz, Stefan; Geissler, David; Calin, Mariana; Eckert, Jürgen; Zimmermann, Martina; Freudenberger, Jens; Gebert, Annett

    2018-03-01

    In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing β-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased β-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58GPa ((Ti-40Nb)-3.5In) and 56GPa ((Ti-36Nb)-3.5In) compared to 60GPa as determined for Ti-40Nb. For both In-containing alloys the ultimate tensile strength is in the range of 560MPa. Due to the suppressed α'' formation, (Ti-40Nb)-3.5In exhibits a linear elastic deformation behavior during tensile loading together with a low Young's modulus and is therefore promising for load-bearing implants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    OpenAIRE

    Wang Lin; Wang Yangwei; Xu Xin; Liu Chengze

    2015-01-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy...

  10. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  11. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  12. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    Science.gov (United States)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  13. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    Science.gov (United States)

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants. © 2013 Elsevier Ltd. All rights reserved.

  14. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  15. Microstructure and mechanical properties of sintered Ti Binary alloys for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz Atay, H.; Haro Rodriguez, M.; Amigo Mata, A.; Vicente Escuder, V.; Amigo Borras, V.

    2016-07-01

    Biomaterials have shown rapid growth in the field of elderly population demands with the prolongation of human life. One of those biomaterials, titanium, has excellent properties and biocompatibility though it may cause weakening in the structures due to its higher stiffness. In this study, powder metallurgy process was used to produce Ti-Cr, Ti-Mo and Ti-Cu metal alloys to overcome this problem. Metal powders were mixed by mechanical alloying. After pressing and sintering, alloys structures were investigated. Characterizations were carried out by size analyzer, SEM-EDX, optical microscope and three points bending test. (Author)

  16. Structural heredity of TiC and its influences on refinement behaviors of AlTiC master alloy

    Institute of Scientific and Technical Information of China (English)

    王振卿; 刘相法; 柳延辉; 张均燕; 于丽娜; 边秀房

    2003-01-01

    Heredity of microstructure in AlTiC master alloy, grain refiners, was analyzed. It is found that, for morphologies and distributions of TiC particles, there are visible heredity which originates from raw materials or processing methods of Al melt, and will ultimately be transferred to the solid state structure through the melt stage, and this phenomenon can cause hereditary influences on refinement: formation of chain-like TiC morphology results in rapid refinement fading behavior; distribution of TiC along grain boundaries greatly reduces refinement efficiency. Controlling of structural heredity through proper selections of raw materials and processing parameters is of great importance in obtaining ideal microstructures and improving refinement behaviors of AlTiC master alloys.

  17. Phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC and the formation of TiC in Fe3Al-based alloys

    International Nuclear Information System (INIS)

    Kobayashi, Satoru; Schneider, Andre; Zaefferer, Stefan; Frommeyer, Georg; Raabe, Dierk

    2005-01-01

    In the context of the development of high-strength Fe 3 Al-based alloys, phase equilibria among α-Fe(Al, Cr, Ti), liquid and TiC phases in the Fe-Al-Cr-Ti-C quinary system and the formation of TiC were determined. A pseudo-eutectic trough (L α + L + TiC) exists at 1470 deg C at around Fe-26Al-5Cr-2Ti-1.7C on the vertical section between Fe-26Al-5Cr (α) and Ti-46C (TiC) in at.%. Large faceted TiC precipitates form from the melt after the formation of primary α phase even in hypoeutectic alloys. The TiC formation is thought to be due to the composition change of the liquid towards the hypereutectic compositions by solidification of the primary α. In order to remove the faceted TiC, which are unfavourable for strengthening the material, two different processing routes have been successfully tested: (i) solidification with an increased rate to reduce the composition variation of the liquid during solidification, and (ii) unidirectional solidification to separate the light TiC precipitates from the melt

  18. Application of a Pore Fraction Hot Tearing Model to Directionally Solidified and Direct Chill Cast Aluminum Alloys

    Science.gov (United States)

    Dou, Ruifeng; Phillion, A. B.

    2016-08-01

    Hot tearing susceptibility is commonly assessed using a pressure drop equation in the mushy zone that includes the effects of both tensile deformation perpendicular to the thermal gradient as well as shrinkage feeding. In this study, a Pore Fraction hot tearing model, recently developed by Monroe and Beckermann (JOM 66:1439-1445, 2014), is extended to additionally include the effect of strain rate parallel to the thermal gradient. The deformation and shrinkage pore fractions are obtained on the basis of the dimensionless Niyama criterion and a scaling variable method. First, the model is applied to the binary Al-Cu system under conditions of directional solidification. It is shown that for the same Niyama criterion, a decrease in the cooling rate increases both the deformation and shrinkage pore fractions because of an increase in the time spent in the brittle temperature region. Second, the model is applied to the industrial aluminum alloy AA5182 as part of a finite element simulation of the Direct Chill (DC) casting process. It is shown that an increase in the casting speed during DC casting increases the deformation and shrinkage pore fractions, causing the maximum point of pore fraction to move towards the base of the casting. These results demonstrate that including the strain rate parallel to the thermal gradient significantly improves the predictive quality of hot tearing criteria based on the pressure drop equation.

  19. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy

    International Nuclear Information System (INIS)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R.

    2010-01-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal ω phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  20. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling

    International Nuclear Information System (INIS)

    Amore, S.; Brillo, J.; Egry, I.; Novakovic, R.

    2011-01-01

    The surface tension of liquid Cu-Ti alloys has been measured by using the containerless technique of electromagnetic levitation and theoretically calculated in the framework of the compound formation model. Measurements have been carried out on alloys covering the entire range of composition and over the temperature range 1275-2050 K. For all investigated alloys the surface tension can be described by a linear function of the temperature with negative slope. Due to the presence of different intermetallic compounds in the solid state the surface properties of liquid Cu-Ti alloys are satisfactory described by the compound formation model.

  1. Cyclic deformation of NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Liu Yong; Van Humbeeck, J.; Xie Zeliang

    1999-01-01

    Recently, there is an increasing interest in applying the high damping capacity of shape memory alloys (SMAs). The purpose is to explore the feasibility of those materials for the protection of buildings and other civil constructions as a result of earthquake damages. So far, few experimental results have been reported concerning the mechanical cyclic behaviour of SMAs in their martensitic state (ferroelastic). In the present work, the experimental results on the mechanical behaviour of martensitic NiTi SMAs under tension-compression cyclic deformation up to strains of ±4% are summarized with major attention to the damping capacity, characteristic stresses and strains as a function of deformation cycles. Effect of strain rate, strain amplitude and annealing condition on the martensite damping is summarized. Explanation of the cyclic hardening and cyclic softening phenomenon is proposed based on TEM observations. (orig.)

  2. Grain boundary migration induced segregation in V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States); Ohnuki, S.; Takahashi, H. [Univ. of Hokkaido (Japan)

    1996-10-01

    Analytical electron microscopy results are reported for a series of vanadium alloys irradiated in the HFIR JP23 experiment at 500{degrees}C. Alloys were V-5Cr-5Ti and pure vanadium which are expected to have transmuted to V-15Cr-5Ti and V-10Cr following irradiation. Analytical microscopy confirmed the expected transmutation occurred and showed redistribution of Cr and Ti resulting from grain boundary migration in V-5Cr-5Ti, but in pure V, segregation was reduced and no clear trends as a function of position near a boundary were identified.

  3. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  4. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.

    Science.gov (United States)

    Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian

    2013-12-01

    The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.

  5. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    International Nuclear Information System (INIS)

    Kirievsky, K.; Gelbstein, Y.; Fuks, D.

    2013-01-01

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi 2 Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi 2 Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi 2 Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi 2 Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced

  6. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study

    Science.gov (United States)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2016-11-01

    It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.

  7. Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys

    International Nuclear Information System (INIS)

    Elias, L.M.; Schneider, S.G.; Schneider, S.; Silva, H.M.; Malvisi, F.

