WorldWideScience

Sample records for solid-phase extraction sorbent

  1. Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting

    Science.gov (United States)

    Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.

  2. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD) and Dispersive Solid Phase Extraction (d-SPE) of Plant Samples

    Science.gov (United States)

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał

    2018-01-01

    Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297

  3. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Silica Modified with Polyaniline as a Potential Sorbent for Matrix Solid Phase Dispersion (MSPD and Dispersive Solid Phase Extraction (d-SPE of Plant Samples

    Directory of Open Access Journals (Sweden)

    Ireneusz Sowa

    2018-03-01

    Full Text Available Polyaniline (PANI is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME. In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI was used for dispersive solid phase extraction (d-SPE and matrix solid–phase extraction (MSPD. The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples.

  5. The use of solid sorbents for direct accumulation of organic compounds from water matrices : a review of solid-phase extraction techniques

    NARCIS (Netherlands)

    Liska, I.; Krupcik, J.; Leclercq, P.A.

    1989-01-01

    The main principles of solid-phase extraction techniques are reviewed in this paper. Various solid sorbents can be used as a suitable trap for direct accumulation of organic compounds from aqueous solutions. The trapped analytes can be desorbed by elution with suitably chosen liquid phases. These

  6. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    Science.gov (United States)

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  8. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    International Nuclear Information System (INIS)

    Herrero Latorre, C.; Álvarez Méndez, J.; Barciela García, J.; García Martín, S.; Peña Crecente, R.M.

    2012-01-01

    Highlights: ► The use of CNTs as sorbent for metal species in solid phase extraction has been described. ► Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. ► Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes – due to their high adsorption and desorption capacities – have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  9. Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: A review

    Energy Technology Data Exchange (ETDEWEB)

    Herrero Latorre, C., E-mail: carlos.herrero@usc.es [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain); Alvarez Mendez, J.; Barciela Garcia, J.; Garcia Martin, S.; Pena Crecente, R.M. [Universidad de Santiago de Compostela, Dpto. Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias, Alfonso X el Sabio s/n, 27002 Lugo (Spain)

    2012-10-24

    Highlights: Black-Right-Pointing-Pointer The use of CNTs as sorbent for metal species in solid phase extraction has been described. Black-Right-Pointing-Pointer Physical and chemical strategies for functionalization of carbon nanotubes have been discussed. Black-Right-Pointing-Pointer Published analytical methods concerning solid phase extraction and atomic spectrometric determination have been reviewed. - Abstract: New materials have significant impact on the development of new methods and instrumentation for chemical analysis. From the discovery of carbon nanotubes in 1991, single and multi-walled carbon nanotubes - due to their high adsorption and desorption capacities - have been employed as sorption substrates in solid-phase extraction for the preconcentration of metal species from diverse matrices. Looking for successive improvements in sensitivity and selectivity, in the past few years, carbon nanotubes have been utilized as sorbents for solid phase extraction in three different ways: like as-grown, oxidized and functionalized nanotubes. In the present paper, an overview of the recent trends in the use of carbon nanotubes for solid phase extraction of metal species in environmental, biological and food samples is presented. The determination procedures involved the adsorption of metals on the nanotube surface, their quantitative desorption and subsequent measurement by means of atomic spectrometric techniques such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry or inductively coupled plasma atomic emission spectrometry/mass spectrometry, among others. Synthesis, purification and types of carbon nanotubes, as well as the diverse chemical and physical strategies for their functionalization are described. Based on 140 references, the performance and general properties of the applications of solid phase extraction based on carbon nanotubes for metal species atomic spectrometric determination are discussed.

  10. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    OpenAIRE

    Afrida Kurnia Putri; Wang-Hsien Ding; Han-Wen Kuo

    2012-01-01

    A characterization of activated carbon (ACs) prepared from rice husks (RHs) under base treated condition as a new sorbent for solid-phase extraction (SPE) to extract 4-nonylphenol isomers (4-NPs) in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance inte...

  11. Evaluation of single-walled carbon nanohorns as sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Soto, Juan Manuel; Cardenas, Soledad [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Cordoba, 14071 Cordoba (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The potential of single walled carbon nanohorns in dispersive solid phase microextraction has been evaluated. Black-Right-Pointing-Pointer The method was characterized for the extraction of PAHs from waters. Black-Right-Pointing-Pointer Single walled carbon nanohorns were better extractant than carbon nanotubes and carbon nanocones. Black-Right-Pointing-Pointer The limits of detection were adequate for the target analytes in environmental waters. - Abstract: A new dispersive micro solid-phase extraction method which uses single-walled carbon nanohorns (SWNHs) as sorbent is proposed. The procedure combines the excellent sorbent properties of the nanoparticles with the efficiency of the dispersion of the material in the sample matrix. Under these conditions, the interaction with the analytes is maximized. The determination of polycyclic aromatic hydrocarbons was selected as model analytical problem. Two dispersion strategies were evaluated, being the functionalization via microwave irradiation better than the use of a surfactant. The extraction was accomplished by adding 1 mL of oxidized SWHNs (o-SWNHs) dispersion to 10 mL of water sample. After extraction, the mixture was passed through a disposable Nylon filter were the nanoparticles enriched with the PAHs were retained. The elution was carried out with 100 {mu}L of hexane. The limits of detection achieved were between 30 and 60 ng L{sup -1} with a precision (as repeatability) better than 12.5%. The recoveries obtained for the analytes in three different water samples were acceptable in all instances. The performance of o-SWNHs was favourably compared with that provided by carboxylated single-walled carbon nanotubes and thermally treated carbon nanocones.

  12. Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent.

    Science.gov (United States)

    Xu, Li; Lee, Hian Kee

    2008-05-30

    A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.

  13. Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.

    Science.gov (United States)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol-gel silica based inorganic polymeric sorbent (sol-gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol-gel catalyst. Non-imprinted sol-gel polymer (sol-gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol-gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol-gel MIP was 23 mg/g. The sol-gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work-flow. Intra and

  14. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    Science.gov (United States)

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  15. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  16. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    Science.gov (United States)

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preconcentration of Trace Neonicotinoid Insecticide Residues Using Vortex-Assisted Dispersive Micro Solid-Phase Extraction with Montmorillonite as an Efficient Sorbent

    Directory of Open Access Journals (Sweden)

    Khwankaew Moyakao

    2018-04-01

    Full Text Available In this work, we investigated montmorillonite for adsorption of neonicotinoid insecticides in vortex-assisted dispersive micro-solid phase extraction (VA-d-μ-SPE. High-performance liquid chromatography with photodiode array detection was used for quantification and determination of neonicotinoid insecticide residues, including thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid. In this method, the solid sorbent was dispersed into the aqueous sample solution and vortex agitation was performed to accelerate the extraction process. Finally, the solution was filtered from the solid sorbent with a membrane filter. The parameters affecting the extraction efficiency of the proposed method were optimized, such as amount of sorbent, sample volume, salt addition, type and volume of extraction solvent, and vortex time. The adsorbing results show that montmorillonite could be reused at least 4 times and be used as an effective adsorbent for rapid extraction/preconcentration of neonicotinoid insecticide residues. Under optimum conditions, linear dynamic ranges were achieved between 0.5 and 1000 ng mL−1 with a correlation of determination (R2 greater than 0.99. Limit of detection (LOD ranged from 0.005 to 0.065 ng mL−1, while limit of quantification (LOQ ranged from 0.008 to 0.263 ng mL−1. The enrichment factor (EF ranged from 8 to 176-fold. The results demonstrated that the proposed method not only provided a more simple and sensitive method, but also can be used as a powerful alternative method for the simultaneous determination of insecticide residues in natural surface water and fruit juice samples.

  18. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    Directory of Open Access Journals (Sweden)

    Afrida Kurnia Putri

    2012-10-01

    Full Text Available A characterization of activated carbon (ACs prepared from rice husks (RHs under base treated condition as a new sorbent for solid-phase extraction (SPE to extract 4-nonylphenol isomers (4-NPs in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance interaction of non-polar sorbent with analyte in the water matrices. In this case, silanol groups from ash content may affect the extraction efficiency for 4-NPs. The ACs made from RHs were chemically impregnated with ZnCl2 and carbonized at 800oC. To investigate the role of silica, three types of ACs were prepared, i.e., untreated ACs (AC–Si, contain silica, base treated ACs (AC–B–Si, remain some silica inside, and ACs made by base treated RHs (AC–B, no silica, the surface area obtained from these treatments were 1352 m2/g, 1666 m2/g, and 1712m2/g respectively.  ACs made by base treatment has the highest surface area (related to BET, which indicat that silica removal process promotes the formation of open pore system on ACs and enhances the surface area of ACs. However, extraction efficiency measured by GC-MS in SPE process showed the reversal trends (i.e., AC–Si= 32.08%, AC–B–Si= 82.63%, AC–B=51.78%, among them the AC–B–Si sorbent reveal the best performance in SPE process. It is indicated that although silica usually exhibits low specific surface area, but control presence of silica as a polar functional group has a positive influence in the interaction between non-polar sorbent and 4-NPs.

  19. A novel molybdenum disulfide nanosheet self-assembled flower-like monolithic sorbent for solid-phase extraction with high efficiency and long service life.

    Science.gov (United States)

    Ran, Fanpeng; Liu, Hongmei; Wang, Xiaoqi; Guo, Yong

    2017-07-21

    A novel material consisting of molybdenum disulfide (MoS 2 ) nanosheet that self-assemble into flower-like microspheres which aggregate to form a monolithic matrix with a micro or nano-scaled mesopore structure was successfully synthesized and used as an efficient sorbent for solid-phase extraction (SPE) due to its large specific adsorption area and good stability. The extraction properties of the as-prepared sorbent were evaluated by high-performance liquid chromatography with variable wavelength detection (HPLC-VWD) by analyzing four flavonoids (apigenin, quercetin, luteolin, and kaempferol). Under optimal conditions, the LODs and LOQs were found to be in the ranges of 0.1-0.25 and 0.4-0.5μgL -1 , respectively, and wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9991 to 0.9996. Compared with commercial C18 and Alumina-N sorbents, the as-prepared sorbent showed high extraction efficiency at different concentrations of flavonoids. After 100 uses, the extraction ability of the self-assembled MoS 2 nanosheet monolithic sorbent had no evident decline, denoting a long service life. Finally, the SPE-HPLC-VWD method using the as-prepared sorbent was applied to flavonoid analysis in beverage samples with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Solid-Phase Extraction of Sulfur Mustard Metabolites Using an Activated Carbon Fiber Sorbent.

    Science.gov (United States)

    Lee, Jin Young; Lee, Yong Han

    2016-01-01

    A novel solid-phase extraction method using activated carbon fiber (ACF) was developed and validated. ACF has a vast network of pores of varying sizes and microporous structures that result in rapid adsorption and selective extraction of sulfur mustard metabolites according to the pH of eluting solvents. ACF could not only selectively extract thiodiglycol and 1-methylsulfinyl-2-[2-(methylthio)-ethylsulfonyl]ethane eluting a 9:1 ratio of dichloromethane to acetone, and 1,1'-sulfonylbis[2-(methylsulfinyl)ethane] and 1,1'-sulfonylbis- [2-S-(N-acetylcysteinyl)ethane] eluting 3% hydrogen chloride in methanol, but could also eliminate most interference without loss of analytes during the loading and washing steps. A sample preparation method has been optimized for the extraction of sulfur mustard metabolites from human urine using an ACF sorbent. The newly developed extraction method was applied to the trace analysis of metabolites of sulfur mustard in human urine matrices in a confidence-building exercise for the analysis of biomedical samples provided by the Organisation for the Prohibition of Chemical Weapons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    Science.gov (United States)

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    International Nuclear Information System (INIS)

    Samanidou, Victoria; Kehagia, Maria; Kabir, Abuzar; Furton, Kenneth G.

    2016-01-01

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  3. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk

    Energy Technology Data Exchange (ETDEWEB)

    Samanidou, Victoria, E-mail: samanidu@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kehagia, Maria [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki (Greece); Kabir, Abuzar, E-mail: akabir@fiu.edu [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); Furton, Kenneth G. [International Forensic Research Institute, Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States)

    2016-03-31

    Highly selective and efficient chloramphenicol imprinted sol–gel silica based inorganic polymeric sorbent (sol–gel MIP) was synthesized via matrix imprinting approach for the extraction of chloramphenicol in milk. Chloramphenicol was used as the template molecule, 3-aminopropyltriethoxysilane (3-APTES) and triethoxyphenylsilane (TEPS) as the functional precursors, tetramethyl orthosilicate (TMOS) as the cross-linker, isopropanol as the solvent/porogen, and HCl as the sol–gel catalyst. Non-imprinted sol–gel polymer (sol–gel NIP) was synthesized under identical conditions in absence of template molecules for comparison purpose. Both synthesized materials were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and nitrogen adsorption porosimetry, which unambiguously confirmed their significant structural and morphological differences. The synthesized MIP and NIP materials were evaluated as sorbents for molecularly imprinted solid phase extraction (MISPE) of chloramphenicol in milk. The effect of critical extraction parameters (flow rate, elution solvent, sample and eluent volume, selectivity coefficient, retention capacity) was studied in terms of retention and desorption of chloramphenicol. Competition and cross reactivity tests have proved that sol–gel MIP sorbent possesses significantly higher specific retention and enrichment capacity for chloramphenicol compared to its non-imprinted analogue. The maximum imprinting factor (IF) was found as 9.7, whereas the highest adsorption capacity of chloramphenicol by sol–gel MIP was 23 mg/g. The sol–gel MIP was found to be adequately selective towards chloramphenicol to provide the necessary minimum required performance limit (MRPL) of 0.3 μg/kg set forth by European Commission after analysis by LC-MS even without requiring time consuming solvent evaporation and sample reconstitution step, often considered as an integral part in solid phase extraction work

  4. MOLECULARLY IMPRINTED SOLID PHASE EXTRACTION FOR TRACE ANALYSIS OF DIAZINON IN DRINKING WATER

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani ، F. Golbabaei

    2009-04-01

    Full Text Available Amongst organophosphate pesticides, the one most widely used and common environmental contaminant is diazinon; thus methods for its trace analysis in environmental samples must be developed. Use of diazinon imprinted polymers such as sorbents in solid phase extraction, is a prominent and novel application area of molecular imprinted polymers. For diazinon extraction, high performance liquid chromatography analysis was demonstrated in this study. During optimization of the molecular imprinted solid phase extraction procedure for efficient solid phase extraction of diazinon, Plackett-Burman design was conducted. Eight experimental factors with critical influence on molecular imprinted solid phase extraction performance were selected, and 12 different experimental runs based on Plackett-Burman design were carried out. The applicability of diazinon imprinted polymers as the sorbent in solid phase extraction, presented obtained good recoveries of diazinon from LC-grade water. An increase in pH caused an increase in the recovery on molecular imprinted solid phase extraction. From these results, the optimal molecular imprinted solid phase extraction procedure was as follows: solid phase extraction packing with 100 mg diazinon imprinted polymers; conditioning with 5 mL of methanol and 6 mL of LC-grade water; sample loading containing diazinon (pH=10; washing with 1 mL of LC-grade water, 1 mL LC- grade water containing 30% acetonitrile and 0.5 mL of acetonitrile, respectively; eluting with 1 mL of methanol containing 2% acetic acid. The percentage recoveries obtained by the optimized molecular imprinted solid phase extraction were more than 90% with drinking water spiked at different trace levels of diazinon. Generally speaking, the molecular imprinted solid phase extraction procedure and subsequent high performance liquid chromatography analysis can be a relatively fast and proper approach for qualitative and quantitative analysis of diazinon in

  5. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    Science.gov (United States)

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  6. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  7. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  8. Comparison of several solid-phase extraction sorbents for continuous determination of amines in water by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2009-08-15

    A semiautomatic method has been proposed for the determination of different types of amines in water samples including anilines, chloroanilines, N-nitrosamines and aliphatic amines. The analytes were retained on a solid-phase extraction sorbent column and after elution, 1 microL of the extract was analysed by gas chromatography coupled with electron impact ionization mass spectrometry. A systematic overview is given of the advantages and disadvantages of several sorbents (LiChrolut EN, Oasis HLB, RP-C(18), graphitized carbon black, fullerenes and nanotubes) in the retention of amine compounds and based on sensitivity, selectivity and reliability. The retention efficiency for the studied amines was higher (ca. 100%) with LiChrolut EN and Oasis HLB than it was with RP-C(18) and fullerenes (53 and 62%, respectively, on average). Detection limits of 0.5-16 ng L(-1) for the 27 amines studied were obtained when using a sorbent column containing 75 mg of LiChrolut EN for 100mL of sample, the RSD being lower than 6.5%. The method was applied with good accuracy and precision in the determination of amines in various types of water including river, pond, tap, well, drinking, swimming pool and waste.

  9. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    Science.gov (United States)

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag Gmb

  10. Miniaturized solid-phase extraction of macrolide antibiotics in honey and bovine milk using mesoporous MCM-41 silica as sorbent.

    Science.gov (United States)

    Du, Li-Jing; Yi, Ling; Ye, Li-Hong; Chen, Yu-Bo; Cao, Jun; Peng, Li-Qing; Shi, Yu-Ting; Wang, Qiu-Yan; Hu, Yu-Han

    2018-02-16

    A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r 2  > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II)

    Science.gov (United States)

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-01

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.

  12. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Science.gov (United States)

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin

    2014-10-01

    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Humic acid-bonded silica as a novel sorbent for solid-phase extraction of benzo[a]pyrene in edible oils

    International Nuclear Information System (INIS)

    Luo Dan; Yu Qiongwei; Yin Hongrui; Feng Yuqi

    2007-01-01

    A novel solid-phase extraction (SPE) sorbent, humic acid-bonded silica (HAS), was prepared. Humic acids (HAs) were grafted onto silica matrices via an amide linkage between humyl chloride and the amido terminus of 3-aminopropyltrimethoxysilane (APTS)-silica gel. The resulting material was characterized by Fourier transform infrared spectrometer, elemental analysis, and nitrogen adsorption analysis. This sorbent exhibits an excellent adsorption capacity for some electron-abundant analytes owing to its peculiar structure. In this paper, we choose benzo[a]pyrene (BaP) in oil as a probe to validate the adsorption capacity of the material. Thus a fast, cheap and simple SPE method with humic acid-bonded silica cartridge for edible oil clean-up, followed by high-performance liquid chromatography (HPLC) with fluorescence detection was established. The effects of experimental variables, such as washing and elution solvents, and the amount of sorbents have been studied. The recoveries of BaP in edible oils spiked at 0.2-100 μg kg -1 were in the range of 78.8-102.7% with relative standard deviations ranging between 1.3 and 9.3%; the limit of detection was -0.06 μg kg -1

  14. Polypyrrole/magnetic nanoparticles composite as an efficient sorbent for dispersive micro-solid-phase extraction of antidepressant drugs from biological fluids.

    Science.gov (United States)

    Asgharinezhad, Ali Akbar; Karami, Sara; Ebrahimzadeh, Homeira; Shekari, Nafiseh; Jalilian, Niloofar

    2015-10-15

    In this study, polypyrrole/magnetic nanoparticles composites in the presence of two different dopants were synthesized with the aid of chemical oxidative polymerization process for dispersive-μ-solid phase extraction (D-μ-SPE). The synthesized magnetic sorbents were characterized by various techniques. The results exhibited that the nanocomposite modified by polypyrrole with sodium perchlorate as a dopant demonstrated higher extraction efficiency for citalopram (CIT) and sertraline (STR) as the model compounds. This nanosorbent in combination with high performance liquid chromatography-UV detection was applied for extraction, preconcentration and determination of CIT and STR in urine and plasma samples. The effect of various parameters on the extraction efficiency including: sample pH, amount of sorbent, sorption time, eluent and its volume, salt content, and elution time were investigated and optimized. The opted conditions were: sample pH, 9.0; sorbent dosage, 10mg; sorption time, 7 min; elution solvent and its volume, 0.06 mol L(-1) HCl in methanol, 120 μL; elution time, 2 min and without addition of salt to the sample. The calibration curves were linear in the concentration range of 1-800 μg L(-1). The limits of detection (LODs) were obtained in the range of 0.2-1.0 μg L(-1) for CIT and 0.3-0.7 μg L(-1) for STR, respectively. The percent of extraction recoveries and relative standard deviations (n=5) were in the range of 93.4-99, 4.8-8.4 for CIT and 94-98.4, 4.3-9.2 for STR, respectively. Finally, the applicability of the method was successfully confirmed by the extraction and determination of CIT and STR in human urine and plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of haloacetic acids in water using layered double hydroxides as a sorbent in dispersive solid-phase extraction followed by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Alsharaa, Abdulnaser; Sajid, Muhammad; Basheer, Chanbasha; Alhooshani, Khalid; Lee, Hian Kee

    2016-09-01

    In the present study, highly efficient and simple dispersive solid-phase extraction procedure for the determination of haloacetic acids in water samples has been established. Three different types of layered double hydroxides were synthesized and used as a sorbent in dispersive solid-phase extraction. Due to the interesting behavior of layered double hydroxides in an acidic medium (pH˂4), the analyte elution step was not needed; the layered double hydroxides are simply dissolved in acid immediately after extraction to release the analytes which are then directly introduced into a liquid chromatography with tandem mass spectrometry system for analysis. Several dispersive solid-phase extraction parameters were optimized to increase the extraction efficiency of haloacetic acids such as temperature, extraction time and pH. Under optimum conditions, good linearity was achieved over the concentration range of 0.05-100 μg/L with detection limits in the range of 0.006-0.05 μg/L. The relative standard deviations were 0.33-3.64% (n = 6). The proposed method was applied to different water samples collected from a drinking water plant to determine the concentrations of haloacetic acids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography.

    Science.gov (United States)

    Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee

    2016-01-04

    A facile method of extraction using porous membrane protected micro-solid phase extraction (μ-SPE) with a graphene-based sorbent followed by high performance liquid chromatography-ultraviolet detector was developed. The reduced graphene oxide (r-GO) (1mg), synthesized from graphite oxide, was enclosed in a polypropylene bag representing the μ-SPE device, which was used for the extraction of estrogens such as estrone, 17β-estradiol, 17α-ethynylestradiol and diethylstilbestrol in water. The r-GO obtained was identified and characterized by Fourier transform infrared, transmission electron microscopy, scanning electron microscopy and thermogravimetric analysis. The sorbent was loaded with sodium dodecyl sulfate by sonication to prevent agglomeration in aqueous solution. With this method, low limits of detection of between 0.24 and 0.52 ng L(-1) were achieved. For estrogen analysis a linear calibration range of 0.01-100 μg L(-1) was obtained, with the coefficients of determination (r(2)) higher than 0.992. This proposed method was successfully applied to determine estrogens in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development of magnetic micro-solid phase extraction for analysis of phthalate esters in packaged food.

    Science.gov (United States)

    Makkliang, Fonthip; Kanatharana, Proespichaya; Thavarungkul, Panote; Thammakhet, Chongdee

    2015-01-01

    A novel, simple and low cost magnetic multi-walled carbon nanotubes-poly (vinyl alcohol) cryogel-micro-solid phase extraction (magnetic-MWCNTs-PVA cryogel-μ-SPE) sorbent was synthesized by incorporating magnetic particles and MWCNTs into a PVA cryogel. The magnetic-MWCNTs-PVA cryogel-μ-SPE sorbent developed, with a large surface area and macro-porous structure, provided good sorbent-to-sorbent reproducibility (%RSDclear chicken soup samples in the range 0.02-0.07 μg mL(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    Science.gov (United States)

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Polymeric Sorbent with Controlled Surface Polarity: An Alternate for Solid-Phase Extraction of Nerve Agents and Their Markers from Organic Matrix.

    Science.gov (United States)

    Roy, Kanchan Sinha; Purohit, Ajay Kumar; Chandra, Buddhadeb; Goud, D Raghavender; Pardasani, Deepak; Dubey, Devendra Kumar

    2018-06-05

    Extraction and identification of lethal nerve agents and their markers in complex organic background have a prime importance from the forensic and verification viewpoint of the Chemical Weapons Convention (CWC). Liquid-liquid extraction with acetonitrile and commercially available solid phase silica cartridges are extensively used for this purpose. Silica cartridges exhibit limited applicability for relatively polar analytes, and acetonitrile extraction shows limited efficacy toward relatively nonpolar analytes. The present study describes the synthesis of polymeric sorbents with tunable surface polarity, their application as a solid-phase extraction (SPE) material against nerve agents and their polar as well as nonpolar markers from nonpolar organic matrices. In comparison with the acetonitrile extraction and commercial silica cartridges, the new sorbent showed better extraction efficiency toward analytes of varying polarity. The extraction parameters were optimized for the proposed method, which included ethyl acetate as an extraction solvent and n-hexane as a washing solvent. Under optimized conditions, method linearity ranged from 0.10 to 10 μg mL -1 ( r 2 = 0.9327-0.9988) for organophosphorus esters and 0.05-20 μg mL -1 ( r 2 = 0.9976-0.9991) for nerve agents. Limits of detection (S:N = 3:1) in the SIM mode were found in the range of 0.03-0.075 μg mL -1 for organophosphorus esters and 0.015-0.025 μg mL -1 for nerve agents. Limits of quantification (S:N = 10:1) were found in the range of 0.100-0.25 μg mL -1 for organophosphorus esters and 0.05-0.100 μg mL -1 for nerve agents in the SIM mode. The recoveries of the nerve agents and their markers ranged from 90.0 to 98.0% and 75.0 to 95.0% respectively. The repeatability and reproducibility (with relative standard deviations (RSDs) %) for organophosphorus esters were found in the range of 1.35-8.61% and 2.30-9.25% respectively. For nerve agents, the repeatability range from 1.00 to 7.75% and reproducibility

  20. Solid phase extraction of magnetic carbon doped Fe3O4 nanoparticles.

    Science.gov (United States)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-17

    Carbon decorated Fe3O4 nanoparticles (Fe3O4/C) are promising magnetic solid-phase extraction (MSPE) sorbents in environmental and biological analysis. Fe3O4/C based MSPE method shows advantages of easy operation, rapidness, high sensitivity, and environmental friendliness. In this paper, the MSPE mechanism of Fe3O4/C nanoparticles has been comprehensively investigated, for the first time, through the following three efforts: (1) the comparison of extraction efficiency for polycyclic aromatic hydrocarbons (PAHs) between the Fe3O4/C sorbents and activated carbon; (2) the chromatographic retention behaviors of hydrophobic and hydrophilic compounds on Fe3O4/C nanoparticles as stationary phase; (3) related MSPE experiments for several typical compounds such as pyrene, naphthalene, benzene, phenol, resorcinol, anisole and thioanisole. It can be concluded that there are hybrid hydrophobic interaction and hydrogen bonding interaction or dipole-dipole attraction between Fe3O4/C sorbents and analytes. It is the existence of carbon and oxygen-containing functional groups coated on the surface of Fe3O4/C nanoparticles that is responsible for the effective extraction process. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Neng-Zhi [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Liu, Ping [School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021 (China); Su, Xiao-Chuan; Liao, Yan-Hua; Lei, Ning-Sheng [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Liang, Yong-Hong [School of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi 530021 (China); Zhou, Shao-Huan; Lin, Wen-Si; Chen, Jie [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China); Feng, Yu-Qi [Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072 (China); Tang, Yang, E-mail: tycarson2@163.com [Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, Guangxi 530028 (China)

    2017-06-01

    Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 μg/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were

  2. Facile synthesis of new nano sorbent for magnetic solid-phase extraction by self assembling of bis-(2,4,4-trimethyl pentyl)-dithiophosphinic acid on Fe3O4-Ag core-shell nanoparticles: Characterization and application

    International Nuclear Information System (INIS)

    Tahmasebi, Elham; Yamini, Yadollah

    2012-01-01

    Graphical abstract: Self assembling of bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid on Fe 3 O 4 -Ag core-shell nanoparticles and application of it for solid phase extraction of PAHs. Highlights: ► A novel sorbent for magnetic solid-phase extraction of PAHs was introduced. ► Silver was coated on Fe 3 O 4 nanoparticles (MNPs) by reduction of AgNO 3 with NaBH 4 . ► Bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid self-assembled on silver coated MNPs. ► Size, morphology, composition and properties of the nanoparticles were characterized. ► Extraction efficiency of the sorbent was investigated by extraction of five PAHs. - Abstract: A novel sorbent for magnetic solid-phase extraction by self-assembling of organosulfur compound, (bis-(2,4,4-trimethylpentyl)-dithiophosphinic acid), onto the silver-coated Fe 3 O 4 nanoparticles was introduced. Due to the formation of covalent bond of S-Ag, the new coating on the silver surface was very stable and showed high thermal stability (up to 320 °C). The size, morphology, composition, and properties of the prepared nanoparticles have also been characterized and determined using scanning electron microscopy (SEM), energy-dispersive X-ray analyzer (EDX), dynamic light scattering (DLS), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). Extraction efficiency of the new sorbent was investigated by extraction of five polycyclic aromatic hydrocarbons (PAHs) as model compounds. The optimum extraction conditions for PAHs were obtained as of extraction time, 20 min; 50 mg sorbent from 100 mL of the sample solution, and elution with 100 μL of 1-propanol under fierce vortex for 2 min. Under the optimal conditions, the calibration curves were obtained in the range of 0.05–100 μg L −1 (R 2 > 0.9980) and the LODs (S/N = 3) were obtained in the range of 0.02–0.10 μg L −1 . Relative standard deviations (RSDs) for intra- and inter-day precision were 2.6–4.2% and 3.6–8

  3. Solid-phase extraction of carotenoids.

    Science.gov (United States)

    Shen, Yao; Hu, Yumin; Huang, Ke; Yin, Shi'an; Chen, Bo; Yao, Shouzhuo

    2009-07-24

    In this work, solid-phase extraction (SPE) trapping performance of lutein and beta-carotene, which were used as the model molecules of carotenoids, was investigated. The absorption, elution, and enrichment of carotenoids on SPE cartridges with four different sorbents, i.e. C(30), C(18), diol, and silica, were compared respectively with the help of frontal analysis technique. The high retentions of both lutein and beta-carotene were achieved on the C(18) and C(30) cartridges. The diol and silica cartridges only had good retention for lutein. The optimized SPE method for sample pretreatment for the carotenoids analysis was obtained after the investigation of trapping performance. The method was applied successfully to the analysis of biological sample, i.e. serum and human breast milk. The recovery, accuracy, and precision of SPE method comparing with those of traditional liquid-liquid extraction (LLE) method for the sample pretreatment for the analysis of carotenoids owned a number of advantages such as rapid, no chloroform used, and accurate versus LLE.

  4. Investigation of solid phase sorbents for the pre- concentration of pads from aqueous medium and their quantitation by high performance liquid chromatography-UV detection

    International Nuclear Information System (INIS)

    Waqar, F.; Jan, S.; Muhammad, B.; Ahmad, S.; Riaz, M.; Akram, N.

    2005-01-01

    A solid phase extraction method was optimized for the pre-concentration of polyaromatic hydrocarbons (PAHs) in water samples. Graphite powder and Lab scale locally synthesized styrene divinylbenzene (SDVB) Copolymer were used as sorbents for the extraction of PAHs and compared with commercially used C18 solid phase extraction cartridge (SPE). Various parameters were optimized to evaluate the extraction efficiencies, the best results were obtained by proper conditioning of extraction cartridges and desorption with suitable solvent. Percentage recoveries were enhanced by rinsing the sample bottles with acetonitrile and combining the rinse with the sample extract. Quantitative analysis was performed by High performance Liquid chromatography (HPLC) with UV detection. Many other parameters, including optimization of mobile phase, selection of HPLC Columns, sample-loading flow rate on extraction cartridge and weight of sorbent were performed to get optimal results. Percent recoveries obtained with synthesized copolymer were comparable with commercial cartridge, while graphite powder showed excellent retention but very poor recoveries. Obtained recoveries of selected PAHs were ranged from 80-87% with relative standard deviation <6%. Developed method was applied for the analysis of drinking water samples(author)

  5. Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns.

    Science.gov (United States)

    Hussain, Shah; Schönbichler, Stefan A; Güzel, Yüksel; Sonderegger, Harald; Abel, Gudrun; Rainer, Matthias; Huck, Christian W; Bonn, Günther K

    2013-10-01

    Galloyl- and caffeoylquinic acids are among the most important pharmacological active groups of natural compounds. This study describes a pre-step in isolation of some selected representatives of these groups from biological samples. A selective solid-phase extraction (SPE) method for these compounds may help assign classes and isomer designations within complex mixtures. Pure zirconium silicate and bismuth citrate powders (325 mesh) were employed as two new sorbents for optimized SPE of phenolic acids. These sorbents possess electrostatic interaction sites which accounts for additional interactions for carbon acid moieties as compared to hydrophilic and hydrophobic sorbents alone. Based on this principle, a selective SPE method for 1,3,4,5-tetragalloylquinic acid (an anti-HIV and anti-asthamatic agent) as a starting compound was developed and then deployed upon other phenolic acids with success. The recoveries and selectivities of both sorbents were compared to most commonly applied and commercially available sorbents by using high performance liquid chromatography. The nature of interaction between the carrier sorbent and the acidic target molecules was investigated by studying hydrophilic (silica), hydrophobic (C18), mixed-mode (ionic and hydrophobic: Oasis(®) MAX) and predominantly electrostatic (zirconium silicate) materials. The newly developed zirconium silicate and bismuth citrate stationary phases revealed promising results for the selective extraction of galloyl- and caffeoylquinic acids from natural sources. It was observed that zirconium silicate exhibited maximum recovery and selectivity for tetragalloylquinic acid (84%), chlorogenic acid (82%) and dicaffeoylquinic acid (94%) among all the tested sorbents. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction

    International Nuclear Information System (INIS)

    Mohd Marsin Sanagi; Syairah Salleh; Wan Aini Wan Ibrahim

    2011-01-01

    Molecularly imprinted polymer solid phase extraction (MIP-SPE) method has been developed for the determination of organophosphorus pesticides (OPPs) in water samples. The MIP was prepared by thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as crosslinker, acetonitrile as porogenic solvent and quinalphos as the template molecule. The three OPPs (diazinon, quinalphos and chloropyrifos) were selected as target analytes as they are widely used in agriculture sector. Various parameters affecting the extraction efficiency of the imprinted polymers have been evaluated to optimize the selective preconcentration of OPPs from aqueous samples. The characteristics of the MIP-SPE method were validated by high performance liquid chromatography (HPLC). The accuracy and selectivity of the MIP-SPE process developed were verified using non-imprinted polymer solid phase extraction (NIP-SPE) and a commercial C 18 -SPE was used for comparison. The recoveries of the target analytes obtained using the MIPs as the solid phase sorbent ranged from 83% to 98% (RSDs 1.05 - 1.98 %; n=3) for water sample. The developed MIP-SPE method demonstrates that it could be applied for the determination of OPPs in water samples. (author)

  7. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water.

    Science.gov (United States)

    Zhang, Shijuan; Lu, Fengli; Ma, Xiaoyun; Yue, Mingbo; Li, Yanxin; Liu, Jiammin; You, Jinmao

    2018-07-06

    MCM-48 mesoporous silica was functionalized with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, a quaternary ammonium salt with a long hydrophobic chain, to prepare a new sorbent for the dispersive solid-phase extraction (DSPE) of seven endocrine disrupting compounds (EDCs) including 4-hexylphenol, 4-octylphenol, 4-nonylphenol, bisphenol A, estrone, 17β-estradiol and estriol in water. A series of differently functionalized MCM-48 materials were also synthesized, and they served as reference materials to study the mechanism. The developed DSPE method was combined with HPLC with fluorescence detection to evaluate the adsorption performance. The results indicated that the quaternary ammonium-functionalized MCM-48 mesoporous silica can be used as ideal sorbent for EDCs in water with recoveries of higher than 95% due to the electrostatic interactions and hydrophobic effect. Hydrogen bonding and π-π interactions in other synthesized materials could lead to about 25-30% increase in recoveries, but the results for polyhydroxy compounds were still not satisfying. The quaternary ammonium-functionalized MCM-48 mesoporous silica was successfully applied to the DSPE of EDCs in real water samples. The optimum extraction conditions were sorbent amount, 15 mg; desorption time; 5 min; elution volume, 0.8 mL; sample pH 3.0; and salt addition, 5 g/L. The limits of detection were in the range of 1.2-2.6 ng/L, while the limits of quantitation were in the range of 4.3-8.3 ng/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Study of molecularly imprinted solid-phase extraction of gonyautoxins 2,3 in the cultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography with fluorescence detection

    International Nuclear Information System (INIS)

    Lian, Zi-Ru; Wang, Jiang-Tao

    2013-01-01

    A highly selective sample cleanup procedure combined with molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium tamarense sample. The molecularly imprinted polymer microspheres (MIPMs) were prepared by suspension polymerization using caffeine as the dummy template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker and polyvinyl alcohol as the dispersive reagent. The polymer microspheres were used as a selective sorbent for the solid-phase extraction of gonyautoxins 2,3. An off-line MISPE method followed by high-performance liquid chromatography (HPLC) with fluorescence detection for the analysis of gonyautoxins 2,3 was established. Finally, the extract samples from Alexandrium tamarense were analyzed. The results showed the imprinted polymer microspheres exhibited high affinity and selectivity for gonyautoxins 2,3. The interference matrix in the extract were obviously cleaned by MISPE and the extraction efficiency of gonyautoxins 2,3 in the sample ranged from 81.74% to 85.86%. -- Graphical abstract: This is the SEM photograph of molecularly imprinted polymer microspheres (MIPMs). MIPMs were prepared by suspension polymerization and used as selective sorbents for the solid-phase extraction of gonyautoxins 2,3. An off-line MISPE method followed by high-performance liquid chromatography with fluorescence detection for the analysis of gonyautoxins 2,3 was established. The extract samples from Alexandrium tamarense were analyzed by molecularly imprinted solid-phase extraction. Highlights: •The molecularly imprinted polymer microspheres (MIPMs) for GTX2,3 were prepared. •The characteristics and regeneration property of MIPMs were studied. •An off-line method using MIPMs as solid-phase extraction (SPE) sorbents was developed. •GTX2,3 from Alexandrium tamarense extract was successfully isolated by MIPMs-SPE. -- MIPMs for GTX2,3 were

  9. The selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene by solid-phase extraction with MgO microspheres as sorbents.

    Science.gov (United States)

    Jin, Jing; Li, Yun; Zhang, Zhiping; Su, Fan; Qi, Peipei; Lu, Xianbo; Chen, Jiping

    2011-12-23

    A new method for the selective cleanup of complex matrices and simultaneous separation of benzo[a]pyrene (BaP) was developed in this study. This method was based on solid-phase extraction (SPE) using magnesium oxide microspheres as sorbents, and it eliminated interferences from various impurities, such as lipids, sulphur, pigments, halobenzenes, polychlorodibenzo-p-dioxins and polychlorodibenzofurans. Several parameters, including the volume of rinsing and eluting solvents, the type of loading solvents and SPE sorbents, were optimized systematically. The capability for impurity removal was verified by gel permeation chromatography, gas chromatography, and liquid chromatography. Compared to commercial sorbents (silica gel, florisil and alumina), MgO microspheres exhibited excellent performance in the selective isolation of BaP and removal of impurities. The proposed method was applied to detect BaP in complex samples (sediments, soils, fish, and porcine liver). The limit of quantification (LOQ) was 1.04 ngL(-1), and the resulting regression coefficient (r(2)) was greater than 0.999 over a broad concentration range (9.5-7600 ngL(-1)). In contrast to traditional methods, the proposed method can give rise to higher recovery (85.1-100.8%) and better selectivity with simpler operation and less consumption of organic solvents (20-40 mL). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Solid-phase extraction and high-performance liquid chromatographic separation of pigments of red wines.

    Science.gov (United States)

    Csiktusnádi Kiss, G A; Forgács, E; Cserháti, T; Candeias, M; Vilas-Boas, L; Bronze, R; Spranger, I

    2000-08-11

    The adsorption and desorption capacities of 11 different solid-phase extraction sorbents were tested for the preconcenration of pigments of various Hungarian red wines. The concentrates were evaluated by multiwavelengh spectrophotometry combined with a spectral mapping technique (SPM) and by reversed-phase high-performance liquid chromatography. The highest (10-fold) concentration of pigments was achieved on octadecylsilica sorbent. It can be used five times without losing adsorption and desorption characteristics. SPM indicated that multiwavelength spectrophotometry can be employed for the differentiation of red wines. Comparison of the chromatograms of pigments with and without preconcentration showed that preconcentration makes possible the separation and detection of pigments present in low concentration in red wines.

  11. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    Science.gov (United States)

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  12. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    Science.gov (United States)

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  13. Development of andrographolide molecularly imprinted polymer for solid-phase extraction

    Science.gov (United States)

    Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming

    2011-06-01

    A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.

  14. Halogen bonding: A new retention mechanism for the solid phase extraction of perfluorinated iodoalkanes

    International Nuclear Information System (INIS)

    Yan Xiaoqing; Shen Qianjin; Zhao Xiaoran; Gao Haiyue; Pang Xue; Jin Weijun

    2012-01-01

    Highlights: ► Halogen bonding (XB) is firstly utilised in solid phase extraction. ► The perfluorinated iodine alkanes can be extracted by C-I⋯Cl − halogen bonding. ► The C-I⋯Cl − halogen bond is well characterised by spectroscopy methods. ► The analytes with strong halogen-bonding abilities can be selectively extracted. - Abstract: For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, 19 F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I⋯Cl − halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs). Specifically, the recoveries for 1,6-diiodoperfluorohexane and 1,8-diiodoperfluorooctane were higher than 80% when 100 mL of sample spiked with a 5 ng mL −1 analyte mixture was extracted. Interestingly, SAX had no adsorption for hexafluorobenzene at all, which is known to be unable to form a halogen bond with Cl − . The analytical performance of the halogen bond-based SPE-GC–MS method for the diiodo-PFIs was also examined in soil samples. The sorbent SAX enabled the selective extraction of four diiodo-PFIs successfully from soil samples. The recoveries of the diiodo-PFIs extracted from 5 g soil sample at the 100 ng g −1 spike level were in the range of 73.2–93.8% except 26.8% for 1,2-diiodoperfluoroethane. The limit of detection varied from 0.02 to 0.04 ng g −1 in soil samples. Overall, this work reveals the great application potential of halogen bonding in the field of solid phase extraction to selectively extract compounds with strong halogen-bonding abilities.

  15. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2014-04-01

    In this paper, the adsorptive properties of graphene nanosheets were used for simultaneous preconcentration of cobalt, nickel, copper and lead ions from water samples. The developed methodology is based on dispersive micro-solid phase extraction (DMSPE) which is miniaturized and a simplified version of classical solid phase extraction technique. In proposed procedure only 200 μL of suspension containing graphene (0.2 mg), ammonium pyrrolidine dithiocarbamate (APDC) (0.8 mg) and Triton-X-100 (0.1 mg) is rapidly injected to 50 mL of water sample. Then, graphene nanosheets with adsorbed metal-APDC chelates are collected on membrane filter and measured using energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The various parameters including pH, amount of APDC, sample volume, amount of Triton-X-100 and sorption time were optimized in order to obtain the best recoveries. The experiment shows that Co, Ni, Cu and Pb can be simultaneously preconcentrated at pH of 5 with high recoveries (97%, 96%, 99% and 96% for Co, Ni, Cu and Pb, respectively) and very good precision (RSDs within 2.6–3.4%). Due to the excellent enrichment factors ranging from 400 to 2500 the proposed DMSPE–EDXRF procedure offers low detection limits. For optimized measurement conditions (voltage and current of X-ray tube, primary beam filter) the detection limits are even 0.08, 0.07, 0.08 and 0.20 ng mL{sup −1} for Co, Ni, Cu and Pb, respectively. - Highlights: • Excellent detection limits using EDXRF • A new preconcentration procedure combining DMSPE and EDXRF measurement • Graphene as a promising and efficient solid sorbent in DMSPE • Simple, fast, inexpensive and environmental friendly method.

  16. Stir-bar supported micro-solid-phase extraction for the determination of polychlorinated biphenyl congeners in serum samples.

    Science.gov (United States)

    Sajid, Muhammad; Basheer, Chanbasha

    2016-07-15

    In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Solid phase extraction for multiresidue analysis of anabolic steroids and related substances from calf urine using C18 and alumina columns

    NARCIS (Netherlands)

    Koole, A; Franke, JP; de Zeeuw, RA

    1999-01-01

    A solid phase extraction method for anabolic steroids and related substances in calf urine is reported, that is suitable as a screening method for illegal growth promoters. Two types of sorbent were used: a reversed phase C18 material and a polar alumina material. After overnight enzymatic

  18. Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Karynne Cristina de; Andrade, Gracielle Ferreira [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil); Vasconcelos, Ingrid; Oliveira Viana, Iara Maíra de; Fernandes, Christian [Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Martins Barros de Sousa, Edésia, E-mail: sousaem@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Rua Professor Mário Werneck, s/n. Campus Universitário, Belo Horizonte, MG CEP 30.123-970 (Brazil)

    2014-07-01

    In the present work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were functionalized using octadecyltrimethoxysilane as silanizing agent. The pure and functionalized silica nanoparticles were physicochemically and morphologically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N{sub 2} adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resultant magnetic silica nanoparticles were applied as sorbents for magnetic solid-phase extraction (MSPE) of oral antidiabetic drugs in human plasma. Our results revealed that the magnetite nanoparticles were completely coated by well-ordered mesoporous silica with free pores and stable pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles were preserved in the applied synthesis route. Indeed, the sorbent material was capable of extracting the antidiabetic drugs from human plasma, being useful for the sample preparation in biological matrices. - Highlights: • SBA-15/Fe{sub 3}O{sub 4} was synthesized and functionalized with octadecyltrimethoxysilane. • Magnetite nanoparticles were completely coated by well-ordered mesoporous silica. • The samples were used as sorbent for magnetic solid-phase extraction (MSPE). • The sorbent material was capable of extracting drugs from human plasma. • The extraction ability makes the material a candidate to be employed as MSPE.

  19. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-10-01

    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Experimental and computational studies on molecularly imprinted solid-phase extraction for gonyautoxins 2,3 from dinoflagellate Alexandrium minutum.

    Science.gov (United States)

    Lian, Ziru; Li, Hai-Bei; Wang, Jiangtao

    2016-08-01

    An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.

  1. An interior needle electropolymerized pyrrole-based coating for headspace solid-phase dynamic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib [Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)], E-mail: bagheri@sharif.edu; Babanezhad, Esmaeil; Khalilian, Faezeh [Department of Chemistry, Sharif University of Technology, Azadi Av., P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2009-02-23

    A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the scanning electron microscopy (SEM). The developed method was applied to the trace level extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample. In order to enhance the extraction efficiency and increase the partition coefficient of analytes, the stainless steel needle was cooled at 5 deg. C, while the sample solution was kept at 80 deg. C. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.002-0.01 ng mL{sup -1}. The relative standard deviations (R.S.D.) at a concentration level of 0.1 ng mL{sup -1} were obtained between 7.54 and 11.4% (n = 6). The calibration curves of PAHs showed linearity in the range of 0.01-10 ng mL{sup -1}. The proposed method was successfully applied to the extraction of some selected PAHs from real-life water samples and the relative recoveries were higher than 90% for all the analytes.

  2. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  3. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions.

    Science.gov (United States)

    Li, Zhenhua; Chang, Xijun; Zou, Xiaojun; Zhu, Xiangbing; Nie, Rong; Hu, Zheng; Li, Ruijun

    2009-01-26

    A new method that utilizes ethylenediamine-modified activated carbon (AC-EDA) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES). The new sorbent was prepared by oxidative surface modification. Experimental conditions for effective adsorption of trace levels of Cr(III), Fe(III), Hg(II) and Pb(II) were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4.0. Complete elution of absorbed metal ions from the sorbent surface was carried out using 3.0 mL of 2% (%w/w) thiourea and 0.5 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.4, 28.9, 60.5 and 49.9 mg g(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The time for 94% adsorption of target metal ions was less than 2 min. The detection limits of the method was found to be 0.28, 0.22, 0.09 and 0.17 ng mL(-1) for Cr(III), Fe(III), Hg(II) and Pb(II), respectively. The precision (R.S.D.) of the method was lower 4.0% (n=8). The prepared sorbent as solid-phase extractant was successfully applied for the preconcentration of trace Cr(III), Fe(III), Hg(II) and Pb(II) in natural and certified samples with satisfactory results.

