WorldWideScience

Sample records for solid-liquid interface morphology

  1. Systems and methods for monitoring a solid-liquid interface

    Science.gov (United States)

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  2. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  3. Finite size melting of spherical solid-liquid aluminium interfaces

    DEFF Research Database (Denmark)

    Chang, J.; Johnson, Erik; Sakai, T.

    2009-01-01

    We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting tempera...... to the conclusion that the depressed melting temperature is not controlled solely by the inverse radius 1/R. Instead, we found a direct relation between the depressed melting temperature and the ratio between the solid-liquid interface area and the molten volume.......We have investigated the melting of nano-sized cone shaped aluminium needles coated with amorphous carbon using transmission electron microscopy. The interface between solid and liquid aluminium was found to have spherical topology. For needles with fixed apex angle, the depressed melting...

  4. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    International Nuclear Information System (INIS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-01-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  5. Direct observation of ionic structure at solid-liquid interfaces

    DEFF Research Database (Denmark)

    Siretanu, Igor; Ebeling, Daniel; Andersson, Martin Peter

    2014-01-01

    The distribution of ions and charge at solid-water interfaces plays an essential role in a wide range of processes in biology, geology and technology. While theoretical models of the solid-electrolyte interface date back to the early 20th century, a detailed picture of the structure of the electric...... double layer has remained elusive, largely because of experimental techniques have not allowed direct observation of the behaviour of ions, i.e. with subnanometer resolution. We have made use of recent advances in high-resolution Atomic Force Microscopy to reveal, with atomic level precision, the ordered...

  6. The structure of the solid-liquid interface: atomic size effect; La structure de l'interface solide-liquide: effet de taille atomique

    Energy Technology Data Exchange (ETDEWEB)

    Geysermans, P.; Pontikis, V. [Centre National de la Recherche Scientifique (CNRS), 94 - Vitry-sur-Seine (France). Centre d' Etudes de Chimie Metallurgique

    2002-09-01

    The atomic structure of the solid-liquid heterophase interface was investigated by using molecular dynamics. Two kinds of systems were studied; the first one was crystalline copper with (100) and (111) surface terminations in contact with liquid aluminium, while in the second one the interface was modelled by two systems in contact made of Lennard-Jones particles with different size ({sigma}) and energy ({epsilon}) parameters. We found that at the interface the liquid was layered whatever the crystallographic orientation of the surface. The layering of the liquid is still preserved when the ratio of particles sites ({chi}={sigma}{sub 1}/{sigma}{sub 2}) changes while an epitaxial relationship is always found between the crystal and the first liquid layer. The average density of the latter is closely related to the {chi} value. (authors)

  7. Homogeneous nucleation ahead of the solid-liquid interface during rapid solidification of binary alloys

    International Nuclear Information System (INIS)

    Smith, P.M.; Elmer, J.W.

    1996-01-01

    In recent rapid solidification experiments on Al-5%Be alloys, a Liquid Phase Nucleation (LPN) model was developed to explain the formation of periodic arrays of randomly-oriented Be-rich particles in an Al-rich matrix. In the LPN model, Be droplets were assumed to nucleate in the liquid ahead of the solid-liquid interface, but no justification for this was given. Here the authors present a model which considers the geometric constraints (imposed by proximity to the interface) on the number of solute atoms available to form a nucleus. Calculations based on this model predict that nucleation of second-phase particles can be most likely a short distance ahead of the interface in immiscible binary systems such as Al-Be. As part of the nucleation calculations, a semi-empirical method of calculating solid-liquid surface tensions in binary systems was developed, and is presented in the Appendix

  8. In situ scanning probe spectroscopy at nanoscale solid/liquid interfaces

    International Nuclear Information System (INIS)

    Schindler, W.; Hugelmann, M.; Hugelmann, Ph.

    2005-01-01

    Electrochemistry provides unique features for the preparation of low-dimensional structures, but in situ spectroscopy with atomic/molecular resolution at such structures is at present not well established yet. This paper shows that in situ scanning probe spectroscopy at solid/liquid interfaces can be utilized to study electronic properties at nanoscale, if appropriate conditions are applied. Tunneling spectroscopy provides information about tunneling barrier heights and electronic states in the tunneling gap, as shown on Au(1 1 1) substrates, contact spectroscopy allows for transport measurements at single nanostructures, as shown at Au/n-Si(1 1 1) nanodiodes. The influence of the electrolytic environment on spectroscopic investigations is not a principal limitation, but offers additional degrees of freedom, which allow, for example, spectroscopic studies of potential dependent surface phenomena at solid/liquid interfaces

  9. Optical fingerprints of solid-liquid interfaces: a joint ATR-IR and first principles investigation

    Science.gov (United States)

    Yang, L.; Niu, F.; Tecklenburg, S.; Pander, M.; Nayak, S.; Erbe, A.; Wippermann, S.; Gygi, F.; Galli, G.

    Despite the importance of understanding the structural and bonding properties of solid-liquid interfaces for a wide range of (photo-)electrochemical applications, there are presently no experimental techniques available to directly probe the microscopic structure of solid-liquid interfaces. To develop robust strategies to interpret experiments and validate theory, we carried out attenuated total internal reflection (ATR-IR) spectroscopy measurements and ab initio molecular dynamics (AIMD) simulations of the vibrational properties of interfaces between liquid water and well-controlled prototypical semiconductor substrates. We show the Ge(100)/H2O interface to feature a reversible potential-dependent surface phase transition between Ge-H and Ge-OH termination. The Si(100)/H2O interface is proposed as a model system for corrosion and oxidation processes. We performed AIMD calculations under finite electric fields, revealing different pathways for initial oxidation. These pathways are predicted to exhibit unique spectral signatures. A significant increase in surface specificity can be achieved utilizing an angle-dependent ATR-IR experiment, which allows to detect such signatures at the interfacial layer and consequently changes in the hydrogen bond network. Funding from DOE-BES Grant No. DE-SS0008939 and the Deutsche Forschungsgemeinschaft (RESOLV, EXC 1069) are gratefully acknowledged.

  10. The structure of the solid-liquid interface: atomic size effect

    International Nuclear Information System (INIS)

    Geysermans, P.; Pontikis, V.

