WorldWideScience

Sample records for solidified iron-silicon steel

  1. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  2. Influence of temperature on magnetic properties of silicon steel lamination

    Directory of Open Access Journals (Sweden)

    Junquan Chen

    2017-05-01

    Full Text Available In this paper, we studied the influence of thermal effect on the iron loss components by DC and AC magnetic measurement. The measured result shows that iron loss of nonoriented silicon steel is more influenced by temperature than grain oriented one. Based on loss separation model, we have found a suitable iron loss expression for nonoriented and grain oriented steels. Then a temperature dependent iron loss model is proposed, where temperature coefficient k is introduced to consider thermal effect on dynamic loss. The iron loss model is validated by all series of silicon steel stripe made by WISCO. The relative error of the model is about 11% in a wide range of 20∼400Hz, 20∼200°C, 0∼2T. The proposed model can be applicable to other types of magnetic materials as long as their resistivity rate exhibits approximately linear thermal dependence within a temperature range of 20∼200°C.

  3. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  4. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  5. Prediction of power losses in silicon iron sheets under PWM voltage supply

    International Nuclear Information System (INIS)

    Amar, M.; Kaczmarek, R.; Protat, F.

    1994-01-01

    The behavior of iron losses in silicon iron steels submitted to a PWM voltage is studied. The influence of modulation parameters (the depth of modulation and the number of eliminated harmonics) is clarified. In particular, the idea of an equivalent alternating pulse voltage that gives the same iron losses as the PWM voltage is established. An estimation formula for iron losses under the PWM voltage is developed based on the loss separation model and the voltage form factor. ((orig.))

  6. The influence of silicate and sulphate anions on the anodic corrosion and the transpassivity of iron and silicon-rich steel in concentrated KOH solution

    International Nuclear Information System (INIS)

    Čekerevac, Milan; Simičić, Miloš; Bujanović, Ljiljana Nikolić; Popović, Negica

    2012-01-01

    Highlights: ► Anodic behaviour of Fe and steel in 10 M KOH with sulphate and silicate is examined. ► X-ray diffraction confirmed the formation of Fe 3 (Si 1.32 Fe 0.68 )O 5 (OH) 4 in anodic layer. ► X-ray diffraction confirmed the formation of Ba(Fe, S)O 4 at anodic oxidation. - Abstract: The effect of sulphate and silicate addition in a 10 M KOH electrolyte on the anodic corrosion and transpassivity of iron and steel rich in silicon are explored by cyclic and linear sweep voltammetry. Formation of ferrate(VI) in the iron transpassivity region is noticed in all explored electrolytes. The electrochemical sulphato- and silico-ferrate(VI) formation is discussed as a possible result of Fe 3 III (Si 1.32 Fe 0.68 )O 5 (OH) 4 and [Fe(II) 4 Fe(III) 2 (OH) 12 ]SO 4 oxidation in the 10 M KOH electrolytes with silicate and sulphate, respectively. The presence of Fe 3 (Si 1.32 Fe 0.68 )O 5 (OH) 4 in the anodic layer of silicon steel and the crystal structure of electrochemically synthesised Ba(Fe, S)O 4 have been revealed by XRD.

  7. A review of ordering phenomena in iron-silicon alloys

    Directory of Open Access Journals (Sweden)

    González, F.

    2013-06-01

    Full Text Available Silicon steel is an industrially-desired alloy of iron and silicon, characterised by soft magnetic properties, low eddy-current losses, and low magnetostriction. Silicon steels have narrow hysteresis cycles, making them particularly advantageous in applications using electromagnetic fields, such as transformers, generators, electric motor cores, and few other components in industry. Despite its incontestable industrial value, there is not much agreement on the atomic structure of silicon steel. Gaining better understanding of e.g. ordering processes in Fe-Si alloys could not only explain their magnetic properties, but also open opportunities to reduce their weaker characteristics, such as brittleness that adversely affects silicon steel workability and its associated high production costs. This review summarises the state-of-the-art knowledge about ordering in silicon steel and describes the most relevant experimental techniques used for studying its microstructure. In addition, the process of building the iron rich part of the Fe-Si phase diagram is explained. Lastly, the influence of order on the alloy’s magnetic and mechanical properties is illustrated.El acero al silicio es una aleación de importancia industrial, caracterizada por propiedades magnéticas blandas, bajas pérdidas por corrientes de Foucault y baja magnetostricción. Los aceros al silicio tienen ciclo de histéresis estrecho, lo que es una ventaja en aplicaciones con campos electromagnéticos, como transformadores, generadores, núcleos de motores eléctricos y otros componentes industriales. A pesar de su incomparable valor industrial, no hay convenio sobre la estructura atómica del acero al silicio. Obtener mayor conocimiento sobre los procesos de orden no sólo podría explicar las propiedades magnéticas sino que también podría abrir vías para la reducción de sus características más débiles, como su fragilidad, la cual afecta negativamente a la fabricación del

  8. Iron and silicon effect on the phase composition of nickel-beryllium bronzes

    International Nuclear Information System (INIS)

    Zakharov, A.M.; Zakharov, M.V.; Ajvaz'yan, N.G.

    1977-01-01

    In order to specify phase composition and strengthening heat treatment conditions for nickel beryllium bronzes that are promising electrode materials for welding of high strength steels and nickel-base superalloys, the primary section of the quinternary Cu-Ni-Be-Fe-S system was studied at constant nickel and beryllium concentration and varying silicon and iron concentration (max. 4% of every element). The study was made using the metallographic and x-ray phase techniques, determination of alloy solidus temperature, and exessphase microhardness testing. Silicon additions are shown to decrease abruptly and those of iron, in contrast, somewhat to raise the solidus temperature of ternary Cu + 2% Ni + 0.3% Be alloy. When added concurrently, iron compensates for the damaging silicon effect on the solidus temperature of Cu-Ni-Be alloys. The excess phases formed can be used as strengthening agents of Cu-Ni-Be-Si-Fe alloys during quenching and subsequent aging

  9. Iron and its complexes in silicon

    Science.gov (United States)

    Istratov, A. A.; Hieslmair, H.; Weber, E. R.

    This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron-acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined.

  10. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  11. Iron solubility in highly boron-doped silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Weber, E.R.

    1998-01-01

    We have directly measured the solubility of iron in high and low boron-doped silicon using instrumental neutron activation analysis. Iron solubilities were measured at 800, 900, 1000, and 1100thinsp degree C in silicon doped with either 1.5x10 19 or 6.5x10 14 thinspboronthinspatoms/cm 3 . We have measured a greater iron solubility in high boron-doped silicon as compared to low boron-doped silicon, however, the degree of enhancement is lower than anticipated at temperatures >800thinsp degree C. The decreased enhancement is explained by a shift in the iron donor energy level towards the valence band at elevated temperatures. Based on this data, we have calculated the position of the iron donor level in the silicon band gap at elevated temperatures. We incorporate the iron energy level shift in calculations of iron solubility in silicon over a wide range of temperatures and boron-doping levels, providing a means to accurately predict iron segregation between high and low boron-doped silicon. copyright 1998 American Institute of Physics

  12. The shaping of zinc coating on surface steels and ductile iron casting

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2010-01-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron (DI taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent ESi,P and coating thickness dependences were obtained.

  13. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    Science.gov (United States)

    Roy, Debdutta

    Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily

  14. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  15. High temperature chlorosilane corrosion of iron and AISI 316L stainless steel

    Science.gov (United States)

    Aller, Joshua Loren

    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This

  16. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  17. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Alvarez, F.; Reinoso, M.; Huck, H.; Rosenbusch, M.

    2010-01-01

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp 2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  18. Photon and proton activation analysis of iron and steel standards using the internal standard method coupled with the standard addition method

    International Nuclear Information System (INIS)

    Masumoto, K.; Hara, M.; Hasegawa, D.; Iino, E.; Yagi, M.

    1997-01-01

    The internal standard method coupled with the standard addition method has been applied to photon activation analysis and proton activation analysis of minor elements and trace impurities in various types of iron and steel samples issued by the Iron and Steel Institute of Japan (ISIJ). Samples and standard addition samples were once dissolved to mix homogeneously, an internal standard and elements to be determined and solidified as a silica-gel to make a similar matrix composition and geometry. Cerium and yttrium were used as an internal standard in photon and proton activation, respectively. In photon activation, 20 MeV electron beam was used for bremsstrahlung irradiation to reduce matrix activity and nuclear interference reactions, and the results were compared with those of 30 MeV irradiation. In proton activation, iron was removed by the MIBK extraction method after dissolving samples to reduce the radioactivity of 56 Co from iron via 56 Fe(p, n) 56 Co reaction. The results of proton and photon activation analysis were in good agreement with the standard values of ISIJ. (author)

  19. The kinetics of zinc coating growth on hyper-sandelin steels and ductile cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2007-12-01

    Full Text Available The studies aimed at an analysis of the formation and growth kinetics of zinc coating on reactive silicon-killed steels in a zinc bath. The growth kinetics of the produced zinc coatings was evaluated basing on the power-law growth equation. As regards galvanizing of the surface of products, investigation was done for various steel grades and ductile iron taking into account the quality and thickness of coating. It has been proved that the chemical constitution of basis significantly influences the kinetics of growth of the individual phases in a zinc coating. This relationship was evaluated basing on the, so called, silicon and phosphorus equivalent E = (Si+2.5P.103, and coating thickness dependences were obtained.

  20. Microstructure of rapidly solidified Al2O3-dispersion-strengthened Type 316 stainless steel

    International Nuclear Information System (INIS)

    Megusar, J.; Arnberg, L.; Vander Sande, J.B.; Grant, N.J.

    1981-01-01

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt % Al, rapidly solidified to produce fine powders and attrited to approximately 0.5 μm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as Al oxides. In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels

  1. Microcapillary Features in Silicon Alloyed High-Strength Cast Iron

    Directory of Open Access Journals (Sweden)

    R.K. Hasanli

    2017-04-01

    Full Text Available Present study explores features of silicon micro capillary in alloyed high-strength cast iron with nodular graphite (ductile iron produced in metal molds. It identified the nature and mechanism of micro liquation of silicon in a ductile iron alloyed with Nickel and copper, and demonstrated significant change of structural-quality characteristics. It was concluded that the matrix of alloyed ductile iron has a heterogeneous structure with cross reinforcement and high-silicon excrement areas.

  2. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  3. Dephosphorization of Levitated Silicon-Iron Droplets for Production of Solar-Grade Silicon

    Science.gov (United States)

    Le, Katherine; Yang, Yindong; Barati, Mansoor; McLean, Alexander

    2018-05-01

    The treatment of relatively inexpensive silicon-iron alloys is a potential refining route in order to generate solar-grade silicon. Phosphorus is one of the more difficult impurity elements to remove by conventional processing. In this study, electromagnetic levitation was used to investigate phosphorus behavior in silicon-iron alloy droplets exposed to H2-Ar gas mixtures under various experimental conditions including, refining time, temperature (1723 K to 1993 K), gas flow rate, iron content, and initial phosphorus concentration in the alloy. Thermodynamic modeling of the dephosphorization reaction permitted prediction of the various gaseous products and indicated that diatomic phosphorus is the dominant species formed.

  4. Iron and steel research at CENIM

    International Nuclear Information System (INIS)

    Medina, S. F.; Lopez, F.; Morcillo, M.

    2003-01-01

    In 2002 the National Centre for Metallurgical Research (CENIM) celebrated its 39th anniversary. During this time, steel has been the most studied material of all the metals and alloys researched in the different projects funded by national science and technology plans, European metallurgical research programmes, and by the iron and steel making companies who over the years have placed their trust in the research work undertaken at CENIM. Two generations of researchers have dedicated their careers to studying the different aspects of steel, from primary metallurgy considering iron ores and enrichment processes, the thermodynamics of reactions in the blast furnace and in the ladle, thermal and thermomechanical treatments, the physical metallurgy of steels, their mechanical properties, and finally their deterioration in a wide range of media of different aggressivities. CENIM maintains its commitment to iron and steel research, drawing attention to the vast amount of research work undertaken and financed within the framework of the ECSC programme since Spain joined the European Community in January 1986. (Author) 3 refs

  5. Water requirements of the iron and steel industry

    Science.gov (United States)

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore

  6. Hydrogen transport in iron and steel

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Derrick, R.G.; Donovan, J.A.; Caskey, G.R. Jr.

    1975-01-01

    The permeabilities of protium, deuterium, and tritium in iron and T-1 steel at temperatures as low as 260 0 K are in agreement with the equation proposed by Gonzalez. However, the permeabilities of HP-9-4-20 and 4130 steel to hydrogen are typically lower than predicted. The present data also show that, within experimental accuracy, the isotope effect on the permeability of hydrogen in HP-9-4-20, 4130 and T-1 steel, and high purity iron can be estimated by an inverse square root of mass correction. Trapping effects prevent the development of diffusivity and solubility equations. (auth)

  7. Texture evolution of experimental silicon steel grades. Part I: Hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Robles, J.A., E-mail: jsandoval.uanl@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Salas Zamarripa, A.; Guerrero Mata, M.P. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66450 (Mexico); Cabrera, J. [Universitat Politècnica de Catalunya, Departament de Ciència dels Materials I Enginyeria Metal-lúrgica, Av. Diagonal 647, Barcelona 08028 (Spain)

    2017-05-01

    The metallurgical understanding of the deformation processes during the fabrication of non-oriented electrical steels plays a key role in improving their final properties. Texture control and optimization is critical in these steels for the enhancement of their magnetic properties. The aim of the present work is to study the texture evolution of six non-oriented experimental silicon steel grades during hot rolling. These steels were low carbon steel with a silicon content from 0.5 to 3.0 wt%. The first rolling schedule was performed in the austenitic (γ-Fe) region for the steel with a 0.5 wt% of silicon content, while the 1.0 wt% silicon steel was rolled in the two-phase (α+γ) region. Steels with higher silicon content were rolled in the ferritic (α-Fe) region. The second rolling schedule was performed in the α-Fe region. Samples of each stage were analyzed by means of Electron Backscatter Diffraction (EBSD). Findings showed that the texture was random and heterogeneous in all samples after 60% of rolling reduction, which is due to the low deformation applied during rolling. After the second rolling program, localized deformation and substructured grains near to surface were observed in all samples. The Goss {110}<001>texture-component was found in the 0.5 and 1.0 wt.-%silicon steels. This is due to the thermomechanical conditions and the corresponding hot band microstructure obtained after the first program. Moreover, the α<110>//RD and the γ <111>//ND fiber components of the texture presented a considerable increment as the silicon content increases. Future research to be published soon will be related to the texture evolution during the cold-work rolling process. - Highlights: • We analyze six silicon steel experimental grades alloys trough the rolling process. • Material was subjected to a hot deformation process in the α-γ region. • No recrystalization was observed during-after the rolling schedules. • Rise of the magnetic texture components

  8. A sustainability assessment system for Chinese iron and steel firms

    DEFF Research Database (Denmark)

    Long, Yunguang; Pan, Jieyi; Farooq, Sami

    2016-01-01

    from financial and sustainability reports of four leading Chinese iron and steel firms. The proposed sustainable assessment system is envisaged to help Chinese iron and steel firms to objectively investigate their sustainability performance, provide clear and effective information to decision makers......The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable....... A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese iron and steel firms, is not available. In this paper such a system is proposed and evaluated using data...

  9. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  10. Formation of iron disilicide on amorphous silicon

    Science.gov (United States)

    Erlesand, U.; Östling, M.; Bodén, K.

    1991-11-01

    Thin films of iron disilicide, β-FeSi 2 were formed on both amorphous silicon and on crystalline silicon. The β-phase is reported to be semiconducting with a direct band-gap of about 0.85-0.89 eV. This phase is known to form via a nucleation-controlled growth process on crystalline silicon and as a consequence a rather rough silicon/silicide interface is usually formed. In order to improve the interface a bilayer structure of amorphous silicon and iron was sequentially deposited on Czochralski silicon in an e-gun evaporation system. Secondary ion mass spectrometry profiling (SIMS) and scanning electron micrographs revealed an improvement of the interface sharpness. Rutherford backscattering spectrometry (RBS) and X-ray diffractiometry showed β-FeSi 2 formation already at 525°C. It was also observed that the silicide growth was diffusion-controlled, similar to what has been reported for example in the formation of NiSi 2 for the reaction of nickel on amorphous silicon. The kinetics of the FeSi 2 formation in the temperature range 525-625°C was studied by RBS and the activation energy was found to be 1.5 ± 0.1 eV.

  11. Temperature effects on the magnetic properties of silicon-steel sheets using standardized toroidal frame.

    Science.gov (United States)

    Wu, Cheng-Ju; Lin, Shih-Yu; Chou, Shang-Chin; Tsai, Chia-Yun; Yen, Jia-Yush

    2014-01-01

    This study designed a detachable and standardized toroidal test frame to measure the electromagnetic characteristic of toroidal laminated silicon steel specimens. The purpose of the design was to provide the measurements with standardized and controlled environment. The device also can withstand high temperatures (25-300°C) for short time period to allow high temperature tests. The accompanying driving circuit facilitates testing for high frequency (50-5,000 Hz) and high magnetic flux (0.2-1.8 T) conditions and produces both sinusoidal and nonsinusoidal test waveforms. The thickness of the stacked laminated silicon-steel sheets must be 30~31 mm, with an internal diameter of 72 mm and an outer diameter of 90 mm. With the standardized setup, it is possible to carry out tests for toroidal specimen in high temperature and high flux operation. The test results show that there is a tendency of increased iron loss under high temperature operation. The test results with various driving waveforms also provide references to the required consideration in engineering designs.

  12. Effect of iron and silicon in aluminium and its alloys

    International Nuclear Information System (INIS)

    Kovacs, I.

    1990-01-01

    The iron and silicon are the main impurities in aluminium, they are always present in alloys made from commercially pure base material. The solid solubility of iron in aluminium is very low, therefore its largest amount forms intermetallic compounds the kind of which depends strongly on the other impurities of alloying elements. Although the solid solubility of silicon is much larger than that of the iron, it is the constituent of both the primary and the secondary particles, the structure of which depends in general on the iron-silicon concentration ratio. These Fe and Si containing particles can cause various and basic changes in the macroscopic properties of the alloy. Since commercially pure aluminium has extensive consumer and industrial use, it is very important to know, not only from scientific but also from practical point of view, the effect of iron and silicon on the physical and mechanical properties of aluminium and its alloys. The aim of the ''International Workshop on the Effect of Iron and Silicon in Aluminium and its Alloys'' was to clarify the present knowledge on this subject. The thirty papers presented at the Workshop and collected in this Proceedings cover many important fields of the subject. I hope that they will contribute to both the deeper understanding of the related phenomena and the improvement of technologies for producing better aluminium alloys

  13. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  14. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  15. Urban heritage, building maintenance : Iron & steel

    NARCIS (Netherlands)

    Verhoef, L.G.W.

    1999-01-01

    In the 1ge century what had been the traditional building techniques up to th at time were considerably changed owing to the use of cast iron and later wrought iron and steel. In fact, the industrial revolution, initially based in England, would not have been possible without these materiais. Not

  16. The microstructure of steels and cast irons. History and interpretation

    International Nuclear Information System (INIS)

    Durand-Charre, M.

    2003-01-01

    The microstructure of steels and cast irons is a monograph on the history and interpretation of the microstructure of steels and iron alloys. Its 400 pages are illustrated by a lot of micrographies of commercial alloys or model alloys at each the available scales with the modern investigations means of electronic microscopy and the optical macro/microscopy. The first part of this book is an historical introduction on the development of the metallurgical structures manually forged for the iron knowledge, in particular the famous structures called damask. The second part of this book deals with the fundamental notions in order to give all the reasoning bases required on the phases equilibria and the transformations kinetics. Concerning the phases equilibria, a lot of diagrams are included. The reading of ternary systems is analyzed for six systems representative of the reactions encountered in steels, Fe-Cr-C, Fe-Ni-Cr, Fe-Mn-S, Fe-Co-Cu, Fe-Mo-Cr and Fe-C-V. The solidification structures are studied through all the classical cases but in others too as the markings of peritectic or metatectic reactions or transformations in series. Solid phases transformations are illustrated and commented with recent interpretations, in particular in the case of bainitic structures. A lot of references allow to deepen the non developed aspects. The third part is a guide to understand and discuss on scientific bases the role of alloy elements and those of different specific treatments resulting to the optimisation of steels and iron casts, to define the micrographic characteristics in relation with the use properties. Steels are classified in series for the very low alloy steels to steels with high amounts in alloy elements resulting of a very fine composition adjustment. Cast irons are presented naturally according to their microstructure, classified in white irons, lamellar grey and nodular irons. (O.M.)

  17. Metallurgy of high-silicon steel parts produced using Selective Laser Melting

    International Nuclear Information System (INIS)

    Garibaldi, Michele; Ashcroft, Ian; Simonelli, Marco; Hague, Richard

    2016-01-01

    The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to its poor workability. The effect of SLM-processing on the metallurgy of the alloy is investigated in this work using microscopy, X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). XRD analysis suggests that the SLM high-silicon steel is a single ferritic phase (solid solution), with no sign of phase ordering. This is expected to have beneficial effects on the material properties, since ordering has been shown to make silicon steels more brittle and electrically conductive. For near-fully dense samples, columnar grains with a high aspect ratio and oriented along the build direction are found. Most importantly, a <001> fibre-texture along the build direction can be changed into a cube-texture when the qualitative shape of the melt-pool is altered (from shallow to deep) by increasing the energy input of the scanning laser. This feature could potentially open the path to the manufacture of three-dimensional grain-oriented high-silicon steels for electromechanical applications.

  18. Competences of Engineers in the Iron and Steel Industry

    Science.gov (United States)

    Kozhevnikov, A. V.

    2017-12-01

    The article presents the results of assessment of the professional performance of engineers working in the iron and steel industry. A competence-based profile of highly-qualified professionals has been built. The study of the competences of the iron and steel industry engineers has shown that their knowledge and skills may be mobilized to solve professional tasks.

  19. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  20. Kinetics of the Coupled Gas-Iron Reactions Involving Silicon and ...

    African Journals Online (AJOL)

    The kinetic study of coupled gas-iron reactions at 15600 has been carried out for the system involving liquid iron containing carbon and silicon and a gas phase consisting carbon monoxide, silicon monoxide and carbon dioxide. The coupled reactions are: (1) 200(g) = CO2 + C. (2) SiO (g) + CO (g) = Si ¸ CO (g). (3) SiO (g) + ...

  1. Texture investigation in aluminium and iron - silicon samples by neutron diffraction technique

    International Nuclear Information System (INIS)

    Pugliese, R.; Yamasaki, J.M.

    1988-09-01

    By means of the neutron diffraction technique the texture of 5% and 98% rolled-aluminium and of iron-silicon steel used in the core of electric transformers, have been determined. The measurements were performed by using a neutron diffractometer installed at the IEA-R1 Nuclear Research Reactor, in the Beam-Hole n 0 . 6. To avoid corrections such as neutron absorption and sample luminosity the geometric form of the samples were approximated to spheric or octagonal prism, and its dimensions do not exceed that of the neutron beam. The texture of the samples were analysed with the help of a computer programme that analyses the intensity of the diffracted neutron beam and plot the pole figures. (author) [pt

  2. Research on MRV system of iron and steel industry and verification mechanism establishment in China

    Science.gov (United States)

    Guo, Huiting; Chen, Liang; Chen, Jianhua

    2017-12-01

    The national carbon emissions trading market will be launched in 2017 in China. The iron and steel industry will be covered as one of the first industries. Establishing its MRV system is critical to promote the development of the iron and steel industry in the carbon trading market. This paper studies the requirements and procedures of the accounting, monitoring, reporting and verification of the seven iron and steel industry carbon trading pilots. The construction and operating mechanism of the MRV systems are also analyzed. Combining with the emission feature of the iron and steel industry, we study the suitable national MRV system for the whole iron and steel industry to consummate the future national carbon trading framework of iron and steel industry.

  3. Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts

    International Nuclear Information System (INIS)

    Paek, Min-Kyu; Lee, Won-Kyu; Jin, Jinan; Jang, Jung-Mock; Pak, Jong-Jin

    2012-01-01

    Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid Mn-Si-Fe-Csat alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

  4. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    Science.gov (United States)

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  5. Low-level determination of silicon in steels by anodic stripping voltammetry on a hanging mercury drop electrode.

    Science.gov (United States)

    Rahier, A H; Lunardi, S; Nicolle, F; George, S M

    2010-10-15

    The sensitive differential pulse anodic stripping voltammetry (DPASV) proposed originally by Ishiyama et al. (2001) has been revised and improved to allow the accurate measurement of silicon on a hanging mercury drop electrode (HMDE) instead of a glassy carbon electrode. We assessed the rate of formation of the partially reduced β-silicododecamolybdate and found that metallic mercury promotes the reaction in the presence of a large concentration of Fe(3+). The scope of the method has been broadened by carrying out the measurements in the presence of a constant amount of Fe(3+). The limit of detection (LOD) of the method described in the present paper is 100 μg Sig(-1) of steel, with a relative precision ranging from 5% to 12%. It can be further enhanced to 700 ng Sig(-1) of steel provided the weight of the sample, the dilution factors, the duration of the electrolysis and the ballast of iron are adequately revised. The tolerance to several interfering species has been examined, especially regarding Al(3+), Cr(3+) and Cr VI species. The method was validated using four low-alloy ferritic steels certified by the National Institute of Standards and Technology (NIST). Its application to nickel base alloys as well as to less complicated matrixes is straightforward. It has also been successfully applied to the determination of free silicon into silicon carbide nano-powder. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hot-dip coating has been practically employed in manufacturing zinc alloy coated steel sheets. However, it is difficult to coat aluminum alloy on a bulky steel substrate without sufficient preheating, because a rapidly solidified layer containing gas babbles is formed on a substrate surface. A variety of iron-aluminides are also formed at the interface of a steel and aluminum hot-dip coating system, which is the main difficulty in joining of steel with aluminum. Ultrasonic vibration was applied to a steel substrate during hot-dip coating of aluminum alloy to control a rapidly solidified layer and a brittle reaction layer. Hot dipping of columnar steel substrates into molten aluminum alloy (Al-2.7 mass fraction Si-4.6 mass fraction Sn) was carried out through the use of a Langevin oscillator with resonant frequency of 19.5 kHz. The application of ultrasonic vibration is quite effective to control a rapidly solidified layer and a surface oxide layer from a substrate surface by the sonocapillary effect based on a cavitation phenomenon, so that the intimate contact is achieved at the beginning of hot-dip coating. The application of ultrasonic vibration to hot-dipping is effective to control a reaction layer with less than 5μm in thickness. An impact test exhibits that the good adhesive strength is approved in hot-dipped aluminum coatings with a thin reaction layer of approximately 5μm.

  7. Thermodynamic Properties of Alloys of Iron and Silicon

    International Nuclear Information System (INIS)

    Vecher, R.A.; Gejderih, V.A.; Gerasimov, Ja.I.

    1966-01-01

    The Fe-Si phase diagram is complex. At 1000°K there are FeSi 2 (β) and FeSi phases and solid solutions of silicon in α and α' iron. EMF measurements were made on the electrochemical cells: Fe|Fe 2+ , KI + Nal|Fe-Si at 600-800°C molten The alloys were prepared from particularly pure components by powder metallurgy and protracted annealing. Studies were made of ten alloys with silicon content between 85 and 4% in all the phase fields in the diagram section at 1000°K. We calculated the integral thermodynamic quantities ΔG, ΔH and ΔS for the formation of the silicides FeSi 2 (β), FeSi and Fe 3 Si at the mean temperature for the experimental range (1000°K), and also (using the thermal capacity of the silicides, the iron and the silicon) at 298, 1188 and 1798°K. The heats of formation of the silicides mentioned at 298°K (kcal/mole) are -19.4, -17.6 and -22.4 respectively. The data existing in the literature enable us to calculate the heat of formation of FeSi 2.33 (α-leboite) at 298°K and this is found to be -14.4 kcal/mole. The heats calculated by us are 1.5-3 kcal higher than the experimental values of Corber and Olsen. The heats of mixing calculated by us for liquid alloys agree well with data in the literature. The data obtained can be regarded as due to the change in the character of the bond in silicides from metallic to covalent when the silicon content is increased. From the data for alloy solutions of silicon in a-iron, the iron activities were calculated. It was found that the α ⇌ α' transformation observed is a real phase transformation. The two-phase range is wider than shown in the phase diagram (from data in the literature). Conversion of the iron activities in solid solution to liquid solution gives good agreement with the data of Chipman. (author) [fr

  8. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  9. Aluminum-silicon co-deposition by FB-CVD on austenitic stainless steel AISI 316

    International Nuclear Information System (INIS)

    Marulanda, J L; Perez, F J; Remolina-Millán, A

    2013-01-01

    Aluminum-silicon coatings were deposited on stainless steel AISI 316 in the temperature range of 540 to 560°C by CVD-FBR. It was used a fluidized bed with 2.5% silicon and 7.5% aluminum powder and 90% inert (alumina). This bed was fluidized with Ar and as an activator a mixture of HCl/H2 in ratios of 1/10 to 1/16. Furthermore, the deposition time of the coatings was varied between 45 minutes to 1.5 hours, with a 50% active gas, neutral gases 50%. Thermodynamic simulation was conducted with the Thermocalc software to get the possible compositions and amount of material deposited for the chosen conditions. The coatings presented the follow compounds FeAl 2 Si, FeAl 2 and Fe 2 Al 5 . Aluminum-silicon coatings were heat treated to improve its mechanical properties and its behavior against oxidation for the inter diffusion of the alloying elements. The heat treatment causes the aluminum diffuse into the substrate and the iron diffuse into coating surface. This leads to the transformation of the above compounds in FeAl, Al 2 FeSi, Cr 3 Si, AlFeNi and AlCrFe

  10. The pH dependence of silicon-iron interaction in rats.

    Science.gov (United States)

    Jia, X; Emerick, R J; Kayongo-Male, H

    1997-01-01

    A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.

  11. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  12. Effect of direct contact with iron on gas evolution behavior of aluminum

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1998-01-01

    Dry Low-Level Radioactive Waste (LLW), incombustible solid LLW, generated from nuclear power stations is planed to be solidified with cement backfill in drums. The solidified dry LLW will be buried to shallow underground at Rokkasyo LLW Disposal Center. It is well known that corrosion of aluminum and hydrogen gas evolution occur in high pH environments such as mortar. Gas evolution from aluminum is likely to effect the leachability of solidified dry LLW with mortar. Though aluminum removal from dry LLW is planed, a small amount of aluminum will be actually included in dry LLW. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized in our previous study. It was also found that 1.5 mole hydrogen gas evolves while 1 mole aluminum corrodes under 60degC. Actually aluminum in drums is likely to contact with carbon steel of which main element is iron. The gas evolution behavior of aluminum is expected to be affected by its direct contact with iron. Therefore, effect of direct contact with iron on gas evolution behavior of aluminum was studied. The corrosion rate of aluminum increased by contacting it with iron in simulating mortar environments. The amount of gas evolution from aluminum was reduced by contacting with iron. The reduction in gas evolution was considered to result from the change of cathode reaction from hydrogen evolution to oxygen reduction. When aluminum contacts with iron, the corrosion and gas evolution behavior of aluminum is significantly affected oxygen in environment. (author)

  13. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  14. A STUDY OF IRON AND STEEL SECTOR IN INDIA

    OpenAIRE

    Chand, Sumit

    2008-01-01

    ABSTRACT The iron and steel manufacturing sector is one of the largest sectors in the world in terms of financial volume of trade, employment potential, development of ancillary and allied industries and geographical spread. Added to this is the fact that iron and steel is used as an input in almost all the industrial and manufacturing sectors and goods produced by them. As a result this sector attracts the maximum attention of almost all the countries of the world, whether being one of t...

  15. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  16. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  17. Development of microstructure and texture in strip casting grain oriented silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Zhang, Yuan-Xiang; Fang, Feng; Lu, Xiang; Liu, Hai-Tao; Wang, Guo-Dong

    2015-04-01

    Grain oriented silicon steel was produced by strip casting and two-stage cold rolling processes. The development of microstructure and texture was investigated by using optical microscopy, X-ray diffraction and electron backscattered diffraction. It is shown that the microstructure and texture evolutions of strip casting grain oriented silicon steel are significantly distinct from those in the conventional processing route. The as-cast strip is composed of coarse solidification grains and characterized by pronounced 〈001〉//ND texture together with very weak Goss texture. The initial coarse microstructure enhances {111} shear bands formation during the first cold rolling and then leads to the homogeneously distributed Goss grains through the thickness of intermediate annealed sheet. After the secondary cold rolling and primary annealing, strong γ fiber texture with a peak at {111}〈112〉 dominates the primary recrystallization texture, which is beneficial to the abnormal growth of Goss grain during the subsequent high temperature annealing. Therefore, the secondary recrystallization of Goss orientation evolves completely after the high temperature annealing and the grain oriented silicon steel with a good magnetic properties (B{sub 8}=1.94 T, P{sub 1.7/50}=1.3 W/kg) can be prepared. - Highlights: • Grain oriented silicon steel was developed by a novel ultra-short process. • Many evenly distributed Goss “seeds” were originated from cold rolled shear bands. • More MnS inhibitors were obtained due to the rapid cooling of strip casing. • The magnetic induction of grain oriented silicon steel was significantly improved.

  18. Iron and Steel Industry Training Board

    Science.gov (United States)

    Riley, Alvan D.

    1974-01-01

    The British iron and steel industry training board has developed a training approach called investment appraisal of training. This approach is a forward-looking appraisal in which the estimated costs ofthe proposed training activity are balanced against benefits accruing in fi nancial terms from improved performance. (DS)

  19. A Method for Monitoring Iron and Steel Factory Economic Activity Based on Satellites

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2018-06-01

    Full Text Available The Chinese government has promulgated a de-capacity policy for economic growth and environmental sustainability, especially for the iron and steel industry. With these policies, this study aimed to monitor the economic activities and evaluate the production conditions of an iron and steel factory based on satellites via Landsat-8 Thermal Infrared Sensor (TIRS data and high-resolution images from January 2013 to October 2017, and propel next economic adjustment and environmental protection. Our methods included the construction of a heat island intensity index for an iron and steel factory (ISHII, a heat island radio index for an iron and steel factory (ISHRI and a dense classifying approach to monitor the spatiotemporal changes of the internal heat field of an iron and steel factory. Additionally, we used GF-2 and Google Earth images to identify the main production area, detect facility changes to a factory that alters its heat field and verify the accuracy of thermal analysis in a specific time span. Finally, these methods were used together to evaluate economic activity. Based on five iron and steel factories in the Beijing-Tianjin-Hebei region, when the ISHII curve is higher than the seasonal changes in a time series, production is normal; otherwise, there is a shut-down or cut-back. In the spatial pattern analyses, the ISHRI is large in normal production and decreases when cut-back or shut-down occurs. The density classifying images and high-resolution images give powerful evidence to the above-mentioned results. Finally, three types of economic activities of normal production, shut-down or cut-back were monitored for these samples. The study provides a new perspective and method for monitoring the economic activity of an iron and steel factory and provides supports for sustainable development in China.

  20. A sustainability assessment system for Chinese iron and steel firms

    OpenAIRE

    Long, Yunguang; Pan, Jieyi; Farooq, Sami; Boer, Harry

    2016-01-01

    The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable. A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese...

  1. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  2. Experimental and theoretical study of heterogeneous iron precipitation in silicon

    OpenAIRE

    Haarahiltunen, Antti; Väinölä, Hele; Anttila, O.; Yli-Koski, Marko

    2007-01-01

    Heterogeneous iron precipitation in silicon was studied experimentally by measuring the gettering efficiency of oxide precipitate density of 1×10exp10cm−3. The wafers were contaminated with varying iron concentrations, and the gettering efficiency was studied using isothermal annealing in the temperature range from 300 to 780°C. It was found that iron precipitation obeys the so called s-curve behavior: if iron precipitation occurs, nearly all iron is gettered. For example, after 30 min anneal...

  3. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  4. Precipitated iron. A limit on gettering efficacy in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fenning, D.P.; Hofstetter, J.; Bertoni, M.I.; Buonassisi, T. [Massachusetts Institute of Technology MIT, Cambridge, Massachusetts 02139 (United States); Coletti, G. [ECN Solar Energy, Westerduinweg 3, NL-1755 LE Petten (Netherlands); Lai, B. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Del Canizo, C. [Instituto de Energia Solar, Universidad Politecnica de Madrid, 28040 Madrid (Spain)

    2013-01-31

    A phosphorus diffusion gettering model is used to examine the efficacy of a standard gettering process on interstitial and precipitated iron in multicrystalline silicon. The model predicts a large concentration of precipitated iron remaining after standard gettering for most as-grown iron distributions. Although changes in the precipitated iron distribution are predicted to be small, the simulated post-processing interstitial iron concentration is predicted to depend strongly on the as-grown distribution of precipitates, indicating that precipitates must be considered as internal sources of contamination during processing. To inform and validate the model, the iron distributions before and after a standard phosphorus diffusion step are studied in samples from the bottom, middle, and top of an intentionally Fe-contaminated laboratory ingot. A census of iron-silicide precipitates taken by synchrotron-based X-ray fluorescence microscopy confirms the presence of a high density of iron-silicide precipitates both before and after phosphorus diffusion. A comparable precipitated iron distribution was measured in a sister wafer after hydrogenation during a firing step. The similar distributions of precipitated iron seen after each step in the solar cell process confirm that the effect of standard gettering on precipitated iron is strongly limited as predicted by simulation. Good agreement between the experimental and simulated data supports the hypothesis that gettering kinetics is governed by not only the total iron concentration but also by the distribution of precipitated iron. Finally, future directions based on the modeling are suggested for the improvement of effective minority carrier lifetime in multicrystalline silicon solar cells.

  5. Mineral resource of the month: Iron and steel

    Science.gov (United States)

    Fenton, Michael D.

    2014-01-01

    Iron is one of the most abundant elements on Earth, but it does not occur in nature in a useful metallic form. Although ancient people may have recovered some iron from meteorites, it wasn’t until smelting was invented that iron metal could be derived from iron oxides. After the beginning of the Iron Age in about 1200 B.C., knowledge of iron- and steelmaking spread from the ancient Middle East through Greece to the Roman Empire, then to Europe and, in the early 17th century, to North America. The first successful furnace in North America began operating in 1646 in what is now Saugus, Mass. Introduction of the Bessemer converter in the mid-19th century made the modern steel age possible.

  6. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  7. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  8. CO2 Abatement In The Iron And Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    The iron and steel industry is the largest industrial source of CO2 emissions due to the energy intensity of steel production, its reliance on carbon-based fuels and reductants, and the large volume of steel produced -- over 1414 Mt in 2010. With the growing concern over climate change, steel makers are faced with the challenge of finding ways of lowering CO2 emissions without seriously undermining process efficiency or considerably adding to costs. This report examines ways of abating CO2 emissions from raw materials preparation (coking, sintering and pelletising plants) through to the production of liquid steel in basic oxygen furnaces and electric arc furnaces. Direct reduction and smelting reduction processes are covered, as well as iron making in a blast furnace. A range of technologies and measures exist for lowering CO2 emissions including minimising energy consumption and improving energy efficiency, changing to a fuel and/or reducing agent with a lower CO2 emission factor (such as wood charcoal), and capturing the CO2 and storing it underground. Significant CO2 reductions can be achieved by combining a number of the available technologies. If carbon capture and storage is fitted than steel plants could become near zero emitters of CO2.