  4. Magnetic micro-solid-phase-extraction of polycyclic aromatic hydrocarbons in water.

    Science.gov (United States)

    Naing, Nyi Nyi; Yau Li, Sam Fong; Lee, Hian Kee

    2016-04-01

    A novel sorbent, magnetic chitosan functionalized graphene oxide (MCFG) was synthesized and used in the micro-solid-phase-extraction (μ-SPE) and gas chromatography-mass spectrometric (GC-MS) analysis of polycyclic aromatic hydrocarbons (PAHs) from water. Through the use of the magnetic sorbent, the μ-SPE device also functioned as a stir bar during extraction. Three types of MCFG were prepared using glutaraldehyde cross-linked chitosan and graphene oxide with different amounts of magnetic nanoparticles (Fe3O4) (0.05g, 0.07g and 0.1g). The material was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Parameters affecting the extraction such as the type of sorbent, extraction and desorption times, volume of sample solution and type of desorption solvent were optimized. Under the most favourable conditions, the highest extraction was obtained by using the composite prepared with 0.1g of Fe3O4. For the latter material as sorbent, the linearity of the analytes was in the range of 0.01 and 100μgL(-1) for naphthalene, fluoranthene and pyrene while acenaphthylene and phenanthrene exhibited linearity in the range of 0.05 and 100μgL(-1). For fluorene and anthracene, the linearity range was from 0.01 to 50μgL(-1). The coefficients of determination (r(2)) associated with the above linear ranges were higher than 0.987. The limits of detection from GC-MS analysis of the seven PAHs were in the range 0.2-1.8ngL(-1); limits of quantification were between 0.8 and 5.9ngL(-1) while the relative standard deviations (RSDs) varied from 2.1 to 8.2%. The recoveries of the method for the compounds at spiking levels of 1 and 5μgL(-1) were in the range 67.5-106.9% with RSDs below 15%. The enrichment factors were found to be in between 67 and 302. The developed method afforded an interesting and innovative approach using MCFG as an efficient and promising sorbent. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Solid phase extraction for sample preparation in trace analysis of ionogenic compounds by capillary isotachophoresis

    International Nuclear Information System (INIS)

    Hutta, M.; Kaniansky, D.; Simunicova, E.; Zelenska, V.; Madajova, V.; Siskova, A.

    1992-01-01

    Various sorbents recommended for solid phase extraction (SPE) in sample preparation procedures were studied for use in combination with capillary isotachophoresis (ITP). They were very efficient in achieving trace concentration levels (low ppb, i.e., low parts per 10 9 ) for different types of ITP analytes present in environmental and biological matrices. A macroporous carbon sorbent was convenient for sample preparation in ITP analysis of short chain fatty acids (C 4 -C 9 ) in drinking water. Chelating sorbents based on hydroxyalkyl methacrylate matrix with salicylate, thioglycolate and 8-hydroxyquinolinate functionalities were found to be very suitable for preconcentration of heavy metals with an inherent sample clean-up. An octadecyl-bonded silica sorbent enabled in ITP a photometric detection of γ-aminobutyrate (labeled with a 2,4,6-trinitrophenyl group) at concentrations considerably lower than required for the determination of this amino acid in cerebrospinal fluid (∼5*10 -8 mol/l). (author) 34 refs.; 3 figs.; 1 tab

  6. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    Science.gov (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Application of Box-Behnken design to optimize multi-sorbent solid phase extraction for trace neonicotinoids in water containing high level of matrix substances.

    Science.gov (United States)

    Zhang, Junjie; Wei, Yanli; Li, Huizhen; Zeng, Eddy Y; You, Jing

    2017-08-01

    Extensive use of neonicotinoid insecticides has raised great concerns about their ecological risk. A reliable method to measure trace neonicotinoids in complicated aquatic environment is a premise for assessing their aquatic risk. To effectively remove matrix interfering substances from field water samples before instrumental analysis with HPLC/MS/MS, a multi-sorbent solid phase extraction method was developed using Box-Behnken design. The optimized method employed 200mg HLB/GCB (w/w, 8/2) as the sorbents and 6mL of 20% acetone in acetonitrile as the elution solution. The method was applied for measuring neonicotinoids in water at a wide range of concentrations (0.03-100μg/L) containing various amounts of matrix components. The recoveries of acetamiprid, imidacloprid, thiacloprid and thiamethoxam from the spiked samples ranged from 76.3% to 107% while clothianidin and dinotefuran had relatively lower recoveries. The recoveries of neonicotinoids in water with various amounts of matrix interfering substances were comparable and the matrix removal rates were approximately 50%. The method was sensitive with method detection limits in the range of 1.8-6.8ng/L for all target neonicotinoids. Finally, the developed method was validated by measurement of trace neonicotinoids in natural water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Application of micro-solid-phase extraction for the on-site extraction of heterocyclic aromatic amines in seawater.

    Science.gov (United States)

    Basheer, Chanbasha

    2018-04-01

    An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Matrix solid-phase dispersion extraction of organophosphorus pesticide using SiO2-poly(N-vinylimidazole)

    International Nuclear Information System (INIS)

    Gutiérrez-Solís, M C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Ávila-Ortega, A; Medina-Peralta, S

    2013-01-01

    A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO 2 -PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 2 4 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO 2 or SiO 2 -PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO 2 -PVI in spiked tomato with 0.2 and 0.8μg/g.

  10. Solid phase extraction of uranium from phosphoric acid. Kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Magied, Ahmed Fawzy [Nuclear Materials Authority, Cairo (Egypt); Stockholm Univ. (Sweden). Dept. of Organic Chemistry

    2017-07-01

    There is a high interest to develop suitable solid phase extractants for uranium separation from aqueous solutions in order to reduce cost and enhance the efficiency. This paper describes solid phase extraction of uranium(VI) from aqueous phosphoric acid solution using MCM-41 based D2HEPA-TOPO organophosphorous extractants. The mixture of D2HEPA (di-2-ethyl-hexylphosphoric acid) and TOPO (tri-n-octylphosphine oxide) was impregnated into the pores of MCM-41 and the synthesized sorbent was fully characterized. The influences of different factors such as synergistic mixture ratio, phosphoric acid concentration, mixing time and temperature were investigated. The results showed that 90% of uranium(VI) extraction can be achieved within 5 min, using D2HEPA-TOPO rate at MCM-41 (mass ratio 2:1 w/w) from 1 M phosphoric acid containing 64 ppm of uranium at room temperature. High adsorption capacity of uranium(VI) have been achieved at the mentioned conditions. The rate constant for the chemical adsorption of uranium(VI) was 0.988 g mg{sup -1} min{sup -1} calculated by the pseudo-second order rate equation. The obtained thermodynamics parameters showed that uranium(VI) adsorption from H{sub 3}PO{sub 4} is an exothermic and spontaneous process.

  11. Sol–gel-based silver nanoparticles-doped silica – Polydiphenylamine nanocomposite for micro-solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Banihashemi, Solmaz

    2015-07-30

    A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag–SiO{sub 2}-PDPA) was successfully synthesized by the sol–gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO{sub 2} spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag–SiO{sub 2}-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and determine the representatives from organophosphorous, organochlorine and aryloxyphenoxy propionic acids from aqueous samples. After the implementation of extraction process, the analytes were desorbed by methanol and determined using gas chromatography–mass spectrometry (GC–MS). Important parameters influencing the extraction and desorption processes such as pH of sample solution, salting out effect, type and volume of the desorption solvent, the sample loading and eluting flow rates along with the sample volume were experimentally optimized. Limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.02–0.05 μg L{sup −1} and 0.1–0.2 μg L{sup −1}, respectively, using time scheduled selected ion monitoring (SIM) mode. The relative standard deviation percent (RSD %) with four replicates was in the range of 6–10%. The applicability of the developed method was examined by analyzing different environmental water samples and the relative recovery (RR %) values for the spiked water samples were found to be in the range of 86–103%. - Highlights: • A sol–gel-based silver nanoparticles doped silica-polydiphenylamine nanocomposite was synthesized. • The sorbent was applied to micro-solid-phase extraction of some selected pesticides in water

  12. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  13. ON-SITE SOLID-PHASE EXTRACTION AND LABORATORY ...

    Science.gov (United States)

    Fragrance materials such as synthetic musks in aqueous samples, are normally determined by gas chromatography/mass spectrometry in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of I -L samples. Full-scan mass spectra are required to verify that a target analyte has been found by comparison with the mass spectra of fragrance compounds in the NIST mass spectral library. A I -L sample usually provides insufficient analyte for full scan data acquisition. This paper describes an on-site extraction method developed at the U.S. Environmental Protection Agency (USEPA)- Las Vegas Nevada - for synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for a wide array of synthetic musks. Quantification of these compounds was achieved from the full-scan data directly, without the need to acquire SIM data. The detection limits obtained with this method are an order of magnitude lower than those obtained from liquid-liquid and other solid phase extraction methods. This method is highly reproducible, and recoveries ranged from 80 to 97% in spiked sewage treatment plant effluent. The high rate of sorbent-sample mass transfer eliminated the need for a methanolic activation step, which reduced extraction time, labor, and solvent use, More samples could be extracted in the field at lower cost. After swnple extraction, the light- weight cartridges ar

  14. Dispersive solid-phase extraction for the determination of trace organochlorine pesticides in apple juices using reduced graphene oxide coated with ZnO nanocomposites as sorbent.

    Science.gov (United States)

    Sun, Ting; Sun, Hefeng; Zhao, Feng

    2017-09-01

    In this work, reduced graphene oxide coated with ZnO nanocomposites was used as an efficient sorbent of dispersive solid-phase extraction and successfully applied for the extraction of organochlorine pesticides from apple juice followed by gas chromatography with mass spectrometry. Several experimental parameters affecting the extraction efficiencies, including the amount of adsorbent, extraction time, and the pH of the sample solution, as well as the type and volume of eluent solvent, were investigated and optimized. Under the optimal experimental conditions, good linearity existed in the range of 1.0-200.0 ng/mL for all the analytes with the correlation coefficients (R 2 ) ranging from 0.9964 to 0.9994. The limits of detection of the method for the compounds were 0.011-0.053 ng/mL. Good reproducibilities were acquired with relative standard deviations below 8.7% for both intraday and interday precision. The recoveries of the method were in the range of 78.1-105.8% with relative standard deviations of 3.3-6.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Graphene-Derivatized Silica Composite as Solid-Phase Extraction Sorbent Combined with GC–MS/MS for the Determination of Polycyclic Musks in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2018-02-01

    Full Text Available Polycyclic musks (PCMs have recently received growing attention as emerging contaminants because of their bioaccumulation and potential ecotoxicological effects. Herein, an effective method for the determination of five PCMs in aqueous samples is presented. Reduced graphene oxide-derivatized silica (rGO@silica particles were prepared from graphene oxide and aminosilica microparticles and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. PCMs were preconcentrated using rGO@silica as the solid-phase extraction sorbent and quantified by gas chromatography–tandem mass spectrometry. Several experimental parameters, such as eluent, elution volume, sorbent amount, pH, and sample volume were optimized. The correlation coefficient (R ranged from 0.9958 to 0.9992, while the limits of detection and quantitation for the five PCMs were 0.3–0.8 ng/L and 1.1–2.1 ng/L, respectively. Satisfactory recoveries were obtained for tap water (86.6–105.9% and river water samples (82.9–107.1%, with relative standard deviations <10% under optimal conditions. The developed method was applied to analyze PCMs in tap and river water samples from Beijing, China. Galaxolide (HHCB and tonalide (AHTN were the main PCM components detected in one river water sample at concentrations of 18.7 for HHCB, and 11.7 ng/L for AHTN.

  16. Preparation and quantification of the total phenolic products in Citrus fruit using solid-phase extraction coupled with high-performance liquid chromatography with diode array and UV detection.

    Science.gov (United States)

    Zeng, Honglian; Liu, Zhenli; Zhao, Siyu; Shu, Yisong; Song, Zhiqian; Wang, Chun; Dong, Yunzhuo; Ning, Zhangchi; He, Dan; Wang, Menglei; Lu, Cheng; Liu, Yuanyan; Lu, Aiping

    2016-10-01

    Citrus fruit is an important health-promoting food that is rich in dietary phenolic metabolites. Traditional Chinese medicines, such as Zhishi and Zhiqiao, come from young and immature fruits of Citrus cultivars. The preparation of diversified bioactive phenolic products and establishment of the corresponding quality control methodology are challenging and necessary. In the current study, four types of solid-phase extraction sorbents for the enrichment and clean-up of the phenolic matrix were evaluated. A solid-phase extraction column coated with Strata-X was finally used in the procedure. Twenty phenolic compounds were selected to evaluate the extraction performances of the sorbents using high-performance liquid chromatography analysis. Under the optimized conditions, good linearities were obtained with R 2 more than 0.9996 for all analytes with LODs of 0.04-1.012 μg/g. Intra- and interday relative standard deviation values were less than 3%, and the recovery was equal to or higher than 90.02%. Compared to non-solid-phase extraction process, the content of total phenolic products was elevated 35.55-68.48% with solid-phase extraction. Finally, the developed and validated method was successfully applied to the discrimination of Zhishi samples from different species as well as Zhishi and Zhiqiao samples in different development stages. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Magnetic solid phase extraction and gas chromatography-mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun

    2015-08-07

    Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD.

    Science.gov (United States)

    Gañán, Judith; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2013-09-15

    Functionalized (SBA-C₁₈ and SM-C₁₈) and non-functionalized (SBA-15 and SM) mesoporous silicas were then examined as sorbents for solid-phase extraction of 17β-estradiol in aqueous media. Experiments were run in order to test critical factors affecting the procedure extraction efficiency, including the type of sorbent, the analyte concentration, the solvent and volume used for elution and the sample volume. Among the prepared materials, SBA-C₁₈ had the highest adsorption affinity towards 17β-estradiol and under optimized conditions (200mg of sorbent, 150 mL of water sample, elution with 3 × 2 mL of methanol) this sorbent proved good extraction capacity and elution efficiency for this hormone from aqueous media (recovery near 100%). To evaluate the analytical applicability of the proposed method, it was applied to the determination of 17β-estradiol in drinking water by high performance liquid chromatography with a photodiode array detector. Calibration curves were shown to be linear between 1.25 and 100 mg L(-1)with correlation coefficients ≥0.999 (n=5) for 17β-estradiol. The instrumental detection and quantitation limits calculated were 0.38 and 1.25 mg L(-1), respectively. The relative standard deviation obtained values were ≤3% and the mean recoveries obtained were of 82%. The results suggest that SBA-C18 is a promising material for the off-line solid phase extraction of 17β-estradiol from waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. The role of graphene-based sorbents in modern sample preparation techniques.

    Science.gov (United States)

    de Toffoli, Ana Lúcia; Maciel, Edvaldo Vasconcelos Soares; Fumes, Bruno Henrique; Lanças, Fernando Mauro

    2018-01-01

    The application of graphene-based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene-based material, their properties, synthesis routes, and the most important applications in both off-line and on-line sample preparation techniques. The discussion of the off-line approaches includes methods derived from conventional solid-phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on-line approaches focus on the use of graphene-based material mainly in on-line solid phase extraction, its variation called in-tube solid-phase microextraction, and on-line microdialysis systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modified Activated Carbon Prepared from Acorn Shells as a New Solid-Phase Extraction Sorbent for the Preconcentration and Determination of Trace Amounts of Nickel in Food Samples Prior to Flame Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ebrahimi, Bahram

    2017-03-01

    A new solid-phase extraction (SPE) sorbent was introduced based on acidic-modified (AM) activated carbon (AC) prepared from acorn shells of native oak trees in Kurdistan. Hydrochloric acid (15%, w/w) and nitric acid (32.5%, w/w) were used to condition and modify AC. The IR spectra of AC and AM-AC showed that AM lead to the formation of increasing numbers of acidic functional groups on AM-AC. AM-AC was used in the SPE method for the extraction and preconcentration of Ni+2 prior to flame atomic absorption spectrometric determination at ng/mL levels in model and real food samples. Effective parameters of the SPE procedure, such as the pH of the solutions, sorbent dosage, extraction time, sample volume, type of eluent, and matrix ions, were considered and optimized. An enrichment factor of 140 was obtained. The calibration curve was linear with an R2 of 0.997 in the concentration range of 1-220 ng/mL. The RSD was 5.67% (for n = 7), the LOD was 0.352 ng/mL, and relative recoveries in vegetable samples ranged from 96.7 to 103.7%.

  1. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magnetic solid phase extraction and static headspace gas chromatography-mass spectrometry method for the analysis of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Cai, Ying; Yan, Zhihong; Wang, Lijia; NguyenVan, Manh; Cai, Qingyun

    2016-01-15

    A magnetic solid phase extraction (MSPE) protocol combining a static headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) method has been developed for extraction, and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in drinking water samples. Magnetic nanoparticles (MNPs) were coated with 3-aminopropyltriethoxysilane and modified by cholesterol chloroformate. Transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were used to characterize the cholesterol-functionalized sorbents, and the main parameters affecting the extraction as well as HS sampling, such as sorbent amount, extraction time, oven temperature and equilibration time have been investigated and established. Combination with HS sampling, the MSPE procedure was simple, fast and environmentally friendly, without need of any organic solvent. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels obtaining the limit of detection (S/N=3) ranging from 0.20 to 7.8 ng/L. Good values for intra and inter-day precision were obtained (RSDs ≤ 9.9%). The proposed method was successfully applied to drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novos sorventes baseados em poli (metiloctilsiloxano sobre sílica para uso em extração em fase sólida New sorbents based on poly(methyloctylsiloxane immobilized on silica for use in solid-phase extraction

    Directory of Open Access Journals (Sweden)

    Sonia C. N. Queiroz

    2006-07-01

    Full Text Available This paper presents an easy and practical procedure to obtain silica-based C-8 type sorbents for use in solid-phase extraction. The materials are prepared by depositing poly(methyloctylsiloxane, PMOS, on the silica support. Two different treatments for immobilization were used: thermal treatment or gamma irradiation. Suitable recoveries were obtained after pre-concentration of dilute solutions, at the ng/L level, of a mixture of pesticides, indicating the good performance of the materials.

  4. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    OpenAIRE

    Alves, Vanessa N.; Borges, Simone S. O.; Coelho, Nivia M. M.

    2011-01-01

    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extr...

  5. A Simple Method for Automated Solid Phase Extraction of Water Samples for Immunological Analysis of Small Pollutants.

    Science.gov (United States)

    Heub, Sarah; Tscharner, Noe; Kehl, Florian; Dittrich, Petra S; Follonier, Stéphane; Barbe, Laurent

    2016-01-01

    A new method for solid phase extraction (SPE) of environmental water samples is proposed. The developed prototype is cost-efficient and user friendly, and enables to perform rapid, automated and simple SPE. The pre-concentrated solution is compatible with analysis by immunoassay, with a low organic solvent content. A method is described for the extraction and pre-concentration of natural hormone 17β-estradiol in 100 ml water samples. Reverse phase SPE is performed with octadecyl-silica sorbent and elution is done with 200 µl of methanol 50% v/v. Eluent is diluted by adding di-water to lower the amount of methanol. After preparing manually the SPE column, the overall procedure is performed automatically within 1 hr. At the end of the process, estradiol concentration is measured by using a commercial enzyme-linked immune-sorbent assay (ELISA). 100-fold pre-concentration is achieved and the methanol content in only 10% v/v. Full recoveries of the molecule are achieved with 1 ng/L spiked de-ionized and synthetic sea water samples.

  6. Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Ángel

    2018-03-01

    In this work, the suitability of Fe 3 O 4 nanoparticles coated with polydopamine was evaluated as sorbent for the extraction of a group of 21 compounds with oestrogenic activity including seven phytoestrogens, six mycotoxins as well as four synthetic and four natural oestrogens from different types of milk, including sheep milk, in which the evaluation of oestrogenic compounds have never been developed before. Extraction was carried out using magnetic micro-dispersive solid-phase extraction after a previous deproteinisation step. Separation, determination and quantification of the target analytes were achieved by ultra-high-performance liquid chromatography coupled to triple quadrupole-tandem mass spectrometry. The methodology was validated for five milk samples using 17β-estradiol-2,4,16,16,17-d 5 as internal standard for natural and synthetic oestrogens, β-zearalanol-10,10,11,12,12-d 5 for mycotoxins and prunetin for phytoestrogens. Recovery values ranged from 70 to 120% for the five types of matrices with relative standard deviation values lower than 18%. Limits of quantification of the method were in the range 0.55-11.8 μg L -1 for all samples. Graphical abstract General scheme of the multiresidue analysis of oestrogenic compounds in milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in μ-dSPE.

  7. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  8. A polyaniline-magnetite nanocomposite as an anion exchange sorbent for solid-phase extraction of chromium(VI) ions

    International Nuclear Information System (INIS)

    Rezvani, Mehdi; Asgharinezhad, Ali Akbar; Ebrahimzadeh, Homeira; Shekari, Nafiseh

    2014-01-01

    This work describes a novel polyaniline-magnetite nanocomposite and its application to the preconcentration of Cr(VI) anions. The material was obtained by oxidative polymerization of aniline in the presence of magnetite nanoparticles. The parameters affecting preconcentration were optimized by a Box-Behnken design through response surface methodology. Extraction time, amount of magnetic sorbent and pH value were selected as the main factors affecting sorption. The sorption capacity of the sorbent for Cr(VI) is 54 mg g −1 . The type, volume and concentration of the eluents, and the elution time were selected as main factors in the optimization study of the elution step. Following sorption and elution, the Cr(VI) ions were reacted with diphenylcarbazide, and the resulting dye was quantified by HPLC with optical detection at 546 nm. The limit of detection is 0.1 μg L −1 , and all the relative standard deviations are <6.3 %. The nanocomposite was successfully applied to the rapid extraction and determination of trace quantities of Cr(VI) ions in spiked water samples. (author)

  9. Zero valent Fe-reduced graphene oxide quantum dots as a novel magnetic dispersive solid phase microextraction sorbent for extraction of organophosphorus pesticides in real water and fruit juice samples prior to analysis by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Akbarzade, Samaneh; Chamsaz, Mahmoud; Rounaghi, Gholam Hossein; Ghorbani, Mahdi

    2018-01-01

    A selective and sensitive magnetic dispersive solid-phase microextraction (MDSPME) coupled with gas chromatography-mass spectrometry was developed for extraction and determination of organophosphorus pesticides (Sevin, Fenitrothion, Malathion, Parathion, and Diazinon) in fruit juice and real water samples. Zero valent Fe-reduced graphene oxide quantum dots (rGOQDs@ Fe) as a new and effective sorbent were prepared and applied for extraction of organophosphorus pesticides using MDSPME method. In order to study the performance of this new sorbent, the ability of rGOQDs@ Fe was compared with graphene oxide and magnetic graphene oxide nanocomposite by recovery experiments of the organophosphorus pesticides. Several affecting parameters in the microextraction procedure, including pH of donor phase, donor phase volume, stirring rate, extraction time, and desorption conditions such as the type and volume of solvents and desorption time were thoroughly investigated and optimized. Under the optimal conditions, the method showed a wide linear dynamic range with R-square between 0.9959 and 0.9991. The limit of detections, the intraday and interday relative standard deviations (n = 5) were less than 0.07 ngmL -1 , 4.7, and 8.6%, respectively. The method was successfully applied for extraction and determination of organophosphorus pesticides in real water samples (well, river and tap water) and fruit juice samples (apple and grape juice). The obtained relative recoveries were in the range of 82.9%-113.2% with RSD percentages of less than 5.8% for all the real samples.

  10. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.

    Science.gov (United States)

    Ma, Wanwan; Row, Kyung Ho

    2018-07-20

    A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Primary secondary amine as a sorbent material in dispersive solid-phase extraction clean-up for the determination of indicator polychlorinated biphenyls in environmental water samples by gas chromatography with electron capture detection.

    Science.gov (United States)

    Guo, Yuanming; Hu, Hongmei; Li, Tiejun; Xue, Lijian; Zhang, Xiaoning; Zhong, Zhi; Zhang, Yurong; Jin, Yanjian

    2017-08-01

    A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid-liquid extracted with an automated Jipad-6XB vertical oscillator using n-hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid-phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85-112, 76-116, and 72-108%, respectively, and with relative standard deviations of 3.3-4.5, 3.4-5.6, and 3.1-4.8% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid-liquid extraction and solid-phase extraction clean-up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solid phase microextraction.

    Science.gov (United States)

    Pawliszyn, J

    2001-01-01

    Solid Phase Microextraction (SPME) uses a small volume of sorbent dispersed typically on the surface of small fibres, to isolate and concentrate analytes from sample matrix. After contact with sample, analytes are absorbed or adsorbed by the fibre phase (depending on the nature of the coating) until an equilibrium is reached in the system. The amount of an analyte extracted by the coating at equilibrium is determined by the magnitude of the partition coefficient of the analyte between the sample matrix and the coating material. After the extraction step, the fibres are transferred, with the help of a syringe-like handling device, to analytical instrument, for separation and quantitation of target analytes. This technique integrates sampling, extraction and sample introduction and is a simple way of facilitating on-site monitoring. Applications of this technique include environmental monitoring, industrial hygiene, process monitoring, clinical, forensic, food, flavour, fragrance and drug analyses, in laboratory and on-site analysis.

  13. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero, E-mail: carlos.herrero@usc.es

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption–elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L{sup −1}, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64–22.9 μg Pb L{sup −1}). - Highlights: • Lead determination in urine using a solid phase extraction procedure followed by ETAAS • Carbon nanotubes as SPE adsorbent for Pb in urine • Matrix elimination for the Pb determination in urine by using SPE based on carbon nanotubes • The detection limit was 0.08 μg Pb L{sup −1}.

  14. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowska, Anna M.; Poliwoda, Anna, E-mail: Anna.Poliwoda@uni.opole.pl; Wieczorek, Piotr P.

    2015-04-01

    Molecularly imprinted polymers (MIPs) with biochanin A as a template were obtained using a bulk polymerization with non-covalent imprinting approach. The polymers were prepared in acetonitrile as porogen, using ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The synthesis, with an application of 1′,1′-azobis(cyclohexanecarbonitrile) (ACHN) as an initiator, has been performed thermally. During the synthesis process the effect of different functional monomers such as methacrylic acid (MAA), acrylamide (AA) and 4-vinylpyridine (4-VP) was investigated. The application of nitrogen sorption porosimetry, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) permitted the characterization and evaluation of synthesized polymers. The adsorption capacity of obtained MIPs was checked by using the binding testing. All synthesized polymers were evaluated as solid-phase extraction (SPE) sorbents for isolation and preconcentration of biochanin A and its analogues, daidzein and genistein. The MIPs exhibited higher affinity for biochanin A over competitive compounds. - Highlights: • The molecularly imprinted polymers with biochanin A as a template were synthesized. • The surface of synthesized monoliths was formed mainly from mesopores (73–77%). • Biochanin A was effectively concentrated in each of the synthesized polymers (recovery > 89.8%). • The results show potential ability of synthesized MIPs in analysis of phytoestrogens in real samples.

  16. Low-cost humic acid-bonded silica as an effective solid-phase extraction sorbent for convenient determination of aflatoxins in edible oils.

    Science.gov (United States)

    Zhou, Neng-Zhi; Liu, Ping; Su, Xiao-Chuan; Liao, Yan-Hua; Lei, Ning-Sheng; Liang, Yong-Hong; Zhou, Shao-Huan; Lin, Wen-Si; Chen, Jie; Feng, Yu-Qi; Tang, Yang

    2017-06-01

    Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B 1 , B 2 , G 1 , and G 2 ) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 μg/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were obtained. In

  17. Molecularly Imprinted Polymers (MIP for Selective Solid Phase Extraction of Celecoxib in Urine Samples Followed by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Saeedeh Ansari

    2017-09-01

    Full Text Available In this study, for the analysis of human urine samples, a novel method explained for the determination of celecoxib, a nonsteroidal anti-inflammatory drug (NSAID, using molecularly imprinted solid-phase extraction (MISPE coupled with high-performance liquid chromatography (HPLC. The synthesis of the MIP was performed by precipitation polymerization in methacrylic acid (MAA, ethylene glycol dimethacrylate (EGDMA, chloroform, 2,2′-azobisisobutyronitrile (AIBN and celecoxib as the functional monomer, cross-linker monomer, solvent, initiator and target drug, respectively. The celecoxib imprinted polymer was utilized as a specific sorbent for the solid phase extraction (SPE of celecoxib from samples. The molecularly imprinted polymer (MIP performance was compared with the synthesized non-molecularly imprinted polymer (NIP. Scanning electron microscopy (SEM, FT-IR spectroscopy, UV-VIS spectrophotometry and thermogravimetric analysis (TGA/DTG were used for characterizing the synthesized polymers. Moreover, the MISPE procedure parameters such as pH, eluent solvent flow rate, eluent volume and sorbent mass that probably influence the extraction process have been optimized to achieve the highest celecoxib extraction efficiency. The relative standard deviation (RSD %, recovery percent, limit of detection (LOD and limit of quantification (LOQ of this proposed method were 1.12%, 96%, 8 µg L-1 and 26.7 µg L-1, respectively. The proposed MISPE-HPLC-UV method can be used for the separation and enrichment of trace amounts of celecoxib in human urine and biological samples.

  18. Application of sunflower stalk-carbon nitride nanosheets as a green sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons followed by high-performance liquid chromatography.

    Science.gov (United States)

    Marzi Khosrowshahi, Elnaz; Razmi, Habib

    2018-02-08

    A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ternary mixed-mode silica sorbent of solid-phase extraction for determination of basic, neutral and acidic drugs in human serum.

    Science.gov (United States)

    Jin, Shupei; Qiao, Yinghua; Xing, Jun

    2018-06-01

    In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.

  20. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams

    International Nuclear Information System (INIS)

    Thakur, Neha; Kumar, Sanjukta A.; Wagh, D.N.; Das, Sadananda; Pandey, Ashok K.; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    Highlights: ► Th complexed with poly (bis[2-(methacryloyloxy)-ethyl]phosphate) as tailored polymer membranes. ► Membranes offered high capacity and selectivity for fluoride in aqueous media. ► Quantitative uptake (80 ± 5%) of fluoride. ► Fast sorption kinetics. ► Reusability of polymer membranes. - Abstract: Fluoride related health hazards (fluorosis) are a major environmental problem in many regions of the world. It affects teeth; skeleton and its accumulation over a long period can lead to changes in the DNA structure. It is thus absolutely essential to bring down the fluoride levels to acceptable limits. Here, we present a new inorganic–organic hybrid polymer sorbent having tailored fixed-sites for fluoride sorption. The matrix supported poly (bis[2-(methacryloyloxy)-ethyl]phosphate) was prepared by photo-initiator induced graft-polymerization in fibrous and microporous (sheet) host poly(propylene) substrates. These substrates were conditioned for selective fluoride sorption by forming thorium complex with phosphate groups on bis[2-methacryloyloxy)-ethyl] phosphate (MEP). These tailored sorbents were studied for their selectivity towards fluoride in aqueous media having different chemical conditions. The fibrous sorbent was found to take up fluoride with a faster rate (15 min for ≈76% sorption) than the sheet sorbent. But, the fluoride loading capacity of sheet sorbent (4320 mg kg −1 ), was higher than fibrous and any other sorbent reported in the literature so far. The sorbent developed in the present work was found to be reusable after desorption of fluoride using NaOH solution. It was tested for solid phase extraction of fluoride from natural water samples.

  1. Synthesis and application of mesoporous molecular sieve for miniaturized matrix solid-phase dispersion extraction of bioactive flavonoids from toothpaste, plant, and saliva.

    Science.gov (United States)

    Cao, Wan; Cao, Jun; Ye, Li-Hong; Xu, Jing-Jing; Hu, Shuai-Shuai; Peng, Li-Qing

    2015-12-01

    This article describes the use of the mesoporous molecular sieve KIT-6 as a sorbent in miniaturized matrix solid-phase dispersion (MSPD) in combination with ultra-performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT-6 was used as a sorbent material for this mode of extraction. Compared with common silica-based sorbents (C18 and activated silica gel), the proposed KIT-6 dispersant with a three-dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting "green chemistry" requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02-0.04 μg/mL and 0.07-0.13 μg/mL, respectively. Finally, the miniaturized matrix solid-phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Science.gov (United States)

    Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.

    2016-12-01

    Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  3. Multifunctional silver nanoparticle-doped silica for solid-phase extraction and surface-enhanced Raman scattering detection

    Energy Technology Data Exchange (ETDEWEB)

    Markina, Natalia E.; Markin, Alexey V., E-mail: av-markin@mail.ru; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu. [Saratov State University (Russian Federation)

    2016-12-15

    Multifunctional silica gel with embedded silver nanoparticles (SiO{sub 2}–AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO{sub 2}–AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO{sub 2} bulk. Synthesis of AgNP directly to the SiO{sub 2} matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO{sub 3} concentration used during the SiO{sub 2}–AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO{sub 2}–AgNP with optimal composition was around 10{sup 5}. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.

  4. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  5. Modification of polydopamine-coated Fe3O4 nanoparticles with multi-walled carbon nanotubes for magnetic-μ-dispersive solid-phase extraction of antiepileptic drugs in biological matrices.

    Science.gov (United States)

    Zhang, Ruiqi; Wang, Siming; Yang, Ye; Deng, Yulan; Li, Di; Su, Ping; Yang, Yi

    2018-06-01

    In this study, multi-walled carbon nanotubes were coated on the surface of magnetic nanoparticles modified by polydopamine. The synthesized composite was characterized and applied to magnetic-μ-dispersive solid-phase extraction of oxcarbazepine (OXC), phenytoin (PHT), and carbamazepine (CBZ) from human plasma, urine, and cerebrospinal fluid samples prior to analysis by a high-performance liquid chromatography-photodiode array detector. The extraction parameters were investigated and the optimum condition was obtained when the variables were set to the following: sorbent type, Fe 3 O 4 @polyDA-MWCNTs (length Graphical abstract Magnetic multi-walled carbon nanotube core-shell composites were applied as magnetic-μ-dispersive solid-phase extraction adsorbents for determination of antiepileptic drugs in biological matrices.

  6. Determination of Iron Species by Combination of Solvent Assisted-Dispersive Solid Phase Extraction and Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Zahra Dehghani

    2015-06-01

    Full Text Available A simple, rapid and sensitive solvent assisted-dispersive solid phase extraction method was developed for the extraction of iron(II prior to its spectrophotometric determination. The Fe(II reacted with 2,4,6-tris(2-pyridyl-1,3,5-triazine, neutralized with sodium dodecyl sulfate and extracted onto the fine particles of benzophenone which were formed upon rapid injection of a mixture of benzophenone as the sorbent and ethanol as the disperser solvent into the aqueous solution. After phase separation, the sedimented phase containing the complex was dissolved in ethanol and the analyte concentration was determined by measuring its absorption at 594 nm. Total iron was determined after the reduction of Fe(III to Fe(II with hydroxylamine hydrochloride. Under the optimized conditions, an enhancement factor of 32, the detection limit of 0.16 µg l-1, and the relative standard deviation of 1.9% (n = 6 at 20 µg l-1 concentration level of Fe(II were achieved. The method was successfully applied to the determination of iron species in water samples and total iron in infant dry formula milk, apple, rice, spinach and parsley samples.

  7. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    Science.gov (United States)

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Sequential injection/bead injection lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald; Miró, Manuel

    2003-01-01

    are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material...

  9. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  10. Polythiophene-coated Fe{sub 3}O{sub 4} superparamagnetic nanocomposite: Synthesis and application as a new sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Moradi, Morteza; Esrafili, Ali [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2013-04-03

    Graphical abstract: In the present work, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) have been successfully synthesized. The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and pre-concentration of several typical plasticizer compounds from environmental water samples. Highlights: ► A novel polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs) was synthesized. ► The synthesized Fe{sub 3}O{sub 4}@PTh NPs were characterized by using different instruments. ► The Fe{sub 3}O{sub 4}@PTh NPs were applied as a sorbent for extraction of several plasticizers. ► After extraction, separation of NPs from solution was achieved by a magnetic field. ► The proposed procedure was applied to analysis of the analytes in real water samples. -- Abstract: In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe{sub 3}O{sub 4}@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe{sub 3}O{sub 4}@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount

  11. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions

    Science.gov (United States)

    Zhang, Li; Chang, Xijun; Li, Zhenhua; He, Qun

    2010-02-01

    A new selective solid-phase extractant using activated carbon as matrix which was purified, oxidized and modified by triethylenetetramine (AC-TETA) was prepared and characterized by FT-IR spectroscopy. At pH 4, quantitative extraction of trace Cr(III), Fe(III) and Pb(II) was obtained and determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 0.5 mol L -1 HCl. The maximum static adsorption capacity of sorbent for Cr(III), Fe(III) and Pb(II) was 34.6, 36.5 and 51.9 mg g -1, respectively. The time of quantitative adsorption was less than 2 min. The detection limits of the method was found to be 0.71, 0.35 and 0.45 ng mL -1 for Cr(III), Fe(III) and Pb(II), and the relative standard deviation (RSD) was 3.7%, 2.2% and 2.5%, respectively. Moreover, the method was free from interference with common coexiting ions. The method was also successfully applied to the preconcentration of trace Cr(III), Fe(III) and Pb(II) in synthetic samples and a real sample with satisfactory results.

  12. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    Science.gov (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-02

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluation of bi-functionalized mesoporous silicas as reversed phase/cation-exchange mixed-mode sorbents for multi-residue solid phase extraction of veterinary drug residues in meat samples.

    Science.gov (United States)

    Casado, Natalia; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2017-04-01

    A SBA-15 type mesoporous silica was synthesized and bi-functionalized with octadecylsilane (C18) or octylsilane (C8), and sulfonic acid (SO 3 - ) groups in order to obtain materials with reversed-phase/strong cation-exchange mixed-mode retention mechanism. The resulting hybrid materials (SBA-15-C18-SO 3 - and SBA-15-C8-SO 3 - ) were comprehensively characterized. They showed high surface area, high pore volume and controlled porous size. Elemental analysis of the materials revealed differences in the amount of C18 and C8. SBA-15-C18-SO 3 - contained 0.19mmol/g of C18, while SBA-15-C8-SO 3 - presented 0.54mmol/g of C8. The SO 3 - groups anchored to the silica surface of the pore walls were 0.20 and 0.09mmol/g, respectively. The bi-functionalized materials were evaluated as SPE sorbents for the multi-residue extraction of 26 veterinary drug residues in meat samples using ultra-high-performance liquid chromatography coupled to mass spectrometry detector (UHPLC-MS/MS). Different sorbent amounts (100 and 200mg) and organic solvents were tested to optimize the extraction procedure. Both silicas showed big extraction potential and were successful in the extraction of the target analytes. The mixed-mode retention mechanism was confirmed by comparing both silicas with SBA-15 mesoporous silica mono-functionalized with C18 and C8. Best results were achieved with 200mg of SBA-15-C18-SO 3 - obtaining recoveries higher than 70% for the majority of analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sulfonated poly(styrene-divinylbenzene) modified with amines and the application for pipette-tip solid-phase extraction of carbendazim in apples.

    Science.gov (United States)

    Ma, Yuxin; Liu, Lingling; Tang, Weiyang; Zhu, Tao

    2017-10-01

    Sulfonated poly(styrene-divinylbenzene) modified with five kinds of amine functional groups was applied to the determination of carbendazim in apple samples with a pipette-tip solid-phase extraction method. The structures of the polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Five different modifications of the solid-phase extraction sorbent based on sulfonated poly(styrene-divinylbenzene) were tested under static and pipette-tip solid-phase extraction conditions. The polymer modified with p-methoxyaniline showed the best recognition capacity and adsorption amount for carbendazim. Under the optimum conditions, 3.00 mg of the adsorbent, 1.00 mL of ethyl acetate as washing solvent, and 1.00 mL of ammonia/acetonitrile (5:95, v/v) as elution solvent were used in the pretreatment procedure of apple samples. The calibration graphs of carbendazim in methanol were linear over 5.00-200.00 μg/mL, and the limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of carbendazim were in the range of 91.31-98.13% with associated intraday relative standard deviations of 0.76-2.13% and interday relative standard deviations of 1.10-1.85%. Sulfonated poly(styrene-divinylbenzene) modified with p-methoxyaniline showed satisfactory results (recovery: 97.96%) and potential for the rapid purification of carbendazim in apple samples combined with the pipette-tip solid-phase extraction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. New poly(styrene/divinylbenzene) based stationary phases for the solid phase extraction of pesticides and the chromatography of carbohydrates

    International Nuclear Information System (INIS)

    Wartusch, I.

    2002-02-01

    The introduced sorbents based on poly(styrene/divinylbenzene) are studied regarding their extraction behavior of pesticides out of water. The sorbents are prepared with different porogens like n-octanol, n-decanol, n-dodecanol and acetone. The comparison of the extraction properties of these substances shows that the use of n-octanol as a porogen leads to the best recoveries. Furthermore this sorbent is compared to a stationary phase prepared via ring opening metathesis polymerization (ROMP) and to commercially available silica-C18. It is shown that the poly(styrene/divinylbenzene) based material on average yields higher recoveries as the other materials. Only the extraction of relatively polar pesticides works better with the ROMP based sorbent. For the chromatography of carbohydrates nonporous particles with diameters of about 3 μm were synthesized via poly(styrene/divinylbenzene) using the activated swelling method. Quaternary ammonia functional groups were introduced into the poly(styrene/divinylbenzene) particles via their nitration, reduction and quaternization. The applicability of these stationary phases for anion exchange chromatography is shown by separation of different kinds of sugars using a pulsed amperometric detection system. Monosaccharides are isocratically separated using an eluent containing sodium hydroxide, separations of disaccharides and oligosaccharides are performed using sodium acetate gradients. Linearity, detection limits and reproducibility of the system are investigated by the analysis of glucose, sucrose and fructose out of the real samples Coca Cola and apple juice. (author)

  16. Application of Solid Phase Extraction on Multiwalled Carbon Nanotubes of Some Heavy Metal Ions to Analysis of Skin Whitening Cosmetics Using ICP-AES

    OpenAIRE

    ALqadami, Ayoub; Abdalla, Mohammad; ALOthman, Zeid; Omer, Kamal

    2013-01-01

    A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied ...

  17. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    Science.gov (United States)

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Determination of Three Organochlorine Pesticides in Aqueous Samples by Solid-Phase Extraction Based on Natural Nano Diatomite in Packed Syringe Coupled to Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Taghani, Abdollah; Goudarzi, Nasser; Bagherian, Ghadamali; Chamjangali, Mansour Arab

    2017-01-01

    A rapid, simple, and sensitive technique is proposed based on a miniaturized solid-phase extraction method named mictroextraction in a packed syringe coupled with gas chromatography-mass spectrometry for the preconcentration and determination of three organochlorine pesticides. These include hexachlorobenzene, heptachlor and aldrine in aqueous samples. For the first time, the natural nano diatomite is used a sorbent. Based on this technique, 6.0 mg of the nano sorbent is inserted in a syringe between two polypropylene frits. The analytes would be adsorbed on the solid phase, and would subsequently be eluted using organic solvents. The influence of some important parameters, such as the solution pH, type and volume of the organic desorption solvent, and amount of sorbent on the extraction efficiency of the selected pesticides, is investigated. The proposed method shows good linearity in the range of 0.1 - 40.0 μg L -1 , and at low limits of detection in the range of 0.02 - 0.13 μg L -1 using the selected ion-monitoring mode. The reproducibility of this method was found to be in the range of 3.5 - 11.1% for the understudied pesticides. In order to evaluate the matrix effect, the developed method is also applied to the preconcentration and determination of the selected pesticides in different water samples.

  19. Solid phase extraction membrane

    Science.gov (United States)

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  20. Solid-phase extraction versus matrix solid-phase dispersion: Application to white grapes.

    Science.gov (United States)

    Dopico-García, M S; Valentão, P; Jagodziñska, A; Klepczyñska, J; Guerra, L; Andrade, P B; Seabra, R M

    2007-11-15

    The use of matrix solid-phase dispersion (MSPD) was tested to, separately, extract phenolic compounds and organic acids from white grapes. This method was compared with a more conventional analytical method previously developed that combines solid liquid extraction (SL) to simultaneously extract phenolic compounds and organic acids followed by a solid-phase extraction (SPE) to separate the two types of compounds. Although the results were qualitatively similar for both techniques, the levels of extracted compounds were in general quite lower on using MSPD, especially for organic acids. Therefore, SL-SPE method was preferred to analyse white "Vinho Verde" grapes. Twenty samples of 10 different varieties (Alvarinho, Avesso, Asal-Branco, Batoca, Douradinha, Esganoso de Castelo Paiva, Loureiro, Pedernã, Rabigato and Trajadura) from four different locations in Minho (Portugal) were analysed in order to study the effects of variety and origin on the profile of the above mentioned compounds. Principal component analysis (PCA) was applied separately to establish the main sources of variability present in the data sets for phenolic compounds, organic acids and for the global data. PCA of phenolic compounds accounted for the highest variability (77.9%) with two PCs, enabling characterization of the varieties of samples according to their higher content in flavonol derivatives or epicatechin. Additionally, a strong effect of sample origin was observed. Stepwise linear discriminant analysis (SLDA) was used for differentiation of grapes according to the origin and variety, resulting in a correct classification of 100 and 70%, respectively.

  1. Computational Modeling of Mixed Solids for CO2 CaptureSorbents

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua

    2015-01-01

    Since current technologies for capturing CO2 to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO2 reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO2 capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO2 sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we apply our screening methodology to mixing solid systems to adjust the turnover temperature to help on developing CO2 capture Technologies.

  2. Silica chemically bonded N-propyl kriptofix 21 and 22 with immobilized palladium nanoparticles for solid phase extraction and preconcentration of some metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh, E-mail: niknam@pgu.ac.ir [Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr, 75169 (Iran, Islamic Republic of); Zamani, Saeed; Abasi Larki, Habib [Chemistry Department, Islamic Azad University, Omidiyeh Branch, Omidiyeh (Iran, Islamic Republic of); Roosta, Mostafa [Chemistry Department, Yasouj University, Yasouj, 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2013-08-01

    Silica gel chemically bonded N-propyl kriptofix 21 (SBNPK 21) and N-propyl kriptofix 22 (SBNPK 22) and subsequently immobilized with palladium nanoparticles (PNP-SBNPK 21 and PNP-SBNPK 22) to produce two new complexing lipophilic materials. Then these novel sorbents were applied for the enrichment of some metal ions and their subsequent determination by flame atomic absorption spectroscopy (FAAS). The influences of the variables including pH, amount of solid phase, sample flow rate, eluent conditions and sample volume on the metal ion recoveries were investigated. The detection limit of proposed method was in the interval 2.1–2.3 and 1.7–2.8 ng mL{sup −1} for PNP-SBNPK 21 and PNP-SBNPK 22 respectively, while the preconcentration factor was 80 for two sorbents. The relative standard deviations of recoveries were between 1.23–1.31 and 1.28–1.49 for PNP-SBNPK 21 and PNP-SBNPK 22 respectively. The method has high sorption-preconcentration efficiency even in the presence of various interfering ions. Due to the reasonable selectivity of proposed method, the relative standard deviation of recoveries of all understudied metal ions in some complicated matrices was less than 3.0%. Highlights: • Highly selective sorbents for solid phase extraction were synthesized. • The method has been successfully applied for the determination of trace metals ions. • Excellent properties of the sorbent have been illustrated in detail.

  3. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solid phase extraction and trace monitoring of cadmium ions in environmental water and food samples based on modified magnetic nanoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Omidi, Fariborz [Department of Occupational Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud (Iran, Islamic Republic of); Behbahani, Mohammad, E-mail: mohammadbehbahai89@yahoo.com [Department of Chemistry, Shahid Beheshti University, Evin, Tehran (Iran, Islamic Republic of); Kalate Bojdi, Majid [Faculty of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran (Iran, Islamic Republic of); Shahtaheri, Seyed Jamaleddin [Department of Occupational Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-01

    A new method has been developed for trace separation/preconcentration of cadmium ions using pyridine-functionalized magnetic nanoporous silica material (called Py-Fe{sub 3}O{sub 4}@MCM-41) as a new magnetic sorbent and their determination by flame atomic absorption spectrometry (FAAS). The Py-Fe{sub 3}O{sub 4}@MCM-41 sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The modified Fe{sub 3}O{sub 4}@MCM-41 can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, amount of functionalized Fe{sub 3}O{sub 4}@MCM-41, extraction time, type and quantity of eluent, desorption time, and interfering ions on the extraction efficiency were evaluated and optimized. Under the optimized conditions, the detection limit and relative standard deviation was 0.04 μg L{sup –1} and 2.9%, respectively and the maximum adsorption capacity of the synthesized sorbent for cadmium ions was 154 mg g{sup −1}. The proposed method has been applied to the determination of Cd ions at trace levels in real samples such as, rice, onion, carrot, lettuce, parsley, basil, tap water, river water and seawater with satisfactory results. - Highlights: • The introducing of modified magnetic mesoporous silica as a novel magnetic sorbent. • Trace monitoring of cadmium ions. • The limit of detection (LOD) by the proposed solid phase extraction method was 0.04 ng mL{sup −1} for the cadmium ions. • High surface areas and magnetic characteristic of the sorbent. • Maximum adsorption capacity of the sorbent was 154 mg g{sup −1}.

  5. Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection

    International Nuclear Information System (INIS)

    Lian, Ziru; Wang, Jiangtao

    2016-01-01

    A high selective pre-treatment method for the cleanup and preconcentration of ciprofloxacin in natural seawater samples was developed based on molecularly imprinted solid-phase extraction (MISPE). The ciprofloxacin imprinted polymers were synthesized and the characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted materials showed high adsorption ability for ciprofloxacin and were applied as special solid-phase extraction sorbents for selective separation of ciprofloxacin. An off-line MISPE procedure was optimized and the developed MISPE method allowed direct purification and enrichment of the ciprofloxacin from the aqueous samples prior to high-performance liquid chromatography analysis. The recoveries of spiked seawater on the MISPE cartridges ranged from 75.2 to 112.4% and the relative standard deviations were less than 4.46%. Five seawater samples from Jiaozhou Bay were analyzed and ciprofloxacin was detected in two samples with the concentrations of 0.24 and 0.38 μg L −1 , respectively. - Highlights: • Ciprofloxacin molecularly imprinted polymers (Cip-MIPs) were prepared. • The characteristics and recognition efficiency of MIPs were studied. • An off-line method for Cip was developed using MIPs as solid-phase extraction. • Cip in five seawater samples from Jiaozhou Bay of China was determined.