    2002-01-01

    The atomic structure of the solid-liquid heterophase interface was investigated by using molecular dynamics. Two kinds of systems were studied; the first one was crystalline copper with (100) and (111) surface terminations in contact with liquid aluminium, while in the second one the interface was modelled by two systems in contact made of Lennard-Jones particles with different size (σ) and energy (ε) parameters. We found that at the interface the liquid was layered whatever the crystallographic orientation of the surface. The layering of the liquid is still preserved when the ratio of particles sites (χ=σ 1 /σ 2 ) changes while an epitaxial relationship is always found between the crystal and the first liquid layer. The average density of the latter is closely related to the χ value. (authors)

  11. Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel

    International Nuclear Information System (INIS)

    Zheng, Lichun; Malfliet, Annelies; Wollants, Patrick; Blanpain, Bart; Guo, Muxing

    2016-01-01

    The effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel was studied by adding Te to liquid steel before Al deoxidation at 1873 K. After water-quenching, the spatial distribution homogeneity of alumina inclusions in the steel matrix was characterized using the Dirichlet tessellation method. The deterioration of this homogeneity with increasing the addition of Te indicates that Te facilitates pushing of alumina inclusions. This phenomenon was discussed based on the thermodynamics of an asymmetric thin liquid film confined by an advancing solid-liquid interface and a particle. The surface excesses of Te at the solid-liquid and particle-liquid interfaces were theoretically demonstrated to decrease when an alumina inclusion moves towards the solid-liquid interface, thereby weakening the effect of Te on the solid-liquid and particle-liquid interfacial energies. Based on this, effect of surfactants was incorporated in the models predicting the critical velocity V_C.

  12. Neutron reflectivity as method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces

    DEFF Research Database (Denmark)

    Gutberlet, Thomas; Klösgen, Beate Maria; Krastev, Rumen

    2004-01-01

    variation. It was observed that the method was capable of visualizing the adsorption of phospholipid layers to different solid-liquid interfaces and to resolve structural details at Angstroem resolution. The results depended strongly on a sufficiently good signal-to-noise ratio of the specific measurements......The use of neutron reflectivity as a method to study in-situ adsorption of phospholipid layers to solid-liquid interfaces was analyzed. The most important advantage of neutron reflectometry is the possibility to very the refractive index of the specific sample by isotope exchange, called contrast...

  13. In situ reflectivity investigations of solid/liquid interface during laser backside etching

    International Nuclear Information System (INIS)

    Boehme, R.; Otto, T.; Zimmer, K.

    2006-01-01

    In situ reflectivity measurements of the solid/liquid interface with a pump-probe setup were performed during laser-induced backside wet etching (LIBWE) of fused silica with KrF excimer laser using toluene as absorbing liquid. The intensity, the temporal shape, and the duration of the reflected light measured in dependence on the laser fluence are discussed referring to the surface modification and the bubble formation. The vaporisation of the superheated liquid at the solid interface causes a considerable increase of the reflectivity and gives information about the bubble lifetime. The alterations of the reflectivity after bubbles collapse can be explained with the changed optical properties due to surface modifications of the solid surface. Comparative studies of the reflectivity at different times and the etch rate behaviour in dependence on the laser fluence show that the in situ measured surface modification begins just at the etch threshold fluence and correlates further with etch rate behaviour and the etched surface appearance. The already observed surface modification at LIBWE due to a carbon deposition and structural changes of the near surface region are approved by the changes of the interface reflectivity and emphasizes the importance of the modified surface region in the laser-induced backside wet etching process

  14. ATR-IR spectroscopic cell for in situ studies at solid-liquid interface at elevated temperatures and pressures

    NARCIS (Netherlands)

    Koichumanova, Kamila; Visan, Aura; Geerdink, Bert; Lammertink, Rob G.H.; Mojet, Barbara; Seshan, Kulathuiyer; Lefferts, Leonardus

    2017-01-01

    An in situ ATR-IR spectroscopic cell suitable for studies at solid-liquid interface is described including the design and experimental details in continuous flow mode at elevated temperatures (230 °C) and pressures (30 bar). The design parameters considered include the cell geometry, the procedure

  15. Pressure and surface tension of solid-liquid interface using Tara zona density functional theory

    International Nuclear Information System (INIS)

    Moradi, M.; Kavosh Tehrani, M.

    2001-01-01

    The weighted density functional theory proposed by Tara zona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this research we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is pitted in three dimensions. We also calculate the pressure and compare it with the Carnahan-Starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation

  16. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  17. Solid-liquid interface free energies of pure bcc metals and B2 phases

    Science.gov (United States)

    Wilson, S. R.; Gunawardana, K. G. S. H.; Mendelev, M. I.

    2015-04-01

    The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: P m 3 ¯ m ; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

  18. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  19. Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG.

    Science.gov (United States)

    Chen, Xiaoyun; Wang, Jie; Sniadecki, Jason J; Even, Mark A; Chen, Zhan

    2005-03-29

    We demonstrated that sum frequency generation (SFG) vibrational spectroscopy can distinguish different secondary structures of proteins or peptides adsorbed at solid/liquid interfaces. The SFG spectrum for tachyplesin I at the polystyrene (PS)/solution interface has a fingerprint peak corresponding to the B1/B3 mode of the antiparallel beta-sheet. This peak disappeared upon the addition of dithiothreitol, which can disrupt the beta-sheet structure. The SFG spectrum indicative of the MSI594 alpha-helical structure was observed at the PS/MSI594 solution interface. This research validates SFG as a powerful technique for revealing detailed secondary structures of interfacial proteins and peptides.