  9. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  10. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  11. kinetics of the coupled gas-iron reactions involving silicon and carbon

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... out for the system involving liquid iron containing carbon and silicon and a gas ... in content with liquid iron at. 15600C, the ... of carbon monoxide bubbles at the. Slag - metal ..... equilibrium strongly make chemical reactions.

  12. Hydrogen effect on embrittlement of iron and steel

    International Nuclear Information System (INIS)

    Shved, M.M.

    1981-01-01

    Some existing hypothesis brittleness of metals are considered. The following explanation of reversible hydrogen brittleness is suggested: hydrogen presence in iron and steel brings about the increase in the critical shear stress and the yield stress at all stages of plastic deformation (hydrogen, blocking dislocations hinders plastic shears) and the decrease of rupture strength. Decreasing forces of interatomic interaction of the surface layer some scores interatomic distances thick, hydrogen decreases the resistance of normal stresses to its effect. Thus, whatever mechanism brings about the formation of the first cracks in the metal in the presence of absorbed hydrogen, they appear at lower outside applied stresses. In the framework of the model suggested one can explain experimentally observed changes of mechanical properties of iron and steel under hydrogen effect

  13. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  14. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  15. Silicon coating treatment to improve high temperature corrosion resistance of 9%Cr steels

    International Nuclear Information System (INIS)

    Hill, M.P.

    1989-01-01

    A silicon coating process is described which confers good protection on 9%Cr steels and alloys in CO 2 based atmospheres at high temperatures and pressures. The coatings are formed by decomposition of silane at temperatures above 720 K. Protective layers are typically up to 1 μm thick. The optimum coating conditions are discussed. The chemical state of the coatings has been investigated by X-ray photoelectron spectroscopy and has demonstrated the importance of avoiding silicon oxide formation during processing. Corrosion testing has been carried out for extended periods, up to 20 000 h, at temperatures between 753 and 853 K, in a simulated advanced gas cooled reactor gas at 4 MPa pressure. Benefit factors of up to 60 times have been measured for 9%Cr steels. Even higher values have been measured for 9Cr-Fe binary alloy on which a 1 μm coating was sufficient to eliminate significant oxidation over 19 000 h except at the specimen edges. The mechanism of protection is discussed. It is suggested that a silicon surface coating for protecting steels from high temperature corrosion has some advantages over adding silicon to the bulk metal. (author)

  16. A Bottom-up Energy Efficiency Improvement Roadmap for China’s Iron and Steel Industry up to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Northeastern Univ., Shenyang (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2016-09-01

    Iron and steel manufacturing is energy intensive in China and in the world. China is the world largest steel producer accounting for around half of the world steel production. In this study, we use a bottom-up energy consumption model to analyze four steel-production and energy-efficiency scenarios and evaluate the potential for energy savings from energy-efficient technologies in China’s iron and steel industry between 2010 and 2050. The results show that China’s steel production will rise and peak in the year 2020 at 860 million tons (Mt) per year for the base-case scenario and 680 Mt for the advanced energy-efficiency scenario. From 2020 on, production will gradually decrease to about 510 Mt and 400 Mt in 2050, for the base-case and advanced scenarios, respectively. Energy intensity will decrease from 21.2 gigajoules per ton (G/t) in 2010 to 12.2 GJ/t and 9.9 GJ/t in 2050 for the base-case and advanced scenarios, respectively. In the near term, decreases in iron and steel industry energy intensity will come from adoption of energy-efficient technologies. In the long term, a shift in the production structure of China’s iron and steel industry, reducing the share of blast furnace/basic oxygen furnace production and increasing the share of electric-arc furnace production while reducing the use of pig iron as a feedstock to electric-arc furnaces will continue to reduce the sector’s energy consumption. We discuss barriers to achieving these energy-efficiency gains and make policy recommendations to support improved energy efficiency and a shift in the nature of iron and steel production in China.

  17. Adhesive wear of iron chromium nickel silicon manganese molybdenum niobium alloys with duplex structure

    International Nuclear Information System (INIS)

    Lugscheider, E.; Deppe, E.; Ambroziak, A.; Melzer, A.

    1991-01-01

    Iron nickel chromium manganese silicon and iron chromium nickel manganese silicon molybdenum niobium alloys have a so-called duplex structure in a wide concentration range. This causes an excellent resistance to wear superior in the case of adhesive stress with optimized concentrations of manganese, silicon, molybdenum and niobium. The materials can be used for welded armouring structures wherever cobalt and boron-containing alloy systems are not permissible, e.g. in nuclear science. Within the framework of pre-investigations for manufacturing of filling wire electrodes, cast test pieces were set up with duplex structure, and their wear behavior was examined. (orig.) [de

  18. High temperature deformation of silicon steel

    International Nuclear Information System (INIS)

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  19. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  20. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    Energy Technology Data Exchange (ETDEWEB)

    Akdemir, Ahmet [Department of Mechanical Engineering, Selcuk University, Konya (Turkey); Kus, Recai [Department of Mechanical Education, Selcuk University, Konya (Turkey); Simsir, Mehmet, E-mail: msimsir@cumhuriyet.edu.tr [Department of Metallurgical and Materials Engineering, Cumhuriyet University, Kayseri Yolu 7. Km, 58140 Sivas (Turkey)

    2011-04-25

    Research highlights: {yields} Metal matrix composite (MMC) is an important structural material. {yields} Gray cast irons as a matrix material in MMC have more advantages than other cast irons. {yields} Interface greatly determines the mechanical properties of MMC. {yields} Interface formed by diffusion of carbon atoms. {yields} While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  1. Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite

    International Nuclear Information System (INIS)

    Akdemir, Ahmet; Kus, Recai; Simsir, Mehmet

    2011-01-01

    Research highlights: → Metal matrix composite (MMC) is an important structural material. → Gray cast irons as a matrix material in MMC have more advantages than other cast irons. → Interface greatly determines the mechanical properties of MMC. → Interface formed by diffusion of carbon atoms. → While decarburizing takes place in gray cast iron, carburiszing takes place in steel near the interface. - Abstract: The aim of the present study was to improve the tensile properties of gray cast iron by reinforcing the material with a steel wire. The composite was produced by sand mold casting, and the specimens were normalized by applying heat treatments at 800 deg. C, 850 deg. C, and 900 deg. C. Tension tests were conducted on gray cast iron and composite specimens, and the microstructure of the specimens was examined with an optical microscope. The fracture surface of the tension test specimens was examined with a scanning electron microscope (SEM), and graphite-free transition regions with high degrees of hardness were observed due to the diffusion of carbon from the cast iron to the steel wire. The microstructure of the transition region (fine pearlitic phase with partially dissolved graphite flakes) and the bond quality in the transition region increased the tensile properties of cast iron composites. Also, it is concluded that the tensile properties of gray cast iron increased with an increase in the normalization temperature.

  2. Distribution and characterization of iron in implanted silicon carbide

    International Nuclear Information System (INIS)

    Bentley, J.; Romana, L.J.; Horton, L.L.; McHargue, C.J.

    1991-01-01

    Analytical electron microscopy (AEM) and Rutherford backscattering spectroscopy-ion channeling (RBS-C) have been used to characterize single crystal α-silicon carbide implanted at room temperature with 160 keV 57 Fe ions to fluences of 1, 3, and 6 x 10 16 ions/cm 2 . Best correlations among AEM, RBS, and TRIM calculations were obtained assuming a density of the amorphized implanted regions equal to that of crystalline SiC. No iron-rich precipitates or clusters were detected by AEM. Inspection of the electron energy loss fine structure for iron in the implanted specimens suggests that the iron is not metallically-bonded, supporting conclusions from earlier conversion electron Moessbauer spectroscopy (CEMS) studies. In-situ annealing surprisingly resulted in crystallization at 600 degrees C with some redistribution of the implanted iron

  3. The Optimal Technological Development Path to Reduce Pollution and Restructure Iron and Steel Industry for Sustainable Transition

    OpenAIRE

    Ren, M.; Xu, X.; Ermolieva, T.; Cao, G.-Y.; Yermoliev, Y.

    2018-01-01

    China is the world’s largest iron and steel producer and Jing-Jin-Ji (Beijing-Tianjin-Hebei) region accounts for nearly 1/3 of the national iron and steel production, while it is facing serious air pollution. Among the top 10 worst polluted cities in China, seven were located in Hebei province in 2014. Recent years Jing-Jin-Ji region has been promoted iron & steel industry with green clean technology for accelerating sustainable economic transition. This paper tries to response the basic ques...

  4. Influence of Silicon on Swelling and Microstructure in Russian Austenitic Stainless Steels Irradiated to High Neutron Doses

    International Nuclear Information System (INIS)

    Porollo, S.I.; Shulepin, S.V.; Konobeev, Y.V.; Garner, F.

    2007-01-01

    Full text of publication follows: For some applications in fusion devices austenitic stainless steels are still considered to be candidates for use as structural components, but high neutron exposures must be endured by the steels. Operational experience of fast reactors in Western Europe, USA and Japan provides evidence of the possible use of austenitic steels up to ∼ 150 dpa. Studies aimed at improvement of existing Russian austenitic steels are being carried out in Russia. For improvement of irradiation resistance of Russian steels it is necessary to understand the basic mechanisms responsible for deterioration of steel properties. This understanding can be achieved by continuing detailed investigations of the microstructure of cladding steels after irradiation to high doses. By investigating the evolution of radiation-induced microstructure in neutron irradiated steels of different chemical composition one can study the effect of chemical variations on steel properties. Silicon is one of the most important chemical elements that strongly influence the behavior of austenitic steel properties under irradiation. In this paper results are presented of investigations of the effect of silicon additions on void swelling and microstructure of base austenitic stainless steel EI-847 (0.06C-16Cr-15Ni- 3Mo-Nb) irradiated as fuel pin cladding of both regular and experimental assemblies in the BOR-60, BN-350 and BN-600 fast reactors to neutron doses up to 49 dpa. The possible mechanisms of silicon's effect on void swelling in austenitic stainless steels are presented and analyzed. (authors)

  5. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Zhai, Fuqiang; Wang, Jin; Zhang, Qian; Xu, Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-03-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites.

  6. Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury

    Science.gov (United States)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin

    2016-01-01

    Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another

  7. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    Science.gov (United States)

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  8. Fatigue behaviour of synthetic nodular cast irons

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2015-01-01

    Full Text Available The paper shows the influence of charge composition on microstructure, fatigue properties and failure micromechanisms of nodular cast irons. The additive of metallurgical silicon carbide (SiC in analysed specimens increases the content of ferrite in the matrix, decreases the size of graphite and increases the average count of graphitic nodules per unit of area. Consequently, the mechanical and fatigue properties of nodular cast iron are improved. The best fatigue properties (fatigue strength were reached in the melt which was created by 60 % of steel scrap and 40 % of pig iron in the basic charge with SiC additive.

  9. Pollution prevention at a profit in the production of iron and steel

    International Nuclear Information System (INIS)

    Fine, H.A.; Molbug, J.; Gorsevski, V.; Briskin, J.; Worrell, E.; Price, L.; Martin, N.

    1997-01-01

    Many different processes and flow sheets exist for the production of iron and steel. These individual processes and process combinations consume differing amounts of energy and result in differing carbon dioxide emissions, greatly complicating evaluation of new, energy conserving technologies. Not only does a large array of competing energy saving technologies exist, but these technologies must be applied to this diverse set of production facilities. A methodology now under development for performing a multiple pathways analysis that characterizes both energy usage and carbon emissions is described in this article. This methodology can examine multiple options at each step in the process for the production of iron and steel, and the potential economic and pollution prevention opportunities that each may have. A first order estimate of the role of energy and materials conservation in returning historical investment is also provided, demonstrating past pollution prevention at a profit. Finally, a preliminary analysis of selected strategies for further prevention at a profit in the production of iron and steel is provided

  10. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel

    Science.gov (United States)

    Thomas, S. A.; Hawkins, M. C.; Matthes, M. K.; Gray, G. T.; Hixson, R. S.

    2018-05-01

    The properties of iron and steel are of considerable interest scientifically to the dynamic materials properties' community, as well as to a broader audience, for many applications. This is true in part because of the existence of a solid-solid phase (α-ɛ) transition at relatively modest stress (13 GPa). Because of this, there is a significant amount of data on iron and steel alloy shock compression properties at stresses above 13 GPa, but much less fundamental data under stress conditions lower than that, where the metals are in the α-phase. New data have been obtained under relatively low stress (below 10 GPa) conditions in which samples are subjected to low-velocity symmetric impact on the order of 0.2 to 0.4 km/s. We used well-developed flyer plate impact methods combined with velocity interferometry to measure wave speeds and strength properties in compression and tension. The shock α-phase Hugoniot data reported here are compared with literature values. A comparison of spall strength and Hugoniot elastic limit is made between different types of steel studied and for pure iron.

  11. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  12. Corrosion of silicon-containing austenitic stainless steels under trans-passive conditions

    International Nuclear Information System (INIS)

    Stolarz, Jacek

    1989-01-01

    This research thesis addresses austenitic stainless steels which are used in installations for the chemical treatment of nuclear fuels, and are there in contact with nitric acid solutions the oxidising character of which generally promotes metal passivity. However, if this nitric environment becomes too oxidising, these steels may face severe corrosion problems. More particularly, this thesis addresses the study of intergranular corrosion, and aims at analysing various aspects of the corrosion of these austenitic stainless steels in trans-passive conditions. The author aims at determining and distinguishing the contributions due to silicon and those related to the presence of other impurities and addition elements by comparing the behaviours of industrial grade steels and high purity alloys in rigorously controlled electrochemical conditions. Another objective is to study the influence of the intergranular structure on silicon segregation by means of an attack technique in trans-passive conditions. After a report of a bibliographical study on the addressed topics and a presentation of the studied materials and implemented experimental techniques, the author reports the study of steel behaviour with respect to generalised dissolution in trans-passive conditions, as well in the nitric environment as in a sulphuric acid solution at imposed potential. Localised intragranular corrosion phenomena are discussed. A trans-passive intragranular corrosion model is proposed, and its possibilities in the analysis of intergranular segregation analysis are discussed. Experimental results of trans-passive intergranular corrosion of stainless steels are presented and interpreted by using the McLean segregation model. The influence of steel composition and of experimental conditions is discussed, as well as the role of grain boundary structure in the corrosion process [fr

  13. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Maksimović, Vuk

    2013-01-01

    Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach...

  14. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  15. Synthesis of laser beam rapidly solidified novel surfaces on D2 tool steel

    International Nuclear Information System (INIS)

    Ahmed, B.A.; Rizwan, K.F.; Minhas, J.A.; Waheed-ul-Haq, S.; Shahid, M.

    2011-01-01

    Surface layer of D2 tool steel was subjected to laser surface melting using continuous wave 2.5 kW CO/sub 2/ laser in point source melting mode. The processing parameters were varied to achieve a uniform depth of around 2 mm. Microstructural study revealed epitaxial growth of fine dendritic structure with secondary dendrite arm spacing in the range of 20-25 mu m. The phases in the parent annealed sample were BCC ferrite and chromium rich M7C3 carbide. The major phase after laser treatment was austenite and M7C3. The average hardness of annealed sample was 195 HV which increased to 410 HV after laser melting. Corrosion studies in 2% HCl solution exhibited a drastic improvement in corrosion resistance in laser treated samples. Improvement in properties is attributed to the refinement and uniformity of microstructure in the rapidly solidified surface. The case of a moving heat source was subjected to computer aided simulation to predict the melt depth at different processing conditions in point source melting mode. The calculated depths using the model, in ABAQUS software was found in good agreement with the experimental data. (author)

  16. Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, 110016, Shenyang (China)

    2016-03-15

    The weldability of 9Cr2WVTa steels with silicon content varying from 0.30 wt.% to 1.36 wt.% was studied to meet the requirement of Generation-Ⅳ nuclear reactor. Samples of enlarged HAZs were fabricated by a thermal-mechanical simulator based on the simulation and measurement of non-equilibrium phase transformation. The content of δ-ferrite in the HAZs increased with the silicon content and the peak temperature of welding thermal cycle. The impact toughness in the HAZs decreased in different degrees when the δ-ferrite exhibits stripe (lower than 4.82%) or blocky types (higher than 4.82%). Post weld heat treatment (PWHT) has a significant role on improving the toughness. Adding silicon content increased the volume of δ-ferrite and therefore, decreased the tensile strength of the HAZs for 9Cr2WVTa steels. Silicon also as solid solution strengthening element increased the tensile strength. The 9Cr2WVTa steel has good weldability when the silicon content is lower than 0.60 wt.%. - Highlights: • The weldability of 9Cr2WVTa steel with different silicon contents was studied. • The impact toughness decreased in different degrees owing to the δ-ferrite. • PWHT has a significant role on improving the impact toughness. • The 9Cr2WVTa steel with silicon content not exceeding 0.60 wt.% has good weldability.

  17. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  18. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  19. International convention on clean, green and sustainable technologies in iron and steel making

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The presentations (overheads/viewgraphs) discussed energy efficiency and conservation in iron and steel making, air pollution control, carbon trading, reclamation of iron ore mines, utilisation of low grade coal and iron ore, Corex and Finex processes, HIsmelt, sinter technology, energy recovery, reduction gas from coal, coal gasification and syngas based DRI, and resettlement of people.

  20. Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel

    Science.gov (United States)

    Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng

    2018-06-01

    The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.

  1. Production of low-silicon molten iron from high-silica hematite using biochar

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Tang∗; Xiu-feng Fu; Yan-qi Qin; Shi-yu Zhao; Qing-guo Xue

    2017-01-01

    A new method of utilizing high-silica hematite to produce low-silicon molten iron was proposed.In this method, FASTMELT, which comprised direct reduction and melt separation processes, was applied, with highly reactive biochar as the reductant in the direct reduction stage.The proposed method was ex-perimentally investigated and the results show that the method is feasible.In the direct reduction stage, ore-char briquette could achieve a metallization rate of 84%-88% and residual carbon of 0.27-0.89 mass% at temperature of 1 373 K, biochar mixing ratio of 0.8-0.9, and reduction time of 15 min.Some silica particles remained embedded in the iron phase after the reduction.In the melting separation stage, molten iron with a carbon content of 0.02-0.03 mass% and silicon content of 0.02-0.18 mass% could be obtained from the metallic briquettes under the above-mentioned conditions; the iron recovery rate was 83%-91% and impurities in the obtained metal were negligible.

  2. Geochemical investigation of iron transport into bentonite as steel corrodes

    International Nuclear Information System (INIS)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew

    2007-09-01

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  3. Geochemical investigation of iron transport into bentonite as steel corrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Fiona; Bate, Fiona; Heath, Tim; Hoch, Andrew [Serco Assurance, Harwe ll (United Kingdom)

    2007-09-15

    In Sweden and Finland, it is proposed that spent nuclear fuel will be encapsulated in sealed cylindrical canisters, for disposal in a geologic repository, either in vertical boreholes (KBS-3V) or in long horizontal boreholes (KBS-3H). The canisters will consist of a thick cast iron insert and a copper outer container, and each canister will be surrounded by a compacted bentonite clay buffer. It is important to investigate the possible consequences if a failure of these physical barriers was to occur. For instance, if mechanical failure of the copper outer container were to occur then groundwater could enter the annulus and reach the cast iron insert. This would result in anaerobically corroded iron from the cast iron insert interacting with the bentonite surrounding the canisters. The presence of anaerobically corroded iron in groundwater raises the question of how the bentonite will be affected by this process. In the case of the KBS-3H concept, mechanical failure of the copper outer container could lead to interaction between anaerobically corroded iron and bentonite, as above. However, direct contact between anaerobically corroding carbon steel and bentonite is also likely because of the presence of perforated carbon steel support structures in the long horizontal boreholes. As part of the NF-PRO project, an extensive experimental programme has been carried out over several years to study the interactions between anaerobically corroding carbon steel or cast iron and bentonite. The purpose of this report is to describe the modelling work that has been carried out, and the conclusions that have been reached. The experimental programme has carried out a series of long term experiments looking at anaerobic corrosion of carbon steel or cast iron in compacted MX80 bentonite at 30 deg C or 50 deg C. In the bentonite the concentration of iron decreased with increasing distance away from the iron-bentonite interface, with local iron concentrations as high as 20 wt % in

  4. Natural radioactivity in iron and steel materials by low-level gamma spectrometry

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, Maria

    2003-01-01

    High resolution low-level gamma spectrometry was applied to perform a radioactivity measurement in iron and steel raw materials (coal, coke, iron ore, pellets, manganese ore, limestone, dolomite), auxiliary materials (scorialite, oxide of Ti, bentonite), and some related final products (cast iron, slag, blast-furnace, flue dust) involved in iron making processing. We control the activity of materials in various kinds of samples and we investigate for transfer of radioactivity during the blast-furnace process. Artificial radioisotopes are rarely encountered. (authors)

  5. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  6. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Fay, D.A.

    1979-05-01

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  7. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  8. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  9. The shadow price of CO2 emissions in China's iron and steel industry.

    Science.gov (United States)

    Wang, Ke; Che, Linan; Ma, Chunbo; Wei, Yi-Ming

    2017-11-15

    As China becomes the world's largest energy consumer and CO 2 emitter, there has been a rapidly emerging literature on estimating China's abatement cost for CO 2 using a distance function approach. However, the existing studies have mostly focused on the cost estimates at macro levels (provinces or industries) with few examining firm-level abatement costs. No work has attempted to estimate the abatement cost of CO 2 emissions in the iron and steel industry. Although some have argued that the directional distance function (DDF) is more appropriate in the presence of bad output under regulation, the choice of directions is largely arbitrary. This study provides the most up-to-date estimate of the shadow price of CO 2 using a unique dataset of China's major iron and steel enterprises in 2014. The paper uses output quadratic DDF and investigates the impact of using different directional vectors representing different carbon mitigation strategies. The results show that the mean CO 2 shadow price of China's iron and steel enterprises is very sensitive to the choice of direction vectors. The average shadow prices of CO 2 are 407, 1226 and 6058Yuan/tonne respectively for the three different direction vectors. We also find substantial heterogeneity in the shadow prices of CO 2 emissions among China's major iron and steel enterprises. Larger, listed enterprises are found to be associated lower CO 2 shadow prices than smaller, unlisted enterprises. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Exploring energy efficiency in China's iron and steel industry: A stochastic frontier approach

    International Nuclear Information System (INIS)

    Lin, Boqiang; Wang, Xiaolei

    2014-01-01

    The iron and steel industry is one of the major energy-consuming industries in China. Given the limited research on effective energy conservation in China's industrial sectors, this paper analyzes the total factor energy efficiency and the corresponding energy conservation potential of China's iron and steel industry using the excessive energy-input stochastic frontier model. The results show that there was an increasing trend in energy efficiency between 2005 and 2011 with an average energy efficiency of 0.699 and a cumulative energy conservation potential of 723.44 million tons of coal equivalent (Mtce). We further analyze the regional differences in energy efficiency and find that energy efficiency of Northeastern China is high while that of Central and Western China is low. Therefore, there is a concentration of energy conservation potential for the iron and steel industry in the Central and Western areas. In addition, we discover that inefficient factors are important for improving energy conservation. We find that the structural defect in the economic system is an important impediment to energy efficiency and economic restructuring is the key to improving energy efficiency. - Highlights: • A stochastic frontier model is adopted to analyze energy efficiency. • Industry concentration and ownership structure are main factors affecting the non-efficiency. • Energy efficiency of China's iron and steel industry shows a fluctuating increase. • Regional differences of energy efficiency are further analyzed. • Future policy for energy conservation in China's iron and steel sector is suggested

  11. Effect of Contact Time on Interface Reaction between Aluminum Silicon (7% and 11% Alloy and Steel Dies SKD 61

    Directory of Open Access Journals (Sweden)

    Bambang Suharno

    2010-10-01

    Full Text Available Die soldering (die sticking is a defect of metal casting in which molten metal “welds” to the metallic die mold surface during casting process. Die soldering is the result of an interface reaction between the molten aluminum and the die material. Aluminum alloy with 7 and 11% silicon and SKD 61 die steel are the most common melt and die material used in aluminum die casting. This research is done to study the morphology and the characteristics of the formed AlxFeySiz intermetallic layer during interface reaction at dipping test. The samples of as-anneal SKD 61 tool steel was dipped into the molten of Al-7%Si held at temperature 680oC and into molten Al-11%Si held at temperature 710oC with the different contact time of 10 minutes; 30 minutes; and 50 minutes. The research results showed that the interface reaction can form a compact intermetallic layer with AlxFey phase and a broken intermetallic layer with AlxFeySiz phase on the surface of SKD 61 tool steel. The increasing of the contact time by the immersion of material SKD 61 tool steel in both of molten Al-7%Si and Al-11%Si will increase the thickness of the AlxFeySiz intermetallic layer until an optimum point and then decreasing. The micro hardness of the AlxFeySiz intermetallic layer depends on the content of the iron. Increasing of the iron content in intermetallic layer will increase the micro hardness of the AlxFeySiz. This condition happened because the increasing of Fe content will cause forming of intermetallic AlxFeySiz phase becomes quicker.

  12. Processing, adhesion and electrical properties of silicon steel having non-oriented grains coated with silica and alumina sol-gel

    International Nuclear Information System (INIS)

    Vasconcelos, D.C.L.; Orefice, R.L.; Vasconcelos, W.L.

    2007-01-01

    Silicon steels having non-oriented grains are usually coated with a series of inorganic or organic films to be used in electrical applications. However, the commercially available coatings have several disadvantages that include poor adhesion to the substrates, low values of electrical resistance and degradation at higher temperatures. In this work, silica and alumina sol-gel films were deposited onto silicon steel in order to evaluate the possibility of replacing the commercially available coatings by these sol-gel derived materials. Silica and alumina sol-gel coatings were prepared by dipping silicon steel samples into hydrolyzed silicon or aluminum alkoxides. Samples coated with sol-gel films were studied by scanning electron microscopy, energy dispersive spectroscopy and infrared spectroscopy. Adhesion between silicon steel and sol-gel films was measured by using several standard adhesion tests. Electrical properties were evaluated by the Franklin method. Results showed that homogeneous sol-gel films can be deposited onto silicon steel. Thicknesses of the films could be easily managed by altering the speed of deposition. The structure of the films could also be tailored by introducing additives, such as nitric acid and N,N-dimethyl formamide. Adhesion tests revealed a high level of adhesion between coatings and metal. The Franklin test showed that sol-gel films can produce coated samples with electrical resistances suitable for electrical applications. Electrical properties of the coated samples could also be manipulated by altering the structure of the sol-gel films or by changing the thickness of them

  13. Influence of redox condition in iron, silicon and hydrogen contents of leached glass surface

    International Nuclear Information System (INIS)

    Manara, A.; Lanza, F.; Della Mea, G.; Rossi, C.; Salvagno, G.

    1984-01-01

    Surface analysis has been conducted on samples leached in a Sochlet apparatus at 100 0 C in the presence and in the absence of air. The XPS technique was applied to analyze the content of iron and silicon while the nuclear reaction method was utilized to analyze the content of hydrogen. Samples leached in argon atmosphere have shown a smaller content of iron and silicon with respect to the samples leached in air atmosphere. The H concentration has shown the same behavior. The results are discussed in terms of possible formation of iron compounds in the different redox condition and of their different stabilities and in terms of their efficiency in reducing exchange between Na + and H + ions. 11 references, 3 figures, 1 table

  14. Internal and External Factors Related to Burnout among Iron and Steel Workers: A Cross-Sectional Study in Anshan, China.

    Science.gov (United States)

    Guo, Haiqiang; Guo, Huifang; Yang, Yilong; Sun, Baozhi

    2015-01-01

    Burnout is a syndrome of emotional exhaustion, cynicism and reduced professional efficacy, which can result from long-term work stress. Although the burnout level is high among iron and steel workers, little is known concerning burnout among iron and steel worker. This study aimed to evaluate the burnout and to explore its associated internal and external factors in iron and steel workers. A cross-sectional survey was conducted in iron and steel workers at the Anshan iron-steel complex in Anshan, northeast China. Self-administered questionnaires were distributed to 1,600 workers, and finally 1,300 questionnaires were returned. Burnout was measured using the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS). Effort-reward imbalance (ERI), perceived organizational support (POS), and psychological capital (PsyCap) were measured anonymously. A hierarchical regression model was applied to explore the internal and external factors associated with burnout. Mean MBI-GS scores were 13.11±8.06 for emotional exhaustion, 6.64±6.44 for cynicism, and 28.96±10.39 for professional efficacy. Hierarchical linear regression analysis showed that ERI and POS were the most powerful predictors for emotional exhaustion and cynicism, and PsyCap was the most robust predictor for high professional efficacy. Chinese iron and steel workers have a high level of burnout. Burnout might be associated with internal and external factors, including ERI, POS, and PsyCap. Further studies are recommended to develop an integrated model including both internal and external factors, to reduce the level of ERI, and improve POS and workers' PsyCap, thereby alleviating the level of burnout among iron and steel workers.

  15. Internal and External Factors Related to Burnout among Iron and Steel Workers: A Cross-Sectional Study in Anshan, China.

    Directory of Open Access Journals (Sweden)

    Haiqiang Guo

    Full Text Available Burnout is a syndrome of emotional exhaustion, cynicism and reduced professional efficacy, which can result from long-term work stress. Although the burnout level is high among iron and steel workers, little is known concerning burnout among iron and steel worker. This study aimed to evaluate the burnout and to explore its associated internal and external factors in iron and steel workers.A cross-sectional survey was conducted in iron and steel workers at the Anshan iron-steel complex in Anshan, northeast China. Self-administered questionnaires were distributed to 1,600 workers, and finally 1,300 questionnaires were returned. Burnout was measured using the Chinese version of the Maslach Burnout Inventory-General Survey (MBI-GS. Effort-reward imbalance (ERI, perceived organizational support (POS, and psychological capital (PsyCap were measured anonymously. A hierarchical regression model was applied to explore the internal and external factors associated with burnout.Mean MBI-GS scores were 13.11±8.06 for emotional exhaustion, 6.64±6.44 for cynicism, and 28.96±10.39 for professional efficacy. Hierarchical linear regression analysis showed that ERI and POS were the most powerful predictors for emotional exhaustion and cynicism, and PsyCap was the most robust predictor for high professional efficacy.Chinese iron and steel workers have a high level of burnout. Burnout might be associated with internal and external factors, including ERI, POS, and PsyCap. Further studies are recommended to develop an integrated model including both internal and external factors, to reduce the level of ERI, and improve POS and workers' PsyCap, thereby alleviating the level of burnout among iron and steel workers.

  16. Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network

    International Nuclear Information System (INIS)

    Wu, Junnian; Wang, Ruiqi; Pu, Guangying; Qi, Hang

    2016-01-01

    Highlights: • Exergy, energy and CO_2 emissions assessment of iron and steel industrial network. • Effects of industry symbiosis measures on exergy, energy and CO_2 emissions. • Exploring the environmental impact from exergy losses. • The overall performance indexes are proposed for iron and steel industrial network. • Sinter strand and the wet quenching process have the lowest exergy efficiency. - Abstract: Intensive energy consumption and high pollution emissions in the iron and steel industry have caused problems to the energy system, in the economy, and in the environment. Iron and steel industrial network as an example of energy conservation and emissions reduction, require better analysis and assessment. The present study comprehensively assesses an iron and steel industrial network and its environmental performance with respect to exergy, energy and CO_2 emissions. The results show that the sinter strand needs to be greatly improved and the wet quenching process needs to be completely redesigned. The overall exergy efficiency and energy efficiency can be improved by adopting industrial symbiosis (IS) measures. We found that adjusting the energy structure to use renewable energy and recycling solid waste can greatly reduce CO_2 emissions. Moreover, the maximum exergy losses occurred in the blast furnace with the maximum CO_2 emissions. The iron making plant exerted a strong effect on the environment based on the equivalent CO_2 emission potentials. Many performance indicators of the entire industrial network were also examined in this work. It can be seen that integrated evaluation of energy and CO_2 emissions with exergy is necessary to help to mitigate adverse environmental impacts and more effectively fulfill the goals for energy conservation and emissions reduction.

  17. A study of DLC coatings for ironing of stainless steel

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i...

  18. Vessel for solidifying water-impermeable radioactive waste

    International Nuclear Information System (INIS)

    Kiuchi, Yoshimasa; Tamada, Shin; Suzuki, Yasushi.

    1993-01-01

    A blend prepared by admixing silica sand, alumina powder or glass fiber, as aggregates, to epoxy resin elastic adhesives is coated on an inner surface of a steel drum can or an inner surface of a concrete vessel at a thickness of greater than 1mm followed by hardening. The addition amount of the silica sand, alumina powder or glass fiber is determined as 20 to 40% by weight, 30 to 60% by weight or 5 to 15% by weight respectively. A lid having a hole for injecting fillers is previously bonded to a container for use in solidifying radioactive materials. The strength of the coating layer is increased and a coating performance and an adhesion force are improved by admixing the aggregates, to provide a satisfactory water-impermeability. The container for use in solidifying radioactive wastes having a coating layer with an advantage of the elastic resin adhesives, strong strength and adhesion and being excellent in the water-impermeability can be obtained relatively economically. (N.H.)

  19. Investment in the Community coal mining and iron and steel industries - 1981 survey

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The report has been prepared on the results of the 1981 survey of investments in the Community coal and steel industries. The survey which is conducted annually collects information on actual and forecast capital expenditure and production potential of coal and steel enterprises. The introductory chapter summarizes the results of the survey and the conclusions on them. Subsequent chapters examine in detail the results of the survey for each producing sector, namely: the coal mining industry; coking plants; briquetting plants; iron ore mines; and iron and steel industry. The annex contains a statement of the definitions under which the survey was carried out, together with tables giving a complete analysis of the results of the survey, including tables of capital expenditure and production potential by region and by category of plant for all sectors and categories of coal and steel products falling within the ECSC treaty. Editions are available in the seven community languages.

  20. Investment in the Community coal mining and iron and steel industries - 1980 survey

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The report has been prepared on the results of the 1980 survey of investments in the Community coal and steel industries. The survey, which is conducted annually, collects information on actual and forecast capital expenditure and production potential of coal and steel enterprises. The introductory chapter summarizes the results of the survey and the conclusions on them. Subsequent chapters of the report examine in detail the results of the survey for each producing sector, namely: the coal mining industry; coking plants; briquetting plants; iron-ore mines; and the iron and steel industry. The annex to the report contains a statement of the definitions under which the survey was carried out, together with tables giving a complete analysis of the results of the survey, including tables of capital expenditure and production potential by region and by category of plant for all sectors and categories of coal and steel products falling within the ECSC Treaty. Editions are available in six community languages.

  1. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  2. On confirmation of abandonment of imported waste (glass solidified bodies) outside business places

    International Nuclear Information System (INIS)

    1996-01-01

    Electric power companies entrust the reprocessing of spent fuel generated from nuclear power stations to COGEMA in France, and in April, 1995, 28 high level radioactive wastes (glass solidified bodies) generated by the reprocessing were returned. When these glass solidified wastes are abandoned in the waste management facility of Japan Nuclear Fuel Service Co., it was decided to receive the confirmation of the prime minister on the measures based on the relevant law. Four electric power companies submitted the application and the explanation paper. As to the contents of the glass solidified wastes, the technical inspection was carried out by Bureau Veritas. Considering that this import of glass solidified wastes is the first in Japan, Science and Technology Agency carried out the measurement of all 28 wastes. The results are reported. It was confirmed that the measures for the abandonment taken by four electric power companies conform to the stipulation. The contents of the confirmation are reported in the order of the stipulation. These wastes were solidified with borosilicate glass in 5 mm thick stainless steel vessels, and the welding was done properly. (K.I.)

  3. Effects of Cold Rolling Reduction and Initial Goss Grains Orientation on Texture Evolution and Magnetic Performance of Ultra-thin Grain-oriented Silicon Steel

    Directory of Open Access Journals (Sweden)

    LIANG Rui-yang

    2017-06-01

    Full Text Available The ultra-thin grain-oriented silicon steel strips with a thickness of 0.06-0.12mm were produced by one-step-rolling methods with different Goss-orientation of grain-oriented silicon steel sheets. The effect of cold rolling reduction and initial Goss-orientation of samples on texture evolution and magnetic performance of ultra-thin grain-oriented silicon steel strips was studied by EBSD. The result shows that with the increase of cold rolling reduction and decrease of strips thickness, the recrystallization texture is enhanced after annealing.When the cold rolling reduction is 70%,RD//〈001〉 recrystallization texture is the sharpest, and the magnetic performance is the best. The higher degree of Goss orientation in initial sample is, the better magnetic performance of ultra-thin grain-oriented silicon steel.Therefore, for producing an ultra-thin grain-oriented silicon steel with high performance, a material with a concentrated orientation of Goss grains can be used.

  4. Teachers Environmental Resource Unit: Industry: Iron/Steel & Pulp/Paper.

    Science.gov (United States)

    Bemiss, Clair W.

    Iron and steel and pulp and paper industries, two representatives of American industry, are selected in this teacher's guide for the study of industrial pollution and current pollution control efforts. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Both industries are…

  5. Pit morphology studies of iron and steel in alkaline chloride environment using EMPA technique

    International Nuclear Information System (INIS)

    Benjamin, S.E.; Sykes, J.M.

    1993-01-01

    A comparative study of iron and steel in stimulated alkaline chloride solutions showed that Swedish iron has better reproducibility in terms of pitting potentials as compared to ordinary hot rolled mild steel. This study was undertaken to reason this pitting behavior on the basis of number and the nature of inclusions present in both the metals. Electron probe microanalysis technique (EPMA) was utilised to contemplate the origin of pits, the solution chemistry of the pits and finally the nature of the rust product. (author)

  6. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    Science.gov (United States)

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Short-term thermal response of rapidly solidified Type 304 stainless steel containing helium

    International Nuclear Information System (INIS)

    Clark, D.E.

    1988-06-01

    Type 304 stainless steel was heat treated for short times near its melting point in order to determine its microstructural response to thermal cycles typical of the near heat-affected zones of welding processes. The material was rapidly solidified as a powder by centrifugal atomization in a helium environment and consolidated by hot extrusion. Along with the ingot metallurgy material used for canning the powder prior to hot extrusion, it was heat treated using a Gleeble at temperatures of 1200 and 1300 degree C for times ranging from <1 to 1000 s, and the samples were examined for microstructure and the existence of porosity due to entrapped helium. At higher test temperatures and longer treatment times, the material developed extensive porosity, which was stabilized by the presence of helium and which may also have a role in anchoring grain boundaries and inhibiting grain growth. The powder material. At lower test temperatures and shorter treatment times, grain growth in the γ phase appeared to be restricted in the powder material, possible by the presence of helium. An intermediate temperatures and times, a γ-δ duplex microstructure also restricted grain growth again occurred in the δ microstructure. 9 refs., 14 figs., 3 tabs

  8. Effects of Si as alloying element on corrosion resistance of weathering steel

    International Nuclear Information System (INIS)

    Mejía Gómez, J.A.; Antonissen, J.; Palacio, C.A.; De Grave, E.