  6. Combining cationic and anionic mixed-mode sorbents in a single cartridge to extract basic and acidic pharmaceuticals simultaneously from environmental waters.

    Science.gov (United States)

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2018-01-01

    The aim of the present study is to broaden the applications of mixed-mode ion-exchange solid-phase extraction sorbents to extract both basic and acidic compounds simultaneously by combining the sorbents in a single cartridge and developing a simplified extraction procedure. Four different cartridges containing negative and positive charges in the same configuration were evaluated and compared to extract a group of basic, neutral, and acidic pharmaceuticals selected as model compounds. After a thorough optimization of the extraction conditions, the four different cartridges showed to be capable of retaining basic and acidic pharmaceuticals simultaneously through ionic interactions, allowing the introduction of a washing step with 15 mL methanol to eliminate interferences retained by hydrophobic interactions. Using the best combined cartridge, a method was developed, validated, and further applied to environmental waters to demonstrate that the method is promising for the extraction of basic and acidic compounds from very complex samples.

  7. Electrochemically modified carbon fiber bundles as selective sorbent for online solid-phase microextraction of sulfonamides

    International Nuclear Information System (INIS)

    Ling, Xu; Zhang, Wenpeng; Chen, Zilin

    2016-01-01

    The authors show that carbon fiber bundles electrochemically modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a viable sorbent for online solid-phase microextraction (SPME) of the sulfonamides (sulfadiazine, sulfadimidine and sulfamethoxazole) prior to their determination by HPLC. The fibers were packed in a tube loop made from polyether ether ketone (PEEK) that was coupled to the HPLC system for online SPME. Preconcentration factors can reach values of up to 300, and the limit of detection (at an S/N ration of 3) can be as low as 0.05 ng⋅mL −1 . The method was applied to the analysis of the sulfonamides in spiked rat plasma with intra-day and inter-day RSDs of <3.33 and <4.57 %, and with recoveries in the range from 91.7 to 97.8 % in spiked plasma. The in-tube SPME was also applied to the determination of the 3 sulfonamides in rat plasma after oral administration (tablet powder) with high sensitivity. In addition to its efficient extraction, the PEEK tube based SPME has chemical and mechanical stability under even harsh conditions. (author)

  8. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    Science.gov (United States)

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  9. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  10. A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples.

    Science.gov (United States)

    Jia, Xiuna; Zhao, Pan; Ye, Xiu; Zhang, Lianjun; Wang, Ting; Chen, Qinyu; Hou, Xiaohong

    2017-07-01

    As a novel material, metal-organic framework/graphite oxide (MIL-101(Cr)@GO) has great potential for the pretreatment of trace analytes. In the present study, MIL-101(Cr)@GO was synthesized using a solvothermal synthesis method at the nanoscale and was applied as sorbent in the dispersive micro-solid phase extraction (DMSPE) for the enrichment of the trace sulfonamides (SAs) from milk samples for the first time. Several experimental parameters including kinds of sorbents, the effect of pH, the amount of MIL-101(Cr)@GO, ionic strength, adsorption time, desorption solvent and desorption time were investigated. Under the optimal conditions, the linear ranges were from 0.1 to 10μg/L, 0.2-20μg/L or 0.5-50μg/L for the analytes with regression coefficients (r) from 0.9942 to 0.9999. The limits of detection were between 0.012 and 0.145μg/L. The recoveries ranged from 79.83% to 103.8% with relative standard deviations (RSDs)MIL-101(Cr)@GO exhibited remarkable advantages compared to MIL-101(Cr), MIL-100(Fe), activated carbon and other sorbent materials used in pretreatment methods. A simple, rapid, sensitive, inexpensive and less solvent consuming method of DMSPE-ultra-high performance liquid chromatography-tandem mass spectrometry (DMSPE-UHPLC-MS/MS) was successfully applied to the pre-concentration and determination of twelve SAs in milk samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Science.gov (United States)

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  13. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    Science.gov (United States)

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  14. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    Science.gov (United States)

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    Science.gov (United States)

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recovery evaluation of organophosphorus pesticides from bee pollen by matrix solid-phase dispersion extraction using sorbents based on silica and titania

    International Nuclear Information System (INIS)

    Torres-Perea, C; Muñoz-Rodríguez, D; Carrera-Figueiras, C; Medina-Peralta, S; Moguel-Ordóñez, Y B

    2013-01-01

    This work focused on the evaluation of the recovery of organophosphorus pesticides from bee pollen after matrix solid phase-dispersion extraction (MSPD). Materials based on silica, titania and titania modified with polivylnylimidazole or polyestirene were used as adsorbents for the extraction of pesticides. Small amounts of fortified pollen (0.1 g, at 1 micro-g/g of pesticides), adsorbent (0.4 g) and solvent elution (1 mL de acetonitrile – ACN) were used in the extractions. For recovery evaluation, pollen extracts were analyzed by gas chromatography coupled with mass spectrometry.

  18. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    International Nuclear Information System (INIS)

    Bagheri, Habib; Daliri, Rasoul; Roostaie, Ali

    2013-01-01

    Graphical abstract: -- Highlights: •A Fe 3 O 4 –aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe 3 O 4 –poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe 3 O 4 /poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L −1 with R 2 = 0.9991 was obtained. The limits of detection (3S b ) and limits of quantification (10S b ) of the method were 0.10 μg L −1 and 0.35 μg L −1 (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L −1 of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%

  19. Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction.

    Science.gov (United States)

    Sun, Lei; Zhang, Chuanzhou; Chen, Ligang; Liu, Jun; Jin, Haiyan; Xu, Haoyan; Ding, Lan

    2009-04-13

    In this study, a new type of alumina-coated magnetite nanoparticles (Fe(3)O(4)/Al(2)O(3) NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe(3)O(4) NPs not only avoids the dissolving of Fe(3)O(4) NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1g Fe(3)O(4)/Al(2)O(3) NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 microg L(-1), respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe(3)O(4)/Al(2)O(3) NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples.

  20. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent

    International Nuclear Information System (INIS)

    Yang Guangyu; Fen Weibo; Lei Chun; Xiao Weilie; Sun Handong

    2009-01-01

    A solid phase extraction and graphite furnace atomic absorption spectrometry (GFAAS) for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent was studied. Trace amounts of chromium, nickel, silver, cobalt, copper, cadmium and lead were reacted with 2-(2-quinolinil-azo)-4-methyl-1,3-dihydroxidobenzene (QAMDHB) followed by adsorption onto MCI GEL CHP 20Y solid phase extraction column, and 1.0 mol L -1 HNO 3 was used as eluent. The metal ions in 300 mL solution can be concentrated to 1.0 mL, representing an enrichment factor of 300 was achieved. The recoveries of analytes at pH 8.0 with 1.0 g of resin were greater than 95% without interference from alkaline, earth alkaline and some metal ions. When detected with graphite furnace atomic absorption spectrometry, the detection limits in the original samples were 1.4 ng L -1 for Cr(III), 1.0 ng L -1 for Ni(II), 0.85 ng L -1 for Ag(I), 1.2 ng L -1 for Co(II), 1.0 ng L -1 for Cu(II), 1.2 ng L -1 for Cd(II) and 1.3 ng L -1 for Pb(II). The validation of the procedure was performed by the analysis of the certified standard reference materials, and the presented procedure was applied to the determination of analytes in biological, water and soil samples with good results (recoveries range from 89 to 104%, and R.S.D.% lower than 3.2%. The results agreed with the standard value or reference method)

  1. New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge.

    Science.gov (United States)

    Cerqueira, Maristela B R; Caldas, Sergiane S; Primel, Ednei G

    2014-04-04

    Recent studies have shown a decrease in the concentration of pesticides, pharmaceuticals and personal care products (PCPs) in water after treatment. A possible explanation for this phenomenon is that these compounds may adhere to the sludge; however, investigation of these compounds in drinking water treatment sludge has been scarce. The sludge generated by drinking water treatment plants during flocculation and decantation steps should get some special attention not only because it has been classified as non-inert waste but also because it is a very complex matrix, consisting essentially of inorganic (sand, argil and silt) and organic (humic substances) compounds. In the first step of this study, three QuEChERS methods were used, and then compared, for the extraction of pesticides (atrazine, simazine, clomazone and tebuconazole), pharmaceuticals (amitriptyline, caffeine, diclofenac and ibuprofen) and PCPs (methylparaben, propylparaben, triclocarban and bisphenol A) from drinking water treatment sludge. Afterwards, the study of different sorbents in the dispersive solid phase extraction (d-SPE) step was evaluated. Finally, a new QuEChERS method employing chitin, obtained from shrimp shell waste, was performed in the d-SPE step. After having been optimized, the method showed limits of quantification (LOQ) between 1 and 50 μg kg(-1) and the analytical curves showed r values higher than 0.98, when liquid chromatography tandem mass spectrometry was employed. Recoveries ranged between 50 and 120% with RSD≤15%. The matrix effect was evaluated and compensated with matrix-matched calibration. The method was applied to drinking water treatment sludge samples and methylparaben and tebuconazole were found in concentration

  2. Determination of trace quaternary ammonium surfactants in water by combining solid-phase extraction with surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Sun, M C

    2001-01-01

    This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.

  3. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  4. Solid Phase Extraction and Spectrophotometric Determination of ...

    African Journals Online (AJOL)

    NJD

    2005-04-15

    Apr 15, 2005 ... to the economy and has significant industrial applications. The development of a ... Waters Solid Phase Extraction (SPE) device (the device can carry out twenty ... HPLC grade dimethyl formamide (DMF) (Fisher. Corporation ...

  5. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction.

    Science.gov (United States)

    Lian, Ziru; Wang, Jiangtao

    2017-09-15

    Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.

  6. Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation

    International Nuclear Information System (INIS)

    Mendoza R, L. G.; Rodriguez de San Miguel, E.; Pardo G, D. Y.; De Gyves, J.; Sanchez G, J. P.

    2011-01-01

    In this work the synthesis, characterization and evaluation of a novel sorbent material used for the solid-phase extraction of titanium (IV) from hydrochloric acid medium is described. The material was prepared by the sol-gel route incorporating bis(2-ethylhexyl phosporic acid) (D2EHPA) as extractant within a polymeric matrix based on polysiloxanes and characterized through Ftir-Atr, XRD, 29 Si and 31 P NMR, TGA and DSC. In studies of titanium sorption and desorption in batch mode several factors related with the extraction and back-extraction operations were evaluated, such as: contact time, titanium concentration, nature and composition of the aqueous media, and extractant concentration in the sorbent. The maximum sorption was observed at 30 min of contact time in a 1 mol L -1 HCl + 0.1% KCl medium, while the maximum desorption was observed at 60 min in a 1.5 mol L -1 H 2 SO 4 + 20% v/v H 2 O 2 medium when titanium concentration was 70 mg L -1 . Under optimal conditions the recovered percent of titanium was nearly 90%. In addition, the characterization of the extraction equilibrium was performed. The selectivity of the method was studied adding Al(III), Fe(III) and V(v) to the extraction medium. A high selectivity for Ti over Al and Fe was observed, even at high concentrations of the interferences; 50% of Ti, only 7% of Fe, 3% of Al and less than 1% of V were recovered under the established conditions. The method was finally applied for titanium recovery from a certified fly ash sample generated from a municipal incineration plant. (Author)

  7. Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza R, L. G.; Rodriguez de San Miguel, E.; Pardo G, D. Y.; De Gyves, J. [UNAM, Facultad de Quimica, Departamento de Quimica Analitica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Sanchez G, J. P., E-mail: degyves@unam.mx [Instituto Mexicano del Petroleo, Laboratorio de Evaluacion Molecular, Eje Central Norte Lazaro Cardenas No. 152, Apdo. Postal 14-805, 07730 Mexico D. F. (Mexico)

    2011-07-01

    In this work the synthesis, characterization and evaluation of a novel sorbent material used for the solid-phase extraction of titanium (IV) from hydrochloric acid medium is described. The material was prepared by the sol-gel route incorporating bis(2-ethylhexyl phosporic acid) (D2EHPA) as extractant within a polymeric matrix based on polysiloxanes and characterized through Ftir-Atr, XRD, {sup 29}Si and {sup 31}P NMR, TGA and DSC. In studies of titanium sorption and desorption in batch mode several factors related with the extraction and back-extraction operations were evaluated, such as: contact time, titanium concentration, nature and composition of the aqueous media, and extractant concentration in the sorbent. The maximum sorption was observed at 30 min of contact time in a 1 mol L{sup -1} HCl + 0.1% KCl medium, while the maximum desorption was observed at 60 min in a 1.5 mol L{sup -1} H{sub 2}SO{sub 4} + 20% v/v H{sub 2}O{sub 2} medium when titanium concentration was 70 mg L{sup -1}. Under optimal conditions the recovered percent of titanium was nearly 90%. In addition, the characterization of the extraction equilibrium was performed. The selectivity of the method was studied adding Al(III), Fe(III) and V(v) to the extraction medium. A high selectivity for Ti over Al and Fe was observed, even at high concentrations of the interferences; 50% of Ti, only 7% of Fe, 3% of Al and less than 1% of V were recovered under the established conditions. The method was finally applied for titanium recovery from a certified fly ash sample generated from a municipal incineration plant. (Author)

  8. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry.

    Science.gov (United States)

    Casado, Natalia; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Sierra, Isabel

    2016-08-12

    A quick, sensitive and selective analytical reversed-phase multi-residue method using ultra-high performance liquid chromatography coupled to an ion-trap mass spectrometry detector (UHPLC-IT-MS/MS) operating in both positive and negative ion mode was developed for the simultaneous determination of 23 veterinary drug residues (β-blockers, β-agonists and Non-Steroidal Anti-inflammatory Drugs (NSAIDs)) in meat samples. The sample treatment involved a liquid-solid extraction followed by a solid-phase extraction (SPE) procedure. SBA-15 type mesoporous silica was synthetized and modified with octadecylsilane, and the resulting hybrid material (denoted as SBA-15-C18) was applied and evaluated as SPE sorbent in the purification of samples. The materials were comprehensively characterized, and they showed a high surface area, high pore volume and a homogeneous distribution of the pores. Chromatographic conditions and extraction procedure were optimized, and the method was validated according to the Commission Decision 2002/657/EC. The method detection limits (MDLs) and the method quantification limits (MQLs) were determined for all the analytes in meat samples and found to range between 0.01-18.75μg/kg and 0.02-62.50μg/kg, respectively. Recoveries for 15 of the target analytes ranged from 71 to 98%. In addition, for comparative purpose SBA-15-C18 was evaluated towards commercial C18 amorphous silica. Results revealed that SBA-15-C18 was clearly more successful in the multi-residue extraction of the 23 mentioned analytes with higher recovery values. The method was successfully tested to analyze prepacked preparations of mince bovine meat. Traces of propranolol, ketoprofen and diclofenac were detected in some samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Ensafi@cc.iut.ac.ir; Ghaderi, Ali R. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO{sub 3} and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 {mu}g of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO{sub 3} solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL{sup -1} Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL{sup -1} Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  10. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Ghaderi, Ali R.

    2007-01-01

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO 3 and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 μg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO 3 solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL -1 Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL -1 Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments

  11. Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products.

    Science.gov (United States)

    Ruiz-Palomero, Celia; Soriano, M Laura; Valcárcel, Miguel

    2016-01-08

    This paper reports a simple approach to Analytical Nanoscience and Nanotechnology (AN&N) that integrates the nanotool, sulfonated nanocellulose (s-NC), and nanoanalyte, silver nanoparticles (AgNPs), in the same analytical process by using an efficient, environmentally friendly dispersive micro solid-phase extraction (D-μSPE) capillary electrophoresis (CE) method with s-NC as sorbent material. Introducing negatively charged sulfate groups onto the surface of cellulose enhances its surface chemistry and enables the extraction and preconcentration of AgNPs of variable diameter (10, 20 and 60nm) and shell composition (citrate and polyvinylpyrrolidone coatings) from complex matrices into a cationic surfactant. In this way, AgNPs of diverse nature were successfully extracted onto the s-NC sorbent and then desorbed into an aqueous solution containing thiotic acid (TA) prior to CE without the need for any labor-intensive cleanup. The ensuing eco-friendly D-μSPE method exhibited a linear response to AgNPs with a limit of detection (LOD) of 20μg/L. Its ability to specifically recognize AgNPs of different sizes was checked in orange juice and mussels, which afforded recoveries of 70.9-108.4%. The repeatability of the method at the limit of quantitation (LOQ) level was 5.6%. Based on the results, sulfonated nanocellulose provides an efficient, cost-effective analytical nanotool for the extraction of AgNPs from food products. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study.

    Science.gov (United States)

    Wang, Ting; Wang, Jian; Zhang, Conglu; Yang, Zhao; Dai, Xinpeng; Cheng, Maosheng; Hou, Xiaohong

    2015-08-07

    An attractive metal-organic framework (MOF) MIL-101(Cr) material was synthesized at the nanoscale and applied as a sorbent in the porous membrane-protected micro-solid-phase extraction (μ-SPE) device for the pre-concentration of phthalate esters (PAEs) in drinking water samples for the first time. Parameters influencing the extraction efficiency, such as the selection of sorbent materials, pH adjustment, the effect of salt, magnetic-stirring extraction time, the desorption solvent and the desorption time, were investigated. Under the optimum conditions, the limits of detection from gas chromatography-mass spectrometric analysis for PAEs varied from 0.004 to 0.02 μg L(-1). The linear ranges were from 0.1 to 50 μg L(-1) or from 0.2 to 50 μg L(-1) for the analytes with the relative standard deviations fluctuating from 0.8 to 10.9% (n = 5). The enrichment factors (EFs) for the target PAEs were varied from 143 to 187. MIL-101(Cr) exhibited remarkable advantages compared to activated carbon and MIL-100(Fe). On the other hand, the computational method was first used to predict the adsorption of MIL-101(Cr) towards PAEs. The molecular interactions and the free binding energies between MIL-101(Cr) and PAEs were observed and calculated in terms of the molecular modeling method. MIL-101(Cr) showed high potential in the analysis of PAEs at trace levels in drinking water. The computational result was consistent with the detected enrichment factors. The computational modeling accurately predicted the extraction efficiency of MOF-based material towards the target analytes. Therefore, the combination of experimental and computational study provided a new strategy on the trace contaminant analysis.

  13. Solid-Phase Extraction Combined with High Performance Liquid ...

    African Journals Online (AJOL)

    Methods: Solid-phase extraction method was employed for the extraction of the estrogen from milk and high performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination of estrogen. Results: Optimal chromatographic conditions were achieved on an Eclipse XDB-C18 column at a ...

  14. Solid phase micro-extraction in environmental atmosphere

    International Nuclear Information System (INIS)

    Tao Ping; Wei Lifan; Tan Yun

    2002-01-01

    Solid phase micro-extraction (SPME) is an advanced technique of sample pretreatment in environmental atmosphere analysis, i.e., a sampling method of extracting volatile organic compounds from environmental gas. According to the primary survey on the theory and application of SPME, a suitable extraction tip, i.e., a coated fused silica fiber, is selected to construct a SPME apparatus. This SPME apparatus is used to extract volatile organic compounds from environmental atmosphere and a qualitative detection is conducted in gas chromatography-mass spectrometer system. Good experimental results are obtained

  15. Preconcentration of uranium in water samples using dispersive liquid-liquid micro- extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    M. Rezaee,

    2015-10-01

    Full Text Available A new liquid phase microextraction method based on the dispersion of an extraction solvent into aqueous phase coupled with solid-phase extraction was investigated for the extraction, preconcentration and determination of uranium in water samples. 1-(2-Pyridylazo-2-naphthol reagent (PAN at pH 6.0 was used as a chelating agent prior to extraction. After concentration and purification of the samples in SPE C18 sorbent, 1.5 mL elution sample containing 40.0 µL chlorobenzene was injected into the 5.0 mL pure water. After extraction and centrifuging, the sedimented phase was evaporated and the residue was dissolved in nitric acid (0.5 M and was injected by injection valve into the ICP-OES. Some important extraction parameters, such as sample solution flow rate, sample pH, type and volume of extraction and disperser solvents as well as the salt addition were studied and optimized. Under the optimum conditions, the calibration graph was linear in the range of 0.5-500 µg L-1. The detection limit was 0.1 µg L-1. The relative standard deviation (RSD at 5.0 µg L-1 concentration level was 6.6%. Finally, the developed method was successfully applied to the extraction and determination of uranium in the well, river, mineral, waste and tap water samples and satisfactory results were obtained.DOI: http://dx.doi.org/10.4314/bcse.v29i3.4

  16. TRUEX process solvent cleanup with solid sorbents

    International Nuclear Information System (INIS)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs

  17. Phenyltrichlorosilane-functionalized magnesium oxide microspheres: Preparation, characterization and application for the selective extraction of dioxin-like polycyclic aromatic hydrocarbons in soils with matrix solid-phase dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Dongqin [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jin, Jing [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Li, Fang [Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Sun, Xiaoli [Department of Chemistry, Lishui University, Lishui 32300 (China); Dhanjai; Ni, Yuwen [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023 (China)

    2017-03-01

    Magnesium oxide microspheres functionalized with phenyltrichlorosilane (PTS-MgO) were synthesized by surface modification through silanization reaction, which was confirmed by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA) and N{sub 2} adsorption-desorption. The result indicated that PTS-MgO not only possessed the ability of enhancing the retention with PAHs, but also weakening the interference from chlorinated compounds. As a sorbent for the matrix solid-phase dispersion (MSPD) extraction, PTS-MgO was used to selectively extract seven dioxin-like polycyclic aromatic hydrocarbons (DL-PAHs) from soil samples. Various parameters affecting the recoveries of seven DL-PAHs were investigated and optimized, such as sorbent/sample mass ratio, grinding time, rinsing and eluting conditions. Under the optimized conditions, the developed method combining MSPD with HPLC-FLD exhibited good sensitivity (0.02–0.12 ng g{sup −1} detection of limits) and linearity (linear correlation coefficient greater than 0.9997). Satisfactory recoveries with DL-PAHs spiked at two levels (10 and 80 ng g{sup −1}) were obtained in the range of 72.2–113.1% with RSD < 9.6%, indicating that PTS-MgO had a potential in MSPD extraction of DL-PAHs in soils. Additionally, the proposed MSPD-HPLC-FLD method was also verified by detecting seven DL-PAHs in the standard reference soil. Based on the developed method, DL-PAHs in soil samples were detected with the concentration ranging from 70.08 to 555.05 ng g{sup −1} dry weight (dw). The total toxic equivalency quotients (TEQ) of seven DL-PAHs varied from 9.93 to 143.94 ng TEQ/g dw. - Highlights: • Phenyltrichlorosilane modified magnesium oxide microsphere (PTS-MgO) was presented. • PTS-MgO was used for a new sorbent material in matrix solid-phase dispersion. • The sorbent showed high selectivity for DL-PAHs with satisfactory recoveries obtained. • The

  18. Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples.

    Science.gov (United States)

    Behbahani, Mohammad; Ghareh Hassanlou, Parmoon; Amini, Mostafa M; Omidi, Fariborz; Esrafili, Ali; Farzadkia, Mehdi; Bagheri, Akbar

    2015-11-15

    In this research, a new sample treatment technique termed solvent-assisted dispersive solid phase extraction (SA-DSPE) was developed. The new method was based on the dispersion of the sorbent into the sample to maximize the contact surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by injecting a mixture solution of the sorbent and disperser solvent into the aqueous sample. Thereby, a cloudy solution formed. The cloudy solution resulted from the dispersion of the fine particles of the sorbent in the bulk aqueous sample. After extraction, the cloudy solution was centrifuged and the enriched analytes in the sediment phase dissolved in ethanol and determined by flame atomic absorption spectrophotometer. Under the optimized conditions, the detection limit for lead and cadmium ions was 1.2 μg L(-1) and 0.2 μg L(-1), respectively. Furthermore, the preconcentration factor was 299.3 and 137.1 for cadmium and lead ions, respectively. SA-DSPE was successfully applied for trace determination of lead and cadmium in fruit (Citrus limetta, Kiwi and pomegranate) and water samples. Finally, the introduced sample preparation method can be used as a simple, rapid, reliable, selective and sensitive method for flame atomic absorption spectrophotometric determination of trace levels of lead and cadmium ions in fruit and water samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Separating DDTs in edible animal fats using matrix solid-phase dispersion extraction with activated carbon filter, Toyobo-KF.

    Science.gov (United States)

    Furusawa, Naoto

    2006-09-01

    A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.

  20. Solid phase extraction method for determination of mitragynine in ...

    African Journals Online (AJOL)

    All rights reserved. ... 1Department of Pharmacology, 2Department of Applied Science, 3Police Forensic Science Center 10, Yala 95000, 4Natural ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high.

  1. Experimental and molecular docking investigation on metal-organic framework MIL-101(Cr) as a sorbent for vortex assisted dispersive micro-solid-phase extraction of trace 5-nitroimidazole residues in environmental water samples prior to UPLC-MS/MS analysis.

    Science.gov (United States)

    Lu, Nan; Wang, Ting; Zhao, Pan; Zhang, Lianjun; Lun, Xiaowen; Zhang, Xueli; Hou, Xiaohong

    2016-11-01

    In the presented work, metal-organic framework (MOF) material MIL-101(Cr) (MIL, Matérial Institute Lavoisier) was used as a sorbent for vortex assisted dispersive micro-solid-phase extraction (VA-D-μ-SPE) of trace amount of metronidazole (MNZ), ronidazole (RNZ), secnidazole (SNZ), dimetridazole (DMZ), tinidazole (TNZ), and ornidazole (ONZ) in different environmental water samples. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was used to quantify the target analytes. The extraction conditions, including type of sorbents, amount of MIL-101(Cr), solution pH, extraction method, extraction time, effect of salt, and elution conditions were investigated. Upon the optimal conditions, the developed method showed an excellent extraction performance with the average recovery ranging from 75.2 to 98.8 %. Good sensitivity levels were achieved with the detection limits of 0.03∼0.06 μg/L and the quantitation limits of 0.09∼0.20 μg/L. The linear ranges were varied from 0.1 to 20 for SNZ and ONZ and from 0.2 to 40 μg/L for MNZ, RNZ, DMZ, and TNZ (r 2  > 0.992), and repeatability of the method was satisfactory with the relative standard deviations (RSD) extraction and determination of 5-nitroimidazoles (5-NDZs) in 12 real water samples, showing the positive findings of MNZ and TNZ ranging from 0.3 to 1.0 μg/L. Furthermore, molecular docking was applied to explain the molecular interactions and free binding energies between MIL-101(Cr) and 5-NDZs, providing a deep insight into the adsorption mechanism. The proposed method exhibited the advantages of simplicity, rapidly, less solvent consumption, ease of operation, higher sensitivity, and lower matrix effect. Graphical abstract Schematic diagram of the extraction process and molecular docking investigation.

  2. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Science.gov (United States)

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko

    2016-04-01

    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  3. Amino-modified diamond as a durable stationary phase for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Yang, Li; Lee, Milton L; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2008-08-15

    We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0-14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.

  4. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A Longitudinal Study of Decomposition Odour in Soil Using Sorbent Tubes and Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Katelynn A. Perrault

    2014-07-01

    Full Text Available Odour profiling of decomposed remains is important for understanding the mechanisms that cadaver dogs and forensically-relevant insects use to locate decomposed remains. The decomposition odour profile is complex and has been documented in outdoor terrestrial environments. The purpose of this study was to perform longitudinal analysis of the volatile organic compound (VOC profile in soils associated with decomposed remains across all stages of decomposition. Two VOC collection techniques (sorbent tubes and solid phase microextraction were used to collect a wider analyte range and to investigate differences in collection techniques. Pig carcasses were placed in an outdoor research facility in Australia to model the decomposition process and VOCs were collected intermittently over two months. VOCs of interest were identified over the duration of the trial, showing distinct trends in compound evolution and disappearance. The collection techniques were complementary, representing different subsets of VOCs from the overall profile. Sorbent tubes collected more decomposition-specific VOCs and these compounds were more effective at characterising the matrix over an extended period. Using both collection techniques improves the likelihood of identifying the complete VOC profile of decomposition odour. Such information is important for the search and recovery of victim remains in various stages of decomposition.

  6. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Daliri, Rasoul; Roostaie, Ali

    2013-09-10

    Graphical abstract: -- Highlights: •A Fe{sub 3}O{sub 4}–aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe{sub 3}O{sub 4}–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe{sub 3}O{sub 4}/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L{sup −1} with R{sup 2} = 0.9991 was obtained. The limits of detection (3S{sub b}) and limits of quantification (10S{sub b}) of the method were 0.10 μg L{sup −1} and 0.35 μg L{sup −1} (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L{sup −1} of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%.

  7. Halloysite Nanotubes as a New Adsorbent for Solid Phase Extraction and Spectrophotometric Determination of Iron in Water and Food Samples

    Science.gov (United States)

    Samadi, A.; Amjadi, M.

    2016-07-01

    Halloysite nanotubes (HNTs) have been introduced as a new solid phase extraction adsorbent for preconcentration of iron(II) as a complex with 2,2-bipyridine. The cationic complex is effectively adsorbed on the sorbent in the pH range of 3.5-6.0 and efficiently desorbed by trichloroacetic acid. The eluted complex has a strong absorption around 520 nm, which was used for determination of Fe(II). After optimizing extraction conditions, the linear range of the calibration graph was 5.0-500 μg/L with a detection limit of 1.3 μg/L. The proposed method was successfully applied for the determination of trace iron in various water and food samples, and the accuracy was assessed through the recovery experiments and analysis of a certified reference material (NIST 1643e).

  8. Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids.

    Science.gov (United States)

    Kamaruzaman, Sazlinda; Sanagi, Mohd Marsin; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini; Endud, Salasiah; Wan Ibrahim, Wan Nazihah

    2017-11-01

    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r 2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Science.gov (United States)

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2017-03-01

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C 18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    Science.gov (United States)

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Graphene and graphene oxide modified by deep eutectic solvents and ionic liquids supported on silica as adsorbents for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho [Dept. of Chemistry and Chemical Engineering, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    A novel deep eutectic solvent (DES) and ionic liquid (IL)-modified graphene (G) and graphene oxide (GO) were synthesized and used as effective adsorbents for the preconcentration of three chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP), in environmental water samples prior to high-performance liquid chromatography (HPLC). The new materials were characterized by scanning electron microscopy (S-4200) and Fourier-transform infrared spectrometry. The prepared functionalized GO@silica shows remarkable adsorption capacity toward CPs. When used as solid-phase extraction (SPE) sorbents, a superior recovery (88.49–89.70%) could be obtained compared to commercial sorbents, such as silica and aminosilica. Based on this, a method for the analysis of CPs in water samples was established by coupling SPE with HPLC. These results highlight the potential new role of DES and IL-modified GO in the preparation of analytical samples.

  13. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS.

    Science.gov (United States)

    Alves, Vanessa N; Borges, Simone S O; Coelho, Nivia M M

    2011-01-01

    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min(-1), 30.0 mg of sorbent mass, and 1.0 mol L(-1) HNO(3) as the eluent at a flow rate of 4.0 mL min(-1). The limit of detection for zinc was 1.9 μg L(-1), and the precision was below 0.82% (20.0 μg L(-1), n = 7). The analytical curve was linear from 2 to 50 μg L(-1), with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%.

  14. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    Directory of Open Access Journals (Sweden)

    Vanessa N. Alves

    2011-01-01

    Full Text Available This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese, using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min-1, 30.0 mg of sorbent mass, and 1.0 mol L-1 HNO3 as the eluent at a flow rate of 4.0 mL min-1. The limit of detection for zinc was 1.9 μg L-1, and the precision was below 0.82% (20.0 μg L-1, n=7. The analytical curve was linear from 2 to 50 μg L-1, with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%.

  15. A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry.

    Science.gov (United States)

    Kaykhaii, Massoud; Yahyavi, Hossain; Hashemi, Mohammad; Khoshroo, Mohammad Reza

    2016-07-01

    Determination of malondialdehyde (MDA) in human blood plasma is important because of its role as a biomarker of lipid peroxidation in biological and medical sciences. In this work, a miniaturized graphene-based pipette tip solid-phase extraction technique was developed for very efficient extraction of MDA as its dithiobarbituric acid (TBA) adduct from human plasma. Two milligrams of graphene as sorbent were placed into a pipette tip and MDA-TBA compound was extracted and preconcentrated by it, after 4 repeated aspirating/dispensing cycles, then the column was eluted with 80 μL of dimethyl sulfoxide by 4 repeated aspirating/dispensing cycles and elusion was measured spectrofluorimetrically. Various effective parameters such as type and volume of eluent solvent, temperature, sample volume, number of cycles of extraction and desorption, derivatization reaction time, and pH of the sample solution were investigated and optimized. Under optimum conditions, a linear calibration curve was obtained in the range of 0.5-90 μg L(-1) (r (2) = 0.991) with a detection limit of 0.3 μg L(-1). The relative standard deviations for 8 replicate measurements of 10 and 40 μg L(-1) of MDA were found to be 4.51 and 3.78 % respectively. The developed protocol was successfully applied to the determination of MDA in a human blood plasma sample. Graphical Abstract A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry.

  16. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.

    Science.gov (United States)

    Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua

    2013-08-01

    The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.

  17. Magnetic dispersive solid-phase extraction based on graphene oxide/Fe3 O4 @polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, flour, celery and egg.

    Science.gov (United States)

    Babaei, Azar; Zeeb, Mohsen; Es-Haghi, Ali

    2018-07-01

    Magnetic graphene oxide nanocomposite has been proposed as a promising and sustainable sorbent for the extraction and separation of target analytes from food matrices. Sample preparation based on nanocomposite presents several advantages, such as desired efficiency, reasonable selectivity and high surface-area-to-volume ratio. A new graphene oxide/Fe 3 O 4 @polythionine (GO/Fe 3 O 4 @PTh) nanocomposite sorbent was introduced for magnetic dispersive solid-phase extraction and flame atomic absorption spectrometric detection of zinc(II) in water, flour, celery and egg. To fabricate the sorbent, an oxidative polymerization of thionine on the surface of magnetic GO was applied, while polythionine was simply employed as a surface modifier to improve extraction yield. The properties of the sorbent were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray analysis, vibrating sample magnetometry and Fourier transform-infrared spectroscopy. The calibration curve showed linearity in the range of 0.5-30 ng mL -1 . Limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.5 ng mL -1 , respectively. The method was applied for trace-level determination of Zn(II) in water and food samples, and its validation was investigated by recovery experiments and analyzing certified reference material. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. Molecularly imprinted solid-phase extraction for selective extraction of bisphenol analogues in beverages and canned food.

    Science.gov (United States)

    Yang, Yunjia; Yu, Jianlong; Yin, Jie; Shao, Bing; Zhang, Jing

    2014-11-19

    This study aimed to develop a selective analytical method for the simultaneous determination of seven bisphenol analogues in beverage and canned food samples by using a new molecularly imprinted polymer (MIP) as a sorbent for solid-phase extraction (SPE). Liquid chromatography coupled to triple-quadruple tandem mass spectrometry (LC-MS/MS) was used to identify and quantify the target analytes. The MIP-SPE method exhibited a higher level of selectivity and purification than the traditional SPE method. The developed procedures were further validated in terms of accuracy, precision, and sensitivity. The obtained recoveries varied from 50% to 103% at three fortification levels and yielded a relative standard deviation (RSD, %) of less than 15% for all of the analytes. The limits of quantification (LOQ) for the seven analytes varied from 0.002 to 0.15 ng/mL for beverage samples and from 0.03 to 1.5 ng/g for canned food samples. This method was used to analyze real samples that were collected from a supermarket in Beijing. Overall, the results revealed that bisphenol A and bisphenol F were the most frequently detected bisphenols in the beverage and canned food samples and that their concentrations were closely associated with the type of packaging material. This study provides an alternative method of traditional SPE extraction for screening bisphenol analogues in food matrices.

  19. Development of an aflatoxin B1 specific molecularly imprinted solid phase extraction sorbent for the selective pre-concentration of toxic aflatoxin B1 from child weaning food, Tsabana

    Directory of Open Access Journals (Sweden)

    Semong Oratile

    2017-03-01

    Full Text Available This paper presents the synthesis, optimization and application of a molecularly imprinted polymer (MIP sorbent for the selective extraction and pre-concentration of the potent toxin, aflatoxin B1 (AFB1, from the child weaning food, Tsabana (manufactured in Serowe, Botswana. As a food safety regulatory measure, Tsabana must be cleared of hazardous aflatoxins, especially AFB1, before consumption. This is because AFB1 is the most common and potent of the aflatoxins commonly found in cereals. Accurate analysis of AFB1 is challenging because it exists in very low concentrations in complex, ‘dirty’ matrices such as food, making it difficult to detect using analytical instruments, even if these analytical techniques have sensitivities at the femto level. The MIP extraction sorbent synthesized in this paper deals with these challenges by selectively pre-concentrating AFB1 from real Tsabana samples, successfully achieving a pre-concentration factor of 5 and therefore significantly increasing ABF1 signal intensity for easier detection. Further advantages of this system include the short time (25.0 minutes and reasonable optimal MIP dose (20.0 mg needed for maximum AFB1 extraction by the sorbent. Scanning electron microscopy revealed that the prepared AFB1 powder particles have spherical geometries and reasonably small sizes (800 nm, two advantageous physical characteristics that are associated with excellent sorbent materials.

  20. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    Yang, Jing; Li, Jia-yuan; Qiao, Jun-qin; Cui, Shi-hai; Lian, Hong-zhen; Chen, Hong-yuan

    2014-01-01

    Graphical abstract: - Highlights: • Magnetic Fe 3 O 4 /C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe 3 O 4 and coated organic carbon has been demonstrated in Fe 3 O 4 /C. • The straight influences of synthesis conditions of Fe 3 O 4 /C on MSPE were investigated. • The extraction characteristics of Fe 3 O 4 /C nanoparticles were further elucidated. - Abstract: Carbon doped Fe 3 O 4 nanoparticles (Fe 3 O 4 /C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe 3 O 4 /C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe 3 O 4 /C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe 3 O 4 /C sorbent were further elucidated. It is found that the adsorption process of Fe 3 O 4 /C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe 3 O 4 /C and analytes. Notably, the chemical components of carbon layer on the surface of Fe 3 O 4 nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe 3 O 4 and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe 3 O 4 /C nanoparticles including glucose concentration and hydrothermal reaction time on extraction performance for

  1. Tetraphenylimidodiphosphinate as solid phase extractant for preconcentrative separation of thorium from aqueous solution

    International Nuclear Information System (INIS)

    Na Liu; Yanfei Wang; Chuhua He

    2016-01-01

    A simple and reliable method for solid phase extraction of thorium using tetraphenylimidodiphosphinate is presented. The solid phase extraction process was optimized at equilibrium time 3 h, pH = 4.5, initial concentration 30 mg L -1 and extractant dosage 0.01 g with 98.95 % of removal efficiency and 29.68 mg g -1 of adsorption capacity. The interfering ions experiments indicated that it had almost no effect on thorium adsorption. Kinetics data follow the pseudo-first-order model and equilibrium data agreed with the Langmuir isotherm model very well. FT-IR analysis indicated that imino group and phosphoryl acted as the significant roles in the solid phase extraction process. (author)

  2. Solid phase extraction-electrospray ionization mass spectrometric method for the determination of palladium

    International Nuclear Information System (INIS)

    Pranaw Kumar; Telmore, Vijay M.; Jaison, P.G.; Sarkar, Arnab; Alamelu, D.; Aggarwal, S.K.

    2015-01-01

    Platinum group of element (PGEs) are extensively used as a catalyst and anticancer reagent. Due to the soft nature of PGEs, sulphur based donar ligands are used for the separation of these elements. Studies on the formation of different species are helpful for obtaining the ideas about separation of these elements from the complex matrices. Palladium (Pd) is studied as a representative element which is also formed by nuclear fission of fissile nuclides. In view of the relatively small amount of solvent required for separation, solid phase extraction is preferred over most of the separation methods. Solid phase extraction method using DPX as a stationary phase was previously reported for the separation of Pd in SHLLW using benzoylthiourea as a ligand. However, in case of large volume samples manual extraction by DPX is tedious task. In the present studies, the feasibility of extraction using benzoylthiourea on automated solid phase extraction system was carried out for the extraction of Pd

  3. Determination of six pesticides in the medicinal herb Cordia salicifolia by matrix solid-phase dispersion and gas chromatography/mass spectrometry.

    Science.gov (United States)

    de Carvalho, Pedro Henrique Viana; Prata, Vanessa de Menezes; Alves, Péricles Barreto; Navickiene, Sandro

    2009-01-01

    A simple and effective extraction method based on matrix solid-phase dispersion was developed for acephate, chlorpropham, pyrimicarb, bifenthrin, tetradifon, and phosalone in leaves of the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products. The determination method was GC/MS with selected-ion monitoring. Different parameters of the method were evaluated, such as type of solid phase (C18, alumina, silica gel, and Florisil) and the amount of solid phase and eluent (dichloromethane, ethyl acetate, chloroform, and cyclohexane). The best results were obtained using 0.5 g herb sample, 0.5 g neutral alumina as the dispersant sorbent, 0.5 g C18 as the cleanup sorbent, and cyclohexane-dichloromethane (3 + 1, v/v) as the eluting solvent. The method was validated using herb samples fortified with pesticides at different concentration levels (0.3, 0.5, and 1.0 mg/kg). Average recoveries (seven replicates) ranged from 67.7 to 129.9%, with relative standard deviations between 6.3 and 26%. Detection and quantitation limits for the herb ranged from 0.10 to 0.15 and 0.15 to 0.25 mg/kg, respectively.

  4. Determination of enrofloxacin by room-temperature phosphorimetry after solid phase extraction on an acrylic polymer sorbent

    Science.gov (United States)

    de Souza, Cabrini F.; Martins, Renata K. S.; da Silva, Andrea R.; da Cunha, Alessandra L. M. C.; Aucélio, Ricardo Q.

    A phosphorimetric method was developed to enable the determination of enrofloxacin using photochemical derivatization which was used to both improve detection limits and to minimize the uncertainty of measurements. Phosphorescence was induced on cellulose containing TlNO3. Absolute limit of detection at the ng range and linear analytical response over three orders of magnitude were achieved. A metrological study was made to obtain the combined uncertainty value and to identify that the precision was mainly affected by the changing of substrates when measuring the signal from each replicate. Pharmaceutical formulations containing enrofloxacin were successfully analyzed by the method and the results were similar to the ones achieved using a HPLC method. A solid phase extraction on an acrylic polymer was optimized to separate enrofloxacin from interferents such as diclofenac and other components from biological matrices, which allowed the successful use of the method in urine analysis.

  5. Platform construction and extraction mechanism study of magnetic mixed hemimicelles solid-phase extraction

    Science.gov (United States)

    Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua

    2016-12-01

    Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.

  6. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai

    2015-08-07

    An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Activated carbon modified with 4-(8-hydroxyquinoline-azo)benzamidine for selective solid-phase extraction and preconcentration of trace lead from environmental samples

    International Nuclear Information System (INIS)

    Tian, H.; Chang, X.; Hu, Z.; Yang, K.; He, Q.; Zhang, L.; Tu, Z.

    2010-01-01

    Activated carbon was chemically modified with 4-(8-hydroxyquinoline-azo)benzamidine and used for separation and preconcentration of trace amounts of Pb(II) in environmental samples by solid-phase extraction prior to the measurement by inductively coupled plasma atomic emission spectrometry. The effects of pH, shaking time, eluent concentration and volume, sample flow rate and potential interfering ions were studied. Under the optimum conditions, the enrichment factor was 100, the detection limits is 0. 43 ng mL -1 , and the relative standard deviations are <2. 1% (n = 8). The adsorption capacity of the sorbent is 53. 58 mg of lead(II) per gram of the material. The sorbent was successfully applied to the preconcentration of trace Pb(II) in the reference materials GBW 08301 (river sediment) and GBW 08302 (Tibet soil). The recovery of lead(II) from Yellow river water, Huangshui water, and tap water is in range of 99. 3-101. 6%. (author)

  8. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction

    Energy Technology Data Exchange (ETDEWEB)

    Fiscal-Ladino, Jhon A.; Obando-Ceballos, Mónica; Rosero-Moreano, Milton [Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales (Colombia); Montaño, Diego F.; Cardona, Wilson; Giraldo, Luis F. [Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín (Colombia); Richter, Pablo, E-mail: prichter@ciq.uchile.cl [Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago (Chile)

    2017-02-08

    Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L{sup −1} and 43 ng L{sup −1}, the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples

  9. Development of a Matrix Solid-Phase Dispersion Extraction Combined with UPLC/Q-TOF-MS for Determination of Phenolics and Terpenoids from the Euphorbia fischeriana.

    Science.gov (United States)

    Li, Wenjing; Lin, Yu; Wang, Yuchun; Hong, Bo

    2017-09-11

    A method based on a simplified extraction by matrix solid phase dispersion (MSPD) followed by ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) determination is validated for analysis of two phenolics and three terpenoids in Euphorbia fischeriana . The optimized experimental parameters of MSPD including dispersing sorbent (silica gel), ratio of sample to dispersing sorbent (1:2), elution solvent (water-ethanol: 30-70) and volume of the elution solvent (10 mL) were examined and set down. The highest extraction yields of chromatogram information and the five compounds were obtained under the optimized conditions. A total of 25 constituents have been identified and five components have been quantified from Euphorbia fischeriana . A linear relationship (r² ≥ 0.9964) between the concentrations and the peak areas of the mixed standard substances were revealed. The average recovery was between 92.4% and 103.2% with RSD values less than 3.45% ( n = 5). The extraction yields of two phenolics and three terpenoids obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirement on sample, solvent and time. In addition, the optimized method will be applied for analyzing terpenoids in other Chinese herbal medicine samples.

  10. Selective ionic liquid ferrofluid based dispersive-solid phase extraction for simultaneous preconcentration/separation of lead and cadmium in milk and biological samples.

    Science.gov (United States)

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-01-01

    For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Solid phase extraction and metabolic profiling of exudates from living copepods

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Nylund, Göran M.

    2016-01-01

    describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds...... that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms....... Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude...

  12. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    International Nuclear Information System (INIS)

    Wang Ziming; Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi; Ma Qiang; Lu Chunmei; Dong Deming

    2013-01-01

    Highlights: ► An absorbing microwave μ-SPE device packed with activated carbon was used. ► Absorbing microwave μ-SPE device was made and used to enrich the analytes. ► Absorbing microwave μ-SPE device was made and used to heat samples directly. ► MAE-μ-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 °C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC–MS without any clean-up process. The recoveries were in the range of 93.5–104.6%, and the relative standard deviations were lower than 8.7%.

  13. Development and Application of Solid Phase Extraction Method for ...

    African Journals Online (AJOL)

    NICO

    for the addition of organic modifier, sample load volume, conditioning solvent, washing solvent and ... Solid phase extraction, polycyclic aromatic hydrocarbons, water samples, ... such as polymeric, activated carbon or silica modified with.

  14. Mixed and Doped Solid Sorbents for CO2 Capture Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-06-14

    The objectives of this presentation are to capture CO2 we need materials with optimal performance and low costs; establish a theoretical procedure to identify most potential candidates of CO2 solid sorbents from a large solid material databank; computational synthesis new materials to fit industrial needs; and explore the optimal working conditions for the promised CO2 solid sorbents, especially from room to warm T ranges with optimal energy usage.

  15. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples

    International Nuclear Information System (INIS)

    Wang Yukun; Gao Shutao; Zang Xiaohuan; Li Jingci; Ma Jingjun

    2012-01-01

    Highlights: ► Graphene as a novel sorbent material in a column for solid-phase extraction (SPE). ► SPE for the determination of lead (Pb) in environment water samples and vegetable samples. ► The system can be reused for many times. ► The adsorption capacity of graphene over many other adsorbents. ► Graphene has great potentials as an excellent sorbent material. - Abstract: Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L −1 with a detection limit of 0.61 μg L −1 . The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L −1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.

  16. Tandem Solid Phase Extraction for the Determination of Pharmaceuticals in Wastewater

    International Nuclear Information System (INIS)

    Licaberth Ismail; Rozita Osman; Norashikin Saim

    2013-01-01

    In this study, a simple and rapid tandem solid phase extraction (SPE) was developed for the analysis of seven pharmaceuticals (acetaminophen, caffeine, carbamazepine, diclofenac, naproxen, ibuprofen and metaprolol) in wastewater sample. The novel aspect of coupling SPE cartridge in tandem is the ability to simplify the SPE procedure (sample introduction step) as no single sorbent was able to retain and concentrate all selected compounds since these compounds are of different physicochemical properties. A tandem SPE cartridges using Oasis HLB and octadecyl bonded silica (C 18 ) was found to be efficient with the advantages of minimizing sample volume and reducing analysis time. Using this approach, carbamazepine, diclofenac, naproxen and metaprolol were trapped in the Oasis HLB while acetaminophen, caffeine and ibuprofen were trapped in the second cartridge (C 18 ). The instrumental limits of detection (LOD) ranged from 0.01 to 0.04 μg/ L and satisfactory recoveries were obtained between 76 % to 104 %. The calibration curves were linear from 0.1 to 5.0 μg/ mL, with correlation coefficients (R 2 ) in the range of 0.995 to 0.999. The developed method was applied to the analysis of pharmaceuticals in wastewater samples. The amount of pharmaceuticals detected in wastewater samples varied from 0.4 to 24.5 mg/ L. (author)

  17. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    Science.gov (United States)

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  18. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Adahchour, M; Vreuls, R J; van der Heijden, A; Brinkman, U A

    1999-06-04

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water fraction are collected by off-line SPE on cartidges packed with a copolymer sorbent. After desorption with 500 microliters of methyl acetate, 1-microliter aliquots are quantified and/or identified by gas chromatography-mass spectrometry. The procedure was tested with respect to recovery, linearity and limit of detection in real-life samples using five polar model analytes. It allows the characterisation of polar flavour compounds in butter prior to and after heat treatment at 170 degrees C. From the five model compounds, vanillin, traces of diacetyl and maltol were found to be present in the butter samples. After heat treatment 500-1000-fold increased concentration of maltol, and substantial amounts of furaneol were detected.