    2006-01-01

    In recent years there has been a significant development of novel implant alloys based on β-Ti such as Ti-Nb-Zr and Ti-Nb-Zr-Ta alloys systems. The purpose of this work is to provide characterization of Ti-35.3Nb-5.1Ta-7.1Zr and Ti-41.1Nb-7.1Zr alloys, in which Nb will substitute the atomic amount of Ta, with emphasis in the property-microstructure-composition relationships. These alloys are produced from commercially pure materials (Ti, Nb, Zr and Ta) by an arc melting method. All ingots were submitted to sequences of heat treatment (1000 deg. C/2 h - WQ), cold working by swaging procedures and other heat treatment (1000 deg. C/2 h - WQ). Specimens, in as cast and heat-treated condition, were examined by light and scanning electron microscopy (SEM). These results suggested the presence of β- and ω-phases. Mechanical properties were based on tensile and hardness tests. These alloys exhibit a lower modulus than that of conventional Ti alloys and the other mechanical properties are suitable for biomedical applications

  8. On chlorination of WC-Co, WC-TiC-Co and TiC-Mo-Ni solid alloys components in electroerosion process conditions

    International Nuclear Information System (INIS)

    Satyvaldiev, A.S.; Asanov, U.A.; Dronov, E.O.

    1996-01-01

    Potentialities of electroerosion processing of industrial wastes of hard alloys containing W and Ti carbides have been considered. The optimal dielectric medium for prevailing chlorination of the hard alloys metallic components has been ascertained. 8 refs., 1 tab

  9. Annealing Effect on Mechanical Properties of Ti-Al Alloy/Pure Ti Harmonic-Structured Composite by MM/SPS Process

    International Nuclear Information System (INIS)

    Yoshida, R; Tsuda, T; Fujiwara, H; Miyamoto, H; Ameyama, K

    2014-01-01

    The Ti-Al alloy/pure Ti harmonic-structured composite was produced by mechanical milling and spark plasma sintering process for improvement of low ductility at room temperature of Ti-Al alloy. The harmonic-structured composite with the dispersed area having coarse grained titanium and the network area having fine-grained Ti-48mol%Al alloy demonstrates high strength and high ductility at room temperature. The annealing effect of the microstructure on the mechanical properties in the Ti-Al alloy/pure Ti harmonic-structured composite are investigated. The microstructure of the Ti-Al alloy/pure Ti harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the Ti-Al network structure and pure Ti dispersed regions, the average grain size of pure Ti dispersed region is only coarsen by annealing. The harmonic-structured composite annealed at 873 K, 973 K and 1073 K are maintained the high hardness. The tensile results reveal that the Ti-Al alloy/pure Ti harmonic- structured composite annealed at 873 K exhibits high strength and especially high ductility

  10. Evaluation of cast Ti-Fe-O-N alloys for dental applications

    International Nuclear Information System (INIS)

    Koike, Marie; Ohkubo, Chikahiro; Sato, Hideki; Fujii, Hideki; Okabe, Toru

    2005-01-01

    Good mechanical properties, biocompatibility and corrosion resistance make titanium an excellent material for biomedical applications. However, when better mechanical properties than those offered by commercially pure titanium (CPTi) are needed, Ti-6Al-4V is sometimes a good alternative. Some new titanium alloys, developed as industrial structural materials, aim at an intermediate range of strength between that of CP Ti and Ti-6Al-4V. Two of these alloys are Super-TIX800TM (Ti-1% Fe-0.35% O-0.01% N) and Super-TIX800NTM (Ti-1% Fe-0.3% O-0.04% N) (both produced by Nippon Steel Corp., Japan). Besides being stronger than CP Ti, the cost of manufacturing these alloys is reportedly lower than for Ti-6Al-4V since they do not contain any expensive elements. In addition, they are not composed of elements such as aluminum or vanadium, which have caused biocompatibility concerns in medical and dental appliances. To evaluate these alloys as candidates for dental use, it is helpful to compare them to CP Ti (ASTM Grade 2) and Ti-6Al-4V (ASTM Grade 5), which have already been employed in dentistry. We evaluated the tensile properties, mold filling capacity, corrosion characteristics and grindability of these industrial alloys prepared by investment casting. Compared to the strengths of cast CPTi, the yield strength and tensile strength of these cast alloys were more than 20% and approximately 30% higher, respectively. On the other hand, both of these properties were 30% lower than for Ti-6Al-4V. Better grindability and wear resistance were additional benefits of these new alloys for dental applications

  11. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  12. Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Javidani, M.; Hoseini, M.; Larouche, D.; Pekguleryuz, M.

    2013-01-01

    Highlights: ► Phase formation in Al–Si–Ni–Cu–Mg–Fe system have been investigated. ► T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni are formed at different Ni levels. ► Thermally stable Ni-bearing precipitates improved the overaged hardness. ► It was found that Ni:Cu and Ni:Fe ratios control the precipitation. ► δ-Al 3 CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al–7Si–(0–1)Ni–0.5Cu–0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al 9 FeNi, γ-Al 7 Cu 4 Ni, δ-Al 3 CuNi and ε-Al 3 Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the δ-Al 3 CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  13. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  14. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    Science.gov (United States)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  15. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    DEFF Research Database (Denmark)

    Canulescu, Stela; Rechendorff, K.; Borca, C. N.

    2014-01-01

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at. %. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms...... are not located in a TiO2 unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2 eV (300–135 nm). The results indicate that amorphous anodic Al2O3 has a direct...

  16. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  17. From Porous to Dense Nanostructured β-Ti alloys through High-Pressure Torsion.

    Science.gov (United States)

    Afonso, Conrado R M; Amigó, Angelica; Stolyarov, Vladimir; Gunderov, Dmitri; Amigó, Vicente

    2017-10-19

    β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

  18. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    Science.gov (United States)

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  19. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    International Nuclear Information System (INIS)

    Lin, Hsi-Chen; Wu, Shih-Ching; Ho, Wen-Fu; Huang, Ling-Hsiu; Hsu, Hsueh-Chuan

    2010-01-01

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  20. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    Science.gov (United States)

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  2. Strengthening behavior of beta phase in lamellar microstructure of TiAl alloys

    Science.gov (United States)

    Zhu, Hanliang; Seo, D. Y.; Maruyama, K.

    2010-01-01

    β phase can be introduced to TiAl alloys by the additions of β stabilizing elements such as Cr, Nb, W, and Mo. The β phase has a body-centered cubic lattice structure and is softer than the α2 and γ phases in TiAl alloys at elevated temperatures, and hence is thought to have a detrimental effect on creep strength. However, fine β precipitates can be formed at lamellar interfaces by proper heat treatment conditions and the β interfacial precipitate improves the creep resistance of fully lamellar TiAl alloys, since the phase interface of γ/β retards the motion of dislocations during creep. This paper reviews recent research on high-temperature strengthening behavior of the β phase in fully lamellar TiAl alloys.

  3. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  4. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  5. Effect of Ti/Cr additive on helium diffusion and segregation in dilute vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Zheng, Pengfei; Chen, Jiming [Southwestern Institute of Physics, Chengdu 610041 (China)

    2017-02-15

    Highlights: • He prefers to segregate to Ti region rather than Cr region in the vanadium alloys. • He diffusion barrier decreases towards Ti while it increases towards Cr. • The He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes energetically. - Abstract: The effect of Ti/Cr additive on He diffusion and segregation properties in dilute vanadium alloys is investigated using first-principles calculations. First we determined the He preference site and investigated the He-Cr/He-Ti interactions. Energetically, He prefers to segregate to Ti regions rather than Cr regions. The most stable site for interstitial He is a tetrahedral site near Ti. He-Ti interactions have a weak attraction while He-Cr interactions have a weak repulsion. Kinetically, He diffusion to Ti has a lower energy barrier; contrarily the He barrier increases towards Cr. Furthermore, we discuss the stability of He{sub n}-Cr/Ti complexes and He{sub n}-vacancy-Cr and Ti complexes with n = 1–8. It is found that the He{sub n}Ti complexes are more stable than the He{sub n}Cr complexes while the He{sub n}-vacancy-Ti complexes are less favorable than He{sub n}-vacancy-Cr. The findings give a reference for understanding the mechanism of He embrittlement under irradiation.