  20. Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry

    International Nuclear Information System (INIS)

    Freeman, Neville J; Peel, Louise L; Swann, Marcus J; Cross, Graham H; Reeves, Andrew; Brand, Stuart; Lu, Jian R

    2004-01-01

    A novel method for the analysis of thin biological films, called dual polarization interferometry (DPI), is described. This high resolution (<1 A), laboratory-based technique allows the thickness and refractive index (density) of biological molecules adsorbing or reacting at the solid-liquid interface to be measured in real time (up to 10 measurements per second). Results from the adsorption of bovine serum albumin (BSA) on to a silicon oxynitride chip surface are presented to demonstrate how time dependent molecular behaviour can be examined using DPI. Mechanistic and structural information relating to the adsorption process is obtained as a function of the solution pH

  1. Atomic simulations for configurations and solid-liquid interface of Li-Fe and Li-Cu icosahedra

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jianyu, E-mail: hnieyjy@aliyun.com [Hunan Institute of Engineering (China); Hu, Wangyu [Hunan University, College of Materials Science and Engineering (China); Dai, Xiongying [Hunan Institute of Engineering, College of Science (China)

    2017-04-15

    The melting point of Li is lower than that of Fe (or Cu); thus, solid-liquid interfaces can be easily formed on Li-Fe and Li-Cu nanoalloys. In this work, the configurations and solid-liquid interfaces of Li-Fe and Li-Cu icosahedra are studied using Monte Carlo and molecular dynamics methods. The atomic interactions are described by the analytic embedded-atom method. The dependence of composition, temperature, and nanoparticle size on the configurations and thermal stabilities of nanoalloys is discussed. The behavior of the Li-Fe and Li-Cu nanoalloys in segregation, configuration, and thermal stability is investigated. A different behavior of surface segregation of Li atoms is observed for the two types of nanoalloys. The interface between the Li and Fe atoms is clear. Mixing of Li with Cu at larger nanoparticle sizes is found because of low heat of formation in the system. The configurations of the Li-Fe and Li-Cu nanoalloys are related to the competition between surface segregation and alloying. The thermal stability of Li in the two types of nanoalloys is enhanced by the support of the Fe (or Cu) solid substrate.

  2. Microstructure and fractal characteristics of the solid-liquid interface forming during directional solidification of Inconel 718

    Directory of Open Access Journals (Sweden)

    WANG Ling

    2007-08-01

    Full Text Available The solidification microstructure and fractal characteristics of the solid-liquid interfaces of Inconel 718, under different cooling rates during directional solidification, were investigated by using SEM. Results showed that 5 μm/s was the cellular-dendrite transient rate. The prime dendrite arm spacing (PDAS was measured by Image Tool and it decreased with the cooling rate increased. The fractal dimension of the interfaces was calculated and it changes from 1.204310 to 1.517265 with the withdrawal rate ranging from 10 to 100 μm/s. The physical significance of the fractal dimension was analyzed by using fractal theory. It was found that the fractal dimension of the dendrites can be used to describe the solidification microstructure and parameters at low cooling rate, but both the fractal dimension and the dendrite arm spacing are needed in order to integrally describe the evaluation of the solidification microstructure completely.

  3. Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy.

    Science.gov (United States)

    Zhao, Xue Jiao; Kuang, Shuang Yang; Wang, Zhong Lin; Zhu, Guang

    2018-05-22

    Harvesting water wave energy presents a significantly practical route to energy supply for self-powered wireless sensing networks. Here we report a networked integrated triboelectric nanogenerator (NI-TENG) as a highly adaptive means of harvesting energy from interfacing interactions with various types of water waves. Having an arrayed networking structure, the NI-TENG can accommodate diverse water wave motions and generate stable electric output regardless of how random the water wave is. Nanoscaled surface morphology consisting of dense nanowire arrays is the key for obtaining high electric output. A NI-TENG having an area of 100 × 70 mm 2 can produce a stable short-circuit current of 13.5 μA and corresponding electric power of 1.03 mW at a water wave height of 12 cm. This merit promises practical applications of the NI-TENG in real circumstances, where water waves are highly variable and unpredictable. After energy storage, the generated electric energy can drive wireless sensing by autonomously transmitting data at a period less than 1 min. This work proposes a viable solution for powering individual standalone nodes in a wireless sensor network. Potential applications include but are not limited to long-term environment monitoring, marine surveillance, and off-shore navigation.

  4. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface.

    Science.gov (United States)

    den Boer, Duncan; Li, Min; Habets, Thomas; Iavicoli, Patrizia; Rowan, Alan E; Nolte, Roeland J M; Speller, Sylvia; Amabilino, David B; De Feyter, Steven; Elemans, Johannes A A W

    2013-07-01

    Manganese porphyrins have been extensively investigated as model systems for the natural enzyme cytochrome P450 and as synthetic oxidation catalysts. Here, we report single-molecule studies of the multistep reaction of manganese porphyrins with molecular oxygen at a solid/liquid interface, using a scanning tunnelling microscope (STM) under environmental control. The high lateral resolution of the STM, in combination with its sensitivity to subtle differences in the electronic properties of molecules, allowed the detection of at least four distinct reaction species. Real-space and real-time imaging of reaction dynamics enabled the observation of active sites, immobile on the experimental timescale. Conversions between the different species could be tuned by the composition of the atmosphere (argon, air or oxygen) and the surface bias voltage. By means of extensive comparison of the results to those obtained by analogous solution-based chemistry, we assigned the observed species to the starting compound, reaction intermediates and products.

  5. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  6. Mass Transfer Process by Magneto-convection at a Solid-liquid Interface in a Heterogeneous Vertical Magnetic Field

    Science.gov (United States)

    Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi

    2003-08-01

    When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.

  7. Weighted-density functional approach for the solid-liquid interfaces in electrolytes

    International Nuclear Information System (INIS)

    Cherepanova, T.A.; Stekolnikov, A.V.

    1991-09-01

    A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab

  8. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  9. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    Science.gov (United States)

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Interactions of PAMAM dendrimers with SDS at the solid-liquid interface.

    Science.gov (United States)

    Arteta, Marianna Yanez; Eltes, Felix; Campbell, Richard A; Nylander, Tommy

    2013-05-14

    This work addresses structural and nonequilibrium effects of the interactions between well-defined cationic poly(amidoamine) PAMAM dendrimers of generations 4 and 8 and the anionic surfactant sodium dodecyl sulfate (SDS) at the hydrophilic silica-water interface. Neutron reflectometry and quartz crystal microbalance with dissipation monitoring were used to reveal the adsorption from premixed dendrimer/surfactant solutions as well as sequential addition of the surfactant to preadsorbed layers of dendrimers. PAMAM dendrimers of both generations adsorb to hydrophilic silica as a compact monolayer, and the adsorption is irreversible upon rinsing with salt solution. SDS adsorbs on the dendrimer layer and at low bulk concentrations causes the expansion of the dendrimer layers on the surface. When the bulk concentration of SDS is increased, the surfactant layer consists of aggregates or bilayer-like structures. The adsorption of surfactant is reversible upon rinsing, but slight changes of the structure of the preadsorbed PAMAM monolayer were observed. The adsorption from premixed solutions close to charge neutrality results in thick multilayers, but the surface excess is lower when the bulk complexes have a net negative charge. A critical examination of the pathway of adsorption for the interactions of SDS with preadsorbed PAMAM monolayers and premixed PAMAM/SDS solutions with hydrophilic silica revealed that nonequilibrium effects are important only in the latter case, and the application of a thermodynamic model to such experimental data would be inappropriate.