    2012-01-01

    Highlights: ► Weathering steels with different concentrations of Si as alloying element were exposed to laboratory atmospheric conditions. ► The iron oxides formed as corrosion products were characterized and analyzed by XRD, TEM and Mössbauer spectroscopy. ► Silicon affects the corrosion resistance of weathering steels. ► Silicon promotes the formation of goethite as corrosion product with small particle size. - Abstract: The corrosion resistance in saline conditions of weathering steel with different concentrations of Si (1, 2 and 3 wt.%) exposed to dip dry tests (simulating wet/dry cycles of atmospheric corrosion) was studied by weight loss, X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. The results showed that the steels exhibit better corrosion performance with increasing Si concentration. The formation of Fe-oxides such as goethite, lepidocrocite and magnetite was observed. Superparamagnetic goethite is the dominant phase in the rust developed on the Si steels, indicating that Si favors the formation of goethite with small particle size.

  9. CHANGE OF CONNECTION BETWEEN MAGNETIC PARAMETERS OF CAST IRON IN COMPARISON WITH STEEL UNDER INFLUENCE OF INTERNAL DEMAGNETIZATION

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirsky

    2014-01-01

    Full Text Available Connection of maximum magnetic permeability µm of cast irons with coercive force Нс and residual magnetism Мr is established in all size of changing of the magnetic characteristics of cast iron. Differences of this connection for steels and cast irons are revealed. Formula for calculation µm of steels by Нс and Мr is corrected for calculation µm of cast irons. As a result of correction the calculation error of cast irons µm is diminished. The results can be used in magnetic structural analysis instead of labor-consuming measurement µm.

  10. Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites

    International Nuclear Information System (INIS)

    Wu Shen; Sun Aizhi; Zhai Fuqiang; Wang Jin; Zhang Qian; Xu Wenhuan; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on novel iron-based soft magnetic composites synthesis utilizing high thermal stability silicone resin to coat iron powder. The effect of an annealing treatment on the magnetic properties of synthesized magnets was investigated. The coated silicone insulating layer was characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy. Silicone uniformly coated the powder surface, resulting in a reduction of the imaginary part of the permeability, thereby increasing the electrical resistivity and the operating frequency of the synthesized magnets. The annealing treatment increased the initial permeability, the maximum permeability, and the magnetic induction, and decreased the coercivity. Annealing at 580 °C increased the maximum permeability by 72.5%. The result of annealing at 580 °C shows that the ferromagnetic resonance frequency increased from 2 kHz for conventional epoxy resin coated samples to 80 kHz for the silicone resin insulated composites. - Highlights: ► Silicone uniformly coated the powder, increased the operating frequency of SMCs. ► The annealing treatment increased the DC properties of SMCs. ► Annealing at 580 °C increased the maximum permeability by 72.5%. ► Compared with epoxy coated, the SMCs had higher resistivity annealing at 580 °C.

  11. New technologies and raw materials for iron and steel making

    Energy Technology Data Exchange (ETDEWEB)

    Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1998-07-01

    The current steelmaking is still mainly based on two alternatives routes. The first one is ore based production route via reduction in blast furnaces (BF) to produce carbon-rich hot metal which is then oxidised in basic oxygen converter process (BOF) to crude steel, then refined and alloyed in several secondary (ladle) metallurgical operations to its final composition, further followed by continuous casting and rolling operations. The second main steelmaking route starts from steel scrap as the main raw material, melting of scrap in electric furnaces to crude steel, the subsequent stages being corresponding to those in ore based steelmaking. Both these processes represent well-established and highly developed technologies. However, they have some drawbacks. Blast furnace process needs sinter or pellets and coke as its raw materials. That means erection of large integrates with high investment costs in the production units themselves as well as to avoid severe environmental issues. Scrap-based steelmaking is ideal from the viewpoint of recycling, but it is limited by the scrap availability and quality problems encountered by the noticeable metallic impurities in purchase scrap. Direct reduction of iron ore in solid state to produce direct reduced iron (DRI) has its roots in the early ironmaking history but was firstly commercialised on a modern concept at the end of the 1960's when the first Midrex installation was run into operation. Most of the DR-processes utilise natural gas as the reducing agent but also some processes utilising coal have been introduced and are used in industrial scale. The oil crises in the 1970's slowed down the progress of DRI production but during the last 15 years the production has steadily grown being nowadays about 35 Mton/year. That corresponds to roughly 10 pct of the total solid material input into the world steel production. No doubt, the growth will continue in the near future as well. Quite recently, a new process

  12. Low-carbon transition of iron and steel industry in China: carbon intensity, economic growth and policy intervention.

    Science.gov (United States)

    Yu, Bing; Li, Xiao; Qiao, Yuanbo; Shi, Lei

    2015-02-01

    As the biggest iron and steel producer in the world and one of the highest CO2 emission sectors, China's iron and steel industry is undergoing a low-carbon transition accompanied by remarkable technological progress and investment adjustment, in response to the macroeconomic climate and policy intervention. Many drivers of the CO2 emissions of the iron and steel industry have been explored, but the relationships between CO2 abatement, investment and technological expenditure, and their connections with the economic growth and governmental policies in China, have not been conjointly and empirically examined. We proposed a concise conceptual model and an econometric model to investigate this crucial question. The results of regression, Granger causality test and impulse response analysis indicated that technological expenditure can significantly reduce CO2 emissions, and that investment expansion showed a negative impact on CO2 emission reduction. It was also argued with empirical evidence that a good economic situation favored CO2 abatement in China's iron and steel industry, while achieving CO2 emission reduction in this industrial sector did not necessarily threaten economic growth. This shed light on the dispute over balancing emission cutting and economic growth. Regarding the policy aspects, the year 2000 was found to be an important turning point for policy evolution and the development of the iron and steel industry in China. The subsequent command and control policies had a significant, positive effect on CO2 abatement. Copyright © 2014. Published by Elsevier B.V.

  13. Volatile organic pollutants in iron and steel industry

    International Nuclear Information System (INIS)

    Manea, D.; Dorina, S.; Popescu, L.; Stoian, P.

    2009-01-01

    It is a well known fact that iron and steel units generate about 25% from total gaseous emissions, and a significant part of these are diffuse emissions, which appear during technological stages. so that, apart from other types of pollutants, appear volatile organic compounds (VOCs) that contain a considerable number of diverse and complex substances that, even in small amounts, affect all environmental factors: air, water, soil. (Author)

  14. Effect of Cooling Rate on the Microstructure of Al-Zn Alloys with Addition of Silicon as Nanocomposite

    Directory of Open Access Journals (Sweden)

    S. García-Villarreal

    2013-01-01

    Full Text Available Al-43.5Zn-1.5Si (wt% alloys are widely used as coatings on steel substrates. This kind of coatings is manufactured by hot-dip process, in which Si is added as solid particles or master alloy. The role of Si during formation of the coating is to control the metallurgical reactions between solid steel and liquid Al-Zn-Si alloy initially forming an AlZnFeSi intermetallic layer and next the excess of Si forms intermetallic compounds, which grows over this alloy layer, segregates into the Zn rich interdendritic regions, and solidifies as eutectic reaction product as massive particles with needle like morphology. Therefore, during the experimental procedure is very difficult to control the final morphology and distribution of the silicon phase. The acicular morphology of this phase greatly affects the mechanical properties of the alloy because it acts as stress concentrators. When the coated steel sheet is subjected to bending, the coating presents huge cracks due to the presence of silicon phase. Therefore, the aim of the paper was to propose a new methodology to control the silicon phase through its addition to Al-Zn alloy as nanocomposite and additionally determine the effect of cooling rate (between 10 and 50°Cs−1 on the solidification microstructure and mechanical properties of Al-Zn alloy.

  15. Iron oxide shell coating on nano silicon prepared from the sand for lithium-ion battery application

    Science.gov (United States)

    Furquan, Mohammad; Vijayalakshmi, S.; Mitra, Sagar

    2018-05-01

    Elemental silicon, due to its high specific capacity (4200 mAh g-1) and non-toxicity is expected to be an attractive anode material for Li-ion battery. But its huge expansion volume (> 300 %) during charging of battery, leads to pulverization and cracking in the silicon particles and causes sudden failure of the Li-ion battery. In this work, we have designed yolk-shell type morphology of silicon, prepared from carbon coated silicon nanoparticles soaked in aqueous solution of ferric nitrate and potassium hydroxide. The soaked silicon particles were dried and finally calcined at 800 °C for 30 minutes. The product obtained is deprived of carbon and has a kind of yolk-shell morphology of nano silicon with iron oxide coating (Si@Iron oxide). This material has been tested for half-cell lithium-ion battery configuration. The discharge capacity is found to be ≈ 600 mAh g-1 at a current rate of 1.0 A g-1 for 200 cycles. It has shown a stable performance as anode for Li-ion battery application.

  16. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  17. Energy and materials flows in the iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  18. In-situ SEM observation on fracture behavior of austempered silicon alloyed steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2009-08-01

    Full Text Available Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite朼ustenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed

  19. Energy Intensity Development of the German Iron and Steel Industry between 1991 and 2007

    NARCIS (Netherlands)

    Arens, M.; Worrell, E.; Schleich, J.

    The iron and steel sector is the largest industrial CO2 emitter and energy consumer in the world. Energy efficiency is key to reduce energy consumption and GHG emissions. To understand future developments of energy use in the steel sector, it is worthwhile to analyze energy efficiency developments

  20. Corrosion Behavior of Pipeline Carbon Steel under Different Iron Oxide Deposits in the District Heating System

    Directory of Open Access Journals (Sweden)

    Yong-Sang Kim

    2017-05-01

    Full Text Available The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and Fe2O3 was investigated in simulated district heating water. In potentiodynamic polarization tests; the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline. Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or periodic chemical cleaning are needed.

  1. Industry - An Urban Developer. Case Study: Iron and Steel Industry in Romania

    Directory of Open Access Journals (Sweden)

    Radu SĂGEATĂ

    2013-06-01

    Full Text Available The profound economic and social changes that took place during the period of transition from a central-based economy to the market system have deeply marked the evolution of industrial towns, particularly those targeted for heavy industry development between 1950 and 1989. The present paper analyses this model of urban evolution affected by the interference of the political-ideological factor. Three towns, Galaţi, Târgovişte and Oţelu Roşu, in which a strong iron-and-steel industry was planted, have been taken into the study. Galaţi – a large town with complex functions, a regional and crossborder polarization center, was singled out for this type of industry by political decision within the context of the industrialization drive of the 1950s; Târgovişte – an old middle urban center, was pushed into the iron-and-steel route in the 1970-1980 decade. Oţelu Roşu – a small town, has a traditional iron-and-steel industry based on local raw material resources. Relying on historical documents, bibliographical sources and field work, the author correlates urban development evolutions with the industrialization policies, highlighting the causes that have led to the present decline of these towns and the challenges facing the local authorities in revitalizing them in a sustainable manner.

  2. ICARUS-4 : sector study for the iron and steel industry

    NARCIS (Netherlands)

    Michels, K.

    2000-01-01

    In this report we describe the energy consumption in 1995 and the energy saving options that exist within the iron and steel manufacturing industry (SBI/NACE 27.1-3) in the Netherlands. The data will be included in the ICARUS-4 database which gives an inventory of the technological options for

  3. Investigation of steel--sodium--iron shields

    International Nuclear Information System (INIS)

    Oblow, E.M.; Maerker, R.E.

    1978-01-01

    An analysis of experimental data from 21 fast reactor shield configurations containing steel, sodium, and iron were made as part of a study of the upper axial shielding needs of the Clinch River Breeder Reactor. The measured data were analyzed using both one- and two-dimensional discrete ordinates transport codes and several cross section libraries based on ENDF/B-IV data with group structures of 51 and 171 neutron groups. One-dimensional sensitivity studies using the 171 group library and ENDF/B-IV covariance files for sodium and iron data were used to determine the sensitivities of the measured data to multigroup cross sections and to estimate uncertainties in the calculated results. Results indicate that the standard 51-group design cross section library could be expected to predict the measurements to within 30% over 12 decades of attenuation although a few of the deepest penetration configurations showed disagreements as large as a factor of three. The sensitivity results revealed very high sensitivity of the measurements to total cross section minima and cross sections from 5 to 10 MeV in sodium and iron in the deep penetration configurations. As a result, large uncertainties in the calculated results arose from small uncertainties in the cross section data. These results indicate the need for better measurements of the total cross section minima in sodium, especially around 300 keV

  4. Influence of 'third' elements and structure on the results of spectral analysis of high alloyed steels and cast iron with glow discharge

    International Nuclear Information System (INIS)

    Buravlev, Yu.M.; Zamarajev, V.P.; Chernyavskaya, N.V.

    1989-01-01

    The experimental technique consists in estimation of mutual arrangement of the calibration curves obtained using standard reference materials of low-alloyed and high-alloyed (high-chrome, stainless, high-speed) steels as well as of the curves for carbon steels and cast iron differing in their structure. ARL-31000 and Polyvac E-1000 quantometers with U=1300 V, I=0.12 A and argon pressure ∼1 kPa are used. The influence of third elements is shown in shift and slope changes of the curves for abovementioned high-alloyed steels in comparison to ones for low-alloyed steels accepted as basic. The influence magnitude runs up to 10-30 relative percents and more in the case of analysis of carbon, phosphorus, sulfur, silicon and other elements and depends on the type of the element and on the alloy composition. It is shown that the contribution of structure factor caused by different alloy thermal treatment makes up 10 to 20 relative percents. The experiments showed that the increase of influence of these factors caused by their imposing as well as the weakening of this influence caused by their counteraction is possible. When analyzed alloys differ in their composition and manufacturing technology it is necessary to take into consideration the influence of these effects. (author)

  5. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.

    Science.gov (United States)

    Jin, Jian; Zhao, Wei-Rong; Xu, Xin-Hua; Hao, Zhi-Wei; Liu, Yong; He, Ping; Zhou, Mi

    2006-01-01

    Steel manufacturing byproducts and commercial iron powders were tested in the treatment of Ni(2+)-contaminated water. Ni2+ is a priority pollutant of some soils and groundwater. The use of zero-valent iron, which can reduce Ni2+ to its neural form appears to be an alternative approach for the remediation of Ni(2+)-contaminated sites. Our experimental data show that the removal efficiencies of Ni2+ were 95.15% and 94.68% at a metal to solution ratio of 20 g/L for commercial iron powders and the steel manufacturing byproducts in 60 min at room temperature, respectively. The removal efficiency reached 98.20% when the metal to solution ratio was 40 g/L for commercial iron powders. Furthermore, we found that the removal efficiency was also largely affected by other factors such as the pHs of the treated water, the length of time for the metal to be in contact with the Ni(2+)-contaminated water, initial concentrations of metal solutions, particle sizes and the amount of iron powders. Surprisingly, the reaction temperature appeared to have little effect on the removal efficiency. Our study opens the way to further optimize the reaction conditions of in situ remediation of Ni2+ or other heavy metals on contaminated sites.

  6. Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, Oskar; Naghilou, Aida [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria); Kitzler, Markus [TU Wien, Photonics Institute, Gusshausstraße 27-29, A-1040 Vienna (Austria); Kautek, Wolfgang, E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, Währinger Straße 42, A-1090 Vienna (Austria)

    2017-02-28

    Highlights: • Influence of laser spot size and pulse number on the ablation of solids. • An extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. • Successfully applied to silicon and stainless steel. - Abstract: Laser spot size and pulse number are two major parameters influencing the ablation of solids. The extended defect model describes the dependence of the threshold fluence on the basis of high and low density defects. This model was successfully applied to silicon and stainless steel. It is demonstrated that heat accumulation cannot describe the experimental results.

  7. International comparison of CO2 emission trends in the iron and steel industry

    International Nuclear Information System (INIS)

    Yeonbae, Kim; Worrell, E.

    2002-01-01

    In this paper, we present an in-depth decomposition analysis of trends in CO 2 emissions in the iron and steel industry using physical indicators. Physical indicators allow a detailed analysis of intra- sectoral trends, in contrast to the mostly used monetary indicators. Detailed decomposition analysis makes it possible to link developments in energy intensity to technology change and (indirectly) to policy. We present an analysis for the iron and steel industry in seven countries, i.e. Brazil, China, India (developing countries), Mexico and South Korea (newly industrialized countries) and the United States (industrialized country). We found substantial differences in energy efficiency among these countries. In most countries the increased (or decreased) production was the main contributor to changes in CO 2 emissions, while energy-efficiency was the main factor reducing emission intensities of steel production in almost all countries. Changes in power generation contributed to a reduction of specific emissions in the case of South Korea only. (Author)

  8. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Energy Technology Data Exchange (ETDEWEB)

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  9. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  10. Energy and materials flows in the fabrication of iron and steel semifinished products

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J.B. Jr.; Arons, R.M.

    1979-08-01

    The flow of energy and materials in the fabrication of iron and steel semifinished products from molten metal is discussed. The focus is on techniques to reduce the amount of energy required to produce the typical products of integrated steel plants and iron and steel foundries. In integrated steel plants, if only 50% of the steel being cast were continuously cast, industry-wide energy consumption would be reduced by 6 to 15%. Further major energy savings could be achieved by increased use of by-product gases and regenerators in the various reheat operations. Finally, systems optimization studies to maintain the even flow of materials at full capacity should yield further improvements in energy efficiency. In foundry operations, alternate heating methods in forging operations and the use of no-bake molding and core materials should result in substantial energy savings. Studies of specific operations will suggest housekeeping changes to minimize wasted energy. These changes might include fixing heat leaks, reducing floor space requirements, improving temperature regulation, lowering working temperatures in some steel-forming operations, redesigning products, and minimizing scrap generation. There is also a need for new, energy conserving technologies. A good example would be the development of nondestructive testing to determine the existence, location, and size of defects in ingots at elevated temperatures. A second example is the need to reduce, through system studies, the large amount of scrap typical of foundry operations. Finally, computer control of steel mill operations (materials flow, furnace residence times, excessive heating or overheating, and full capacity utilization of all facilities at all times) deserves further study.

  11. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  12. Fast reactor shield sensitivity studies for steel--sodium--iron systems

    International Nuclear Information System (INIS)

    Oblow, E.M.; Weisbin, C.R.

    1977-01-01

    A study was made of the adequacy of the current ENDF/B-IV sodium and iron neutron cross section data files for fast reactor shield design work. Experimental data from 21 fast reactor shield configurations containing large thicknesses of steel, sodium, and iron were analyzed with discrete ordinates calculations and sensitivity methods to assess the data files. This study represents the largest full-scale sensitivity analysis of benchmark quality experimental data to date. Included in the sensitivity studies were the results of the new cross section adjustment algorithms added to the FORSS code system. Conclusions were drawn about the need for more accurate data for sodium and iron elastic and discrete inelastic cross sections above 1 MeV and the values of the total cross section in the vicinity of important minima

  13. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  14. NOx Emission in Iron and Steel Production: A Review of Control Measures for Safe and Eco-Friendly Environment

    Directory of Open Access Journals (Sweden)

    U. A. Mukhtar

    2017-12-01

    Full Text Available Iron and steel manufacturing involved preparation of raw materials through processes such as sintering, pelletizing and coke making. During these processes, pollutants such as Sulphur (iv oxides (SO2 Carbon II oxides (CO, Nitrogen oxides (NOX, Volatile organic compounds (VOC and Particulate matter (PM etc. are emitted. The present work is aimed at describing some mitigation technologies of controlling emissions in iron and steel production. The processes involved in the production of iron and steel using Blast Furnace (BF and Basic Oxygen Furnace (BOF has been described. The mitigation technologies of controlling emissions were analyzed and discussed with environmental impacts based on the economical and technical factors. In this work, the data presented is based on existing reviews. The combination of low NOX burner (LNB and Selective catalytic reduction (SCR is capable of reducing emission for up to 90% and above. Emissions of other pollutants into the atmosphere as a result of ammonia slip, formation of acids and other gases are harmful to the environment and causes damage to the SCR systems. Installation and operation cost are the major impacts of the SCR technology in the process of iron and steel production.

  15. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    NARCIS (Netherlands)

    Goulas, C.; Mecozzi, M.G.; Sietsma, J.

    2016-01-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of

  16. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2013-01-01

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy

  17. Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik Univ., Sejong (Korea, Republic of)

    2013-06-15

    Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than 650 .deg. C and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

  18. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guang; Cheng, Ling [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Lu, Licheng [State Grid Corporation of China, Beijing 100031 (China); Yang, Fuyao; Chen, Xin [Global Energy Interconnection Research Institute, State Key Laboratory of Advanced Transmission Technology,Beijing 102211 (China); Zhu, Chengzhi [State Grid Zhejiang Electric Power Company, Hangzhou 310007 (China)

    2017-03-15

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched. - Highlights: • Magnetic properties of 0.23 mm and 0.27 mm series (P{sub 1.7}=0.70–1.05 W/kg, B{sub 8}>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically analyzed. • Influence of DC biased magnetization on core loss, magnetostriction, and A-weighted magnetostriction velocity level of GO steel were researched. • Greater thickness and relatively lower magnetic induction (B{sub 8}>1.89 T yet) of GO steel can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed.

  19. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  20. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China

    International Nuclear Information System (INIS)

    Guo, Z.C.; Fu, Z.X.

    2010-01-01

    A survey of the key issues associated with the development in the Chinese iron and steel industry and current situations of energy consumption are described in this paper. The apparent production of crude steel in China expanded to 418.78 million tonnes in 2006, which was about 34% share of the world steel production. The iron and steel industry in China is still one of the major high energy consumption and high pollution industries, which accounts for the consumption of about 15.2% of the national total energy, and generation of 14% of the national total wastewater and waste gas and 6% of the total solid waste materials. The average energy consumption per unit of steel is about 20% higher than that of other advanced countries due to its low energy utilization efficiency. However, the energy efficiency of the iron and steel industry in China has made significant improvement in the past few years and significant energy savings will be achieved in the future by optimizing end-use energy utilization. Finally, some measures for the industry in terms of the economic policy of China's 11th five-year plan are also presented.

  1. Effect of silicon content and defects on the lifetime of ductile cast iron

    Directory of Open Access Journals (Sweden)

    Alhussein Akram

    2014-06-01

    Full Text Available In this work, the influence of microstructure on the mechanical properties has been studied for different grades of ferritic ductile cast iron. Mechanical tests were carried out and the effect of silicon on the resistance of material was well noticed. An increasing silicon content increases the strength and decreases the ductility of material. The lifetime and endurance limit of material were affected by the presence of defects in material and microstructure heterogeneity. Metallurgical characterizations showed that the silicon was highly segregated around graphite nodules which leads to the initiation of cracks. The presence of defects causes the stress concentration and leads to the initiation and propagation of cracks.

  2. Characterizing Grain-Oriented Silicon Steel Sheet Using Automated High-Resolution Laue X-ray Diffraction

    Science.gov (United States)

    Lynch, Peter; Barnett, Matthew; Stevenson, Andrew; Hutchinson, Bevis

    2017-11-01

    Controlling texture in grain-oriented (GO) silicon steel sheet is critical for optimization of its magnetization performance. A new automated laboratory system, based on X-ray Laue diffraction, is introduced as a rapid method for large scale grain orientation mapping and texture measurement in these materials. Wide area grain orientation maps are demonstrated for both macroetched and coated GO steel sheets. The large secondary grains contain uniform lattice rotations, the origins of which are discussed.

  3. Electronic structure of deep levels in silicon. A study of gold, magnesium, and iron centers in silicon

    International Nuclear Information System (INIS)

    Thilderkvist, A. L.

    1994-02-01

    The electronic structure of gold, magnesium and iron related deep centers in silicon is investigated. Their deep and shallow levels are studied by means of fourier transform spectroscopy, combined with uniaxial stress and Zeeman spectroscopy. The neutral substitutional gold center in silicon is investigated and the center is paramagnetic, S=1/2, with g||≅2.8 and g≅0, and has a static distortion. Reorientation between different equivalent distortions is observed even at 1.9 K. A gold pair center in silicon is studied and several line series, with a zero-phonon line followed by several phonon replicas, are observed. Uniaxial stress and Zeeman results reveal a trigonal symmetry of the center, which together with the high dissociation energy of 1.7 eV suggests that the center consists of two nearest-neighbor substitutional gold atoms. A divacancy model is employed to explain the electronic properties of the center. The interstitial magnesium double donor in silicon in its two charge states Mg o and Mg + is investigated. Deviations in the binding energies of the excited states from those calculated within the effective-mass theory (EMT) are found and explained by a perturbation in the central-cell region. The quadratic Zeeman effect of shallow donors in silicon is analyzed within the framework of the EMT using a numerical approach. The wave functions are calculated in a discrete radial mesh and the Zeeman Hamiltonian has be evaluated for the lowest excited states for fields up to 6 T. The neutral interstitial iron defect in silicon gives rise to two sets of line spectra. The first set arises when an electron is excited to a shallow donor like state where the electron is decoupled from the Fe + core which has a 4 T 1 ground state term. The second set arises when an excited electron of a 1 symmetry is coupled by exchange interaction to the core, yielding at 5 T 1 final state. Experiments determine the multiplet splitting of the 4 T 1 and 5 T 1 states due to spring

  4. Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown from Silicon Melts

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    2012-01-01

    Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.

  5. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    Science.gov (United States)

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future. Copyright © 2016 Elsevier B.V. All rights

  6. Effect of wheel speed on magnetic and mechanical properties of melt spun Fe-6.5 wt.% Si high silicon steel

    Science.gov (United States)

    Ouyang, Gaoyuan; Jensen, Brandt; Tang, Wei; Dennis, Kevin; Macziewski, Chad; Thimmaiah, Srinivasa; Liang, Yongfeng; Cui, Jun

    2018-05-01

    Fe-Si electric steel is the most widely used soft magnetic material in electric machines and transformers. Increasing the silicon content from 3.2 wt.% to 6.5 wt.% brings about large improvement in the magnetic and electrical properties. However, 6.5 wt.% silicon steel is inherited with brittleness owing to the formation of B2 and D03 ordered phase. To obtain ductility in Fe-6.5wt.% silicon steel, the ordered phase has to be bypassed with methods like rapid cooling. In present paper, the effect of cooling rate on magnetic and mechanical properties of Fe-6.5wt.% silicon steel is studied by tuning the wheel speed during melt spinning process. The cooling rate significantly alters the ordering and microstructure, and thus the mechanical and magnetic properties. X-ray diffraction data shows that D03 ordering was fully suppressed at high wheel speeds but starts to nucleate at 10m/s and below, which correlates with the increase of Young's modulus towards low wheel speeds as tested by nanoindentation. The grain sizes of the ribbons on the wheel side decrease with increasing wheel speeds, ranging from ˜100 μm at 1m/s to ˜8 μm at 30m/s, which lead to changes in coercivity.

  7. The study of high-boron steel and high-boron cast iron used for shield

    International Nuclear Information System (INIS)

    Pan Xuerong; Lu Jixin; Wen Yaozeng; Wang Zhaishu; Cheng Jiantin; Cheng Wen; Shun Danqi; Yu Jinmu

    1996-12-01

    The smelting, forging, heat-treatment technology and the mechanical properties of three kinds of high-boron steels (type 1: 0.5% boron; type 2: 0.5% boron and 4% or 2% nickel; type 3: 0.5% boron, 0.5% nickel and 0.5% molybdenum) were studied. The test results show that the technology for smelting, forging and heat-treatment (1050 degree C/0.5 h water cooled + 810 degree C/1 h oil cooled) in laboratory is feasible. Being sensitive to notch, the impact toughness of high-boron steel type 1 is not steady and can not meet the technology requirements on mechanical properties. The mechanical properties of both high-boron steel type 2 and type 3 can meet the technological requirements. The smelting technology of high-boron casting iron containing 0.5% boron was researched. The tests show that this casting iron can be smelted in laboratory and its properties can basically satisfy the technology requirements. (10 refs., 6 figs., 11 tab.)

  8. Steel bonded dense silicon nitride compositions and method for their fabrication

    Science.gov (United States)

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  9. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  10. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  11. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hong-Yu; Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-15

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15–90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B{sub 8} and iron loss P{sub 10/400} was 1.79 T and 6.9 W/kg, respectively. - Highlights: • Ultra-thin grain-oriented silicon steel was produced by strip casting process. • Microstructure, texture and inhibitor evolution was briefly investigated. • Goss texture was absent in primary recrystallization annealed sheet. • MnS precipitates with a size range of 15–90 nm formed after normalizing. • A complete secondary recrystallization microstructure was produced.

  12. 2 CFR 176.160 - Award term-Required Use of American Iron, Steel, and Manufactured Goods (covered under...

    Science.gov (United States)

    2010-01-01

    ... award term and condition— Designated country—(1) A World Trade Organization Government Procurement..., Steel, and Manufactured Goods (covered under International Agreements)-Section 1605 of the American... Award term—Required Use of American Iron, Steel, and Manufactured Goods (covered under International...

  13. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  14. Effect of small additions of silicon, iron, and aluminum on the room-temperature tensile properties of high-purity uranium

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1983-01-01

    Eleven binary and ternary alloys of uranium and very low concentrations of iron, silicon, and aluminum were prepared and tested for room-temperature tensile properties after various heat treatments. A yield strength approximately double that of high-purity derby uranium was obtained from a U-400 ppM Si-200 ppM Fe alloy after beta solution treatment and alpha aging. Higher silicon plus iron alloy contents resulted in increased yield strength, but showed an unacceptable loss of ductility

  15. Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel

    Science.gov (United States)

    Ramadhan, M. R.; Faslih, A.; Umar, M. Z.

    2018-05-01

    Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.

  16. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  17. Radioactive waste solidifying material

    International Nuclear Information System (INIS)

    Ono, Keiichi; Sakai, Etsuro.

    1989-01-01

    The solidifying material according to this invention comprises cement material, superfine powder, highly water reducing agent, Al-containing rapid curing material and coagulation controller. As the cement material, various kinds of quickly hardening, super quickly hardening and white portland cement, etc. are usually used. As the superfine powder, those having average grain size smaller by one order than that of the cement material are desirable and silica dusts, etc. by-produced upon preparing silicon, etc. are used. As the highly water reducing agent, surface active agents of high decomposing performance and comprising naphthalene sulfonate, etc. as the main ingredient are used. As the Al-containing rapidly curing material, calcium aluminate, etc. is used in an amount of less than 10 parts by weight based on 100 parts by weight of the powdery body. As the coagulation controller, boric acid etc. usually employed as a retarder is used. This can prevent dissolution or collaption of pellets and reduce the leaching of radioactive material. (T.M.)

  18. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  19. The Iron and Steel Industry in Asia: Development and Restructuring

    OpenAIRE

    Sato, Hajime

    2009-01-01

    The paper examines the development and restructuring of the iron and steel industryin Asian countries. Studying countries that have integrated steelworks with largeblast furnaces (South Korea, Taiwan, China and India) and countries without(Thailand, Indonesia and Malaysia), the paper shows the difference in thedevelopment processes across the countries and across time, and points to thediversity of the development experience of these countries. The paper argues thatsignificant differences in ...

  20. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  1. Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Highlights: • We explore the driving forces of the iron and steel industry’s CO 2 emissions in China. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO 2 emissions due to mass real estate construction. • The role of economic growth in reducing emissions is more important than industrialization. - Abstract: Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption and carbon dioxide (CO 2 ) emissions. China’s steel industry is highly energy-consuming and pollution-intensive. Between 1980 and 2013, the carbon dioxide emissions in China’s steel industry increased approximately 11 times, with an average annual growth rate of 8%. Identifying the drivers of carbon dioxide emissions in the iron and steel industry is vital for developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the industry. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Urbanization also has significant effect on CO 2 emissions because of mass urban infrastructure and real estate construction. Economic growth has more impact on emission reduction than industrialization due to the massive fixed asset investment and industrial energy optimization. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the iron and steel industry.

  2. New sulphiding method for steel and cast iron parts

    Science.gov (United States)

    Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.

    2017-08-01

    A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.

  3. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  4. Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?

    International Nuclear Information System (INIS)

    Wang, Can; Zheng, Xinzhu; Cai, Wenjia; Gao, Xue; Berrill, Peter

    2017-01-01

    Highlights: •Associated water impacts of individual energy conservation measures were evaluated. •Water-energy tradeoffs exist in the production process adjustment of iron sector. •Considering the water impacts can change the priority ranks of technology choice. -- Abstract: Moving towards integrated governance of water and energy requires balancing tradeoffs and taking advantage of synergies through specific technology choice. However, the water-energy conservation relationships of individual conservation measures in industries other than the water and energy sectors have not been investigated in detail. This study develops a hybrid model to estimate the associated water impacts of individual energy conservation measures, using China’s iron and steel industry as a case study. The results reveal that water-energy tradeoffs exist in the production process adjustment, which is conventionally promoted as a key energy-saving measure in iron and steel industry. It is found that replacing the Blast Oxygen Furnace (BOF) process with the Electric Arc Furnace (EAF) in 2007 could save 131–156 kg coal equivalent (kgce) (13.2–15.7%) of embodied energy per ton of crude steel (tcs) at the expenses of an additional 2.5–3.9 m 3 /tcs (10.6–16.4%) of water footprint. Nineteen energy efficiency technologies are studied in this research, and most of them are identified as having water-saving synergies except for the Low Temperature Rolling Technology. Taking these water impacts into consideration can update the priority ranks of the technology choices and inform policy decisions. Although this study focuses on China’s iron and steel sector, the methods and analysis can be extended to other countries, sectors, technologies and environmental impacts.

  5. Bainite transformation of low carbon Mn-Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention

    International Nuclear Information System (INIS)

    Jacques, P.; Catlin, T.; Geerlofs, N.; Kop, T.; Zwaag, S. van der; Delannay, F.

    1999-01-01

    Studies dealing with TRIP-assisted multiphase steels have emphasized the crucial role of the bainite transformation of silicon-rich intercritical austenite in the achievement of a good combination of strength and ductility. The present work deals with the bainite transformation in two steels differing in their silicon content. It is shown that both carbon enrichment of residual austenite and cementite precipitation influences the kinetics of the bainite transformation. A minimum silicon content is found to be necessary in order to prevent cementite precipitation from austenite during the formation of bainitic ferrite in such a way as to allow stabilisation of austenite by carbon enrichment. (orig.)

  6. Study of granitic biotites by X-ray fluorescence analysis: determination of iron, manganese, titanium, calcium, potassium, silicon and aluminium

    International Nuclear Information System (INIS)

    Toubes, R. O.; Bermudez Polonio, J.

    1968-01-01

    A method for the quantitative determination of iron, manganese, titanium, calcium potassium, silicon, and aluminium, is reported, Sample preparation is carried out by the miniature flux technique, and rubidium is used as internal standard for silicon and aluminium. (Author) 5 refs

  7. Thin resolver using the easy magnetization axis of the grain-oriented silicon steel as an angle indicator

    Directory of Open Access Journals (Sweden)

    Jisho Oshino

    2017-05-01

    Full Text Available A new type of thin resolver is presented, in which the easy axis of the magnetic anisotropy in the grain-oriented silicon steel is used as an angle indicator. The total thickness including a rotor, PCB coils and a back yoke can be made less than 4 mm. With a rotor of 50 mm diameter, a good linear response (non-linearity error < 0.4% between the mechanical angle input and the electrical angle output has been obtained. The influence of a weak magnetic anisotropy in the non-grain-oriented silicon steel used for the back yoke on the accuracy of the resolver can be deleted by the method proposed in this paper.

  8. Survey on the scrap iron and steel recycling in Thailand and Indonesia; Hatten tojokoku (Tai Indonesia) ni okeru tetsu scrap saiseiyo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the survey results of the scrap iron and steel recycling industries in Thailand and Indonesia. The purpose of this survey is to extract problems obstructing the scrap iron and steel recycling, to recognize the present situation and predict the future situation, and to examine the possibility of international cooperation. As a result of the survey, it was found that the quality of scrap collected in the domestic market is poor as it contains too many impurities for it to be utilized for the manufacture of many higher quality iron and steel products. The actual quantity of domestically collected scrap is too low to support the expected growth in demand in each nation. Current environmental management practices are largely concerned with the construction of wastewater treatment facilities and the extraction of furnace dust. However, the lack of enforcement of environmental regulations does not encourage companies to implement sound environmental practices. Neither government actively promotes and investigates iron and steel recycling in the domestic, commercial or industrial sectors. Collaboration with overseas nations having more advanced iron and steel industries could be helpful to the scrap recycling industry in both nations. 6 figs., 21 tabs.

  9. Tribological studies of ultrahigh dose nitrogen-implanted iron and stainless steel

    International Nuclear Information System (INIS)

    Wei, R.; Wilbur, P.J.; Ozturk, O.; Williamson, D.L.

    1991-01-01

    The effects of nitrogen implantation to doses as high as 1x10 19 ions/cm 2 on the sliding wear resistance and nitrogen concentration depth profiles are examined experimentally. By maintaining the proper implantation temperature, increases in dose induce the formation of thicker nitrogen-rich, wear-resistant layers. Several microns thick layers are demonstrated for both iron and stainless steel. (orig.)

  10. Pathways to a low-carbon iron and steel industry in the medium-term : the case of Germany

    NARCIS (Netherlands)

    Arens, Marlene; Worrell, Ernst; Eichhammer, Wolfgang; Hasanbeigi, Ali; Zhang, Qi

    2017-01-01

    The iron and steel industry is a major industrial emitter of carbon dioxide globally and in Germany. If European and German climate targets were set as equal proportional reduction targets (referred to here as “flat” targets) among sectors, the German steel industry would have to reduce its carbon

  11. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel

    International Nuclear Information System (INIS)

    Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe; Garcia, Amauri

    2003-01-01

    Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 μm. This investigation was carried out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product

  12. Method of solidifying radioactive solid wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Kawamura, Fumio; Kikuchi, Makoto.

    1984-01-01

    Purpose: To obtain solidification products of radioactive wastes satisfactorily and safely with no destruction even under a high pressure atmosphere by preventing the stress concentration by considering the relationships of the elastic module between the solidifying material and radioactive solid wastes. Method: Solidification products of radioactive wastes with safety and securing an aimed safety ratio are produced by conditioning the modules of elasticity of the solidifying material equal to or less than that of the radioactive wastes in a case where the elastic module of radioactive solid wastes to be solidified is smaller than that of the solidifying material (the elastic module of wastes having the minimum elastic module among various wastes). The method of decreasing the elastic module of the solidifying material usable herein includes the use of such a resin having a long distance between cross-linking points of a polymer in the case of plastic solidifying materials, and addition of rubber-like binders in the case of cement or like other inorganic solidifying materials. (Yoshihara, H.)