  6. Biological Properties of Ti-Nb-Zr-O Nanostructures Grown on Ti35Nb5Zr Alloy

    Directory of Open Access Journals (Sweden)

    Zhaohui Li

    2012-01-01

    Full Text Available Surface modification of low modulus implant alloys with oxide nanostructures is one of the important ways to achieve favorable biological behaviors. In the present work, amorphous Ti-Nb-Zr-O nanostructures were grown on a peak-aged Ti35Nb5Zr alloy through anodization. Biological properties of the Ti-Nb-Zr-O nanostructures were investigated through in vitro bioactivity testings, stem cell interactions, and drug release experiments. The Ti-Nb-Zr-O nanostructures demonstrated a good capability of inducing apatite formation after immersion in simulated body fluids (SBFs. Drug delivery experiment based on gentamicin and the Ti-Nb-Zr-O nanostructures indicated that a high drug loading content could result in a prolonged release process and a higher quantity of drug residues in the oxide nanostructures after drug release. Quick stem cell adhesion and spreading, as well as fast formation of extracellular matrix materials on the surfaces of the Ti-Nb-Zr-O nanostructures, were found. These findings make it possible to further explore the biomedical applications of the Ti-Nb-Zr-O nanostructure modified alloys especially clinical operation of orthopaedics by utilizing the nanostructures-based drug-release system.

  7. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys

    International Nuclear Information System (INIS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2016-01-01

    The interfacial reactions between two commercially available Ag–Cu–Ti-based active braze alloys and sapphire have been studied. In separate experiments, Ag–35.3Cu–1.8Ti wt.% and Ag–26.7Cu–4.5Ti wt.% alloys have been sandwiched between pieces of R-plane orientated sapphire and heated in argon to temperatures between 750 and 900 °C for 1 min. The phases at the Ag–Cu–Ti/sapphire interfaces have been studied using selected area electron diffraction, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy. Gradual and subtle changes at the Ag–Cu–Ti/sapphire interfaces were observed as a function of temperature, along with the formation of a transient phase that permitted wetting of the sapphire. Unequivocal evidence is shown that when the active braze alloys melt, titanium first migrates to the sapphire and reacts to dissolve up to ∼33 at.% oxygen, forming a nanometre-size polycrystalline layer with a chemical composition of Ti 2 O 1–x (x ≪ 1). Ti 3 Cu 3 O particles subsequently nucleate behind the Ti 2 O 1–x layer and grow to become a continuous micrometre-size layer, replacing the Ti 2 O 1–x layer. Finally at 845 °C, a nanometre-size γ-TiO layer forms on the sapphire to leave a typical interfacial structure of Ag–Cu/Ti 3 Cu 3 O/γ-TiO/sapphire consistent with that seen in samples of polycrystalline alumina joined to itself with these active braze alloys. These experimental observations have been used to establish a definitive bonding mechanism for the joining of sapphire with Ag–Cu alloys activated by small amounts of titanium.

  8. As-cast microstructures of Ti-11 Al- xC alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the investigation of as-cast microstructures of high temperature α + α2 titanium alloys matrix composites reinforced by particles and fabricated using a reaction synthesis method by XRD, OM and SEM which reveals that the matrix transformed into single phase α2 from two phases α + α2 and reinforcing phases become Ti3A1C and TiC from single phase TiC as C content increases to a critical value, and Ti3AlC precipitates during solidification processing and points out that the norphologies of TiC and Ti3AlC are of short-lath shape and near spherical shape, respectively, and lattice parameters of matrix α2 increase with the increasing of C content, but the lattice parameter of reinforcing phase TiC is lower than standard lattice parameter of TiC due to the C defection in TiC.

  9. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  10. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  11. Study on glass formation and crystallization of Zr54.5Cu20Al10Ni8Ti75 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.

    2009-01-01

    The microstructure of Zr 54.5 Cu 20 Al 10 Ni 8 Ti 75 alloy has been examined after solidification involving three different techniques viz., copper mould casting, suction casting and melt spinning. The bulk glass microstructure of the alloy obtained through copper mould casting was found to comprise of big cube Zr 2 Ni phase in a dendritic morphology and tetragonal Zr 2 Ni phase in a faulted morphology besides the amorphous phase. High-resolution electron microscopy (HREM) was carried out to examine the internal structure and interface structure of the phases. The dendritic phase was found to consist of primary and secondary dendrite arms with faceted as well rounded interfaces with the amorphous phase. Ledges were noticed at either of the interfaces with higher density at the rounded interfaces. The presence of the faulted phase was noticed in between dendritic arms. The faulted phase was found to consist of different domains corresponding to different orientations. A variety of interfaces could be noticed between these individual domains and also within a single domain itself. At least three different kinds of faulted region were identified to coexist in a single domain. The melt spun ribbon and bulk glass made through suction casting was found to be fully amorphous. The amorphous phase obtained from the three different techniques showed different degrees of medium range order as revealed by the fluctuation microscopy technique. Crystallization behavior of as solidified structures has been examined by comparing the crystallization kinetics and microstructure. Crystallization led to the transformation of the amorphous phase to nanocrystals in all the cases. The crystallization event was found to be singular in the case of copper mold cast bulk glass and multiple in the case of suction cast bulk glass and ribbon. The phase forming on crystallization was found to be the same faulted tetragonal Zr 2 Ni that was encountered during solidification. Multiple domains

  12. Microstructures, mechanical properties and corrosion resistance of the Zr−xTi (Ag) alloys for dental implant application

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: cuiwf@atm.neu.edu.cn; Liu, N.; Qin, G.W.

    2016-06-15

    The Zr−xTi (Ag) alloys were designed for the application of dental implants. The microstructures of Zr−20Ti and Zr−40Ti alloy were observed using optical microscope and transmission electronic microscope. The hardness and compressive tests were performed to evaluate the mechanical properties of the Zr−xTi alloys. The electrochemical behavior of the Zr−xTi alloys with and without 6% Ag was investigated in the acidified artificial saliva containing 0.1% NaF (pH = 4). For comparison, the electrochemical behavior of cp Ti was examined in the same condition. The results show that the quenched Zr−20Ti and Zr−40Ti alloy exhibit acicular martensite microstructures containing twin substructure. They display good mechanical properties with the hardness of ∼330HV, the yield strength of ∼1000 MPa and the strain to fracture of ∼25% at room temperature. Adding 6% Ag to Zr−20Ti alloy enhances the passivity breakdown potential and the self-corrosion potential, but hardly affects the corrosion current density and the impedance modulus. 6% Ag in Zr−40Ti alloy distinctly increases pitting corrosion resistance, which is attributed the formation of thick, dense and stable passive film under the joint action of titanium and silver. In comparison with cp Ti, Zr−40Ti−6Ag alloy possesses the same good corrosion resistance in the rigorous oral environment as well as the superior mechanical properties. - Highlights: • The quenched Zr20Ti and Zr40Ti obtain acicular martensite microstructure. • Zr20Ti and Zr40Ti possess high hardness, strength and strain to fracture. • Increasing Ti content decreases corrosion current density. • Adding Ag enhances passivation breakdown potentials of Zr20Ti and Zr40Ti. • Zr40Ti6Ag has optimum mechanical properties and pitting corrosion resistance.

  13. Numerical Simulation of Spheroidization Process of TiAl Alloy Powders in Radio Frequency Plasma

    OpenAIRE

    ZHU Langping; LU Xin; LIU Chengcheng; LI Jianchong; NAN Hai

    2017-01-01

    A numerical simulation method was used to study the radio frequency plasma spheroidization process of TiAl alloy powder. The effects of velocity field and temperature field on the motion trajectory and mass change of TiAl alloy powder with different particle size were analyzed.The results show that the temperature of powder particles increases rapidly under high temperature plasma, surface evaporation cause the reduction of particle size, and particles with small size tend to evaporate quickl...

  14. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  15. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-04-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  16. Mechanical Properties of TiTaHfNbZr High-Entropy Alloy Coatings Deposited on NiTi Shape Memory Alloy Substrates

    Science.gov (United States)

    Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.

    2018-06-01

    TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.

  17. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Miao He; Wang Weiguo

    2010-01-01

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  18. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications.