  11. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  12. Studies on the interactions between bovine {beta}-lactoglobulin and chitosan at the solid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Campina, Jose M., E-mail: jpina@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Souza, Hileia K.S., E-mail: hsouza@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Borges, Joao, E-mail: jborges@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, Ana, E-mail: amartins@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Goncalves, Maria Pilar, E-mail: pilarg@fe.up.p [REQUIMTE, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Silva, Fernando, E-mail: afssilva@fc.up.p [Centro de Investigacao em Quimica (CIQ), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2010-12-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine {beta}-lactoglobulin ({beta}-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of {beta}-LG solutions with different bulk concentrations ([{beta}-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between {beta}-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large {beta}-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the {beta}-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through {beta}-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [{beta}-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [{beta}-LG] range (0.001-0.3 mg mL{sup -1}), showed good fitting to the Langmuir model confirming that the formation of one {beta}-LG monolayer is achieved in this concentration range.

  13. Studies on the interactions between bovine β-lactoglobulin and chitosan at the solid-liquid interface

    International Nuclear Information System (INIS)

    Campina, Jose M.; Souza, Hileia K.S.; Borges, Joao; Martins, Ana; Goncalves, Maria Pilar; Silva, Fernando

    2010-01-01

    Chitosan ultrathin films have been formed on polycrystalline Au substrates using the LbL technique with the purpose of studying its interaction with bovine β-lactoglobulin (β-LG) at the solid-liquid interface. The immobilization of chitosan was followed by Quartz Crystal Microbalance with energy dissipation (QCM-D), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The behavior of the chitosan films in the presence of β-LG solutions with different bulk concentrations ([β-LG]), ionic strength (I), and pH has been investigated using the same techniques plus Atomic Force Microscopy (AFM). The results showed that for pHs lower than protein's pI, weak intermolecular forces (H bonding, Van der Waals, hydrophobic, etc.) are established between β-LG and chitosan (especially close to the pI) leading to low coverage nonspecific adsorption. On the contrary when pH > pI, strong ionic bonding through attractive electrostatic interactions lead to high coverage adsorbed phases composed of large β-LG aggregates. The adsorption process was shown to consist of a relatively fast step (in which these interactions are predominant) which is followed, once the β-LG monolayer is exceeded, by the slow formation of thicker and increasingly viscoelastic films through β-LG self-aggregation. QCM-D and AFM experiments unveiled the role of [β-LG] and I on the formation of these aggregates. The adsorption isotherm built from impedance data in the medium-low [β-LG] range (0.001-0.3 mg mL -1 ), showed good fitting to the Langmuir model confirming that the formation of one β-LG monolayer is achieved in this concentration range.

  14. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    Full text of publication follows: The redox reactions which can occur between radioelements and natural phases in the environment are taken still little into account although their importance is established on natural sites; the consequences are significant since they can modify radically the behaviour of the species by increasing or decreasing their migration. The iron compounds are very implicated in these redox processes because iron is one of the most abundant element on earth; moreover, it is also present in the containers used for the storage of the nuclear waste. We exhibited in previous works that electrochemistry is a convenient way to generate the main iron oxidation compounds as thin layers on different inert substrates. The electrochemical behaviour of these deposits that are adherent, homogeneous and well crystallized [1-3], was investigated with the principle advantage that iron metal and its reactivity is eliminate. Moreover, they could be analysed directly by techniques like IRRAS, XRD, SEM, EDS and XPS without any preparation. In the present study, we develop an original way to investigate redox processes at solid-liquid interfaces based on the utilisation of these thin layers; the samples are more commonly powders and/or pieces of corroded steel in the literature. Results obtained with two different systems, chromate and uranyl ions, in interaction with thin layers of sulfated green rusts are presented. Green rusts is chosen because it is a mixed Fe(II-III) compound which could be formed in anoxic conditions like in the case of the storage of the nuclear waste. After various contact times with the solutions containing the reactive species, the thin layers are characterised by different ex-situ methods. The results show clearly the oxidation of the green rust into a Fe(III) compound and the formation of a new solid phase on the electrode due to the reduction and the precipitation of the reactive species present initially in solution. Because thin

  15. Microanalytical techniques applied to phase identification and measurement of solute redistribution at the solid/liquid interface of frozen Fe-4.3Ni doublets

    CERN Document Server

    Faryna, M; Okane, T

    2002-01-01

    A Fe-4.3M alloy has been solidified directionally by using the Bridgman system. The solidification conditions were chosen to obtain an oriented cellular structure of delta-ferrite. These are: a positive temperature gradient of about 60 K/cm and a growth rate of 6.6 mu m/s. A change in these conditions can lead either to the formation of austenite or to the competitive growth of delta-ferrite/gamma-austenite. The solid/liquid interface of delta-ferrite cells has been frozen and double instability has been revealed at the tip of the cells. The instability is described as the first harmonic wave of fundamental undulation, which appeared at the formerly planar solid/liquid interface. This means that a doublet structure is formed only with the imposed specific conditions of solidification. The Ni-solute redistribution after back-diffusion has been measured across the delta-ferrite doublet. Results of energy dispersive x-ray (EDX) measurements on the distribution of Ni and Fe correspond well to the theoretical pred...

  16. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    Energy Technology Data Exchange (ETDEWEB)

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Åhlund, John [VG Scienta AB, Box 15120, SE-750 15 Uppsala (Sweden); Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria, E-mail: maria.hahlin@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  17. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.

    Science.gov (United States)

    Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian

    2017-05-30

    We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.