  19. MIL-101(Cr)@GO for dispersive micro-solid-phase extraction of pharmaceutical residue in chicken breast used in microwave-assisted coupling with HPLC-MS/MS detection.

    Science.gov (United States)

    Wang, Yudan; Dai, Xinpeng; He, Xi; Chen, Lin; Hou, Xiaohong

    2017-10-25

    In this work, MIL-101(Cr)@GO (Graphite Oxide) was synthesized using a hydrothermal synthesis method and was applied as a dispersive micro-solid-phase extraction (D-μ-SPE) sorbent for the efficient concentration of four residual drugs (metronidazole, MNZ; tinidazole, TNZ; chloramphenicol, CAP; sulfamethoxazole, SMX). Meanwhile, the extraction process was optimized by combining it with microwave-assisted extraction. Factors affecting the D-μ-SPE efficiency, such as selection of sorbent materials, pH of the sample solution, salting-out effect, amount of used material, extraction time, desorption solvent and desorption time, were studied. Under the optimal extraction conditions, the linearity ranged from 10 to 1000ngkg -1 and 1-100ngkg -1 (r 2 ≥0.9928) for the target analytes. The limits of detection were between 0.08 and 1.02ngkg -1 , and the limits of quantitation were between 0.26 and 3.40ngkg -1 . Additionally, the developed method also exhibited good precision (RSD≤2.5%), repeatability (RSD≤4.3%), high recoveries (88.9%-102.3%) and low matrix effects (78.2%-95.1%). The proposed method proved to be an efficient and reliable approach for the determination of the analytes. Finally, we successfully detected the four drugs in chicken breast. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microwave-assisted synthesis of reduced graphene oxide decorated with magnetite and gold nanoparticles, and its application to solid-phase extraction of organochlorine pesticides

    International Nuclear Information System (INIS)

    Mehdinia, Ali; Rouhani, Shirin; Mozaffari, Shahla

    2016-01-01

    An agent-free microwave-assisted method was developed for the preparation of a reduced graphene oxide/Fe_3O_4-gold nanocomposite. This material was used as an adsorbent for magnetic solid-phase extraction of organochlorine pesticides (OCPs) from water samples. The nanocomposite was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The effects of sample volume, amount of sorbent, eluent volume, extraction and desorption time, and the effect of salt on the extraction efficiency were optimized. The linear response range of GC analysis extends from 0.05 to 500 μg L"−"1 of OCPs, the limits of detection range from 0.4 to 4.1 ng L"−"1, relative standard deviations from 1.7 to 7.3 %, and recoveries (from spiked seawater samples) from 69 to 114 %. (author)

  1. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns

    International Nuclear Information System (INIS)

    Ersoez, Arzu; Say, Ridvan; Denizli, Adil

    2004-01-01

    Solid-phase extraction (SPE) columns packed with materials based on molecularly imprinted polymers (MIPs) were used to develop selective separation and preconcentration for Ni(II) ion from aqueous solutions. SPE is more rapid, simple and economical method than the traditional liquid-liquid extraction. MIPs were used as column sorbent to increase the grade of selectivity in SPE columns. In this study, we have developed a polymer obtained by imprinting with Ni(II) ion as a ion-imprinted SPE sorbent. For this purpose, NI(II)-methacryloylhistidinedihydrate (MAH/Ni(II)) complex monomer was synthesized and polymerized with cross-linking ethyleneglycoldimethacrylate to obtain [poly(EGDMA-MAH/Ni(II))]. Then, Ni(II) ions were removed from the polymer getting Ni(II) ion-imprinted sorbent. The MIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.3 to 25 ng/ml and the detection limit was 0.3 ng/ml (3 s) for flame atomic absorption spectrometry (FAAS). Ni(II) ion-imprinted microbeads can be used several times without considerable loss of adsorption capacity. When the adsorption capacity of nickel imprinted microbeads were compared with non-imprinted microbeads, nickel imprinted microbeads have higher adsorption capacity. The K d (distribution coefficient) values for the Ni(II)-imprinted microbeads show increase in K d for Ni(II) with respect to both K d values of Zn(II), Cu(II) and Co(II) ions and non-imprinted polymer. During that time K d decreases for Zn(II), Cu(II) and Co(II) ions and the k' (relative selectivity coefficient) values which are greater than 1 for imprinted microbeads of Ni(II)/Cu(II), Ni(II)/Zn(II) and Ni(II)/Co(II) are 57.3, 53.9, and 17.3, respectively. Determination of Ni(II) ion in sea water showed that the interfering matrix had been almost removed during preconcentration. The column was good enough for Ni determination in matrixes containing similar ionic radii ions such as Cu(II), Zn(II) and Co(II)

  2. Theoretical Predictions of the thermodynamic Properties of Solid Sorbents Capture CO2 Applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yuhua; Sorescu, Dan; Luebke David; Pennline, Henry

    2012-05-02

    We are establishing a theoretical procedure to identify most potential candidates of CO{sub 2} solid sorbents from a large solid material databank to meet the DOE programmatic goal for energy conversion; and to explore the optimal working conditions for the promising CO{sub 2} solid sorbents, especially from room to warm T ranges with optimal energy usage, used for both pre- and post-combustion capture technologies.

  3. Fractionation analysis of oxyanion-forming metals and metalloids in leachates of cement-based materials using ion exchange solid phase extraction.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2009-05-15

    A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.

  4. Submicrometric Magnetic Nanoporous Carbons Derived from Metal-Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction.

    Science.gov (United States)

    Frizzarin, Rejane M; Palomino Cabello, Carlos; Bauzà, Maria Del Mar; Portugal, Lindomar A; Maya, Fernando; Cerdà, Víctor; Estela, José M; Turnes Palomino, Gemma

    2016-07-19

    We present the first application of submicrometric magnetic nanoporous carbons (μMNPCs) as sorbents for automated solid-phase extraction (SPE). Small zeolitic imidazolate framework-67 crystals are obtained at room temperature and directly carbonized under an inert atmosphere to obtain submicrometric nanoporous carbons containing magnetic cobalt nanoparticles. The μMNPCs have a high contact area, high stability, and their preparation is simple and cost-effective. The prepared μMNPCs are exploited as sorbents in a microcolumn format in a sequential injection analysis (SIA) system with online spectrophotometric detection, which includes a specially designed three-dimensional (3D)-printed holder containing an automatically actuated electromagnet. The combined action of permanent magnets and an automatically actuated electromagnet enabled the movement of the solid bed of particles inside the microcolumn, preventing their aggregation, increasing the versatility of the system, and increasing the preconcentration efficiency. The method was optimized using a full factorial design and Doehlert Matrix. The developed system was applied to the determination of anionic surfactants, exploiting the retention of the ion-pairs formed with Methylene Blue on the μMNPC. Using sodium dodecyl sulfate as a model analyte, quantification was linear from 50 to 1000 μg L(-1), and the detection limit was equal to 17.5 μg L(-1), the coefficient of variation (n = 8; 100 μg L(-1)) was 2.7%, and the analysis throughput was 13 h(-1). The developed approach was applied to the determination of anionic surfactants in water samples (natural water, groundwater, and wastewater), yielding recoveries of 93% to 110% (95% confidence level).

  5. Carbon Nanotubes as a New Solid Phase Extraction Sorbent for Analysis of Environmental Pollutants

    OpenAIRE

    Constantin, Bele

    2010-01-01

    SPE is an increasingly useful technique for sample concentration and clean-up in environmental applications and can be easily incorporated into automated analytical procedures. The future of SPE is closely related to improvement of sorbents that can be more effective in obtaining high enrichment efficiency of analytes. The unusual properties of CNTs, their large sorption capacity, wide surface area and the presence of a wide spectrum of surface functional groups have generated a great interes...

  6. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.; Afsarimanesh, Nasrin; Xie, Li; Nag, Anindya; Al-Bahadly, I. H.; Yu, P. L.; Kosel, Jü rgen

    2016-01-01

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid

  7. Mesoporous silica based MCM-41 as solid-phase extraction sorbent combined with micro-liquid chromatography-quadrupole-mass spectrometry for the analysis of pharmaceuticals in waters.

    Science.gov (United States)

    Dahane, S; Martínez Galera, M; Marchionni, M E; Socías Viciana, M M; Derdour, A; Gil García, M D

    2016-05-15

    This paper reports the first application of the silica based mesoporous material MCM-41 as a sorbent in solid phase extraction, to pre-concentrate pharmaceuticals of very different polarity (atenolol, nadolol, pindolol, timolol, bisoprolol, metoprolol, betaxolol, ketoprofen, naproxen, ibuprofen, diclofenac, tolfenamic acid, flufenamic acid and meclofenamic acid) in surface waters. The analytes were extracted from 100mL water samples at pH 2.0 (containing 10(-3) mol/L of sodium chloride) by passing the solution through a cartridge filled with 100 mg of MCM-41. Following elution, the pharmaceuticals were determined by micro-liquid chromatography and triple quadrupole-mass spectrometry. Two selected reaction monitoring transitions were monitored per compound, the most intense one being used for quantification and the second one for confirmation. Matrix effect was found in real waters for most analytes and was overcome using the standard addition method, which compared favorably with the matrix matched calibration method. The detection limits in solvent (acetonitrile:water 10:90, v/v) ranged from 0.01 to 1.48 μg/L and in real water extracts from 0.10 to 3.85 μg/L (0.001-0.0385 μg/L in the water samples). The quantitation limits in solvent were in the range 0.02-4.93 μg/L, whereas in real water extracts were between 0.45 and 10.00 μg/L (0.0045 and 0.1000 μg/L in the water samples). When ultrapure water samples were spiked at two concentration levels of each pharmaceutical (0.1 and 0.2 μg/L) and quantified using solvent based calibration graphs, recoveries were near 100%. However, recoveries for most pharmaceuticals were comparable or better than de described above, when river water samples (spiked at the same concentration levels) were quantified by the standard addition method and slightly worse using the matrix matched calibration method. Five real samples (two rivers, one dam and two fountain water samples) were analyzed by the developed method, atenolol

  8. Graphene/TiO2 nanocomposite based solid-phase extraction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for lipidomic profiling of avocado (Persea americana Mill.).

    Science.gov (United States)

    Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung

    2014-12-10

    Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  9. C18, C8, and perfluoro reversed phases on diamond for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Wiest, Landon A; Herbert, David; Biggs, Katherine N; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2009-04-17

    In spite of advances in solid-phase extraction (SPE) technology there are certain disadvantages to current SPE silica-based, column packings. The pH range over which extraction can occur is limited and each column is generally only used once. New diamond-based reversed SPE phases (C(18), C(8), and perfluorinated) were developed in our laboratories. Studies were done which show that these phases do not have the same limitations as traditional silica-based stationary phases. The synthesis and properties of these diamond-based phases are presented, and the stability, percent recovery, and column capacity are given for the C(18) phase.

  10. Solid-phase reductive amination for glycomic analysis.

    Science.gov (United States)

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  11. The Extraction and Determination of Ellagic Acid Content in the Peels of Six Iranian Pomegranates Cultivars Using a New Miniaturized Matrix Solid-Phase Dispersion Method

    Directory of Open Access Journals (Sweden)

    Fariba Nazari Serenjeh

    2017-03-01

    Full Text Available Background and Aim:The peels of six Iranian pomegranates (Punica granatum L. cultivars, as a traditional medicine, were treated with a new miniaturized matrix solid-phase dispersion (MSPD method for the HPLC determination of ellagic acid (EA. Materials and Methods:In the proposed method, only 10mg of the sample powder was ground and blended with an equal amount of C18 sorbent in an agate mortar. The use of the agate mortar with smooth surface facilitated the sample transfer into a cartridge and reduced the required amount of sample and sorbent. Micro volumes of dichloromethane, n-hexane and methanol were used as modifier, washing and elution solvents, respectively. The eluate was injected into an HPLC-UV system for the analysis. Results:Several factors such as the type and amount of dispersing sorbent, modifier, washing solvent and eluent were carefully studied and optimized. Six replicated analyses at the optimized conditions resulted in a recovery of 96.7% and a relative standard deviation of 5.87%. The proposed method was successfully applied to the extraction and determination of EA in the peels samples. Conclusion:According to the ultimate results, the MSPD method is an efficient technique for the quantitative extraction of EA from the peels of pomegranate. Malas cultivar has the highest amount (18.1 g kg-1 of ellagic acid content compared to the other studied pomegranate cultivars.

  12. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  13. Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples.

    Science.gov (United States)

    Lian, Lili; Lv, Jinyi; Wang, Xiyue; Lou, Dawei

    2018-01-26

    A novel magnetic solid-phase extraction approach was proposed for extraction of potential residues of tetracyclines (TCs) in tap and river water samples, based on Fe 3 O 4 @SiO 2 @FeO magnetic nanocomposite. Characterized results showed that the received Fe 3 O 4 @SiO 2 @FeO had distinguished magnetism and core-shell structure. Modified FeO nanoparticles with an ∼5 nm size distribution were homogeneously dispersed on the surface of the silica shell. Owing to the strong surface affinity of Fe (II) toward TCs, the magnetic nanocomposite could be applied to efficiently extract three TCs antibiotics, namely, oxytetracycline, tetracycline and chlortetracycline from water samples. Several factors, such as sorbent amount, pH condition, adsorption and desorption time, desorption solvent, selectivity and sample volume, influencing the extraction performance of TCs were investigated and optimized. The developed method showed excellent linearity (R > 0.9992) in the range of 0.133-333 μg L -1 , under optimized conditions. The limits of detection were between 0.027 and 0.107 μg L -1 for oxytetracycline, tetracycline and chlortetracycline, respectively. The feasibility of this method was evaluated by analysis of tap and river water samples. The recoveries at the spiked concentration levels ranged from 91.0% to 104.6% with favorable reproducibility (RSD < 4%). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    NARCIS (Netherlands)

    de Jong, GJ; Koster, EHM

    2000-01-01

    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused

  15. Core-shell Fe3O4 polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples.

    Science.gov (United States)

    Yavuz, Emre; Tokalıoğlu, Şerife; Patat, Şaban

    2018-10-15

    In the present study, core-shell Fe 3 O 4 polydopamine nanoparticles were synthesized and used for the first time as an adsorbent for the vortex assisted magnetic dispersive solid phase extraction of copper from food samples. After elution, copper in the solutions was determined by FAAS. The adsorbent was characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area, and zeta potential measurements. Various parameters affecting the magnetic dispersive solid-phase extraction were evaluated. The optimum pH and magnetic adsorbent amount were found to be 5 and 40 mg, respectively. Elution was made by 3 mL of 2 mol L -1 HNO 3 .The major advantage of the method is the fast equilibration during adsorption without the need for vortexing or shaking. The preconcentration factor and detection limit of the method were found to be 150 and 0.22 mg L -1 , respectively. The precision (as RSD%) and adsorption capacity of the method were 3.7% and 28 mg g -1 , respectively. The method was successfully verified by analyzing four certified reference materials (SPS-WW1 Batch 114 Wastewater, TMDA-53.3 Lake water, BCR-482 Lichen and 1573a Tomato Leaves) and by addition/recovery tests of copper standard solution in organic baby food, muesli, macaroni, honey, and milk samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  17. Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples

    International Nuclear Information System (INIS)

    Saraji, Mohammad; Yousefi, Hamideh

    2009-01-01

    A new ion-imprinted polymer (IIP) material was synthesized by copolymerization of 4-vinylpyridine as monomer, ethyleneglycoldimethacrylate as crosslinking agent and 2,2'-azobis-sobutyronitrile as initiator in the presence of Ni-dithizone complex. The IIP was used as sorbent in a solid-phase extraction column. The effects of sampling volume, elution conditions, sample pH and sample flow rate on the extraction of Ni ions form water samples were studied. The maximum adsorption capacity and the relative selectivity coefficients of imprinted polymer for Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were calculated. Compared with non-imprinted polymer particles, the IIP had higher selectivity for Ni(II). The relative selectivity factor (α r ) values of Ni(II)/Co(II), Ni(II)/Cu(II) and Ni(II)/Cd(II) were 21.6, 54.3, and 22.7, respectively, which are greater than 1. The relative standard deviation of the five replicate determinations of Ni(II) was 3.4%. The detection limit for 150 mL of sample was 1.6 μg L -1 using flame atomic absorption spectrometry. The developed method was successfully applied to the determination of trace nickel in water samples with satisfactory results.

  18. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    Science.gov (United States)

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  19. Extraction of trace nitrophenols in environmental water samples using boronate affinity sorbent

    International Nuclear Information System (INIS)

    Zhang, Yong; Mei, Meng; Huang, Xiaojia; Yuan, Dongxing

    2015-01-01

    In this research, the applicability of a new sorbent based on boronate affinity material is demonstrated. For this purpose, six strong polar nitrophenols were selected as models which are difficult to be extracted in neutral form (only based on hydrophobic interactions). The extracted nitrophenols were separated and determined by high-performance liquid chromatography with diode array detection. The sorbent was synthesized by in situ copolymerization of 3-acrylamidophenylboronic acid and divinylbenzene using dimethyl sulfoxide and azobisisobutyronitrile as porogen solvent and initiator, respectively. The effect of the preparation parameters in the polymerization mixture on extraction performance was investigated in detail. The size and morphology of the sorbent have been characterized via different techniques such as infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The important parameters influencing the extraction efficiency were studied and optimized thoroughly. Under the optimum extraction conditions, the limits of detection (S/N = 3) and limits of quantification (S/N = 10) for the target nitrophenols were 0.097–0.28 and 0.32–0.92 μg/L, respectively. The precision of the proposed method was evaluated in terms of intra- and inter-assay variability calculated as RSD, and it was found that the RSDs were all below 9%. Finally, the developed method was successfully applied for environmental water samples such as wastewater, tap, lake and river water. The recoveries varied within the range of 71.2–115% with RSD below 11% in all cases. The results well demonstrate that the new boronate affinity sorbent can extract nitrophenols effectively through multi-interactions including boron–nitrogen coordination, hydrogen-bond and hydrophobic interactions between sorbent and analytes. - Highlights: • A new boronate affinity sorbent (BAS) was prepared. • The BAS was used as the extractive medium of stir

  20. Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-15

    A simple and rapid dispersive micro-solid phase extraction (DMSPE) combined with mode-mismatched thermal lens spectrometry as well as fiber optic linear array spectrophotometry was developed for the separation, extraction and determination of sulfadiazine. Graphene oxide was synthesized using the modified Hummers method and functionalized with iron oxide nanoparticles by means of a simple one step chemical coprecipitation method. The synthesized iron oxide functionalized graphene oxide was utilized as an efficient sorbent in DMSPE of sulfadiazine. The retained analyte was eluted by using 180µL of a 6:4 mixture of methanol/acetic acid solution and was spectrophotometrically determined based on the formation of an azo dye through coupling with thenoyltrifluoroacetone. Under the optimized conditions, with the application of spectrophotometry technique and with a sample volume of 100mL, the method exhibited a linear dynamic range of 3-80µg L(-1) with a detection limit of 0.82µg L(-1), an enrichment factor of 200 as well as the relative standard deviations of 2.6% and 4.3% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. Whereas, through the application of the thermal lens spectrometry and a sample volume of 10mL, the method exhibited a linear dynamic range of 1-800µg L(-1) with a detection limit of 0.34µg L(-1) and the relative standard deviations of 3.1% and 5.4% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. The method was successfully applied to the determination of sulfadiazine in milk, honey and water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. On-line solid-phase extraction coupled to hydrophilic interaction chromatography-mass spectrometry for the determination of polar drugs.

    Science.gov (United States)

    Fontanals, Núria; Marcé, Rosa M; Borrull, Francesc

    2011-09-02

    The present study describes the first fully automated method based on on-line solid-phase extraction (SPE) coupled to hydrophilic interaction chromatography-electrospray-mass spectrometry (HILIC-(ESI)MS) to determine a group of polar drugs that includes illicit drugs (such as cocaine, morphine, codeine and metabolites) and pharmaceuticals in environmental water samples. The SPE was performed using a highly retentive polymeric sorbent. The HILIC separation was optimised and the initial high organic content of the chromatographic mobile phase, was also suitable for the proper on-line elution of the analytes retained in the SPE column and for enhancing the ESI ionisation efficiency. This method allows the loading of samples of up to 250ml of ultrapure water or 10ml of environmental water samples spiked at low ngl(-1) levels of the analytes. The method yields near 100% recoveries for all the analytes. The method was also validated with environmental water samples with linear ranges from 5 to 1000ngl(-1) and limits of detection ≤2ngl(-1) for most of the compounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Dispersive micro-solid phase extraction of aromatic amines based on an efficient sorbent made from poly(1,8-diaminonaphtalen) and magnetic multiwalled carbon nanotubes composite.

    Science.gov (United States)

    Jalilian, Niloofar; Ebrahimzadeh, Homeira; Asgharinezhad, Ali Akbar

    2017-05-26

    In this work, the extraction of aromatic amines with an efficient magnetic multiwalled carbon nanotubes/Fe 3 O 4 @Poly(1,8-diaminonaphtalen) (MWCNTs/Fe 3 O 4 @PDAN) composite followed by HPLC-DAD was presented. Imprimis, the comparison among different magnetic nanosorbents including Fe 3 O 4 , MWCNTs/Fe 3 O 4 , Fe 3 O 4 @PDAN and MWCNTs/Fe 3 O 4 @PDAN was conducted. The obtained results, exhibited that the MWCNTs/Fe 3 O 4 @PDAN composite has the highest extraction efficiency for target analytes (3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline). This sorbent was characterized by Fourier transform infrared spectroscopy, X-ray dispersive spectroscopy, thermogravimetry analysis, scanning electron microscopy, transition electron microscopy, vibrating sample magnetometry and X-ray diffraction. Design of experiment approach was applied to find out the optimal experimental conditions. The optimal extraction conditions were: pH of the sample, 10; sorbent amount, 10mg; sorption time, 15min; salt concentration, 10% w/w; type and volume of the eluent, 0.01molL -1 HCl in acetonitrile, 145μL; elution time; 2min. Under the optimal extraction conditions detection limits and linear dynamic ranges were achieved in the range of 0.1-0.25μgL -1 and 0.25-500μgL -1 , respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 31.2-82.8% and 3.4-5.6%, respectively. Finally, the applicability of the method was successfully confirmed by the extraction and determination of target analytes in various water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Rapid LC-HRMS Method for the Determination of Domoic Acid in Urine Using a Self-Assembly Pipette Tip Solid-Phase Extraction

    Science.gov (United States)

    Zhang, Yiping; Chen, Dawei; Hong, Zhuan

    2015-01-01

    In this study, we developed a self-assembly pipette tip solid-phase extraction (PTSPE) method using a high molecular weight polymer material (PAX) as the adsorbent for the determination of domoic acid (DA) in human urine samples by liquid chromatography high-resolution mass spectrometry (LC-HRMS) analysis. The PTSPE cartridge, assembled by packing 9.1 mg of PAX as sorbent into a 200 μL pipette tip, showed high adsorption capacity for DA owing to the strong cationic properties of PAX. Compared with conventional SPE, the PTSPE is simple and fast, and shows some advantages in the aspects of less solvent consumption, low cost, the absence of the evaporation step, and short time requirement. All the parameters influencing the extraction efficiency such as pH, the amount of sorbent, the number of aspirating/dispensing cycles, and the type and volume of eluent in PTSPE were carefully investigated and optimized. Under the optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) values of DA were 0.12 μg/L and 0.37 μg/L respectively. The extraction recoveries of DA from the urine samples spiked at four different concentrations were in a range from 88.4% to 102.5%. The intra- and inter-day precisions varied from 2.1% to 7.6% and from 2.6% to 12.7%, respectively. The accuracy ranged from −1.9% to −7.4%. PMID:26729165

  4. A Rapid LC-HRMS Method for the Determination of Domoic Acid in Urine Using a Self-Assembly Pipette Tip Solid-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Yiping Zhang

    2015-12-01

    Full Text Available In this study, we developed a self-assembly pipette tip solid-phase extraction (PTSPE method using a high molecular weight polymer material (PAX as the adsorbent for the determination of domoic acid (DA in human urine samples by liquid chromatography high-resolution mass spectrometry (LC-HRMS analysis. The PTSPE cartridge, assembled by packing 9.1 mg of PAX as sorbent into a 200 μL pipette tip, showed high adsorption capacity for DA owing to the strong cationic properties of PAX. Compared with conventional SPE, the PTSPE is simple and fast, and shows some advantages in the aspects of less solvent consumption, low cost, the absence of the evaporation step, and short time requirement. All the parameters influencing the extraction efficiency such as pH, the amount of sorbent, the number of aspirating/dispensing cycles, and the type and volume of eluent in PTSPE were carefully investigated and optimized. Under the optimized conditions, the limit of detection (LOD and limit of quantification (LOQ values of DA were 0.12 μg/L and 0.37 μg/L respectively. The extraction recoveries of DA from the urine samples spiked at four different concentrations were in a range from 88.4% to 102.5%. The intra- and inter-day precisions varied from 2.1% to 7.6% and from 2.6% to 12.7%, respectively. The accuracy ranged from −1.9% to −7.4%.

  5. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    Science.gov (United States)

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Magnetic hydrophilic-lipophilic balance sorbent for efficient extraction of chemical warfare agents from water samples.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud D, Raghavender; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-02-19

    Magnetic hydrophilic-lipophilic balance (MHLB) hybrid resin was prepared by precipitation polymerization using N-vinylpyrrolidone (PVP) and divinylbenzene (DVB) as monomers and Fe2O3 nanoparticles as magnetic material. These resins were successfully applied for the extraction of chemical warfare agents (CWAs) and their markers from water samples through magnetic dispersive solid-phase extraction (MDSPE). By varying the ratios of monomers, resin with desired hydrophilic-lipophilic balance was prepared for the extraction of CWAs and related esters of varying polarities. Amongst different composites Fe2O3 nanoparticles coated with 10% PVP+90% DVB exhibited the best recoveries varying between 70.32 and 97.67%. Parameters affecting the extraction efficiencies, such as extraction time, desorption time, nature and volume of desorption solvent, amount of extraction sorbent and the effect of salts on extraction were investigated. Under the optimized conditions, linearity was obtained in the range of 0.5-500 ng mL(-1) with correlation ranging from 0.9911-0.9980. Limits of detection and limits of quantification were 0.5-1.0 and 3.0-5.0 ng mL(-1) respectively with RSDs varying from 4.88-11.32% for markers of CWAs. Finally, the developed MDSPE method was employed for extraction of analytes from water samples of various sources and the OPCW proficiency test samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Determination of patulin in fruits and jam by solid phase extraction-ultra performance liquid chromatography].

    Science.gov (United States)

    Lü, Weichao; Shen, Shuchang; Wang, Chao

    2017-11-08

    With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.

  8. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China); Li, Jia-yuan; Qiao, Jun-qin [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Cui, Shi-hai [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China); Lian, Hong-zhen, E-mail: hzlian@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Chen, Hong-yuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-12-01

    Graphical abstract: - Highlights: • Magnetic Fe{sub 3}O{sub 4}/C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe{sub 3}O{sub 4} and coated organic carbon has been demonstrated in Fe{sub 3}O{sub 4}/C. • The straight influences of synthesis conditions of Fe{sub 3}O{sub 4}/C on MSPE were investigated. • The extraction characteristics of Fe{sub 3}O{sub 4}/C nanoparticles were further elucidated. - Abstract: Carbon doped Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe{sub 3}O{sub 4}/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe{sub 3}O{sub 4}/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe{sub 3}O{sub 4}/C sorbent were further elucidated. It is found that the adsorption process of Fe{sub 3}O{sub 4}/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe{sub 3}O{sub 4}/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe{sub 3}O{sub 4} nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe{sub 3}O{sub 4} and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe

  9. Dispersive solid phase micro-extraction of mercury(II from environmental water and vegetable samples with ionic liquid modified graphene oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Nasrollahpour Atefeh

    2017-01-01

    Full Text Available A new dispersive solid phase micro-extraction (dispersive-SPME method for separation and preconcentration of mercury(II using ionic liquid modified magnetic reduced graphene oxide (IL-MrGO nanoparticles, prior to the measurement by cold vapour atomic absorption spectrometry (CV-AAS has been developed. The IL-MrGO composite was characterized by Brunauer– Emmett–Teller method (BET for adsorption-desorption measurement, thermogravimetric analysis (TGA, powder X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The method is based on the sorption of mercury( II on IL-MrGO nanoparticles due to electrostatic interaction and complex formation of ionic liquid part of IL-MrGO with mercury(II. The effect of experimental parameters for preconcentration of mercury(II, such as solution type, concentration and volume of the eluent, pH, time of the sorption and desorption, amount of the sorbent and coexisting ion concentration have been optimized. Under the optimized conditions, a linear response was obtained in the concentration range of 0.08–10 ng mL-1 with a determination coefficient of 0.9995. The limit of detection (LOD of the method at a signal to noise ratio of 3 was 0.01 ng mL-1. Intra-day and inter-day precisions were obtained equal to 3.4 and 4.5 %, respectively. The dispersive solid phase micro-extraction of mercury(II on IL-MrGO nanoparticles coupled with cold vapour atomic absorption spectrometry was successfully used for extraction and determination of mercury(II in water and vegetable samples.

  10. Facile synthesis of multifunctional attapulgite/Fe3O4/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    International Nuclear Information System (INIS)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua

    2016-01-01

    In this study, the superparamagnetic attapulgite/Fe 3 O 4 /polyaniline (ATP/Fe 3 O 4 /PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe 3 O 4 formed by the redox reaction between aniline and Fe (III). The ATP/Fe 3 O 4 /PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe 3 O 4 /PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe 3 O 4 /PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r 2 ) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L −1 , and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe 3 O 4 /PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe 3 O 4 /PANI nanocomposite was first introduced in MDSPE. • ATP/Fe 3 O 4 /PANI nanocomposites exhibited fast adsorption and desorption kinetics. • An excellent sorbent-to-sorbent reproducibility was demonstrated in the

  11. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for coextraction of acidic and basic drugs from biological fluids and waste water.

    Science.gov (United States)

    Asgharinezhad, Ali Akbar; Mollazadeh, Narges; Ebrahimzadeh, Homeira; Mirbabaei, Fatemeh; Shekari, Nafiseh

    2014-04-18

    The coextraction of acidic and basic drugs from different samples is a considerable and disputable concept in sample preparation strategies. In this study, for the first time, simultaneous extraction of acidic and basic drugs with magnetic nanoparticles based dispersive micro-solid phase extraction followed by high performance liquid chromatography-ultraviolet detection was introduced. Cetyltrimethyl ammonium bromide-coated Fe3O4@decanoic acid as an efficient sorbent was successfully applied to adsorb diclofenac (DIC) as an acidic and diphenhydramine (DPH) as a basic model compound. First, appropriate amount of synthetic Fe3O4@decanoic acid nanoparticles was added to aqueous solution of drugs. After adjusting the pH of the solution, cetyltrimethyl ammonium bromide (CTAB) was added to the mixture being stirred at a constant rate. After the adsorption of drugs and decantation of supernatant with a magnetic field, the sorbent was eluted with methanol by fierce vortex. The parameters affecting the extraction efficiency were optimized and obtained as: pH of the sample=9, concentration of CTAB=0.2mmolL(-1), amount of sorbent=10mg, extraction time=5min, no salt addition to sample, type and volume of the eluent=50μL methanol, and desorption time=1min. Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 1.8-3.0, 5-1500μgL(-1) for DPH and 1.5-3.5, 5-1500μgL(-1) for DIC, respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 47.3-60, 5.2-9.0 for DPH and 64-76.7, 5.1-5.8 for DIC, respectively. Ultimately, the applicability of the method was successfully confirmed by the extraction and determination of DIC and DPH in human urine, plasma and waste water samples in the range of microgram per liter and satisfactory results were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and UHPLC-MS/MS.

    Science.gov (United States)

    Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan

    2017-08-01

    A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparative study of homemade C18 and commercial C18 sorbents for preconcentration of lead by minicolumn solid phase extraction

    International Nuclear Information System (INIS)

    Maltez, H.F.; Curtius, A.J.; Carasek, E.; Melo, L.F.C.; Sales Fontes Jardim, I.C.; Nascimento de Queiroz do, S.C.

    2004-01-01

    A comparative study of commercial C 18 chemically immobilized on silica and homemade C 18 , as sorbents for Pb complexed with 0,0-diethyl-dithiophosphate (DDTP) in a flow injection preconcentration system is reported. The homemade C 18 sorbent was obtained by sorption of poly(methyloctadecylsiloxane) (PMODS) on the silica support followed by immobilization using thermal treatment. The method follows the concept of green chemistry, since there are no toxic residues after synthesis. The complexed Pb was formed in 1.0 mol L -1 HCI medium and retained on the minicolumn filled with the sorbents. The elution was carried out using ethanol, and the richest 210 μL fraction was collected and analyzed by flame atomic absorption spectrometry. Chemical and flow variables were optimized for each sorbent. The results demonstrated that the performance of the proposed homemade C 18 sorbent for preconcentration of Pb complexed with DDTP is very similar to commercial C 18 chemically bonded on silica. By processing 25 mL, the enrichment factors were 129 and 125 for commercial C 18 and homemade C 18 , respectively. The limit of detection for commercial and homemade C 18 was 0.2 μg L -1 and 0.6 μg L -1 , respectively. The relative standard deviation (RSD) was lower than 1.2 % for both sorbents for a Pb concentration of 100 μg L -1 . The method was also applied successfully to the analysis of water samples, and the accuracy was tested by recovery measurements on spiked samples and biological reference material. (author)

  14. Aspects pertinent to the usefulness of a solid phase radio-immuno-sorbent assay for the detection of spermatozoa antibodies in sera of infertility patients

    International Nuclear Information System (INIS)

    Hinrichs-Reiche, I.

    1987-01-01

    The solid phase Radio-Immuno-Sorbent Assay (RISA) is a highly sensitive and valid test to detect 125-iodinetagged antibodies to spermatozoa that allows qualitative and quantitative evaluations of sperm-incapacitating immunglobulin Ig G in sera from patients believed to be infertile for immunological reasons. The study failed to reveal any correlations between the results of RISA and those of micro-sperm-agglutination or micro-sperm-immobilisation tests. There was a major body of evidence pointing to possible links between female isoimmunity and male autoimmunity. (TRV) [de

  15. Approaches for on-line coupling of extraction and chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland)

    2004-04-01

    This review provides an overview of the approaches available in order to perform on-line coupling of various extraction techniques with liquid and gas chromatography, for the analysis of semivolatile and nonvolatile analytes in liquid and solid samples. The main focus is on the instrumental set-up of these techniques. Selected real applications are described by way of illustration. The extraction methods suitable for on-line coupling covered in this review are: liquid-liquid extraction, solid-phase extraction, membrane-based techniques, pressurised liquid extraction, supercritical fluid extraction, and microwave- and sonication-assisted extractions. The following systems are not covered in this review: on-line coupled solid-phase extraction-liquid chromatography, purge-and-trap-GC, and membrane extraction with a sorbent interface-GC. (orig.)

  16. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    Science.gov (United States)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  17. ZnO nanorod array solid phase micro-extraction fiber coating: fabrication and extraction capability

    International Nuclear Information System (INIS)

    Wang Dan; Zhang Zhuomin; Li Tiemei; Zhang Lan; Chen Guonan; Luo Lin

    2009-01-01

    In this paper, a ZnO nanorod array has been introduced as a coating to the headspace solid phase micro-extraction (HSSPME) field. The coating shows good extraction capability for volatile organic compounds (VOCs) by use of BTEX as a standard and can be considered suitable for sampling trace and small molecular VOC targets. In comparison with the randomly oriented ZnO nanorod HSSPME coating, ZnO nanorod array HSSPME fiber coating shows better extraction capability, which is attributed to the nanorod array structure of the coating. Also, this novel nanorod array coating shows good extraction selectivity to 1-propanethiol.

  18. Critical comparison of the on-line and off-line molecularly imprinted solid-phase extraction of patulin coupled with liquid chromatography.

    Science.gov (United States)

    Lhotská, Ivona; Holznerová, Anežka; Solich, Petr; Šatínský, Dalibor

    2017-12-01

    Reaching trace amounts of mycotoxin contamination requires sensitive and selective analytical tools for their determination. Improving the selectivity of sample pretreatment steps covering new and modern extraction techniques is one way to achieve it. Molecularly imprinted polymers as selective sorbent for extraction undoubtedly meet these criteria. The presented work is focused on the hyphenation of on-line molecularly imprinted solid-phase extraction with a chromatography system using a column-switching approach. Making a critical comparison with a simultaneously developed off-line extraction procedure, evaluation of pros and cons of each method, and determining the reliability of both methods on a real sample analysis were carried out. Both high-performance liquid chromatography methods, using off-line extraction on molecularly imprinted polymer and an on-line column-switching approach, were validated, and the validation results were compared against each other. Although automation leads to significant time savings, fewer human errors, and required no handling of toxic solvents, it reached worse detection limits (15 versus 6 μg/L), worse recovery values (68.3-123.5 versus 81.2-109.9%), and worse efficiency throughout the entire clean-up process in comparison with the off-line extraction method. The difficulties encountered, the compromises made during the optimization of on-line coupling and their critical evaluation are presented in detail. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    Science.gov (United States)

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated. Copyright © 2015. Published by Elsevier B.V.

  20. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  1. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups.

    Science.gov (United States)

    Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon

    2017-10-13

    Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solid-phase extraction and determination of trace elements in environmental samples using naphthalene adsorbent

    International Nuclear Information System (INIS)

    Pourreza, N.

    2004-01-01

    Naphthalene co-precipitated with quaternary ammonium salt such as tetraoctyl ammonium bromide and methyltrioctyl ammonium chloride have been used as adsorbent for solid phase extraction of metal ions such as Hg, Cd and Fe. The metal ions are retained on the adsorbent in a column as their complexes with suitable ligands and eluted by an eluent before instrumental measurements. The optimization of the procedures for solid phase extraction and consequent determination of trace elements and application to environmental samples especially water samples will be discussed. (author)

  3. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Číž, Milan; Ambrožová, Gabriela; Lojek, Antonín; Yanakieva, I.; Kratchanova, M.

    2010-01-01

    Roč. 123, č. 4 (2010), s. 1055-1061 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : anthocyanins * solid-phase extraction * berry extracts Subject RIV: BO - Biophysics Impact factor: 3.458, year: 2010

  5. Microextraction by Packed Sorbent (MEPS and Solid-Phase Microextraction (SPME as Sample Preparation Procedures for the Metabolomic Profiling of Urine

    Directory of Open Access Journals (Sweden)

    Catarina Silva

    2014-01-01

    Full Text Available For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS and solid-phase microextraction (SPME, completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.

  6. Aptamer-functionalized Fe3 O4 magnetic nanoparticles as a solid-phase extraction adsorbent for the selective extraction of berberine from Cortex phellodendri.

    Science.gov (United States)

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Zhang, Wen-Yan; Wu, Lin

    2017-07-01

    The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe 3 O 4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri, but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid-phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer-functionalized Fe 3 O 4 magnetic nanoparticles, extraction time, temperature, pH value, Mg 2+ concentration, elution time and solvent were optimized for the solid-phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer-functionalized Fe 3 O 4 magnetic nanoparticles-based solid-phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid-phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II).

    Science.gov (United States)

    Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping

    2015-12-01

    A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    International Nuclear Information System (INIS)

    Ahn, Yun Gyong; Shin, Jeoung Hwa; Kim, Hye-Young; Khim, Jeehyeong; Lee, Mi-Kyoung; Hong, Jongki

    2007-01-01

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g -1 . The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples

  9. Application of solid-phase extraction coupled with freezing-lipid filtration clean-up for the determination of endocrine-disrupting phenols in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yun Gyong [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Shin, Jeoung Hwa; Kim, Hye-Young [Hazardous Substance Research Team, Korea Basic Science Institute, Seoul 136-701 (Korea, Republic of); Khim, Jeehyeong [Department of Civil Environment Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Mi-Kyoung [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Hong, Jongki [College of Pharmacy, Kyung Hee University, Seoul 130-701 (Korea, Republic of)], E-mail: jhong@khu.ac.kr

    2007-11-05

    An analytical method has been developed for the determination of endocrine-disrupting phenols (eight alkylphenols and bisphenol A) in fish samples. The extraction of nine phenols from fish samples was carried out by ultrasonification. After the extraction, high levels of lipids were removed by freezing-lipid filtration instead of the traditional methods of column chromatography or saponification. During freezing-lipid filtration, about 90% of the lipids were eliminated without any significant loss of phenolic compounds. For further purification, hydrophilic-lipophilic balanced copolymer (HLB) sorbent with a poly(divinylbenzene-co-N-vinylpyrrolidone) phase and Florisil-solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. Silyl-derivatization, with N,N'-methyl-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA), was applied to enhance the sensitivity of detection of phenolic compounds. Quantification was performed by gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) mode, using deuterium-labeled internal standards. Spiking experiments were carried out to determine the recovery, precision and detection limit of the method. The overall recoveries ranged between 70 and 120%, with relative standard deviations of 3-17% for the entire procedure. The detection limits of the method for the nine phenols ranged from 0.02 to 0.41 ng g{sup -1}. The method provided simultaneous screening and accurate confirmation of each phenol when applied to biological samples.

  10. Improved detection limits for phthalates by selective solid-phase micro-extraction

    KAUST Repository

    Zia, Asif I.

    2016-03-30

    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.

  11. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Science.gov (United States)

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N

    2017-03-04

    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  12. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing

  13. A new ion imprinted polymer based on Ru(III)-thiobarbituric acid complex for solid phase extraction of ruthenium(III) prior to its determination by ETAAS

    International Nuclear Information System (INIS)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-01-01

    A new ruthenium ion imprinted polymer was prepared from the Ru(III) 2-thiobarbituric acid complex (the template), methacrylic acid or acrylamide (the functional monomers), and ethylene glycol dimethacrylate (the cross-linking agent) using 2,2′-azobisisobutyronitrile as the radical initiator. The ion imprinted polymer was characterized and used as a selective sorbent for the solid phase extraction of Ru(III) ions. The effects of type of functional monomer, sample volume, solution pH and flow rate on the extraction efficiency were studied in the dynamic mode. Ru(III) ion was quantitatively retained on the sorbents in the pH range from 3.5 to 10, and can be eluted with 4 mol L−1 aqueous ammonia. The affinity of Ru(III) for the ion imprinted polymer based on the acrylamide monomer is weaker than that for the polymer based on the methacrylic acid monomer, which therefore was used in interference studies and in analytical applications. Following extraction of Ru(III) ions with the imprint and their subsequent elution from the polymer with aqueous ammonia, Ru(III) was detected by electrothermal atomic absorption spectrometry with a detection limit of 0.21 ng mL −1 . The method was successfully applied to the determination of trace amounts of Ru(III) in water, waste, road dust and platinum ore (CRM SARM 76) with a reproducibility (expressed as RSD) below 6.4 %. (author)

  14. Solid-phase extraction (SPE) of Iron using Lanthanum Silicate ion exchange

    International Nuclear Information System (INIS)

    Kiarostami, V.; Husain, W.

    2002-01-01

    Solid-phase extraction (SPE) is gaining wide use as an effective and speedy technique which reduces solvent usage, disposal costs and extraction time. The analyte is adsorbed from solution onto a solid adsorbent, which is followed by elution of the analyte with a solvent appropriate for instrumental analysis. However, there is an increasing need for new selective adsorbents to expand the area of this technique. Lanthanum silicate ion exchanger, which shows unusual selectivity elements and in this study, it was employed to develop a SPE method for iron ion. Special experiments such as determination of distribution coefficient for iron ion in different solvent systems have been determined

  15. Technical note: New applications for on-line automated solid phase extraction

    OpenAIRE

    MacFarlane, John D.

    1997-01-01

    This technical note explains the disadvantages of manual solid phase extraction (SPE) techniques and the benefits to be gained with automatic systems. The note reports on a number of general and highly specific applications using the Sample Preparation Unit OSP-2A.

  16. DNA extraction on bio-chip: history and preeminence over conventional and solid-phase extraction methods.

    Science.gov (United States)

    Ayoib, Adilah; Hashim, Uda; Gopinath, Subash C B; Md Arshad, M K

    2017-11-01

    This review covers a developmental progression on early to modern taxonomy at cellular level following the advent of electron microscopy and the advancement in deoxyribonucleic acid (DNA) extraction for expatiation of biological classification at DNA level. Here, we discuss the fundamental values of conventional chemical methods of DNA extraction using liquid/liquid extraction (LLE) followed by development of solid-phase extraction (SPE) methods, as well as recent advances in microfluidics device-based system for DNA extraction on-chip. We also discuss the importance of DNA extraction as well as the advantages over conventional chemical methods, and how Lab-on-a-Chip (LOC) system plays a crucial role for the future achievements.

  17. A rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids.

    Science.gov (United States)

    Yahaya, Noorfatimah; Sanagi, Mohd Marsin; Abd Aziz, Noorizan; Wan Ibrahim, Wan Aini; Nur, Hadi; Loh, Saw Hong; Kamaruzaman, Sazlinda

    2017-02-01

    A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C 18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Determination of Triazine Herbicides in Drinking Water by Dispersive Micro Solid Phase Extraction with Ultrahigh-Performance Liquid Chromatography-High-Resolution Mass Spectrometric Detection.

    Science.gov (United States)

    Chen, Dawei; Zhang, Yiping; Miao, Hong; Zhao, Yunfeng; Wu, Yongning

    2015-11-11

    A novel dispersive micro solid phase extraction (DMSPE) method based on a polymer cation exchange material (PCX) was applied to the simultaneous determination of the 30 triazine herbicides in drinking water with ultrahigh-performance liquid chromatography-high-resolution mass spectrometric detection. Drinking water samples were acidified with formic acid, and then triazines were adsorbed by the PCX sorbent. Subsequently, the analytes were eluted with ammonium hydroxide/acetonitrile. The chromatographic separation was performed on an HSS T3 column using water (4 mM ammonium formate and 0.1% formic acid) and acetonitrile (0.1% formic acid) as the mobile phase. The method achieved LODs of 0.2-30.0 ng/L for the 30 triazines, with recoveries in the range of 70.5-112.1%, and the precision of the method was better than 12.7%. These results indicated that the proposed method had the advantages of convenience and high efficiency when applied to the analysis of the 30 triazines in drinking water.

  19. Matrix solid-phase dispersion followed by gas chromatography tandem mass spectrometry for the determination of benzotriazole UV absorbers in sediments.

    Science.gov (United States)

    Carpinteiro, I; Abuín, B; Ramil, M; Rodríguez, I; Cela, R

    2012-01-01

    A cost-effective and low solvent consumption method, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six benzotriazole UV absorbers in sediments is presented. Sieved samples (0.5 g) were first mixed in a mortar with a solid sorbent and then transferred to a polypropylene syringe containing a layer of clean-up co-sorbent. Analytes were eluted with a suitable solvent and further determined by gas chromatography with tandem mass spectrometry (GC-MS/MS). Under final conditions, diatomaceous earth and silica, deactivated to 10%, were used as inert dispersant and clean-up co-sorbent, respectively. Analytes were recovered using just 5 mL of dichloromethane, and this extract was concentrated and exchanged to 1 mL of isooctane. Further removal of co-extracted sulphur was achieved adding activated copper powder to final extracts, which were stored overnight, before injection in the GC-MS/MS system. The accuracy of the method was assessed with river and marine sediment samples showing different carbon contents and spiked at different concentrations in the range from 40 to 500 ng g(-1). Recoveries varied between 78% and 110% with associated standard deviations below 14%. The limits of quantification of the method stayed between 3 and 15 ng g(-1). Levels of target compounds in sediment samples ranged from not detected up to a maximum of 56 ng g(-1) for Tinuvin 328.

  20. Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent

    KAUST Repository

    Naidu, Gayathri; Loganathan, Paripurnanda; Jeong, Sanghyun; Johir, Md.Abu Hasan; To, Vu Hien Phuong; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2016-01-01

    Sea water reverse osmosis (SWRO) brine contains significant quantity of Rb. As an economically valuable metal, extracting Rb using a suitable and selective extraction method would be beneficial. An inorganic sorbent, copper based potassium

  1. Solid-phase spectrophotometry

    International Nuclear Information System (INIS)

    Brykina, G.D.; Marchenko, D.Yu.; Shpigun, O.A.