    Science.gov (United States)

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Cho, Ken; Nakai, Masaaki; Liu, Huihong; Ohtsu, Naofumi; Hirano, Mitsuhiro; Ikeda, Masahiko; Narushima, Takayuki

    2015-10-01

    The microstructures, mechanical properties and biocompatibility of low cost β-type Ti-(6-18)Mn alloys were investigated after solution treatment. Ti-9 Mn exhibits the best combination of tensile strength and elongation among the fabricated alloys, and its performance is comparable to or superior to those of Ti-6Al-4V ELI (Ti-64 ELI) in terms of every parameter evaluated. A hardness of 338 HV, a Young's modulus of 94 GPa, a 0.2% proof stress of 1023 MPa, an ultimate tensile strength of 1048 MPa and elongation of 19% were obtained for Ti-9 Mn. Furthermore, the cell viability and metallic ion release ratios are comparable to those of commercially pure titanium, making this alloy promising for biomedical applications. The Young's modulus is also lower than that of Ti-64 ELI (110 GPa), which can possibly reduce the stress shielding effect in implanted patients. This study evaluates mechanical and biological performance of low cost solution treated β-type Ti-(6, 9, 13 and 18 mass%)Mn alloys. It includes alloys containing a Mn content range higher than most previously published works (which is around or lower than 8 mass%). Furthermore, the effects of the ω phase and the β phase stability of the alloys over some mechanical properties and microstructures are discussed. Ion release behavior under simulated body fluids and cell viability are also evaluated. For the case of the Ti-9 Mn, a mechanical and biological performance that is comparable to or superior than that of the widely used Ti-6Al-4V ELI and commercially pure Ti was observed. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  20. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  1. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Kato, Hidemi; Inoue, Akihisa

    2005-01-01

    High-strength Ti-Fe-Co alloys were produced in the shape of arc-melted ingots with the dimensions of about 20-25mm in diameter and 7-10mm in height. The structure of the Ti-Fe-Co alloys (at Fe/Co ratio >1) studied by X-ray diffractometry and scanning electron microscopy consisted of an ordered Pm3-bar m Ti(FeCo) compound and a disordered body-centered cubic Im3-bar m β-Ti solid solution. The optimization of the Ti-Fe-Co alloy composition is performed from the viewpoint of both high strength and ductility. The strongest Ti-Fe-Co alloys have a hypereutectic structure and exhibit a high strength of about 2000MPa and a plastic deformation of 15%. The high strength and ductility values can be achieved without using the injection mould casting or rapid solidification procedure. The deformation behavior and the fractography of Ti-Fe-Co alloys are studied in detail

  2. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  3. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    International Nuclear Information System (INIS)

    Tsipas, Sophia A.; Gordo, Elena

    2016-01-01

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  4. Molybdeno-Aluminizing of Powder Metallurgy and Wrought Ti and Ti-6Al-4V alloys by Pack Cementation process

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Gordo, Elena

    2016-08-15

    Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgy (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions

  5. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-01-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti 2 Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti 2 Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (> 99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. - Highlights: • Hot extrusion refined the grain size and Ti 2 Cu phase significantly. • Hot extrusion increased the mechanical properties and the corrosion resistance. • The antibacterial properties was not affected by the hot process.

  6. Precipitation of Ni4Ti3-variants in a polycrystalline Ni-rich NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Bojda, Ondřej; Eggeler, G.; Dlouhý, Antonín

    2005-01-01

    Roč. 53, č. 1 (2005), s. 99-104 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitation * Transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.228, year: 2005

  7. Oxidation behavior of U-2wt%Nb, Ti, and Ni alloys in air

    International Nuclear Information System (INIS)

    Ju, J. S.; Yoo, K. S.; Jo, I. J.; Gug, D. H.; Su, H. S.; Lee, E. P.; Bang, K. S.; Kim, H. D.

    2003-01-01

    For the long term storage safety study of the metallic spent fuel, U-Nb, U-Ti, U-Ni, U-Zr, and U-Hf simulated metallic uranium alloys, known as corrosion resistant alloys, were fabricated and oxidized in oxygen gas at 200 .deg. C-300 .deg. C. Simulated metallic uranium alloys were more corrosion resistant than pure uranium metal, and corrosion resistance increases Nb, Ni, Ti in that order. The oxidation rates of uranium alloys determined and activation energy was calculated for each alloy. The matrix microstructure of the test specimens were analyzed using OM, SEM, and EPMA. It was concluded that Nb was the best acceptable alloying elements for reducing corrosion of uranium metal considered to suitable as candidate

  8. Corrosion-wear of β-Ti alloy TMZF (Ti-12Mo-6Zr-2Fe) in simulated body fluid.

    Science.gov (United States)

    Yang, Xueyuan; Hutchinson, Christopher R

    2016-09-15

    Titanium alloys are popular metallic implant materials for use in total hip replacements. Although, α+β titanium alloys such as Ti-6Al-4V have been the most commonly used alloys, the high Young's modulus (∼110GPa) leads to an undesirable stress shielding effect. An alternative is to use β titanium alloys that exhibit a significantly lower Young's modulus (∼70GPa). Femoral stems made of a β titanium alloy known as TMZF (Ti-12Mo-6Zr-2Fe (wt.%)) have been used as part of modular hip replacements since the early 2000's but these were recalled in 2011 by the US Food & Drug Administration (FDA) due to unacceptable levels of 'wear debris'. The wear was caused by small relative movement of the stem and neck at the junction where they fit together in the modular hip replacement design. In this study, the corrosion and wear properties of the TMZF alloy were investigated in simulated body fluid to identify the reason for the wear debris generation. Ti64 was used as a control for comparison. It is shown that the interaction between the surfaces of Ti64 and TMZF with simulated body fluid is very similar, both from the point of view of the products formed and the kinetics of the reaction. The dry wear behaviour of TMZF is also close to that of Ti64 and consistent with expectations based on Archard's law for abrasive wear. However, wear of Ti64 and TMZF in simulated body fluid show contrasting behaviours. A type of time-dependent wear test is used to examine the synergy between corrosion and wear of TMZF and Ti64. It is shown that the wear of TMZF accelerated rapidly in SBF whereas that of Ti64 is reduced. The critical role of the strain hardening capacity of the two materials and its role in helping the surface resist abrasion by hydroxyapatite particles formed as a result of the reaction with the SBF is discussed and recommendations are made for modifications that could be made to the TMZF alloy to improve the corrosion-wear response. TMZF is a low modulus β-Ti alloy

  9. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  10. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    Science.gov (United States)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  11. Micromechanics-Based Damage Analysis of Fracture in Ti5553 Alloy with Application to Bolted Sectors

    OpenAIRE

    Ben Bettaieb, Mohamed; Van Hoof, Thibaut; Minnebo, Hans; Pardoen, Thomas; Dufour, Philippe; Jacques, Pascal; Habraken, Anne-Marie

    2015-01-01

    A physics-based, uncoupled damage model is calibrated using cylindrical notched round tensile specimens made of Ti5553 and Ti-6Al-4V alloys. The fracture strain of Ti5553 is lower than for Ti-6Al-4V in the full range of stress triaxiality. This lower ductility originates from a higher volume fraction of damage sites. By proper heat treatment, the fracture strain of Ti5553 increases by almost a factor of two, as a result of a larger damage nucleation stress. This result proves the potential fo...