  18. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  19. Voltage-dependent cluster expansion for electrified solid-liquid interfaces: Application to the electrochemical deposition of transition metals

    Science.gov (United States)

    Weitzner, Stephen E.; Dabo, Ismaila

    2017-11-01

    The detailed atomistic modeling of electrochemically deposited metal monolayers is challenging due to the complex structure of the metal-solution interface and the critical effects of surface electrification during electrode polarization. Accurate models of interfacial electrochemical equilibria are further challenged by the need to include entropic effects to obtain accurate surface chemical potentials. We present an embedded quantum-continuum model of the interfacial environment that addresses each of these challenges and study the underpotential deposition of silver on the gold (100) surface. We leverage these results to parametrize a cluster expansion of the electrified interface and show through grand canonical Monte Carlo calculations the crucial need to account for variations in the interfacial dipole when modeling electrodeposited metals under finite-temperature electrochemical conditions.

  20. Deducing 2D Crystal Structure at the Solid/Liquid Interface with Atomic Resolution by Combined STM and SFG Study

    Science.gov (United States)

    McClelland, Arthur; Ahn, Seokhoon; Matzger, Adam J.; Chen, Zhan

    2009-03-01

    Supplemented by computed models, Scanning Tunneling Microscopy (STM) can provide detailed structure of 2D crystals formed at the liquid/solid interface with atomic resolution. However, some structural information such as functional group orientations in such 2D crystals needs to be tested experimentally to ensure the accuracy of the deduced structures. Due to the limited sensitivity, many other experimental techniques such as Raman and infrared spectroscopy have not been allowed to provide such structural information of 2D crystals. Here we showed that Sum Frequency Generation Vibrational Spectroscopy (SFG) can measure average orientation of functional groups in such 2D crystals, or physisorbed monolayers, providing key experimental data to aid in the modeling and interpretation of the STM images. The usefulness of combining these two techniques is demonstrated with a phthalate diesters monolayer formed at the 1-phenyloctane/ highly oriented pyrolytic graphite (HOPG) interface. The spatial orientation of the ester C=O of the monolayer was successfully determined using SFG.

  1. Bias-induced conformational switching of supramolecular networks of trimesic acid at the solid-liquid interface

    Science.gov (United States)

    Ubink, J.; Enache, M.; Stöhr, M.

    2018-05-01

    Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.

  2. Effect of phospholipid composition and phase on nanodisc films at the solid-liquid interface as studied by neutron reflectivity

    DEFF Research Database (Denmark)

    Wadsäter, Maria Helena; Barker, Robert; Mortensen, Kell

    2013-01-01

    of the cell membrane and can act as a nanometer-sized container for functional single membrane proteins. In this study, we present a general nanodisc-based system, intended for structural and functional studies of membrane proteins. In this method, the nanodiscs are aligned at a solid surface, providing...... the ability to determine the average structure of the film along an axis perpendicular to the interface as measured by neutron reflectivity. The nanodisc film was optimized in terms of nanodisc coverage, reduced film roughness, and stability for time-consuming studies. This was achieved by a systematic...

  3. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  4. Structural characterization of the phospholipid stabilizer layer at the solid-liquid interface of dispersed triglyceride nanocrystals with small-angle x-ray and neutron scattering

    Science.gov (United States)

    Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter

    2013-06-01

    Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

  5. Study of solid/liquid and solid/gas interfaces in Cu–isoleucine complex by surface X-ray diffraction

    International Nuclear Information System (INIS)

    Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.

    2013-01-01

    The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal–amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu–isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal–amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu–isoleucine complex under different ambient conditions. Cu(Ile) 2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu–isoleucine crystal was measured under a protective dry N 2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.

  6. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface

    Science.gov (United States)

    Surblys, Donatas; Leroy, Frédéric; Yamaguchi, Yasutaka; Müller-Plathe, Florian

    2018-04-01

    We investigated the solid-liquid work of adhesion of water on a model silica surface by molecular dynamics simulations, where a methodology previously developed to determine the work of adhesion through thermodynamic integration was extended to a system with long-range electrostatic interactions between solid and liquid. In agreement with previous studies, the work of adhesion increased when the magnitude of the surface polarity was increased. On the other hand, we found that when comparing two systems with and without solid-liquid electrostatic interactions, which were set to have approximately the same total solid-liquid interfacial energy, former had a significantly smaller work of adhesion and a broader distribution in the interfacial energies, which has not been previously reported in detail. This was explained by the entropy contribution to the adhesion free energy; i.e., the former with a broader energy distribution had a larger interfacial entropy than the latter. While the entropy contribution to the work of adhesion has already been known, as a work of adhesion itself is free energy, these results indicate that, contrary to common belief, wetting behavior such as the contact angle is not only governed by the interfacial energy but also significantly affected by the interfacial entropy. Finally, a new interpretation of interfacial entropy in the context of solid-liquid energy variance was offered, from which a fast way to qualitatively estimate the work of adhesion was also presented.

  7. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  8. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  9. Kinetics, morphology and thermodynamics of the solid-liquid transition of non-metals. Progress report, March 1, 1979-February 28, 1980

    International Nuclear Information System (INIS)

    Sekerka, R.F.

    1979-08-01

    Some previous work on Internal Centrifugal Zone Growth was documented. New calculations have been made to show that for large rf skin depths, the temperature of the sample depends in a systematic way on only three dimensionless parameters; these characterize the rf power level, the surface heat transfer coefficient, and the ambient temperature. Critical values are given for the ambient temperature below which curves of sample temperature versus RF power level are S-shaped. Based on this improvement in understanding, our previous numerical results, valid for arbitrary skin depths, are being prepared for publication. Work continues toward the measurement of the solid-liquid surface tensions of non-metallic materials via the grain-boundary groove technique. Degassed samples of GeO 2 have been obtained, but the necessary temperature caused damage to the quartz tube in our present apparatus, necessitating a new design. While the new apparatus is under construction, sodium sulfate will be used as a prototype material to enable work on the optical system. Use of an astronomical telescope in conjunction with the optical viewpoint leads to poor image quality so we are considering the substitution of a microscope with a large working distance. Previous difficulties with numerical calculation of the temperature profiles in the system have been alleviated by using finer grid sizes for the finite difference scheme. Further effort has been expended to form the basis of new work on the application of Onsager's theory of reciprocity to transport phenomena in solids

  10. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  11. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    Science.gov (United States)

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  12. Copolymers at the solid - liquid interface

    NARCIS (Netherlands)

    Wijmans, C.M.