    1995-01-01

    Solid-phase spectrophotometry (SPS), which is based on the direct measurement of light absorption of an ion exchanger containing a substance of interest, was reviewed. Since 1976, it has been known that aborbance of an ion exchanger is directly proportional to the concentration of a particular ion in solution. A similar dependence can also be followed for other sorbents, as well as for foams, membranes, films, etc., which do not exhibit ion exchange properties. One can use absorption, diffuse reflection, and luminescence spectra parameters as an analytical signal. Thus, SPS of ion exchangers is among the analytical techniques that combine the sorption concentration and surface determination of the substance of interest. This review summarizes the advancements in SPS over the last six years and demonstrates the prospects for its development. Special attention is paid to experimental methods for measuring solid-phase absorption and to the basic procedures of sample preparation, including new ones. These two facets are of great importance for obtaining precise results and extending the capabilities of SPS

  2. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    Energy Technology Data Exchange (ETDEWEB)

    Han, Lijun [College of Science, China Agricultural University, Beijing (China); Sapozhnikova, Yelena [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038 (United States); Lehotay, Steven J., E-mail: Steven.Lehotay@ars.usda.gov [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038 (United States)

    2014-05-01

    Highlights: • The first report that combines in-vial filtration and dispersive-SPE for sample cleanup. • The unique application of ammonium formate for salting-out partitioning in QuEChERS. • Evaluations of a new zirconium-based and a non-friable GCB sorbent for d-SPE cleanup. • A new analytical method for 59 pesticides and environmental pollutants in shrimp. Abstract: A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was applied to simultaneous analysis of 42 diverse pesticides and 17 environmental contaminants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), and flame retardants, in shrimp as the sample matrix. Final extracts were analyzed by both low-pressure gas chromatography – triple quadrupole tandem mass spectrometry (LPGC-MS/MS), and high-performance liquid chromatography – triple quadrupole tandem mass spectrometry (HPLC-MS/MS) to provide a wide scope of analysis for targeted analytes. During method development, several different commercial sorbents for d-SPE were investigated and compared with respect to analyte recoveries. The method was validated at 10, 50, and 100 ng g⁻¹ spiking levels (10-fold lower for PCBs), and the results for nearly all analytes were between 70 and 115% recoveries with ≤17% relative standard deviations. The method was shown to be simple, fast, and effective for multi-application analysis of chemical residues in the representative food and environmental marker matrix.

  3. Development of a selective and pH-independent method for the analysis of ultra trace amounts of nitrite in environmental water samples after dispersive magnetic solid phase extraction by spectrofluorimetry.

    Science.gov (United States)

    Daneshvar Tarigh, Ghazale; Shemirani, Farzaneh

    2014-10-01

    This paper describes an innovative and rapidly dispersive magnetic solid phase extraction spectrofluorimetry (DMSPE-FL) method for the analysis of trace amounts of nitrite in some environmental water samples. The method includes derivatization of aqueous nitrite with 2, 3-diaminonaphthalene (DAN), analysis of highly fluorescent 2, 3-naphthotriazole (NAT) derivative using spectrofluorimetry after DSPME. The novelty of our method is based on forming NAT that was independent with the pH-responsive and was adsorbed on MMWCNT by hydrophobic attractions in both acidic and basic media. The extraction efficiency of the sorbent was investigated by extraction of nitrite. The optimum extraction conditions for NO2(-) were obtained as of extraction time, 1.5 min; 10mg sorbent from 160 mL of the sample solution, and elution with 1 mL of acetone/KOH. Under the optimal conditions, the calibration curves were obtained in the range of 0.1-80 µg L(-1) (R(2)=0.999) and LOD (S/N=3) was obtained in 34 ng L(-1). Relative standard deviations (RSD) were 0.6 % (five replicates at 5 μg L(-1)). In addition, the feasibility of the method was demonstrated with extraction and determination of nitrite from some real samples containing tap, mineral, sea, rain, snow and ground waters, with the recovery in standard addition to real matrix of 94-102 % and RSDs of 1.8-10.6%. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Solid-phase extraction and HPLC assay of nicotine and cotinine in plasma and brain.

    Science.gov (United States)

    Dawson, Ralph; Messina, S M; Stokes, C; Salyani, S; Alcalay, N; De Fiebre, N C; De Fiebre, C M

    2002-01-01

    The aim of this study was to develop a simple and reliable assay for nicotine (NIC) and its major metabolite, cotinine (COT), in plasma and brain. A method was developed that uses an extraction method compatible with reverse-phase high-performance liquid chromatography (HPLC) separation and ultraviolet (UV) detection. Sequential solid-phase extraction on silica columns followed by extraction using octadecyl (C18) columns resulted in mean percent recovery (n = 5) of 51 +/- 5, 64 +/- 10, and 52 +/- 10% for NIC, COT, and phenylimidazole (PI), respectively, in spiked 1-mL serum samples. Recovery (mean +/- SEM) of the internal standard (PI) from spiked samples of nicotine-injected rats averaged 64.1 +/- 1.5% (n = 138) from plasma, and 20.7+/-0.8% (n = 128) from brain. The limits of detection of NIC in plasma samples were approximately 8 ng per mL, and of COT, 13.6 ng per mL. Further optimization of our extraction method, using slower flow rates and solid-phase extraction on silica columns, followed by C18 column extraction, yielded somewhat better recoveries (38 +/-3%) for 1-mL brain homogenates. Interassay precision (coefficient of variation) was determined on the basis of daily calibrations for 2 months and was found to be 7%, 9%, and 9% for NIC, COT, and PI, respectively, whereas intra-assay variability was 3.9% for both NIC and COT. Limited studies were performed on analytical columns for comparison of retention, resolution, asymmetry, and column capacity. We concluded that a simple two-step solid-phase extraction method, coupled with HPLC separation and UV detection, can be used routinely to measure NIC and COT in biological fluids and tissues.

  5. Dispersive solid-phase extraction followed by vortex-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet for the determination of benzoylurea insecticides in soil and sewage sludge.

    Science.gov (United States)

    Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua

    2016-04-01

    A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    Science.gov (United States)

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Cooper, William T. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Hodgkins, Suzanne; Chanton, Jeffrey P. [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Podgorski, David C. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2012-08-15

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation. (orig.)

  9. Quantification of VX Nerve Agent in Various Food Matrices by Solid-Phase Extraction Ultra-Performance Liquid ChromatographyTime-of-Flight Mass Spectrometry

    Science.gov (United States)

    2016-04-01

    QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE...TITLE AND SUBTITLE Quantification of VX Nerve Agent in Various Food Matrices by Solid - Phase Extraction Ultra-Performance Liquid Chromatography...QUANTIFICATION OF VX NERVE AGENT IN VARIOUS FOOD MATRICES BY SOLID - PHASE EXTRACTION ULTRA-PERFORMANCE LIQUID CHROMATOGRAPHY–TIME-OF-FLIGHT MASS

  10. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique.

    Science.gov (United States)

    Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira

    2009-09-28

    The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.

  11. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhifeng; He Qun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chang, Xijun, E-mail: tuzhf07@lzu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L{sup -1} HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  12. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    Science.gov (United States)

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  13. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    International Nuclear Information System (INIS)

    Tu Zhifeng; He Qun; Chang, Xijun; Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua

    2009-01-01

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L -1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  14. A combination of computational-experimental study on metal-organic frameworks MIL-53(Al) as sorbent for simultaneous determination of estrogens and glucocorticoids in water and urine samples by dispersive micro-solid-phase extraction coupled to UPLC-MS/MS.

    Science.gov (United States)

    Gao, Guihua; Li, Sijia; Li, Shuo; Wang, Yudan; Zhao, Pan; Zhang, Xiangyu; Hou, Xiaohong

    2018-04-01

    In this work, computational and experimental methods were used to study the adsorption of estrogens and glucocorticoids on metal-organic frameworks (MOFs). Computer-aided molecular simulation was applied to predict the adsorption of eight analytes on four MOFs (MIL-101(Cr), MIL-100(Fe), MIL-53(Al), and UiO-66(Zr)) by examining molecular interactions and calculating free binding energies. Subsequently, the four water-stable MOFs were synthesized and evaluated as adsorbents for the target hormones in aqueous solution. As the MOF exhibiting the highest adsorption capacity in both computations and experiments, MIL-53(Al) was chosen as a sorbent to develop a dispersive micro-solid-phase extraction procedure coupled to ultra-performance liquid chromatography tandem mass spectrometry for simultaneous determination of the target analytes in water and human urine samples. Experimental parameters affecting the extraction recoveries, including pH, ionic strength, MIL-53(Al) amount, extraction time, desorption time, and desorption solvent, were optimized. The optimized method provided a linear range of 0.005025-368.6μg/L with good correlation coefficients (0.9982 ≤ r 2 ≤ 0.9992), and limits of detection (S/N = 3) and quantification (S/N = 10) of 0.0015-1.0μg/L and 0.005-1.8μg/L, respectively. The analyte recoveries were in the range of 80.6-98.4% in water samples and 88.4-93.2% in urine samples. Furthermore, MIL-53(Al) showed good stability over 10 extraction cycles (RSD extraction efficiencies for MOFs and targets, providing new directions for the development and utilization of MOFs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Science.gov (United States)

    Tóth, Blanka; Horvai, George

    2012-01-01

    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  16. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples.

    Science.gov (United States)

    Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S

    2016-10-01

    A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.

  17. Development and optimization of a novel sample preparation method cored on functionalized nanofibers mat-solid-phase extraction for the simultaneous efficient extraction of illegal anionic and cationic dyes in foods.

    Science.gov (United States)

    Qi, Feifei; Jian, Ningge; Qian, Liangliang; Cao, Weixin; Xu, Qian; Li, Jian

    2017-09-01

    A simple and efficient three-step sample preparation method was developed and optimized for the simultaneous analysis of illegal anionic and cationic dyes (acid orange 7, metanil yellow, auramine-O, and chrysoidine) in food samples. A novel solid-phase extraction (SPE) procedure based on nanofibers mat (NFsM) was proposed after solvent extraction and freeze-salting out purification. The preferred SPE sorbent was selected from five functionalized NFsMs by orthogonal experimental design, and the optimization of SPE parameters was achieved through response surface methodology (RSM) based on the Box-Behnken design (BBD). Under the optimal conditions, the target analytes could be completely adsorbed by polypyrrole-functionalized polyacrylonitrile NFsM (PPy/PAN NFsM), and the eluent was directly analyzed by high-performance liquid chromatography-diode array detection (HPLC-DAD). The limits of detection (LODs) were between 0.002 and 0.01 mg kg -1 , and satisfactory linearity with correlation coefficients (R > 0.99) for each dye in all samples was achieved. Compared with the Chinese standard method and the published methods, the proposed method was simplified greatly with much lower requirement of sorbent (5.0 mg) and organic solvent (2.8 mL) and higher sample preparation speed (10 min/sample), while higher recovery (83.6-116.5%) and precision (RSDs < 7.1%) were obtained. With this developed method, we have successfully detected illegal ionic dyes in three common representative foods: yellow croaker, soybean products, and chili seasonings. Graphical abstract Schematic representation of the process of the three-step sample preparation.

  18. Graphene-coated polystyrene-divinylbenzene dispersive solid-phase extraction coupled with supercritical fluid chromatography for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples.

    Science.gov (United States)

    Lou, Chaoyan; Wu, Can; Zhang, Kai; Guo, Dandan; Jiang, Lei; Lu, Yang; Zhu, Yan

    2018-05-18

    Allergenic disperse dyes are a group of environmental contaminants, which are toxic and mutagenic to human beings. In this work, a method of dispersive solid-phase extraction (d-SPE) using graphene-coated polystyrene-divinylbenzene (G@PS-DVB) microspheres coupled with supercritical fluid chromatography (SFC) was proposed for the rapid determination of 10 allergenic disperse dyes in industrial wastewater samples. G@PS-DVB microspheres were synthesized by coating graphene (G) sheets onto polystyrene-divinylbenzene (PS-DVB) polymers. Such novel sorbents were employed in d-SPE for the purification and concentration of allergenic disperse dyes in wastewater samples prior to the determination by SFC with UV detection. To achieve the maximum extraction efficiency for the target dyes, several parameters influencing d-SPE process such as sorbent dosage, extraction time, desorption conditions were investigated. SFC conditions including stationary phase, modifier composition and percentage, column temperature, backpressure and flow rate were optimized to well separate the allergenic disperse dyes. Under the optimum conditions, satisfactory linear relationship (R ≥ 0.9989) was observed with the concentration of dyes ranging from 0.02 to 10.0 μg/mL. The limits of detection (LOD, S/N = 3) for the ten dyes were in the range of 1.1-15.6 ng/mL. Recoveries for the spiked samples were between 89.1% and 99.7% with relative standard deviations (RSD) lower than 10.5% in all cases. The proposed method is time-saving, green, precise and repeatable for the analysis of the target dyes. Furthermore, the application of G@PS-DVB based d-SPE process can be potentially expanded to isolate and concentrate other aromatic compounds in various matrices and supercritical fluid chromatography methodology featuring rapidity, accuracy and green will be an ideal candidate for the analysis of these compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    International Nuclear Information System (INIS)

    Waysbort, Daniel; McGarvey, David J.; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M.; Durst, H. Dupont

    2009-01-01

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green TM , has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO 4 -2 ) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t 1/2 ≤ 4 min), 1:10 for HD (t 1/2 1/2 < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD

  20. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples.

    Science.gov (United States)

    Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Determination of volatile compounds in grape distillates by solid-phase extraction and gas chromatography.

    Science.gov (United States)

    Lukić, Igor; Banović, Mara; Persurić, Dordano; Radeka, Sanja; Sladonja, Barbara

    2006-01-06

    Solid-phase extraction (SPE) procedure on octadecylsilica (C18) was developed for accumulation of volatile compounds from grape distillates. The procedure was optimised for final analysis by capillary gas chromatography. At mass concentrations in model solutions ranging from 0.1 to 50 mg/l solid-phase extraction recoveries of all analytes ranged from 69% for 2-phenylethanol to 102% for capric acid, with RSD values from 2 to 9%. SPE recoveries of internal standards to be added in the sample solution prior to extraction, higher alcohols 2-ethyl-1-hexanol and 1-undecanol, were 97 and 93%, respectively, with RSD values of 3%. Detection limits of analyzed compounds in model solutions ranged from 0.011 mg/l for isoamyl acetate to 0.037 mg/l for caproic acid. Method efficiency was tested in relation to acetic acid content, volume fraction of ethanol and possible matrix effects. A significant influence of matrix on SPE efficiency for geraniol, cis-2-hexen-1-ol and cis-3-hexen-1-ol was detected. For the same reason, 2-phenylethanol could not be determined by developed SPE method in samples of grape distillates. The developed solid-phase extraction method was successfully applied to determine the differences in volatile compound content in different grape distillates produced by the distillation of crushed, pressed and fermented grapes.

  2. An in-line clean system for the solid-phase extraction of emerging contaminants in natural waters

    OpenAIRE

    Sodré, Fernando F.; Locatelli, Marco Antonio F.; Jardim, Wilson F.

    2010-01-01

    A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus i...

  3. Superparamagnetic graphene oxide-based dispersive-solid phase extraction for preconcentration and determination of tamsulosin hydrochloride in human plasma by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    Pashaei, Yaser; Ghorbani-Bidkorbeh, Fatemeh; Shekarchi, Maryam

    2017-05-26

    In the present study, superparamagnetic graphene oxide-Fe 3 O 4 nanocomposites were successfully prepared by a modified impregnation method (MGO mi ) and their application as a sorbent in the magnetic-dispersive solid phase extraction (M-dSPE) mode to the preconcentration and determination of tamsulosin hydrochloride (TMS) in human plasma was investigated by coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV). The structure, morphology and magnetic properties of the prepared nanocomposites were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometry (VSM). Some factors affecting the extraction efficiency, including the pH value, amount of sorbent, extraction time, elution solvent and its volume, and desorption time were studied and optimized. Magnetic nanocomposites plasma extraction of TMS following HPLC analyses showed a linear calibration curve in the range of 0.5-50.0ngmL -1 with an acceptable correlation coefficient (R 2 =0.9988). The method was sensitive, with a low limit of detection (0.17ngmL -1 ) and quantification (0.48ngmL -1 ). Inter- and intra-day precision expressed as relative standard deviation (n=3) and the preconcentration factor, were found to be 5.6-7.2%, 2.9-4.2% and 10, respectively. Good recoveries (98.1-101.4%) with low relative standard deviations (4.2-5.0%) indicated that the matrices under consideration do not significantly affect the extraction process. Due to its high precision and accuracy, the developed method may be a HPLC-UV alternative with M-dSPE for bioequivalence analysis of TMS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.

    Science.gov (United States)

    Bakas, Idriss; Oujji, Najwa Ben; Moczko, Ewa; Istamboulie, Georges; Piletsky, Sergey; Piletska, Elena; Ait-Ichou, Ihya; Ait-Addi, Elhabib; Noguer, Thierry; Rouillon, Régis

    2012-07-13

    A specific adsorbent for extraction of methidathion from olive oil was developed. The design of the molecularly imprinted polymer (MIP) was based on the results of the computational screening of the library of polymerisable functional monomers. MIP was prepared by thermal polymerisation using N,N'-methylene bisacrylamide (MBAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross-linker. The polymers based on the itaconic acid (IA), methacrylic acid (MAA) and 2-(trifluoromethyl)acryl acid (TFMAA) functional monomers and one control polymer which was made without functional monomers with cross-linker EGDMA were also synthesised and tested. The performance of each polymer was compared using corresponding imprinting factor. As it was predicted by molecular modelling the best results were obtained for the MIP prepared with MBAA. The obtained MIP was optimised in solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC-UV) and tested for the rapid screening of methidathion in olive oil. The proposed method allowed the efficient extraction of methidathion for concentrations ranging from 0.1 to 9 mg L(-1) (r(2)=0.996). The limits of detection (LOD) and quantification (LOQ) in olive oil were 0.02 mg L(-1) and 0.1 mg L(-1), respectively. MIPs extraction was much more effective than traditional C18 reverse-phase solid phase extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Ion-exchange solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the determination of veterinary drugs in organic fertilizers.

    Science.gov (United States)

    Zhao, Zhiyong; Zhang, Yanmei; Xuan, Yanfang; Song, Wei; Si, Wenshuai; Zhao, Zhihui; Rao, Qinxiong

    2016-06-01

    The analysis of veterinary drugs in organic fertilizers is crucial for an assessment of potential risks to soil microbial communities and human health. We develop a robust and sensitive method to quantitatively determine 19 veterinary drugs (amantadine, sulfonamides and fluoroquinolones) in organic fertilizers. The method involved a simple solid-liquid extraction step using the combination of acetonitrile and McIlvaine buffer as extraction solvent, followed by cleanup with a solid-phase extraction cartridge containing polymeric mixed-mode anion-exchange sorbents. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to separate and detect target analytes. We particularly focused on the optimization of sample clean-up step: different diluents and dilution factors were tested. The developed method was validated in terms of linearity, recovery, precision, sensitivity and specificity. The recoveries of all the drugs ranged from 70.9% to 112.7% at three concentration levels, with the intra-day and inter-day relative standard deviation lower than 15.7%. The limits of quantification were between 1.0 and 10.0μg/kg for all the drugs. Matrix effect was minimized by matrix-matched calibration curves. The analytical method was successfully applied for the survey of veterinary drugs contamination in 20 compost samples. The results indicated that fluoroquinolones had higher incidence rate and mean concentration levels ranging from 31.9 to 308.7μg/kg compared with other drugs. We expect the method will provide the basis for risk assessment of veterinary drugs in organic fertilizers. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Direct modification of hydrogen/deuterium-terminated diamond particles with polymers to form reversed and strong cation exchange solid phase extraction sorbents.

    Science.gov (United States)

    Yang, Li; Jensen, David S; Vail, Michael A; Dadson, Andrew; Linford, Matthew R

    2010-12-03

    We describe direct polymer attachment to hydrogen and deuterium-terminated diamond (HTD and DTD) surfaces using a radical initiator (di-tert-amyl peroxide, DTAP), a reactive monomer (styrene) and a crosslinking agent (divinylbenzene, DVB) to create polystyrene encapsulated diamond. Chemisorbed polystyrene is sulfonated with sulfuric acid in acetic acid. Surface changes were followed by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and diffuse reflectance Fourier transform infrared spectroscopy (DRIFT). Finally, both polystyrene-modified DTD and sulfonated styrene-modified DTD were used in solid phase extraction (SPE). Percent recovery and column capacity were investigated for both phenyl (polystyrene) and sulfonic acid treated polystyrene SPE columns. These diamond-based SPE supports are stable under basic conditions, which is not the case for silica-based SPE supports. Copyright © 2010. Published by Elsevier B.V.

  7. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples.

    Science.gov (United States)

    Yan, Zhiming; Wu, Mei; Hu, Biqing; Yao, Minna; Zhang, Lan; Lu, Qiaomei; Pang, Jie

    2018-03-23

    In this work, metal-organic framework particles incorporated fibers (UiO-66/PAN nanofibers) were used as adsorbent in pipette tip solid phase extraction (PT-SPE) for the first time. The UiO-66/PAN nanofibers were fabricated by a facile electrospinning method and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption experiments. The UiO-66/PAN nanofibers were applied to assemble a novel PT-SPE cartridge for determination of four phytohormones followed by high performance liquid chromatography (HPLC). Several experimental parameters such as kinds of UiO-66/PAN nanofibers, the amount of UiO-66/PAN nanofibers, the effect of solution pH, ionic strength and desorption conditions were intensively investigated. Under the optimal conditions, the linear ranges of the phytohormones were in the range of 0.06-60 ng/mL with correlation coefficients above 0.992. The limits of detection were between 0.01 ng/mL to 0.02 ng/mL. The interday and intraday precision (RSD) for three replicate extractions of the four phytohormones (15 ng/mL for each) was in the range of 1.5-5.6%. The established method was successfully applied for the determination of phytohormones in watermelon and mung bean sprouts samples. The results showed that the electrostatic interaction between the positively charged UiO-66 and anionic forms of phytohormones played an important role in the extraction of the phytohormones. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Two-dimensional coordination polymer matrix for solid-phase extraction of pesticide residues from plant Cordia salicifolia.

    Science.gov (United States)

    de Carvalho, Pedro Henrique Viana; Barreto, Alysson Santos; Rodrigues, Marcelo O; Prata, Vanessa de Menezes; Alves, Péricles Barreto; de Mesquita, Maria Eliane; Alves, Severino; Navickiene, Sandro

    2009-06-01

    The 2D coordination polymer (infinity[Gd(DPA)(HDPA)]) was tested for extraction of acephate, chlorpropham, pirimicarb, bifenthrin, tetradifon, and phosalone from the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products, using GC/MS, SIM. Considering that there are no Brazilian regulations concerning maximum permissible pesticide residue concentrations in medicinal herbs, recovery experiments were carried out (seven replicates), at two arbitrary fortification levels (0.5 and 1.0 mg/kg), resulting in recoveries in range of 20 to 107.7% and SDRSDs were between 5.6 and 29.1% for infinity[Gd(DPA)(HDPA)] sorbent. Detection and quantification limits for herb ranged from 0.10 to 0.15 mg/kg and from 0.15 to 0.25 mg/kg, respectively, for the different pesticides studied. The developed method is linear over the range assayed, 0.5-10.0 microg/mL, with correlation coefficients ranging from 0.9975 to 0.9986 for all pesticides. Comparison between infinity[Gd(DPA)(HDPA)] sorbent and conventional sorbent (neutral alumina) showed similar performance of infinity[Gd(DPA)(HDPA)] polymeric sorbent for three (bifenthrin, tetradifon, and phosalone) out of six pesticides tested.

  9. Separation of lanthanum (3) and neodymium (3) by tributyl phosphate extraction in the presence of solid phase

    International Nuclear Information System (INIS)

    Korotkevich, I.B.; Kolesnikov, A.A.; Bomshtejn, V.E.; Shikhaleeva, N.N.

    1987-01-01

    Lanthanum (3) and neodymium (3) extraction from nitric acid solutions by tributyl phosphate in the presence of solid phase of the element nitrates is investigated. An increase in distribution of neodymium nitrate in the presence of solid phase with the decrease in its concentration in the initial solution and with the increase in lanthanum nitrate concentration is detected. The highest effect of extractive-crystallizational separation is observed in the range of neodymium nitrate microconcentrations. A method of neodymium quantitative extraction from lanthanum nitrate solutions with neodymium - lanthanum separation coefficient exceeding 25 is suggested

  10. Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish.

    Science.gov (United States)

    Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien

    2014-07-01

    A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Facile synthesis of multifunctional attapulgite/Fe{sub 3}O{sub 4}/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua, E-mail: rhlu@cau.edu.cn

    2016-08-31

    In this study, the superparamagnetic attapulgite/Fe{sub 3}O{sub 4}/polyaniline (ATP/Fe{sub 3}O{sub 4}/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe{sub 3}O{sub 4} formed by the redox reaction between aniline and Fe (III). The ATP/Fe{sub 3}O{sub 4}/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r{sup 2}) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L{sup −1}, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe{sub 3}O{sub 4}/PANI nanocomposite was first introduced in MDSPE. • ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites exhibited fast adsorption and desorption

  12. A combination of solid-phase extraction and dispersive solid-phase extraction effectively reduces the matrix interference in liquid chromatography-ultraviolet detection during pyraclostrobin analysis in perilla leaves.

    Science.gov (United States)

    Farha, Waziha; Rahman, Md Musfiqur; Abd El-Aty, A M; Jung, Da-I; Kabir, Md Humayun; Choi, Jeong-Heui; Kim, Sung-Woo; Im, So Jeong; Lee, Young-Jun; Shin, Ho-Chul; Kwon, Chan-Hyeok; Son, Young-Wook; Lee, Kang-Bong; Shim, Jae-Han

    2015-12-01

    Perilla leaves contain many interfering substances; thus, it is difficult to protect the analytes during identification and integration. Furthermore, increasing the amount of sample to lower the detection limit worsens the situation. To overcome this problem, we established a new method using a combination of solid-phase extraction and dispersive solid-phase extraction to analyze pyraclostrobin in perilla leaves by liquid chromatography with ultraviolet absorbance detection. The target compound was quantitated by external calibration with a good determination coefficient (R(2) = 0.997). The method was validated (in triplicate) with three fortification levels, and 79.06- 89.10% of the target compound was recovered with a relative standard deviation <4. The limits of detection and quantification were 0.0033 and 0.01 mg/kg, respectively. The method was successfully applied to field samples collected from two different areas at Gwangju and Muan. The decline in the resiudue concentrations was best ascribed to a first-order kinetic model with half-lives of 5.7 and 4.6 days. The variation between the patterns was attributed to humidity. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process Through Heat Integration

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-03-18

    The focus of this project was the ADAsorb™ CO2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additional electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO2 working capacity that well exceeds 15% by weight. Modeling also revealed

  14. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guilong [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China); He, Qiang, E-mail: heqiang0980@163.com [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Lu, Ying [Department of Mathematics and Physics, Armed Police College, Chengdu, 610213 (China); Huang, Jing [Research Center for Advanced Computation, College of Science, Xihua University, Chengdu, 610039 (China); Lin, Jin-Ming, E-mail: jmlin@mail.tsinghua.edu.cn [Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China)

    2017-02-22

    In this paper, a rapid and simple method using magnetic multi-walled carbon nanotubes (MWCNTS), as a solid-phase extraction (SPE) sorbent, was successfully developed for extraction and preconcentration trace amounts of Cr(III) in water samples. The synthesized magnetic-MWCNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A rhodamine derivative (R1) was synthesized and characterized as a highly selective and sensitive fluorescent derivatizing agent for Cr(III). After SPE procedure, Cr(III) analysis was performed by flow injection microfluidic chip with on-line fluorescent derivatization and laser-induced fluorescence (LIF) spectroscopy detection. The parameters, which affected the efficiency of the developed method were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0–10.0 nM, with a detection limit of 0.094 nM and an enrichment factor of 38. Furthermore, real water samples were analyzed and good recoveries were obtained from 91.0 to 101.6%. - Graphical abstract: Flow injection microfluidic device with on-line fluorescent derivatization and detection coupled to LIF. - Highlights: • A highly selective and sensitive derivatizing reagent for Cr(III) was synthesized and characterized. • The magnetic-MWCNTs nanocomposite as a SPE sorbent was successfully synthesized and characterized. • A new portable detection system was developed for microfluidic chip FIA platform.

  15. A simplified radiometabolite analysis procedure for PET radioligands using a solid phase extraction with micellar medium

    International Nuclear Information System (INIS)

    Nakao, Ryuji; Halldin, Christer

    2013-01-01

    A solid phase extraction method has been developed for simple and high-speed direct determination of PET radioligands in plasma. Methods: This methodology makes use of a micellar medium and a solid-phase extraction cartridge for displacement of plasma protein bound radioligand and separation of PET radioligands from their radiometabolites without significant preparation. The plasma samples taken from monkey or human during PET measurements were mixed with a micellar eluent containing an anionic surfactant sodium dodecyl sulphate and loaded onto SPE cartridges. The amount of radioactivity corresponding to parent radioligand (retained on the cartridge) and its radioactive metabolites (eluted with micellar eluent) was measured. Results: Under the optimized conditions, excellent separation of target PET radioligands from their radiometabolites was achieved with a single elution and short run-time of 1 min. This method was successfully applied to study the metabolism for 11 C-labelled radioligands in human or monkey plasma. The amount of parent PET radioligands estimated by micellar solid phase extraction strongly corresponded with that determined by radio-LC. The improved throughput permitted the analysis of a large number of plasma samples (up to 13 samples per one PET study) for accurate estimation of metabolite-corrected input function during quantitative PET imaging studies. Conclusion: Solid phase extraction together with micellar medium is fast, sensitive and easy to use, and therefore it is an attractive alternative method to determine relative composition of PET radioligands in plasma

  16. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  17. Dispersive solid phase microextraction with magnetic graphene oxide as the sorbent for separation and preconcentration of ultra-trace amounts of gold ions.

    Science.gov (United States)

    Kazemi, Elahe; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad

    2015-08-15

    A selective, simple and rapid dispersive solid phase microextraction was developed using magnetic graphene oxide (MGO) as an efficient sorbent for the separation and preconcentration of gold ions. The MGO was synthesized by means of the simple one step chemical coprecipitation method, characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Gold ions retained by the sorbent were eluted using 0.5mol L(-)(1) thiourea in 0.1mol L(-1) HCl solution and determined by the flow injection flame atomic absorption spectrometry (FI-FAAS). The factors affecting the separation and preconcentration of gold were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0.02-100.0µg L(-)(1) with a detection limit of 4ng L(-1) and an enrichment factor of 500. The relative standard deviations of 3.2% and 4.7% (n=6) were obtained at 20µg L(-1) level of gold ions for the intra and the inter day analysis, respectively. The method was successfully applied to the determination of gold ions in water and waste water samples as well as a certified reference material (CCU-1b, copper flotation concentrate). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp.

    Science.gov (United States)

    Han, Lijun; Sapozhnikova, Yelena; Lehotay, Steven J

    2014-05-27

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was applied to simultaneous analysis of 42 diverse pesticides and 17 environmental contaminants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), and flame retardants, in shrimp as the sample matrix. Final extracts were analyzed by both low-pressure gas chromatography - triple quadrupole tandem mass spectrometry (LPGC-MS/MS), and high-performance liquid chromatography - triple quadrupole tandem mass spectrometry (HPLC-MS/MS) to provide a wide scope of analysis for targeted analytes. During method development, several different commercial sorbents for d-SPE were investigated and compared with respect to analyte recoveries. The method was validated at 10, 50, and 100 ng g(-1) spiking levels (10-fold lower for PCBs), and the results for nearly all analytes were between 70 and 115% recoveries with ≤17% relative standard deviations. The method was shown to be simple, fast, and effective for multi-application analysis of chemical residues in the representative food and environmental marker matrix. Copyright © 2014. Published by Elsevier B.V.

  19. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Hamed, Mostafa Mohamed; Attallah, Mohamed Fathy; Metwally, Sayed Sayed

    2014-01-01

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co 2+ , Sr 2+ and Cs + on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co 2+ , Sr 2+ and Cs + in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co 2+ , Sr 2+ and Cs + was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60 Co and 134 Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  20. Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples

    Energy Technology Data Exchange (ETDEWEB)

    Davarani, Saied Saeed Hosseiny, E-mail: ss-hosseiny@cc.sbu.ac.ir [Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19839-4716, Tehran (Iran, Islamic Republic of); Rezayati zad, Zeinab [Faculty of Chemistry, Shahid Beheshti University, G. C., P.O. Box 19839-4716, Tehran (Iran, Islamic Republic of); Taheri, Ali Reza; Rahmatian, Nasrin [Islamic Azad University, Ilam Branch, Ilam (Iran, Islamic Republic of)

    2017-02-01

    In this research, for first time selective separation and determination of Azathioprine is demonstrated using molecularly imprinted polymer as the solid-phase extraction adsorbent, measured by spectrophotometry at λ{sub max} 286 nm. The selective molecularly imprinted polymer was produced using Azathioprine and methacrylic acid as a template molecule and monomer, respectively. A molecularly imprinted solid-phase extraction procedure was performed in column for the analyte from pharmaceutical and serum samples. The synthesized polymers were characterized by infrared spectroscopy (IR), field emission scanning electron microscopy (FESEM). In order to investigate the effect of independent variables on the extraction efficiency, the response surface methodology (RSM) based on Box–Behnken design (BBD) was employed. The analytical parameters such as precision, accuracy and linear working range were also determined in optimal experimental conditions and the proposed method was applied to analysis of Azathioprine. The linear dynamic range and limits of detection were 2.5–0.01 and 0.008 mg L{sup ‐1} respectively. The recoveries for analyte were higher than 95% and relative standard deviation values were found to be in the range of 0.83–4.15%. This method was successfully applied for the determination of Azathioprine in biological and pharmaceutical samples. - Graphical abstract: A new-nano sized imprinted polymer was synthesized and applied as sorbent in SPE in order to selective recognition, preconcentration, and determination of Azathioprine with the response surface methodology based on Box–Behnken design and was successfully investigated for the clean-up of human blood serum and pharmaceutical samples. - Highlights: • The nanosized-imprinted polymer has been synthesized by precipitation polymerization technique. • A molecularly imprinted solid-phase extraction procedure was performed for determination of Azathioprine. • The Azathioprine

  1. Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples

    International Nuclear Information System (INIS)

    Davarani, Saied Saeed Hosseiny; Rezayati zad, Zeinab; Taheri, Ali Reza; Rahmatian, Nasrin

    2017-01-01

    In this research, for first time selective separation and determination of Azathioprine is demonstrated using molecularly imprinted polymer as the solid-phase extraction adsorbent, measured by spectrophotometry at λ max 286 nm. The selective molecularly imprinted polymer was produced using Azathioprine and methacrylic acid as a template molecule and monomer, respectively. A molecularly imprinted solid-phase extraction procedure was performed in column for the analyte from pharmaceutical and serum samples. The synthesized polymers were characterized by infrared spectroscopy (IR), field emission scanning electron microscopy (FESEM). In order to investigate the effect of independent variables on the extraction efficiency, the response surface methodology (RSM) based on Box–Behnken design (BBD) was employed. The analytical parameters such as precision, accuracy and linear working range were also determined in optimal experimental conditions and the proposed method was applied to analysis of Azathioprine. The linear dynamic range and limits of detection were 2.5–0.01 and 0.008 mg L ‐1 respectively. The recoveries for analyte were higher than 95% and relative standard deviation values were found to be in the range of 0.83–4.15%. This method was successfully applied for the determination of Azathioprine in biological and pharmaceutical samples. - Graphical abstract: A new-nano sized imprinted polymer was synthesized and applied as sorbent in SPE in order to selective recognition, preconcentration, and determination of Azathioprine with the response surface methodology based on Box–Behnken design and was successfully investigated for the clean-up of human blood serum and pharmaceutical samples. - Highlights: • The nanosized-imprinted polymer has been synthesized by precipitation polymerization technique. • A molecularly imprinted solid-phase extraction procedure was performed for determination of Azathioprine. • The Azathioprine-molecular imprinting

  2. Visual monitoring of solid-phase extraction using chromogenic fluorous synthesis supports.

    Science.gov (United States)

    Blackburn, Christopher

    2012-03-12

    Reductive aminations and further transformations of an azo dye and fluorous tagged aldehyde are described. The intensely colored 2,4-dialkoxybenzyl protected amines undergo Fmoc-based peptide coupling, Suzuki reactions, and sulfonamide formation with product isolation facilitated by visual monitoring of fluorous solid phase extraction. Target compounds are released from the supports in high yields and purities by treatment with trifluoroacetic acid (TFA).

  3. Core-shell indium (III) sulfide@metal-organic framework nanocomposite as an adsorbent for the dispersive solid-phase extraction of nitro-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin

    2018-05-25

    A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.

  4. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy.

    Science.gov (United States)

    Mijangos, L; Bizkarguenaga, E; Prieto, A; Fernández, L A; Zuloaga, O

    2015-04-10

    The present study is focused on the development of an analytical method based on focused ultrasonic solid-liquid extraction (FUSLE) followed by dispersive solid-phase extraction (dSPE) clean-up and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) optimised for the simultaneous analysis of certain endocrine disrupting compounds (EDCs), including alkylphenols (APs), bisphenol A (BPA), triclosan (TCS) and several hormones and sterols in vegetables (lettuce and carrot) and amended soil samples. Different variables affecting the chromatographic separation, the electrospray ionisation and mass spectrometric detection were optimised in order to improve the sensitivity of the separation and detection steps. Under the optimised extraction conditions (sonication of 5min at 33% of power with pulse times on of 0.8s and pulse times off of 0.2s in 10mL of n-hexane:acetone (30:70, v:v) mixture using an ice bath), different dSPE clean-up sorbents, such as Florisil, Envi-Carb, primary-secondary amine bonded silica (PSA) and C18, or combinations of them were evaluated for FUSLE extracts before LC-MS/MS. Apparent recoveries and precision in terms of relative standard deviation (RSDs %) of the method were determined at two different fortification levels (according to the matrix and the analyte) and values in the 70-130% and 2-27% ranges, respectively, were obtained for most of the target analytes and matrices. Matrix-matched calibration approach and the use of labelled standards as surrogates were needed for the properly quantification of most analytes and matrices. Method detection limits (MDLs), estimated with fortified samples, in the ranges of 0.1-100ng/g for carrot, 0.2-152ng/g for lettuce and 0.9-31ng/g for amended soil were obtained. The developed methodology was applied to the analysis of 11 EDCs in both real vegetable bought in a local market and in compost (from a local wastewater treatment plant, WWTP) amended soil samples. Copyright © 2015

  6. Solid amine sorbents for CO2 capture by chemical adsorption: A review

    Directory of Open Access Journals (Sweden)

    Elif Erdal Ünveren

    2017-03-01

    Full Text Available Amines are well-known for their reversible reactions with CO2, which make them ideal for CO2 capture from several gas streams, including flue gas. In this respect, selective CO2 absorption by aqueous alkanolamines is the most mature technology but the process is energy intensive and has also corrosion problems. Both disadvantages can be diminished to a certain extent by chemical adsorption of CO2 selectively. The most important element of the chemical adsorption of CO2 involves the design and development of a suitable adsorbent which consist of a porous support onto which an amine is attached or immobilized. Such an adsorbent is often called as solid amine sorbent. This review covers solid amine-based studies which are developed and published in recent years. First, the review examines several different types of porous support materials, namely, three mesoporous silica (MCM-41, SBA-15 and KIT-6 and two polymeric supports (PMMA and PS for CO2 adsorption. Emphasis is given to the synthesis, modifications and characterizations -such as BET and PXRD data-of them. Amination of these supports to obtain a solid amine sorbent through impregnation or grafting is reviewed comparatively. Focus is given to the adsorption mechanisms, material characteristics, and synthesis methods which are discussed in detail. Significant amount of original data are also presented which makes this review unique. Finally, relevant CO2 adsorption (or equilibrium capacity data, and cyclic adsorption/desorption performance and stability of important classes of solid amine sorbents are critically reviewed. These include severa PEI or TEPA impregnated adsorbents and APTES-grafted systems.

  7. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    Science.gov (United States)

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  9. Separation of lanthanum (3) and samarium (3) extraction with tributylphosphate in the solvent presence of solid phase

    International Nuclear Information System (INIS)

    Korotkevich, I.B.; Kolesnikov, A.A.; Bomshtejn, V.E.

    1990-01-01

    Lanthanum (3) and samarium (3) extraction from nitric acid solutions by tributylphosphate in the presence of solid phase has been investigated. An increase in samarium α-nitrate distribution factor in the presence of solid phase with a decrease in its concentration in the initial solution and with lanthanum nitrate concentration increase is detected. The greatest effect of separation is observed in samarium nitrate microregion. The method of quantitative extraction of samarium from lanthanum nitrate solutions with samarium-lanthanum separation factor exceeding 50 has been suggested

  10. Multiple solid-phase microextraction

    NARCIS (Netherlands)

    Koster, EHM; de Jong, GJ

    2000-01-01

    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  11. Effervescence-assisted dispersive solid-phase extraction using ionic-liquid-modified magnetic β-cyclodextrin/attapulgite coupled with high-performance liquid chromatography for fungicide detection in honey and juice.

    Science.gov (United States)

    Wu, Xiaoling; Yang, Miyi; Zeng, Haozhe; Xi, Xuefei; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Zhou, Wenfeng

    2016-11-01

    In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective solid-phase extraction of Hg(II) using silica gel surface - imprinting technique

    International Nuclear Information System (INIS)

    Zheng, H.; Geng, T.; Hu, L.

    2008-01-01

    A new ion-imprinted amino-functionalized silica gel sorbent was synthesized by surface-imprinting technique for preconcentration and separation of Hg(II) prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Compared to the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) have higher adsorption capacity and selectivity for Hg(II). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Hg(II) was 29.89 mg g -1 and 11.21 mg g -1 , respectively. The highest selectivity coefficient for Hg(II) in the presence of Zn(II) exceeded 230. The detection limit (3σ) of the method was 0.25 μg L -1 . The relative standard deviation of the method was 2.5% for eight replicate determinations of 10 μg of Hg 2+ in 200 mL-in-volume water sample. The procedure was validated by performing the analysis of the certified river sediment sample (GBW 08603, China) using the standard addition method. The developed method was also successfully applied to the determination of trace mercury in Chinese traditional medicine and water samples with satisfactory results. (authors)

  13. New practical algorithm for modelling analyte recovery in bioanalytical reversed phase and mixed-mode solid phase extraction

    NARCIS (Netherlands)

    Hendriks, G.; Uges, D. R. A.; Franke, J. P.

    2008-01-01

    Solid phase extraction (SPE) is a widely used method for sample cleanup and sample concentration in bioanalytical sample preparation. A few methods to model the retention behaviour on SPE cartridges have been described previously but they are either not applicable to ionised species or are not

  14. Fabrication of graphene/Fe3O4@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Mehdinia, Ali; Khodaee, Nader; Jabbari, Ali

    2015-04-08

    Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009-0.020 μg L(-1) in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L(-1) with correlation coefficients (R(2)) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83-107%, were also obtained for the real sample analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Graphene Quantum Dots/Eggshell Membrane Composite as a Nano-sorbent for Preconcentration and Determination of Organophosphorus Pesticides by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Vahideh Abdollahi

    2017-10-01

    Full Text Available In this study graphene quantum dots/eggshell membrane nanocomposite (GQDS/ESM is prepared and used as an efficient solid-phase extraction (SPE sorbent for preconcentration of organophosphorus pesticides (OPPs from aqueous solutions. The retained analytes on the sorbent are stripped by acetonitrile and subsequently are determined by high-performance liquid chromatography. Various parameters affecting the extraction efficiency of OPPs on the GQDS/ESM, such as solution pH, amount of nano-sorbent, sample loading flow rate, elution conditions and sample volume are investigated. The results demonstrated that the proposed method has a wide dynamic linear range (0.05–100 ng mL-1, good linearity (R2>0.997 and low detection limits (0.006-0.32 ng mL-1. High enrichment factors are achieved ranging from 110 to 140. In the optimum experimental conditions, the established method is successfully applied for the determination of OPPs in spiked water samples (well, tap, shaft and canal and apple juice. Satisfactory recovery results show that the sample matrices under consideration do not significantly affect the extraction process.

  16. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    Science.gov (United States)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  17. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  18. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples.

    Science.gov (United States)

    Gao, Ru; Hu, Zheng; Chang, Xijun; He, Qun; Zhang, Lijun; Tu, Zhifeng; Shi, Jianping

    2009-12-15

    A new sorbent 1-acylthiosemicarbazide-modified activated carbon (AC-ATSC) was prepared as a solid-phase extractant and applied for removing of trace Cu(II), Hg(II) and Pb(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The separation/preconcentration conditions of analytes were investigated, including effects of pH, the shaking time, the sample flow rate and volume, the elution condition and the interfering ions. At pH 3, the maximum static adsorption capacity of Cu(II), Hg(II) and Pb(II) onto the AC-ATSC were 78.20, 67.80 and 48.56 mg g(-1), respectively. The adsorbed metal ions were quantitatively eluted by 3.0 mL of 2% CS(NH2)2 and 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation. According to the definition of IUPAC, the detection limits (3sigma) of this method for Cu(II), Hg(II) and Pb(II) were 0.20, 0.12 and 0.45 ng mL(-1), respectively. The relative standard deviation under optimum conditions is less than 4.0% (n=8). The prepared sorbent was applied for the preconcentration of trace Cu(II), Hg(II) and Pb(II) in certified and water samples with satisfactory results.

  19. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    Science.gov (United States)

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    Science.gov (United States)

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    Science.gov (United States)

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  2. Determination of ibuprofen enantiomers in breast milk using vortex-assisted matrix solid-phase dispersion and direct chiral liquid chromatography.

    Science.gov (United States)

    León-González, M E; Rosales-Conrado, N

    2017-09-08

    A mixture of β-cyclodextrin (β-CD) and primary and secondary amine (PSA) sorbents was employed for the extraction and quantification of ibuprofen enantiomers from human breast milk, combining a vortex-assisted matrix solid-phase dispersion method (MSPD) and direct chiral liquid chromatography (CLC) with ultraviolet detection (UV). The MSPD sample preparation procedure was optimized focusing on both the type and amount of dispersion/sorption sorbents and the nature of the elution solvent, in order to obtain acceptable recoveries and avoiding enantiomer conversion. These MSPD parameters were optimized with the aid of an experimental design approach. Hence, a factorial design was used for identification of the main variables affecting the extraction process of ibuprofen enantiomers. Under optimum selected conditions, MSPD combined with direct CLC-UV was successfully applied for ibuprofen enantiomeric determination in breast milk at enantiomer levels between 0.15 and 6.0μgg -1 . The proposed analytical method also provided good repeatability, with relative standard deviations of 6.4% and 8.3% for the intra-day and inter-day precision, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta.

    Science.gov (United States)

    Wang, Ying; Gao, Wei; Wu, Jing; Liu, Huijin; Wang, Yingjun; Wang, Yawei; Jiang, Guibin

    2017-12-01

    Chlorinated paraffins (SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion (MSPD) was developed for the analysis of short-chain CPs (SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry (GC-ECNI-LRMS) and gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent, sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test. Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane (7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC-QTOF-HRMS, and the corresponding relative standard deviations were 10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8ng/g (dry weight, dw) and 19.2ng/g (dw) as measured by GC-ECNI-LRMS and GC-QTOF-HRMS, respectively. The concentrations of SCCPs in four human placentas were in the range of

  4. Mycoestrogen determination in cow milk: Magnetic solid-phase extraction followed by liquid chromatography and tandem mass spectrometry analysis.

    Science.gov (United States)

    Capriotti, Anna Laura; Cavaliere, Chiara; Foglia, Patrizia; La Barbera, Giorgia; Samperi, Roberto; Ventura, Salvatore; Laganà, Aldo

    2016-12-01

    Recently, magnetic solid-phase extraction has gained interest because it presents various operational advantages over classical solid-phase extraction. Furthermore, magnetic nanoparticles are easy to prepare, and various materials can be used in their synthesis. In the literature, there are only few studies on the determination of mycoestrogens in milk, although their carryover in milk has occurred. In this work, we wanted to develop the first (to the best of our knowledge) magnetic solid-phase extraction protocol for six mycoestrogens from milk, followed by liquid chromatography and tandem mass spectrometry analysis. Magnetic graphitized carbon black was chosen as the adsorbent, as this carbonaceous material, which is very different from the most diffuse graphene and carbon nanotubes, had already shown selectivity towards estrogenic compounds in milk. The graphitized carbon black was decorated with Fe 3 O 4 , which was confirmed by the characterization analyses. A milk deproteinization step was avoided, using only a suitable dilution in phosphate buffer as sample pretreatment. The overall process efficiency ranged between 52 and 102%, whereas the matrix effect considered as signal suppression was below 33% for all the analytes even at the lowest spiking level. The obtained method limits of quantification were below those of other published methods that employ classical solid-phase extraction protocols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. ZnO nanorod array polydimethylsiloxane composite solid phase micro-extraction fiber coating: fabrication and extraction capability.