  12. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    International Nuclear Information System (INIS)

    Liping, Mao; Yongfan, Shi; Yu, Han

    2014-01-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti 2 FeZ (Z=Al, Ga, Ge) alloys with Hg 2 CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti 2 FeZ follow the µ t =Z t −18 rule and agree with the Slater–Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. - Highlights: • Ti 2 FeZ (Z=Al, Ga, Ge) are found to be half-metallic ferrimagnets. • The band gaps are mainly determined by the hybridizations of the d states between the Ti(A)–Ti(B) coupling and Fe atom. • The s–p elements play an important role in the half-metallicity of these Heusler alloys

  13. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    International Nuclear Information System (INIS)

    Mareci, Daniel; Bolat, Georgiana; Chelariu, Romeu; Sutiman, Daniel; Munteanu, Corneliu

    2013-01-01

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO 2 is lower than that of TiO 2 rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F − ) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F − could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions

  14. The estimation of corrosion behaviour of ZrTi binary alloys for dental applications using electrochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Bolat, Georgiana, E-mail: georgiana20022@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Chelariu, Romeu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Iasi (Romania); Sutiman, Daniel [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi (Romania); Munteanu, Corneliu [“Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical, Iasi (Romania)

    2013-08-15

    Titanium and zirconium are in the same group in the periodic table of elements and are known to have similar physical and chemical properties. Both Ti and Zr usually have their surfaces covered by a thin oxide film spontaneously formed in air. However, the cytotoxicity of ZrO{sub 2} is lower than that of TiO{sub 2} rutile. Treatments with fluoride are known as the main methods to prevent plaque formation and dental caries. The corrosion behaviour of ZrTi alloys with Ti contents of 5, 25 and 45 wt.% and cp-Ti was investigated for dental applications. All samples were tested by linear potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) performed in artificial saliva with different pH levels (5.6 and 3.4) and different fluoride (1000 ppm F{sup −}) and albumin protein (0.6%) contents. In addition, scanning electron microscopy (SEM) was employed to observe the surface morphology of the test materials after linear potentiodynamic polarisation. The corrosion current densities for the ZrTi alloys increased with the titanium content. The Zr5Ti and Zr25Ti alloys were susceptible to localised corrosion. The role that Ti plays as an alloying element is that of increasing the resistance of ZrTi alloy to localised corrosion. The presence of 0.6% albumin protein in fluoridated acidified artificial saliva with 1000 ppm F{sup −} could protect the cp-Ti and ZrTi alloys from attack by fluoride ions. - Highlights: • Electrochemical and corrosion behaviour of the new ZrTi alloys were investigated. • The passive behaviour for all the ZrTi alloys is observed. • Addition of Ti to Zr improves the corrosion resistance in some fluoridated saliva. • The presence of albumin could prevent the ZrTi alloys from attack by fluoride ions.

  15. Initial stages of solid solution decomposition in Fe-Ti and Fe-Nb alloys

    International Nuclear Information System (INIS)

    Ustinovshchikov, Yu.I.; Chen Shiren; Shirobokova, M.S.

    1993-01-01

    Structural analysis of Fe-Ti and Fe-Nb systems is performed. Formation of Laves phases proceed through the stage of the formation of a structure representing a periodic sequence of the regions enriched and depleted in alloying element. Abnormal changes in the properties of alloys of the given systems are noted; there changes reside in a decrease of alloy hardness during the formation of the above structure

  16. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  17. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.

  18. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenfang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Duan, Jingzhu; Wang, Huan [Spinal surgery, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10 N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti{sub 4}N{sub 3−x} transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (L{sub c1} = 80 N, L{sub c2} = 120 N), hardness (21 GPa) and anti-wear performance (6.2 × 10{sup −7} mm{sup 3}/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. - Highlights: • A graded nano-TiN coating was prepared on biomedical Ti alloy by PVD. • The combination of hard and soft phase increases hardness and toughness. • The coating exhibits high bonding, low coefficient of friction and wear rate. • The new coating has good bio-safety and great clinical application prospect.

  19. Effects of O in a binary-phase TiAl-Ti3Al alloy: from site occupancy to interfacial energetics

    International Nuclear Information System (INIS)

    Wei Ye; Xu Huibin; Zhou Hongbo; Zhang Ying; Lu Guanghong

    2011-01-01

    We have investigated site occupancy and interfacial energetics of a TiAl-Ti 3 Al binary-phase system with O using a first-principles method. Oxygen is shown to energetically occupy the Ti-rich octahedral interstitial site, because O prefers to bond with Ti rather than Al. The occupancy tendency of O in TiAl alloy from high to low is α 2 -Ti 3 Al to the γ-α 2 interface and γ-TiAl. We demonstrate that O can largely affect the mechanical properties of the TiAl-Ti 3 Al system. Oxygen at the TiAl-Ti 3 Al interface reduces both the cleavage energy and the interface energy, and thus weakens the interface strength but strongly stabilizes the TiAl/Ti 3 Al interface with the O 2 molecule as a reference. Consequently, the mechanical property variation of TiAl alloy due to the presence of O not only depends on the number of TiAl/Ti 3 Al interfaces but also is related to the O concentration in the alloy.

  20. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.

    Science.gov (United States)

    Rosalbino, F; Macciò, D; Scavino, G; Saccone, A

    2012-04-01

    The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface

  1. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.

    Science.gov (United States)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-12-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti2Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti2Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (>99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  3. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  4. On the formation and stability of Y-Ti-O nanoparticles in ODS alloys

    International Nuclear Information System (INIS)

    Sundar, C.S.

    2012-01-01

    The thermal and radiation stability of Y-Ti-O nanoparticles in oxide dispersion strengthened steels is a topic of interest, given that these nanoparticles bestow the crucial high temperature creep strength, and these ferritic alloys are candidate materials for cladding and structural materials for fast and fusion reactors. In addition, there is also interest in obtaining a basic understanding of the various issues, such as the role of alloying element Ti, on the formation of uniform sized and small nanoparticles in these alloys that are formed using the powder metallurgy route of ball milling followed by consolidation using hot extrusion

  5. Characterization of nitride formation in NbTi-50% weight alloy by x-ray diffraction

    International Nuclear Information System (INIS)

    Teixeira, S.R.

    1990-01-01

    Titanium and niobium are so main metals for technology as structural materials, refractories and resistance alloys for corrosion. This interest is based in application of this metals and alloys in aerospacial industry, nuclear reactors, construction of superconductor magnets and in the production of superconductors wires. The NbTi (50% wt. Ti) alloy nitretation under nitrogen atmosphere (p + 760 mm) at 800 - 1000 C was studied by x-ray diffractometry. TEM and optical metallography. During the reaction the two phases (Ti sub(2) N - ε and TiN - δ) growed continuously, the (Ti sub(2) N, N sub(2)) reaction front growed faster than the (TiN,N sub(2)). A method for study the scale growing was proposed using x-ray diffractometry data. By using this method, the growth of TiN scale was analysed and the activation energy of 19 Kcal/mole was determinated using a linear timming law indicating a mechanism not controlled by diffusion through TiN layer. The present results suggest that the diffusion through the tight tunnels, rich in Nb, allow a fast transport of nitrogen through the TiN layer. (author)

  6. Mechanical properties and biocompatibility in alloy Ti-Ta system containing oxygen

    International Nuclear Information System (INIS)

    Ruiz, S.L.M.; Grandini, C.R.; Claro, A.P.R.A.

    2010-01-01

    Due to the excellent properties such as corrosion resistance, good mechanical strength/density, good performance at high temperatures, Ti is very useful in the chemical industry and aerospace. Currently, their use has expanded to the field of biomaterials, due to its excellent biocompatibility and reduced elasticity modulus, favouring the production of orthopaedic and dental prostheses. Promising alloys are the Ti-Ta system and researches have been directed to describe and understand the behavior of this system. In this paper, samples of Ti-Ta alloys containing 8 and 16% (wt%) containing interstitial oxygen were prepared and characterized by density, xray diffraction, hardness, elasticity modulus measurements and in vitro cytotoxicity tests. (author)

  7. Effects of Al-Mn-Ti-P-Cu master alloy on microstructure and properties of Al-25Si alloy

    Directory of Open Access Journals (Sweden)

    Xu Chunxiang

    2013-09-01

    Full Text Available To obtain a higher microstructural refining efficiency, and improve the properties and processing ability of hypereutectic Al-25Si alloy, a new environmentally friendly Al-20.6Mn-12Ti-0.9P-6.1Cu (by wt.% master alloy was fabricated; and its modification and strengthening mechanisms on the Al-25Si alloy were studied. The mechanical properties of the unmodified, modified and heat treated alloys were investigated. Results show that the optimal addition amount of the Al-20.6Mn-12Ti-0.9P-6.1Cu master alloy is 4wt.%. In this case, primary Si and eutectic Si as well as メ-Al phase were clearly refined, and this refining effect shows an excellent long residual action as it can be heat-retained for at least 5 h. After being T6 heat treated, the morphology of primary and eutectic Si in the Al-25Si alloys with the addition of 4wt.% Al-20.6Mn-12Ti-0.9P-6.1Cu alloy changes into particles and short rods. The average grain size of the primary and eutectic Si decreases from 250 レm (unmodified to 13.83 レm and 35 レm (unmodified to 7 レm; the メ-Al becomes obviously finer and the distribution of Si phases tends to be uniform and dispersed. Meanwhile, the tensile properties are improved obviously; the tensile strengths at room temperature and 300 ìC reach 241 MPa and 127 MPa, increased by 153.7% and 67.1%, respectively. In addition, the tensile fracture mechanism changes from brittle fracture for the alloy without modification to ductile fracture after modification. Modifying the morphology of Si phase and strengthening the matrix can effectively block the initiation and propagation of cracks, thus improving the strength of the hypereutectic Al-25Si alloy.