    1994-01-01

    Copolymers consisting of both adsorbing and nonadsorbing segments can show an adsorption behaviour which is very different from that of homopolymers. We have mainly investigated the adsorption of AB diblock copolymers, which have one adsorbing block (anchor) and one nonadsorbing block

  13. Surface Science at the Solid Liquid Interface

    Science.gov (United States)

    1993-10-06

    prominent experimental avenue, developed originally by Hubbard et al,_ involves emersing monocrystalline elec- As for metal surfaces in ultrahigh vacuum...reliable means of both preparing and dosateizn ordered monocrystalline metal surfaces in UHV has led to ing appropriate molecular components of...surface atoms in place of bottom panel of Fig. 2, equal intensity contours are shown 23 underlying surface atoms, the compression is 24/23 - I in the

  14. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  15. The Syntax-Semantics Interface in Distributed Morphology

    Science.gov (United States)

    Kelly, Justin Robert

    2013-01-01

    Distributed Morphology (DM; Halle & Marantz 1993; Marantz 1997) is founded on the premise that the syntax is the only computational component of the grammar. Much research focuses on how this premise is relevant to the syntax-morphology interface in DM. In this dissertation, I examine theory-internal issues related to the syntax-semantics…

  16. Magnetically Enhanced Solid-Liquid Separation

    Science.gov (United States)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  17. Solid/liquid interfacial free energies in binary systems

    Science.gov (United States)

    Nason, D.; Tiller, W. A.

    1973-01-01

    Description of a semiquantitative technique for predicting the segregation characteristics of smooth interfaces between binary solid and liquid solutions in terms of readily available thermodynamic parameters of the bulk solutions. A lattice-liquid interfacial model and a pair-bonded regular solution model are employed in the treatment with an accommodation for liquid interfacial entropy. The method is used to calculate the interfacial segregation and the free energy of segregation for solid-liquid interfaces between binary solutions for the (111) boundary of fcc crystals. The zone of compositional transition across the interface is shown to be on the order of a few atomic layers in width, being moderately narrower for ideal solutions. The free energy of the segregated interface depends primarily upon the solid composition and the heats of fusion of the component atoms, the composition difference of the solutions, and the difference of the heats of mixing of the solutions.

  18. Morphology of the asymmetric iron–silicon interfaces

    International Nuclear Information System (INIS)

    Badía-Romano, L.; Rubín, J.; Bartolomé, F.; Magén, C.; Bartolomé, J.

    2015-01-01

    Highlights: • Exhaustive study of the Fe silicide formation at interfaces of (Fe/Si) multilayers. • Thickness = 1.4 nm and roughness = 0.6 nm are found for the Si-on-Fe interface. • First time that the Fe 1s HAXPES spectra of a multilayered system is recorded. • The c-Fe 1−x Si sublayer is identical in both Si-on-Fe and Fe-on-Si interfaces. • The asymmetry is caused only by the ferromagnetic silicide Fe 1−x Si x sublayer. - Abstract: A systematic study of the iron–silicon interfaces formed upon preparation of (Fe/Si) multilayers has been performed by combination of modern and powerful techniques. Samples were prepared by thermal evaporation under ultrahigh vacuum onto a Si(1 0 0) substrate. The morphology of these films and their interfaces was studied by a combination of scanning transmission electron microscopy, X-ray reflectivity, angle resolved X-ray photoelectron spectroscopy and hard X-ray photoelectron spectroscopy. The Si-on-Fe interface thickness and roughness were determined to be 1.4(1) nm and 0.6(1) nm, respectively. Moreover, determination of the stable phases formed at both Fe-on-Si and Si-on-Fe interfaces was performed using conversion electron Mössbauer spectroscopy on multilayers with well separated Si-on-Fe and Fe-on-Si interfaces. It is shown that while a fraction of Fe remains as α-Fe, the rest has reacted with Si, forming the paramagnetic c-Fe 1−x Si phase and a ferromagnetic Fe rich silicide (DO 3 type phase). We conclude that the paramagnetic c-Fe 1−x Si silicide sublayer is identical in both Si-on-Fe and Fe-on-Si interfaces, whereas an asymmetry is revealed in the composition of the ferromagnetic silicide sublayer

  19. Interfacial phase formation of Al-Cu bimetal by solid-liquid casting method

    Directory of Open Access Journals (Sweden)

    Ying Fu

    2017-05-01

    Full Text Available The solid-liquid method was used to prepare the continuous casting of copper cladding aluminium by liquid aluminum alloy and solid copper, and the interfacial phase formation of Al-Cu bimetal at different pouring temperatures (700, 750, 800 oC was investigated by means of metallograph, scanning electron microscopy (SEM and energy dispersive spectrometry (EDS methods. The results showed that the pouring temperature of aluminum melt had an important influence on the element diffusion of Cu from the solid Cu to Al alloy melt and the reactions between Al and Cu, as well as the morphology of the Al-Cu interface. When the pouring temperature was 800 oC, there were abundant Al-Cu intermetallic compounds (IMCs near the interface. However, a lower pouring temperature (700 oC resulted in the formation of cavities which was detrimental to the bonding and mechanical properties. Under the conditions in this study, the good metallurgical bonding of Al-Cu was achieved at a pouring temperature of 750 oC.

  20. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    Science.gov (United States)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  1. Solid-liquid interfacial energy of aminomethylpropanediol

    International Nuclear Information System (INIS)

    Ocak, Yavuz; Keslioglu, Kazim; Marasli, Necmettin; Akbulut, Sezen

    2008-01-01

    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (Γ), solid-liquid interfacial energy (σ SL ) and grain boundary energy (σ gb ) of AMPD have been determined to be (5.4 ± 0.5) x 10 -8 K m, (8.5 ± 1.3) x 10 -3 J m -2 and (16.5 ± 2.8) x 10 -3 J m -2 , respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature

  2. Solid-liquid interfacial energy of aminomethylpropanediol

    Energy Technology Data Exchange (ETDEWEB)

    Ocak, Yavuz; Keslioglu, Kazim; Marasli, Necmettin [Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Akbulut, Sezen [Department of Physics, Institute of Science and Technology, Erciyes University, 38039 Kayseri (Turkey)], E-mail: marasli@erciyes.edu.tr

    2008-03-21

    The grain boundary groove shapes for equilibrated solid aminomethylpropanediol, 2-amino-2 methyl-1.3 propanediol (AMPD) with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient ({gamma}), solid-liquid interfacial energy ({sigma}{sub SL}) and grain boundary energy ({sigma}{sub gb}) of AMPD have been determined to be (5.4 {+-} 0.5) x 10{sup -8} K m, (8.5 {+-} 1.3) x 10{sup -3} J m{sup -2} and (16.5 {+-} 2.8) x 10{sup -3} J m{sup -2}, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for the AMPD has also been measured to be 1.12 at the melting temperature.