  13. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  14. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  15. Thermodynamic analysis of the conditions of deoxidation and secondary treatment of low-silicon steel grade

    Directory of Open Access Journals (Sweden)

    Євген Анатолійович Чичкарьов

    2015-10-01

    Full Text Available This article is concerned with analysis and production testing of technological solutions aimed at reducing the consumption of aluminium for steel deoxidation and reducing level of metal contamination by oxide non-metal inclusions, as well as preventing silicon reduction during out-of-furnace treatment. The conditions of low-silicon steel deoxidation and out-of-furnace treatment have been analysed. It has been found that the scope of oxygen activity variation in the converter before tapping increases while the mass fraction of carbon in the metal decreases. For the converter meltings with a mass fraction of carbon over the range 0,05-0,07 % [C] before tapping the real range of variation was 150-300 ppm. The effect of meltings carburizing on aluminium consumption and the degree of aluminium assimilation have been analysed. It has been shown that in fact the same specific consumption of ferromanganese and comparable changes within the metal oxidation change range before tapping (400-1100 ppm the addition of the carburizer decreases the consumption of aluminium by 0,15 kg/t (in amounts of pure aluminium. The variation interval of assimilation degree of aluminium, consumed for binding the dissolved oxygen in metal and for dissolution in metal has been found. It has been shown that in the melting of low-silicon steel with out- of-furnace treatment but without the use of furnace-ladle unit the rational limit of variation of mass fraction of magnesium oxide variation in the ladle slag is equal to- 6-8 % by weight

  16. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: wy069024019@163.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States); Wang, Guo-Dong [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size ~100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size ~20–50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size ~10–40 mm were formed and the final magnetic induction, B{sub 8}, was as high as 1.9 T. - Highlights: • A novel chemical composition base on strip casting silicon steel was proposed. • The ultra-low carbon design could shorten the processing routes. • The novel composition and processes were beneficial to obtain more inhibitors. • The magnetic induction of grain oriented silicon steel was significantly improved.

  17. Lathlike upper bainite in a silicon steel

    International Nuclear Information System (INIS)

    Liu Cheng; Zhao Zhenbo; Bhole, S.D.

    2006-01-01

    The morphology and mechanical properties of upper bainite formed isothermally at 400 deg. C for different holding times in a 1.83 wt.% silicon steel have been investigated by optical metallograph, X-ray diffraction and transmission electron microscopy (TEM). In the early stage of upper bainitic transformation, lathlike bainite whose individual lath ferrite is separated by the thin film type of retained austenite is obtained. As the isothermal holding times are increased, the blocky region consisting of retained austenite and martensite is also found. The stability of retained austenite in lathlike upper bainite is studied in relation to the isothermal treatment times, and the heat treatment conditions. The results show that an optimum combination of strength and ductility is attributed to the formation of bainitic ferrite (BF) and a large amount of thin film carbon-enriched retained austenite in the upper bainite

  18. Multistage dilute acid leaching of a medium grade iron ore to super-concentrate

    Directory of Open Access Journals (Sweden)

    Adeleke A.A.

    2014-01-01

    Full Text Available The phosphorous laden Koton Karfe iron ore is a medium grade iron ore deposit in Nigeria that can be upgraded as a super-concentrate for use at the Aladja Steel Midrex plant. The 75 μm size sample fraction of the ore was preconcentrated with shaking table and leached in the oven at atmospheric pressure with dilute hydrochloric acid in single and multistage leaching sequences of H2O-HCl-H2O and HCl-H2O-H2O. The as-received, as-tabled and asleached samples were then subjected to X-ray fluorescence and microscopic analyses. The results obtained showed that the H2O-HCl-H2O route produced a higher grade concentrate that assayed 68.54% Fe indicating about 58% upgrade in iron content; while the phosphorus and sulphur contents were reduced by about 77 and 99.6% respectively. In addition, the silicon, manganese, and titanium contents were drastically reduced, while potassium was completely eliminated. The upgrade of iron content in the ore to 68.54% and the drastic reduction in phosphorous and sulphur contents has thus rendered the Koton Karfe iron ore suitable for use as a super concentrate for the Aladja steel plant direct reduction iron making process.

  19. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    International Nuclear Information System (INIS)

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-01-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time

  20. Reduction kinetics of Wüstite scale on pure iron and steel sheets in Ar and H

    NARCIS (Netherlands)

    Mao, W.; Sloof, W.G.

    2017-01-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale,

  1. Experimental investigation into the coupling effects of magnetic field, temperature and pressure on electrical resistivity of non-oriented silicon steel sheet

    Science.gov (United States)

    Xiao, Lijun; Yu, Guodong; Zou, Jibin; Xu, Yongxiang

    2018-05-01

    In order to analyze the performance of magnetic device which operate at high temperature and high pressure, such as submersible motor, oil well transformer, the electrical resistivity of non-oriented silicon steel sheets is necessary for precise analysis. But the reports of the examination of the measuring method suitable for high temperature up to 180 °C and high pressure up to 140 MPa are few. In this paper, a measurement system based on four-probe method and Archimedes spiral shape measurement specimens is proposed. The measurement system is suitable for measuring the electrical resistivity of unconventional specimens under high temperature and high pressure and can simultaneously consider the influence of the magnetic field on the electrical resistivity. It can be seen that the electrical resistivity of the non-oriented silicon steel sheets will fluctuate instantaneously when the magnetic field perpendicular to the conductive path of the specimens is loaded or removed. The amplitude and direction of the fluctuation are not constant. Without considering the effects of fluctuations, the electrical resistivity of the non-oriented silicon steel sheets is the same when the magnetic field is loaded or removed. And the influence of temperature on the electrical resistivity of the non-oriented silicon steel sheet is still the greatest even though the temperature and the pressure are coupled together. The measurement results also show that the electrical resistivity varies linearly with temperature, so the temperature coefficient of resistivity is given in the paper.

  2. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  3. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Science.gov (United States)

    Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  4. Effects of iron-reducing bacteria and nitrate-reducing bacteria on the transformations of iron corrosion products, magnetite and siderite, formed at the surface of non-alloy steel

    International Nuclear Information System (INIS)

    Etique, Marjorie

    2014-01-01

    Radioactive waste is one of the major problems facing the nuclear industry. To circumvent this issue France plans to store vitrified high-level nuclear waste in a stainless steel container, placed into a non-alloy steel overpack, at a depth of 500 m in an argillaceous formation. The main iron corrosion products formed at the surface of the non-alloy steel are siderite (Fe II CO 3 ) and magnetite (Fe II Fe III 2 O 4 ). These compounds are formed in the anoxic conditions present in the nuclear waste repository and play a protective role against corrosion as a passive layer. This work aims to investigate the activity of nitrate-reducing bacteria (NRB, Klebsiella mobilis) and iron-reducing bacteria (IRB, Shewanella putrefaciens) during the transformation of siderite and magnetite, especially those involved in anoxic iron biogeochemical cycle. Klebsiella mobilis and Shewanella putrefaciens were first incubated with siderite or magnetite suspensions (high surface specific area) in order to exacerbate the microbial iron transformation, subsequently incubated with a magnetite/siderite film synthesized by anodic polarization at applied current density. The transformation of siderite and magnetite by direct or indirect microbial processes led to the formation of carbonated green rust (Fe II 4 Fe III 2 (OH) 12 CO 3 ). As a transient phase shared by several bacterial reactions involving Fe II and Fe III , this compound is the cornerstone of the anoxic iron biogeochemical cycle. The novelty of this thesis is the consideration of bacterial metabolisms of NRB and IRB often overlooked in bio-corrosion processes. (author) [fr

  5. Long term energy and materials strategies for reduction of industrial CO2 emissions. A case study for the iron and steel industry

    International Nuclear Information System (INIS)

    Gielen, D.J.

    1997-01-01

    Greenhouse gas emissions emerged in the last decade as a key environmental problem on the political agenda. The most important greenhouse gas is carbon dioxide (CO 2 ). This gas results from the combustion of fossil fuels (natural gas, oil and coal). As a consequence, greenhouse gas emission reduction is closely related to energy policies. Even a stabilization of the atmospheric CO 2 concentrations at a level of 750 ppm (parts per million), more than twice the current level, implies a reduction of global emissions by 50% in the next century. The world population will simultaneously double and the capita energy consumption will increase. As a consequence, the Western industrialized countries will have to reduce their per capita emissions by more than a factor four. Such a policy goal will significantly affect the future industrial production structure. Approximately 4% of the global CO 2 emissions can be attributed to the production of iron and steel. This sector is the most important industrial source of CO 2 . The case study for the iron and steel industry will be discussed in this paper in order to illustrate the impact of significant CO 2 emission mitigation on the industry. The goal is to show the consequences of CO 2 policies for R and D planning and investment decisions. The notion that the iron and steel industry will be affected by CO 2 policies is not new; a number of studies have addressed this issue before. These studies have compared steel production technologies and emission reduction options within the iron and steel production sector. In this paper, the emission reduction in the iron and steel industry is analyzed within the framework of the changing (inter-)national energy and materials system configuration. This includes all production, conversion and consumption processes. The impact of CO 2 policies on the optimal choice of steel production technologies and on the competitiveness of steel compared to other materials will be discussed. This paper

  6. A Study on DLC Tool Coating for Deep Drawing and Ironing of Stainless Steel

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Hafis Sulaiman, Mohd; Christiansen, Peter

    2018-01-01

    ) to replicate industrial ironing of deep drawn, stainless steel parts. Non-hazardous tribo-systems in form of a double layer Diamond-like coated tool applied under dry condition or with an environmentally friendly lubricant were investigated via emulating industrial process conditions in laboratory tests...

  7. Depth profiling of {sup 14} N and {sup 20} Ne implantation into iron and steel using(p, gamma) reactions. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Wriekat, A; Haj-Abdellah, M [Physics Department, University of Jordan, Amman (Jordan)

    1996-03-01

    Depth profiles of {sup 14} N and {sup 20} Ne ions at 800 KeV implanted into iron and by steel samples have been measured by means of the proton induced {gamma}- ray emission (Pige) technique. The range, R, and range straggling, {Delta}R for these profiles were obtained and compared with theoretical calculations. The experimental results did show that pure iron retains more N and Ne than steel. 2 figs., 1 tab.

  8. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    Directory of Open Access Journals (Sweden)

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  9. 2 CFR 176.140 - Award term-Required Use of American Iron, Steel, and Manufactured Goods-Section 1605 of the...

    Science.gov (United States)

    2010-01-01

    ..., tunnels, sewers, mains, power lines, pumping stations, heavy generators, railways, airports, terminals...) Domestic preference. (1) This award term and condition implements Section 1605 of the American Recovery and... the domestic iron, steel, and/or manufactured goods would be unreasonable. The cost of domestic iron...

  10. Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

    Science.gov (United States)

    Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen

    2016-10-01

    Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement

  11. Technological change and industrial energy efficiency : Exploring the low-carbon transformation of the German iron and steel industry

    NARCIS (Netherlands)

    Arens, M.

    2017-01-01

    Climate change is a key challenge of our time. The iron and steel industry emits 6.5 % of global anthropogenic CO2 that is likely to drive global warming. Greenhouse gases, among these CO2, are to be reduced to 5-20% of today’s level in industrialised countries. Thus, the steel sector must make

  12. Liquid wastes concentrating and solidifying device

    International Nuclear Information System (INIS)

    Kamiyoshi, Hideki; Ninokata, Yoshihide.

    1985-01-01

    Purpose: To provide a device for concentrating to solidify radioactive liquid wastes at large solidifying speed and with high decontaminating coefficient, without requirement for automatic control. Constitution: An asphalt solidifying device is disposed below a centrifugal thin film drier, and powder resulted from the drier is directly solidified with asphalt by utilizing the rotation of the drier for the mixing operation in the asphalt vessel. If abnormality should occur in the operation of the drier, resulting liquid wastes can be received and solidified in the asphalt vessel. The liquid wastes are heated to dry in a vessel main body having the heating surface at the circumferential surface. The vessel main body provided with a nozzle for supplying liquid to be treated disposed slantwise at the upper portion of the heating face, scrapers which rotate and slidingly contact the heating face and nozzles which jet out chemicals to the heating face behind the scrapers. Below the vessel main body, are disposed a funnel-like hopper for receiving falling scales, rotary vanes, and the likes by which the scales are introduced into the asphalt solidifying vessel. (Moriyama, K.)

  13. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441

    International Nuclear Information System (INIS)

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de; Lins, Vanessa de Freitas Cunha

    2014-01-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr_2O_3. (author)

  14. Absorption of Nickel, Chromium, and Iron by the Root Surface of Primary Molars Covered with Stainless Steel Crowns

    Directory of Open Access Journals (Sweden)

    David Keinan

    2010-01-01

    Full Text Available Objective. The purpose of this study was to analyze the absorption of metal ions released from stainless steel crowns by root surface of primary molars. Study Design. Laboratory research: The study included 34 primary molars, exfoliated or extracted during routine dental treatment. 17 molars were covered with stainless-steel crowns for more than two years and compared to 17 intact primary molars. Chemical content of the mesial or distal root surface, 1 mm apically to the crown or the cemento-enamel junction (CEJ, was analyzed. An energy dispersive X-ray spectrometer (EDS was used for chemical analysis. Results. Higher amounts of nickel, chromium, and iron (5-6 times were found in the cementum of molars covered with stainless-steel crowns compared to intact molars. The differences between groups were highly significant (<.001. Significance. Stainless-steel crowns release nickel, chromium, and iron in oral environment, and the ions are absorbed by the primary molars roots. The additional burden of allergenic metals should be reduced if possible.

  15. Radioactive liquid waste solidifying device

    International Nuclear Information System (INIS)

    Uchiyama, Yoshio.

    1987-01-01

    Purpose: To eliminate the requirement for discharge gas processing and avoid powder clogging in a facility suitable to the volume-reducing solidification of regenerated liquid wastes containing sodium sulfate. Constitution: Liquid wastes supplied to a liquid waste preheater are heated under a pressure higher than the atmospheric pressure at a level below the saturation temperature for that pressure. The heated liquid wastes are sprayed from a spray nozzle from the inside of an evaporator into the super-heated state and subjected to flash distillation. They are further heated to deposit and solidify the solidification components in the solidifying evaporation steams. The solidified powder is fallen downwardly and heated for removing water content. The recovered powder is vibrated so as not to be solidified and then reclaimed in a solidification storage vessel. Steams after flash distillation are separated into gas, liquid and solids by buffles. (Horiuchi, T.)

  16. The evaluation of solidifying performance of heavy metal waste using cementitious materials (2)

    International Nuclear Information System (INIS)

    Fujita, Hideki; Harasawa, Shuichi

    2005-02-01

    Some of radioactive waste generated from JNC's facilities contain the poisonous substances such as lead, cadmium and mercury. In order to establish an appropriate method of the treatment of these heavy metals, solidification performance was evaluated using cementitious materials. In this report, the solidification performance of lead and mercury, which accounts for relatively high ratio in total wastes, was evaluated. The results are summarized below: 1. The test of stabilization process of mercury. The conversion process from mercury to the powdery mercury sulfide (red) was examined on the beaker scale. As a result, it was confirmed that the conversion was possible using the liquid phase reaction at 80deg C by the addition of sulfur powder with the NaOH solution. After the process, the mercury concentration in the filtrate was relatively high (0.6 mass%), so it was judged that the reuse of the recovered mercury waste fluid was indispensable. 2. The fabrication and evaluation of solidified wastes. The solidified waste were fabricated with cementitious material, and were evaluated by the measurement of one-axis compressive strength, the elution ratio of lead, mercury and so on. Powdery lead sulfide and the mercury sulfide of reagent were used as model waste. (1) solidification test of the lead waste. It was confirmed one-axis compressive strength for all solidified waste to pass the technical standards 15 kg/cm 2 (1.5 Mpa) for homogeneously solidified waste as the Low-level Radioactive Waste Disposal Center in Aomori Prefecture, and as for the elution ratio of lead, it had obtained the better result (0.06 mg/L) at the case of solidification of sulfide lead 30 mass% packed in the total solidified waste by using Highly Fly-ash contained Silica fume Cement (HFSC) than standard value (0.3 mg/L) at Regulations of Waste Management and Public Cleansing Law. Additionally, it was confirmed the using admixture of the inorganic reducing agent such as the Iron (II) chloride

  17. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  18. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  19. Orthogonal decomposition of core loss along rolling and transverse directions of non-grain oriented silicon steels

    Directory of Open Access Journals (Sweden)

    Xuezhi Wan

    2017-05-01

    Full Text Available Rotational core loss of the silicon steel laminations are measured under elliptical rotating excitation. The core loss decomposition model is very important in magnetic core design, in which the decomposition coefficients are calculated through the measurement data. By using the transformation of trigonometric function, the elliptical rotational magnetic flux can be decomposed into two parts along two directions. It is assumed that the rotating core loss is the sum of alternating core losses along rolling and transverse directions. The magnetic strength vector H of non-grain oriented (NGO silicon steel 35WW270 along rolling and transverse directions is measured by a novel designed 3-D magnetic properties tester. Alternating core loss along the rolling, transverse directions and rotating core loss in the xoy-plane of this specimen in different frequencies such as 50 Hz, 100 Hz, and 200 Hz. Experimental results show that the core loss model is more accurate and useful to predict the total core loss.

  20. Problems with radioactivity scrap in the iron and steel industry of the Czech and Slovak Republics

    International Nuclear Information System (INIS)

    Raab, J.; Toman, V.

    1999-01-01

    During the recent restructuring process, the Czech steel industry has undergone a drastic reduction in the steel production by around 40%. Under such situation, previously exported volumes have been diverted into domestic markets. For the export, the Czech steel industry had to make its efforts in enhancing the quality of products and in improving the technologies in accordance with ISO standards (ISO 9000 and also ISO 14000). Among the various new quality demands in the export market, the radioactive contamination of steel products has received a very high attention. The Czech Iron and Steel Federation has organized a working team specialized in solving the problems arising from radioactive contaminated metallurgical scrap and steel products. The working team is made up of specialists from steel producers and scrap handling firms of the Czech Republic and the Slovak Republic, of experts from the State Office for Nuclear Safety, the Ministry of Industry and Trade and the Metrological Institute. Members of the Inspectorate for Ionizing Radiation and the General Directory for Customs are also included. This working team takes part in the elaboration of the legislative norms in that area. This paper deals with all the detailed functions of the working team. At present, all the major Czech steel producers have installed stationary radiation monitoring systems for detecting the possible radioactivity in all materials entering into factories. Under an agreement arranged between the producers of the Czech Iron and Steel Federation, the tolerable range of radionuclide contents in steel scrap and steel products has been set at the maximum of 100 Bq/kg in ( scrap and steel products. In this respect, the large firms collecting and treating scrap have also installed stationary radiation monitoring systems. In such monitoring systems, the detector will measure and check the values of radioactivity above 10 - 15% higher than the natural background level. In the case that

  1. Comparison of Magnetic Characteristics of Powder Magnetic Core and Evaluation of Motor Characteristics

    Science.gov (United States)

    Enomoto, Yuji; Ito, Motoya; Masaki, Ryozo; Yamazaki, Katsuyuki; Asaka, Kazuo; Ishihara, Chio; Ohiwa, Syoji

    A magnetic characteristic measurement, a motor characteristic forecast, and an experimental evaluation of various powder magnetic cores were performed aiming at a fixed quantity grasp when the powder magnetic core was applied to the motor core as the magnetic material. The manufacturing conditions were changed, and magnetic characteristic compares a direct current magnetization characteristic and an iron disadvantageous characteristic with the silicon steel board for a different powder magnetic core. Therefore, though some permeabilities are low, characteristics almost equal to those of a silicon steel board were obtained in the maximum saturation magnetic induction, which confirms that the powder magnetic core in disadvantageous iron in a certain frequency domain, and to confirm disadvantageous iron lowers. Moreover, it has been shown to obtain characteristics almost equal to the silicon steel board when compared in terms of motor efficiency, though some disadvantageous iron increases since the effect when applying to the motor is verified the silicon steel board and the comparison evaluation for the surface type permanent magnet motor.

  2. Initial Stage of Oxidation of Iron and Steels Heated at High Temperatures Ambient

    Czech Academy of Sciences Publication Activity Database

    Adamaszek, K.; Kučera, Jaroslav

    2001-01-01

    Roč. 7, č. 1 (2001), s. 419-423 ISSN 1335-1532. [International Symposium on Metallography /11./. Stará Lesná, 25.04.2001-27.04.2001] R&D Projects: GA ČR GA106/01/0379; GA ČR GA106/01/0382 Institutional research plan: CEZ:AV0Z2041904 Keywords : iron * steels * oxidation Subject RIV: JG - Metallurgy

  3. Solidification of cast iron - A study on the effect of microalloy elements on cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham

    The present thesis deals with the heat transfer and solidification of ductile and microalloyed grey cast iron. Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. A series of ductile iron samples with two different...... of the austenite, in the last region to solidify. The superfine graphite which forms in this type of irons is short (10-20µm) and stubby. The microstructure of this kind of graphite flakes in titanium alloyed cast iron is studied using electron microscopy techniques. The methods to prepare samples of cast iron...... for comprehensive transmission electron microscopy of graphite and the surrounding iron matrix have been developed and explained. Dual beam microscopes are used for sample preparation. A TEM study has been carried out on graphite flakes in grey cast iron using selected area electron diffraction (SAED). Based...

  4. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  5. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil.

    Directory of Open Access Journals (Sweden)

    Dongfeng Ning

    Full Text Available Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd and lead (Pb was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant-availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system.

  6. Tendencies in development of radioactive isotopes application in investigations of cast iron and steels metallurgy in Hungary

    International Nuclear Information System (INIS)

    Shimon, Sh.

    1979-01-01

    Results have been presented of radioisotope investigations which had been done with the purpose to prove theoretical bases of metallurgic processes as well as to compute separate processes of cast iron and steel production. Results are considered of investigations of the process of going down of charge in a blast furnace and of the process of oxygen steel production as well as of lowering of oxygen inclusions content and creation of reduction and oxidation conditions for separate alloying elements of steel. On the base of the results listed for these investigations, tendencies of development have been presented [ru

  7. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India

    International Nuclear Information System (INIS)

    Natesan, M.; Venkatachari, G.; Palaniswamy, N.

    2006-01-01

    As a part of updating Corrosion Map of India project, atmospheric corrosion behaviour of commercially available engineering materials such as mild steel, galvanized iron, zinc and aluminium metals was studied in marine, industrial, urban, and rural environments by weight loss method at 10 exposure stations in India over a period of 5 years. The results of these studies demonstrated that galvanized iron, zinc and aluminium metals were several times more durable than mild steel. Compared to galvanized iron and zinc, aluminium provided superior protection in industrial and marine environment except at Mormugao Port Trust (MPT). It also offered much better resistance to corrosion in rural environments. At certain places, galvanized iron proved to be more durable than aluminium. The results obeyed well with the empirical kinetics equation of the form C = Kt n , where K and C are the corrosion losses in μm after 1 and 't' years of the exposure, respectively, and 'n' is a constant. Based on 'n' values, the corrosion mechanisms of these metals are predicted. The corrosion products formed on the metal samples in Chennai marine atmosphere were identified by X-ray diffraction analysis

  8. Standard Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice describes a standard procedure for characterizing neutron irradiations of iron (and low alloy steels) in terms of the exposure index displacements per atom (dpa) for iron. 1.2 Although the general procedures of this practice apply to any material for which a displacement cross section d(E) is known (see Practice E 521), this practice is written specifically for iron. 1.3 It is assumed that the displacement cross section for iron is an adequate approximation for calculating displacements in steels that are mostly iron (95 to 100 %) in radiation fields for which secondary damage processes are not important. 1.4 Procedures analogous to this one can be formulated for calculating dpa in charged particle irradiations. (See Practice E 521.) 1.5 The application of this practice requires knowledge of the total neutron fluence and flux spectrum. Refer to Practice E 521 for determining these quantities. 1.6 The correlation of radiation effects data is beyond the scope of this practice. This stand...

  9. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  10. Development for the production of low phosphorus steel in operations at Arcelor Mittal Tubarao

    Energy Technology Data Exchange (ETDEWEB)

    Luiz-Correa, W.; Silva-Furtado, H.; Oliveira, J. R. de

    2013-06-01

    The growing demand to produce steel with lower phosphorus (P) content happens in tandem with the increase in the content of this element in the ores used in the production of pig iron, leading to a constant evolution in the process of steel dephosphorization in BOF converters. Arcelor Mittal Tubarao (AMT), located in the municipality of Serra, Brazil, currently produces 5 million t of steel, but has an installed capacity of 7.5 million. This work aims at showing the development carried out in the dephosphorization of silicon-aluminium killed steel produced in the Arcelor Mittal Tubarao converters. The analysis of process variables such as flux addition, oxygen lance position and temperature at the end of blow are based on classical phosphorus partition models. The results compare phosphorus values in liquid steel before and after modifications in the variables and the refractory wear caused by the new procedures applied to AMT steelmaking converters. (Author)

  11. Regional differences in the CO_2 emissions of China's iron and steel industry: Regional heterogeneity

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2016-01-01

    Identifying the key influencing factors of CO_2 emissions in China's iron and steel industry is vital for mitigating its emissions and formulating effective environmental protection measures. Most of the existing researches utilized time series data to investigate the driving factors of the industry's CO_2 emission at the national level, but regional differences have not been given appropriate attention. This paper adopts provincial panel data from 2000 to 2013 and panel data models to examine the key driving forces of CO_2 emissions at the regional levels in China. The results show that industrialization dominates the industry's CO_2 emissions, but its effect varies across regions. The impact of energy efficiency on CO_2 emissions in the eastern region is greater than in the central and western regions because of a huge difference in R&D investment. The influence of urbanization has significant regional differences due to the heterogeneity in human capital accumulation and real estate development. Energy structure has large potential to mitigate CO_2 emissions on account of increased R&D investment in energy-saving technology and expanded clean energy use. Hence, in order to effectively achieve emission reduction, local governments should consider all these factors as well as regional heterogeneity in formulating appropriate mitigation policies. - Highlights: • We explore the driving forces of CO_2 emissions in China's steel industry. • Industrialization dominates CO_2 emissions in the iron and steel industry. • Energy structure has large potential to mitigate CO_2 emissions in the steel industry. • The influence of urbanization has significant regional differences.

  12. Surface free energy of polypropylene and polycarbonate solidifying at different solid surfaces

    International Nuclear Information System (INIS)

    Chibowski, Emil; Terpilowski, Konrad

    2009-01-01

    Advancing and receding contact angles of water, formamide, glycerol and diiodomethane were measured on polypropylene (PP) and polycarbonate (PC) sample surfaces which solidified at Teflon, glass or stainless steel as matrix surfaces. Then from the contact angle hystereses (CAH) the apparent free energies γ s tot of the surfaces were evaluated. The original PP surface is practically nonpolar, possessing small electron donor interaction (γ s - =1.91mJ/m 2 ), as determined from the advancing contact angles of these liquids. It may result from impurities of the polymerization process. However, it increases up to 8-10 mJ/m 2 for PP surfaces contacted with the solids. The PC surfaces both original and modified show practically the same γ s - =6.56.7mJ/m 2 . No electron acceptor interaction is found on the surfaces. The γ s tot of modified PP and PC surfaces depend on the kind of probe liquid and contacted solid surface. The modified PP γ s tot values determined from CAH of polar liquids are greater than that of original surface and they increase in the sequence: Teflon, glass, stainless steel surface, at which they solidified. No clear dependence is observed between γ s tot and dielectric constant or dipole moment of the polar probe liquids. The changes in γ s tot of the polymer surfaces are due to the polymer nature and changes in its surface structure caused by the structure and force field of the contacting solid. It has been confirmed by AFM images.

  13. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation on surfaces covered by fabrication produced films. Pt. 4

    International Nuclear Information System (INIS)

    Burkart, A.L.

    1986-04-01

    This work describes the assays aimed to passivate the steel carbon of the process pipings. This steel is marked by the ASTM A 333 G6 and is chemically similar to those of isotopic exchange towers which corrode in contact with in-water hydrogen sulfide solutions forming iron sulfide protective layers. The differences between both materials lie in the surface characteristics to be passivated. The steel of towers has an internal side covered by paint which shall be removed prior to passivation. The steel's internal side shall be covered by a film formed during the fabrication process and constituted by calcinated wastes and iron oxides (magnetite, hematite and wustite). This film interferes in the formation process of passivating layers of pyrrhotite and pyrite. The possibility to passivate the pipes in their actual state was evaluated since it would result highly laborious and expensive to eliminate the film. (Author) [es

  14. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and...

  15. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  16. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  17. Excess oxygen limited diffusion and precipitation of iron in amorphous silicon dioxide

    Science.gov (United States)

    Leveneur, J.; Langlois, M.; Kennedy, J.; Metson, James B.

    2017-10-01

    In micro- and nano- electronic device fabrication, and particularly 3D designs, the diffusion of a metal into sublayers during annealing needs to be minimized as it is usually detrimental to device performance. Diffusion also causes the formation and growth of nanoprecipitates in solid matrices. In this paper, the diffusion behavior of low energy, low fluence, ion implanted iron into a thermally grown silicon oxide layer on silicon is investigated. Different ion beam analysis and imaging techniques were used. Magnetization measurements were also undertaken to provide evidence of nanocrystalline ordering. While standard vacuum furnace annealing and electron beam annealing lead to fast diffusion of the implanted species towards the Si/SiO2 interface, we show that furnace annealing in an oxygen rich atmosphere prevents the diffusion of iron that, in turn, limits the growth of the nanoparticles. The diffusion and particle growth is also greatly reduced when oxygen atoms are implanted in the SiO2 prior to Fe implantation, effectively acting as a diffusion barrier. The excess oxygen is hypothesized to trap Fe atoms and reduce their mean free path during the diffusion. Monte-Carlo simulations of the diffusion process which consider the random walk of Fe, Fick's diffusion of O atoms, Fe precipitation, and desorption of the SiO2 layer under the electron beam annealing were performed. Simulation results for the three preparation conditions are found in good agreement with the experimental data.

  18. Model of the Alphinising Coating Crystallisation on Iron Alloys

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available The study presents a hypothetical model of crystallisation of the alphinising coating produced on iron alloys by immersion in the bath of silumin. Basing on a wide-range of experiments and investigations, the effect of the type of inserted material (“armco” iron, C45 steel, grey cast iron and nodular graphite cast iron and of the technological regime of the alphinising process (chemical composition of silumin bath, its temperature, the time of holding an insert in the bath, and the insert surface roughness height “Rz” on the coating structure was determined. The type of the coating structure was established by metallographic examinations carried out by optical microscopy, electron transmission microsopy and scanning electron microscopy, using additionally an X-ray microanalyser and X-ray diffraction patterns. The results of these investigations were described in [1÷7]. Basing on the obtained results, a probable model of the crystallisation of an alphi-nising coating on iron alloys, produced by immersion in the alphinising bath, was developed. It has been stated that, most probably, the alphinising process begins when the insert reaches its contact temperature “ts”.. Since that moment, due to the wetting process and convec-tion movement of bath around the insert surface, an intense process of the dissolution starts. A reactive diffusion of the atoms of Fe and Si from the insert to the bath and of the atoms of Al and Si from the bath to the insert takes place. An intermetallic Al3Fe phase is crystallis-ing on the steel, while on the cast iron, a silicon carbide Fe4CSi is growing, probably due to carbon diffusion from graphite. Then, on the steel, as an effect of the peritectic reaction, are successively crystallising the phases of Al12Fe3Si2 and Al9Fe3Si2. The Al3Fe phase probably crystallises on the cast iron to be transformed later, due to peritectic reaction, into an Al12Fe3Si2 phase on which the Al9Fe3Si2 phase will be growing

  19. Laboratory evaluation of hot metal de siliconizing process in ladle; Avaliacao laboratorial do processo de dessiliciacao do gusa na panela

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Sergio R.M.; Furtado, Henrique S.; Bentes, Miguel A.G.; Almeida, Pedro S. de [Companhia Siderurgica Nacional, Volta Redonda, RJ (Brazil). Centro de Pesquisas

    1996-12-31

    The attractiveness of hot metal de siliconizing in ladle, relative to the process in blast furnace runner, is the previous knowledge of silicon content of hot metal, without the constraints of slag removing by skimmer met in torpedo car, and the better efficiency in low range silicon content, making easier the process controllability. Meanwhile, the main question about this technology is the extent of the resulfurization of hot metal that may occur due to process be performed after the desulfurization. This work simulates de de siliconizing process in ladle by experiments in induction furnace to compare the efficiencies of various de siliconizing agents available at CSN iron and steel making plant, and to evaluate the resulfurization intensity able to occur during the process, as well as, unexpected increasing of refractory wear. (author) 4 refs., 8 figs., 6 tabs.

  20. Study and modeling of the ironing process on a multi-layered polymer coated low-carbon steel

    Science.gov (United States)

    Selles Canto, Miguel Angel

    The ironing process is the most crucial step in the manufacture of cans. Sheet steel covered by three polymer layers can be used as the starting material, but this coating must neither break nor fail in any manner in order to be considered as a viable and effective alternative to traditional practice. During ironing, the deformations are severe and high pressures exist at the tool-workpiece interface. Thickness reductions inherent in ironing require a large amount of surface generation. Deterioration of the coating in this delicate operation might enable direct contact of the stored food or drink with the metal. As can be appreciated, the key to the use of polymer-coated steel sheets in the manufacture of cans lies in the survival of these layers during the ironing process. Another important issue is the roughness of the newly-generated surface, because it should be possible to decorate the can without any difficulty. Changing the traditional manufacture of metallic containers such as cans and using this new coated material permits great reduction in environmental contaminants produced as a result of avoiding the formation of Volatile Organic Compounds (VOCs) during the manufacture of the polymer layers. This reduction is even greater because of not using additional lubricants due to the self-lubricanting property of the solid polymer coating layers during the drawing process. These objectives, together with the improvement of the mechanical characteristics and the adhesion of the painting or decorative priming, are realized by the use of the proposed material. In the existing bibliography about ironing processes on coated materials, some authors propose the use of the Upper Bound Theorem for modeling the material behavior. The present research shows for the first time the modeling of the ironing process on a three-layer polymer coated material. In addition, it takes into account the cases in which successful ironing is produced and those in which ones the ironing

  1. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  2. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-15

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below −5 dB can be obtained in the frequency range of 5.76–18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed. - Highlights: • Carbonyl iron particles/silicone resin composites are prepared by a spraying method. • Reflection loss values exceed −5 dB at 5.76–18 GHz for an absorber of 0.8 mm thickness. • The variation of reflection loss was studied from room temperature to 300 °C.

  3. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  5. Corrosion of low Si-alloyed steels in aqueous solution at 90 deg. C. Inhibitive action of silicates; Corrosion d'aciers faiblement allies au silicium en solution aqueuse a 90 deg. C. Action inhibitrice des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, S

    2002-02-01

    Low-Si alloyed steels, with Si content ranging from 0.25 to 3.2 wt%, as potential candidate materials for high-level nuclear waste disposal containers, have been studied four the point of view of their corrosion behaviour at 90 deg C in an aqueous solution simulating groundwater (0.1 M NaCl borate-buffered solution with a pH of 8.5) both in reducing and in aerated conditions. The influence of silicate addition to the solution is examined so as to represent the silicon of groundwater, coming from the clay dissolution. When no silicate was added to the solution, silicon as an alloying element was proved to degrade in the first moments the steel ability to passivate. For longer immersion times, protective effects developed most efficiently on the steel containing 3.2 wt% silicon both in reducing an in aerating conditions, Infrared spectroscopy, EDSX, XRD and Raman microprobe were applied to characterise the oxide layer composition, which was found to be a mixture of magnetite and maghemite. In the presence of silicate in the solution, clay-like iron silicates appeared in the corrosion layer. Electrochemical tests results show that adding silicate into solution resulted in increasing the steel ability to passivate. In the short term, the inhibiting effect of silicate was confirmed by mass loss tests, but the tendency was inverse in the long term. Silicate iron layers were eventually less protective than the magnetite layers formed in the absence of silicate. (author)

  6. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    Science.gov (United States)

    Pasquier, Benoît; Holzer, Mark

    2017-09-01

    The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe) is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1 ± 0. 3 Tmol P yr-1 (or, in carbon units, 10. 3 ± 0. 4 Pg C yr-1) and 171. ± 3. Tmol Si yr-1. We diagnose the

  7. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  8. Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector

    International Nuclear Information System (INIS)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2014-01-01

    Highlights: • Use ISEEM to evaluate energy and emission reduction in U.S. Iron and Steel sector. • ISEEM is a new bottom-up optimization model for industry sector energy planning. • Energy and emission reduction includes efficiency measure and international trading. • International trading includes commodity and carbon among U.S., China and India. • Project annual energy use, CO 2 emissions, production, and costs from 2010 to 2050. - Abstract: Using the ISEEM modeling framework, we analyzed the roles of energy efficiency measures, steel commodity and international carbon trading in achieving specific CO 2 emission reduction targets in the U.S iron and steel sector from 2010 to 2050. We modeled how steel demand is balanced under three alternative emission reduction scenarios designed to include national energy efficiency measures, commodity trading, and international carbon trading as key instruments to meet a particular emission restriction target in the U.S. iron and steel sector; and how production, process structure, energy supply, and system costs change with those scenarios. The results advance our understanding of long-term impacts of different energy policy options designed to reduce energy consumption and CO 2 emissions for U.S. iron and steel sector, and generate insight of policy implications for the sector’s environmentally and economically sustainable development. The alternative scenarios associated with 20% emission-reduction target are projected to result in approximately 11–19% annual energy reduction in the medium term (i.e., 2030) and 9–20% annual energy reduction in the long term (i.e., 2050) compared to the Base scenario

  9. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  10. Stock return, seasonality and asymmetric conditional volatility in steel & iron subsector

    Directory of Open Access Journals (Sweden)

    V. Chirila

    2015-01-01

    Full Text Available This paper presents the results obtained following the testing of five hypotheses regarding conditional return and volatility of the most listed European stocks in the steel & iron subsector. The following elements of the stocks are analysed: time variation of volatility, seasonality of return and volatility, relationship between return and volatility and volatility asymmetry. The results obtained confirm for all the analyzed stocks the existence of volatility variation in time, the lack of correlation between return and volatility, the existence of asymmetry phenomenon of volatility and the presence in some stocks of the seasonality effect both for return and volatility.

  11. Energy efficiency and CO_2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system

    International Nuclear Information System (INIS)

    Ates, Seyithan A.

    2015-01-01

    With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO_2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO_2 in BAU (business-as-usual scenario), 32.5 MtCO_2 in SEI, 24.6 MtCO_2 in AEI and 14.5 MtCO_2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation. - Highlights: • This paper explores energy efficiency potential of iron and Steel industry in Turkey. • We applied the LEAP modeling to forecast future developments. • Four different scenarios have been developed for the LEAP modeling. • There is a huge potential for energy efficiency and mitigation of GHG emissions.