    Science.gov (United States)

    Wang, Dan; Wang, Qingtang; Zhang, Zhuomin; Chen, Guonan

    2012-01-21

    ZnO nanorod array coating is a novel kind of solid-phase microextraction (SPME) fiber coating which shows good extraction capability due to the nanostructure. To prepare the composite coating is a good way to improve the extraction capability. In this paper, the ZnO nanorod array polydimethylsiloxane (PDMS) composite SPME fiber coating has been prepared and its extraction capability for volatile organic compounds (VOCs) has been studied by headspace sampling the typical volatile mixed standard solution of benzene, toluene, ethylbenzene and xylene (BTEX). Improved detection limit and good linear ranges have been achieved for this composite SPME fiber coating. Also, it is found that the composite SPME fiber coating shows good extraction selectivity to the VOCs with alkane radicals.

  6. Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry

    NARCIS (Netherlands)

    Crescenzi, C; Bayoudh, S; Cormack, P.A G; Klein, T; Ensing, K

    2001-01-01

    Matrix solid-phase dispersion(MSPD) is a new sample pretreatment for solid samples. This technique greatly simplifies sample pretreatment but, nonetheless, the extracts often still require an extra cleanup step that is both laborious and time-consuming. The potential;of combining MSPD with

  7. Application of solid-liquid extraction separation in analytical chemistry: Pt. 1

    International Nuclear Information System (INIS)

    Xu Zulan; Dai Lixin

    1985-01-01

    Low m.p. waxes as solid solvents for solid-liquid extraction separation are advanced. Uranium in aqueous phase is extracted by homogeneous organic phase which is composed of waxes and various kinds of extractants. Various parameters of this extraction separation method are studied and compared with one of liquid-liquid extraction. The characteristic of wax as solvent, speciality and applicability of solid-liquid extraction separation method are evaluated

  8. Functionalization of mesoporous materials for lanthanide and actinide extraction.

    Science.gov (United States)

    Florek, Justyna; Giret, Simon; Juère, Estelle; Larivière, Dominic; Kleitz, Freddy

    2016-10-14

    Among the energy sources currently available that could address our insatiable appetite for energy and minimize our CO2 emission, solar, wind, and nuclear energy currently occupy an increasing portion of our energy portfolio. The energy associated with these sources can however only be harnessed after mineral resources containing valuable constituents such as actinides (Ac) and rare earth elements (REEs) are extracted, purified and transformed into components necessary for the conversion of energy into electricity. Unfortunately, the environmental impacts resulting from their manufacture including the generation of undesirable and, sometimes, radioactive wastes and the non-renewable nature of the mineral resources, to name a few, have emerged as challenges that should be addressed by the scientific community. In this perspective, the recent development of functionalized solid materials dedicated to selective elemental separation/pre-concentration could provide answers to several of the above-mentioned challenges. This review focuses on recent advances in the field of mesoporous solid-phase (SP) sorbents designed for REEs and Ac liquid-solid extraction. Particular attention will be devoted to silica and carbon sorbents functionalized with commonly known ligands, such as phosphorus or amide-containing functionalities. The extraction performances of these new systems are discussed in terms of sorption capacity and selectivity. In order to support potential industrial applications of the silica and carbon-based sorbents, their main drawbacks and advantages are highlighted and discussed.

  9. Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample

    International Nuclear Information System (INIS)

    He Juan; Lv Ruihe; Zhan Haijun; Wang Huizhi; Cheng Jie; Lu Kui; Wang Fengcheng

    2010-01-01

    A novel molecularly imprinted polymer (MIP) that was applied to a solid-phase micro-extraction (SPME) device, which could be coupled directly to gas chromatograph and mass spectrometer (GC/MS), was prepared using dibutyl phthalate (DBP) as the template molecule. The characteristics and application of this fiber were investigated. Electron microscope images indicated that the MIP-coated solid-phase micro-extraction (MI-SPME) fibers were homogeneous and porous. The extraction yield of DBP with the MI-SPME fibers was higher than that of the non-imprinted polymer (NIP)-coated SPME (NI-SPME) fibers. The MI-SPME fibers had a higher selectivity to other phthalates that had similar structures as DBP. A method was developed for the determination of phthalates using MI-SPME fibers coupled with GC/MS. The extraction conditions were optimized. Detection limits for the phthalate samples were within the range of 2.17-20.84 ng L -1 . The method was applied to five kinds of phthalates dissolved in spiked aqueous samples and resulted in recoveries of up to 94.54-105.34%, respectively. Thus, the MI-SPME fibers are suitable for the extraction of trace phthalates in complicated samples.

  10. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection

    International Nuclear Information System (INIS)

    Tsai, Wen-Hsien; Chuang, Hung-Yi; Chen, Ho-Hsien; Huang, Joh-Jong; Chen, Hwi-Chang; Cheng, Shou-Hsun; Huang, Tzou-Chi

    2009-01-01

    Dispersive liquid-liquid microextraction (DLLME) and dispersive micro-solid-phase extraction (DMSPE) are two simple and low-cost sample preparation methods for liquid samples. In this work, these two methods were applied to solid tissue sample for the determination of seven quinolones by high-performance liquid chromatography with diode-array detection (HPLC-DAD). After the homogenization of the swine muscle with acetonitrile and salt-promoted partitioning, small amounts of the extract were used for the DLLME and DMSPE methods. In the DLLME approach, the target analytes in the extraction solvent were rapidly extracted into a small volume of dichloromethane for drying and the residue was reconstituted for HPLC-DAD analysis. In the DMSPE approach, the target analytes in the extraction solvent were trapped by dispersive silica-based PSA (primary and secondary amine) sorbents and desorbed into a small amount of desorption solution for HPLC-DAD analysis. Under the optimal conditions, relative recoveries were determined for swine muscle spiked 50-200 μg kg -1 and quantification was achieved by matrix-matched calibration. The calibration curves of seven quinolones showed linearity with a correlation coefficient value above 0.998 for both approaches. Relative recoveries ranged from 93.0 to 104.7% and from 95.5 to 111.0% for DLLME and DMSPE, respectively. Limits of detection (LODs) ranged from 5.6 to 23.8 μg kg -1 and from 7.5 to 26.3 μg kg -1 for DLLME and DMSPE, respectively.

  11. On-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry using Fab´antibody fragments for the analysis of serum transthyretin.

    Science.gov (United States)

    Pont, Laura; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2017-08-01

    This paper describes an on-line immunoaffinity solid-phase extraction capillary electrophoresis mass spectrometry (IA-SPE-CE-MS) method using an immunoaffinity sorbent with Fab' antibody fragments (Fab'-IA) for the analysis of serum transthyretin (TTR), a homotetrameric protein (M r ~56,000) involved in different types of amyloidosis. The IA sorbent was prepared by covalent attachment of Fab' fragments obtained from a polyclonal IgG antibody against TTR to succinimidyl silica particles. The Fab'-IA-SPE-CE-MS methodology was first established analyzing TTR standard solutions. Under optimized conditions, repeatability and reproducibility were acceptable, the method was linear between 1 and 25µgmL -1 , limits of detection (LODs) were around 0.5µgmL -1 (50-fold lower than by CE-MS, ~25µgmL -1 ) and different TTR conformations were observed (folded and unfolded). The applicability of the developed method to screen for familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis, was evaluated analyzing serum samples from healthy controls and FAP-I patients. For the analysis of sera, the most abundant proteins were precipitated with 5% (v/v) of phenol before Fab'-IA-SPE-CE-MS. The current method enhanced our previous results for the analysis of TTR using intact antibodies immobilized on magnetic beads. It allowed a slight improvement on LODs (2-fold), the detection of proteoforms found at lower concentrations and the preparation of microcartridges with extended durability. Copyright © 2017. Published by Elsevier B.V.

  12. Determination of Iodate in Food, Environmental, and Biological Samples after Solid-Phase Extraction with Ni-Al-Zr Ternary Layered Double Hydroxide as a Nanosorbent

    Directory of Open Access Journals (Sweden)

    Hossein Abdolmohammad-Zadeh

    2012-01-01

    Full Text Available Nanostructured nickel-aluminum-zirconium ternary layered double hydroxide was successfully applied as a solid-phase extraction sorbent for the separation and pre-concentration of trace levels of iodate in food, environmental and biological samples. An indirect method was used for monitoring of the extracted iodate ions. The method is based on the reaction of the iodate with iodide in acidic solution to produce iodine, which can be spectrophotometrically monitored at 352 nm. The absorbance is directly proportional to the concentration of iodate in the sample. The effect of several parameters such as pH, sample flow rate, amount of nanosorbent, elution conditions, sample volume, and coexisting ions on the recovery was investigated. In the optimum experimental conditions, the limit of detection (3s and enrichment factor were 0.12 μg mL−1 and 20, respectively. The calibration graph using the preconcentration system was linear in the range of 0.2–2.8 μg mL−1 with a correlation coefficient of 0.998. In order to validate the presented method, a certified reference material, NIST SRM 1549, was also analyzed.

  13. Development of an interface for directly coupled solid-phase extraction and GC-MS analysis

    NARCIS (Netherlands)

    Öllers, M.J.H.; van Lieshout, H.P.M.; Janssen, J.G.M.; Cramers, C.A.M.G.

    Solid-phase extraction (SPE) is widely used as a sample preparation technique in numerous application areas of chromatography. Large-volume injection is an attractive technique for coupling SPE to gas chromatography (GC) because it provides improved detection limits and circumvents the need for

  14. Effect of Binding Components in Complex Sample Matrices on Recovery in Direct Immersion Solid-Phase Microextraction: Friends or Foe?

    Science.gov (United States)

    Alam, Md Nazmul; Pawliszyn, Janusz

    2018-02-20

    The development of matrix compatible coatings for solid-phase microextraction (SPME) has enabled direct extraction of analytes from complex sample matrices. The direct immersion (DI) mode of SPME when utilized in conjunction with such extraction phases facilitates extraction of a wide range of analytes from complex matrices without the incurrence of fouling or coating saturation. In this work, mathematical models and computational simulations were employed to investigate the effect of binding components present in complex samples on the recovery of small molecules varying in logP for extractions carried out using the direct immersion approach. The presented findings corroborate that the studied approach indeed enables the extraction of both polar and nonpolar analytes from complex matrices, provided a suitable sorbent is employed. Further results indicated that, in certain cases, the kinetics of extraction of a given analyte in its free form might be dependent on the desorption kinetics of their bound form from matrix components, which might lower total recoveries of analytes with high affinity for the matrix. However, the binding of analytes to matrix components also enables SPME to extract a balanced quantity of different logP analytes, facilitated by multiphase equilibria, with a single extraction device.

  15. An Experimental Design Approach for the Analysis of Liquid Phase Products in Water for Hydrogenolysis of Glycerol using Immersed Solid-Phase Micro extraction

    International Nuclear Information System (INIS)

    Noraini Hamzah; Rozita Osman; Noraini Hamzah; Mohd Ambar Yarmo

    2013-01-01

    In this study, a response surface methodology (RSM) was applied to optimize the immersed-solid-phase micro extraction (immersed-SPME) conditions for the first time using a polyacrylate (PA) coated fiber. This was to determine liquid phase compounds in water for hydrogenolysis reaction of glycerol. There are a three-factor response surface experimental design was used to evaluate the interactive effects of extraction temperature (30-70 degree Celsius), extraction time (10-30 minutes) and desorption time (2-18 minutes) on the analysis of liquid phase compounds in water for hydrogenolysis of glycerol using immersed-solid-phase micro extraction (immersed-SPME). The extraction conditions using immersed-SPME were optimized in order to achieve high enrichment of the analytes from aqueous samples. The isolated compounds from the SPME fiber were desorbed and separated on a capillary polar column of a gas chromatography-flame ionization detector (GC-FID). The extraction time and desorption time were found significant in increasing the amount of glycerol in aqueous hydrogenolysis of glycerol. Nevertheless, the effect of extraction temperature was not significant. In terms of interactions between the effects, the relation between extraction temperature and extraction time was the most significant. The optimised immersed-SPME conditions were at extraction temperature of 27 degree Celsius, extraction time of 30 minutes and 15 minutes of desorption time. Thus, the application of SPME was found to be a rapid and effective technique in the determination of glycerol and propylene glycol compounds in aqueous hydrogenolysis glycerol. (author)

  16. Separation and Purification of Sulforaphane from Broccoli by Solid Phase Extraction

    Directory of Open Access Journals (Sweden)

    Kyung Ho Row

    2011-03-01

    Full Text Available A simple solid-phase extraction (SPE method for the determination of sulforaphane in broccoli has been developed. The optimal conditions were found to be use of a silica SPE cartridge, and ethyl acetate and dichloromethane as washing and eluting solvents, respectively, which could eliminate interferences originating from the broccoli matrix. The extracts were sufficiently clean to be directly injected into high-performance liquid chromatography (HPLC for further chromatographic analysis. Good linearity was obtained from 0.05 to 200 μg/mL (r = 0.998 for sulforaphane with the relative standard deviations less than 3.6%. The mean recoveries of sulforaphane from broccoli were more than 90.8% and the detection limit (S/N = 3:1 was 0.02 μg/mL. The SPE method provides a higher yield of sulforaphane from crude extracts compared to conventional liquid-liquid extraction.

  17. Rapid magnetic solid-phase extraction based on monodisperse magnetic single-crystal ferrite nanoparticles for the determination of free fatty acid content in edible oils.

    Science.gov (United States)

    Wei, Fang; Zhao, Qin; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-01-09

    This study proposes a rapid magnetic solid-phase extraction (MSPE) based on monodisperse magnetic single-crystal ferrite (Fe(3)O(4)) nanoparticles (NPs) for determining the quantities of eight free fatty acids (FFAs), including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), eicosenoic acid (C20:1), and behenic acid (C22:0) in oil. The amine-functionalized mesoporous Fe(3)O(4) magnetic NPs were applied as a sorbent for MSPE of FFAs from oil samples in a process that is based on hydrophilic interaction. The extraction can be completed rapidly in a dispersive mode with the aid of vigorous vortex. Additional tedious processing steps such as centrifugation and evaporation of organic solvent were not necessary with this procedure. Furthermore, esterification of FFAs can be accomplished during the desorption procedure by using methanol/sulfuric acid (99:1, v/v) as the desorption solvent. Several parameters affecting the extraction efficiency were investigated, including the matrix solvent for extraction, the desorption solvent and desorption time, and the amount of sorbent and extraction time. The pretreatment process was rapid under optimal conditions, being accomplished within 15 min. When coupled with gas chromatography-flame ionization detection (GC-FID), a rapid, simple, and convenient MSPE-GC-FID method for the determination of FFAs in oil samples was established with a total analysis time within 25 min. The limits of detection for the target FFAs were found to be 7.22-26.26 ng/mL. Recoveries in oil samples were in the range of 81.33-117.75%, with RSDs of <6.4% (intraday) and <6.9% (interday). This method was applied successfully to the analysis of dynamic FFA formation in four types of edible oils subjected to an accelerated storage test. The simple, rapid, and cost-effective method developed in the current study offers a potential application for the extraction and

  18. Rapid determination of the volatile components in tobacco by ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang

    2016-03-01

    An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Solid-phase extraction of plutonium in various oxidation states from simulated groundwater using N-benzoylphenylhydroxylamine

    International Nuclear Information System (INIS)

    Perevalov, S.A.; Malofeeva, G.I.; Kuzovkina, E.V.; Spivakov, B.Ya.

    2013-01-01

    Solid-phase extraction of plutonium in different individual and mixed oxidation states from simulated groundwater (pH 8.5) was studied. The extraction of plutonium species was carried out in a dynamic mode using DIAPAK C16 cartridges modified by N-benzoylphenylhydroxylamine (BPHA). It was shown that the extent of recovery depends on the oxidation state of plutonium. The extraction of Pu(IV) was at the level of 98-99% regardless of the volume and flow-rate of the sample solution. Pu(V) was extracted by 90-95% and 75-80% from 10- and 100-mL aliquots of the samples, respectively, whereas the extraction of Pu(VI) did not exceed 45-50%. An equimolar mixture of Pu(IV), Pu(V), and Pu(VI) was extracted by 74%. The distribution coefficients (K d ) and kinetic exchange capacities (S) of plutonium in various oxidation states were measured. It was found that during the sorption process, Pu(V) was reduced to Pu(IV) by 80-90% after an hour-long contact with the solid phase. Pu(VI) is reduced to Pu(V) by 34% and to Pu(IV) by 55%. In the case of mixed-valent solution of plutonium, only Pu(V) and Pu(IV) were found in the effluents. (author)

  20. Functionalized hydrothermal carbon derived from waste pomelo peel as solid-phase extractant for the removal of uranyl from aqueous solution.

    Science.gov (United States)

    Li, Feize; Tang, Yu; Wang, Huilin; Yang, Jijun; Li, Shoujian; Liu, Jun; Tu, Hong; Liao, Jiali; Yang, Yuanyou; Liu, Ning

    2017-10-01

    To develop a high-performance solid-phase extractant for the separation of uranyl f, pomelo peel, a kind of waste biomass, has been employed as carbon source to prepare carbonaceous matrix through low-temperature hydrothermal carbonization (200 °C, 24 h). After being oxidized by Hummers method, the prepared hydrothermal carbon matrix was functionalized with carboxyl and phenolic hydroxyl groups (1.75 mmol g -1 ). The relevant characterizations and batch studies had demonstrated that the obtained carbon material possessed excellent affinity toward uranyl (436.4 mg g -1 ) and the sorption process was a spontaneous, endothermic and rapid chemisorption. The selective sorption of U(VI) from the simulated nuclear effluent demonstrated that the sorbent displayed a desirable selectivity (56.14% at pH = 4.5) for the U(VI) ions over the other 11 competitive cations from the simulated industrial nuclear effluent. The proposed synthetic strategy in the present work had turned out to be effective and practical, which provides a novel approach to prepare functional materials for the recovery and separation of uranyl or other heavy metals from aqueous environment.

  1. Principles and applications of colorimetric solid-phase extraction with negligible depletion

    International Nuclear Information System (INIS)

    Dias, Neil C.; Porter, Marc D.; Fritz, James S.

    2006-01-01

    Colorimetric solid-phase extraction (C-SPE) is an integrated technique in which an analyte is selectively concentrated onto a disk and then quantitated by diffuse reflectance spectroscopy. This paper describes the results of an investigation that applies the concept of negligible depletion (ND) to C-SPE, representing the first application of ND concepts to solid-phase extractions. The approach relies on passing the minimal volume of sample through the disk required to reach an equilibrium in which the concentration of analyte in the sample entering and exiting the disk are equal. At this point, the amount of analyte extracted by the disk is proportional to the sample concentration but is independent of the sample volume passed through the disk. With this new method, called C-SPE/ND, the precise measurement of sample volume is no longer necessary. The work herein details the general principles of this new methodology, and validates its basic tenets in an investigation of the extraction of the organic dye methyl violet. The analytical capabilities of C-SPE/ND are then demonstrated by its application to measurements of iodine. Iodine is a biocide increasingly used as a simple and effective disinfectant for water in locations where municipal water treatment systems are potentially compromised. Thus, the ability to operate C-SPE in an ND mode notably enhances the broad-based utility of this methodology as a reliable and an easy-to-use analysis tool for water quality assessments. Since iodine is also the biocide used on NASAs Space Shuttle, C-SPE/ND has the potential to overcome problems associated with the removal of air bubbles entrapped in a water sample in the microgravity environment encountered in space exploration. Extensions of C-SPE/ND to facile determinations of other water quality parameters with respect to both earth- and space-based needs are briefly discussed

  2. IN SITU SOLID-PHASE EXTRACTION AND ANALYSIS OF ...

    Science.gov (United States)

    Fragrance materials, such as synthetic musks in aqueous samples, are normally analyzed by GC/MS in the selected ion monitoring (SIM) mode to provide maximum sensitivity after liquid-liquid extraction of 1-L samples. A 1-L sample, however, usually provides too little analyte for full-scan data acquisition.We have developed an on-site extraction method for extracting synthetic musks from 60 L of wastewater effluent. Such a large sample volume permits high-quality, full-scan mass spectra to be obtained for various synthetic musk compounds. Quantification of these compounds was conveniently achieved from the full-scan data directly, without preparing SIM descriptors for each compound to acquire SIM data. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-s

  3. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    DEFF Research Database (Denmark)

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter

    2010-01-01

    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  4. Fabrication of graphene/Fe{sub 3}O{sub 4}@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Mehdinia, Ali, E-mail: mehdinia@inio.ac.ir [Department of Marine Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran (Iran, Islamic Republic of); Khodaee, Nader; Jabbari, Ali [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2015-04-08

    Highlights: • G/Fe{sub 3}O{sub 4}@polythiophene as a novel sorbent for MSPE of PAHs. • Polythiopheneas an efficient modifier of G/Fe{sub 3}O{sub 4}. • G sheets can act as a “support” for the growth of Fe{sub 3}O{sub 4} nanoparticles. • G sheets can act as a “spacer” for the inhibition of NPs aggregation. - Abstract: Polythiophene (PT) was used as a surface modifier of graphene/Fe{sub 3}O{sub 4} (G/Fe{sub 3}O{sub 4}) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe{sub 3}O{sub 4} alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe{sub 3}O{sub 4}@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100 mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009–0.020 μg L{sup −1} in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L{sup −1} with correlation coefficients (R{sup 2}) between 0.995 and 0.998 for all the analytes

  5. Solid phase extraction of polychlorinated biphenyls from water containing humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Bonifazi, P.; Pierini, E.; Bruner, F. [Centro di Studio per la Chimica dell`Ambiente e le Tecnologie Strumentali Avanzate dell` Universita degli Studi di Urbino, Ist. di Scienze Chimiche (Italy)

    1997-06-01

    A study was carried out of the recovery by solid phase extraction of the eleven most toxic polychlorinated biphenyls from water containing humic acids. Experiments were performed using water polluted with a humic acid (sodium salt) concentration of 9-18 mg L{sup -1}. The effect of humic acids on the recoveries was noticeable, especially where the more chlorinated congeners were concerned. The effect was also evident with river water containing naturally dissolved humic acids. A method for destroying humic acids prior to extraction was applied. The recoveries after the destruction of humic acids were in the range of 90%, even in the case of river water, demonstrating the applicability of the method to real samples. (orig.)

  6. Poly(Dimethylsiloxane)-Poly(Vinyl Alcohol) Coated Solid Phase Micro extraction Fiber for Chloropyrifos Analysis

    International Nuclear Information System (INIS)

    Wan Aini Wan Ibrahim; Nor Fairul Zukry Ahmad Rasdy; Norfazilah Muhamad

    2016-01-01

    Traditional liquid - liquid extraction of pesticides consumes large volumes of organic solvent which are hazardous to the operator and is not environment friendly. Solid phase micro extraction (SPME) is a solvent less extraction method which is safer to the operator and is environmental friendly. A sol-gel hybrid fibre coating material, poly(dimethylsiloxane)-poly(vinyl alcohol) (PDMS-PVA) was synthesized and used in head space solid phase micro extraction (HS-SPME) of chloropyrifos. The thickness of the synthesised PDMS-PVA fiber coating was 13.5 μm and it is thermally stable up to 400 degree Celsius. The PDMS-PVA sol-gel hybrid fiber was also stable to two organic solvents tested; acetonitrile and dichloromethane (1 hour dipping) and showed no significant changes in extraction performance for chloropyrifos. Extracted chloropyrifos was analysed using gas chromatography electron capture detector (GC-ECD). Optimum SPME parameters affecting the PDMS-PVA HS-SPME performance namely extraction time (15 min), extraction temperature (50 degree Celsius), desorption time (5 min), desorption temperature (260 degree Celsius) and stirring rate (120 rpm) were used for extraction. It was found that HSSPME using PDMS-PVA sol-gel fiber gave significantly better extraction performance of chloropyrifos compared to commercial 100 μm PDMS fiber. The PDMS-PVA fiber showed excellent operational performances such as temperature stability (up to 380 degree Celsius), coating lifetime (up to 170 times use) and organic solvent stability. The PDMS-PVA-HS-SPME method showed excellent recovery for chloropyrifos from tomatoes (98.0 %, 5.9 % RSD) at 0.01 μg/ g spiked level (5 times lower than maximum residue limit set by European Union). (author)

  7. Basic hydrolysis of 1, 3, 4, 6-tetra-O-acetyl-2-[18F] fluoro-D-glucose on solid phase extraction

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; He Yijie; Huan Dingcai; Liu Boli

    2003-01-01

    A new base hydrolysis method are used for 1, 3, 4, 6-tetra-O-acetyl-2-[ 18 F] fluoro-D-glucose on solid phase extraction. The labeled intermediate is trapped on an active C-18 solid phase extraction cartridge, and hydrolyzed in cartridge with 1 mL 2 mol/L NaOH at room temperature. The results show that there are over 99% of the labeled intermediate being turned into 18 F-FDG within 2 min. It is easy to get 18 F-FDG after neutralized with phosphate buffer, purified by C-18 and Alumina cartridge. The basic hydrolysis on solid extraction is a simple method for preparation of 18 F-FDG

  8. [Simultaneous determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography].

    Science.gov (United States)

    Liu, Min; Li, Xiaolin; Bie, Wei; Wang, Minglin; Feng, Qian

    2011-02-01

    A new method was established for the determination of 15 industrial synthetic dyes in condiment by solid phase extraction-high performance liquid chromatography (SPE-HPLC). The samples were extracted by methanol-water (1:1, v/v) and purified by a solid phase extraction column. Then, the chromatographic separation was achieved on a Luna C18 column by linear gradient elution. The mobile phase was 10 mmol/L ammonium acetate-acetonitrile (containing 1% acetic acid). The results showed that the 15 industrial synthetic dyes can be separated efficiently. The recoveries of the 15 industrial synthetic dyes spiked in condiment were between 84.6% and 114.2% with the relative standard deviations of 0.9% - 10.3%. The limits of detection of this method was 0.05 - 0.18 mg/kg for the 15 industrial synthetic dyes. The method is simple, sensitive, accurate, repeatable and can be used for simultaneous determination of the 15 illegally added industrial synthetic dyes.

  9. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples

    Energy Technology Data Exchange (ETDEWEB)

    Montes, R.; Garcia-Lopez, M. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Rodriguez, I., E-mail: isaac.rodriguez@usc.es [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain); Cela, R. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Instituto de Investigacion y Analisis Alimentario, Universidad de Santiago de Compostela, Santiago de Compostela 15782 (Spain)

    2010-07-12

    This work presents an advantageous analytical procedure for the accurate determination of free trans-resveratrol in red and white wines. The proposed method involves solid-phase extraction (SPE), acetylation of the analyte in aqueous media and further determination by gas chromatography (GC) with mass spectrometry detection (MS). The use of a mixed-mode SPE sorbent provides an improvement in the selectivity of the extraction step; moreover, the presence of several intense ions in the electron impact mass spectra of its acetyl derivative guarantees the unambiguous identification of trans-resveratrol. Considering a sample intake of 10 mL, the method provides a limit of quantification (LOQ) of 0.8 ng mL{sup -1} and linear responses for concentrations up to 2.5 {mu}g mL{sup -1}, referred to wine samples. The average recovery, estimated with samples fortified at different concentrations in the above range, was 99.6% and the inter-day precision stayed below 8%. Trans-resveratrol levels in the analyzed wines varied from 3.4 to 1810 ng mL{sup -1}. Cis-resveratrol was also found in all samples. In most cases, equal or higher responses were measured for this latter form than for the trans-isomer. The reduced form of resveratrol, dihydro-resveratrol, was systematically identified in red wines.

  10. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples

    International Nuclear Information System (INIS)

    Montes, R.; Garcia-Lopez, M.; Rodriguez, I.; Cela, R.

    2010-01-01

    This work presents an advantageous analytical procedure for the accurate determination of free trans-resveratrol in red and white wines. The proposed method involves solid-phase extraction (SPE), acetylation of the analyte in aqueous media and further determination by gas chromatography (GC) with mass spectrometry detection (MS). The use of a mixed-mode SPE sorbent provides an improvement in the selectivity of the extraction step; moreover, the presence of several intense ions in the electron impact mass spectra of its acetyl derivative guarantees the unambiguous identification of trans-resveratrol. Considering a sample intake of 10 mL, the method provides a limit of quantification (LOQ) of 0.8 ng mL -1 and linear responses for concentrations up to 2.5 μg mL -1 , referred to wine samples. The average recovery, estimated with samples fortified at different concentrations in the above range, was 99.6% and the inter-day precision stayed below 8%. Trans-resveratrol levels in the analyzed wines varied from 3.4 to 1810 ng mL -1 . Cis-resveratrol was also found in all samples. In most cases, equal or higher responses were measured for this latter form than for the trans-isomer. The reduced form of resveratrol, dihydro-resveratrol, was systematically identified in red wines.

  11. Application of Solid Phase Extraction on Multiwalled Carbon Nanotubes of Some Heavy Metal Ions to Analysis of Skin Whitening Cosmetics Using ICP-AES

    Directory of Open Access Journals (Sweden)

    Kamal Omer

    2013-01-01

    Full Text Available A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL−1, respectively. The relative standard deviations (RSDs were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6–104.4%.

  12. Application of solid phase extraction on multiwalled carbon nanotubes of some heavy metal ions to analysis of skin whitening cosmetics using ICP-AES.

    Science.gov (United States)

    Alqadami, Ayoub A; Abdalla, Mohammad Abulhassan; AlOthman, Zeid A; Omer, Kamal

    2013-01-14

    A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL-1, respectively. The relative standard deviations (RSDs) were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6-104.4%.

  13. HPLC WITH SOLID PHASE EXTRACTION FOR IDENTIFICATION AND DIAGNOSIS OF ORGANOPHOSPHOROUS POISONING IN GOATS

    Directory of Open Access Journals (Sweden)

    S. Manna

    2014-12-01

    Full Text Available High performance liquid chromatographic determination of organophosphorous compound has been done by reverse phase chromatography in goats. The goats were dying showing the symptoms of organophosphorous poisoning. The viscera and stomach contents sample were received from Project Co-Ordinator, Animal Disease Research Institute, Phulnakhara, Cuttack, Orissa. The analysis of samples by HPLC with UV detector after cleaning up in Solid Phase Extraction (SPE revealed presence of malathion that was later quantified.

  14. Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

    Science.gov (United States)

    Cordero-Vaca, María; Trujillo-Rodríguez, María J; Zhang, Cheng; Pino, Verónica; Anderson, Jared L; Afonso, Ana M

    2015-06-01

    Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 μg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 μg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 μm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 μg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

  15. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design.

    Science.gov (United States)

    Naddaf, Ezzat; Ebrahimi, Mahmoud; Es'haghi, Zarrin; Bamoharram, Fatemeh Farrash

    2015-07-01

    A sensitive technique to determinate naproxen in hair samples was developed using hollow-fiber micro-solid-phase combined with fluorescence spectrophotometry. The incorporation of multi-walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol-gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow-fiber micro-solid-phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (4(6) ) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2-10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103-95%. The relative standard deviation for fiber-to-fiber repeatability was 3.9%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Unloaded polyether type polyurethane foams as solid extractants for trace elements

    International Nuclear Information System (INIS)

    Palagyi, S.; Braun, T.

    1992-01-01

    Polyether type polyurethane foams (PU) are regular stacks of solid quasi-spherical membranes produced by the reaction of polyisocyanates with polyols of polyether nature in the presence of a catalyst and a blowing agent. Contrary to conventional membrane separations, where a solid membrane is merely a differentially separating agent, or a transport medium, PU foams, apart from separation and preconcentration, also retain, i.e., sorb the species on, or in the membranes. Therefore, PU foam membranes can be considered to act as true sorbents. The membrane properties of PU foam sorbents offer unique advantages over conventional bulk type granular sorbents in rapid, versatile and effective separations and preconcentrations of different compounds from fluid samples. Unloaded PU foam sorbents have received considerable attention in the separation of different trace inorganic species. (author) 74 refs.; 1 fig.; 1 tab

  17. Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Vidal, Lorena; Ahmadi, Mazaher; Fernández, Elena; Madrakian, Tayyebeh; Canals, Antonio

    2017-01-01

    This study presents a new, user-friendly, cost-effective and portable headspace solid-phase extraction technique based on graphene oxide decorated with iron oxide magnetic nanoparticles as sorbent, located on one end of a small neodymium magnet. Hence, the new headspace solid-phase extraction technique has been called Magnetic Headspace Adsorptive Extraction (Mag-HSAE). In order to assess Mag-HSAE technique applicability to model analytes, some chlorobenzenes were extracted from water samples prior to gas chromatography-mass spectrometry determination. A multivariate approach was employed to optimize the experimental parameters affecting Mag-HSAE. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; extraction time, 30 min; sorbent amount, 10 mg; stirring speed, 1500 rpm, and ionic strength, non-significant), obtaining a linear response from 0.5 to 100 ng L −1 for 1,3-DCB, 1,4-DCB, 1,2-DCB, 1,3,5-TCB, 1,2,4-TCB and 1,2,3-TCB; from 0.5 to 75 ng L −1 for 1,2,4,5-TeCB, and PeCB; and from 1 to 75 ng L −1 for 1,2,3,4-TeCB. The repeatability of the proposed method was evaluated at 10 ng L −1 and 50 ng L −1 spiking levels, and coefficients of variation ranged between 1.5 and 9.5% (n = 5). Limits of detection values were found between 93 and 301 pg L −1 . Finally, tap, mineral and effluent water were selected as real water samples to assess method applicability. Relative recoveries varied between 86 and 110% showing negligible matrix effects. - Highlights: • A new extraction technique named Magnetic Headspace Adsorptive Extraction is presented. • Graphene oxide/iron oxide composite deposited on a neodymiun magnet as sorbent. • Sorbent of low cost, rapid and simple synthesis, easy manipulation and portability options. • Fast and efficient extraction and sensitive determination of chlorobenzenes in water samples.

  18. Molecularly imprinted solid-phase extraction of glutathione from urine samples

    International Nuclear Information System (INIS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Zhao, Na; Wang, Qiaoli

    2014-01-01

    Molecularly imprinted polymer (MIP) particles for glutathione were synthesized through iniferter-controlled living radical precipitation polymerization (IRPP) under ultraviolet radiation at ambient temperature. Static adsorption, solid-phase extraction, and high-performance liquid chromatography were carried out to evaluate the adsorption properties and selective recognition characteristics of the polymers for glutathione and its structural analogs. The obtained IRPP-MIP particles exhibited a regularly spherical shape, rapid binding kinetics, high imprinting factor, and high selectivity compared with the MIP particles prepared using traditional free-radical precipitation polymerization. The selective separation and enrichment of glutathione from the mixture of glycyl-glycine and glutathione disulfide could be achieved on the IRPP-MIP cartridge. The recoveries of glutathione, glycyl-glycine, and glutathione disulfide were 95.6% ± 3.65%, 29.5% ± 1.26%, and 49.9% ± 1.71%, respectively. The detection limit (S/N = 3) of glutathione was 0.5 mg·L −1 . The relative standard deviations (RSDs) for 10 replicate detections of 50 mg·L −1 of glutathione were 5.76%, and the linear range of the calibration curve was 0.5 mg·L −1 to 200 mg·L −1 under optimized conditions. The proposed approach was successfully applied to determine glutathione in spiked human urine samples with recoveries of 90.24% to 96.20% and RSDs of 0.48% to 5.67%. - Highlights: • Imprinted polymer particles were prepared by IRPP at ambient temperature. • High imprinting factor, high selectivity, and rapid binding kinetics were achieved. • Selective solid-phase extraction of glutathione from human urine samples

  19. Electromembrane extraction of tartrazine from food samples: Effects of nano-sorbents on membrane performance.

    Science.gov (United States)

    Yaripour, Saeid; Mohammadi, Ali; Nojavan, Saeed

    2016-07-01

    In the present study, for the first time electromembrane extraction followed by high-performance liquid chromatography coupled with ultraviolet detection was developed and validated for the determination of tartrazine in some food samples. The parameters influencing electromembrane extraction were evaluated and optimized. The membrane consists of 1-octanol immobilized in the pores of a hollow fiber. As a driving force, a 30 V electrical field was applied to make the analyte migrate from sample solution with pH 3, through the supported liquid membrane into an acceptor solution with pH 10. Best preconcentration (enrichment factor >21) was obtained in extraction duration of 15 min. Effects of some solid nano-sorbents like carbon nanotubes and molecularly imprinted polymers on membrane performance and electromembrane extraction efficiency were evaluated. The method provided the linearity in the range 25-1000 ng/mL for tartrazine (R(2) > 0.9996) with repeatability range (RSD) between 3.8 and 8.5% (n = 3). The limits of detection and quantitation were 7.5 and 25 ng/mL, respectively. Finally, the method was applied to the determination and quantification of tartrazine from some food samples with relative recoveries in the range between 90 and 98%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of 90Sr from aqueous solutions using SPE extraction

    International Nuclear Information System (INIS)

    Dulanska, S.; Rajec, P.; Matel, L.

    2008-01-01

    Solid Phase Extraction (SPE) is widely used technique for the isolation and concentration of analytes from liquid samples to achieve increased sensitivity in the analytical process. Three commercial sorbents produced by three different manufacturers were tested. 3M Empore TM Strontium Rad Disks, Sr resin and AnaLig Sr-01 were used to efficiently isolate strontium from aqueous samples. (authors)

  1. The current role of on-line extraction approaches in clinical and forensic toxicology.

    Science.gov (United States)

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  2. Liquid chromatography tandem mass spectrometry method using solid-phase extraction and bead-beating-assisted matrix solid-phase dispersion to quantify the fungicide tebuconazole in controlled frog exposure study: analysis of water and animal tissue

    DEFF Research Database (Denmark)

    Hansen, Martin; Poulsen, Rikke; Luong, Xuan

    2014-01-01

    and on tissue from exposed and non-exposed adult X. laevis. Using solid-phase extraction (SPE), the analytical method allows for quantification of tebuconazole at concentrations as low as 3.89 pg mL(-1) in 10 mL water samples. Using bead-beating-assisted matrix solid-phase dispersion (MSPD), it was possible...

  3. Organically Modified Silica with Pyrazole-3-carbaldehyde as a New Sorbent for Solid-Liquid Extraction of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Smaail Radi

    2013-12-01

    Full Text Available A new chelating matrix, SiNP, has been prepared by immobilizing 1.5-dimethyl-1H-pyrazole-3-carbaldehyde on silica gel modified with 3-aminopropyl-trimethoxysilane. This new chelating material was well characterized by elemental analysis, FT-IR spectroscopy, cross polarization magic angle spinning solid state 13C-NMR, nitrogen adsorption-desorption isotherm, BET surface area, BJH pore size, and scanning electron microscopy (SEM. The new product exhibits good chemical and thermal stability as determined by thermogravimetry curves (TGA. The new prepared material was used as an adsorbent for the solid-phase extraction (SPE of Pb(II, Cd(II, Cu(II and Zn(II from aqueous solutions using a batch method, prior to their determination by flame atomic adsorption spectrometry. The adsorption capacity was investigated using kinetics and pH effects. Common coexisting ions did not interfere with separation and determination.

  4. Monitoring of chloropesticide methoxychlor preconcentration from waste water using hplc - solid phase extraction (abstract)

    International Nuclear Information System (INIS)

    Butt, S.B.; Saqlin, M.; Riaz, M.

    2011-01-01

    The method involves preconcentration of methoxychlor by solid phase extraction (SPE) with 1 mL silica based C-18 and 3 mL polymer based C-18 cartridge and then quantification by high performance liquid chromatography with UV detector (HPLC-UV). Optimization of HPLC parameters was done by determining max of methoxychlor on a double beam UV/Visible spectrophotometer, flow rate of mobile phase on reversed phase columns. Lowest detection limit for methoxychlor dissolved in water and methanol was 0.2ppm and 0.1ppm respectively. For solid phase extraction recovery studies and effect of different parameters such as initial concentration of analyte 0.01 to 0.05 ppm, loading rate 1 and 2mL/min, nature of desorbing solvent (methanol, ethyl acetate and acetonitrile) were investigated. Periodic self degradation of methoxychlor, and reusing potential of both SPE materials was also explored. Lower initial concentrations and slower loading rate of methoxychlor solutions gave improved recoveries. Recoveries were in the range of 80 to 90% for new SPE cartridge and reduced to 35 to 57% for once used silica based C-18 tubes. It was around 73 % for HLB C18 on their second use, and decreased on their repeated reuse. Lastly recoveries for stimulant and real waste water samples were determined to be 77 and 60% respectively. (author)

  5. Micro-matrix solid-phase dispersion coupled with MEEKC for quantitative analysis of lignans in Schisandrae Chinensis Fructus using molecular sieve TS-1 as a sorbent.

    Science.gov (United States)

    Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong

    2017-09-15

    A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cone-shaped membrane liquid phase micro extraction

    International Nuclear Information System (INIS)

    Hong, Heng See; Sanagi, M.M.; Ibrahim, W.A.W.; Naim, A.A.

    2008-01-01

    A novel sample pre-treatment technique termed cone-shaped membrane liquid phase micro extraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were investigated and optimized. Enrichment factors of >50 folds were easily achieved within 20 min of extraction. The new developed method demonstrated an excellent performance in terms of speed, cost effectiveness, reproducibility, as well as exceptional low detection limits. Current work provides a great interest to further investigate on the applicability of the CSM-LPME technique in analytical chemistry and explores the possibility of replacing conventional extraction techniques such as soxhlet, solid phase extraction (SPE) and solid phase micro extraction (SPME). (author)

  7. Ultrasound-assisted leaching-dispersive solid-phase extraction followed by liquid-liquid microextraction for the determination of polybrominated diphenyl ethers in sediment samples by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Fontana, Ariel R; Lana, Nerina B; Martinez, Luis D; Altamirano, Jorgelina C

    2010-06-30

    Ultrasound-assisted leaching-dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (USAL-DSPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating polybrominated diphenyl ethers (PBDEs) from sediment samples prior gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. In the first place, PBDEs were leached from sediment samples by using acetone. This extract was cleaned-up by DSPE using activated silica gel as sorbent material. After clean-up, PBDEs were preconcentrated by using DLLME technique. Thus, 1 mL acetone extract (disperser solvent) and 60 microL carbon tetrachloride (extraction solvent) were added to 5 mL ultrapure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limits (MDLs) of PBDEs calculated as three times the signal-to-noise ratio (S/N) were within the range 0.02-0.06 ng g(-1). The relative standard deviations (RSDs) for five replicates were or =0.9991. Validation of the methodology was carried out by standard addition method at two concentration levels (0.25 and 1 ng g(-1)) and by comparing with a reference Soxhlet technique. Recovery values were > or =80%, which showed a satisfactory robustness of the analytical methodology for determination of low PBDEs concentration in sediment samples. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Novel Palm Fatty Acid Functionalized Magnetite Nanoparticles for Magnetic Solid-Phase Extraction of Trace Polycyclic Aromatic Hydrocarbons from Environmental Samples.

    Science.gov (United States)

    Rozi, Siti Khalijah Mahmad; Nodeh, Hamid Rashidi; Kamboh, Muhammad Afzal; Manan, Ninie Suhana Abdul; Mohamad, Sharifah

    2017-07-01

    A novel adsorbent, palm fatty acid coated magnetic Fe 3 O 4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL -1 . The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.

  9. solid phase extraction method for selective determination

    African Journals Online (AJOL)

    FATOKI

    determination of phthalate ester plasticizers in rivers and marine water samples. Of the ... samples that receive effluent from industries that use phthalate esters. ... Keywords Phthalates, Plasticizers, Solid Phase Gas Chromatography.

  10. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  11. Polypyrrole-magnetite dispersive micro-solid-phase extraction combined with ultraviolet-visible spectrophotometry for the determination of rhodamine 6G and crystal violet in textile wastewater.

    Science.gov (United States)

    Kamaruddin, Amirah Farhan; Sanagi, Mohd Marsin; Wan Ibrahim, Wan Aini; Md Shukri, Dyia S; Abdul Keyon, Aemi S

    2017-11-01

    Polypyrrole-magnetite dispersive micro-solid-phase extraction method combined with ultraviolet-visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole-magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro-solid-phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole-magnetite dispersive micro-solid phase-extraction conditions were sample pH 8, 60 mg polypyrrole-magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole-magnetite dispersive micro-solid-phase extraction with ultraviolet-visible method showed good linearity in the range of 0.05-7 mg/L (R 2  > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4-111.3%) with relative standard deviations extraction and determination of dyes at trace concentration levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Optimization of Solid Phase Micro-Extraction (SPME for Monitoring Occupational Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    H. Heidari

    2009-08-01

    Full Text Available AbstractBackground and Objectives: Analytical methods for volatile organic compounds (VOCs in different samples need extraction of compounds, by applying hazardous solvents. Solid phase micro-extraction (SPME is a solvent-free equilibrium extraction method, in which proper calibration can allow quantitative determinations of VOCs at a very good sensitivity without the use of any organic solvent. VOCs are generally present in urine only at trace levels, therefore, a sensitive procedure is needed for their trace determinations. Throughout this study, headspace solid phase micro-extraction (HS-SPME was followed by GC-FID for ethyl benzene in spiked urine was optimized.Methods: In this study, the parameters influencing SPME and gas chromatography of ethyl benzene, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were investigated. Results: Extraction procedure was performed at 30°C for 6 min, using 0.2 gml-1 of NaCl in the sample solution. The sample volume and sample pH were optimized at 5 ml and 7 (neutral pH, respectively. Desorption of the ethyl benzene was carried out for 60 sec. at 250°C. The method was also validated with three different spiked urine samples and illustrated an appropriate reproducibility over six consecutive days as well as six within-day experiments. During this investigation, parameters of accuracy, linearity, and detection limits of the procedure were also evaluated.Conclusion: The developed method of HS- SPME-GC-FID proved to be a simple, convenient, and practical procedure, and was successfully used for measuring of ethyl benzene in spiked urine.

  14. Determination of phenprocoumon in plasma and urine using at-line solid-phase extraction-capillary electrophoresis.

    NARCIS (Netherlands)

    Veraart, J.R.; Gooijer, C.; Lingeman, H.; Velthorst, N.H.; Brinkman, U.A.T.

    1998-01-01

    The use of capillary electrophoresis (CE) for the analysis of biological samples is rather problematic because of the large number of interferences present in the matrix. One of the possibilities to solve such problems is to couple solid-phase extraction (SPE) at-line with CE, a technique developed

  15. Chemical Modification of Activated Carbon and Its Application for Solid Phase Extraction of Copper(II and Iron(III Ions

    Directory of Open Access Journals (Sweden)

    M. Ghaedi

    2014-06-01

    Full Text Available Powder activated carbon surface (AC was grinded and modified and altered procedure thorough a facile and easy chemical reaction to appearance of 2-((3silylpropylimino1-methyl phenol (AC- (SPIMP. Subsequently, this novel sorbent efficiently applied for the extraction and preconcentration of some metal ions from real samples. Preliminary the influences of variables such as pH, amounts of reagents and porous AC, eluting solution conditions (type and concentrations, sample volume and influence of interference of many ions on the analytes recoveries was studied and optimized. This new sorbents property including pore size, pore volume and surface properties was evaluated and monitored by BET, while structure and homogeneously of sorbent was identified by SEM. The surface modification was traced by FT-IR as powerful and strong identification techniques. The proposed sorbent has high surface area(>1317.1346 m2 g-1 and small pore size(

  16. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Elahe; Haji Shabani, Ali Mohammad [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Dadfarnia, Shayessteh, E-mail: sdadfarnia@yazd.ac.ir [Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Abbasi, Amir [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of); Rashidian Vaziri, Mohammad Reza [Laser and Optics Research School, 14155-1339, Tehran (Iran, Islamic Republic of); Behjat, Abbas [Department of Physics, Yazd University, Safaieh, 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-28

    This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L{sup −1}, a detection limit of 0.21 μg L{sup −1}, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L{sup −1} level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L{sup −1}, a detection limit of 0.016 μg L{sup −1} and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L{sup −1} level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. - Graphical abstract: A novel, sensitive, fast, simple and convenient mixed hemimicelles

  17. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy

    International Nuclear Information System (INIS)

    Kazemi, Elahe; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-01

    This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L"−"1, a detection limit of 0.21 μg L"−"1, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L"−"1 level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L"−"1, a detection limit of 0.016 μg L"−"1 and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L"−"1 level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. - Graphical abstract: A novel, sensitive, fast, simple and convenient mixed hemimicelles dispersive micro solid

  18. Modified carbon nanotubes as a sorbent for solid-phase extraction of gold, and its determination by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Moghaddam, Firouzeh Hassani; Behzadi, Mansoureh; Naghizadeh, Matin; Taher, Mohammad Ali

    2015-01-01

    A simple, sensitive and accurate method was developed for solid-phase extraction and preconcentration of trace levels of gold in various samples. It is based on the adsorption of gold on modified oxidized multi-walled carbon nanotubes prior to its determination by graphite furnace atomic absorption spectrometry. The type and volume of eluent solution, sample pH value, flow rates of sample and eluent, sorption capacity and breakthrough volume were optimized. Under these conditions, the method showed linearity in the range of 0.2–6.0 ng L −1 with coefficients of determination of >0.99 in the sample. The relative standard deviation for seven replicate determinations of gold (at a level of 0.6 ng L −1 ) is ±3.8 %, the detection limit is 31 pg L −1 (in the initial solution and at an S/N ratio of 3; for n = 8), and the enrichment factor is 200. The sorption capacity of the modified MWCNTs for gold(III) is 4.15 mg g −1 . The procedure was successfully applied to the determination of gold in (spiked) water samples, human hair, human urine and standard reference material with recoveries ranging from 97.0 to 104.2 %. (author)

  19. Determination of organophosphorus flame retardants in fish by pressurized liquid extraction using aqueous solutions and solid-phase microextraction coupled with gas chromatography-flame photometric detector.