  3. Charge Control And Wettability Alteration At Solid-liquid Interfaces

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther; Sîretanu, Igor; Kumar, Naveen; Bera, B.; Wang, Lei; Maestro, Armando; Duits, Michael H.G.; van den Ende, Henricus T.M.; Collins, I

    2014-01-01

    Most solid surfaces acquire a finite surface charge upon exposure to aqueous environments due to desorption and/or adsorption of ionic species. The resulting electrostatic forces play a crucial role in many fields of science, including colloidal stability, self-assembly, wetting, and biophysics as

  4. Morphology and Spelling in Arabic: Development and Interface

    Science.gov (United States)

    Taha, Haitham; Saiegh-Haddad, Elinor

    2017-01-01

    In the current study, two experiments were carried out: the first tested the development of derivational root and word-pattern morphological awareness in Arabic; the second tested morphological processing in Arabic spelling. 143 Arabic native speaking children with normal reading skills in 2nd, 4th and 6th grade participated in the study. The…

  5. Morphology and electronic properties of the pentacene on cobalt interface

    NARCIS (Netherlands)

    Tiba, M. V.; Koopmans, B.; Jonkman, Harry; de Jonge, W.J.M.

    2006-01-01

    In this paper, we report the structural and electronic properties of pentacene thin films grown on a polycrystalline Co film using atomic force microscopy and ultraviolet photoemission spectroscopy (UPS), respectively. Investigation of this type of interface is of importance for the engineering of

  6. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  7. Heat of mixing and morphological stability

    Science.gov (United States)

    Nandapurkar, P.; Poirier, D. R.

    1988-01-01

    A mathematical model, which incorporates heat of mixing in the energy balance, has been developed to analyze the morphological stability of a planar solid-liquid interface during the directional solidification of a binary alloy. It is observed that the stability behavior is almost that predicted by the analysis of Mullins and Sekerka (1963) at low growth velocities, while deviations in the critical concentration of about 20-25 percent are observed under rapid solidification conditions for certain systems. The calculations indicate that a positive heat of mixing makes the planar interface more unstable, whereas a negative heat of mixing makes it more stable, in terms of the critical concentration.

  8. Vortex-induced morphology on a two-fluid interface and the transitions.

    Science.gov (United States)

    Tsai, J-C; Tao, C-Y; Sun, Y-C; Lai, C-Y; Huang, K-H; Juan, W-T; Huang, J-R

    2015-09-01

    We investigate experimentally the steady flows in a cylinder containing two immiscible liquids, with the primary fluid being driven by the upper boundary rotating at constant speeds. The system exhibits interesting interplays between the flow fields and the morphology of the interface, with evidence showing that the remarkable flattop structure is a consequence of the vortex breakdown discovered decades ago, and that the deformability of the interface also feedbacks positively to the development of the vortices. Monitoring the topological structure of the flow fields defines the base states and transitions behind the morphology, whereas our survey over different aspect ratios also reveals rich phenomena of surface instabilities accompanying these steady states.

  9. Morphology and stress at silicon-glass interface in anodic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiali [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Cai, Cheng [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Ming, Xiaoxiang [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Yu, Xinhai, E-mail: yxhh@ecust.edu.cn [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Shuangliang, E-mail: szhao@ecust.edu.cn [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China); Tu, Shan-Tung [Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Honglai [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2016-11-30

    Highlights: • Amorphous SiO{sub 2} is the most probable silica morphology generated in anodic bonding. • Amorphous SiO{sub 2} thickness at the interface is at least 2 nm for 90 min anodic bonding. • Silicon oxidation rate at the interface is 0.022 nm min{sup −1} from 30 to 90 min. - Abstract: The morphologies and structural details of formed silica at the interface of silicon-glass anodic bonding determine the stress at the interface but they have been rarely clarified. In this study, a miniaturized anodic bonding device was developed and coupled with a Raman spectrometer. The silicon-glass anodic bonding was carried out and the evolution of the stress at the bonding interface was measured in situ by a Raman spectrometer. In addition, large-scale atomistic simulations were conducted by considering the formed silica with different morphologies. The most conceivable silica morphology was identified as the corresponding silicon-glass interfacial stress presents qualitatively agreement with the experimental observation. It was found that amorphous SiO{sub 2} is the silica morphology generated in anodic bonding. The amorphous SiO{sub 2} thickness is at least 2 nm in the case of 90 min anodic bonding at 400 °C with the DC voltage of −1000 V. The combination of experimental and simulation results can ascertain the silicon oxidation reaction rate in anodic bonding process, and under the above-mentioned condition, the reaction rate was estimated as 0.022 nm min{sup −1} from 30 to 90 min.

  10. Effect of phase morphologies on the mechanical properties of babbitt-bronze composite interfaces

    Science.gov (United States)

    Liaw, P. K.; Gungor, M. N.; Logsdon, W. A.; Ijiri, Y.; Taszarek, B. J.; Frohlich, S.

    1990-02-01

    Interfaces of two different babbitt-bronze composites were tested ultrasonically and then were fractured using the Chalmers test method. The primary distinction between the two composites was in the copper content. Use of less copper in the babbitt resulted in interfaces with higher strength, lower ductility, less cracking, and less unbonded area. The differences appeared to stem from the structure of the intermetallic compounds found at the interface, namely, the Cu3Sn and the Cu6Sn5 layers. The low-copper composite failed within a thick, dendrite-like Cu6Sn5 layer, while the high-copper one separated at the interface between a smooth Cu6Sn5 layer and the babbitt metal. The rough interface morphology seemed responsible for the low-copper composite’s increased strength. The correlation between mechanical and ultrasonic properties was poor for the low-copper composite but excellent for the high-copper one. These results suggest that interface morphology can significantly affect mechanical as well as ultrasonic properties.