  12. Development of a high-energy x-ray CT and its application to iron and steel analysis

    International Nuclear Information System (INIS)

    Taguchi, Isamu

    1987-01-01

    X-ray computed tomographic scanners are extensively used in medicine but have rarely been applied to non-medical purposes. Steel specimens pose particularly difficult problems - very poor transmission of X-rays and the need for high resolving capability. There have thus been no effective tomographic methods for examining steel specimens. Due to the growing need for non-destructive, non-contact methods for observing and analyzing the internal conditions of steel and raw materials for steel, however, we have developed a new high-energy computed tomographic scanner for steel (CTS). Its major specifications and functions are as follows. Type : 2nd-generation CT, 8-channel, Scanning method : 6deg revolution, 30-time traversing, Slice width : 0.3 mm, Resolving capability : 0.1 x 0.1 mm X-ray source : 420 kV, 3 mA, X-ray detector : BGO scintillator, Standard sample size : 50 mm dia., 50 mm high, Data collection time : 9.5 or 5 min. The CTS was successfully applied to the observation and the analysis of porosities of stainless steel (SUS 304) bloom, pores of iron ore sinters and metallic phases of the meteirites found in Antarctic Continent. (author)

  13. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  14. Study of occupational health impact of atmospheric pollution on exposed workers at an iron and steel complex by using neutron activation analysis of scalp hair

    International Nuclear Information System (INIS)

    Chai, Z.F.; Qian, Q.F.; Feng, X.Q.; Zhang, P.Q.; Liu, N.Q.; Feng, W.Y.

    2004-01-01

    The occupational health impact of atmospheric pollution on exposed workers at one iron and steel complex was studied by instrumental neutron activation analysis of workers' hair samples and medical examination. The experimental results indicate that there is a positive correlation between the high inhalation amounts of iron and other trace elements by the exposed workers and the symptom of their high blood pressure and hypoglycemia, which implies that the atmospheric environment polluted by iron and steel industry has an adverse health impact on the exposed workers. The measures to relieve and abate the occupational diseases caused by air-borne particulate matter should be taken. (author)

  15. Project Waiver of American Iron and Steel Requirements to the Napa Sanitation District for 24-Inch Diameter Butterfly Valves

    Science.gov (United States)

    Waiver approval by EPA pursuant to the American Iron and Steel Requirements of the Clean Water Act Section 608 to the Napa Sanitation District in California for the purchase of 24-inch butterfly valves.

  16. A study of DLC coatings for ironing of stainless steel

    Science.gov (United States)

    Sulaiman, M. H.; Christiansen, P.; Bay, N.

    2017-09-01

    Stamping of sheet metal components without lubrication or using minimum amount of hazard free lubricant is a possible solution to diminish health hazards to personnel and environmental impact and to reduce production costs. This paper studies the application of diamond-like coating (DLC) under severe lubrication conditions by adopting strip reduction testing to replicate industrial ironing production of deep drawn, stainless steel cans. Three DLC coatings are investigated; multi-layer, double layer and single layer. Experiments revealed that the double layer coating worked successful, i.e. with no sign of galling using no lubrication even at elevated tool temperature, while the other two coatings peeled off and resulted in severe galling unless lubrication was applied.

  17. Domestic and foreign knowledge sources for innovation in internationalized Production Networks: the automotive and the iron and steel cases

    Directory of Open Access Journals (Sweden)

    Hernan Alejandro Morero

    2015-02-01

    Full Text Available This paper studies the relative relevance of domestic knowledge sources for innovation in internationalized production activities in an emerging economy. Two Production Networks from Argentina with a different kind of internationalization were considered: organized around subsidiaries of multinational companies (the automotive case and organized around local headquarters (the iron and steel case. A multiple factor analysis was carried out and cluster techniques were applied using a specific innovation survey done to 163 automotive and iron and steel firms from Argentina from the period of 2001 to2005, to evaluate the relative importance of domestic and foreign knowledge sources. The main finding is that in a production network organized around domestic headquarters the best innovative performance underrates the importance of international linkages, in comparison with networks organized around foreign subsidiaries.

  18. Hot tensile behaviour in silicon-killed boron microalloyed steels

    Science.gov (United States)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was

  19. Diffusion of implanted sodium in iron and AISI 316 Ti stainless steel

    International Nuclear Information System (INIS)

    Kehrel, A.; Lieb, K.P.; Scapellato, N.; Uhrmacher, M.

    1990-01-01

    Samples of polycrystalline iron and austenitic stainless steel were implanted with 250 keV Na + ions to a dose of 1.5x10 17 ions/cm 2 . The Na content was depth-profiled with the resonant nuclear reaction 23 Na(p,γ) 24 Mg, after the samples had been isochronally annealed between room temperature and 1060deg C. In both matrices a diffusion process of Na atoms towards the surface was observed which is discussed in the light of results on Na diffusion in other metals (Cr, Ni and Mo). (orig.)

  20. Influence of the Lubricant Type on the Surface Quality of Steel Parts Obtained by Ironing

    Directory of Open Access Journals (Sweden)

    D. Adamović

    2015-06-01

    Full Text Available If it is needed to achieve a higher strain rate during the ironing process, which is possible without inter-stage annealing, the ironing is performed in succession through multiple dies. During that process, changes of friction conditions occur due to the change of contact conditions (dislodging of lubricants, changes of surface roughness, formation of friction junctions, etc.. In the multistage ironing, after each stage, the completely new conditions on the contact surfaces occur, which will significantly affect the quality of the workpiece surface. Lubricant has a very important role during the steel sheet metal ironing process; to separate the sheet metal surface from the tool and to reduce the friction between the contact surfaces. The influence of tribological conditions in ironing process is extremely important and it was a subject of study among researches in recent years, both in the real processes and on the tribo-models. Investigation of tribological conditions in the real processes is much longer and more expensive, so testing on the tribo-models is more frequent. Experimental research on the original tribo-model presented in this paper was aimed to indicate the changes that occur during multistage ironing, as well as to consider the impact of some factors (tool material, lubricant on die and punch on increase or decrease of the sheet metal surface roughness in ironing stages.

  1. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  2. Effect of vacuum arc melting/casting parameters on shrinkage cavity/piping of austenitic stainless steel ingot

    International Nuclear Information System (INIS)

    Kamran, J.; Feroz, M.; Sarwar, M.

    2009-01-01

    Shrinkage cavity/piping at the end of the solidified ingot of steels is one of the most common casting problem in 316L austenitic stainless steel ingot, when consumable electrode is melted and cast in a water-cooled copper mould by vacuum arc re-melting furnace. In present study an effort has been made to reduce the size of shrinkage cavity/ piping by establishing the optimum value of hot topping process parameters at the end of the melting process. It is concluded that the shrinkage cavity/piping at the top of the solidified ingot can be reduced to minimum by adjusting the process parameters particularly the melting current density. (author)

  3. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  4. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  5. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores

    International Nuclear Information System (INIS)

    Török, B; Thiele, A

    2013-01-01

    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well

  6. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same

  7. The low-aluminium cast iron of reduced silicon content treated with cerium mischmetal

    Directory of Open Access Journals (Sweden)

    M. S. Soiński

    2008-07-01

    Full Text Available The work presents the effect of cerium mischmetal used in quantities of 0.1 and 0.2 wt-% and ferrosilicon used in quantities from 0.5% to 1.5% on the alloy matrix and the shape of graphite precipitates in the low-aluminium cast iron from seven heats, basing on the examination of its structure. The hypereutectic cast iron of the relatively high carbon content (4.0÷4.2% at the prior-to-treatment silicon and manganese content equal to ca. 0.6% and ca. 0.04%, respectively, has been examined.It has been found that the performed treatment leads to the change in the alloy matrix from the nearly almost pearlitic to the ferritic-pearlitic one accompanied by changes in the shape of graphite precipitates. Due to applying both of the mentioned substances in the above stated amounts the graphite precipitates in cast iron have taken the shape of nodular and vermicular ones, and no presence of flake graphite has been revealed. A quantitative analysis of the performed treatment i.e. determining the fractions of graphite precipitates of different shapes has been possible by means of a computer image analyser.

  8. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  9. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  10. Screening the performance of lubricants for ironing of stainless steel with a strip reduction test

    DEFF Research Database (Denmark)

    Andreasen, Jan Lasson; Bay, Niels; Andersen, Mette Merete

    1997-01-01

    A laboratory strip reduction test simulating the tribological conditions of an ironing process is proposed. The test is capable of simulating varying process conditions such as reduction, drawing speed, tool temperature and sliding length. The test makes it possible to quantify the onset of break...... of breakdown of the lubricant film and subsequent galling. Experimental investigations of stainless steel show the influence of varying process conditions and the performance of different lubricants.......A laboratory strip reduction test simulating the tribological conditions of an ironing process is proposed. The test is capable of simulating varying process conditions such as reduction, drawing speed, tool temperature and sliding length. The test makes it possible to quantify the onset...

  11. Research on the development strategy of Pingdingshan iron and steel industry cluster with Wugang Company as the core

    Directory of Open Access Journals (Sweden)

    Wang Shuai

    2017-01-01

    Full Text Available Arouse the great potential of the industrial clusters will play a significant role in promoting the development of local WuGang company. The article takes the Pingdingshan City as the research object, who is a typical resource-based city and develops on the basis of the local resources of coal and iron ore, the core enterprise WuGang Company is a large state-owned enterprise based on the wide and thick steel plate production. Many problems also exit in the cluster innovation, company network construction, company cooperation. The article is from the perspective of steel industry cluster and cluster innovation. Firstly, the article introduces the correlation theory about the steel industry cluster and the basic development information of Pingdingshan steel industry cluster, and promotes the research purpose and meaning.The article will give the analysis to the problems from the Pingdingshan steel industry cluster and develop the reform proposals and development strategy according to the actual situation.

  12. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  13. Inverse-model estimates of the ocean's coupled phosphorus, silicon, and iron cycles

    Directory of Open Access Journals (Sweden)

    B. Pasquier

    2017-09-01

    Full Text Available The ocean's nutrient cycles are important for the carbon balance of the climate system and for shaping the ocean's distribution of dissolved elements. Dissolved iron (dFe is a key limiting micronutrient, but iron scavenging is observationally poorly constrained, leading to large uncertainties in the external sources of iron and hence in the state of the marine iron cycle. Here we build a steady-state model of the ocean's coupled phosphorus, silicon, and iron cycles embedded in a data-assimilated steady-state global ocean circulation. The model includes the redissolution of scavenged iron, parameterization of subgrid topography, and small, large, and diatom phytoplankton functional classes. Phytoplankton concentrations are implicitly represented in the parameterization of biological nutrient utilization through an equilibrium logistic model. Our formulation thus has only three coupled nutrient tracers, the three-dimensional distributions of which are found using a Newton solver. The very efficient numerics allow us to use the model in inverse mode to objectively constrain many biogeochemical parameters by minimizing the mismatch between modeled and observed nutrient and phytoplankton concentrations. Iron source and sink parameters cannot jointly be optimized because of local compensation between regeneration, recycling, and scavenging. We therefore consider a family of possible state estimates corresponding to a wide range of external iron source strengths. All state estimates have a similar mismatch with the observed nutrient concentrations and very similar large-scale dFe distributions. However, the relative contributions of aeolian, sedimentary, and hydrothermal iron to the total dFe concentration differ widely depending on the sources. Both the magnitude and pattern of the phosphorus and opal exports are well constrained, with global values of 8. 1  ±  0. 3 Tmol P yr−1 (or, in carbon units, 10. 3  ±  0. 4

  14. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  15. An investigation of sodium iodide solubility in sodium-stainless steel systems

    International Nuclear Information System (INIS)

    Sagawa, Norihiko; Tashiro, Suguru

    1996-01-01

    Sodium iodide and major constituents of stainless steel in sodium are determined by using the steel capsules to obtain a better understanding on contribution of the constituents to the apparent iodide solubility in sodium. The capsule loaded with 20 g sodium and 0.1 - 0.3 g powder of sodium iodide is heated at its upper part in a furnace and cooled at its bottom on brass plates to establish a large temperature gradient along the capsule tube. After a given period of equilibration, the iodide and constituents are fixed in solidified sodium by quick quenching of the capsules. Sodium samples are taken from the sectioned capsule tube and submitted to sodium dissolution by vaporized water for determination of the iodine and to vacuum distillation for determination of the metal elements. Iron and nickel concentrations are observed to be lower in the samples at higher iodine concentrations. Chromium and manganese concentrations are seen to be insensitive to the iodine concentrations. The observations can be interpreted by a model that sodium oxide combines with metal iodide in sodium to form a complex compound and with consideration that the compound will fall and deposit onto the bottom of the capsule by thermal diffusion. (author)

  16. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000-2015

    Science.gov (United States)

    Wu, Qingru; Gao, Wei; Wang, Shuxiao; Hao, Jiming

    2017-09-01

    Iron and steel production (ISP) is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg) emissions from ISP during 2000-2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs) were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35-46 and 25-32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22-34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0)/gaseous oxidized Hg (HgII)/particulate-bound Hg (Hgp)) in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.

  17. In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel

    Directory of Open Access Journals (Sweden)

    Sébastien Y. P. Allain

    2018-06-01

    Full Text Available Quenching and Partitioning (Q&P steels are promising candidates for automotive applications because of their lightweight potential. Their properties depend on carbon enrichment in austenite which, in turn, is strongly influenced by carbide precipitation in martensite during quenching and partitioning treatment. In this paper, by coupling in situ High Energy X-Ray Diffraction (HEXRD experiments and Transmission Electron Microscopy (TEM, we give some clarification regarding the precipitation process of iron carbides in martensite throughout the Q&P process. For the first time, precipitation kinetics was followed in real time. It was shown that precipitation starts during the reheating sequence for the steel studied. Surprisingly, the precipitated fraction remains stable all along the partitioning step at 400 °C. Furthermore, the analyses enable the conclusion that the iron carbides are most probably eta carbides. The presence of cementite was ruled out, while the presence of several epsilon carbides cannot be strictly excluded.

  18. FY 1998 result report. Report on the results of the examinational research on the trend of technology development in the iron/steel industry; 1998 nendo seika hokokusho. Tekko sangyo no gijutsu kaihatsu doko nado ni kansuru chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The trend of the technology development in the Japanese iron/steel industry was compared with those in foreign countries and surveyed to increase the international competitive strength. From the viewpoints of technology, industry and goods, the iron/steel field was characterized based on the statistic data, and especially automobile use steel materials were selected such as cold rolling high tension steel sheet, surface treated steel sheet, and bearing sheet. The analysis of factors of competitive superiority was conducted, and the following were presented: measures for process continuation, and measures taken from the age of equipment and cost indexes. The paper also surveyed the trend of pig iron making/steel making technology in Asia. The present international technical competitiveness in the iron/steel industry in Japan, especially of automobile use steel sheet, is very high. This is because of the well-functioned demand-oriented development, and also as a result of the mutually influentially conducted equipment development such as process continuation and development of new goods, supposing the iron/steel continuous process and reduction in impurities. However, fears are the stagnation in the recent technical development strength and the saturation of new equipment. Moreover, the further heightening is needed of the international cost competitive strength of general-purpose products. (NEDO)

  19. Numerical predictions of dry oxidation of iron and low-carbon steel at moderately elevated temperatures

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1996-11-01

    Wrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is possible at the moderately elevated temperatures expected at the container surface (323-533 K or 50-260 C). Numerical predictions of dry oxidation damage were made based on experimental data for iron and low-carbon steel and parabolic oxidation theory. The Forward Euler method was implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Thus, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel

  20. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    Science.gov (United States)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  1. Zinc recovery from iron and steel making wastes by conventional and microwave assisted leaching

    Directory of Open Access Journals (Sweden)

    Ján Vereš

    2011-12-01

    Full Text Available Significant quantities of sludge and dust are generated as a waste material or byproduct every day from iron and steel industries.Nowadays The occurrence and recovery of metallurgical wastes from steelmaking and iron making processes is a great problem, mainlydue to the big amount and environmental pollution of these wastes by heavy metals. The future technology of fine-grain metallurgicalwastes treatment is mainly the thing of ecological and financial limits. This work explains the removal of zinc from blast furnace sludgeby hydrometallurgical process. The aim of this work was to carry out a chemical, physical, structural, and morphologicalcharacterization of these waste materials and subsequently to find out the best suitable method for the hydrometallurgical treatment.The experimental work includes full plant experiments. Extraction conditions such as the effect of microwave power, leaching agent,acid concentration, S/L ratio and extraction time on the zinc removal efficiency were evaluated. The main goal is to set the bestconditions to transfer zinc into the solution while the iron should to remain in the solid phase.

  2. Development and characterization of solidified forms for high-level wastes: 1978. Annual report

    International Nuclear Information System (INIS)

    Ross, W.A.; Mendel, J.E.

    1979-12-01

    Development and characterization of solidified high-level waste forms are directed at determining both process properties and long-term behaviors of various solidified high-level waste forms in aqueous, thermal, and radiation environments. Waste glass properties measured as a function of composition were melt viscosity, melt electrical conductivity, devitrification, and chemical durability. The alkali metals were found to have the greatest effect upon glass properties. Titanium caused a slight decrease in viscosity and a significant increase in chemical durability in acidic solutions (pH-4). Aluminum, nickel and iron were all found to increase the formation of nickel-ferrite spinel crystals in the glass. Four multibarrier advanced waste forms were produced on a one-liter scale with simulated waste and characterized. Glass marbles encapsulated in a vacuum-cast lead alloy provided improved inertness with a minimal increase in technological complexity. Supercalcine spheres exhibited excellent inertness when coated with pyrolytic carbon and alumina and put in a metal matrix, but the processing requirements are quite complex. Tests on simulated and actual high-level waste glasses continue to suggest that thermal devitrification has a relatively small effect upon mechanical and chemical durabilities. Tests on the effects radiation has upon waste forms also continue to show changes to be relatively insignificant. Effects caused by decay of actinides can be estimated to saturate at near 10 19 alpha-events/cm 3 in homogeneous solids. Actually, in solidified waste forms the effects are usually observed around certain crystals as radiation causes amorphization and swelling of th crystals

  3. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry

    International Nuclear Information System (INIS)

    Ansari, Nastaran; Seifi, Abbas

    2012-01-01

    Iron and steel industry is the most energy intensive industrial sector in Iran. Long time subsidized energy has led to low energy efficiency in this industry. The sudden subsidy reform of energy prices in Iran is expected to have a great impact on steel production and energy consumption. A system dynamics model is presented in this paper to analyze steel demand, production and energy consumption in an integrated framework. A co-flow structure is used to show how subsidy reform affects energy consumption in the long run. The main focus of this paper is on direct and indirect natural gas consumption in the steel industry. Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient way for steel making. The energy consumption in steel industry is estimated under various steel production and export scenarios while taking into account new energy prices to see the outlook of possible energy demand in steel industry over next 20 years. For example it is shown that under reference production scenario, potential reduction in gas consumption forced by complete removal of energy subsidy and utilizing scrap could lead to 85 billion cubic meters of gas saving over the next 20 years. -- Highlights: ► We develop a system dynamics model to analyze steel demand, production and energy consumption in Iran. ► Various scenarios have been simulated to see the energy demand of Iranian steel industry over the next 20 years. ► A co-flow structure is used to show how subsidy reform would affect energy consumption in the long run. ► A co-flow structure has been built into the SD model to formulate consumers' behavior in response to energy prices. ► Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient alternative for steel making.

  4. Biodegradation testing of solidified low-level waste streams

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs

  5. Effects of iron spallation products Ti, P and S on the physical metallurgy of 9Cr martensitic steels

    International Nuclear Information System (INIS)

    Danylova, O.; Carlan, Y. de; Hamon, D.; Brachet, J.C.; Alamo, A.

    2002-01-01

    The design of an Accelerator Driven System (ADS) requires that the 'window', which separates the proton accelerator from the spallation target, be able to withstand very severe irradiation conditions. Fe-9/12Cr martensitic steels are good candidates for the window material due to their intrinsic stability under neutron irradiation, but the influence of iron spallation elements on their behaviour is not known. To elucidate the effects of the spallation elements titanium, phosphorus and sulphur on the behaviour of martensitic steels, it was decides to obtain different castings of 9Cr 1Mo steels doped with these elements. The aim of this paper is to present the data obtained on the physical metallurgy of these steels and to show the possible methods of obtaining titanium, phosphorus and sulphur in solid solution for subsequent study of the evolution of the microstructure and mechanical properties. (authors)

  6. ENERGY SOURCES AND CARBON EMISSIONS IN THE IRON AND STEEL INDUSTRY SECTOR IN SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    Tapan Sarker

    2013-01-01

    Full Text Available This paper examines CO2 emissions from electricity and fuel consumption of different energy sources consumed in the Iron and Steel Industry sector (non-ferrous included, also known as basic metal in five South Asian countries including Bangladesh, India, Nepal, Sri Lanka and Pakistan. The study finds that about 30% of the total energy in the manufacturing industry is used in this sector, which is about 11% of total industrial input, contributing approximately 13% to the Manufacturing Value Added (MVA. Electricity, on the other hand, shares almost 60% of total energy consumption in the five countries in South Asia, followed by natural gas, coal, kerosene and diesel. The study also finds that CO2 emissions vary across sectors in countries in which the study was conducted. For instance, while in Bangladesh CO2 emissions are primarily caused by electricity generation, in India the majority of CO2 emissions are originated from coal. On the contrary, CO2 emissions in Nepal are mostly generated through other fuels such as Charcoal, Diesel and Kerosene. This study provides some policy recommendations, which could help reduce CO2 emissions in the Iron and Steel Industry sector in the South Asian region.

  7. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  8. [Prevalence and correlation factors of carotid atherosclerosis among the middle and old aged workers in an iron and steel corporation, Chongqing].

    Science.gov (United States)

    Zhang, Dong-ping; Li, Jin-fang; Hu, Chang-lin; Huang, Hui

    2009-04-01

    To investigate the prevalence and correlation factors of carotid atherosclerosis (CAS) among workers of Chongqing Iron and Steel Corporation, and to offer information for the development of prevention program for cerebro-vascular disease. 512 asymptomatic individuals (mean age 56.8 years, ranged from 45 to 80) from the subsidiary workshop of Chongqing Iron and Steel Corporation were recruited. Demographic data and serum were collected and the internal-media thickness (IMT) of the CAS and the extent of plaque formation were evaluated by B-mode ultrasound. Logistic regression analysis was used to estimate the correlation factors of CAS. Results (1) The overall prevalence of carotid atherosclerosis among the iron and steel workers was 37.6%. IMT was found as 10.2% , with the prevalence rates of nonstenotic plaque and stenotic plaque were 25.0% and 2.4% respectively. (2) It was shown by logistic regression analysis that age (OR = 1.289, 95% CI: 1.014-1.568, P < 0.001), smoking (OR = 1.420, 95% CI: 0.802-3.872, P < 0.001), hypertension (OR= 4.530, 95% CI: 3.952-6.753, P < 0.001) , diabetes mellitus (OR = 2.285, 95% CI: 1.008-5.057, P < 0.001), HsCRP (OR = 1.273, 95% CI: 0.479-2.889, P = 0.037), TC (OR = 1.032, 95% CI: 0.320-1.882, P = 0.047) and LDL-C (OR = 2.313, 95% CI: 1.237-4.331, P = 0.008) were significantly associated with the severity of CAS. (3) Prevalence of the CAS increased with the increasing number of correlation factors. The prevalence of CAS among the iron and steel workers was higher than those in ordinary people of the same age. Age, smoking, hypertension, diabetes mellitus, HsCRP, TC and LDL-C were independent risk factors related to CAS. The prevalence of CAS was increasing parallel to the number of correlation factors.

  9. Technologically enhanced 210Pb and 210Po in iron and steel industry

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; Bakr, Wafaa F.

    2011-01-01

    Iron and steel manufacture has been ranked as the largest industrial source of environmental contamination in the USA; the wastes generated in their production processes contain heavy elements that can be a source of contamination, and natural radionuclides that can produce an occupational and/or public radiological impact. In this work the potential occupational effective dose rate (μSv/y) due to inhalation in four integrated steel-making factories from Egypt has been evaluated, by assuming a well defined scenario and with basis in the 210 Pb and 210 Po activity concentrations determined in ore and wastes collected in the aforementioned factories. Activity concentrations, in Bq/kg, of 210 Pb and 210 Po, and leachable Pb and Fe were measured using gamma-ray spectrometry based on HPGe detector, alpha particle spectrometry based on PIPS detector, and inductively coupled plasma-mass spectrometry (ICP-MS). Levels of 210 Pb and 210 Po in the range of 210 Pb and 210 Po radionuclides. → Both radionuclides are enriched through the thermal processes. → For radiation dose assessment inhalation would be the main route of exposure.

  10. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  11. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    Bruzzoni, P.; Burkart, A.L.; Garavaglia, R.N.

    1981-11-01

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author) [es

  12. Small angle neutron scattering modeling of copper-rich precipitates in steel

    International Nuclear Information System (INIS)

    Spooner, S.

    1997-11-01

    The magnetic to nuclear scattering intensity ratio observed in the scattering from copper rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel steels was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed

  13. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  14. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  15. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel

    International Nuclear Information System (INIS)

    Li, Dejun; Feng, Yaorong; Song, Shengyin; Liu, Qiang; Bai, Qiang; Ren, Fengzhang; Shangguan, Fengshou

    2015-01-01

    Highlights: • Influence of Si on work hardening behavior of Fe–25 wt%Mn TWIP steel was investigated. • Influence of Si on hot deformation behavior of Fe–25 wt%Mn TWIP steel was studied. • Si blocks dislocation glide and favors mechanical twinning in Fe–25 wt%Mn TWIP steel. • The addition of Si increases the hot deformation activation energy of Fe–25 wt%Mn TWIP steel. • The addition of Si retards the nucleation and growth of DRX grains of Fe–25 wt%Mn TWIP steel. - Abstract: The influence of silicon on mechanical properties and hot deformation behavior of austenitic Fe–25 wt%Mn TWIP steel was investigated by means of the comparison research between 25Mn3Al and 25Mn3Si3Al steel. The results show that the 25Mn3Si3Al steel has higher yield strength and higher hardness than that of 25Mn3Al steel because of the solution strengthening caused by Si atoms and possesses higher uniform deformation ability and tensile strength than that of 25Mn3Al steel due to the higher work hardening ability of 25Mn3Si3Al steel. 25Mn3Si3Al steel presents a clear four-stage curve of work hardening rate in course of cold compression. Quite the opposite, the 25Mn3Al steel presents a monotonic decline curve of work hardening rate. The difference of the work hardening behavior between 25Mn3Al and 25Mn3Si3Al steel can be attributed to the decline of stacking fault energy (SFE) caused by the addition of 3 wt% Si. The dislocation glide plays an important role in the plastic deformation of 25Mn3Al steel even though the mechanical twinning is still one of the main deformation mechanisms. The 3 wt% Si added into the 25Mn3Al steel blocks the dislocation glide and promotes the mechanical twinning, and then the dislocation glide characteristics cannot be observed in cold deformed microstructure of 25Mn3Si3Al steel. The hot compression tests reveal that the hot deformation resistance of the 25Mn3Si3Al steel is significantly higher than that of the 25Mn3Al steel due to the solid

  16. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  17. Retrievable surface storage: interim storage of solidified high-level waste

    International Nuclear Information System (INIS)

    LaRiviere, J.R.; Nelson, D.C.

    1976-01-01

    Studies have been conducted on retrievable-surface-storage concepts for the interim storage of solidified high-level wastes. These studies have been reviewed by the Panel on Engineered Storage, convened by the Committee on Radioactive Waste Management of the National Research Council-National Academy of Sciences. The Panel has concluded that ''retrievable surface storage is an acceptable interim stage in a comprehensive system for managing high-level radioactive wastes.'' The scaled storage cask concept, which was recommended by the Panel on Engineered Storage, consists of placing a canister of waste inside a carbon-steel cask, which in turn is placed inside a thick concrete cylinder. The waste is cooled by natural convection air flow through an annulus between the cask and the inner wall of the concrete cylinder. The complete assembly is placed above ground in an outdoor storage area

  18. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  19. Energy asymmetry in melting and solidifying processes of PCM

    International Nuclear Information System (INIS)

    Jin, Xing; Hu, Huoyan; Shi, Xing; Zhang, Xiaosong

    2015-01-01

    Highlights: • The melting process and the solidifying process of PCM were asymmetrical. • The enthalpy and state of PCM were affected by its previous state. • The main reason for energy asymmetry of PCM was supercooling. - Abstract: The solidifying process of phase change material (PCM) was usually recognized as the exact inverse process of its melting process, especially when building the heat transfer model of PCM. To figure out that whether the melting process and the solidifying process of PCM were symmetrical, several kinds of PCMs were tested by a differential scanning calorimeter (DSC) in this paper. The experimental results showed that no matter using the DSC dynamic measurement method or the DSC step measurement method, the melting process and the solidifying process of PCM were asymmetrical. Because of the energy asymmetry in the melting and solidifying processes of PCM, it was also found that the enthalpy and the state of PCM were not only dependent on its temperature, but also affected by its “previous state”.

  20. Causes of Cracking in Quenching of the Parts Made of Steels and Cast Iron and Recommendations for Their Removal: A Review

    Science.gov (United States)

    Kuznetsov, A. A.; Rudnev, V. I.

    2017-12-01

    The domestic and foreign experience on revealing the causes of quenching cracking and its prevention is generalized. We consider the works performed on the machine parts made of carbon and alloyed pearlitic steel and quenchable cast irons.

  1. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  2. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida, E-mail: ralph@em.ufop.br, E-mail: rairanebarreto@hotmail.com [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Fernandes, Gilberto, E-mail: gilberto@unicerp.edu.br [Centro Universitário do Cerrado Patrocínio (UNICERP), Patrocínio, MG (Brazil); Sousa, Fabiano Carvalho, E-mail: fabiano.carvalho.sousa@vale.com [Vale, Belo Horizonte, MG (Brazil)

    2017-10-15

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  3. Chemical and mineralogical characterization of silicon manganese iron slag as railway ballast

    International Nuclear Information System (INIS)

    Oliveira, Ralph Werner Heringer; Barreto, Rairane Aparecida; Fernandes, Gilberto; Sousa, Fabiano Carvalho

    2017-01-01

    In nature, metal ores such as iron, lead, aluminum and others are found in an impure state, sometimes oxidized and mixed with silicates of other metals. During casting, when the ore is exposed to high temperatures, these impurities are separated from the molten metal and can be removed. The mass formed by these compounds is slag. Slag is the co-product of the smelting of ore to purify metals. It may be considered a mixture of metal oxides, but may also contain metal sulphites and metal atoms in their elemental form. After it is reprocessed to separate the metals contained, the co-products of this process can be used in cement, rail ballast, road paving and various other purposes. The objective of this research work is the presentation of the chemical and mineralogical characterization tests of the silicon-manganese iron slag with the purpose of reusing the coproduct as rail ballast. X-ray diffraction tests, quantitative chemical analyzes, scanning electron microscopy and free lime content were prepared for these characterizations. The results of these tests showed the technical feasibility of using slag as rail ballast. (author)

  4. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  5. Nuclear energy and the steel industry

    International Nuclear Information System (INIS)

    Barnes, R.S.

    1977-01-01

    Fossil fuels represent a large part of the cost of iron and steel making and their increasing cost has stimulated investigation of methods to reduce the use of fossil fuels in the steel industry. Various iron and steel making routes have been studied by the European Nuclear Steelmaking Club (ENSEC) and others to determine to what extent they could use energy derived from a nuclear reactor to reduce the amount of fossil fuel consumed. The most promising concept is a High-Temperature Gas-Cooled Nuclear Reactor heating helium to a temperature sufficient to steam reform hydrocarbons into reducing gases for the direct reduction of iron ores. It is proposed that the reactor/reformer complex should be separate from the direct-reduction plant/steelworks and should provide reducing gas by pipeline, not only to a number of steel works but to other industrial users. The composition of suitable reducing gases and the methods of producing them from various feedstocks are discussed. Highly industrialised countries with large steel and chemical industries have shown greatest interest in the concept, but those countries with large iron-ore reserves and growing direct capacity should consider the future value of the High-Temperature Gas-Cooled Reactor as a means of extending the life of their gas reserves. (author)

  6. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  7. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  8. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    Science.gov (United States)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  9. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  10. Effect of nitrogen and boron on weldability of austenitic stainless steels

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Albert, S.K.; Srinivasan, G.; Divya, M.; Das, C.R.

    2012-01-01

    Hot cracking is a major problem in the welding of austenitic stainless steels, particularly the fully austenitic grades. A group of alloys of enhanced-nitrogen 316LN austenitic stainless steel is being developed for structural components of the Indian Fast Reactor programme. Studying the hot cracking behaviour of this nitrogen-enhanced austenitic stainless steel is an important consideration during welding, as this material solidifies without any residual delta ferrite in the primary austenitic mode. Nitrogen has potent effects on the solidification microstructure, and hence has a strong influence on the hot cracking behaviour. Different heats of this material were investigated, which included fully austenitic stainless steels containing 0.070.22 wt% nitrogen. Also, borated austenitic stainless steels, such as type 304B4, have been widely used in the nuclear applications primarily due to its higher neutron absorption efficiency. Weldability is a major concern for this alloy due to the formation of low melting eutectic phase that is enriched with iron, chromium, molybdenum and boron. Fully austenitic stainless steels are prone to hot cracking during welding in the absence of a small amount of delta ferrite, especially for compositions rich in elements like boron that increases the tendency to form low melting eutectics. Detailed weldability investigations were carried out on a grade 304B4 stainless steel containing 1.3 wt% boron. Among the many approaches that have been used to determine the hot cracking susceptibility of different alloys, Variable-Restraint (Varestraint) weld test and Hot Ductility (Gleeble) tests are commonly used to evaluate the weldability of austenitic alloys. Hence, investigations on these materials consisted of detailed metallurgical characterization and weldability studies that included studying both the fusion zone and liquation cracking susceptibility, using Varestraint tests at 0.254.0%, strain levels and Gleeble (thermo

  11. Radioactive substance solidifying device

    International Nuclear Information System (INIS)

    Sakoda, Kotaro.

    1979-01-01

    Purpose: To easily solidify radioactive substances adhering to the surfaces of solid wastes without scattering in the circumference by paints, and further to reduce surface contamination concentrations. Constitution: Solid wastes are placed on a hanging plate, and dipped in paints within a paint dipping treatment tank installed at the lower part of a treatment tank by means of a monorail hoist, and the surfaces of said solid wastes are coated with paints, thereby to solidify the radioactivity on the surfaces of the solid wastes. After dipping, the solid wastes are suspended up to a paint spraying tank to dry the paints. After drying, non-contaminated paints are atomized to apply through an atomizing tube onto the solid wastes. After drying the atomized paints, the solid wastes are carried outside the treatment tank by means of the monorail hoist. (Yoshino, Y.)

  12. Processing and physical utilisation of waste materials relevant to iron and steel manufacture; Aufarbeitung und stoffliche Nutzung eisen- und stahlrelevanter Abfallstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Harp, G.; Schmidt, B.; Sucker, D. [Betriebsforschungsinstitut VDEh-Institut fuer Angewandte Forschung GmbH, Duesseldorf (Germany)

    1998-09-01

    A part of the waste materials arising in iron and steel manufacture is utilised physically, either internally for the recovery of iron or externally for the production of cement and nonferrous metals. Most of these materials can be used without prior processing. Iron and steel-relevant waste materials which at present are still landfilled or disposed of as hazardous wastes are not immediately suitable for physical recycling as secondary raw material. These waste materials have to be processed without exception before they can be used again in the existing steel and iron manufacturing plants. The results of the authors` own studies have clearly shown that the cupola furnace is suited for the use of a wide variety of waste materials. [Deutsch] Ein Teil der bei der Eisen- und Stahlerzeugung anfallenden Abfallstoffe werden entweder intern zur Rueckgewinnung des Eisens oder extern in der Zement- bzw. Nichteisenmetallgewinnung stofflich verwertet. Dabei handelt es sich ueberwiegend um Materialien, die ohne weitere Aufbereitung verwertbar sind. Die bislang noch deponierten oder als Sonderabfall entsorgten eisen- und stahlrelevanten Abfallstoffe sind ohne weiteres als Sekundaerrohstoff nicht stofflich verwertbar. Die Aufarbeitung dieser Abfallstoffe ist fuer den Wiedereinsatz in den vorhandenen Anlagen zur Gewinnung von Eisen und Stahl zwingend erforderlich. Die Ergebnisse der eigenen Untersuchungen haben klar gezeigt, dass der Kupolofen fuer die Nutzung einer grossen Vielfalt an Abfallstoffen geeignet ist. Zur Erhoehung der spezifischen Einsatzmenge an eisen- und stahlrelevanten Abfallstoffen untersuchen wir derzeit den Einsatz von oxidischen Materialien als sogenannte selbstgaengige Briketts zusammen mit den ueblichen Eisentraegern fuer die Erzeugung von fluessigem Giessereieisen. Selbstgaengig heisst hierbei, dass der Reduktionskohlenstoff und auch die notwendigen Legierungselemente insbesondere Silizium als SiC in den Briketts eingebunden werden. Fuer die Aufbereitung

  13. Assessing dust exposure in an integrated iron and steel manufacturing plant in South India.

    Science.gov (United States)

    Ravichandran, B; Krishnamurthy, V; Ravibabu, K; Raghavan, S; Rajan, B K; Rajmohan, H R

    2008-01-01

    A study to monitor and estimate respirable particulate matter (RPM), toxic trace metal concentrations in the work environment was carried out in different sections of an integrated steel manufacturing industry. The average RPM concentration observed varied according to the section blast furnace was 2.41 mg/m;{3}; energy optimization furnace, 1.87 mg/m;{3}; sintering plant, 0.98 mg/m;{3}; continuous casting machine, 1.93 mg/m;{3}. The average trace metal concentration estimated from the RPM samples like iron, manganese, lead and chromium did not exceed ACGIH prescribed levels.

  14. Study on the barrier performance of molten solidified waste (I). Review of the performance assessment research

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Toshikatsu; Sakamoto, Yoshiaki; Nakayama, Shinichi; Yamaguchi, Tetsuji; Ogawa, Hiromichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-02-01

    Application of melting technique is thought as one of the effective methods to treatment of the waste from the view point of its homogeneity and waste volume reduction. Solidified products by melting are expected as potential candidates of engineered barrier in a repository due to the good properties for their stabilization of radionuclides and hazardous elements. However, the methodology of performance evaluation has not been estimated so far. In this report, a literature survey on the properties of molten solidified waste was performed. It is clarified that the leachability of waste elements such as Co or Sr in molten waste form would be controlled by the corrosion behaviors of iron or silica which are the matrix elements of the waste form. While, no investigations into the durability of waste form have performed so far. Also noticed that the research items on performance evaluation such as the leachability for long-lived radionuclides and durability of waste form would be necessary for the long-term barrier assessment on the disposal. (author)

  15. Solidification Sequence of Spray-Formed Steels

    Science.gov (United States)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  16. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  17. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Science.gov (United States)

    Golik, Vladimir; Dmitrak, Yury

    2017-11-01

    The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator' driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  18. Effects of leachate concentration on the integrity of solidified clay liners.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian

    2014-03-01

    This study aimed to evaluate the impact of landfill leachate concentration on the degradation behaviour of solidified clay liners and to propose a viable mechanism for the observed degradation. The results indicated that the unconfined compressive strength of the solidified clay decreased significantly, while the hydraulic conductivity increased with the leachate concentration. The large pore proportion in the solidified clay increased and the sum of medium and micro pore proportions decreased, demonstrating that the effect on the solidified clay was evident after the degradation caused by exposure to landfill leachate. The unconfined compressive strength of the solidified clay decreased with increasing leachate concentration as the leachate changed the compact structure of the solidified clay, which are prone to deformation and fracture. The hydraulic conductivity and the large pore proportion of the solidified clay increased with the increase in leachate concentration. In contrast, the sum of medium and micro pore proportions showed an opposite trend in relation to leachate concentration, because the leachate gradually caused the medium and micro pores to form larger pores. Notably, higher leachate concentrations resulted in a much more distinctive variation in pore proportions. The hydraulic conductivity of the solidified clay was closely related to the size, distribution, and connection of pores. The proportion of the large pores showed a positive correlation with the increase of hydraulic conductivity, while the sum of the proportions of medium and micro pores showed a negative correlation.