    Science.gov (United States)

    Gao, Zhanqi; Deng, Yuehua; Yuan, Wenting; He, Huan; Yang, Shaogui; Sun, Cheng

    2014-10-31

    A novel method was developed for the determination of organophosphorus flame retardants (PFRs) in fish. The method consists of a combination of pressurized liquid extraction (PLE) using aqueous solutions and solid-phase microextraction (SPME), followed by gas chromatography-flame photometric detector (GC-FPD). The experimental parameters that influenced extraction efficiency were systematically evaluated. The optimal responses were observed by extracting 1g of fish meat with the solution of water:acetonitrile (90:10, v/v) at 150°C for 5min and acid-washed silica gel used as lipid sorbent. The obtained extract was then analyzed by SPME coupled with GC-FPD without any additional clean-up steps. Under the optimal conditions, the proposed procedure showed a wide linear range (0.90-5000ngg(-1)) obtained by analyzing the spiked fish samples with increasing concentrations of PFRs and correlation coefficient (R) ranged from 0.9900 to 0.9992. The detection limits (S/N=3) were in the range of 0.010-0.208ngg(-1) with standard deviations (RSDs) ranging from 2.0% to 9.0%. The intra-day and inter-day variations were less than 9.0% and 7.8%, respectively. The proposed method was successfully applied to the determination of PFRs in real fish samples with recoveries varying from 79.8% to 107.3%. The results demonstrate that the proposed method is highly effective for analyzing PFRs in fish samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Rapid determination of ions by combined solid-phase extraction--diffuse reflectance spectroscopy

    Science.gov (United States)

    Fritz, James S.; Arena, Matteo P.; Steiner, Steven A.; Porter, Marc D.

    2003-01-01

    We introduce colorimetric solid-phase extraction (C-SPE) for the rapid determination of selected ions. This new technique links the exhaustive concentration of an analyte by SPE onto a membrane disk surface for quantitative measurement with a hand-held diffuse reflectance spectrometer. The concentration/measurement procedure is complete in approximately 1 min and can be performed almost anywhere. This method has been used to monitor iodine and iodide in spacecraft water in the 0.1-5.0 ppm range and silver(I) in the range of 5.0-1000 microg/l. Applications to the trace analysis of copper(II), nickel(II), iron(III) and chromium(VI) are described. Studies on the mechanism of extraction showed that impregnation of the disk with a surfactant as well as a complexing reagent results in uptake of additional water, which markedly improves the extraction efficiency.

  1. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    Directory of Open Access Journals (Sweden)

    Amber Broch

    2013-12-01

    Full Text Available Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA. Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC of whole and lipid extracted algal (Spirulina maxima feedstocks in order to produce a solid biofuel (hydrochar and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase.

  2. Comprehensive solid-phase extraction of multitudinous bioactive peptides from equine plasma and urine for doping detection.

    Science.gov (United States)

    Guan, Fuyu; Robinson, Mary A

    2017-09-08

    The ability to analyze biological samples for multitudinous exogenous peptides with a single analytical method is desired for doping control in horse racing. The key to achieving this goal is the capability of extracting all target peptides from the sample matrix. In the present study, theory of mixed-mode solid-phase extraction (SPE) of peptides from plasma is described, and a generic mixed-mode SPE procedure has been developed for recovering multitudinous exogenous peptides with remarkable sequence diversity, from equine plasma and urine in a single procedure. Both the theory and the developed SPE procedure have led to the development of a novel analytical method for comprehensive detection of multitudinous bioactive peptides in equine plasma and urine using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). Thirty nine bioactive peptides were extracted with strong anion-exchange mixed-mode SPE sorbent, separated on a reversed-phase C 18 column and detected by HRMS and data-dependent tandem mass spectrometry. The limit of detection (LOD) was 10-50 pg mL -1 in plasma for most of the peptides and 100 pg mL -1 for the remaining. For urine, LOD was 20-400 pg mL -1 for most of the peptides and 1-4 ng mL -1 for the others. In vitro degradation of the peptides in equine plasma and urine was examined at ambient temperature; the peptides except those with a D-amino acid at position 2 were unstable not only in plasma but also in urine. The developed method was successful in analysis of plasma and urine samples from horses administered dermorphin. Additionally, dermorphin metabolites were identified in the absence of reference standards. The developed SPE procedure and LC-HRMS method can theoretically detect virtually all peptides present at a sufficient concentration in a sample. New peptides can be readily included in the method to be detected without method re-development. The developed method also generates such data that can be

  3. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine.

    Science.gov (United States)

    Rocío-Bautista, Priscilla; Martínez-Benito, Carla; Pino, Verónica; Pasán, Jorge; Ayala, Juan H; Ruiz-Pérez, Catalina; Afonso, Ana M

    2015-07-01

    Three metal-organic frameworks (MOFs), specifically HKUST-1, MOF-5, and MIL-53(Al), have been synthetized, characterized, studied and compared in a vortex-assisted dispersive micro-solid-phase extraction (VA-D-µ-SPE) procedure in combination with high-performance liquid chromatography (HPLC) with diode-array detection (DAD) for determining seven parabens in environmental waters (tap water, swimming pool water, and water coming from a spa pool), human urine (from two volunteers), and cosmetic creams (two commercial brands). Experimental parameters, such as nature and amount of MOF, sample volume, nature of elution solvent and its amount, vortex and centrifugation time, among others, were properly optimized. HKUST-1 was the most adequate MOF to work with. Detection limits for the overall method down to 0.1 μgL(-1) for butylparaben (BPB) and benzylparaben (BzPB) were obtained, with determination coefficients (R(2)) higher than 0.9966 for a range of 0.5-147 μgL(-1) (depending on the paraben), average relative recoveries (RR, in %) of 80.3% at the low spiked level (7 μgL(-1)), and relative standard deviation (RSD) values below 10% also at the low spiked level. The strength of the affinity between HKUST-1 and parabens was evaluated, and it ranged from 33.5% for isopropylparaben (iPPB) to 77.0% for isobutylparaben (iBPB). When analyzing complex environmental waters, RR values of 78%, inter-day precision values (as RSD) lower than 15%, and intra-day precision values lower than 7.8% were obtained, despite the observed matrix effect. When analyzing cosmetic creams, parabens were detected, with contents ranging from 0.14 ± 0.01 μgg(-1) for EPB in the healing cream analyzed to 1.12 ± 0.07 mgg(-1) for MPB in the mask cream analyzed, with precision values (RSD) lower than 12% and RR values from 63.7% for propylparaben (PPB) to 121% for iPPB. When analyzing human urine, no parabens were detected but the method could be performed with RSD values lower than 19%. These

  4. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    Science.gov (United States)

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC.

    Science.gov (United States)

    Li, Jian; Chen, Tian; Wang, Yuwei; Shi, Zhixiong; Zhou, Xianqing; Sun, Zhiwei; Wang, Dejun; Wu, Yongning

    2017-02-01

    Two simplified sample preparation procedures for simultaneous extraction and clean-up of tetrabromobisphenol A, α-, β-, and γ-hexabromocyclododecane and polybrominated diphenyl ethers in human serum were developed and validated. The first procedure was based on solid-phase extraction. Sample extraction, purification, and lipid removal were carried out directly on an Oasis HLB cartridge. The second procedure was a quick, easy, cheap, effective, rugged, and safe-based approach using octadecyl-modified silica particles as a sorbent. After sample extraction and cleanup, tetrabromobisphenol A/hexabromocyclododecane was separated from polybrominated diphenyl ethers by using a Si-based cartridge. Tetrabromobisphenol A and hexabromocyclododecane were then detected by high-performance liquid chromatography coupled to tandem mass spectrometry, while polybrominated diphenyl ethers were detected by gas chromatography coupled to tandem mass spectrometry. The results of the spike recovery test using fetal bovine serum showed that the average recoveries of the analytes ranged from 87.3 to 115.3% with relative standard deviations equal to or lower than 13.4 %. Limits of detection of the analytes were in the range of 0.4-19 pg/mL except for decabromodiphenyl ether. The developed method was successfully applied to routine analysis of human serum samples from occupational workers and the general population. Extremely high serum polybrominated diphenyl ethers levels up to 3.32 × 10 4 ng/g lipid weight were found in occupational workers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New Methyltrimethoxysilane-(3-Mercaptopropyl)- Trimethoxysilane Coated Hollow Fiber-Solid Phase Micro extraction for Hexanal and Heptanal Analysis

    International Nuclear Information System (INIS)

    Siti Munirah Abd Wahib; Mohd Marsin Sanagi

    2016-01-01

    Determination of volatile organic compounds (VOCs) in various matrices is often accomplished using solid phase micro extraction (SPME) as a superior mode of extraction. Alternatively, another configuration of solid phase micro extraction (SPME) namely hollow fiber-solid phase micro extraction (HF-SPME) is a great approach to redress some limitations of the ordinary SPME fibers including fiber breakage, coating stripping and sample carry over. The HF-SPME technique highlights the use of hollow polypropylene (PP) membrane to hold and protect the adsorbent inside its lumen. Unlike the conventional SPME, the inexpensive HF device can be disposed after single use. Introducing extracting phase via sol-gel technology has gained great interest owing to its simple preparation method and promising way to obtain materials with good characteristics. In the present work, a new hybrid silica material based on methyltrimethoxysilane-(3-mercaptopropyl)trimethoxysilane (MTMOS-MPTMOS) was introduced as a new extractant of HF-SPME and the effectiveness of the proposed method was tested for analysis of hexanal and heptanal as the target VOC analytes. Preparation of the HF-SPME MTMOS-MPTMOS was simple in which the hybrid material was synthesized via sol-gel method and was self-polymerized in small segments of HF. Parameters affecting the efficiency of the HF-SPME MTMOS-MPTMOS in extracting both aldehydes were thoroughly investigated and analyzed by gas chromatography-flame ionization detection (GC-FID). It was found that the highest efficiency was achieved as the extraction was conducted in 30 min at a stirring rate of 1000 rpm in a 10 mL of sample solution whereby the back-extraction was performed via vortex for 3 min using 100 μL methanol as desorption solvent. Under the optimal conditions, linearity was observed over a range of 0.020-10.00 μg mL"-"1 with detection limits of 0.015 μg mL"-"1 and 0.010 μg mL"-"1 for hexanal and heptanal, respectively. The applicability of the HF

  7. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  8. Determination of UV filters in high ionic strength sample solutions using matrix-compatible coatings for solid-phase microextraction.

    Science.gov (United States)

    An, Jiwoo; Anderson, Jared L

    2018-05-15

    A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2

  9. Dual solid-phase and stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis provides a suitable tool for assaying limonene-derived mint aroma compounds in red wine.

    Science.gov (United States)

    Picard, Magali; Franc, Céline; de Revel, Gilles; Marchand, Stéphanie

    2018-02-25

    A novel analytical method was developed for quantitative determination of eight limonene-derived monoterpenes responsible for the mint aroma in red wine. As these aromatic compounds are present at trace levels, a new dual extraction approach was proposed, combining solid-phase extraction (SPE) and stir bar sorptive extraction (SBSE), followed by gas chromatography-mass spectrometry analysis. The various parameters affecting the efficiency of extracting the analytes from wine samples in both the SPE and SBSE steps were first investigated, to determine the best compromise for the simultaneous analysis of the compounds studied. Following preliminary optimization of the dilution factor, phase ratio, and methanol content in the SBSE sample, cartridge sorbent mass, type of solvent, elution volume, and wine sample volume in the pre-concentration SPE step were studied. Highest response values were obtained when a 90 mL wine sample was extracted on a 500 mg SPE C18 cartridge and eluted with 1.5 mL methanol. The wine extract was then diluted in 10 mL water to obtain a final methanol content of 15% before the SBSE step. Good linearity, repeatability, reproducibility, accuracy and the required low detection and quantification limits were obtained under the conditions described, making this SPE-SBSE combination a suitable, powerful tool for routine analysis of the selected limonene-derived mint aroma compounds in large series of wine samples. Finally, the validated method was applied to 15 commercial red Bordeaux wines, aged from 3 to 23 years. Most of the compounds studied, present within the ng.L -1 range, were easily quantified for the first time in wine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review

    Science.gov (United States)

    Lemos, V. A.; Santos, M. S.; Santos, E. S.; Santos, M. J. S.; dos Santos, W. N. L.; Souza, A. S.; de Jesus, D. S.; das Virgens, C. F.; Carvalho, M. S.; Oleszczuk, N.; Vale, M. G. R.; Welz, B.; Ferreira, S. L. C.

    2007-01-01

    The first publication on the use of polyurethane foam (PUF) for sorption processes dates back to 1970, and soon after the material was applied for separation processes. The application of PUF as a sorbent for solid phase extraction of inorganic analytes for separation and pre-concentration purposes is reviewed. The physical and chemical characteristics of PUF (polyether and polyester type) are discussed and an introduction to the characterization of these sorption processes using different types of isotherms is given. Separation and pre-concentration methods using unloaded and loaded PUF in batch and on-line procedures with continuous flow and flow injection systems are presented. Methods for the direct solid sampling analysis of the PUF after pre-concentration are discussed as well as approaches for speciation analysis. Thermodynamic proprieties of some extraction processes are evaluated and the interpretation of determined parameters, such as enthalpy, entropy and Gibbs free energy in light of the physico-chemical processes is explained.

  11. Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry

    DEFF Research Database (Denmark)

    Callesen, Anne K; Mohammed, Shabaz; Bunkenborg, Jakob

    2005-01-01

    for translation of MALDI-MS based diagnostic methods to clinical applications. We have investigated a number of MALDI matrices and several miniaturized solid-phase extraction (SPE) methods for serum protein concentration and desalting with the aim of generating reproducible, high-quality protein profiles by MALDI...

  12. Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid phase microextraction method

    Directory of Open Access Journals (Sweden)

    Đurović-Pejčev Rada

    2016-01-01

    Full Text Available A method is described for simultaneous determination of five herbicides (metribuzin, acetochlor, clomazone, oxyfluorfen and dimethenamid belonging to different pesticides groups in soil samples. Developed headspace solid phase microextraction method (HS-SPME in combination with liquid-solid sample preparation (LS was optimized and applied in the analysis of some agricultural samples. Optimization of microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl content was perfor-med using 100 μm polydimethyl-siloxane (PDMS fiber. The extraction effi-ciencies of methanol, methanol:acetone=1:1 and methanol:acetone:hexane= =2:2:1 and the optimum number of extraction steps during the sample prepa-ration, were tested, as well. Gas chromatography-mass spectrometry (GC-MS was used for detection and quantification, obtaining relative standard deviation (RSD below 13%, and recovery values higher than 83% for multiple analyses of soil samples fortified at 30 μg kg-1 of each herbicide. Limits of detection (LOD were less than 1.2 μg kg-1 for all the studied herbicides. [Projekat Ministarstva nauke Republike Srbije, br. TR31043 i br. III43005

  13. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  14. Surfactant-enhanced liquid-liquid microextraction coupled to micro-solid phase extraction onto highly hydrophobic magnetic nanoparticles

    International Nuclear Information System (INIS)

    Giannoulis, Kiriakos M.; Giokas, Dimosthenis L.; Tsogas, George Z.; Vlessidis, Athanasios G.; Zhu, Qing; Pan, Qinmin

    2013-01-01

    We are presenting a simplified alternative method for dispersive liquid-liquid microextraction (DLLME) by resorting to the use of surfactants as emulsifiers and micro solid-phase extraction (μ-SPE). In this combined procedure, DLLME of hydrophobic components is initially accomplished in a mixed micellar/microemulsion extractant phase that is prepared by rapidly mixing a non-ionic surfactant and 1-octanol in aqueous medium. Then, and in contrast to classic DLLME, the extractant phase is collected by highly hydrophobic polysiloxane-coated core-shell Fe 2 O 3 (at)C magnetic nanoparticles. Hence, the sample components are the target analyte in the DLLME which, in turn, becomes the target analyte of the μ-SPE step. This 2-step approach represents a new and simple DLLME procedure that lacks tedious steps such as centrifugation, thawing, or delicate collection of the extractant phase. As a result, the analytical process is accelerated and the volume of the collected phase does not depend on the volume of the extraction solvent. The method was applied to extract cadmium in the form of its pyrrolidine dithiocarbamate chelate from spiked water samples prior to its determination by FAAS. Detection limits were brought down to the low μg L −1 levels by preconcentrating 10 mL samples with satisfactory recoveries (96.0–108.0 %). (author)

  15. Optimization of Solid Phase Micro-Extraction (SPME for Monitoring Occupational Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    H Heidari

    2012-05-01

    Full Text Available

    Background and Objectives: Analytical methods for volatile organic compounds (VOCs in different samples need extraction of compounds, by applying hazardous solvents. Solid phase micro-extraction (SPME is a solvent-free equilibrium extraction method, in which proper calibration can allow quantitative determinations of VOCs at a very good sensitivity without the use of any organic solvent. VOCs are generally present in urine only at trace levels, therefore, a sensitive procedure is needed for their trace determinations. Throughout this study, headspace solid phase micro-extraction (HS-SPME was followed by GC-FID for ethyl benzene in spiked urine was optimized.

    Methods: In this study, the parameters influencing SPME and gas chromatography of ethyl benzene, including extraction time, temperature, desorption temperature, desorption time, salt addition, sample pH, sample volume and sample agitation were investigated.

    Results: Extraction procedure was performed at 30°C for 6 min, using 0.2 gml-1 of NaCl in the sample solution. The sample volume and sample pH were optimized at 5 ml and 7 (neutral pH, respectively. Desorption of the ethyl benzene was carried out for 60 sec. at 250°C. The method was also validated with three different spiked urine samples and illustrated an appropriate reproducibility over six consecutive days as well as six within-day experiments. During this investigation, parameters of accuracy, linearity, and detection limits of the procedure were also evaluated.

    Conclusion: The developed method of HS- SPME-GC-FID proved to be a simple, convenient, and practical procedure, and was successfully used for measuring of ethyl benzene in spiked urine.

  16. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    International Nuclear Information System (INIS)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam; Moniri, Elham

    2014-01-01

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g"−"1. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models

  17. Trace-level determination of polar flavour compounds in butter by solid-phase extraction and gas chromatography-mass spectrometry.

    NARCIS (Netherlands)

    Adahchour, M.; Vreuls, J.J.; van der Heijden, A.; Brinkman, U.A.T.

    1999-01-01

    Volatile compounds are responsible for the aromas of butter. A simple technique for the determination of these components is described which is based on solid-phase extraction (SPE) after melting of the butter and separation of the aqueous phase from the fat. Volatile flavours present in the water

  18. Performance analysis of K-based KEP-CO2P1 solid sorbents in a bench-scale continuous dry-sorbent CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Cheol; Jo, Sung-Ho; Lee, Seung-Yong; Moon, Jong-Ho; Yi, Chang-Keun [Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ryu, Chong Kul; Lee, Joong Beom [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2016-01-15

    Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO{sub 2} capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO{sub 2} capture fluidized-bed process capable of capturing 0.5 ton CO{sub 2}/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidizedbed- type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 .deg. C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 .deg. C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO{sub 2} removal was greater than 90%, and the average CO{sub 2} removal was about 83% during 50 hours of continuous operation.

  19. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    Science.gov (United States)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  20. Ultrasound-assisted dispersive solid phase extraction of cadmium(II) and lead(II) using a hybrid nanoadsorbent composed of graphene and the zeolite clinoptilolite

    International Nuclear Information System (INIS)

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Shirkhanloo, Hamid; Rashidi, Ali Morad

    2015-01-01

    We describe a hybrid nanoadsorbent prepared by depositing graphene on the zeolite clinoptilolite by chemical vapor deposition. The resulting sorbent is well suited for the preconcentration of lead(II) and cadmium(II) by ultrasound-assisted dispersive micro solid–phase extraction. An extraction unit has been designed and manufactured that facilitates handling of small sample volumes. The effects of sample pH, amount of sorbent, concentration and volume of elution and time of ultrasonic bath were investigated. The nanoadsorbent was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray microanalysis, all of which revealed the high surface area of the graphene sheets on the clinoptilolite. The extraction recoveries when using the new nanoadsorbent are 97 % (as opposed to a mere 10 % in case of clinoptilolite only). It is assumed that the graphene sheets located around the porous structure of clinoptilolite are acting as a barrier against macromolecules potentially existing in the sample matrices. The method was applied to the determination of lead and cadmium in water and human serum samples by electrothermal atomic absorption spectrometry. The detection limits were as low as 70 and 4 ng L −1 for Pb(II) and Cd(II), respectively. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 203105 Seronorm Trace Elements Serum L-2). (author)

  1. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  2. Speciation analysis of tellurium by solid-phase extraction in the presence of ammonium pyrrolidine dithiocarbamate and inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chunhai; Cai, Qiantao; Guo, Zhong-Xian; Yang, Zhaoguang [Centre for Advanced Water Technology, Innovation Centre (NTU), Singapore (Singapore); Khoo, Soo Beng [Department of Chemistry, National University of Singapore (Singapore)

    2003-05-01

    Under acidic conditions tellurium(IV) formed a complex with ammonium pyrrolidine dithiocarbamate (APDC). The tellurium(IV) complex was completely retained on a non-polar Isolute silica-based octadecyl (C{sub 18}) sorbent-containing solid-phase extraction (SPE) cartridge, while the uncomplexed Te(VI) passed through the cartridge and remained as a free species in the solution. Only partial Te(IV) was retained on the SPE cartridge for samples without addition of APDC. On the basis of different retention behaviours of the complexed Te(IV) and uncomplexed Te(VI), a simple and highly sensitive method is proposed for the determination of total tellurium and Te(VI) by SPE separation and inductively coupled plasma mass spectrometry (ICP-MS) detection. The Te(IV) concentration was calculated as the difference between total tellurium and Te(VI) concentrations. The detection limit (3{sigma}) is 3 ng L{sup -1} tellurium. Factors affecting the separation and detection of tellurium species were investigated. Coexisting ions did not show significant interferences with the Te(IV)-APDC complex retention and the subsequent ICP-MS detection of Te. The method has been successfully applied to the tellurium speciation analysis in waters with spiked recoveries for Te(IV) and Te(VI) of 86.0-108% and 87.1-97.4%, respectively. (orig.)

  3. Using a new ligand for solid phase extraction of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Majid, E-mail: m-soleimani@hotmail.com [Department of Chemistry, Faculty of Sciences, Imam Khomeini International University (IKIU), Qazvin (Iran, Islamic Republic of); Mahmodi, Mohamad Saleh [Department of Chemistry, Faculty of Sciences, Imam Khomeini International University (IKIU), Qazvin (Iran, Islamic Republic of); Morsali, Ali [Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Khani, Azam; Afshar, Majid Ghahraman [Department of Chemistry, Faculty of Sciences, Imam Khomeini International University (IKIU), Qazvin (Iran, Islamic Republic of)

    2011-05-15

    The octadecyl silica cartridge as a sorbent and 4-bpdb (1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a ligand is a simple, rapid and reliable method for extracting and preconcentrating of Hg(II) in real samples prior to cold vapor atomic absorption spectrometry. Sample solutions were passed through a column at pH 4.5 then retained mercury ions on the column were eluted with minimal amount of 0.01 M nitric acid with 3 mL min{sup -1} flow rate. The effect of pH, type of buffer, flow rate of sample and eluent, type and volume of the eluent were investigated and optimized. At optimum effective parameters, concentration factor and detection limit were achieved 128 and 1.87 ng L{sup -1}, respectively.

  4. Using a new ligand for solid phase extraction of mercury

    International Nuclear Information System (INIS)

    Soleimani, Majid; Mahmodi, Mohamad Saleh; Morsali, Ali; Khani, Azam; Afshar, Majid Ghahraman

    2011-01-01

    The octadecyl silica cartridge as a sorbent and 4-bpdb (1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a ligand is a simple, rapid and reliable method for extracting and preconcentrating of Hg(II) in real samples prior to cold vapor atomic absorption spectrometry. Sample solutions were passed through a column at pH 4.5 then retained mercury ions on the column were eluted with minimal amount of 0.01 M nitric acid with 3 mL min -1 flow rate. The effect of pH, type of buffer, flow rate of sample and eluent, type and volume of the eluent were investigated and optimized. At optimum effective parameters, concentration factor and detection limit were achieved 128 and 1.87 ng L -1 , respectively.

  5. Study on Solid Phase Extraction and Spectrophotometric Determination of Nickel in Waters and Biological Samples

    International Nuclear Information System (INIS)

    Hu, Qiufen; Yang, Guangyu; Huang, Zhangjie; Yin, Jiayuan

    2004-01-01

    A sensitive, selective and rapid method for the determination of nickel based on the rapid reaction of nickel(II) with QADMAA and the solid phase extraction of the Ni(II)-QADMAA chelate with C 18 membrane disks has been developed. In the presence of pH 6.0 buffer solution and sodium dodecyl sulfonate (SDS) medium, QADMAA reacts with nickel to form a violet complex of a molar ratio of 1 : 2 (nickel to QADMAA). This chelate was enriched by solid phase extraction with C 18 membrane disks. An enrichment factor of 50 was obtained by elution of the chelates form the disks with the minimal amount of isopentyl alcohol. The molar absorptivity of the chelate was 1.32 x 10 5 L mol -1 cm -1 at 590 nm in the measured solution. Beer's law was obeyed in the range of 0.01-0.6 μg/mL. This method was applied to the determination of nickel in water and biological samples with good results

  6. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  7. Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction.

    Science.gov (United States)

    Huo, Shu-Hui; An, Hai-Yan; Yu, Jing; Mao, Xue-Feng; Zhang, Zhe; Bai, Lei; Huang, Yan-Feng; Zhou, Peng-Xin

    2017-09-29

    In this study, we report a facile, environmental friendly fabrication of a type of magnetic metal-organic framework (MOF) MIL-100 that can be used for magnetic solid-phase extraction (MSPE). The magnetic MOF composites were fabricated using in situ calcination method. The as-synthesized materials exhibited both high porosity and magnetic characteristics. They used for the MSPE of polycyclic aromatic hydrocarbons (PAHs) from water samples. Such MOF-based magnetic solid-phase extraction in combination with gas chromatography equipped with a flame ionization detector (GC-FID), exhibited wide linearity (0.02-250μgL -1 ), low detection limits (4.6-8.9ngL -1 ), and high enrichment factors (452-907) for PAHs. The relative standard deviations (RSDs) for intra- and inter-day extractions of PAHs were ranging from 1.7% to 9.8% and 3.8% to 9.2%, respectively. The recoveries for spiked PAHs (1μgL -1 ) in water samples were in the range of 88.5% to 106.6%. The results showed that the special anion-π orbital (electron donor-acceptor) interaction and π-π stacking between magnetic MIL-100 and PAHs play an important role in the adsorption of PAHs. Copyright © 2017. Published by Elsevier B.V.

  8. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    Science.gov (United States)

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  9. Determination of phenols in landfill leachate-contaminated groundwaters by solid-phase extraction

    DEFF Research Database (Denmark)

    Ask Reitzel, Lotte; Ledin, Anna

    2002-01-01

    A solid-phase extraction method for phenols in landfill leachates was developed and optimized in order to solve the expected and observed problems associated with an anaerobic matrix containing high concentrations of salts and organic matter. Isolute ENV1 cartridges exhibited the best retention...... be identified in leachates from three Danish landfills, ranging in concentration from 0.01 to 29 mg/ L, which is at the lower end of the concentration range usually found for phenols in landfill leachates (sub-mg/L to mg/L).  2002 Elsevier Science B.V. All rights reserved....

  10. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    Science.gov (United States)

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.

  11. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  12. Magnetic solid-phase extraction of non-steroidal anti-inflammatory drugs from environmental water samples using polyamidoamine dendrimer functionalized with magnetite nanoparticles as a sorbent.

    Science.gov (United States)

    Alinezhad, Heshmatollah; Amiri, Amirhassan; Tarahomi, Mehrasa; Maleki, Behrooz

    2018-06-01

    A novel polyamidoamine dendrimer functionalized with Fe 3 O 4 nanoparticles (Fe 3 O 4 @PAMAM) had been fabricated and used as magnetic solid-phase extraction (MSPE) adsorbent. The Fe 3 O 4 @PAMAM nanocomposites were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron spectroscopy, elemental analytical, and thermal gravimetric analysis. The MSPE method coupled with high-performance liquid chromatography with an ultraviolet detection system was applied for the separation/analysis of non-steroidal anti-inflammatory drugs (NSAIDs). Major parameters affecting the extraction efficiency of the selected drugs were optimized. Under optimal conditions, the enrichment factors for the proposed method were 701835. The linear range, limit of detection, correlation coefficient (r), and relative standard deviation (RSD) were found to be 0.15-500 ng mL -1 , 0.050.08 ng mL -1 , 0.99320.9967, and 4.5-7.0% (n = 5, 0.2, 10 and 300 ng mL -1 ), respectively. The method was successfully applied to the determination of NSAIDs in the real water samples. The recoveries of spiked water samples were in the range of 93.6-98.9% with RSDs varying from 6.1% to 9.0%, showing the good accuracy of the method. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Pipette-tip solid-phase extraction using polypyrrole as efficient adsorbent for extraction of avermectins and milbemycins in milk.

    Science.gov (United States)

    Florez, Diego Hernando Ângulo; Teixeira, Roseane Andrade; da Silva, Ricky Cássio Santos; Pires, Bruna Carneiro; Dutra, Flávia Viana Avelar; Borges, Keyller Bastos

    2018-05-01

    In this work, we developed a HPLC method for the multidetermination of avermectins (AVM) (abamectin-ABA 1b and ABA 1a, eprinomectin-EPR, and ivermectin-IVM) and milbemycins (moxidectin-MOX) in milk samples using polypyrrole (PPy) as adsorbent material in pipette-tip solid-phase extraction (PT-PPy-SPE). PPy was characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray diffraction and the data agreed with the literature. The sample preparation included the clean-up of the milk by protein precipitation (PP) with acetonitrile and extraction of the analytes by PT-PPy-SPE. The chromatographic method was developed in reverse phase and isocratic mode with flow rate at 1.2 mL min -1 and ultraviolet detection at 250 nm. The mobile phase composition was acetonitrile:methanol:water (55:25:20, v/v/v). The studied parameters and the optimized conditions for the sample preparation were washing solvent (300 μL water), volume and type of eluent (500 μL methanol), volume and pH of sample (1 mL and pH 10), amount of adsorbent material (50 mg PPy), and without addition of salt (NaCl). The method was linear over the concentration range from 20 to 3000 ng mL -1 with coefficients of correlation (r) ≥ 0.99 for all analytes and recoveries around 100%. The method developed and validated was used for the analyses of real milk samples from cow treated with Ivomec ® (IVM 3.5%), in which were found 21.51 ± 2.94 ng mL -1 of IVM. Finally, the results proved that PT-PPy-SPE coupled to HPLC-UV was economical, simple, and easy-to-perform technique. Graphical abstract Pipette-tip solid phase extraction using polypirrole as adsorbent material for determination of avermectins and milbemycins in milk.

  14. Solid phase extraction of Am (III) by resins impregnated with multiply diglycolamide-functionalized ligands

    International Nuclear Information System (INIS)

    Gujar, R.B.; Ansari, S.A.; Mohapatra, P.K.; Verboom, W.

    2016-01-01

    Solvent extraction studies with multiply diglycolamide-functionalized extractants such as tripodal diglycolamide (T-DGA) or diglycolamide-functionalized calix(4)arene (C4DGA) ligands have shown excellent results as compared to those of normal DGA ligands such as TODGA. A very high selectivity for Am(III) has been reported with these ligands with respect to U(VI) and Pu(IV). High selectivities and large extraction efficiencies of these ligands towards trivalent f elements were ascribed to a co-operative complexation mechanism. Furthermore, the extraction efficiency of these ligands increased several folds in ionic liquid medium as compared to paraffinic solvents. It was of interest, therefore, to prepare extraction chromatographic resins by impregnation of solvent systems containing these ligands in an ionic liquid. In the present work, solid phase extraction studies were carried out using these two multiply diglycolamide-functionalized extractants, viz. T-DGA (resin I) and C4DGA (resin-II) containing the ionic liquid C 4 mim. NTf 2 impregnated on Chromosorb-W

  15. Extração em fase sólida (SPE e micro extração em fase sólida (SPME de piretróides em água Solid-phase extraction (SPE and solid-phase microextraction of pyrethroids in water

    Directory of Open Access Journals (Sweden)

    Wilma Regina Barrionuevo

    2001-04-01

    Full Text Available The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE and solid phase microextraction (SPME. The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD. Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.

  16. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhang, Weihong; Qi, Yuehan; Qin, Deyuan; Liu, Jixin; Mao, Xuefei; Chen, Guoying; Wei, Chao; Qian, Yongzhong

    2017-08-01

    Accurate, stable and fast analysis of toxic inorganic arsenic (iAs) in complicated and arsenosugar-rich algae matrix is always a challenge. Herein, a novel analytical method for iAs in algae was reported, using bromine halogenation and on-line nonpolar solid phase extraction (SPE) followed by hydride generation atomic fluorescence spectrometry (HG-AFS). The separation of iAs from algae was first performed by nonpolar SPE sorbent using Br - for arsenic halogenation. Algae samples were extracted with 1% perchloric acid. Then, 1.5mL extract was reduced by 1% thiourea, and simultaneously reacted (for 30min) with 50μL of 10% KBr for converting iAs to AsBr 3 after adding 3.5mL of 70% HCl to 5mL. A polystyrene (PS) resin cartridge was employed to retain arsenicals, which were hydrolyzed, eluted from the PS resin with H 2 O, and categorized as iAs. The total iAs was quantified by HG-AFS. Under optimum conditions, the spiked recoveries of iAs in real algae samples were in the 82-96% range, and the method achieved a desirable limit of detection of 3μgkg -1 . The inter-day relative standard deviations were 4.5% and 4.1% for spiked 100 and 500μgkg -1 respectively, which proved acceptable for this method. For real algae samples analysis, the highest presence of iAs was found in sargassum fusiforme, followed by kelp, seaweed and laver. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam [Islamic Azad University, Tehran (Korea, Republic of); Moniri, Elham [Islamic Azad University, Varamin (Iran, Islamic Republic of)

    2014-10-15

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g{sup −1}. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models.

  19. Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Lorena, E-mail: lorena.vidal@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain); Ahmadi, Mazaher [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Fernández, Elena [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain); Madrakian, Tayyebeh [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Canals, Antonio, E-mail: a.canals@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences and University Institute of Materials, University of Alicante, P.O. Box 99, E-03080, Alicante (Spain)

    2017-06-08

    This study presents a new, user-friendly, cost-effective and portable headspace solid-phase extraction technique based on graphene oxide decorated with iron oxide magnetic nanoparticles as sorbent, located on one end of a small neodymium magnet. Hence, the new headspace solid-phase extraction technique has been called Magnetic Headspace Adsorptive Extraction (Mag-HSAE). In order to assess Mag-HSAE technique applicability to model analytes, some chlorobenzenes were extracted from water samples prior to gas chromatography-mass spectrometry determination. A multivariate approach was employed to optimize the experimental parameters affecting Mag-HSAE. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; extraction time, 30 min; sorbent amount, 10 mg; stirring speed, 1500 rpm, and ionic strength, non-significant), obtaining a linear response from 0.5 to 100 ng L{sup −1} for 1,3-DCB, 1,4-DCB, 1,2-DCB, 1,3,5-TCB, 1,2,4-TCB and 1,2,3-TCB; from 0.5 to 75 ng L{sup −1} for 1,2,4,5-TeCB, and PeCB; and from 1 to 75 ng L{sup −1} for 1,2,3,4-TeCB. The repeatability of the proposed method was evaluated at 10 ng L{sup −1} and 50 ng L{sup −1} spiking levels, and coefficients of variation ranged between 1.5 and 9.5% (n = 5). Limits of detection values were found between 93 and 301 pg L{sup −1}. Finally, tap, mineral and effluent water were selected as real water samples to assess method applicability. Relative recoveries varied between 86 and 110% showing negligible matrix effects. - Highlights: • A new extraction technique named Magnetic Headspace Adsorptive Extraction is presented. • Graphene oxide/iron oxide composite deposited on a neodymiun magnet as sorbent. • Sorbent of low cost, rapid and simple synthesis, easy manipulation and portability options. • Fast and efficient extraction and sensitive determination of chlorobenzenes in water samples.

  20. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    Science.gov (United States)

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  1. VOLATILE COMPOUNDS OF LITHRAEA CAUSTICA (LITRE) DETERMINATED BY SOLID PHASE MICRO-EXTRACTION (SPME)

    OpenAIRE

    GARBARINO, JUAN A; SALVATORE, GIUSEPPE; PIVANOVO, MARISA; CHAMY, MARÍA CRISTINA; NICOLETTI, MARCELLO; DE IOANNES, ALFREDO

    2002-01-01

    The head space of the aerial parts of Lithraea caustica was analyzed by Solid Phase Micro-Extraction (SPME) technique, obtaining as main volatile compounds the monoterpenes, myrcene, a -pinene, , p-cymene and limonene, as well as the sesquiterpene caryophylene. De las partes áereas de Lithraea caustica y usando la técnica de Micro-Extracción en Fase Sólida (MEFS), fueron identificados y cuantificados los principales compuestos volátiles: los monoterpenos, mirceno, a -pineno, p-cimeno y lim...

  2. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Lyczko, Nathalie; Sharrock, Patrick; Nzihou, Ange

    2017-10-01

    Hydroxyapatite (HAP) is highly considered as good sorbent for the removal of metals from the aqueous phase. However, soluble metals co-exist with organic pollutants in wastewaters. But little work has been devoted to investigate the reactivity of HAP for the removal of organic compounds. The main objective of this work is to study the reactivity of HAP-based sorbents for the removal of catechol as a model organic pollutant from an aqueous solution. Thus, HAP sorbents were firstly synthesized using calcium carbonate and potassium dihydrogen phosphate under moderate conditions (25-80°C, atmospheric pressure). A zinc-doped HAP was also used as sorbent, which was obtained from the contact of HAP with an aqueous solution of zinc nitrate. All the sorbents were characterized by different standard physico-chemical techniques. The sorption of catechol was carried out in a batch reactor under stirring at room temperature and pressure. Zinc-doped HAP sorbent was found to be more reactive than non-doped HAP sorbents for the fixation of catechol. The highest sorption capacity was of 15 mg of C per gram of zinc-doped HAP sorbent. The results obtained suggest the reaction scheme of HAP sorbents with metals and organic pollutants when HAP sorbents were used for the treatment of complex wastewaters.

  3. Magnetic and Mössbauer Study of Cerium-Based Reactive Sorbent

    Czech Academy of Sciences Publication Activity Database

    Jirásková, Yvonna; Buršík, Jiří; Životský, O.; Luňáček, J.; Janos, P.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1096-1098 ISSN 0587-4246. [CSMAG 2016 - Czech and Slovak Conference on Magnetism /16./. Košice, 13.06.2016-17.06.2016] R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Cerium-based sorbent * magnetic properties * phase composition * composite Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  4. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  5. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Peroxidase-catalyzed stabilization of 2,4-dichlorophenol in alkali-extracted soils.

    Science.gov (United States)

    Palomo, Mónica; Bhandari, Alok

    2011-01-01

    Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C.

  7. A fast, simple and green method for the extraction of carbamate pesticides from rice by microwave assisted steam extraction coupled with solid phase extraction.

    Science.gov (United States)

    Song, Weitao; Zhang, Yiqun; Li, Guijie; Chen, Haiyan; Wang, Hui; Zhao, Qi; He, Dong; Zhao, Chun; Ding, Lan

    2014-01-15

    This paper presented a fast, simple and green sample pretreatment method for the extraction of 8 carbamate pesticides in rice. The carbamate pesticides were extracted by microwave assisted water steam extraction method, and the extract obtained was immediately applied on a C18 solid phase extraction cartridge for clean-up and concentration. The eluate containing target compounds was finally analysed by high performance liquid chromatography with mass spectrometry. The parameters affecting extraction efficiency were investigated and optimised. The limits of detection ranging from 1.1 to 4.2ngg(-1) were obtained. The recoveries of 8 carbamate pesticides ranged from 66% to 117% at three spiked levels, and the inter- and intra-day relative standard deviation values were less than 9.1%. Compared with traditional methods, the proposed method cost less extraction time and organic solvent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Development of Novel Sorbents for Uranium Extraction from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenbin [Univ. of Chicago, IL (United States); Taylor-Pashow, Kathryn [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  9. Development of Novel Sorbents for Uranium Extraction from Seawater

    International Nuclear Information System (INIS)

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-01

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  10. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples.

    Science.gov (United States)

    Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid

    2018-06-15

    The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Simultaneous extraction and determination of lead, cadmium and copper in rice samples by a new pre-concentration technique: Hollow fiber solid phase microextraction combined with differential pulse anodic stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Es' haghi, Zarrin, E-mail: z_eshaghi@pnu.ac.i [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Khalili, Maryam; Khazaeifar, Ali [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Rounaghi, Gholam Hossein [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2011-03-30

    In the present work, a novel solid phase microextraction (SPME) technique using a hollow fiber-supported sol-gel combined with multi-walled carbon nanotubes, coupled with differential pulse anodic stripping voltammetry (DPASV) was employed in the simultaneous extraction and determination of lead, cadmium and copper in rice. In this technique, an innovative solid sorbent containing mixture of carbon nanotube and a composite microporous compound was developed by the sol-gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). The growth process was initiated in basic condition (pH 10-11). Afterward this sol was injected into a polypropylene hollow fiber segment for in situ gelation process. The main factors influencing the pre-concentration and extraction of the metal ions; pH of the aqueous feed solution, extraction time, aqueous feed volume, agitation speed, the role of carbon nanotube reinforcement (as-grown and functionalized MWCNT) and salting effect have been examined in detail. Under the optimized conditions, linear calibration curves were established for the concentration of Cd(II), Pb(II) and Cu(II) in the range of 0.05-500, 0.05-500 and 0.01-100 ng mL{sup -1}, respectively. Detection limits obtained in this way are, 0.01, 0.025 and 0.0073 ng mL{sup -1} for Cd(II), Pb(II) and Cu(II), respectively. The relative standard deviations (RSDs) were found to be less than 5% (n = 5, conc.: 1.0 ng mL{sup -1}).

  12. Antifouling booster biocide extraction from marine sediments: a fast and simple method based on vortex-assisted matrix solid-phase extraction.

    Science.gov (United States)

    Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto

    2018-03-01

    This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.

  13. Fast determination of seven synthetic pigments from wine and soft drinks using magnetic dispersive solid-phase extraction followed by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Chen, Xiao-Hong; Zhao, Yong-Gang; Shen, Hao-Yu; Zhou, Li-Xin; Pan, Sheng-Dong; Jin, Mi-Cong

    2014-06-13

    A novel, simple and sensitive method based on the use of magnetic dispersive solid-phase extraction (M-dSPE) procedure combined with ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) was developed to determine seven synthetic pigments (tartrazine, amaranth, carmine, sunset yellow, allura red, brilliant blue and erythrosine) in wines and soft drinks. An amino-functionalized low degrees of cross-linking magnetic polymer (NH2-LDC-MP) was synthesized via suspension polymerization, and characterized by transmission electron microscopy (TEM). The NH2-LDC-MP was used as the M-dSPE sorbent to remove the matrix from the solution, and the main factors affecting the extraction were investigated in detail. The obtained results demonstrated the higher extraction capacity of NH2-LDC-MP with recoveries between 84.0 and 116.2%. The limits of quantification (LOQs) for the seven synthetic pigments were between 1.51 and 5.0μg/L in wines and soft drinks. The developed M-dSPE UFLC-MS/MS method had been successfully applied to the real wines and soft drinks for food-safety risk monitoring in Zhejiang Province, China. The results showed that sunset yellow was in three out of thirty soft drink samples (2.95-42.6μg/L), and erythrosine in one out of fifteen dry red wine samples (3.22μg/L), respectively. It was confirmed that the NH2-LDC-MP was a kind of highly effective M-dSPE materials for the pigments analyses. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of Phthalate Plasticisers in Palm Oil Using Online Solid Phase Extraction-Liquid Chromatography (SPE-LC

    Directory of Open Access Journals (Sweden)

    Nazarudin Ibrahim

    2014-01-01

    Full Text Available Contamination of phthalates plasticisers to food has raised concern as some of the phthalates are suspected to be endocrine disruptors. The phthalates have high affinity with oily environment and analysing these chemicals in such matrices is difficult because of the trace amount of the analyte and interference from matrix. An online solid phase extraction (SPE technique using a large volume (3.5 mL injection was developed for the analysis of 6 common plasticisers in palm oil. A simple sample preparation involving alumina as a fat retainer and methanol : acetonitrile (1 : 1 as the extraction solvent was performed prior to the usage of online SPE-LC system. This system consists of two columns, C16 for the solid phase extraction (SPE and C18 as the analytical column, and a photo diode array detector. The calibration curves were linear from 5 to 1000 μg L−1, with correlation coefficients above 0.99. The instrumental limit of detection was 3 μg L−1 and satisfactory recovery was obtained. A screening on a few samples in the retail market revealed the presence of dibutyl phthalate (DBP and butylbenzylphthalate (BBP in the palm oil, with concentration less than 1 mg L−1.

  15. Determination of volatile polycyclic aromatic hydrocarbons in waters using headspace solid-phase microextraction with a benzyl-functionalized crosslinked polymeric ionic liquid coating.

    Science.gov (United States)

    Merdivan, Melek; Pino, Verónica; Anderson, Jared L

    2017-08-01

    A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.

  16. Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Ponce-Robles, Laura; Rivas, Gracia; Esteban, Belen; Oller, Isabel; Malato, Sixto; Agüera, Ana

    2017-10-01

    An analytical method was developed and validated for the determination of ten pesticides in sewage sludge coming from an agro-food industry. The method was based on the application of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction for solid sewage sludge and SPE extraction for sludge aqueous phase, followed by liquid chromatography (LC) coupled to hybrid quadrupole/linear ion trap mass spectrometry (QqLIT-MS). The QuEChERS method was reported 14 years ago and nowadays is mainly applied to the analysis of pesticides in food. More recent applications have been reported in other matrices as sewage sludge, but the complexity of the matrix makes necessary the optimization of the cleanup step to improve the efficiency of the analysis. With this aim, several dispersive solid-phase extraction cleanup sorbents were tested, choosing C18 + PSA as a d-SPE sorbent. The proposed method was satisfactorily validated for most compounds investigated, showing recoveries higher than 80% in most cases, with the only exception of prochloraz (71%) at low concentration level. Limits of quantification were lower than 40 ng l -1 in the aqueous phase and below 40 ng g -1 in the solid phase for the majority of the analytes. The method was applied to solid sludge and the sludge aqueous phase coming from an agro-food industry which processes fruits and vegetables. Graphical abstract Application of LC/MS/MS advanced analytical techniques for determination of pesticides contained in sewage sludge.

  17. Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis

    DEFF Research Database (Denmark)

    Calvano, Cosima; Jensen, Ole; Zambonin, Carlo

    2009-01-01

    A new micro-solid phase extraction (micro-SPE) procedure based on titanium dioxide microcolumns was developed for the selective extraction of phospholipids (PLs) from dairy products before matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. All...... the extraction steps (loading, washing, and elution) have been optimized using a synthetic mixture of PLs standard and the procedure was subsequently applied to food samples such as milk, chocolate milk and butter. The whole method demonstrated to be simpler than traditional approaches and it appears very...

  18. New sorbent materials for selective extraction of cocaine and benzoylecgonine from human urine samples.

    Science.gov (United States)

    Bujak, Renata; Gadzała-Kopciuch, Renata; Nowaczyk, Alicja; Raczak-Gutknecht, Joanna; Kordalewska, Marta; Struck-Lewicka, Wiktoria; Waszczuk-Jankowska, Małgorzata; Tomczak, Ewa; Kaliszan, Michał; Buszewski, Bogusław; Markuszewski, Michał J

    2016-02-20

    An increase in cocaine consumption has been observed in Europe during the last decade. Benzoylecgonine, as a main urinary metabolite of cocaine in human, is so far the most reliable marker of cocaine consumption. Determination of cocaine and its metabolite in complex biological samples as urine or blood, requires efficient and selective sample pretreatment. In this preliminary study, the newly synthesized sorbent materials were proposed for selective extraction of cocaine and benzoylecgonine from urine samples. Application of these sorbent media allowed to determine cocaine and benzoylecgonine in urine samples at the concentration level of 100ng/ml with good recovery values as 81.7%±6.6 and 73.8%±4.2, respectively. The newly synthesized materials provided efficient, inexpensive and selective extraction of both cocaine and benzoylecgonine from urine samples, which can consequently lead to an increase of the sensitivity of the current available screening diagnostic tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Analysis of Free Amino Acids in Different Extracts of Orthosiphon stamineus Leaves by High-Performance Liquid Chromatography Combined with Solid-Phase Extraction.