  8. Microstructural evolution of Ti-10Nb and Ti-15Nb alloys produced by the blended elemental technique

    International Nuclear Information System (INIS)

    Martins, G.V.; Souza, J.V.C.; Machado, J.P.B.; Silva, C.R.M.; Henriques, V.A.R.

    2009-01-01

    Alfa/beta titanium alloys have been intensely used for aerospace and biomedical applications. Production of powder metallurgy titanium alloys components may lead to a reduction in the cost of parts, compared to those produced by conventional cast and wrought (ingot metallurgy) processes, because additional working operations (machining, turning, milling, etc.) and material waste can be avoided. In this work, samples of Ti- 10, 15Nb (weight%) alloys were obtained by the blended elemental technique using hydride-de hydride (HDH) powders as raw material, followed by uniaxial and cold isostatic pressing with subsequent densification by sintering carried out in the range 900-1500 deg C. These alloys were characterized by X-ray diffractometry for phase composition, scanning electron microscopy for microstructure, Vickers indentation for hardness, Archimedes method for specific mass and resonance ultrasound device for elastic modulus. For the samples sintered at 1500 deg C it was identified α and β phases. It was observed the influence of the sintering temperatures on the final microstructure. With increasing sintering temperature, microstructure homogenization of the alloy takes place and at 1500 deg C this process is complete. The same behavior is observed for densification. Comparing to the Ti6Al4V alloy properties, these alloys hardness (sintered at 1500 deg C) are near and elastic modulus are 18% less. (author)

  9. Microstructural evolution during hot pressing of the blended elemental Ti-6%Al-7%Nb alloy

    International Nuclear Information System (INIS)

    Henriques, V.A.R.; Sandim, H.R.Z.; Coelho, G.C.; Silva, C.R.M. da

    2003-01-01

    The Ti-6%Al-7%Nb (wt.%) α-β alloy was developed aiming the replacement of the traditional Ti-6%Al-4%V alloy in surgical implants owing to its larger biocompatibility. Samples of this alloy were obtained using the blended elemental (BE) technique. The isochronal hot pressing of the compacts was carried out in the range 700-1500 deg. C with a compaction pressure of 20 MPa and a heating rate of 20 deg. C min -1 . In this work, the behavior of the elementary powders during the hot pressing and the corresponding microstructural evolution were investigated. The alloy was characterized by means of scanning electron microscopy (SEM) in the backscattered mode (BSE), X-ray diffraction (XRD), and density measurements. The results indicate that the homogenization of the alloy is diffusion-controlled and Ti.Al intermediary compounds (TiAl and Ti 3 Al) are formed at lower temperatures. With increasing temperature, homogenization of the alloy takes place and a coarse plate-like α+intergranular β structure is found throughout the microstructure in temperatures above 1300 deg. C. The process variables were defined aiming to minimize interstitial pick-up (C, O, and N) and avoiding intensive grain growth

  10. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility.

    Science.gov (United States)

    Cui, Wenfang; Qin, Gaowu; Duan, Jingzhu; Wang, Huan

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti 4 N 3-x transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (L c1 =80N, L c2 =120N), hardness (21GPa) and anti-wear performance (6.2×10 -7 mm 3 /Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging

    International Nuclear Information System (INIS)

    Oliveira, Nathalia Rodrigues; Baldan, Renato; Gabriel, Sinara Borborema

    2014-01-01

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  12. Crack propagation behavior of Ti-5Ta alloy in boiling nitric acid solution

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Kiuchi, Kiyoshi

    1999-05-01

    The crack propagation behavior of Ti-5Ta alloy both in boiling nitric acid solution and in air at room temperature has been investigated. The crack growth rate of Ti-5Ta alloy was measured as a function of the stress intensity factor range. After the tests, the fracture surface morphology was observed by a scanning electron microscope and the crystallographic orientation was examined by X-ray diffraction analysis. Difference in the crack growth behavior was not observed in both environments. The crack growth rate in boiling nitric acid solution was similar to that in air at room temperature. Moreover, the crystallographic orientation of Ti-5Ta alloy had little effect on the fatigue behavior, because this alloy does not have the susceptibility to SCC in nitric acid solution. (author)

  13. Three-dimensional characterization of pores in Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Márcia Regina Baldissera

    2011-03-01

    Full Text Available The direct three-dimensional characterization of opaque materials through serial sectioning makes possible to visualize and better quantify a material microstructure, using classical metallographic techniques coupled with computer-aided reconstruction. Titanium alloys are used as biomaterials for bone implants because of its excellent mechanical properties, biocompatibility and enhanced corrosion resistance. The Ti-6Al-4V alloy (in wt. (% with porous microstructure permits the ingrowths of new-bone tissues improving the fixation bone/implant. This is important to understand connectivity, morphology and spatial distribution of pores in microstructure. The Ti-6Al-4V alloy compacts were produced by powder metallurgy and sintered at three distinct temperatures (1250, 1400 and 1500 °C to obtain distinct microstructures in terms of residual porosity. The visualization of the reconstructed 3D microstructure provides a qualitative and quantitative analysis of the porosity of Ti6Al4V alloy (volume fraction and pore morphology.

  14. Effect of heat treatment on transformation behavior of Ti-Ni-V shape memory alloy

    International Nuclear Information System (INIS)

    He Zhirong; Liu Manqian

    2011-01-01

    Highlights: → New shape memory alloy (SMA) - Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of annealed Ti-50.8Ni-0.5V SMA. → The evolution laws of transformation types of aged Ti-50.8Ni-0.5V SMA. → The effect laws of annealing on transformation temperature and hysteresis of the alloy. → The effect laws of aging on transformation temperature and hysterises of the alloy. - Abstract: Effects of annealing and aging processes on the transformation behaviors of Ti-50.8Ni-0.5V (atomic fraction, %) shape memory alloy were investigated by means of differential scanning calorimetry (DSC). The A → R/R → A (A - parent phase, R - R phase) type one-stage reversible transformation occurs in 350-400 deg. C annealed alloy, the A → R → M/M → R → A (M - martensite) type two-stage transformation occurs in 450-500 deg. C annealed alloy, the A → R → M/M → A type transformation occurs in 550 deg. C annealed alloy, and A → M/M → A type transformation occurs in the alloy annealed at above 600 deg. C upon cooling/heating. The transformation type of 300 deg. C aged alloy is A → R/R → A, and that of 500 deg. C aged alloy is A → R → M/M → A, while that of 400 deg. C aged alloy changes from A → R/R → A to A → R → M/M → R → A with increasing aging time. The effects of annealing and aging processes on R and M transformation temperatures and temperature hysteresis are given. The influence of annealing and aging temperature on transformation behaviors is stronger than that of annealing and aging time.

  15. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  16. Creep behavior of plasma carburized Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Oliveira, Veronica Mara Cortez Alves de; Barboza, Miguel Justino Ribeiro; Silva, Mariane Capellari Leite da; Pinto, Catia Gisele; Suzuki, Paulo Atsushi; Machado, Joao Paulo B.