  19. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  20. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    Science.gov (United States)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  1. Energy and environmental profile of the U.S. iron and steel industry

    International Nuclear Information System (INIS)

    Margolis, N.; Sousa, L.

    1997-01-01

    The iron and steel industry, which accounts for between two and three percent of all energy consumed in this country, is also striving to improve its energy efficiency. The amount of energy required to produce a ton of steel has decreased by more than 40% since 1975. This reduction has been accomplished in part through adoption of more energy-efficient and productive processing steps. However, the capital to invest in new technologies is increasingly limited, especially as the costs of environmental control continue to rise. Other than foreign competition, the biggest challenge facing the industry today is compliance with environmental regulations. The Clean Air Act and the Resource Conservation and Recovery Act have had significant impacts on the industry. Since 1970, the industry has invested approximately $6 billion in pollution control systems. The industry spent approximately $230 million in both 1993 and 1994 on capital expenditures for pollution abatement. In a typical year, 15% of the industry's capital investments go to environmental projects. The industry faces even more challenges in the future as new, more stringent regulations are enacted. Topics covered here are: market trends and statistics; energy and materials consumption; and an environmental overview

  2. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  4. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-09-01

    Full Text Available Iron and steel production (ISP is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg emissions from ISP during 2000–2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35–46 and 25–32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22–34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0/gaseous oxidized Hg (HgII/particulate-bound Hg (Hgp in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.

  5. Recent development of non-oriented electrical steel sheet for automobile electrical devices

    International Nuclear Information System (INIS)

    Oda, Yoshihiko; Kohno, Masaaki; Honda, Atsuhito

    2008-01-01

    This paper describes non-oriented electrical steel sheet for automobile motors and reactors. Electrical steel sheets for energy efficient motors show high magnetic flux density and low iron loss. They are suitable for HEV traction motors and EPS motors. A thin-gauge electrical steel sheet and a gradient Si steel sheet show low iron loss in the high-frequency range. Therefore, the efficiency of high-frequency devices can be greatly improved. Since a 6.5% Si steel sheet possesses low iron loss and zero magnetostriction, it contributes to reduce the core loss and audible noise of high-frequency reactors

  6. Borax as flux on sintering of iron Ancor Steel 1000® under glow discharge

    Science.gov (United States)

    Ariza Suarez, H. G.; Sarmiento Santos, A.; Ortiz Otálora, C. A.

    2016-02-01

    This work studies the flux effect of borax (di sodium tetraborate decahydrate) on sintering of iron Ancor Steel 1000® in abnormal glow discharge. The incidence of the percentage by weight of borax and the sintering temperature in the process were observed. Samples of powder metallurgical iron were prepared with proportions of 0.50%, 2.0%, 4.0% and 6.0% by weight of borax using the procedures of powder metallurgy. The samples were sintered at 800 and 1100°C for 30min, by glow discharge at low pressure in a reducing atmosphere composed of 20% H2+80% Ar. The samples in compact green-state were analyzed by TGA-DSC to determine the fusion process and mass loss during sintering. The analysis of microhardness and density, shows that at a sintering temperature of 800°C the sample density decreases and the sample microhardness increases with respect to sintered samples without borax. Sintered samples were analysed by DRX showing the absence of precipitates.

  7. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  8. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    Science.gov (United States)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  9. Method of solidifying radioactive wastes with plastics

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro; Minami, Yuji; Tomita, Toshihide

    1980-01-01

    Purpose: To prevent solidification of solidifying agents in the mixer by conducting the mixing process for the solidifying agents and the radioactive wastes at a temperature below the initiation point for the solidification of the agents thereby separating the mixing process from the solidification-integration process. Method: Catalyst such as cobalt naphthenate is charged into an unsaturated polyester resin in a mixer previously cooled, for example, to -10 0 C. They are well mixed with radioactive wastes and the mixture in the mixer is charged in a radioactive waste storage container. The temperature of the mixture, although kept at a low temperature initially, gradually increases to an ambient temperature whereby curing reaction is promoted and the reaction is completed about one day after to provide firm plastic solidification products. This can prevent the solidification of the solidifying agents in the mixer to thereby improve the circumstance's safety. (Kawakami, Y.)

  10. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  11. Effect of calcium/silicon ratio on retention of uranium (VI) in portland cement materials

    International Nuclear Information System (INIS)

    Tan Hongbin; Li Yuxiang

    2005-01-01

    Calcium silicate hydrate (CSH) materials of varied calcium to silicon (Ca/Si) ratios were prepared by hydrothermal synthesis at 80 degree C, with calcium oxide and micro-silicon employed. These products were determined to be of gel phase by XRD. Leaching tests with 1% hydrochloric acid indicated that more Uranium (VI) was detained by CSH with lower Ca/Si ratios. Alkali-activated slag cement (with a lower Ca/Si ratio) was found to have a stronger retention capacity than Portland cement (with a higher Ca/Si ratio), at 25 degree C in 102-days leaching tests with simulated solidified forms containing Uranium (VI). The accumulative leaching fraction of Uranium (VI) for Alkali-activated slag cement solidified forms is 17.6% lower than that for Portland cement. The corresponding difference of diffusion coefficients is 40.6%. This could be correlated with the difference of Ca/Si ratios between cements of two kinds. (authors)

  12. Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.

    Science.gov (United States)

    Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K

    2018-05-01

    Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.

  13. SB3. Experiment on secondary gamma-ray production cross sections averaged over a fast-neutron spectrum for each of 13 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections averaged over a fast-neutron spectrum for iron, oxygen, sodium, aluminum, copper, titanium, calcium, potassium, silicon, nickel, zinc, barium, sulfur, and a type 321 stainless steel. The gamma-ray production cross sections were binned into 0.5-MeV wide gamma-ray energy intervals. 29 tables, 1 figure

  14. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  15. Using learning curves on energy-efficient technologies to estimate future energy savings and emission reduction potentials in the U.S. iron and steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-06-18

    Increasing concerns on non-sustainable energy use and climate change spur a growing research interest in energy efficiency potentials in various critical areas such as industrial production. This paper focuses on learning curve aspects of energy efficiency measures in the U.S iron and steel sector. A number of early-stage efficient technologies (i.e., emerging or demonstration technologies) are technically feasible and have the potential to make a significant contribution to energy saving and CO2 emissions reduction, but fall short economically to be included. However, they may also have the cost effective potential for significant cost reduction and/or performance improvement in the future under learning effects such as ‘learning-by-doing’. The investigation is carried out using ISEEM, a technology oriented, linear optimization model. We investigated how steel demand is balanced with/without the availability learning curve, compared to a Reference scenario. The retrofit (or investment in some cases) costs of energy efficient technologies decline in the scenario where learning curve is applied. The analysis also addresses market penetration of energy efficient technologies, energy saving, and CO2 emissions in the U.S. iron and steel sector with/without learning impact. Accordingly, the study helps those who use energy models better manage the price barriers preventing unrealistic diffusion of energy-efficiency technologies, better understand the market and learning system involved, predict future achievable learning rates more accurately, and project future savings via energy-efficiency technologies with presence of learning. We conclude from our analysis that, most of the existing energy efficiency technologies that are currently used in the U.S. iron and steel sector are cost effective. Penetration levels increases through the years, even though there is no price reduction. However, demonstration technologies are not economically

  16. Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water.

    Science.gov (United States)

    Mercado-Borrayo, B M; Schouwenaars, R; González-Chávez, J L; Ramírez-Zamora, R M

    2013-01-01

    A multi-analytical approach was used to develop a mathematical regression model to calculate the residual concentration of borate ions in water present at high initial content, as a function of the main physicochemical, mineralogical and electrokinetic characteristics after adsorption on five different types of iron and steel slag. The analytical techniques applied and slag properties obtained in this work were: X-ray Fluorescence for the identification of the main chemical compounds, X-ray Diffraction to determine crystalline phases, physical adsorption of nitrogen for the quantification of textural properties and zeta-potential for electrokinetic measurements of slag particles. Adsorption tests were carried out using the bottle-point technique and a highly concentrated borate solution (700 mg B/L) at pH 10, with a slag dose of 10 g/L. An excellent correlation between the residual concentration of boron and three independent variables (content of magnesium oxide, zeta potential and specific surface area) was established for the five types of slag tested in this work. This shows that the methodology based on a multi-analytical approach is a very strong and useful tool to estimate the performance of iron and steel slag as adsorbent of metalloids.

  17. Solidification behavior of austenitic stainless steel filler metals

    International Nuclear Information System (INIS)

    David, S.A.; Goodwin, G.M.; Braski, D.N.

    1980-02-01

    Thermal analysis and interrupted solidification experiments on selected austenitic stainless steel filler metals provided an understanding of the solidification behavior of austenitic stainless steel welds. The sequences of phase separations found were for type 308 stainless steel filler metal, L + L + delta + L + delta + γ → γ + delta, and for type 310 stainless steel filler metal, L → L + γ → γ. In type 308 stainless steel filler metal, ferrite at room temperature was identified as either the untransformed primary delta-ferrite formed during the initial stages of solidification or the residual ferrite after Widmanstaetten austenite precipitation. Microprobe and scanning transmission electron microscope microanalyses revealed that solute extensively redistributes during the transformation of primary delta-ferrite to austenite, leading to enrichment and stabilization of ferrite by chromium. The type 310 stainless steel filler metal investigated solidifies by the primary crystallization of austenite, with the transformation going to completion at the solidus temperature. In our samples residual ferrite resulting from solute segregation was absent at the intercellular or interdendritic regions

  18. Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?

    International Nuclear Information System (INIS)

    Guo, W.; Zhu, Y.-G.; Liu, W.-J.; Liang, Y.-C.; Geng, C.-N.; Wang, S.-G.

    2007-01-01

    Solution culture experiments were conducted to investigate the effects of silicon (Si) on arsenate (As V ) uptake by rice. The addition of Si to the pretreatment or uptake solution significantly decreased shoot and root As concentrations (P < 0.001 and P < 0.05). The presence of Si in the pretreatment or uptake solution also significantly decreased shoot P concentrations (P < 0.001). The data demonstrated that both internal and external Si inhibited the uptake of As and P. Results of As uptake kinetics showed that the mechanism of the effect of Si on arsenate uptake is not caused by direct competition for active sites of transporters with As. The effect of Si on As uptake was not entirely mediated through the effect of Si on P uptake. Although the addition of Si to pretreatment solutions still significantly decreased shoot and root As concentrations, the extent of reduction became smaller when rice roots were coated with iron plaque. - Arsenate uptake by rice seedlings is affected by both Si (internal and external) and iron plaque on root surface

  19. Simulations of Macrosegregation with consideration of inclusion effect in solidifying carbon steels

    International Nuclear Information System (INIS)

    Cao, Y F; Chen, Y; Kang, X H; Fu, P X; Liu, H W; Li, D Z

    2015-01-01

    During casting of steel ingots, the inclusions such as oxide, sulfide will inevitably exist in the melt. These inclusions will flow upward together with light solutes during solidification due to their lower density relative to the steel melt, which therefore causes impacts on the thermo-solutal convection in the melt and final solute distribution. Hence, a macrosegregation model that considers the effects of inclusions on melt flow in the mushy zone is established. Of the new model two important parameters, the inclusion capturing probability by solid, k p , and the original volume fraction, n 0 , are systematically studied in terms of simulations, which shows that decreasing k p or increasing n 0 leads to stronger ascending flow in the melt. And then as a validation example, the model was used to predict the macrosegregation in a 3.3-ton steel ingot. The prediction demonstrates that with consideration of inclusions, the melt convection strength is enhanced and thus the zones of macrosegregation are expanded comparing to simulations without taking account of inclusions. Further comparison with experiment results indicates that a better agreement of the carbon segregation along the centerline of the ingot can be achieved when considering the inclusion buoyancy. (paper)

  20. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voděrová

    2013-07-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  1. PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

    Directory of Open Access Journals (Sweden)

    Milena Voderova

    2013-05-01

    Full Text Available Intermediary phases Ni-Al and Fe-Al are promising materials due to their superior properties such as hardness and good resistance against oxidation at high temperatures. Moreover, Fe-Al phases are resistant in sulphur - containing atmospheres. Because of these characteristics, the above mentioned intermetallic phases seem to be prospective for the use in many technical applications such as energetics, chemical or automotive industry in a form of a bulk material or coatings. Presently, the protective aluminide layer is usually prepared by thermal spraying. Nevertheless, this method is not suitable for complex-shaped components. Therefore, the aim of this work was to find an alternative way to prepare layers consisting of nickel or iron aluminides by other technique than thermal spraying. At first, carbon steel samples were coated using galvanic or electroless nickel plating. Coated samples were subsequently submerged into molten aluminium at various temperatures and process durations. The influence of the temperature and duration on the intermetallic phase growth was studied by scanning electron and light microscopy. Thickness and microhardness of the intermetallic layer was also measured.

  2. Some comments about the situation of the Steel Industry in the Arab Countries (Arab Steel Summit)

    International Nuclear Information System (INIS)

    Haidar, Y.; Astier, J.

    2009-01-01

    The Arab Steel Summit, that convened in Abu Dhabi in April, gave us another opportunity to review the situation of the Arab Iron and Steel Industry, with regard to the present World economic context. We will address: - the World situation of steel production, focusing on the Arab Countries; - the related situation of steel consumption; - the steel trade, including imports, exports and prices; - the consequences for technology and economy. (authors)

  3. Effect of smelt aluminium on mechanical properties of steels

    International Nuclear Information System (INIS)

    Ryabov, V.R.; Dykhno, I.S.; Deev, G.F.; Karikh, V.V.

    1987-01-01

    Effect of smelt aluminium on mechanical properties of armco-iron and 12 Kh18N10T steel is studied. It is stated that in smelt aluminium and aluminium alloy contact with armco-iron the sample ductility is decreased. Corrosion effect of smelt alluminium on (18Kh15N5AM3) steel in the form of reinforced wire in aluminium-steel KAS-1A composite material is investigted. It is stated in experiment that during smelt alluminium-steel contact interaction of heterogeneous phases takes place

  4. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat` l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1998-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  5. A coupled analysis of fluid flow, heat transfer and deformation behavior of solidifying shell in continuously cast beam blank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eui; Yeo, Tae Jung; Oh, Kyu Hwan; Yoon, Jong Kyu [School of Materials Science and Engineering, Seoul Nat`l Univ., Seoul (Korea, Republic of); Han, Heung Nam [Oxford Center for Advanced Materials and Composites, Department of Materials, Univ. of Oxford (United Kingdom)

    1997-12-31

    A mathematical model for a coupled analysis of fluid flow, heat transfer and deformation behavior in the continuously cast beam blank has been developed. The fluid flow, heat transfer and solidification in the mold region were analyzed with 3-dimensional finite difference method (FDM) based on control volume method. A body fitted coordinate system was introduced for the complex geometry of the beam blank. The effects of turbulence and natural convection of molten steel were taken into account in determining the fluid flow in the strand. The thermo-elasto-plastic deformation behavior in the cast strand and the formation of air gap between the solidifying shell and the mold were analyzed by the finite element method (FEM) using the 2-dimensional slice temperature profile calculated by the FDM. The heat flow between the strand and the mold was evaluated by the coupled analysis between the fluid flow-heat transfer analysis and the thermo-elasto-plastic stress analysis. In order to determine the solid fraction in the mushy zone, the microsegregation of solute element was assessed. The effects of fluid flow on the heat transfer, the solidification of steel and the distribution of shell thickness during the casting of the beam blank were simulated. The deformation behavior of the solidifying shell and the possibility of cracking of the strand were also investigated. The recirculating flows were developed in the regions of the web and the flange tip. The impinging of the inlet flow from the nozzle retarded the growing of solidifying shell in the regions of the fillet and the flange. The air gap between the strand and the mold was formed near the region of the corner of the flange tip. At the initial stage of casting, the probability of the surface cracking was high in the regions of the fillet and the flange tip. After the middle stage of casting, the internal cracking was predicted in the regions of the flange tip, and between the fillet and the flange tip. (author) 38

  6. Microscopic models of impurities in silicon

    International Nuclear Information System (INIS)

    Assali, L.V.C.

    1985-01-01

    The study of electronic structure of insulated and complex puntual impurities in silicon responsible by the appearing of deep energy levels in the forbiden band of semiconductor, is presented. The molecular cluster model with the treatment of surface orbitals by Watson sphere within the formalism of Xα multiple scattering method, was used. The electronic structures of three clusters representative of perfect silicon crystal, which were used for the impurity studies, are presented. The method was applied to analyse insulated impurities of substitutional and interstitial hydrogen (Si:H and Si:H i ), subtitutional and interstitial iron in neutral and positive charge states (Si:Fe 0 , + , Si:Fe 0 , + ) and substitutional gold in three charge states(Si,Au - , 0 , + ). The thetraedic interstitial defect of silicon (Si:Si i ) was also studied. The complex impurities: neighbour iron pair in the lattice (Si:Fe 2 ), substitutional gold-interstitial iron pair (Si:Au s Fe) and substitutional boron-interstitial hydrogen pair (Si:B s H i ), were analysed. (M.C.K.) [pt

  7. Friction welding of ductile cast iron using interlayers

    International Nuclear Information System (INIS)

    Winiczenko, Radoslaw; Kaczorowski, Mieczyslaw

    2012-01-01

    Highlights: → The results of the study of the friction welding of ductile cast iron using interlayers are presented. → The results of the analysis shows that the joint has the tensile strength compared to that of basic material. → In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. → The process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the interface. -- Abstract: In this paper, ductile cast iron-austenitic stainless steel, ductile cast iron-pure Armco iron and ductile cast iron-low carbon steel interlayers were welded, using the friction welding method. The tensile strength of the joints was determined, using a conventional tensile test machine. Moreover, the hardness across the interface of materials was measured on metallographic specimens. The fracture surface and microstructure of the joints was examined using either light stereoscope microscopy as well as electron microscopy. In this case, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were applied. The results of the analysis shows that the joint has the tensile strength compared to that of basic material. In case of ductile cast iron, it is possible to reach the tensile strength equals even 700 MPa. It was concluded that the process of friction welding was accompanied with diffusion of Cr, Ni and C atoms across the ductile cast iron-stainless steel interface. This leads to increase in carbon concentration in stainless steel where chromium carbides were formed, the size and distribution of which was dependent on the distance from the interface.

  8. Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry

    International Nuclear Information System (INIS)

    Sheinbaum, Claudia; Ozawa, Leticia; Castillo, Daniel

    2010-01-01

    Using international comparisons and Log mean Divisia index, this paper analyzes energy and CO 2 emission trends of Mexico's iron and steel industry during the period 1970-2006, examining CO 2 emissions related to energy use and production process. The decomposition analysis is based on the structure/efficiency analysis for international comparisons, considering industrial structure and the best available technology. Results show that for the period 1970-2006, activity drove up primary energy use by 227% instead of the actual 133%, while structure and efficiency effects drove it down by 5% and by 90% respectively. The important improvement in Mexican iron and steel primary energy efficiency reduced the gap between best international practice and actual primary energy consumption from 103% in 1970 to only 15% in 2006. CO 2 emissions from fuel consumption and production process increased by 134%, and in addition to structure and efficiency, fuel share effect also drove down emissions by 4.2% in the entire period.

  9. Application of Moessbauer effect in the study of silicon steels

    International Nuclear Information System (INIS)

    Lonsky, B.; Wiglasz, V.; Prejsa, M.

    1975-11-01

    The results for 1975 are presented of the research task: Application of the Moessbauer effect in the study of silicon steels. Moessbauer spectra were measured on Czechoslovak made materials of Eo 10 quality and of foreign made material of M2H quality in dependence on tensile stress. Moessbauer spectra were measured on identical samples with electrotechnical insulation and after the removal thereof, with the aim of ascertaining the effect of this insulation. All measurements were evaluated on the basis of changes in the intensity ratios of the first and second lines of the spectrum which characterize the domain structure. These measurements have confirmed that electrotechnical insulation forms in the basic material small tensile stresses which improve the magnetic properties of the material. Moessbauer spectra were measured using the absorption method on identical materials in thin foils with the aim of investigating the configuration of Si atoms in the Fe3%Si alloy. It was found that both materials contain Si atoms in both the first and the second coordination spheres. (author)

  10. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1978-01-01

    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  11. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  12. An investigation of air emission levels from distinct iron and steel production processes with the adoption of pollution control and pollution prevention alternatives

    International Nuclear Information System (INIS)

    Costa, M.M.; Schaeffer, R.

    1999-01-01

    This paper aims to investigate environmental aspects from different iron and steel production processes. A methodology based on material flows is developed in order to verify some air emission levels attained by Pollution Control and Pollution Prevention alternatives. The data basis for modeling energy and materials flows in iron and steel production is obtained from a literature review on different technological processes, energy and materials consumption and pollutant releases to the environmental Modeling combines both process analysis and input-output techniques to simulate the different iron and steel production routes and to estimate the resulting total atmospheric pollution releases based on air emission factors for several pollutants by each production step. Processes examined include: (1) Conventional Integrated (100% ore-based and partly scrap-based); (2) Mini-mill with EAF (100% scrap-based and partly DRI-based); and (3) New Integrated based on the COREX smelting reduction process. Among the alternatives considered for air emissions reductions are those related to Pollution Control (mainly gas cleaning systems) and to Pollution Prevention (change/reduction in input materials, operational procedures and housekeeping improvements, on-site recycling and technology innovations and modifications). Results indicate higher air pollution intensity for the Conventional Integrated Route over the Mini-mill with EAF and COREX smelting reduction processes, though pointing out that final figures are strongly affected by the systems' boundaries and the different air emission levels of each production step

  13. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  14. Technologically enhanced 210Pb and 210Po in iron and steel industry.

    Science.gov (United States)

    Khater, Ashraf E M; Bakr, Wafaa F

    2011-05-01

    Iron and steel manufacture has been ranked as the largest industrial source of environmental contamination in the USA; the wastes generated in their production processes contain heavy elements that can be a source of contamination, and natural radionuclides that can produce an occupational and/or public radiological impact. In this work the potential occupational effective dose rate (μSv/y) due to inhalation in four integrated steel-making factories from Egypt has been evaluated, by assuming a well defined scenario and with basis in the (210)Pb and (210)Po activity concentrations determined in ore and wastes collected in the aforementioned factories. Activity concentrations, in Bq/kg, of (210)Pb and (210)Po, and leachable Pb and Fe were measured using gamma-ray spectrometry based on HPGe detector, alpha particle spectrometry based on PIPS detector, and inductively coupled plasma-mass spectrometry (ICP-MS). Levels of (210)Pb and (210)Po in the range of

  15. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  16. Wear resistance of cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  17. Economical and Energy Efficiency of Iron and Steel Industry Reindustrialisation in Russia Based on Implementation of Breakthrough Energy-Saving Technologies

    Science.gov (United States)

    Shevelev, L. N.

    2017-12-01

    Estimates were given of economical and energy efficiency of breakthrough energy-saving technologies, which increase competitive advantages and provide energy efficiency of production while reducing negative impact on the environment through reduction of emissions of harmful substances and greenhouse gases in the atmosphere. Among these technologies, preference is given to the following: pulverized coal fuel, blast-furnace gas recycling, gasification of non-coking coal in bubble-type gas-generators, iron-ore concentrate briquetting with steam coal with further use of ore-coal briquettes in electric furnace steel making. Implementation of these technologies at iron and steel works will significantly reduce the energy intensity of production through reduction of expensive coking coal consumption by means of their substitution by less expensive non-coking (steam) coal, and natural gas substitution by own secondary energy resource, which is the reducing gas. As the result, plants will get an opportunity to become self-sufficient in energy-resources and free themselves entirely from expensive purchased energy resources (natural gas, electric power, and partially coking coals), and cross over to low-carbon development.

  18. Final report for the year 2001 on experimental and theoretical investigations of irradiation effects on physical and mechanical properties of iron and RAFM steels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N

    2003-08-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties have been studied both experimentally and theoretically. Specimens of pure iron and RAFM (reduced activation ferritic-martensic) steels were irradiated to different dose levels and at different irradiation temperatures. The resulting microstructure was characterized using transmission electron microscopy, positron annihilation spectroscopy and electrical resistivity measurements. Mechanical properties were determined by uniaxial tensile testing. Dislocation-loop interaction, formation of rafts of loops, radiation hardening and formation of 'cleared channels' were studied using different computational techniques. Experiments have shown that nano-voids are formed both in pure iron and F82H steel already at 50 deg. C. In pure iron, the formation of nano-voids is detected already at a dose level of {approx}10{sup -3} dpa. Also in iron, self-interstitial atoms were found to accumulate in the form of glissile and sessile loops; at higher dose levels, these loops led to formation of rafts of loops. Irradiation led to an increase in the yield strength, a sudden drop in the yield stress, and, at higher doses, the initiation of plastic instability immediately beyond the upper yield point. Experimental as well as the results of computer simulations are found to be consistent with the cascade induced source hardening model.

  19. Final report for the year 2001 on experimental and theoretical investigations of irradiation effects on physical and mechanical properties of iron and RAFM steels

    International Nuclear Information System (INIS)

    Singh, B.N.

    2003-08-01

    Effects of neutron irradiation on defect accumulation and physical and mechanical properties have been studied both experimentally and theoretically. Specimens of pure iron and RAFM (reduced activation ferritic-martensic) steels were irradiated to different dose levels and at different irradiation temperatures. The resulting microstructure was characterized using transmission electron microscopy, positron annihilation spectroscopy and electrical resistivity measurements. Mechanical properties were determined by uniaxial tensile testing. Dislocation-loop interaction, formation of rafts of loops, radiation hardening and formation of 'cleared channels' were studied using different computational techniques. Experiments have shown that nano-voids are formed both in pure iron and F82H steel already at 50 deg. C. In pure iron, the formation of nano-voids is detected already at a dose level of ∼10 -3 dpa. Also in iron, self-interstitial atoms were found to accumulate in the form of glissile and sessile loops; at higher dose levels, these loops led to formation of rafts of loops. Irradiation led to an increase in the yield strength, a sudden drop in the yield stress, and, at higher doses, the initiation of plastic instability immediately beyond the upper yield point. Experimental as well as the results of computer simulations are found to be consistent with the cascade induced source hardening model

  20. Decontamination of stainless steel covered with radioactive iron oxide deposit using cathodic polarization and ultra-sonic vibration

    International Nuclear Information System (INIS)

    Sawa, Toshio; Takahashi, Sankichi; Kataoka, Ichiro; Itoh, Hisao.

    1985-01-01

    The most effective method for reduction of radio activity in BWR nuclear power plants is to remove the iron oxide deposits on cooling pipes. The dissolution behavior of Fe 3 O 4 deposits on the stainless steel were studied in the EDTA solution by means of cathodic polarization and ultra sonic vibration. The dissolution rates of deposits were determined by the decontamination factor (DF) calculated from the radio activity change. Dissolution rate of deposits were dependent on the electrode potential in the less noble range than their rest potentials of stainless steel. The potential at the highest dissolution rate was -1.0 V vs. SCE in the electrolyte at 80 0 C. But the time variation of DF showed that the DF ceased from increasing at some intermediate values. This is perhaps because the current hardly flows to the deposits in a narrow crevice. Therefore, for the dissolution of deposits on stainless steel, it became clear that the successive vibration by ultra-sonic after treating by cathodic polarization is effective. (author)

  1. Assessment of air quality in and around a steel industry with direct reduction iron route.

    Science.gov (United States)

    Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K

    2011-10-01

    The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.

  2. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  3. Influence of silicon concentration on linear contraction process of Al-Si binary alloy

    Directory of Open Access Journals (Sweden)

    J. Mutwil

    2008-12-01

    Full Text Available Investigations of shrinkage phenomena during solidification and cooling of aluminium and aluminium-silicon alloys (AlSi5, AlSi7, AlSi9, AlSi11, AlSi12.5, AlSi18, AlSi21 have been conducted. A vertical shrinkage rod casting with circular cross-section (constant or fixed: tapered has been used as a test sample. By constant cross-section a test channel mould was parted and allowed a constrained contraction to examine. No parted test channel mould was tapered and allowed an unconstrained contraction to investigate. In the experiments the dimensions changes of solidifying test bar and the test mould have been registered, what has allowed to explain a mechanism of pre-shrinkage extension of solidifying metals and alloys. Registered time dependence of the test bar and the test mould dimension changes have shown, that so-called pre-shrinkage extension has been by mould thermal extension caused. The investigation results have also shown that time- and temperature dependences of shrinkage of Al-Si alloys have been on silicon concentration depended.

  4. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  5. Steeling and Resilience in Art Education

    Science.gov (United States)

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  6. Flow-assisted corrosion of steel and the influence of Cr and Cu additions

    International Nuclear Information System (INIS)

    Cubicciotti, D.

    1988-01-01

    Flow-assisted corrosion (FAC) of steel feedwater lines occurs by dissolution of the surface oxide layer on the steel. The solubility of iron in water under FAC conditions is discussed through the use of potential-pH diagrams (Pourbaix diagrams). Alloying additions of chromium and copper both decrease FAC. An assessment is presented that Cr additions decrease FAC by forming a mixed oxide with iron instead of a pure iron oxide. The solubility of iron from the mixed oxide is smaller than for pure iron oxide and leads to a smaller FAC rate. The stable form of copper under FAC conditions is not the mixed iron-copper oxide but metallic copper, which may act in the underlying steel surface to impede FAC. (orig.)

  7. Air Quality Co-benefits of Energy Policy in China: Evidence from Iron & Steel and Cement Industries

    Science.gov (United States)

    Qiu, M.; Weng, Y.; Selin, N. E.; Karplus, V. J.; Cao, J.

    2017-12-01

    Previous literature has calculated large air quality co-benefits from policies that reduce CO2 emissions and increase energy efficiency. These (often prospective) studies rely on assumptions about how air pollutant emissions respond to energy use changes. Using a unique firm-level data set from China, we examine how a real-world energy efficiency policy affected SO2 emissions, estimate its actual effects on atmospheric PM2.5, and compare to ex ante theoretical estimates. During the 11th Five-year plan (2006-2010), the Chinese government implemented policies directing large energy-consuming firms to reduce their energy consumption per unit of economic output. The Top 1000 Enterprises Program (T1000P) set binding energy intensity targets for China's 1000 highest energy-consuming firms. This program is widely considered a policy success, as 92% of firms met their energy intensity target. Focusing on the cement and iron and steel industry, we examine how T1000P (and related provincial policies) affected firms' SO2 emissions and coal consumption from 2005 to 2008. By comparing T1000P firms with similar firms not subject to the policy, we find that T1000P had a very limited incremental effect on energy use or on air quality co-benefits. Compared to firms not subject to the policy, T1000P firms had 14.7% (cement) and 24.0% (iron & steel) lower reductions in SO2 emission per unit energy use. We also observe large, heterogeneous changes in emission factors (defined as SO2 emissions per unit of coal consumption) among all firms during this period. In comparison to co-benefits estimates that assume constant emission factors, SO2 emissions from T1000P firms in the post-policy period are 23.2% (iron and steel) and 40.2% (cement) lower, but spatially heterogeneous, with some regions experiencing increases. Using the GEOS-Chem model, we estimate the air quality co-benefits of the T1000P policy with realized SO2 emissions changes and compare them with two theoretical estimations

  8. Solidified package-storage device

    International Nuclear Information System (INIS)

    Takakura, Masahide

    1998-01-01

    Vitrification products such as high level radioactive liquid wastes are contained in a solidification package. A containing tube for vertically containing the solidification packages in multi-stages is disposed such that it passes through a ceiling slab. A shielding plug for preventing leakage of radiation from the solidification packages is fitted to an upper opening thereof. A lid of the containing tube is fitted above the plug. The lid is a carbon steel plate having a thickness of 10cm or more. A heat insulation layer comprising glass wool or rock wool is formed on the lower surface of the ceiling slab. A radiation shielding layer comprising such as an iron plate is formed on the lower surface of the heat insulation layer. Then, deterioration of the ceiling slug by heat can be prevented by the heat insulation layer even if high temperature cooling air flown from the upper opening of a ventilation tube should reach the lower surface of the ceiling slab. (I.N.)

  9. Cyclic oxidation of stainless steel ferritic AISI 409, AISI 439 and AISI 441; Oxidacao ciclica dos acos inoxidaveis ferriticos AISI 409, AISI 439 e AISI 441

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, Maria de Fatima; Santos, Diego Machado dos; Oliveira, Givanilson Brito de, E-mail: fatima.salgado@pq.cnpq.br [Universidade Estadual do Maranhao (CESC/UEMA), Caxias, MA (Brazil). Centro de Estudos Superiores; Rodrigues, Samara Clotildes Saraiva; Brandim, Ayrton de Sa [Instituto Federal do Piaui (PPGEM/IFPI), PI (Brazil); Lins, Vanessa de Freitas Cunha [Universidade Federal de Minas Gerais (IFMG), MG (Brazil)

    2014-07-01

    Stainless steels have many industrial applications. The cyclic oxidation of ferritic stainless steels technical and scientific importance presents, because they are less susceptible to peeling the austenitic alloys. For the purpose of investigating the behavior of these steels under thermal cycling, cyclic oxidation of AISI 409, AISI 441 and AISI 439 was carried out in a tubular furnace under two different conditions: oxidation by dipping the steel in the synthetic condensate for 10h and without oxidation immersion in the condensate, for up to 1500h at 300° C temperature. Using techniques: SEM, EDS and XRD revealed a microstructure with increased oxidation in the samples were immersed in the condensate. The oxide film remained intact during oxidation for steels 439 and 441 409 The Steel immersed in the condensate was rupture of the film after the 20th cycle of oxidation. The chemical characterization of the films allowed the identification of elements: Chromium, Iron, Aluminium and Silicon To a great extent, Cr{sub 2}O{sub 3}. (author)

  10. Method for treating waste containing stainless steel

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  11. Evaluation of a new disposable silicon limbal relaxing incision knife by experienced users.

    Science.gov (United States)

    Albanese, John; Dugue, Geoffrey; Parvu, Valentin; Bajart, Ann M; Lee, Edwin

    2009-12-21

    Previous research has suggested that the silicon BD Atomic Edge knife has superior performance characteristics when compared to a metal knife and performance similar to diamond knife when making various incisions. This study was designed to determine whether a silicon accurate depth knife has equivalent performance characteristics when compared to a diamond limbal relaxing incision (LRI) knife and superior performance characteristics when compared to a steel accurate depth knife when creating limbal relaxing incision. Sixty-five ophthalmic surgeons with limbal relaxing incision experience created limbal relaxing incisions in ex-vivo porcine eyes with silicon and steel accurate depth knives and diamond LRI knives. The ophthalmic surgeons rated multiple performance characteristics of the knives on Visual Analog Scales. The observed differences between the silicon knife and diamond knife were found to be insignificant. The mean ratio between the performance of the silicon knife and the diamond knife was shown to be greater than 90% (with 95% confidence). The silicon knife's mean performance was significantly higher than the performance of the steel knife for all characteristics. (p-value knife was found to be equivalent in performance to the diamond LRI knife and superior to the steel accurate depth knife when making limbal relaxing incisions in ex vivo porcine eyes. Disposable silicon LRI knives may be an alternative to diamond LRI knives.

  12. Evaluation of a new disposable silicon limbal relaxing incision knife by experienced users

    Directory of Open Access Journals (Sweden)

    Parvu Valentin

    2009-12-01

    Full Text Available Abstract Background Previous research has suggested that the silicon BD Atomic Edge™ knife has superior performance characteristics when compared to a metal knife and performance similar to diamond knife when making various incisions. This study was designed to determine whether a silicon accurate depth knife has equivalent performance characteristics when compared to a diamond limbal relaxing incision (LRI knife and superior performance characteristics when compared to a steel accurate depth knife when creating limbal relaxing incision. Methods Sixty-five ophthalmic surgeons with limbal relaxing incision experience created limbal relaxing incisions in ex-vivo porcine eyes with silicon and steel accurate depth knives and diamond LRI knives. The ophthalmic surgeons rated multiple performance characteristics of the knives on Visual Analog Scales. Results The observed differences between the silicon knife and diamond knife were found to be insignificant. The mean ratio between the performance of the silicon knife and the diamond knife was shown to be greater than 90% (with 95% confidence. The silicon knife's mean performance was significantly higher than the performance of the steel knife for all characteristics. (p-value Conclusions For experienced users, the silicon accurate depth knife was found to be equivalent in performance to the diamond LRI knife and superior to the steel accurate depth knife when making limbal relaxing incisions in ex vivo porcine eyes. Disposable silicon LRI knives may be an alternative to diamond LRI knives.

  13. Finite volume modeling of the solidification of an axial steel cast impeller

    Directory of Open Access Journals (Sweden)

    M. Copur

    2014-04-01

    Full Text Available In the foundry industry, obtaining the solidification contours in cast geometries are extremely important to know the last location(s to solidify in order to define the correct feeding path and the number of risers. This paper presents three-dimensional simulation of transient conduction heat transfer within an axial impeller, made of AISI 1016 steel, poured and solidified in chemically bonded mold and core medium, by using FVM technique and ANSYS CFX. Specific heat, density and thermal conductivity of AISI 1016 steel, mold and Core materials are considered as functions of temperatures. In this transient thermal analysis, the convection heat transfer phenomenon is also considered at the outer surfaces of the mold. In order to shorten the run-time, the nonlinear transient analysis has been made for 600/3600 segment of the impeller, core and mold. The solidification contours of the impeller as well as isothermal lines in core and mold have been obtained in 3-D. The cooling curves of diff erent points are also shown in the result section.

  14. The influence of silicon as a possible reactive element in the protection against high temperature oxidation of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Otero, E.; Perez, F.J.; Hierro, M.P.; Gomez, C.; Pedraza, F.; Segovia, J. L. de; Roman, E.