    Science.gov (United States)

    Shafaei, Armaghan; Halim, Nor Hidayah Ab; Zakaria, Norhidayah; Ismail, Zhari

    2017-10-01

    Orthosiphon stamineus (OS) Benth is a medicinal plant and native in Southeast Asia. Previous studies have shown that OS leaves possess antioxidant, cytotoxic, diuretic, antihypertensive, and uricosuric effects. These beneficial effects have been attributed to the presence of primary and secondary metabolites such as polyphenols, amino acids, and flavonoids. To develop and validate an high-performance liquid chromatography (HPLC)-diode array detector (DAD) method combined with solid-phase extraction that involves precolumn derivatization with O -phthaladehyde for simultaneous analysis of free amino acids in OS leaves extracts. OS leaves were extracted with water (OS-W), ethanol (OS-E), methanol (OS-M), 50% ethanol (OS-EW), and 50% methanol (OS-MW). The extracts were treated by C18 cartridge before derivatization, resulting in great improvement of separation by Zorbox Eclipse XDB-C 18 column. The HPLC-DAD method was successfully developed and validated for analyzing the contents of free amino acids in OS extracts. The results showed that l-aspartic acid with 0.93 ± 0.01 nmol/mg was the major free amino acid in OS-W extract. However, in OS-E, OS-M, OS-EW, and OS-MW, l-glutamic acid with 3.53 ± 0.16, 2.17 ± 0.10, 4.01 ± 0.12, and 2.49 ± 0.12 nmol/mg, respectively, was the major free amino acid. Subsequently, l-serine, which was detected in OS-W, OS-E, and OS-M, was the minor free amino acid with 0.33 ± 0.02, 0.12 ± 0.01, and 0.06 ± 0.01 nmol/mg, respectively. However, l-threonine with 0.26 ± 0.02 and 0.19 ± 0.08 nmol/mL in OS-EW and OS-MW, respectively, had the lowest concentration compared with other amino acid components. All validation parameters of the developed method indicate that the method is reliable and efficient to simultaneously determine the free amino acids content for routine analysis of OS extracts. The HPLC-DAD method combined with solid phase extraction was successfully developed and validated for simultaneous determination and

  20. Sample preparation with solid phase microextraction and exhaustive extraction approaches: Comparison for challenging cases.

    Science.gov (United States)

    Boyacı, Ezel; Rodríguez-Lafuente, Ángel; Gorynski, Krzysztof; Mirnaghi, Fatemeh; Souza-Silva, Érica A; Hein, Dietmar; Pawliszyn, Janusz

    2015-05-11

    In chemical analysis, sample preparation is frequently considered the bottleneck of the entire analytical method. The success of the final method strongly depends on understanding the entire process of analysis of a particular type of analyte in a sample, namely: the physicochemical properties of the analytes (solubility, volatility, polarity etc.), the environmental conditions, and the matrix components of the sample. Various sample preparation strategies have been developed based on exhaustive or non-exhaustive extraction of analytes from matrices. Undoubtedly, amongst all sample preparation approaches, liquid extraction, including liquid-liquid (LLE) and solid phase extraction (SPE), are the most well-known, widely used, and commonly accepted methods by many international organizations and accredited laboratories. Both methods are well documented and there are many well defined procedures, which make them, at first sight, the methods of choice. However, many challenging tasks, such as complex matrix applications, on-site and in vivo applications, and determination of matrix-bound and free concentrations of analytes, are not easily attainable with these classical approaches for sample preparation. In the last two decades, the introduction of solid phase microextraction (SPME) has brought significant progress in the sample preparation area by facilitating on-site and in vivo applications, time weighted average (TWA) and instantaneous concentration determinations. Recently introduced matrix compatible coatings for SPME facilitate direct extraction from complex matrices and fill the gap in direct sampling from challenging matrices. Following introduction of SPME, numerous other microextraction approaches evolved to address limitations of the above mentioned techniques. There is not a single method that can be considered as a universal solution for sample preparation. This review aims to show the main advantages and limitations of the above mentioned sample

  1. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography.

    Science.gov (United States)

    Du, Kunze; Li, Jin; Tian, Fei; Chang, Yan-Xu

    2018-02-20

    A simple nonionic detergent - based vortex- synchronized matrix solid-phase dispersion (ND-VSMSPD) method was developed to extract bioactive compounds in Forsythiae Fructus coupled with ultra high-performance liquid chromatography (UHPLC). Nonionic detergent Triton 114 was firstly used as a green elution reagent in vortex- synchronized MSPD procedure. The optimum parameters were investigated to attain the best results, including Florisil as sorbent, 2mL 10% (v/v) nonionic detergent Triton X-114 as the elution reagent, 1:1 of sample/sorbent ratio, grinding for 3min, and whirling for 2min. The recoveries of the six compounds in Forsythiae Fructus were in the range of 95-104% (RSD arctigenin (r≥0.999). It was proved that the extraction yields of almost all compounds attained by the established vortex- synchronized MSPD, which required lower sample, reagent and time, were higher than the normal MSPD and the traditional ultrasonic-assisted extraction. Consequently, this developed vortex- synchronized MSPD coupled with simple UHPLC method could be efficiently applies to extract and analyze the target compounds in real Forsythiae Fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jochmann, Maik A.; Schmidt, Torsten C. [Eberhard-Karls-Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Tuebingen (Germany); Chair of Instrumental Analysis, University Duisburg-Essen, Duisburg (Germany); Yuan, Xue [Eberhard-Karls-Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Tuebingen (Germany)

    2007-03-15

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-{mu}m film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons. (orig.)

  3. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction.

    Science.gov (United States)

    Jochmann, Maik A; Yuan, Xue; Schmidt, Torsten C

    2007-03-01

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-microm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

  4. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  5. A Simple Vortex-Assisted Magnetic Dispersive Solid Phase Microextraction System for Preconcentration and Separation of Triazine Herbicides from Environmental Water and Vegetable Samples Using Fe₃O₄@MIL-100(Fe) Sorbent.

    Science.gov (United States)

    Nasrollahpour, Atefe; Moradi, Seyyed Ershad

    2018-04-04

    A vortex-assisted magnetic dispersive solid phase microextraction coupled with high-performance liquid chromatography has been developed for the extraction and determination of triazine herbicides by using magnetic metal organic frameworks [Fe₃O₄@MIL-100(Fe)] in environmental water and vegetable samples. The Fe₃O₄@MIL-100(Fe) composite has been characterized by using X-ray diffraction spectroscopy, tunneling electron microscopy, thermogravimetric measurement, and Brunauer-Emmett-Teller analysis. The method is based on the sorption of triazine herbicides on Fe₃O₄@MIL-100(Fe) because of the complex formation between iron oxide nanoparticles and triazine herbicides beside π-π interactions between organic parts of Fe₃O₄@MIL-100(Fe) and triazine herbicides. The experimental parameters for the preconcentration of triazine herbicides, such as the type and volume of the eluent, pH, time of the sorption and desorption, and the amount of the sorbent, were optimized. Under the optimized conditions, the method was linear over the concentration range of 0.0061 to 70 ng/mL for each triazine herbicide, and the correlation coefficients ranged from 0.9988 to 0.9997. The limit of detection of the method at a signal-to-noise ratio of 3 was 2.0 to 5.3 ng/mL. The relative standard deviations for inter- and intraday assays were in the range of 5.8 to 10.2% and 3.8 to 6.3%, respectively.

  6. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation of a hollow porous molecularly imprinted polymer using tetrabromobisphenol A as a dummy template and its application as SPE sorbent for determination of bisphenol A in tap water.

    Science.gov (United States)

    Li, Jin; Zhang, Xuebin; Liu, Yuxin; Tong, Hongwu; Xu, Yeping; Liu, Shaomin

    2013-12-15

    In this paper, a highly selective sample cleanup procedure combing dummy molecular imprinting and solid-phase extraction (DMIP-SPE) was developed for the isolation and determination of bisphenol A (BPA) in tap water. The novel hollow porous dummy molecularly imprinted polymer (HPDMIP) was prepared adopting a sacrificial support approach, using tetrabromobisphenol A (TBBPA), whose structure was similar to that of BPA, as the dummy template and mesoporous MCM-48 nanospheres as the support. Owing to a very short distance between the binding sites and the surface, a large surface area and a good steric structure to match its imprint molecules, the maximum adsorption capacities (Qmax) of the dummy-imprinted and non-imprinted sorbents for BPA were as high as 445 and 340 μmol g(-1), respectively, and the adsorption reached about 73% of Qmax in 10 min. Meanwhile, a method was developed for the determination of BPA using HPDMIP as a solid-phase extraction enrichment sorbent coupled with HPLC. Under the optimum experimental conditions, HPDMIP exhibited satisfactory results in the enrichment and determination of BPA in tap water with a recovery rate of 95-105%, and relative standard deviations of below 6%, and it can achieve a limit of detection as low as 3 ng mL(-1). The developed extraction protocol eliminated the effect of template leakage on quantitative analysis and could be applied for the determination of BPA in complicated functional samples. © 2013 Elsevier B.V. All rights reserved.

  8. Electrophoretic deposition of graphene oxide onto carbon fibers for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Bu, Yanan; Luo, Chuannan; Sun, Min

    2017-09-29

    Carbon fibers (CFs) were functionalized with graphene oxide (GO) by an electrophoretic deposition (EPD) method for in-tube solid-phase microextraction (SPME). GO-CFs were filled into a poly(ether ether ketone) (PEEK) tube to obtain a fibers-in-tube SPME device, which was connected with high performance liquid chromatography (HPLC) equipment to build online SPME-HPLC system. Compared with CFs, GO-CFs presented obviously better extraction performance, due to excellent adsorption property and large surface area of GO. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, the important extraction conditions were optimized, such as sample flow rate, extraction time, organic solvent content and desorption time. An online analysis method was established with wide linear range (0.01-50μgL -1 ) and low detection limits (0.001-0.004μgL -1 ). Good sensitivity resulted from high enrichment factors (1133-3840) of GO-CFs in-tube device towards PAHs. The analysis method was used to online determination of PAHs in wastewater samples. Some target analytes were detected and relative recoveries were in the range of 90.2-112%. It is obvious that the proposed GO-CFs in-tube device was an efficient extraction device, and EPD could be used to develop nanomaterials functionalized sorbents for sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Lorenzo, María; Campo, Julián; Picó, Yolanda

    2018-03-22

    A solid-liquid extraction method in combination with high-performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean-up by solid-phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50-121% for soil and 47-123% for biota, both with high precision (RSDs solid-phase extraction cartridge clogging that increase variability and analysis time. The method was successfully applied for the determination of organophosphorus flame retardants in soil and fish from L'Albufera Natural Park (Valencia, Spain). Target compounds were detected in all soil and fish samples with values varying from 13.8 to 89.7 ng/g dry weight and from 3.3 to 53.0 ng/g wet weight, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song

    2015-10-01

    A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    NARCIS (Netherlands)

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC

  12. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Li, Yixue; Lin, Yunxuan; Zhang, Haibao; Zhou, Yigang

    2016-01-01

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe 3 O 4 @SiO 2 -MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe 3 O 4 @SiO 2 -MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe 3 O 4 @SiO 2 -MPS, Fe 3 O 4 @SiO 2 -MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe 3 O 4 @SiO 2 -MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe 3 O 4 @SiO 2 -MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica microspheres. • Fe 3 O 4 @SiO 2 -MPS@PDES showed higher extraction capacity

  13. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  14. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO2 solid-phase extraction.

    Science.gov (United States)

    García-Ruiz, Silvia; Petrov, Ivan; Vassileva, Emilia; Quétel, Christophe R

    2011-11-01

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 μg L(-1) depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below μg L(-1) level in natural water. It is based on solid-phase extraction using TiO(2) nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 ± 2.8 ng kg(-1) (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg(-1)). We applied the developed method to the groundwater and wastewater

  15. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...

  16. Solid-phase extraction clean-up of ciguatoxin-contaminated coral fish extracts for use in the mouse bioassay.

    Science.gov (United States)

    Wong, Chun Kwan; Hung, Patricia; Lee, Kellie L H; Kam, Kai Man

    2009-02-01

    Florisil solid-phase extraction (SPE) cartridges were used for purifying ciguatoxin (CTX)-contaminated coral fish extracts, with the aim of removing extracted lipid but retaining optimal level of CTXs in the purified fractions. The CTX-containing fraction (target fraction) in fish ether extract was isolated and purified by eluting through a commercially available Florisil cartridge with hexane-acetone-methanol solvent mixtures of increasing polarity (hexane-acetone (4:1, v/v) < acetone-methanol (7:3, v/v) < 100% methanol). Application of Florisil SPE using acetone-methanol (7:3, v/v) condition facilitated the separation of 4.2 +/- 0.4 mg (mean +/- standard error of the mean (SEM)) of purified target fraction from 20 mg ether extract with good retention of CTXs. The mouse bioassay was used to demonstrate that the average CTX recovery of the target fraction from CTX-spiked samples was 75.8% +/- 3.3%, which was significantly increased by 96.7% +/- 15% when compared with CTX recovery from ether extracts (44.8% +/- 5.2%) without performing SPE purification. Over 70% of non-target lipids were removed in which no CTX toxicity was found. Moreover, the target fractions of both CTX-spiked and naturally CTX-contaminated samples gave more prominent toxic responses of hypothermia and/or induced more rapid death of the mice. The use of acetone-methanol (7:3, v/v) condition in the elution could significantly improve overall recovery of CTXs, while minimizing the possible interferences of lipid matrix from co-extractants on mice.

  17. Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES.

    Science.gov (United States)

    Ozdemir, Sadin; Serkan Yalcin, M; Kilinc, Ersin; Soylak, Mustafa

    2017-12-20

    The authors show that the fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable sorbent for magnetic solid phase extraction of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized. Following elution with 1 M HCl, the ions were quantified by ICP-OES. The limits of detection are 21 pg·mL -1 for Co(II), and 19 pg·mL -1 for Sn(II). The preconcentration factors are 100 for both ions. The sorption capacities of the sorbent are 35.8 mg·g -1 for Co(II) and 29.6 mg·g -1 for Sn(II). The method was applied to the analysis of certificated reference materials and gave ≥95% recoveries with low RSDs. It was also successfully applied to the quantification of Co(II) and Sn(II) in spiked environmental and food samples. Graphical abstract The fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable biosorbent for magnetic solid phase extraction (MSPE) of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized.

  18. Improved solid-phase extraction method for systematic toxicological analysis in biological fluids.

    Science.gov (United States)

    Soriano, T; Jurado, C; Menéndez, M; Repetto, M

    2001-03-01

    A method for the simultaneous qualitative and quantitative determination of drugs of abuse (opiates, cocaine, or amphetamines) and prescribed drugs (tricyclic antidepressants, phenotiazines, benzodiazepines, etc.) in biological fluids--blood, urine, bile, and gastric contents--was developed. This procedure involves solid-phase extraction with Bond-Elut Certify columns followed by analysis by gas chromatography-nitrogen-phosphorus detection (GC-NPD) and confirmation by gas chromatography-mass spectrometry (GC-MS), after derivatization, when necessary. Pretreatment was performed on all samples: sonication for 15 min plus enzymatic hydrolysis with beta-glucuronidase in urine. With respect to the internal standards, nalorphine and trihexylamine were used for basic substances, allobarbital for acidic drugs, and prazepam for benzodiazepines. Acidic and basic compounds were extracted from different aliquots of samples at different pH levels: 6-6.5 for the acidic and neutral and 8-8.5 for the basic and the benzodiazepines. Several areas of experimental design were considered in the process of method optimization. These included internal standards, pH, sonication, flow rate and washing solvents. It was found that systematic analysis could be reliably performed using optimized extraction conditions. The recovery rates for the compounds tested were always higher than 61.02%.

  19. Improving the On-Line Extraction of Polar Compounds by IT-SPME with Silica Nanoparticles Modified Phases

    Directory of Open Access Journals (Sweden)

    Pascual Serra-Mora

    2018-02-01

    Full Text Available In the present work the extraction efficiency of in-tube solid-phase microextraction (IT-SPME for polar herbicides has been evaluated using extractive capillaries coated with different polymeric sorbents. For this purpose, aqueous solutions of herbicides with a wide range of polarities, including some highly polar compounds (log Kow < 1, have been directly processed by IT-SPME coupled on-line to capillary liquid chromatography with UV-diode array detection. For extraction, commercially available capillary columns coated with polydimethylsiloxane (PDMS and polyetilenglicol (PEG-based phases have been used, and the results have been compared with those obtained with a synthesized tetraethyl orthosilicate (TEOS-trimethoxyethylsilane (MTEOS polymer, as well as the same polymer reinforced with silica nanoparticles (SiO2 NPs. The SiO2 NPs functionalized TEOS-MTEOS coating provided the best results for most herbicides, especially for the most polar compounds. On the basis of the results obtained, conditions for the quantification of the herbicides tested are described using a SiO2 NPs reinforced TEOS-MTEOS coated capillary. The proposed method provided satisfactory linearity up to concentrations of 200 μg/L. The precision was also suitable, with relative standard deviations (RSDs values ≤9% (n = 3, and the limits of detection (LODs were within the 0.5–7.5 µg/L range. The method has been applied to different water samples and the extract obtained from an agricultural soil.

  20. Determination of Scopolamine in Human Saliva Using Solid Phase Extraction and LC/MS/MS

    Science.gov (United States)

    Wang, Zuwei; Vaksman, Zalman; Boyd, Jason; Putcha, Lakshmi

    2007-01-01

    Purpose: Scopolamine is the preferred treatment for motion sickness during space flight because of its quick onset of action, short half-life and favorable side-effect profile. The dose administered depends on the mode of administration and usually ranges between 0.1 and 0.8 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids by using conventional HPLC methods. To measure scopolamine in saliva and thereby to evaluate the pharmacokinetics of scopolamine, we developed an LC/MS/MS method using off-line solid phase extraction. Method: Samples (0.5mL) were loaded onto Waters Oasis HLB co-polymer cartridges (10 mg, 1 mL) and eluted with 0.5 mL methanol without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 4 minutes. The mobile phase for separation was 90:10 (v/v) methanol: ammonium acetate (2 mM) in water, pH 5.0 +/- 0.1. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 yields 138.1 and internal standard (IS) hyoscyamine m/z = 290.2 yields 124.1. Results: The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at 1.7 and 3.2 min respectively. The linear range is 50-5000 pg/mL for scopolamine in saliva with correlation coefficients > 0.99 with a CV < 0.5 %. The intra-day and inter-day CVs are < 15 % for quality control samples with concentrations of 75, 300, 750 and 3000 pg/mL of scopolamine in human saliva. Conclusion: Solid phase extraction allows more rapid sample preparation and greater precision than liquid extraction. Furthermore, we increased the sensitivity and specificity by adjusting the LC mobile phase and using an MS

  1. A rapid solid-phase extraction fluorometric method for thiamine and riboflavin in salmonid eggs

    Science.gov (United States)

    Zajicek, James L.; Tillitt, Donald E.; Brown, Scott B.; Brown, Lisa R.; Honeyfield, Dale C.; Fitzsimons, John D.

    2005-01-01

    A new method has been developed and successfully applied to the selective measurement of thiamine (nonphosphorylated), total thiamine (sum of thiamine, thiamine monophosphate [TMP], thiamine diphosphate [TDP], and thiamine triphosphate [TTP]), and potentially interfering riboflavin in acidic (2% trichloroacetic acid) extracts of selected salmonid and walleye egg samples. Acidic extracts of eggs were applied directly to end-capped C18, reversed-phase solid-phase extraction (SPE) columns and separated into three fractions by elution with mixtures of PO4 buffer (pH 2), methanol (10%), and acetonitrile (20%). All thiamine compounds recovered in the first two fractions were oxidized to their corresponding thiochromes with alkaline potassium hexacyanoferrate, and we measured the thiochrome fluorescence (excitation at 360 nm, emission at 460 nm) in a 96-well microplate reader. Riboflavin, recovered in third fraction (eluted with pH 2, 20% acetonitrile), was analyzed directly by measuring the fluorescence of this fraction (excitation at 450 nm, emission at 530 nm). Significant portions of the phosphate esters of thiamine (TMP, TDP, and presumably TTP), when present at low concentrations (extract thiamine compounds into 2% trichlororacetic acid solution; an inexpensive, commercially available SPE column; small amounts of sample (0.5-1 g); microliter volumes of solvents per sample; a traditional, relatively nonhazardous, oxidation of thiamine compounds to fluorescent thiochromes; and an ultraviolet-visible-wavelength-filter fluorometer for the measurements. ?? Copyright by the American Fisheries Society 2005.

  2. The Efficient Extraction of Phenolic Compounds from Oak Gall Using a Miniaturized Matrix Solid-Phase Dispersion Method before their HPLC Determination

    Directory of Open Access Journals (Sweden)

    Ahmad Daneshfar

    2017-06-01

    Conclusion: The proposed technique is simple and fast. It substantially reduced the amounts of sample, sorbent and organic solvents required for the extraction. The maximum amounts of the phenolic compounds were found in Qalqaf and Bramazu galls.

  3. Speciation of As(III) and As(V) in water samples by graphite furnace atomic absorption spectrometry after solid phase extraction combined with dispersive liquid-liquid microextraction based on the solidification of floating organic drop.

    Science.gov (United States)

    Shamsipur, Mojtaba; Fattahi, Nazir; Assadi, Yaghoub; Sadeghi, Marzieh; Sharafi, Kiomars

    2014-12-01

    A solid phase extraction (SPE) coupled with dispersive liquid-liquid microextraction based on the solidification of floating organic drop (DLLME-SFO) method, using diethyldithiphosphate (DDTP) as a proper chelating agent, has been developed as an ultra preconcentration technique for the determination of inorganic arsenic in water samples prior to graphite furnace atomic absorption spectrometry (GFAAS). Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100mL of As(ΙΙΙ) solution was first concentrated using a solid phase sorbent. The extract was collected in 2.0 mL of acetone and 60.0 µL of 1-undecanol was added into the collecting solvent. The mixture was then injected rapidly into 5.0 mL of pure water for further DLLME-SFO. Total inorganic As(III, V) was extracted similarly after reduction of As(V) to As(III) with potassium iodide and sodium thiosulfate and As(V) concentration was calculated by difference. A mixture of Pd(NO3)2 and Mg(NO3)2 was used as a chemical modifier in GFAAS. The analytical characteristics of the method were determined. The calibration graph was linear in the rage of 10-100 ng L(-1) with detection limit of 2.5 ng L(-1). Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 80 ng L(-1) of As(ΙΙΙ) were 6.8% and 7.5%, respectively. The method was successfully applied to speciation of As(III), As(V) and determination of the total amount of As in water samples and in a certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  5. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    aqueous phase and microbial cell removal caused by the Ag + -ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  6. Volatile composition of peppermint (Mentha piperita L.) commercial teas through solid phase extraction.

    Science.gov (United States)

    Riachi, L G; Abi-Zaid, I E; Moreira, R F A; De Maria, C A B

    2012-12-01

    Volatiles from aqueous extract of peppermint commercial sachets were investigated through gas chromatography/flame ionization detection (GC/FID) and GC/mass spectrometry (MS). Samples were prepared under similar conditions as in homemade tea. Volatiles were isolated using solid phase extraction method (SPE) with Porapak Q trap followed by desorption with acetone. Estimated mean values for short and medium chain carboxylic acids (C2-C12) and ketones lay in the range of 50-64 microg kg(-1) whilst aliphatic alcohols and acyclic hydrocarbons had values lower than 6 microg kg(-1). The major volatiles were terpenes (275-382 microg kg(-1)) that reached 89 % of the total composition. A total of 16 compounds, among them dodecane, acetoin, acetol, citral, geraniol and octanoic acid have been described by the first time in peppermint tea. These findings could be attributed to the different analytical approach employed, mainly to the use of different extraction/pre-concentration techniques. Given the apparently lower proportion of terpenes in the aqueous extract it may be that the chemical properties of the peppermint essential oil are not entirely reproduced with homemade tea.

  7. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  8. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids

    NARCIS (Netherlands)

    Schellen, A.; Ooms, B.; Lagemaat, D. van de; Vreeken, R.; Dongen, W.D. van

    2003-01-01

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS

  9. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  10. Modeling of sorption processes on solid-phase ion-exchangers

    Science.gov (United States)

    Dorofeeva, Ludmila; Kuan, Nguyen Anh

    2018-03-01

    Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.

  11. BenzoDODA grafted polymeric resin—Plutonium selective solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ruhela, R., E-mail: riteshr@barc.gov.in [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Panja, S., E-mail: surajit@barc.gov.in [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dhami, P.S.; Gandhi, P.M. [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-15

    Highlights: • BenzoDODA grafted polymeric resin was synthesized and evaluated for sorption of Pu(IV). • Fast sorption kinetics for ‘Pu(IV)’. • Ease of back extraction of ‘Pu’ form loaded resin. • Ease of recyclability and fair stability in HNO{sub 3} medium. - Abstract: A new ligand grafted polymeric resin (BenzoDODA SDVB) was synthesized by covalently attaching plutonium selective ligand (BenzoDODA) on to styrene divinyl benzene (SDVB) polymer matrix. BenzoDODA SDVB resin was evaluated for separation and recovery of plutonium(IV) from nitric acid medium. Sorption of Pu(IV) was found to decrease with the increase in nitric acid concentration, with very small sorption above 7.0 M HNO{sub 3}. Sorption kinetics was fast enough to achieve the equilibrium within 60 min of contact where the kinetic data fitted well to pseudo-second-order model. Sorption isotherm data fitted well to Langmuir model suggesting chemical interaction between the BenzoDODA moiety and plutonium(IV) ions. Sorption studies with some of representative radionuclides of high level waste showed that BenzoDODA SDVB is selective and therefore could be a promising solid sorbent for separation and recovery of plutonium. Further, the theoretical calculations done on BenzoDODA SDVB resin suggested Pu(NO{sub 3}){sub 4}·BenzoDODA (1:1) sorbed complex conformed to generally observed square antiprism geometry of the plutonium complexes, with contributions from oxygen atoms of four nitrate ions as well as from four oxygen atoms present in BenzoDODA (two phenolic ether oxygen atoms and two carbonyl oxygen atoms of amidic moiety).

  12. Isocratic Solid Phase Extraction-Liquid Chromatography (SPE-LC) Interfaced to High-Performance Tandem Mass Spectrometry for Rapid Protein Identification

    DEFF Research Database (Denmark)

    Hørning, Ole B; Kjeldsen, Frank; Theodorsen, Søren

    2008-01-01

    the isocratic solid phase extraction-liquid chromatography (SPE-LC) technology for rapid separation ( approximately 8 min) of simple peptide samples. We now extend these studies to demonstrate the potential of SPE-LC separation in combination with a hybrid linear ion trap-Orbitrap tandem mass spectrometer...

  13. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein.

    Science.gov (United States)

    Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-02

    Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis of lignans in Magnoliae Flos by turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2016-04-01

    In this study, a method coupling turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry was developed for analyzing the lignans in Magnoliae Flos. By the online pretreatment of turbulent flow chromatography solid-phase extraction, the impurities removal and analytes concentration were automatically processed, and the lignans were separated rapidly and well. Seven lignans of Magnoliae Flos including epieudesmin, magnolin, 1-irioresinol-B-dimethyl ether, epi-magnolin, fargesin aschantin, and demethoxyaschantin were identified by comparing their retention behavior, UV spectra, and mass spectra with those of reference substances or literature data. The developed method was validated, and the good results showed that the method was not only automatic and rapid, but also accurate and reliable. The turbulent flow chromatography with online solid-phase extraction and high-performance liquid chromatography with tandem mass spectrometry method holds a high potential to become an effective method for the quality control of lignans in Magnoliae Flos and a useful tool for the analysis of other complex mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Headspace Solid Phase Microextraction in Pesticide Residues Analysis:1. Optimisation of Extraction Conditions

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2007-01-01

    Full Text Available The method of headspace solid phase microextraction (HS/SPME was successfully used in a simultaneous multicomponent analysis of hexachlorobenzene (HCB, tefluthrin, heptachlor, aldrin, chlorpyrifos, fenthion and bifenthrin in aqueous medium. Measurementswere performed using a nonpolar polydimethyl siloxane (PDMS fiber. Detection and quantification were done by gas chromatography/mass spectrometry (GC/MS.Optimal conditions for HS/SPME were determined both by performing extraction at different temperatures and examining extraction time profiles at constant temperature. Optimal extraction temperature for each pesticide studied was determined as follows: 60°C for HCB and for heptachlor, 80°C for aldrin and for chlorpyrifos, fenthion and tefluthrin, and temperature exceeding 80°C for bifenthrin. For the pesticide mixture studied, 60°C was identified as the optimum extraction temperature.Based on the time profiles obtained, it was confirmed that satisfactory extraction sensitivity can be obtained even for extraction times shorter than the time required to reach a sorption equilibrium. This conclusion was confirmed by linear concentration profiles obtained for the following ranges: 0.05-10 ng/ml (HCB, 0.05-25 ng/ml (tefluthrin, 0.05-40 ng/ml (heptachlor, 0.05-40 ng/ml (aldrin, 0.05-25 ng/ml (chlorpyrifos, 0.05-25 ng/ml (fenthionand 0.05-25 ng/ml (bifenthrin.Relative standard deviation (RSD values for triplicate measurements did not exceed 15%.

  16. Dispersive solid phase extraction combined with ion-pair ultra high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis

    DEFF Research Database (Denmark)

    Magdenoska, Olivera; Martinussen, Jan; Thykær, Jette

    2013-01-01

    solid phase extraction with charcoal and subsequent analysis with ion-pair liquid chromatography coupled with electrospray ionization tandem mass spectrometry was established for quantification of intracellular pools of the 28 most important nucleotides. The method can handle extracts where cells leak...

  17. Investigation of Di-ethylhexyl Phthalate Migration by Applying Magnetic Solid Phase Extraction Method Followed by GC-FID Determination

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji

    2016-10-01

    Full Text Available Background and Objectives: The addition of plasticizers (mainly phthalates and adipates makes plastic flexible and popular for packaging, storing and preserving food, water, and so on. The most widely used plasticizer in food contact applications is di-ethylhexyl phthalate (DEHP though being suspected to have carcinogenic and estrogenic properties. The aim of this study is application of magnetic solid phase extraction as new absorbent for determination of DEHP in water samples by gas chromatography (GC. Materials and Methods: Important factors in extraction, separation and determination processes were optimized using the one-variable-at-a-time method. For optimization, all tests were performed two times. Figures of merit of the proposed method were evaluated. The amount of DEHP in some water samples was determined using the proposed method. Results: The results showed that the obtained chromatogram of extract was free of significant interference. The preservatives’ recoveries ranged from 91.6% to 102.2%. Limit of detection and limit of quantitation were 0.1 mg kg-1 and 0.3 µg L-1, respectively. Concentration of DEHP in the studied samples was in the range of N.D-2.3 µg L-1. Conclusions: The acceptable performance and reliability of the proposed method were demonstrated. Temperature and time were fount as the most effective parameters in migration of DEHP. Keywords: Di-ethylhexyl phthalate, Magnetic solid phase extraction, Migration, Gas chromatography

  18. Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication: Influence of pH and anoxia.

    Science.gov (United States)

    Mucci, Maíra; Maliaka, Valentini; Noyma, Natalia Pessoa; Marinho, Marcelo Manzi; Lürling, Miquel

    2018-04-01

    Managing eutrophication remains a challenge to water managers. Currently, the manipulation of biogeochemical processes (i.e., geo-engineering) by using phosphorus-adsorptive techniques has been recognized as an appropriate tool to manage the problem. The first step in finding potential mitigating materials is conducting a sequence of upscaling studies that commence with controlled laboratory experiments. Here, the abilities of 10 possible solid-phase-sorbents (SPS) to adsorb P were examined. Four materials adsorbed P, and two of these materials were modified, i.e., a lanthanum-modified-bentonite (LMB) and an aluminum-modified-zeolite (AMZ), and had the highest adsorption capacities of 11.4 and 8.9mgPg -1 , respectively. Two natural materials, a red soil (RS) and a bauxite (BAU), were less efficient with adsorption capacities of 2.9 and 3.4mgPg -1 , respectively. Elemental composition was not related to P adsorption. Since SPS might be affected by pH and redox status, we also tested these materials at pH values of 6, 7, 8 and 9 and under anoxic condition. All tested materials experienced decreased adsorption capacities under anoxic condition, with maximum adsorptions of 5.3mgPg -1 for LMB, 5.9mgPg -1 for AMZ, 0.2mgPg -1 for RS and 0.2mgPg -1 for BAU. All materials were able to adsorb P across the range of pH values that were tested. The maximum adsorption capacities of LMB and RS were highest at pH6, AMZ was higher at a pH of 9 and BAU at a pH of 8. Thus, pH influenced P adsorption differently. Given the effects of pH and anoxia, other abiotic variables should also be considered. Considering the criteria that classify a useful SPS (i.e., effective, easy to produce, cheap and safe), only the two modified materials that were tested seem to be suitable for upscaling to enclosure studies with anoxic sediments. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry.

    Science.gov (United States)

    Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-03-01

    An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Corrected Title: Solid-Phase Extraction of Polar Compounds from Water] Automated Electrostatics Environmental Chamber

    Science.gov (United States)

    Sauer, Richard; Rutz, Jeffrey; Schultz, John

    2005-01-01

    A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.

  1. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, M.; Mulder, P.P.J.; Bire, R.; Hess, P.; Boer, de J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  2. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, A. M.; Mulder, P.P.J.; Bire, L.; Hess, P.; de Boer, J.

    2009-01-01

    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  3. Analysis of microcontaminants in aqueous samples by fully automated on-line solid-phase extraction-gas chromatography-mass selective detection.

    NARCIS (Netherlands)

    Louter, A.J.H.; van Beekvelt, C.A.; Cid Montanes, P.; Slobodník, J.; Vreuls, J.J.; Brinkman, U.A.T.

    1996-01-01

    The trace-level analysis of unknown organic pollutants in water requires the use of fast and sensitive methods which also provide structural information. In the present study, an on-line technique was used which combines sample preparation by means of solid-phase extraction (SPE) on a small

  4. Cadmium determination in natural waters at the limit imposed by European legislation by isotope dilution and TiO{sub 2} solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Ruiz, Silvia; Quetel, Christophe R. [Institute for Reference Materials and Measurements, Joint Research Centre - European Commission, Geel (Belgium); Petrov, Ivan [Institute for Reference Materials and Measurements, Joint Research Centre - European Commission, Geel (Belgium); Universite Libre de Bruxelles, Department of Earth and Environmental Sciences, Brussels (Belgium); Vassileva, Emilia [Institute for Reference Materials and Measurements, Joint Research Centre - European Commission, Geel (Belgium); IAEA-Marine Environment Laboratories, Monaco (Monaco)

    2011-11-15

    The cadmium content in surface water is regulated by the last European Water Framework Directive to a maximum between 0.08 and 0.25 {mu}g L{sup -1} depending on the water type and hardness. Direct measurement of cadmium at this low level is not straightforward in real samples, and we hereby propose a validated method capable of addressing cadmium content below {mu}g L{sup -1} level in natural water. It is based on solid-phase extraction using TiO{sub 2} nanoparticles as solid sorbent (0.05 g packed in mini-columns) to allow the separation and preconcentration of cadmium from the sample, combined to direct isotope dilution and detection by inductively coupled plasma mass spectrometry (ID-ICP-MS). The extraction setup is miniaturised and semi-automated to reduce risks of sample contamination and improve reproducibility. Procedural blanks for the whole measurement process were 5.3 {+-} 2.8 ng kg{sup -1} (1 s) for 50 g of ultrapure water preconcentrated ten times. Experimental conditions influencing the separation (including loading pH, sample flow rates, and acid concentration in the eluent) were evaluated. With isotope dilution the Cd recovery rate does not have to be evaluated carefully. Moreover, the mathematical model associated to IDMS is known, and provides transparency for the uncertainty propagation. Our validation protocol was in agreement with guidelines of the ISO/IEC 17025 standard (chapter 5.4.5). Firstly, we assessed the experimental factors influencing the final result. Secondly, we compared the isotope ratios measured after our separation procedure to the reference values obtained with a different protocol for the digested test material IMEP-111 (mineral feed). Thirdly, we analysed the certified reference material BCR-609 (groundwater). Finally, combined uncertainties associated to our results were estimated according to ISO-GUM guidelines (typically, 3-4% k = 2 for a cadmium content of around 100 ng kg{sup -1}). We applied the developed method to the

  5. A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijia [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Li, Yixue; Lin, Yunxuan; Zhang, Haibao [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Zhou, Yigang [Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083 (China)

    2016-11-23

    Novel poly(deep eutectic solvent) grafted silica-coated magnetic microspheres (Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES) were prepared by polymerization of choline chloride-itaconic acid (ChCl-IA) and γ-MPS-modified magnetic silica composites, and were characterized by vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA) and transmission electron microscope (TEM). Then the synthetic Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres were applied for the magnetic solid-phase extraction (MSPE) of trypsin for the first time. After extraction, the concentration of trypsin in the supernatant was determined by a UV–vis spectrophotometer. Single factor experiments were carried out to investigate the effects of the extraction process, including the concentration of trypsin, the ionic strength, the pH value, the extraction time and the temperature. Experimental results showed the extraction capacity could reach up to 287.5 mg/g under optimized conditions. In comparison with Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES displayed higher extraction capacity and selectivity for trypsin. According to the regeneration studies, Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES microspheres can be recycled six times without significant loss of its extraction capacity, and retained a high extraction capacity of 233 mg/g after eight cycles. Besides, the activity studies also demonstrated that the activity of the extracted trypsin was well retained. Furthermore, the analysis of real sample revealed that the prepared magnetic microspheres can be used to purify trypsin in crude bovine pancreas extract. These results highlight the potential of the proposed Fe{sub 3}O{sub 4}@SiO{sub 2}-MPS@PDES-MSPE method in separation of biomolecules. - Highlights: • A strategy for solid-phase extraction of trypsin based on poly(deep eutectic solvent) modified magnetic silica

  6. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Science.gov (United States)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  7. A novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol A.

    Science.gov (United States)

    Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang

    2012-03-30

    Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents

    International Nuclear Information System (INIS)

    Holladay, D.W.

    1979-01-01

    Emphasis was focused on the operating parameters that most strongly affected the optimization of the processes used to treat actual process or feed streams which simulated actual compositions occurring at nuclear facilities. These parameters included gas superficial velocity, temperature, types of organic and inorganic contaminants, relative humidity, iodine feed-gas concentration, iodine species, column design (for both acid-scrub and solid sorbent-based processes), sorbent particle size, run time, intense radiation (solid sorbents only), and scrub-acid concentration. The most promising acid-scrub process for removal of iodine species from off-gases appears to be Iodox. The most promising solid sorbent for removal of iodine species from off-gases is the West German Ag-KTB--AgNO 3 -impregnated amorphous silicic acid. The tandem silver mordenite--lead mordenite sorbent system is also quite attractive. Only a limited number of processes have thus far been studied for removal of iodine species from low-level liquid waste streams. The most extensive successful operating experience has been obtained with anion exchange resins utilized at nuclear power reactors. Bench-scale engineering tests have indicated that the best process for removal of all types of iodine species from liquid waste streams may be treatment on a packed bed containing a mixture of sorbents with affinity for both elemental and anionic species of iodine. 154 references, 7 figures, 21 tables

  9. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian

    2016-01-01

    As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Nanostructured conducting molecularly imprinted polymer for selective extraction of salicylate from urine and serum samples by electrochemically controlled solid-phase micro-extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, Akram [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Alizadeh, Naader, E-mail: alizaden@modares.ac.ir [Department of Chemistry, Faculty of Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Overoxidized polypyrrole templated with salicylate has been utilized as conducting molecular imprinted polymer for EC-SPME. Black-Right-Pointing-Pointer This first study reported on conducting molecular imprinted polymer was used to EC-SPME of salicylate. Black-Right-Pointing-Pointer Proposed method, is particularly effective in sample clean-up and selective monitoring of salicylate in physiological samples. - Abstract: Overoxidized polypyrrole (OPPy) films templated with salicylate (SA) have been utilized as conducting molecular imprinted polymers (CMIPs) for potential-induced selective solid-phase micro-extraction processes. Various important fabrication factors for controlling the performance of the OPPy films have been investigated using fluorescence spectrometry. Several key parameters such as applied potential for uptake, release, pH of uptake and release solution were varied to achieve the optimum micro-extraction procedure. The film template with SA exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5 Multiplication-Sign 10{sup -8} to 5 Multiplication-Sign 10{sup -4} and 1.2 Multiplication-Sign 10{sup -6} to 5 Multiplication-Sign 10{sup -4} mol mL{sup -1} and the detection limit was 4 Multiplication-Sign 10{sup -8} mol L{sup -1}. The OPPy film as the solid-phase micro-extraction absorbent has been applied for the selective clean-up and quantification of trace amounts of SA from physiological samples. The results of scanning electron microscopy (SEM) have confirmed the nano-structure morphologies of the films.

  11. Nanostructured conducting molecularly imprinted polymer for selective extraction of salicylate from urine and serum samples by electrochemically controlled solid-phase micro-extraction

    International Nuclear Information System (INIS)

    Ameli, Akram; Alizadeh, Naader

    2011-01-01

    Highlights: ► Overoxidized polypyrrole templated with salicylate has been utilized as conducting molecular imprinted polymer for EC-SPME. ► This first study reported on conducting molecular imprinted polymer was used to EC-SPME of salicylate. ► Proposed method, is particularly effective in sample clean-up and selective monitoring of salicylate in physiological samples. - Abstract: Overoxidized polypyrrole (OPPy) films templated with salicylate (SA) have been utilized as conducting molecular imprinted polymers (CMIPs) for potential-induced selective solid-phase micro-extraction processes. Various important fabrication factors for controlling the performance of the OPPy films have been investigated using fluorescence spectrometry. Several key parameters such as applied potential for uptake, release, pH of uptake and release solution were varied to achieve the optimum micro-extraction procedure. The film template with SA exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5 × 10 −8 to 5 × 10 −4 and 1.2 × 10 −6 to 5 × 10 −4 mol mL −1 and the detection limit was 4 × 10 −8 mol L −1 . The OPPy film as the solid-phase micro-extraction absorbent has been applied for the selective clean-up and quantification of trace amounts of SA from physiological samples. The results of scanning electron microscopy (SEM) have confirmed the nano-structure morphologies of the films.

  12. QUANTITATIVE DETERMINATION OF CHIRAL DICHLORPROP AND MECOPROP ENANTIOMERS IN DRINKING AND SURFACE WATERS BY SOLID-PHASE EXTRACTION AND CAPILLARY ELECTROPHORESIS

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Vrchotová, Naděžda

    2002-01-01

    Roč. 11, č. 7 (2002), s. 332-336 ISSN 1018-4619 Institutional research plan: CEZ:AV0Z6087904 Keywords : capillary electrophoresis * solid-phase extraction * chiral herbicides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.309, year: 2002

  13. Streamlined sample cleanup using combined dispersive solid-phase extraction and in-vial filtration for analysis of pesticides and environmental pollutants in shrimp

    Science.gov (United States)

    A new method of sample preparation was developed and is reported for the first time. The approach combines in-vial filtration with dispersive solid-phase extraction (d-SPE) in a fast and convenient cleanup of QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts. The method was appli...

  14. Automated headspace solid-phase dynamic extraction to analyse the volatile fraction of food matrices.

    Science.gov (United States)

    Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara

    2004-01-23

    High concentration capacity headspace techniques (headspace solid-phase microextraction (HS-SPME) and headspace sorptive extraction (HSSE)) are a bridge between static and dynamic headspace, since they give high concentration factors as does dynamic headspace (D-HS), and are as easy to apply and as reproducible as static headspace (S-HS). In 2000, Chromtech (Idstein, Germany) introduced an inside-needle technique for vapour and liquid sampling, solid-phase dynamic extraction (SPDE), also known as "the magic needle". In SPDE, analytes are concentrated on a 50 microm film of polydimethylsiloxane (PDMS) and activated carbon (10%) coated onto the inside wall of the stainless steel needle (5 cm) of a 2.5 ml gas tight syringe. When SPDE is used for headspace sampling (HS-SPDE), a fixed volume of the headspace of the sample under investigation is sucked up an appropriate number of times with the gas tight syringe and an analyte amount suitable for a reliable GC or GC-MS analysis accumulates in the polymer coating the needle wall. This article describes the preliminary results of both a study on the optimisation of sampling parameters conditioning HS-SPDE recovery, through the analysis of a standard mixture of highly volatile compounds (beta-pinene, isoamyl acetate and linalool) and of the HS-SPDE-GC-MS analyses of aromatic plants and food matrices. This study shows that HS-SPDE is a successful technique for HS-sampling with high concentration capability, good repeatability and intermediate precision, also when it is compared to HS-SPME.

  15. Development of a solid-phase extraction method with simple MEKC-UV analysis for simultaneous detection of indole metabolites in human urine after administration of indole dietary supplement.

    Science.gov (United States)

    Phonchai, Apichai; Wilairat, Prapin; Chantiwas, Rattikan

    2017-11-01

    This work presents the development of a solid phase extraction method with simple MEKC-UV analysis for the simultaneous determination of indole-3-carbinol (I3C) and its metabolites (3, 3'-diindolylmethane (DIM), indole-3-carboxaldehyde (I3CAL), indole-3-acetonitrile (I3A)) in human urine after oral administration of an indole dietary supplement. Solid phase extraction (SPE) method was applied for the first time for simultaneous analysis of these indole metabolites. The MEKC separation method was developed in a previous work. Three commercial SPE cartridges, each with different sorbent materials, were investigated: Sep-Pak ® C18, Oasis ® HLB and Oasis ® WCX. The Sep-Pak ® C18 material provided the highest extraction recovery of 88-113% (n = 9), for the four target indole metabolites (I3C, DIM, I3CAL and I3A). The optimal washing and elution solutions were 40% methanol/water (v/v) and 100% methanol, respectively, and optimal elution volume was 2.0mL. The specificity of the proposed SPE method was evaluated with negative control urine samples (n = 10) from healthy volunteers who had not taken the dietary supplement or vegetables known to contain indole compounds. Linear calibration curves were in the range of 0.2-25μgmL -1 (r 2 > 0.998) using diphenylamine (DPA) as the internal standard. Intra-day and inter-day precisions were 3.5-12.3%RSD and 2.7-14.1%RSD, respectively. Limits of detection and quantification were 0.05-0.10μgmL -1 and 0.10-0.50μgmL -1 , respectively. The four target indole compounds were separated within only 5min by MEKC-UV analysis. Urine from 5 subjects who had taken a dietary supplement containing I3C and DIM were found to contain only the DIM metabolite at concentrations ranging from 0.10 to 0.35µgmL -1 . Accuracy of the proposed method based on the percentage recovery of spiked urine samples were 70-108%, 82-116%, 82-132% and 80-100% for I3C, I3CAL, I3A and DIM, respectively. The Sep-Pak ® C18 cartridge was highly effective in

  16. Fabrication of a novel hydrophobic/ion-exchange mixed-mode adsorbent for the dispersive solid-phase extraction of chlorophenols from environmental water samples.

    Science.gov (United States)

    Gao, Li; Wei, Yinmao

    2016-08-01

    A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    Energy Technology Data Exchange (ETDEWEB)

    Terzopoulou, Zoi [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Papageorgiou, Myrsini [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece); Kyzas, George Z.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24, Thessaloniki (Greece)

    2016-03-24

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME{sub f}) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q{sub max}) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME{sub f}. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of

  18. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices

    International Nuclear Information System (INIS)

    Terzopoulou, Zoi; Papageorgiou, Myrsini; Kyzas, George Z.; Bikiaris, Dimitrios N.; Lambropoulou, Dimitra A.

    2016-01-01

    In the present study, a molecularly imprinted solid-phase microextraction fiber (MIP-SPME_f) was synthesized and applied for the selective removal and extraction of the antiviral drug, abacavir (ABA). Morphology and structure characterization of fibers were performed by scanning electron microscopy and Fourier transform infrared spectra, respectively. The effects on the adsorption behavior of the process parameters were studied and the equilibrium data were fitted by the Langmuir, Freundlich and Langmuir-Freundlich models. The maximum adsorption capability (Q_m_a_x) was determined by Langmuir- Freundlich model and was 149 mg/g for MIP-SPME_f. In the next step, SPME methodology followed by liquid desorption and liquid chromatography with mass spectrometry (LC/MS) has been developed and evaluated for the determination of the target compound in environmental and biological matrices (surface waters, wastewaters and urine). Parameters that could influence SPME efficiency were investigated. Then, optimization of stirring speed, extraction time and salt content was carried out by using a central composite design (CCD) and response surface methodology (RSM). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction time 40 min, stirring rate 650 rpm and salt content 0.3% NaCl w/v) the validated method presented a high sensitivity and selectivity with LODs and LOQs in the range of 10.1–13.6 and 33.3–43.9 ng/L, respectively. The developed method was successfully applied to the analysis of ABA in real samples. The percentage extraction efficiency ranged from 88 to 99% revealing good accuracy and absence of matrix effects. - Highlights: • Preparation of a novel SPME MIP fiber with remarkable recognition properties. • Selective removal and extraction of abacavir from environmental & biological media. • Detailed adsorbent characterization and adsorption studies. • Successful application of synthesized MIPs

  19. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction

    Czech Academy of Sciences Publication Activity Database

    Svačinová, Jana; Novák, Ondřej; Plačková, Lenka; Lenobel, René; Holík, Josef; Strnad, Miroslav; Doležal, Karel

    2012-01-01

    Roč. 8, _ (2012), s. 17 ISSN 1746-4811 R&D Projects: GA TA ČR TA01010861; GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Pipette tip solid-phase extraction (PT-SPE) * Arabidopsis thaliana * Cytokinins Subject RIV: EC - Immunology Impact factor: 2.667, year: 2012

  20. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de