    2010-01-01

    This paper aims to evaluate the effect of plasma carburizing on the Ti-6Al-4V alloy submitted to creep tests. The results showed that the alloy Ti-6Al-4V had a hardness of 334 ± 18 HV. After treatment thermochemical by plasma, was observed the formation of a layer of average thickness of 1,5 μm and hardness of 809 ± 79 HV due to the presence of TiC phase identified by X-ray diffraction. The treatment increased the values of average roughness of 1,28 to 2,02 μm. The creep properties of carburized specimens were improved in comparison with those of the uncarburized Ti-6Al-4V alloy. (author)

  17. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eunsoo; Yoon, Soon-Jong [Department of Civil Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Nam, Tae-Hyun [School of Materials Science and Engineering and ERI, Gyeongsang National University, Jinju, Gyeongnam 600-701 (Korea, Republic of); Cho, Sun-Kyu [School of Civil Engineering, Seoul National University of Technology, Seoul 139-743 (Korea, Republic of); Park, Joonam, E-mail: eunsoochoi@hongik.ac.k [Department of Railroad Structure Research, Korea Railroad Research Institute, Uiwang 437-050, Korea (Korea, Republic of)

    2010-05-01

    This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mmx300 mm ({phi}xL). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.

  18. A study on the shape memory characteristics of Ti-Ni50-x-Pdx alloys

    International Nuclear Information System (INIS)

    Lee, H. W.; Chun, B. S.; Oh, S. J.; Kuk, I.H.

    1991-01-01

    The shape memory characteristics in TiNi alloys are greatly effected by the alloy composition and heat treatment condition. The present work was aimed to investigate the effect of Pd x (x=5,10,15,20) addition on the shape memory chracteristics of TiNi alloys by means of electrical resistance measurement. X-ray diffraction, differential scanning calorimetry and electron dispersive analysis X-ray measurement. The results obtained from this study are as follows; 1. The martensitic transformation start temperature, Ms of Ti-Ni 50-x -Pd x alloys decreased considerably with the increase of Pd content up to 10at%, whereas increased largely with the increase of Pd content in the alloys with Pd content more than 15at%. 2. The Ms temperature of Ti-Ni 50-x -Pd x alloys with cold working was significantly lower than that of the fully annealed alloys because high density dislocation has been introduced by the cold working which suppressed the martensitic transformation. (Author)

  19. Grindability of cast Ti-6Al-4V alloyed with copper.

    Science.gov (United States)

    Watanabe, Ikuya; Aoki, Takayuki; Okabe, Toru

    2009-02-01

    This study investigated the grindability of cast Ti-6Al-4V alloyed with copper. The metals tested were commercially pure titanium (CP Ti), Ti-6Al-4V, experimental Ti-6Al-4V-Cu (1, 4, and 10 wt% Cu), and Co-Cr alloy. Each metal was cast into five blocks (3.0 x 8.0 x 30.0 mm(3)). The 3.0-mm wide surface of each block was ground using a hand-piece engine with an SiC wheel at four circumferential speeds (500, 750, 1000, and 1250 m/min) at a grinding force of 100 g. The grindability index (G-index) was determined as volume loss (mm(3)) calculated from the weight loss after 1 minute of grinding and the density of each metal. The ratio of the metal volume loss and the wheel volume loss was also calculated (G-ratio, %). Data (n = 5) were statistically analyzed using ANOVA (alpha= 0.05). Ti-6Al-4V and the experimental Ti-6Al-4V-Cu alloys exhibited significantly (p grindability of some of the resultant Ti-6Al-4V-Cu alloys.

  20. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  1. First-principles study of L10 Ti-Al and V-Al alloys

    International Nuclear Information System (INIS)

    Chubb, S.R.; Papaconstantopoulos, D.A.; Klein, B.M.

    1988-01-01

    As a first step towards understanding the reduced embrittlement of L1 0 Ti-Al alloys which accompanies the introduction of small concentrations of V, we have determined from first principles, using full-potential linearized--augmented-plane-wave calculations, the equilibrium values of the structural parameters and the associated electronic structure for the stoichiometric (L1 0 ) Ti-Al (tetragonal) compound. Our calculated values of c/a and a are in good agreement with experiment. Using the same method of calculation, we have also studied the electronic structure associated with the (hypothetical) L1 0 V-Al alloy that would form when V is substituted for Ti. We find that (1) the electronic structures of these V-Al alloys are relatively insensitive to variations of c/a and a; (2) near the Ti-Al equilibrium geometry, the electronic structures of the V-Al and Ti-Al alloys are very similar; and (3) that a rigid-band model involving substitution of V for Ti can be used to gain a qualitative understanding of the reduction in c/a which accompanies the introduction of small concentrations of V. We relate the reduction in c/a to important changes in the bonding that accompany the occupation of bands immediately above the Fermi level of the stoichiometric Ti-Al compound

  2. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    Science.gov (United States)

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-04-15

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of

  3. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    Science.gov (United States)

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces. (c) 2005 Wiley Periodicals, Inc.

  4. Phase transformations in TiAl based alloys

    International Nuclear Information System (INIS)

    Zghal, Slim; Thomas, Marc; Naka, Shigehisa; Finel, Alphonse; Couret, Alain

    2005-01-01

    Microstructural characteristics of a fully lamellar Ti 49 Al 47 Cr 2 Nb 2 alloy have been investigated in different annealed conditions by quantitative transmission electron microscopy. Statistical analyses have yielded clear information about the γ-γ interfaces, the respective orientation groups of the γ phase, and the distribution of orientational variants. From the results, three sequences of lamellar transformation have been identified with decreasing temperature: (1) a high-temperature heterogeneous transformation characterized by the nucleation of isolated primary γ lamellae mostly belonging to the same orientation group and having locally the same order; (2) a low-temperature homogeneous transformation in the ordered α 2 phase characterized by the formation of a fine lamellar structure with an even distribution of the orientation groups and a random ordering of γ lamellae; and (3) a coherent interfacial transformation at the α 2 /γ interfaces characterized by the nucleation of ultra-fine twin related lamellae. Finally, the driving forces for these various transformations as well as the nucleation mechanisms of γ lamellae involved in these transformations are discussed

  5. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  6. Effects of post-irradiation annealing on the transformation behavior of Ti-Ni alloys

    International Nuclear Information System (INIS)

    Kimura, A.; Tsuruga, H.; Morimura, T.; Misawa, T.; Miyazaki, S.

    1993-01-01

    Recovery processes of martensitic transformation of neutron irradiated Ti-50.0, 50.5 and 51.0 at.%Ni alloys during post-irradiation annealing were investigated by means of differential scanning calorimetry (DSC), tensile tests and transmission electron microscope (TEM) observations. Neutron irradiation up to a fluence of 1.2x10 24 n/cm 2 at 333 K suppressed the martensitic transformation as well as the stress-induced martensitic transformation of these alloys above 150 K. The TEM observations revealed that the disordered zones containing small defect clusters in high density were formed in the neutron irradiated Ti-Ni alloys. The DSC measurements also showed that the post-irradiation annealing caused recovery of the transformation of which the progress depended on the annealing temperature and period. A significant retardation of the recovery was recognized in the Ti-51.0 at.%Ni alloy in comparison with the Ti-50.0 at.%Ni alloy. From the shifts in the transformation temperature upon isothermal annealing at various annealing temperatures, the activation energies of the recovery process of the transformation in the neutron irradiated Ti-50.0 and 51.0 at.%Ni alloys were evaluated by a cross-cut method to be 1.2 eV and 1.5 eV, respectively. The recovery of the transformation was ascribed to the re-ordering resulting from decomposition of vacancy clusters, and those obtained values of the activation energy were considered to be the sum of the migration energy of vacancy and the binding energy of vacancy-vacancy cluster. The retardation of the recovery in the Ti-51.0 at%Ni alloy was interpreted in terms of large binding energy in this alloy due to the off-stoichiometry. (author)

  7. Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn.