    1998-01-01

    The influence of silicon incorporated into the alloy by means of ion implantation of 1 x 10''15 ions/cm''2 at 150 keV on the protective scale development based upon Cr 1 ,3 Fe 0 ,7O 3 and manganese-enriched spinels, Mn 1 ,5Cr 1 .5O 4 after oxidation of an austenitic AISI 304 stainless steel at 1.173 K and atmospheric pressure of air for 144 h has been studied. The presence of small quantities of silicon at the outermost layers of the alloy promotes transport of chromium during the early stages of oxidation. Further, ion implantation seems to play a beneficial role against decarburization of the alloy. (Author) 8 refs

  15. A pilot plant study for CO{sub 2} capture by aqueous ammonia applied to blast furnace gas in iron and steel making process

    Energy Technology Data Exchange (ETDEWEB)

    Young Kim, J.; Han, K.; Dong Chun, H. [CO2 Project, Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

    2009-07-01

    This presentation reported on a study in which carbon dioxide (CO{sub 2}) was captured from a demonstration iron and steel plant using low concentration aqueous ammonia as the absorbent chemical. The pilot plant was designed to process 50 Nm{sup 3}/h of blast furnace gas (BFG). The feed gas contained more than 20 per cent CO{sub 2} at 35 to 60 degrees C. Test runs revealed that the absorption efficiency of CO{sub 2} exceeded 80 per cent with a CO{sub 2} purity of more than 90 per cent in the product stream. The process parameters are currently being studied along with the various salts needed to prevent salt precipitation. It was determined that the use of waste heat recovery technology in the iron and steel-making process can render ammonia-based CO{sub 2} capture technology more economically feasible for the reduction of CO{sub 2}.

  16. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  17. Surface modification of EN-C35E steels by thermo-chemical boronizing process and its properties

    International Nuclear Information System (INIS)

    Yapar, U.; Arisoy, C.F.; Basman, G.; Yesilcubuk, S.A.; Sesen, M.K.

    2004-01-01

    Boronizing, which involves diffusion of boron atoms into steel substrate to form hard iron borides is well known diffusion coating technique. In this study, salt bath boronizing processes were performed on EN-C35E steel substrate in slurry salt bath containing borax, boric acid as boron sources and ferro-silicon as reductant. The process was performed at 850 and 950 C for 2, 4, 6 and 8 hours. Boride layers were examined by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Hardness of borides formed on the steel substrate was measured by knoop indenter under load of 0.5N. Metallographic studies and XRD analysis revealed that single-type Fe 2 B layers were formed. Depending on boronizing time and temperature, it has found that the hardness of boride layer ranged from 1895-2143 HK 0.05 that is nearly 8 times higher than substrate hardness. The thickness of the layer ranged from 25 to 167 μm depending on boronizing time and temperature. (orig.)

  18. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry

    International Nuclear Information System (INIS)

    Zhang, Shaohui; Worrell, Ernst; Crijns-Graus, Wina; Wagner, Fabian; Cofala, Janusz

    2014-01-01

    In 2010, China was responsible for 45% of global steel production, while consuming 15.8 EJ of final energy and emitting 1344 Mt CO 2eq , 8.4 Mt of PM (particulate matter) emissions, and 5.3 Mt of SO 2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7 EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM S 3 scenario would be reduce 27% CO 2 eq, 3% of PM, and 22% of SO 2 , compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China. - Highlights: • Implementation rates of 56 EEMs (energy efficiency measures) are quantified in China's Iron and steel industry. • Energy Supply Cost Curve was implemented in the GAINS (greenhouse gas and air pollution interactions and synergies) model. • The contribution of energy efficiency measure on the process level was estimated. • There are large co-benefits of improving energy efficiency and reducing emissions. • EEMs (energy efficiency measures) would lead to huge reductions in air pollution

  19. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Tetsuo; Ootsuka, Masaharu; Uetake, Naoto; Ozawa, Yoshihiro.

    1984-01-01

    Purpose: To prepare radioactive solidified wastes excellent in strength, heat resistance, weather-proof, water resistance, dampproof and low-leaching property. Method: A hardening material reactive with alkali silicates to form less soluble salts is used as a hardener for alkali silicates which are solidification filler for the radioactive wastes, and mixed with cement as a water absorbent and water to solidify the radioactive wastes. The hardening agent includes, for example, CaCO 3 , Ca(ClO 4 ) 2 , CaSiF 6 and CaSiO 3 . Further, in order to reduce the water content in the wastes and reduce the gap ratio in the solidification products, the hardener adding rate, cement adding rate and water content are selected adequately. As the result, solidification products can be prepared with no deposition of easily soluble salts to the surface thereof, with extremely low leaching of radioactive nucleides. (Kamimura, M.)

  20. Change of mechanical properties of irradiated silicon iron in dependence of preliminary deformation

    International Nuclear Information System (INIS)

    Chirkina, L.A.; Okovit, V.S.; Khinkis, B.A.

    1979-01-01

    Presented are the data on the influence of the 225 MeV electron irradiation on flow limit and specific elongation of silicon iron specimens preliminary deformed by slipping and twinning. The irradiaton was carried out at the temperature up to 350 K with integral dose up to 7x10 18 el/cm 2 . The specimens were tested in the temperature range of 4-450 K. It is found that the ductile brittle transition temperature Tsub(c) and plastic deformation mode of the irradiated material heavily depends on the preliminary deformation mode. The irradiation of specimens deformed by slipping leads to the increase in transition temperature (Tsub(c)) by 80 deg and it reaches 420 K. The preliminary deformation by twinning results in the Tsub(c) increase up to 320 K

  1. The industrial ecology of steel

    Energy Technology Data Exchange (ETDEWEB)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  2. Carbon steel protection in G.S. (Girlder sulfide) heavy water fabrication plants. Control of iron content at the final stage of passivation. Pt. 10

    International Nuclear Information System (INIS)

    Rojo, E.A.

    1991-01-01

    This paper is part of a series which corresponds to the carbon steel behaviour as construction material for Girlder sulfide (G.S.) heavy water plants. The present work analyses the iron concentration study during passivation in the passivating fluid. At the beginning, during the formation of the most soluble sulfide -that is the mackinawite-, the iron concentration reaches more than 10 ppm. After some days, this iron concentration begins to decrease up to its stabilization under 0.1 ppm. This process, which occurs in the 9th. and 11th days, indicates that passivation is over, and that a pyrite and pyrrhotite-pyrite layer exists on the iron. Some differences exist between the results obtained and those previsible for the iron sulfides solubilities. In spite of these difficulties, the procedure is perfectly adequate to judge the passivation final stage. (Author) [es

  3. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    International Nuclear Information System (INIS)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira; Giovedi, Claudia

    2015-01-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  4. Adaptation of fuel code for light water reactor with austenitic steel rod cladding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel de Souza; Silva, Antonio Teixeira, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    Light water reactors were used with steel as nuclear fuel cladding from 1960 to 1980. The high performance proved that the use of low-carbon alloys could substitute the current zirconium alloys. Stainless steel is an alternative that can be used as cladding. The zirconium alloys replaced the steel. However, significant experiences in-pile occurred, in commercial units such as Haddam Neck, Indian Point, and Yankee experiences. Stainless Steel Types 347 and 348 can be used as cladding. An advantage of using Stainless Steel was evident in Fukushima when a large number of hydrogens was produced at high temperatures. The steel cladding does not eliminate the problem of accumulating free hydrogen, which can lead to a risk of explosion. In a boiling water reactor, environments easily exist for the attack of intergranular corrosion. The Stainless Steel alloys, Types 321, 347, and 348, are stabilized against attack by the addition of titanium, niobium, or tantalum. The steel Type 348 is composed of niobium, tantalum, and cobalt. Titanium preserves type 321, and niobium additions stabilize type 347. In recent years, research has increased on studying the effects of irradiation by fast neutrons. The impact of radiation includes changes in flow rate limits, deformation, and ductility. The irradiation can convert crystalline lattices into an amorphous structure. New proposals are emerging that suggest using a silicon carbide-based fuel rod cladding or iron-chromium-aluminum alloys. These materials can substitute the classic zirconium alloys. Once the steel Type 348 was chosen, the thermal and mechanical properties were coded in a library of functions. The fuel performance codes contain all features. A comparative analysis of the steel and zirconium alloys was made. The results demonstrate that the austenitic steel alloys are the viable candidates for substituting the zirconium alloys. (author)

  5. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  6. Method of solidifying and disposing radioactive waste plastic

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Yasumura, Keijiro

    1981-01-01

    Purpose: To solidify radioactive waste as it is with plastic by forming a W/O (Water-in-Oil) emulsion with the radioactive waste and a plastic solidifier, and treating it with a polymerization starting agent, an accelerator, and the like. Method: A predetermined amount of alkaline substance such as sodium hydroxide, triethanol, or the like is added quantitatively to radioactive waste and it is mixed by an agitator. A predetermined amount of solidifier such as unsaturated polyester or the like is added to the mixture and it is further mixed by the agitator to form a stable W/O emulsion. Subsequently, predetermined amounts of polymerization starting agent such as methyl ethyl ketone peroxide and polymerization accelerator such as cobalt naphthenate or the like are added thereto, the mixture is mixed, and is then allowed to stand for at room temperature for the plastic solidification thereof. No reaction occurs after the solidification. (Sekiya, K.)

  7. The corrosion performance of microcrystalline titanium-modified 316 stainless steel

    International Nuclear Information System (INIS)

    Saito, N.; Searson, P.C.; Latanision, R.M.

    1986-01-01

    The corrosion performance of rapidly solidified (RS), consolidated RS and conventionally processed titanium-modified nuclear grade 316 stainless steel was studied. As-solidified RS foils exhibited general corrosion behavior identical to that of the conventionally processed alloy, but inferior pitting resistance, due to the presence of dendritic microsegregation. The consolidated RS alloy exhibited inferior general and pitting corrosion performance due to the detrimental effect of the prior foil boundary formed during the consolidation process. The results of immersion tests in 6% FeC1 3 .6H 2 O solution showed that pit initiation occured primarily at the prior foil boundaries in the consolidated RS alloy. Studies of sensitization were inconclusive due to preferential attack on prior foil boundaries in the consolidated RS specimens which made the determination of the degree of sensitization difficult. (author)

  8. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B.K., E-mail: bkc@igcar.gov.in; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-15

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  9. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    Science.gov (United States)

    Choudhary, B. K.; Mathew, M. D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-11-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24-0.60% have been examined in the temperature range 300-873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24-0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature.

  10. Elevated temperature tensile properties of P9 steel towards ferritic steel wrapper development for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Mathew, M.D.; Isaac Samuel, E.; Christopher, J.; Jayakumar, T.

    2013-01-01

    Tensile deformation and fracture behaviour of the three developmental heats of P9 steel for wrapper applications containing varying silicon in the range 0.24–0.60% have been examined in the temperature range 300–873 K. Yield and ultimate tensile strengths in all the three heats exhibited gradual decrease with increase in temperature from room to intermediate temperatures followed by rapid decrease at high temperatures. A gradual decrease in ductility to a minimum at intermediate temperatures followed by an increase at high temperatures has been observed. The fracture mode remained transgranular ductile. The steel displayed signatures of dynamic strain ageing at intermediate temperatures and dominance of recovery at high temperatures. No significant difference in the strength and ductility values was observed for varying silicon in the range 0.24–0.60% in P9 steel. P9 steel for wrapper application displayed strength and ductility values comparable to those reported in the literature

  11. Evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    1981-01-01

    One of the objectives of the IAEA waste management programme is to coordinate and promote development of improved technology for the safe management of radioactive wastes. The Agency accomplished this objective specifically through sponsoring Coordinated Research Programmes on the ''Evaluation of Solidified High Level Waste Products'' in 1977. The primary objectives of this programme are to review and disseminate information on the properties of solidified high-level waste forms, to provide a mechanism for analysis and comparison of results from different institutes, and to help coordinate future plans and actions. This report is a summary compilation of the key information disseminated at the second meeting of this programme

  12. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    Science.gov (United States)

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  13. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  14. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    Science.gov (United States)

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  15. [Prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant].

    Science.gov (United States)

    Li, Yanhong; Chen, Guoshun; Yu, Shanfa

    2015-05-01

    To investigate the prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant. Using cluster sampling method, 3 150 workers exposed to noise participated in this study. According to do questionnaire survey and blood pressure measurement, 2 924 workers were tested, among which 1 313 workers were from steel making workshop and 1 611 workers were from steel rolling workshop. The relationships between different demographic characteristics, different habits, and different cumulative noise exposures of workers exposed to noise and hypertension were analyzed. For the hypertension prevalence rate, the total prevalence rate was 27.43% (802/2 924), the male was higher than the female (29.88 % (753/2 520) vs 12.13% (49/404), χ² = 55.13, P married ones were higher than the unmarried (29.84% (718/2 406) vs 16.22% (84/518), χ² = 39.76, P vs 24.61% (364/1 479), χ² = 11.93, P = 0.001), drinking ones were higher than the no drinking (31.53% (541/1 716) vs 21.61% (261/1 208), χ² = 35.05, P < 0.001). The hypertension prevalence rates among the subjects with education background in junior high school and below, high school (secondary) and university and above were separately 44.96%(125/278), 29.95%(455/1 519) and 19.70%(222/1 127) (χ² = 81.65, P < 0.001), among cumulative exposure groups 77-89, 90-94, 95-99, 100-104 and 105-113 were separately 8.43% (14/166), 14.48% (53/366), 24.28% (297/1 223), 36.65% (335/914) and 40.39%(103/255) (χ² = 127.58, P < 0.001). Multivariate logistic regression analysis showed that workers who exposed to cumulative noise in 95-99, 100-104 and 105-113 dB(A) ·year had the higher risk of hypertension, the OR (95%CI) were 1.84 (95% CI: 1.35-2.51), 1.74 (95% CI: 1.24-2.45) and 1.68 (95% CI: 1.09-2.58). Drinking (OR = 1.60, 95% CI: 1.32-1.95) and BMI ≥ 24.0 kg/m² (OR = 1.26, 95% CI: 1.22-1.30) were the risk factors for hypertension as well. Cumulative

  16. Effect of metallurgical variables on environmental fracture of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, I M; Thompson, A W

    1976-12-01

    The susceptibility of iron alloys, in particular, steels, to hydrogen embrittlement is examined. It is demonstrated by a review of available data on metallurgically well-characterized alloys that the nature and extent of hydrogen susceptibility are sensitive and often predictable functions of such metallurgical variables as composition, grain size, texture, microstructure, and thermal treatment. Specifically, solutes such as carbon and manganese are shown to be capable of leading to a degradation of performance in hydrogen, whereas silicon and titanium are often beneficial additions. Microstructures at equivalent strength levels are ranked in order of susceptibility; generally, a refined substructure gives the best results. The role of heat treatment in controlling the hydrogen-induced crack path and its relationship to thermal embrittlement phenomena are stressed. Finally, possible hydrogen embrittlement mechanisms are assessed in terms of the critical roles of metallurgical variables in the embrittlement.

  17. Impacts of market-based climate change policy on the U.S. iron and steel industry

    International Nuclear Information System (INIS)

    Ruth, M.; Amato, A.; Davidsdottir, B.

    2000-01-01

    This article presents an assessment of the impacts that policy-induced increases in cost of energy or carbon may have on energy use and emission profiles of the US iron and steel industry. Time series data and engineering information are combined within a dynamic computer model to endogenously specify changes in technologies, fuel mix, and production processes. Results indicate that energy taxes shift production to electric arc furnaces and reduce total energy use more than policies that raise costs of carbon. However, both energy taxes and costs of carbon will result in a similar decrease in carbon emissions when compared to the absence of those policies

  18. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    International Nuclear Information System (INIS)

    Martin, F.A.; Bataillon, C.; Schlegel, M.L.

    2008-01-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 deg. C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry... The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-x Ca x CO 3 ), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes

  19. Steel story founded on coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Paper reports on an iron and steel plant in New Zealand which uses non-coking subbituminuous coal to produce the sponge iron. The transport of the ironsand and the coal to the site and the operation of the kiln in which the ironsand is reduced by the coal is described.

  20. Testing of advanced chromium - iron based steel

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Degmova, J.; Sabelova, V.; Sojak, S.; Petriska, M.; Slugen, V.; Simko, F.; Pekarcikova, M.

    2015-01-01

    Research and Development of advanced nuclear reactors in Generation IV (GEN IV) are limited by the selection of proper construction materials. Suitable candidate materials are still under extensive investigation, because their properties must be excellent to achieve high level of reactor system safety. NF 709 (Fe-20Cr-25Ni) is new austenitic steel with improved properties in compare to AISI steels; therefore it is also one of candidate materials. Our study is focused on investigation of radiation resistance as well as thermal stability of this steel - NF 709. New austenitic steel NF 709, candidate materials for construction of Generation IV reactors, was observed in term of its stability after an exposure to very high temperature and irradiation. The change of microstructure was observed by positron annihilation techniques which demonstrated the growth of vacancy defects from di-vacancies in as-received material to three-vacancies in material after the thermal and implantation treatments; although the total change of structure was very small. Thus, NF 709 showed good resistance to tested strains and according to our preliminary results. Therefore, this material could be used for high temperature applications and interchangeable components of Generation IV reactors. (authors)

  1. GRAPHITIZED STEELS IN MACHINE-BUILDING

    Directory of Open Access Journals (Sweden)

    I. V. Akimov

    2010-01-01

    Full Text Available It is shown that graphitized steels in some cases due to its intermediate disposition by structure and characteristics among low-carbon steels and cast irons, can provide the necessary combination of characteristics of construction material and consequently to increase safety and durability of details of metallurgical and machinebuilding industry machines.

  2. Study of radiation-thermal effect of electron beam on steel and cast iron

    International Nuclear Information System (INIS)

    Machurin, E.S.; Lonchin, G.M.

    1980-01-01

    Studied is the influence of radiation-heat treatment by high energy (3-4.5 MeV) electron beam on the structure and properties of carbon steels (65G, 90KhF) and cast iron. Metallography and electron microscopy methods are used to study microstructure. It is shown that after the treatment by the electron beam there is observed noticeable structure grinding, sample fracture viscosity (even in a quenched state), increase of hardness and impact strength. The mechanism of metal heating process by electron beam is calculated and temperature field is defined in a heating region accounting for electron beam characteristics, medium and geometric factor. Theoretical data are close to experimental ones obtained in a course of determining the microhardness of irradiated samples for the cases of electron treatment duration up to 10 s

  3. Direct Reduction of Iron Ore

    Science.gov (United States)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  4. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  5. Temperature dependence of coercivity behavior in iron films on silicone oil surfaces

    International Nuclear Information System (INIS)

    Xu Xiaojun; Ye Quanlin; Ye Gaoxiang

    2007-01-01

    A new iron film system, deposited on silicone oil surfaces by vapor phase deposition method, has been fabricated and its microstructure as well as magnetic properties has been studied. It is found that the temperature dependence of the coercive field H c (T) of the films exhibits a peak around a critical temperature T crit =10-15 K: for the temperature T crit ,H c (T) increases with the temperature; if T>T crit , however, it decreases rapidly and then approaches a steady value as T further increases. Our study shows that, for T>T crit , the observed coercivity behavior is mainly dominated by the effect of the non-uniform single-domain particle size distribution, and for T crit , the anomalous coercivity behavior may be resulted from the surface anisotropy, the surface effect and the characteristic internal stress distribution in the films. The influence of the shape and size of the particles on the thermal dependence of the magnetization is also investigated

  6. X-ray analysis in the steel industry

    International Nuclear Information System (INIS)

    Bourke, T.; Turner, K.

    1999-01-01

    Full text: The steel industry makes extensive use of X-ray analysis at all stages of the steelmaking process. XRF and XRD techniques, together with the associated techniques of electron probe microanalysis and electron microscopy are key tools for exploration and mine site and process development where detailed grade and mineralogical data is required. In production X-ray analysis is used to monitor and control: mine product grade (eg iron ore, coal and other raw materials), steel making production processes (eg iron ore sinter, incoming raw materials), waste products (eg coal watery refuse, slags) and final products (eg paint coatings, customer complaints). The demands put on X-ray analysis by the Steel Industry are severe. Iron ore mining and steelmaking is a continuous process, hence instrumentation has to be robust and reliable. In addition, with ever tightening environmental controls there is an increasing demand for trace heavy element analysis in both raw and waste materials. Copyright (1999) Australian X-ray Analytical Association Inc

  7. Effect of stress relief annealing temperature and atmosphere on the magnetic properties of silicon steel

    International Nuclear Information System (INIS)

    Paolinelli, Sebastiao C.; Cunha, Marco A. da

    2006-01-01

    Fully processed non-oriented silicon steel samples 0.50 mm thick were sheared and submitted to stress relief annealing under different conditions of temperature and atmosphere to investigate the effect of this treatment on the recovery of magnetic properties. Two different compositions were used, with different Si and Al contents. Temperature was varied in the range of 600-900 deg. C and four atmospheres were used: N 2 and N 2 +10%H 2 combined with dew points of -10 and 15 deg. C. The results showed that annealing atmosphere has very important effect on the magnetic properties and that the beneficial effect of stress relief annealing can be overcome by the detrimental effect of the atmosphere under certain conditions, due to oxidation and nitration

  8. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  9. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  10. Acceptability and use of iron and iron-alloy cooking pots: implications for anaemia control programmes.

    Science.gov (United States)

    Tripp, Katherine; Mackeith, Nancy; Woodruff, Bradley A; Talley, Leisel; Mselle, Laurent; Mirghani, Zahra; Abdalla, Fathia; Bhatia, Rita; Seal, Andrew J

    2010-01-01

    To evaluate the acceptability of iron and iron-alloy cooking pots prior to an intervention trial and to investigate factors affecting retention and use. Pre-trial research was conducted on five types of iron and iron-alloy pots using focus group discussions and a laboratory evaluation of Fe transfer during cooking was undertaken. Usage and retention during the subsequent intervention trial were investigated using focus group discussions and market monitoring. Three refugee camps in western Tanzania. Refugee health workers were selected for pre-trial research. Mothers of children aged 6-59 months participated in the investigation of retention and use. Pre-trial research indicated that the stainless steel pot would be the only acceptable type for use in this population due to excessive rusting and/or the high weight of other types. Cooking three typical refugee dishes in stainless steel pots led to an increase in Fe content of 3.2 to 17.1 mg/100 g food (P basic acceptability criteria. The relatively low usage reported during the trial highlights the limitations of using high-value iron-alloy cooking pots as an intervention in populations where poverty and the availability of other pots may lead to selling.

  11. Method for solidifying powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide.

    1978-01-01

    Purpose: To solidify powdery radioactive wastes through polymerization in a vessel at a high impregnation speed with no cloggings in pipes. Method: A drum can is lined with an inner liner layer of a predetermined thickness made of inflammable material such as glass fiber. A plurality of pipes for supplying liquid plastic monomer are provided in adjacent to the upper end face of the inflammable material or inserted between the vessel and the inflammable material. Then powdery radioactive wastes are filled in the vessel and the liquid plastic monomer dissolving therein a polymerization initiator is supplied through the pipes. The liquid plastic monomer impregnates through the inflammable material layer into the radioactive wastes and the plastic monomer is polymerized by the aid of the polymerization initiator after a predetermined of time to produce solidified plastic products of radioactive wastes. (Seki, T.)

  12. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, Perrine [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)]. E-mail: chaurand@cerege.fr; Rose, Jerome [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France); Briois, Valerie [LURE Laboratoire pour l' Utilisation du Rayonnement Electromagnetique, Universite Paris-Sud, Orsay (France); Olivi, Luca [Sincrotrone Trieste S.C.p.A. S.S., 14 Km 163.5, 34012 Basovizza Trieste (Italy); Hazemann, Jean-Louis [Laboratoire de Cristallographie, BP 166, 38042 Grenoble Cedex 09 (France); Proux, Olivier [Laboratoire de Geophysique Interne et de Tectonophysique, UMR CNRS Universite Joseph Fourier, 1381 rue de la piscine, Domaine Universitaire, 38400 St Martin d' Heres (France); Domas, Jeremie [INERIS, Domaine du petit Arbois, Batiment Laennec, BP 33, 13545 Aix en Provence Cedex 04 (France); Bottero, Jean-Yves [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  13. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach

    International Nuclear Information System (INIS)

    Chaurand, Perrine; Rose, Jerome; Briois, Valerie; Olivi, Luca; Hazemann, Jean-Louis; Proux, Olivier; Domas, Jeremie; Bottero, Jean-Yves

    2007-01-01

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching

  14. Long term alteration of glass/iron systems in anoxic conditions: contribution of archaeological analogues to the study of mechanisms

    International Nuclear Information System (INIS)

    Michelin, A.

    2011-01-01

    The knowledge of glass alteration mechanisms arouses a great interest over the last decades, particularly in the nuclear field, since vitrification is used to stabilize high-level radioactive wastes in many countries. In the French concept, these nuclear glasses would be stored in geological repositories. This multi-barrier system (glass matrix, stainless steel container, low carbon steel over-container, geological barrier) must ensure the durable confinement of radionuclides. But laboratory experiments do not permit to predict directly the behaviour of these materials over typically a million-year timescale and the extrapolation of short-term laboratory data to long time periods remains problematic. Part of the validation of the predictive models relies on natural and archaeological analogues. Here, the analogues considered are vitreous slags produced as wastes by a blast furnace working during the 16. century in the iron making site of Glinet (Normandy, France). The choice of these specific artefacts is due to the presence of particular interface between corrosion products and glass matrix inside the blocks. Thus, they can help us to understand the influence of iron corrosion products from the steel containers on the glass alteration mechanisms and kinetics. A first part of this work concerns the characterization of the archaeological artefacts especially the interfacial area between glass and corrosion products inside cracks using micro and nano-beam techniques (μRaman spectroscopy, FEG-SEM, TEM, STXM...). This study has enabled to suggest an alteration process with different geochemical steps that leads to alteration profile observed. One of these steps is the precipitation of an iron silicate phase. In a second time, leaching experiments were set up on a synthetic glass of similar composition than the archaeological one to understand the first stages of alteration with and without iron. Two phenomena can be observed: silicon sorption and precipitation of iron

  15. Precaution against radioactive contamination of steel products in Germany

    International Nuclear Information System (INIS)

    Ewers, E.; Schulz-Klemp, V.; Steffen, R.

    1999-01-01

    Regulations for handling of radioactive materials in Germany. Engagement of the Germany Iron and Steel Institute (VDEh) since the end of the eighties and measures taken. Level of radioactivity in uncontaminated steel products. Agreements between steel industry and scrap supplying industry as well as terms of delivery. Actual status of equipment for detection of radioactivity in the German steel plants. Demands of steel users for clean steel. (author)

  16. Purification of melt-spun metallurgical grade silicon micro-flakes through a multi-step segregation procedure

    Science.gov (United States)

    Martinsen, F. A.; Nordstrand, E. F.; Gibson, U. J.

    2013-01-01

    Melt-spun metallurgical grade (MG) micron dimension silicon flakes have been purified into near solar grade (SG) quality through a multi-step melting and re-solidification procedure. A wet oxidation-applied thermal oxide maintained the sample morphology during annealing while the interiors were melted and re-solidified. The small thickness of the flakes allowed for near elimination of in-plane grain boundaries, with segregation enhanced accumulation of impurities at the object surface and in the few remaining grain boundaries. A subsequent etch in 48% hydrofluoric acid (HF) removed the impure oxide layer, and part of the contamination at the oxide-silicon interface, as shown by electron dispersive spectroscopy (EDS) and backscattered electron imaging (BEI). The sample grains were investigated by electron back-scattered diffraction (EBSD) after varying numbers of oxidation-annealing-etch cycles, and were observed to grow from ˜5 μm to ˜200 μm. The concentration of iron, titanium, copper and aluminium were shown by secondary ion mass spectroscopy (SIMS) and inductively coupled plasma mass spectroscopy (ICPMS) to drop between five and six orders of magnitude. The concentration of boron was observed to drop approximately one order of magnitude. A good correlation was observed between impurity removal rates and segregation models, indicating that the purification effect is mainly caused by segregation. Deviations from these models could be explained by the formation of oxides and hydroxides later removed through etching.

  17. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  18. Effect of the temperature and dew point of the decarburization process on the oxide subscale of a 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Maria das Gracas M.M. E-mail: gracamelo@acesita.com.br; Mantel, Marc J

    2003-01-01

    The oxide subscale formed on the decarburization annealing of 3% Si-Fe was investigated using microscopy and spectroscopy techniques. It was found that the morphology as well as the molecular structure of the subscale are affected by temperature and dew point. The results suggest that there is an optimum level of internal oxidation and an optimum fayalite/silica ratio in the subscale to achieve a oriented grain silicon steel having a continuous and smooth ceramic film and low core loss.

  19. Utilization potentiality of coal as a reductant for the production of sponge iron. [5 refs

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, H P

    1976-10-01

    With the ambitious plan of the Government of India to produce about 70 million tonnes of steel per annum towards the end of the century, the requirement of coal would be enormous. This calls for judicious planning and conservation of coal. Modern trend in steel plant practice is to use blast furnaces of capacity 10,000 to 12,000 t/day requiring superior quality coke of low ash content which will become scarce. Concerted efforts should be made to by-pass blast furnace technique by adopting direct reduction for the production of metallized iron ore, that is sponge iron, and using this as feed stock in electric furnaces. Experience has shown that the use of sponge iron as feed stock for electric arc furnaces instead of the scrap available from various fabrication and steel works results in better production of alloy steels. The use of non-coking coal as reductant for production of sponge iron will help conserve coking coal for bigger steel plants. In the solid state reduction process the technological design of the sponge iron plant has to be tailored to the type of feed stock to be used, particularly iron ore and coal. In India, non-coking coal is available at close proximity to the iron ore mines containing high grade iron ore. Planning for sponge iron, utilizing large reserves of non-coking coal as feed stock therefore has considerable potentiality. India has vast reserves of high grade iron ore and comparatively meager amount of coking coal. This calls for planning for sponge iron using non-coking coal as feed stock.

  20. Thermal analysis control of in-mould and ladle inoculated grey cast irons

    Directory of Open Access Journals (Sweden)

    Mihai Chisamera

    2009-05-01

    Full Text Available The effect of addition of 0.05wt.% to 0.25 wt.% Ca, Zr, Al-FeSi alloy on in-ladle and in-mould inoculation of grey cast irons was investigated. In the present paper, the conclusions drawn are based on thermal analysis. For the solidification pattern, some specific cooling curves characteristics, such as the degree of undercooling at the beginning of eutectic solidifi cation and at the end of solidifi cation, as well as the recalescence level, are identifi ed to be more infl uenced by the inoculation technique. The degree of eutectic undercooling of the electrically melted base iron having 0.025% S, 0.003% Al and 3.5% Ce is excessively high (39–40℃, generating a relatively high need for inoculation. Under these conditions, the in-mould inoculation has a more signifi cant effect compared to ladle inoculation, especially at lower inoculant usage (less than 0.20 wt.%. Generally, the efficiency of 0.05wt.%–0.15wt.% of alloy for in-mould inoculation is comparable to, or better than, that of 0.15wt.%–0.25wt.% addition in ladle inoculation procedures. In order to secure stable and controlled processes, representative thermal analysis parameters could be used, especially in thin wall grey iron castings production.

  1. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  2. Low-field microwave absorption and magnetoresistance in iron nanostructures grown by electrodeposition on n-type lightly doped silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Felix, J.F. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Figueiredo, L.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Mendes, J.B.S. [Universidade Federal de Viçosa-UFV, Departamento de Física, 36570-900 Viçosa, MG (Brazil); Morais, P.C. [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil); Huazhong University of Science and Technology, School of Automation, 430074 Wuhan (China); Araujo, C.I.L. de., E-mail: dearaujo@ufv.br [Universidade de Brasília-UnB, Instituto de Física, Núcleo de Física Aplicada, 70910-900 Brasília, DF (Brazil)

    2015-12-01

    In this study we investigate magnetic properties, surface morphology and crystal structure in iron nanoclusters electrodeposited on lightly doped (100) n-type silicon substrates. Our goal is to investigate the spin injection and detection in the Fe/Si lateral structures. The samples obtained under electric percolation were characterized by magnetoresistive and magnetic resonance measurements with cycling the sweeping applied field in order to understand the spin dynamics in the as-produced samples. The observed hysteresis in the magnetic resonance spectra, plus the presence of a broad peak in the non-saturated regime confirming the low field microwave absorption (LFMA), were correlated to the peaks and slopes found in the magnetoresistance curves. The results suggest long range spin injection and detection in low resistive silicon and the magnetic resonance technique is herein introduced as a promising tool for analysis of electric contactless magnetoresistive samples. - Highlights: • Electrodeposition of Fe nanostructures on high resistive silicon substrates. • Spin polarized current among clusters through Si suggested by isotropic magnetoresistance. • Low field microwave absorption arising from the sample shape anisotropy. • Contactless magnetoresistive device characterization by resonance measurements.

  3. The effect of laser treatment on the wear resistance of steel in corrosive media

    International Nuclear Information System (INIS)

    Plyatsko, G.V.; Porter, A.I.; Prejs, G.A.; Mojsa, M.I.

    1975-01-01

    The corrosion mechanical wearing properties of steel 45 treated with a laser beam (H 100 =7800 Mn/sq.m) under friction with nitrated steel 40KhNMA (HV=7000 Mn/sq.m), chrome cast iron Kh15M (hardened and low-temperature tempered, modified), perlite cast iron and bronze are studied. The aqueous buffers with pH=6 and 11 are used as a corrosion active media. In a weakly acid medium the most intensive wearing of steel 40KhNMA is observed at P=8 Mn/sq.m. Its wearing reduces due to increase of pressure to 12 Mn/sq.m. Extent of steel 45 wearing increases with pressure increase from 8 to 12 Mn/sg.m. Friction coefficient of this pair changes by jumps at an increase of normal pressure and its variation range is smaller than that observed in an alkaline medium. The maximum value of friction coefficient is shifted to the higher pressure. The wearing of cast iron Kh15M-steel 45 pair has an alternative pattern. In an alkaline medium the cast iron wearing intensity shows a linear increase with the normal contact pressure but that of the steel changes jumpwise attaining extreme at 8 and 12 Mn/sq.m. In a weak acid medium the intensity of grasping and graphitization at the friction surface of cast iron Kh15M-steel 45 pair is higher than that in the alkaline medium. Experiments demonstrate an effectiveness of the laser beam treatment of steel 45 for its friction in the alkaline medium with nitrated steel 40KhNMA and with hardened low-temperature tempered cast iron 45 under friction contact pressure as high as 8 Mn/sq.m, and in acid medium at 12 and 8 Mn/sq.m respectively. The laser treatment provides high corrosion-mechanical stability of steel 45 and the counterbodies described, as well as the low friction coefficient of these pairs

  4. Leaching studies of radionuclides from solidified wastes with thermosetting resin

    International Nuclear Information System (INIS)

    Suzuki, K.; Kuribayashi, H.; Morimitsu, W.; Ono, I.

    1982-01-01

    This paper reports on studies of the leachability of Co-60 and Cs-137 from simulated LWR radwastes solidified with thermosetting resin and evaluates the effects of chemical fixation on leachability. It is concluded that insolubilization by a nickel-ferrocyanide compound offers an effective chemical fixation of these radionuclides and is a recommended pretreating method for radwastes that are to be solidified. 2 figures

  5. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  6. Bacteriological influence in the development of iron sulphide species in marine immersion environments

    International Nuclear Information System (INIS)

    Jeffrey, Robert; Melchers, Robert E.

    2003-01-01

    Bacteria and microbiological consortia play an important role in the corrosion of steel in marine environments. There are laboratory based experimental findings and images verifying the presence of such consortia but there are few images in the literature of the interaction between bacteria and corrosion processes. The present paper considers the marine immersion corrosion of steel and presents a number of new images which appear to show steps in the metamorphosis of the iron in the steel to forms of iron oxide and to iron-sulphur compounds. These transformations appear to involve interaction with bacteria. Scanning electron microscope images were obtained for the specimens which were exposed to actual seawater conditions. Energy dispersive spectroscopy and X-ray diffraction were used to analyse the corrosion products. Inferences are made about the role of bacteria in the transformations from iron to iron-sulphur compounds

  7. Environmental control measures in sponge iron industry with particular reference to Tata Sponge Iron Limited

    Energy Technology Data Exchange (ETDEWEB)

    Sarangi, B.M.; Kesav, B.; Sheshadri, M.K.

    2002-07-01

    Direct reduced iron or sponge iron technology was developed as an alternate route for steel making and is considered as a clean technology. The waste generation and gas emissions from this route of steel making are far less when compared to the conventional blast furnace route. The paper details the efforts of Tata Sponge Iron Limited to make the process a clean technology without affecting its surroundings and natural resources. The paper describes the system of bag filters made from filter glass fabric for collecting hot waste gases and for dedusting of product and raw material handling circuits. Design of the plant for waste gas cleaning by scrubbers and by electrostatic precipitators is described. Major pollution control equipment installed at Tata Sponge Iron Ltd., described in the article are: a wet gas cleaning plant (in 1986), a second gas cleaning plant with electrostatic precipitator (in 1998) and dust extraction and dust suppression systems. Water is sprayed around the plant to control fugitive dust and trees have been grown around it. 13 figs.

  8. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  9. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations

  10. Microstructures and formation mechanism of hypoeutectic white cast iron by isothermal electromagnetic rheocast process

    Directory of Open Access Journals (Sweden)

    Zhang Wanning

    2010-05-01

    Full Text Available An investigation was made on the evolution of microstructures of hypoeutectic white cast iron slurry containing 2.5wt.%C and 1.8wt.%Si produced by rheocasting in which the solidifying alloy was vigorously agitated by electromagnetic stirrer during isothermal cooling processes. The results indicated that under the proper agitating temperatures and speeds applied, the dendrite structures in white cast iron slurry were gradually evolved into spherical structures during a certain agitating time. It also revealed that the bent dendrites were formed by either convection force or by the growth of the dendrites themselves in the bending direction; then, as they were in solidifying, they were gradually being alternated into separated particles and into more spherical structures at the end of the isothermal cooling process. Especially, the dendrites were granulated as the bending process proceeding, which suggested that they were caused by unwanted elements such as sulfur and phosphor usually contained in engineering cast iron. Convective flow of the melt caused corrosion on the dendritic segments where they were weaker in strength and lower in melting temperature because of higher concentration of sulfur or phosphor. And the granulation process for such dendrites formed in the melt became possible under the condition. Certainly, dendrite fragments are another factors considerable to function for spherical particles formation. A new mechanism, regarding to the rheocast structure formation of white cast iron, was suggested based on the structural evolution observed in the study.

  11. Radioisotope methods of investigations of phenomenons at phases border of steel - atmosphere in gaseous processes of thermochemical treatment of steel

    International Nuclear Information System (INIS)

    L'utse-Birk, A.; Bel'ski, V.; Vez'ranovski, Eh.; Valis', L.

    1979-01-01

    Radioisotope methods of investigations of the processes of thermochemical treatment of steels are valuable, and in some cases, the only means for analysis of complicated mechanisms of diffusion, absorption and chemical reactions, going on in some technological processes. New specific methods are stated for investigation of processes on the border between steel and gaseous atmosphere. Quantative method nas been developed for investigation of the kinetics of carbon transfere (labelled by carbon-14) from steel into gases. Hydrocarbons and their derivatives are adsorbed selectivelly and beta-activity of the compound is measured in the presence of liquid scintillators. Limiting detectable amount of carbon equals to 0.5μg. Application of labelled (by radioisotope iron-59) iron in steel has ensured a possibility to determine its participation in reactions with chromium and titanum coating atmospheres. Application of hydrocarbons labelled by carbon-14 in the composition of titanum coating atmosphere has permitted to determine, in comparison with investigation of carbon diffusion in steel, participation of two different carbon sources in the forming of the TiC layer on steel and has led to the optimization of processes, especially for low-carbon steels [ru

  12. APFIM and TEM investigations of precipitation in rapidly solidified 316 stainless steel

    International Nuclear Information System (INIS)

    Wisutmethangoon, S.; Kelly, T.F.; Flinn, J.E.; Camus, P.P.

    1998-01-01

    316 stainless steel has been rapid solidification-processed (RSP) by gas atomization and hot extrusion of the powder with the intent of improving the mechanical properties through fine-scale precipitation. Vanadium, nitrogen and oxygen have been introduced intentionally as alloying elements for this purpose. The yield strength after solution heat treatment of the RSP alloy is 450 MPa. By ageing at 600 C for 1000 h, the yield strength increases to 615 MPa with little loss of ductility (53% reduction of area). The ultimate tensile strength after cold work and ageing is 922 MPa. The morphology and composition of the precipitates in this steel have been investigated using APFIM and TEM techniques in order understand the origin of the high strength. A high numbered density (∼2 x 10 21 m -3 ) of 25 nm plate-like precipitates was observed with TEM in an aged specimen. The composition of these precipitates was analyzed using APFIM techniques, and was found to be a complex nitride of Cr, V, Fe, Ni and Mo. This nitride precipitate was not found in an unaged specimen of this alloy. These precipitates are responsible for improving mechanical properties by dispersion strengthening. (orig.)

  13. Influence of the thermal history of a particle during atomization on the morphology of carbides in a hypereutectic iron based alloy

    International Nuclear Information System (INIS)

    Kusý, M.; Behúlová, M.; Grgač, P.

    2012-01-01

    Highlights: ► Identification of solidification microstructures in RS powder from iron based alloy. ► Microstructures affected and nonaffected during the post-recalescence period. ► Thermokinetic newtonian model of rapid solidification of a droplet in gas atomization. ► Droplet thermal history and conditions for the microstructure development. ► Parameters influencing development of different solidification microstructures. - Abstract: Basic principles and consequences of the rapid solidification processing of melts have been successfully exploited in several progressive technologies of material production. In the paper, the solidification microstructures developed in the hypereutectic iron based alloy with the chemical composition of 3% C–3% Cr–12% V (wt.%) prepared by nitrogen gas atomization are presented and analysed. Several main types of solidification microstructures were identified in the rapidly solidified powder particles. According to the morphological features of carbide phases and computed thermal history of rapidly solidified particles, the microstructures were divided into two groups – microstructures morphologically non-affected during the post-recalescence period of solidification, and microstructures with morphological transitions occurring during the quasi-isothermal period of structure development. Based on the thermokinetic newtonian model of rapid solidification of a spherical droplet in the process of atomization, the thermal history of droplets with diameter from 20 μm to 400 μm rapidly solidified from different nucleation temperatures was studied. The thermo-physical conditions necessary for the development of variable microstructures in single rapidly solidified powder particles are predicted and discussed. The nucleation temperature, recalescence temperature and duration of quasi-isothermal plateau are supposed to be the most important parameters influencing the microstructure development in the rapidly solidified

  14. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  15. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  16. Japanese steel mills update and expectations to Canadian coal industry

    International Nuclear Information System (INIS)

    Yamaguchi, I.

    2008-01-01

    Kobe Steel's (Kobelco) corporate strategy includes expanding from only-one product such as high tensile strength steel sheet, and enlarging overseas production capacity through joint ventures and technical alliances. A new steel making process from low quality iron ore and steaming coal called ITmk3 has been developed by Kobe Steel that does not require any coke, reduces carbon dioxide emissions by 20 per cent, and reduces the cost of transporting slag. This strategy and technology was presented along with the changes surrounding the Japanese steel industry and raw materials market. These changes include the rise of emerging oil-producing countries; world steel production and exports; the rise in prices of resources; and the slowdown of the United States economy. The current situation of Japanese crude steel production, pig-iron production, and coke expansion plans were also presented. The presentation also outlined expectation's of the Canadian coal industry with reference to Canadian coal imports to Japan. tabs., figs

  17. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  18. An internal friction peak caused by hydrogen in maraging steel

    International Nuclear Information System (INIS)

    Usui, Makoto; Asano, Shigeru

    1996-01-01

    Internal friction in hydrogen-charged iron and steel has so far been studied by a large number of investigators. For pure iron, a well-defined peak of internal friction has been observed under the cold-worked and hydrogen-charged conditions. This is called the hydrogen cold-work peak, or the Snoek-Koester relaxation, which originates from the hydrogen-dislocation interaction. In the present study, a high-strength maraging steel (Fe-18Ni-9Co-5Mo) was chosen as another high-alloy steel which is known to be very susceptible to hydrogen embrittlement. The purpose of this paper is to show a new internal friction peak caused by hydrogen in the maraging steel and to compare it with those found in stainless steels which have so far been studied as typical engineering high-alloy materials

  19. What would be the effects of a carbon tax in Japan: an historic analysis of subsidies and fuel pricing on the iron & steel, chemical, and machinery industries

    Directory of Open Access Journals (Sweden)

    Takako Wakiyama

    2016-06-01

    Full Text Available This study examines how a carbon tax could affect industrial-related carbon dioxide (CO2 emissions in Japan. Rather than forecasting the effects of a tax, the paper employs a time-series autoregressive moving average (ARMA model to determine how past subsidies and fuel price changes affected investments in energy and carbon intensity in Japan’s iron & steel, chemical, and machinery industries from 1993 to 2004. The results suggest the impacts varied greatly across industries. In the iron & steel industry, subsidies and price changes produced negligible effects on investments in energy and carbon intensity. This may be because existing iron & steel technologies have long lifetimes and substantial replacement costs. It may also be because the few large companies dominating the industry were relatively immune to subsidy provisions and pricing changes. In the chemical industry, subsidies and fuel prices gave rise to investments that improved carbon and energy intensity. This may be because the industry has relatively higher operation costs that could be cut easily given financial incentives. In the machinery industry, two of three fuel price changes (oil and gas, but not subsidy provisions, yielded improvements in carbon and energy intensity. This may reflect the heterogeneity of companies and products comprising the industry. Overall, the study underscores that policymakers need to tailor the rates and revenue recycling provisions of a carbon tax to an industry’s unique features to stimulate CO2 reductions.

  20. Application of natural gas to the direct reduction of iron ore

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    The Gas Committee of the U.N. Economic Commission for Europe evaluated the potentials of natural gas for direct reduction of iron ore. The report, based essentially on that by the Italian representative E. Pasero with comments and observations from experts of the other member countries, indicated the general tendency of the iron and steel industry to use natural gas to reduce production costs by reducing coke consumption. By the end of 1972, gas consumption by these industries was reported at 38.8 billion Btu/ton (10.79 Gcal/m ton) by the Steel Committee of the U.N. Economic Commission at the symposium on the economic and technical aspects of the direct reduction of iron ore, held in September 1972 in Bucharest. In comparison, coke consumption was 9.5 billion Btu/ton (2.64 Gcal/m ton) steel, liquid hydrocarbons 3.1 billion Btu (0.85 Gcal), and electricity 16.1 billion Btu (4.46 Gcal). Natural gas was used mainly for ore reduction and generation of the reducing gas in-shaft furnaces with backdraft heating circulation, fixed-bed furances (Hyl type), and fluidized-bed reactors. Processes include the Midrex (shaft furnace), H.I.B. (fluidized bed), and Novalfer (fluidized bed). These processes are used to obtain 4.5 million tons/yr of iron sponge for the production of steel in electric furnaces. The natural gas outlook for direct reduction of iron will depend on local conditions and fuel availability. Its industrial application has been most successful in mini-steel installations, especially in the U.S., Japan, and Western Europe, and it is recommended for developing countries with no steel-industry basis.

  1. Study of granitic biotites by X-ray fluorescence analysis: determination of iron, manganese, titanium, calcium, potassium, silicon and aluminium; Estudio de biotitas graniticas por fluorescencia de rayos X: Determinacion de hierro, manganeso, titanio, calcio, potasio, silicio y aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Toubes, R. O.; Bermudez Polonio, J.

    1968-07-01

    A method for the quantitative determination of iron, manganese, titanium, calcium potassium, silicon, and aluminium, is reported, Sample preparation is carried out by the miniature flux technique, and rubidium is used as internal standard for silicon and aluminium. (Author) 5 refs.

  2. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    OpenAIRE

    Mussatti, Eleonora; Merlini, Claudia; Barra, Guilherme Mariz de Oliveira; Güths, Saulo; Oliveira, Antonio Pedro Novaes de; Siligardi, Cristina

    2012-01-01

    The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3). The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5%) were prepared through the casting process followed by compression molding at room temperature. The composites were ana...

  3. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  4. Sickness Absenteeism, Morbidity and Workplace Injuries among Iron and Steel workers – A Cross Sectional Study from Karnataka, Southern India

    Directory of Open Access Journals (Sweden)

    Manjunatha R

    2011-03-01

    Full Text Available BackgroundThe study of illnesses causing absence of workers from workin industries is a practical method to study the health statusof industrial workers and to identify occupational healthhazards. The iron and steel industries are particularlyhazardous places of work. Published data from India onhealth status of iron and steel workers is limited, thereforethis study was undertaken to investigate the sicknessabsenteeism, morbidity and workplace injuries among thispopulation.MethodWorkers were selected using stratified random sampling. Astructured pre-tested interview schedule was used tocollect the data. A p value of < 0.05 was considered forstatistical significance.ResultsFrom a total of 2525 workers, 353 (mean age 55.1 yrs, male69.4% participated in the study. The overall proportion ofsickness absenteeism was 66.9% (95% CI: 0.62 – 0.71.Overall 16.4 days were lost per worker per year (male = 16.5& female = 16.2 due to sickness absence. A blue collarworker lost 21.5 days compared to 11.9 days by a whitecollar worker (p < 0.01. Among workers, health ailmentsrelated to the musculoskeletal system (31.4%,gastrointestinal system (25.8%, hypertension (24.4%,respiratory system (18.1% and other minor ailments(19.3% were found to be high.ConclusionSickness absenteeism is significantly higher among iron andsteel workers when compared to other occupations in India.Blue collar workers and shift workers loose higher numberof days due to sickness absence, and they face problemsrelated to musculoskeletal system, gastrointestinal systemand hypertension in higher proportions compared to theircounterparts. Women experienced hypertension as thecommon health problem and higher proportions of injuriesoutside the work environment.

  5. The morphology of coating/substrate interface in hot-dip-aluminized steels

    International Nuclear Information System (INIS)

    Awan, Gul Hameed; Hasan, Faiz ul

    2008-01-01

    In hot-dip-aluminized (HAD) steels, the morphology and the profile of the interface between the aluminum coating and the substrate steel, are affected both by the composition of the molten aluminum as well as by the composition, and even the microstructure, of the substrate steel. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The reaction between the steel and the molten aluminum leads to the formation of Fe-Al inter-metallic compounds on the steel surface. The thickness of the inter-metallic compound layer as well as the morphology of the interface between the steel and the interlayer varies with the silicon content of the molten aluminum. In hot-dip-aluminizing with pure aluminum, the interlayer is 'thick' and exhibits a finger-like growth into the steel. With a gradually increasing addition of silicon into the aluminum melt, the thickness of the interlayer decreases while the interface between the interlayer and the substrate gradually becomes 'smoother'. With an increase in the carbon content of the substrate steel the growth of the interlayer into the steel is impeded by the pearlite phase, whereas the ferrite phase appears to dissolve more readily. X-ray diffraction and electron microscopic studies showed that the interlayer formed in samples aluminized in pure aluminum, essentially consisted of orthorhombic Fe 2 Al 5 . It was further observed that the finger-like grains of Fe 2 Al 5 phase exhibited a preferred lattice orientation. With a gradual addition of silicon into the aluminum melt, a cubic phase based on Fe 3 Al also started to form in the interlayer and replaced most of the Fe 2 Al 5

  6. Determination of metallic iron in sponge-iron

    International Nuclear Information System (INIS)

    Mueller, C.S.

    1974-01-01

    The amount of metallic iron in sponge-iron is a parameter of major interest in the evaluation of the performance of the ore-reduction process and in the determination of the composition of the load of the electric furnace used to produce the steel. Moessbauer effect offers the promise of a simple and elegant analysis method, capable of competing directly with the usually time-consuming chemical procedures. The applicability of the method is considered and the possible sources of error are analyzed, resulting in the design of an instrument that is reasonably accurate and simple to use. Detailed electronic circuity required to produce a direct-reading digital instrument is shown [pt

  7. Leaching behavior of solidified plastics radioactive wastes

    International Nuclear Information System (INIS)

    Yook, Chong Chul; Lee, Byung Hun; Jae, Won Mok; Kim, Kyung Eung

    1986-01-01

    It is highly needed to develope the solidification process to dispose safely the radioactive wastes increasing with the growth of the nuclear industry. The leaching mechanisms of the solidified plastic wastes were investigated and the leaching rates of the plastic wastes were also measured among the many solidification processes. In addition, the transport equation based on the diffusion or the diffusion-dissolution was compared with the empirical equation derived from the experimental data by graphical method. Consequently, leaching process of the solidified plastic wastes is quite well agreed with the mass transport theory, but it may be difficult to simulate leaching process by diffusion dissolution mechanism. But the theoretical equation could be applicable to the cumulative amount of radionuclides leached form the plastic wastes disposed into the environment. (Author)

  8. Characterising the reactivity of metallic iron in Fe0/As-rock/H O ...

    African Journals Online (AJOL)

    2011-06-03

    Jun 3, 2011 ... commercial iron for other purposes (e.g. construction steel, iron nails, steel wool), ... materials is to stress them in systems where building of a protective film at .... A stable flow rate was maintained throughout the experiment. .... parameters from such systems could help to develop more reliable models to.

  9. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  10. Enforcement Alert: U.S. EPA Encourages Iron and Steel Minimills to Self Audits to Address Noncompliance with Environmental Requirements; Nucor Corp. agrees to Control Practices; Provides Model for Industry

    Science.gov (United States)

    This is the enforcement alert for U.S. EPA Encourages Iron and Steel Minimills to Self Audits to Address Noncompliance with Environmental Requirements; Nucor Corp. agrees to Control Practices; Provides Model for Industry

  11. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Directory of Open Access Journals (Sweden)

    Raja Sufi

    2011-01-01

    Full Text Available Abstract A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs, with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.

  13. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  14. Determination of silicon and chromium content in gray cast iron by the Van der Pauw method; Determinacion del contenido de silicio y cromo en fundiciones grises mediante el metodo de Van der Pauw

    Energy Technology Data Exchange (ETDEWEB)

    Tremps, E.; Enrique, J. L.; Moron, C.; Garcia, A.; Gomez, A.

    2013-07-01

    In this paper we show a system based on the resistivity measurement of samples of gray cast iron by the Van der Pauw method to calculate the silicon content in the samples. Twenty five trials have been carried out, studying resistive and metallographic characteristics of the samples. This has demonstrated that it is possible to obtain, by this method, the silicon content in molten flat with low content of alloying elements, also the content of chromium in series smelters where the rate of silicon remains constant. (Author)

  15. Anti frictional materials iron-pig iron-brass manufacture using shaving waste products of pig-iron

    International Nuclear Information System (INIS)

    Nasamov, S. N.; Krivij, N.; Gudenau, H. W.; Babich, A. I.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Parts based on iron and steel powders are widely used in the manufacture of automobile and domestic equipment. This work was done to study the anti-friction properties of iron-pig iron-brass compositions of materials which were obtained by pressing and sintering from a mix of iron powders and industrial by products of cast-iron turnings, brass, talc and technical sulphur. Experiments were performed using cold pressure technology in the flowing matrix of the powder composite without solid lubricants. The subsequent sintering was carried out at 1200 degree centigree under isothermal conditions in a nitrogen atmosphere in the sintering zone during 1 h. The physical-mechanical and anti-friction properties were almost double by the active drainage of the gases from the compression mould. The study of the microstructure of the sintered materials showed that free cementite existed between the particle limits and around the pores. large agglomerations of dark inclusions could be observed, consisting of graphite, zinc and iron oxides, which were points of tension in the materials that reduce its durability and, therefore, its wear resistance to dry friction. (Author) 34 refs

  16. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  17. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  18. Preparation of yttrium iron garnet (YIG) by modified domestic iron oxide

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian

    2002-01-01

    Iron oxide by product of a local steel complex was modified to use for preparation of Yttrium iron garnet (YIG). The improvement was necessary to reduce impurities, especially the Si0 2 and Cl contents, which have deteriorative effects on magnetic properties and equipment used for preparation of the samples. The modified iron oxide was then mixed with Yttrium oxide of Merck Company in appropriate proportion to obtain a stoichiometric single phase YIG, using the conventional ceramic technique. XRD and SEM equipments were used to identify the resulting phases and microstructure respectively. Magnetic parameters were measured by VSM. Curie temperature of the samples was obtained by DTG (M) method. The results were compared with those obtained from samples that made by Merck iron oxide. There are small differences between the results. This was discussed according to extra pores and minute secondary phase in the samples made by domestic iron oxide. (Author)

  19. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  20. Cavity nucleation and growth during helium implantation and neutron irradiation of Fe and steel

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, Bachu Narain

    In order to investigate the role of He in cavity nucleation in neutron irradiated iron and steel, pure iron and Eurofer-97 steel have been He implanted and neutron irradiated in a systematic way at different temperatures, to different He and neutron doses and with different He implantation rates....

  1. Welding and Weldability of Directionally Solidified Single Crystal Nickel-Base Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, J M; David, S A; Reed, R W; Burke, M A; Fitzgerald, T J

    1997-09-01

    Nickel-base superalloys are used extensively in high-temperature service applications, and in particular, in components of turbine engines. To improve high-temperature creep properties, these alloys are often used in the directionally-solidified or single-crystal form. The objective of this CRADA project was to investigate the weldability of both experimental and commercial nickel-base superalloys in polycrystalline, directionally-solidified, and single-crystal forms.

  2. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    Science.gov (United States)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  3. A numerical study of the influence of feeding polycrystalline silicon granules on melt temperature in the continuous Czochralski process

    Science.gov (United States)

    Ono, Naoki; Kida, Michio; Arai, Yoshiaki; Sahira, Kensho

    1993-09-01

    Temperature change was simulated using a solid body rotating melt model when solid polycrystalline silicon granules were supplied to a melt in a double-crucible method. Only heat conduction was considered in the analysis. The influence of the crucible rotation rates and of the initial temperature of the supplied silicon was investigated systematically and quantitatively. The influence of the crucible rotation rate was stronger than expected, which suggests that the crucible rotation rate cannot be lowered too much because of the possibility of the melt solidifying between the inner and outer crucibles.

  4. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  5. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  6. Welding by submerged arc of steel with addition of iron powder; Soldagem por arco submerso de aco microligado com adicao de po de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Souza, Paulo C.R. D. de [SICOM Compressores Ltda., Sao Carlos, SP (Brazil); Magalhaes Bento Goncalves, Gilberto de [Bauru Univ., SP (Brazil)

    1993-12-31

    Welding metals with and without iron powder addition were produced in steel plates ASTM A 242 by submerged arc process. as a conclusion, the mechanical properties of hardness and toughness of weld metal and heat affect zone were more affected when the welding were done with lower heat input. (author). 16 refs., 3 figs., 9 tabs.

  7. X-ray fluorescence diffractionless analyzer for determining light element content in iron ore mixtures

    International Nuclear Information System (INIS)

    Yuksa, L.K.; Kochmola, N.M.; Bondarenko, V.P.; Bogdanov, V.K.

    1986-01-01

    Diffractionless X-ray fluorescence analyzer for detecting calcium oxide and silicon dioxide contents in dry iron ore materials has been developed. The analyzer includes a charging unit, sample-conveying device, spectrometric units for detecting calcium and silicon, computing racks and sample-removing device. Results of calcium oxide and silicon dioxide analyses in iron ore mixtures are presented. Errors are evaluated. It is shown that the analyzer provides high accuracy of one-time determinations, as well as reading constancy for a long time

  8. Tensile behavior change depending on the microstructure of a Fe-Cu alloy produced from rapidly solidified powder

    International Nuclear Information System (INIS)

    Kakisawa, Hideki; Minagawa, Kazumi; Halada, Kohmei

    2003-01-01

    The relationship between consolidating temperature and the tensile behavior of iron alloy produced from Fe-Cu rapidly solidified powder is investigated. Fe-Cu powder fabricated by high-pressure water atomization was consolidated by heavy rolling at 873-1273 K. Microstructural changes were observed and tensile behavior was examined. Tensile behavior varies as the consolidating temperature changes, and these temperature-dependent differences depend on the morphology of the microstructure on the order of micrometers. The sample consolidated at 873 K shows a good strength/elongation balance because the powder microstructure and primary powder boundaries are maintained. The samples consolidated at the higher temperatures have a microstructure of recrystallized grains, and these recrystallized samples show the conventional relationship between tensile behavior and grain size in ordinal bulk materials

  9. Current status of iron and steelmaking technology at Tata Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.D.; Poddar, M.N.; Chandra, S. [Tata Steel, Jamshedpur (India)

    2002-07-01

    Tata Steel was set up in the early years of the 20th century and over the years the plant has grown into one of the most modern steel plants in the world. The philosophy of phase-wise modernisation on a continuing basis was adopted by Tata Steel with great advantage for the modernisation of the two million tonne Jamshedpur Steel Works. Four phases of the modernisation programme have already been successfully completed and their gains consolidated. Adoption and absorption of the latest technologies, fundamental changes in the operating philosophy and setting of stretch performance targets have brought about this remarkable transformation. The recently commissioned state of the art 1.2 Mtpa Cold Rolling Mill Complex is an example of Tata Steel remaining in harmony with times. Another is the use of pulverised coal injection in blast furnaces. The paper highlights some of the important technological developments in integrated steel plants, particularly those being practiced at Tata Steel, in the areas of ironmaking, steelmaking, casting and rolling for retaining its competitive position in the global market with regard to cost, customer and change. 9 refs., 21 figs., 2 tabs.

  10. Rapidly solidified aluminium for optical applications

    NARCIS (Netherlands)

    Gubbels, G.P.H.; Venrooy, B.W.H. van; Bosch, A.J.; Senden, R.

    2008-01-01

    This paper present the results of a diamond turning study of a rapidly solidified aluminium 6061 alloy grade, known as RSA6061. It is shown that this small grain material can be diamond turned to smaller roughness values than standard AA6061 aluminium grades. Also, the results are nearly as good as

  11. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  12. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.; Takiguchi, H.

    2009-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. It is considered that solubility is the most important factor to determine the effect of water chemistry on FAC. In the present study, effect of specific oxide on FAC rate was studied from the thermodynamic solubility of iron. The effects of temperature and pH on the iron solubility were evaluated by taking into consideration hydrolysis reactions of ferrous iron, dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and charge balance. The correlation between the iron solubility and FAC behavior was evaluated by using the normalized mass transfer coefficient. It is clarified that the product of iron solubility equilibrated with Fe 3 O 4 and normalized mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate presence of magnetite on the surface of carbon steel. Diffusion of iron from the saturated layer determines the FAC rate from water chemistry aspect. (author)

  13. Influence of iron powder addition onto heat inputs, at stainless steels welds; Influencia da adicao do po de ferro no insumo de calor e na ZAC, em soldas de aco ARBL

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Magalhaes B Goncalves, Gilberto de; Souza, Paulo C.R.D. de

    1992-12-31

    In this work, welding with or without iron powder addition in stainless steels were produced. The welds obtained in only one pass with three different angles of grooves and several welding condition. The results showed that the heat input changes with and without iron powder addition that were found out by the cooling rates changes in weld pool. (author). 10 refs., 4 figs., 4 tabs.

  14. Ductile fracture evaluation of ductile cast iron and forged steel by nonlinear-fracture-mechanics. Pt. 1. Tensile test by large scaled test pieces with surface crack

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto

    1999-01-01

    The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)

  15. Microstructure and wear behavior of austempered high carbon high silicon steel

    Directory of Open Access Journals (Sweden)

    Acharya Palaksha

    2018-01-01

    Full Text Available In the present investigation, the influence of austempering temperature and time on the microstructure and dry sliding wear behavior of high silicon steel was studied. The test specimens were initially austenitised at 900°C for 30 minutes, thereafter austempered at various temperatures 280°C, 360°C and 400°C, for varying duration from 30 to 120 minutes. These samples after austempering heat treatment were subsequently air cooled to room temperature, to generate typical ausferritic microstructures and then correlated with the wear property. The test outcomes demonstrate the slight increase in specific wear rate with increase in both austempering temperature and time. Specific wear rate was found to be minimum at an austempering temperature of 280°C, that exhibits lower bainite microstructure with high hardness, on the other hand specific wear rate was found to be slightly high at increased austempering temperatures at 360°C and 400°C, due to the upper bainite structure that offered lower hardness to the matrix. The sample austempered at 280°C for 30 minutes offered superior wear resistance when compared to other austempering conditions, mainly due to the presence of fine acicular bainitic ferrite along with stabilized retained austenite and also some martensite in the microstructure.

  16. Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

    Science.gov (United States)

    Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari

    2016-01-01

    The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967

  17. Corrosion behaviour of ductile cast irons partially modified with silicon in 0.03 M NaCl; Comportamiento frente a la corrosion de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, M. A.; Niklas, A.; Conde, A.; Mendez, S.; Sertucha, J.; Damborenea, J. J. de

    2014-07-01

    NaCl. The increasing demand of ductile cast irons with extensive technological applications leads to enlarge the corrosion resistance of this group of metallic materials. In this sense, the use of different chemical compositions on such cast irons becomes one of the most interesting aspects among the different ways to improve their behaviour against corrosion due to the extra opportunity for increasing the mechanical properties. Additionally such improvements have to be made without any increase of processing costs to keep the interesting competitiveness of developed cast irons. In the present work the preliminary results obtained from corrosion tests made on a group of cast irons with different chemical compositions are presented. Among ductile cast irons, silicon content has been varied in order to investigate the effect of this element on corrosion resistance of the alloys. The obtained results show a slight improvement of this property for the alloys with high silicon content with respect to the conventional ones though such effect was found in the first time period of the corrosion tests. Interestingly this improvement was found for alloys that exhibit better tensile properties than the conventional ductile irons. Thus an important way for developing new ductile cast irons with improved corrosion properties by alloying has been opened. (Author)

  18. Characterisation by esca of iron componds formed on the nuclear steels by surface engeneering

    International Nuclear Information System (INIS)

    Minca, M.; Oncioiu, G.; Coaca, E.; Rusu, O.; Florea, S.; Andrei, V.

    2013-01-01

    In this work it is presented an approach for characterization of the oxide films by assigning the binding energy of the chemical states according with a theoretical analysis. In order to exemplify the method developed there are presented analyses on the internal standards a-Fe 2 O 3 and Fe 3 O 4 ), as well as analysis of superficial structure on austenitic steel samples on which different treatments of surface engineering were made. It is also presented a depth profiling analysis type, achieved by ball cratering method, which allow determining the distribution of different chemical elements with depth. One can follow the distribution of the valence states, Fe 2+ and Fe 3+ , with depth. By means of the presented method it can be precisely determined the valence states of Fe and their weight in the oxide iron films. (authors)

  19. High-rate behaviour of iron ore pellet

    Science.gov (United States)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  20. Magnetorheology of submicron diameter iron microwires dispersed in silicone oil

    International Nuclear Information System (INIS)

    Bell, R C; Karli, J O; Vavreck, A N; Zimmerman, D T; Ngatu, G T; Wereley, N M

    2008-01-01

    We investigate the magnetorheological (MR) properties of suspensions containing iron microwires with 260 nm diameter and two distinct length distributions of 5.4 ± 5.2 µm and 7.6 ± 5.1 µm suspended in silicone oil (0.45 Pa s). The rheological properties of these fluids were determined using a parallel plate rheometer equipped with a variable strength electromagnet. The shear stress was measured as a function of shear rate for increasing applied magnetic fields. These results were modeled using the Bingham-plastic constitutive model to determine the apparent yield stress and viscosity as a function of increasing volume fraction and length of microwires. At a saturated magnetic flux density, the yield stress using the 5.4 µm microwires was found to be 0.65, 2.23, and 4.76 kPa for the 2, 4, and 6 vol% suspensions, respectively. For the 7.6 µm wires, the yield stress increases to 8.2 kPa for the 6 vol% suspension. Compared with conventional MR fluids employing spherical particles, the degree of settling is markedly decreased in the microwire-based fluids. At 6 vol%, conventional fluids display appreciable settling whereas the microwire-based fluids display no discernable settling. Moreover, the rod-shaped microwires are shown to increase the yield stress of the fluids and enhance the MR performance

  1. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  2. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  3. Process water geochemistry and interactions with magnetite at the Kiirunavaara iron mine, northern Sweden

    OpenAIRE

    Westerstrand, Magnus

    2013-01-01

    Current global estimates indicate that ca. 2400 million tonnes of iron is produced annually, most of which is used to make steel. Due to the associated costs, environmental challenges and energy consumption, steel is one of the world’s most intensively recycled materials. For example, about 98 % of structural steel is recycled in the USA. However, iron production is still increasing. Costs, prices and environmental demands have led to increased recycling, but also increased attention to the p...

  4. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  5. Influence of Thermal Parameters, Microstructure, and Morphology of Si on Machinability of an Al–7.0 wt.% Si Alloy Directionally Solidified

    Directory of Open Access Journals (Sweden)

    Cássio A. P. Silva

    2018-01-01

    Full Text Available This study aims to correlate the influence of thermal and microstructural parameters such as growth rate and cooling rate (VL and TR and secondary dendrite spacing (λ2, respectively, in the machining cutting temperature and tool wear on the necking process of the Al–7 wt.% Si alloy solidified in a horizontal directional device using a high-speed steel with a tungsten tool. The dependence of λ2 on VL and TR and dependence of the maximum cutting temperature and maximum flank wear on λ2 were determined by power experimental laws given by λ2 = constant (VL and TRn and TMAX, VBMAX = constant (λ2n, respectively. The maximum cutting temperature increased with increasing of λ2. The opposite occurred with the maximum flank wear. The role of Si alloying element on the aforementioned results has also been analyzed. A morphological change of Si along the solidified ingot length has been observed, that is, the morphology of Si in the eutectic matrix has indicated a transition from particles to fibers along the casting together with an increase of the particle diameters with the position from the metal/mold interface.

  6. Method of purifying metallurgical grade silicon employing reduced pressure atmospheric control

    Science.gov (United States)

    Ingle, W. M.; Thompson, S. W.; Chaney, R. E. (Inventor)

    1979-01-01

    A method in which a quartz tube is charged with chunks of metallurgical grade silicon and/or a mixture of such chunks and high purity quartz sand, and impurities from a class including aluminum, boron, as well as certain transition metals including nickel, iron, and manganese is described. The tube is then evacuated and heated to a temperature within a range of 800 C to 1400 C. A stream of gas comprising a reactant, such as silicon tetrafluoride, is continuously delivered at low pressures through the charge for causing a metathetical reaction of impurities of the silicon and the reactant to occur for forming a volatile halide and leaving a residue of silicon of an improved purity. The reactant which included carbon monoxide gas and impurities such as iron and nickel react to form volatile carbonyls.

  7. Mechanism and simulation of droplet coalescence in molten steel

    Science.gov (United States)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  8. Model of converter dusts and iron-bearing slurries management in briquetting

    Directory of Open Access Journals (Sweden)

    P. Gara

    2016-07-01

    Full Text Available An important problem in metallurgy of iron and steel is management of hydrated, fine-grained, iron-bearing waste which can be formed as a result of gas scrubbing. The article presents a model of application of converter slurry in a closed-circuit flow system. The correct preparation of slag, namely briquetting with defined additives, allows for application of such slag in the steel-making process as the substitute for scrap metal.

  9. Emission factors of the iron and steel sector for the emission reporting; Emissionsfaktoren zur Eisen- und Stahlindustrie fuer die Emissionsberichterstattung

    Energy Technology Data Exchange (ETDEWEB)

    Hensmann, Michael; Haardt, Sebastian; Ebert, Dominik [Betriebsforschungsinstitut VDEh-Institut fuer Angewandte Forschung GmbH, Duesseldorf (Germany)

    2012-10-15

    The German Umweltbundesamt (UBA) records emission factors of important groups of emitters of the iron- and steelmaking industry in a central database named ''Zentrales System Emissionen'' (ZSE) since 1990. This data is being used for calculations of emission inventories. The main purposes are the generation of forecasts, calculating emissions of other plants and the appraisal of potential measures for reduction of pollution. This makes it possible to identify and appraise future problems and measures. Because of steadily increasing requirements to data quality and quality assurance, it became necessary to update the ZSE with characteristical emission data in order to give a representative view of relevant stages in the iron- and steelmaking industry with respect to emissions. In 2008, the VDEh-Betriebsforschungsinstitut (BFI) was assigned to determine up-to-date emission factors for the following relevant stages in the iron- and steelmaking industry: - sintering plant - coking plant - blast furnace - steel making (differentiated between oxygen and electric steel making) - production of rolled steel Due to a wide diversity of data quality, a consecutive project to determine the corresponding uncertainty of the emission factors was integrated into the ongoing project. This is necessary to create reliable forecasts of emissions and to meet national and international duties of reporting. The project was supported by 18 companies of the German iron- and steelmaking industry. A total of 40 relevant sources of emissions were identified within the five stages of steelmaking and taken into consideration. The emission data for documenting organic and inorganic components of harmful gas, heavy metals and air borne dusts in the ZSE was taken from the reports of emissions 2008 of the supporting companies and made up for a total of 63 plants. Due to a wide variety of data quality the emissions of point sources and diffuse sources are treated separately. While

  10. Dependence of quality properties for grey iron on used raw materials

    Directory of Open Access Journals (Sweden)

    E. Weiss

    2009-01-01

    Full Text Available Grey iron castings keep the first place among castings on base of iron. Present trend in growing entrance production costs of cast stock force manufacturer to cost minimizing. Therefore is most actual deal replacement pig iron by steel scrap. In contribution are presented results research work relating to influence of raw materials on grey iron properties.

  11. Crystallographic orientation study of silicon steels using X-ray diffraction, electrons diffraction and the Etch Pit method

    International Nuclear Information System (INIS)

    Santos, Hamilta de Oliveira

    1999-01-01

    The aim of the present study is the microstructural and crystallographic orientation of Fe-3%Si steel. The silicon steel shows good electrical properties and it is used in the nuclear and electrical power fields. The studied steel was supplied by Cia. Acos Especiais Itabira S/A - ACESITA. The material was received in the hot compressed condition, in one or two passes. The hot compressing temperatures used were 900, 1000 and 1100 deg C with soaking times ranging from 32 to 470 s. The material preferential crystallographic orientation was evaluated in every grain of the samples. The characterization techniques used were: scanning electron microscopy (SEM) using the etch pit method; X ray diffraction using the Laue back-reflection method; orientation imaging microscopy (OIM). Microstructural characterization in terms of grain size measurement and mean number of grains in the sample were also undertaken. The Laue method was found an easy technique to access crystallographic orientation of this work polycrystalline samples 2.5 mm average grain size. This was due to the inability to focus the X-rays on a single grain of the material. The scanning electron microscopy showed microcavities left by the etch pit method, which allowed the observation of the crystallographic orientation of each grain from the samples. No conclusive grain crystallographic orientation was possible to obtain by the OIM technique due to the non-existing rolling direction. A more extensive work with the OIM technique must be undertaken on the Fe-3%Si with oriented grains and non oriented grains. (author)

  12. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    International Nuclear Information System (INIS)

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-01-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced

  13. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  14. Carbon steel protection in G.S. (Girlder sulfide) plants. Influence of the material surface state. Pt. 2

    International Nuclear Information System (INIS)

    Burkart, A.L.; Garavaglia, R.N.

    1983-05-01

    The passivation on carbon steels, in particular ASTM A 516 Degree 60 and ASTM A 333 steels is made, submitting it to the action of H 2 S/H 2 O 1,2 corrosive medium. The steel is rapidly corroded by H 2 S in aqueous solution, forming iron sulfides on the metallic surface in a crystalline layer of various μm of thickness. During this process, various types of iron sulfides at different phases, with different sulfur and iron contents are formed. The influence of temperature, the pH, the exposure time and the corrosive medium composition on formation and quality of the iron sulfides protective layer was also studied. (Author) [es

  15. Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life

    Science.gov (United States)

    Zaretsky, Erwin V.; Vlcek, Brian L.; Hendricks, Robert C.

    2005-01-01

    Three decades have passed since the introduction of silicon nitride rollers and balls into conventional rolling-element bearings. For a given applied load, the contact (Hertz) stress in a hybrid bearing will be higher than an all-steel rolling-element bearing. The silicon nitride rolling-element life as well as the lives of the steel races were used to determine the resultant bearing life of both hybrid and all-steel bearings. Life factors were determined and reported for hybrid bearings. Under nominal operating speeds, the resultant calculated lives of the deep-groove, angular-contact, and cylindrical roller hybrid bearings with races made of post-1960 bearing steel increased by factors of 3.7, 3.2, and 5.5, respectively, from those calculated using the Lundberg-Palmgren equations. An all-steel bearing under the same load will have a longer life than the equivalent hybrid bearing under the same conditions. Under these conditions, hybrid bearings are predicted to have a lower fatigue life than all-steel bearings by 58 percent for deep-groove bearings, 41 percent for angular-contact bearings, and 28 percent for cylindrical roller bearings.

  16. Electromagnetic properties of carbonyl iron and their microwave ...

    Indian Academy of Sciences (India)

    Administrator

    The aim of this paper is to develop a novel thin micro- wave absorber with good absorbing performance in wide bandwidth and lightweight. So we investigated the micro- wave absorbing characterization of silicone rubber using carbonyl iron as filler. Carbonyl iron can be widely used in the field of electromagnetic shielding ...

  17. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10"-"4 mol s"-"1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  18. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Jie, J.C.; Zou, C.M.; Brosh, E.; Wang, H.W.; Wei, Z.J.; Li, T.J.

    2013-01-01

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al 12 Mg 17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al 3 Mg 2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  19. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  20. Research on CO2 Emission Reduction Mechanism of China’s Iron and Steel Industry under Various Emission Reduction Policies

    Directory of Open Access Journals (Sweden)

    Ye Duan

    2017-12-01

    Full Text Available In this paper, a two-stage dynamic game model of China’s iron and steel industry is constructed. Carbon tax levy, product subsidy, carbon capture and sequestration (CCS and other factors are included in the emission reduction mechanism. The effects of emissions reduction and the economic impact of China’s overall steel industry (and that of its six main regions are investigated for the first time under different scenarios. As new findings, we report the following: (1 Not all factors declined. The overall social welfare, consumer surplus, output and emissions decrease with a gradual increase in the reduction target, whereas the carbon tax value, unit value of product subsidies and total subsidies show a rising trend; (2 A combination of multiple emissions reduction policies is more effective than a single policy. With the implementation of a combined policy, regional output polarization has eased; (3 Steel output does not exceed 950 million tons, far below the current peak. These results will help the industry to formulate reasonable emissions reduction and output targets. In short, in effort to eliminate industry poverty and to alleviate overcapacity, the industry should not only adopt the various coordinated reduction policies, but also fully consider regional differences and reduction needs.