    Science.gov (United States)

    Verissimo, Nathália C; Geilich, Benjamin M; Oliveira, Haroldo G; Caram, Rubens; Webster, Thomas J

    2015-12-01

    β-type Ti alloys containing Nb are exciting materials for numerous orthopedic and dental applications due to their exceptional mechanical properties. To improve their cytocompatibility properties (such as increasing bone growth and decreasing infection), the surfaces of such materials can be optimized by adding elements and/or nanotexturing through anodization. Because of the increasing prevalence of orthopedic implant infections, the objective of this in vitro study was to add Sn and create unique nanoscale surface features on β-type Ti alloys. Nanotubes and nanofeatures on Ti-35Nb and Ti-35Nb-4Sn alloys were created by anodization in a HF-based electrolyte and then heat treated in a furnace to promote amorphous structures and phases such as anatase, a mixture of anatase-rutile, and rutile. Samples were characterized by SEM, which indicated different morphologies dependent on the oxide content and method of modification. XPS experiments identified the oxide content which resulted in a phase transformation in the oxide layer formed onto Ti-35Nb and Ti-35Nb-4Sn alloys. Most importantly, regardless of the resulting nanostructures (nanotubes or nanofeatures) and crystalline phase, this study showed for the first time that adding Sn to β-type Ti alloys strongly decreased the adhesion of Staphylococcus aureus (S. aureus; a bacteria which commonly infects orthopedic implants leading to their failure). Thus, this study demonstrated that β-type Ti alloys with Nb and Sn have great promise to improve numerous orthopedic applications where infection may be a concern. © 2015 Wiley Periodicals, Inc.

  8. Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing

    International Nuclear Information System (INIS)

    Akbarpour, Mohammad Reza; Hesari, Feridoun Alikhani

    2016-01-01

    In this research, the microstructural and phase evolutions during mechanical alloying (MA) and subsequent heat treatment of Cu–Ti powder mixture are investigated through x-ray diffraction, scanning electron microscopy, transmission electron microscopy and micro-hardness measurements. The obtained experimental results demonstrated that after an optimum MA time of 30 h, TiCu intermetallic compound was achieved with a mean grain size of ≈8 nm and a high micro-hardness value of ≈634 Hv. Annealing the milled powder at different temperatures resulted in formation of major TiCu and Ti 2 Cu 3 , and minor Ti 2 Cu and Cu 4 Ti nanocrystalline phases, release of internal strain, and coarsening of grains. The amount of TiCu phase and the grain size increased with increase of the annealing temperature. Micro-hardness value of ≈765 Hv was recorded when the milled TiCu powder was annealed at 850 °C. This superior high micro-hardness value can be attributed to formation of higher amount of TiCu phase. (paper)

  9. Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content

    International Nuclear Information System (INIS)

    Yu, X.B.; Feng, S.L.; Wu, Z.; Xia, B.J.; Xu, N.X.

    2005-01-01

    The effect of Fe content on hydrogen storage characteristics of Ti-10Cr-18Mn-(32-x)V-xFe (x = 0, 2, 3, 4, 5) alloys has been investigated at 353 K. The X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images of the alloys present BCC and C14 two-phase structures for all of the Fe-containing alloys. With the increasing Fe content, the lattice parameters of the BCC phase decrease, which results in an increase of the hydrogen desorption plateau pressure of the alloys. Among the studied alloys, Ti-10Cr-18Mn-27V-5Fe alloy exhibits the smallest PCT plateau slope and a more suitable plateau pressure (0.1 MPa equ <1 MPa). The maximum and effective capacities of the alloy are 3.32 wt.% and 2.26 wt.%, respectively, which are higher than other reported Fe-containing BCC phase alloys. In addition, the V/Fe ratio in this alloy is close to that of (VFe) alloy, whose cost is much lower than that of pure V

  10. Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wentao; Sun, Xuguang; Yuan, Bifei [School of Mechanical Engineering, Xi' an Shiyou University, Xi' an 710065 (China); Xiong, Chengyang; Zhang, Fei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Sun, Baohui [Lanzhou Seemine SMA Co. Ltd., Lanzhou 730010 (China)

    2016-12-15

    The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensitic transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.

  11. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.

    1998-01-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH 2 levels of 0.01 and 3 x 10 -6 torr showed negligible effect of H 2 on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H 2 pressure. Preliminary data from sequential exposures of the materials to low-pO 2 and several low-pH 2 environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H 2 environments on specimens annealed at different temperatures showed that grain-size variation by a factor of ∼2 had little or no effect on tensile properties

  12. Microstructure/Oxidation/Microhardness Correlations in Gamma-Based and Tau-Based Al-Ti-Cr Alloys

    Science.gov (United States)

    Brady, Michael P.; Smialek, J. L.; Humphrey, D. L.

    1994-01-01

    The relationships between alloy microstructure and air oxidation kinetics and alloy microstructure and microhardness in the Al-Ti-Cr system for exposures at 800 C and 1000 C were investigated. The relevant phases were identified as tau (Ll2), gamma (LIO), r-Al2Ti, TiCrAl (laves), and Cr2AI. Protective alumina formation was associated with tau, Al-rich TiCrAl, and gamma/TiCrAl mixtures. Brittleness was associated with the TiCrAl phase and tau decomposition to A12Ti + Cr2AI. It was concluded that two-phase gamma + TiCrAl alloys offer the greatest potential for oxidation resistance and room temperature ductility in the Al-Ti-Cr system.

  13. Mechanical properties and grindability of dental cast Ti-Nb alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2003-09-01

    Aiming at developing a dental titanium alloy with better mechanical properties and machinability than unalloyed titanium, a series of Ti-Nb alloys with Nb concentrations up to 30% was made. They were cast into magnesia-based molds using a dental casting machine and the mechanical properties and grindability of the castings were examined. The hardness of the alloys with Nb concentrations of 5% and above was significantly higher than that of titanium. The yield strength and tensile strength of the alloys with Nb concentrations of 10% and above were significantly higher than those of titanium, while the elongation was significantly lower. A small addition of niobium to titanium did not contribute to improving the grindability of titanium. The Ti-30% Nb alloy exhibited significantly better grindability at low grinding speed with higher hardness, strength, and Young's modulus than titanium, presumably due to precipitation of the omega phase in the beta matrix.

  14. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material.

    Science.gov (United States)

    Liu, Jue; Chang, Lin; Liu, Hairong; Li, Yongsheng; Yang, Hailin; Ruan, Jianming

    2017-02-01

    Microstructures, mechanical properties, apatite-forming ability and in vitro experiments were studied for Nb-25Ti-xTa (x=10, 15, 20, 25, 35at.%) alloys fabricated by powder metallurgy. It is confirmed that the alloys could achieve a relative density over 80%. Meanwhile, the increase in Ta content enhances the tensile strength, elastic modulus and hardness of the as-sintered alloys. When increasing the sintering temperatures, the microstructure became more homogeneous for β phase, resulting in a decrease in the modulus and strength. Moreover, the alloys showed a good biocompatibility due to the absence of cytotoxic elements, and were suitable for apatite formation and cell adhesion. In conclusion, Nb-25Ti-xTa alloys are potentially useful in biomedical applications with their mechanical and biological properties being evaluated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot

    International Nuclear Information System (INIS)

    Bhagyaraj, J.; Ramaiah, K.V.; Saikrishna, C.N.; Bhaumik, S.K.; Gouthama

    2013-01-01

    Highlights: •Ti 2 Ni second phase particles forms in different sizes and shapes in cast ingot. •TEM evidences showed shearing/fragmentation of Ti 2 Ni during processing. •Matrix close to Ti 2 Ni experienced severe plastic deformation lead to amorphisation. •Ti 2 Ni interfaces were mostly faceted and assist in nucleation of martensite. •Heterogeneity of microstructure observed near to and away from Ti 2 Ni. -- Abstract: Binary NiTi alloy is one of the commercially successful shape memory alloys (SMAs). Generally, the NiTi alloy composition used for thermal actuator application is slightly Ti-rich. In the present study, vacuum arc melted alloy of 50.2Ti–Ni (at.%) composition was prepared and characterized using optical, scanning and transmission electron microcopy. Formation of second phase particles (SPPs) in the cast alloy and their influence on development of microstructure during processing of the alloy into wire form has been investigated. Results showed that the present alloy contained Ti 2 Ni type SPPs in the matrix. In the cast alloy, the Ti 2 Ni particles form in varying sizes (1–10 μm) and shapes. During subsequent thermo-mechanical processing, these SPPs get sheared/fragmented into smaller particles with low aspect ratio. The presence of SPPs plays a significant role in refinement of the microstructure during processing of the alloy. During deformation of the alloy, the matrix phase around the SPPs experiences conditions similar to that observed in severe plastic deformation of metallic materials, leading to localized amorphisation of the matrix phas