  11. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Achik, I. [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); Boughaleb, Y., E-mail: yboughaleb@yahoo.fr [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); Université Chouaib Doukkali, Faculté des sciences, El Jadida (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hader, A. [Laboratoire de Physique de la Matière Condensée, Université Hassan II-Mohammedia, Faculté des sciences Ben M' sik, Casablanca (Morocco); CRMEF Settat (Morocco); Sbiaai, K. [Université Chouaib Doukkali, Faculté des sciences, El Jadida (Morocco); Hajjaji, A. [Université Chouaib Doukkali, Ecole nationale des sciences appliquées, El Jadida (Morocco)

    2013-10-31

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l{sup α}f(t/l{sup α/β}) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach.

  12. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    International Nuclear Information System (INIS)

    Achik, I.; Boughaleb, Y.; Hader, A.; Sbiaai, K.; Hajjaji, A.

    2013-01-01

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l α f(t/l α/β ) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach

  13. ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector

    Science.gov (United States)

    2013-01-01

    ZnO nanoneedle arrays were grown vertically on a fluorine-doped tin oxide-coated glass by hydrothermal method at a relatively low temperature. A self-powered photoelectrochemical cell-type UV detector was fabricated using the ZnO nanoneedles as the active photoanode and H2O as the electrolyte. This solid-liquid heterojunction offers an enlarged ZnO/water contact area and a direct pathway for electron transport simultaneously. By connecting this UV photodetector to an ammeter, the intensity of UV light can be quantified using the output short-circuit photocurrent without a power source. High photosensitivity, excellent spectral selectivity, and fast photoresponse at zero bias are observed in this UV detector. The self-powered behavior can be well explained by the formation of a space charge layer near the interface of the solid-liquid heterojunction, which results in a built-in potential and makes the solid-liquid heterojunction work in photovoltaic mode. PMID:24103153

  14. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  15. Morphological variation of stimuli-responsive polypeptide at air–water interface

    International Nuclear Information System (INIS)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie; Chang, Hyejin; Jung, Dae-Hong; Hyun, Jinho

    2016-01-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  16. Morphological variation of stimuli-responsive polypeptide at air–water interface

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sungchul; Ahn, Sungmin; Cheng, Jie [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Chang, Hyejin; Jung, Dae-Hong [Department of Chemical Education, Seoul National University, Seoul 151-741 (Korea, Republic of); Hyun, Jinho, E-mail: jhyun@snu.ac.kr [Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 151-921 (Korea, Republic of); Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea. (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • It is the first report on the interfacial properties of ELP monolayers formed at the air–water interface. • ELP monolayers could be prepared with high stability at the air–water interface. • The compressive behavior of thermo-sensitive ELP monolayers was imaged. • The SERS spectra showed a change in the ELP secondary structure at different preparation conditions. - Abstract: The morphological variation of stimuli-responsive polypeptide molecules at the air–water interface as a function of temperature and compression was described. The surface pressure–area (π–A) isotherms of an elastin-like polypeptide (ELP) monolayer were obtained under variable external conditions, and Langmuir–Blodgett (LB) monolayers were deposited onto a mica substrate for characterization. As the compression of the ELP monolayer increased, the surface pressure increased gradually, indicating that the ELP monolayer could be prepared with high stability at the air–water interface. The temperature in the subphase of the ELP monolayer was critical in the preparation of LB monolayers. The change in temperature induced a shift in the π–A isotherms as well as a change in ELP secondary structures. Surprisingly, the compression of the ELP monolayer influenced the ELP secondary structure due to the reduction in the phase transition temperature with decreasing temperature. The change in the ELP secondary structure formed at the air–water interface was investigated by surface-enhanced Raman scattering. Moreover, the morphology of the ELP monolayer was subsequently imaged using atomic force microscopy. The temperature responsive behavior resulted in changes in surface morphology from relatively flat structures to rugged labyrinth structures, which suggested conformational changes in the ELP monolayers.

  17. Morphological instability of a non-equilibrium ice-colloid interface

    KAUST Repository

    Peppin, S. S. L.

    2009-10-02

    We assess the morphological stability of a non-equilibrium ice-colloidal suspension interface, and apply the theory to bentonite clay. An experimentally convenient scaling is employed that takes advantage of the vanishing segregation coefficient at low freezing velocities, and when anisotropic kinetic effects are included, the interface is shown to be unstable to travelling waves. The potential for travelling-wave modes reveals a possible mechanism for the polygonal and spiral ice lenses observed in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results for the frost susceptibility of soils and the fabrication of microtailored porous materials. © 2009 The Royal Society.

  18. Solid-liquid separation in the mining industry

    CERN Document Server

    Concha A , Fernando

    2014-01-01

    This book covers virtually all of the engineering science and technological aspects of separating water from particulate solids in the mining industry. It starts with an introduction to the field of mineral processing and the importance of water in mineral concentrators. The consumption of water in the various stages of concentration is discussed, as is the necessity of recovering the majority of that water for recycling. The book presents the fundamentals under which processes of solid-liquid separation are studied, approaching mixtures of discrete finely divided solid particles in water as a basis for dealing with sedimentation in particulate systems. Suspensions, treated as continuous media, provide the basis of sedimentation, flows through porous media and filtration. The book also considers particle aggregations, and thickening is analyzed in depth. Lastly, two chapters cover the fundamentals and application of rheology and the transport of suspensions.  This work is suitable for researchers and profess...

  19. Reactivity and morphology of vapor-deposited Al/polymer interfaces for organic semiconductor devices

    International Nuclear Information System (INIS)

    Demirkan, K.; Mathew, A.; Weiland, C.; Opila, R. L.; Reid, M.

    2008-01-01

    The chemistry and the morphology of metal-deposited organic semiconductor interfaces play a significant role in determining the performance and reliability of organic semiconductor devices. We investigated the aluminum metallization of poly(2-methoxy-5,2 ' -ethyl-hexyloxy-phenylene vinylene) (MEH-PPV), polystyrene, and ozone-treated polystyrene surfaces by chemical (x-ray and ultraviolet photoelectron spectroscopy) and microscopic [atomic force microscopy, scanning electron microscopy (SEM), focused ion beam (FIB)] analyses. Photoelectron spectroscopy showed the degree of chemical interaction between Al and each polymer; for MEH-PPV, the chemical interactions were mainly through the C-O present in the side chain of the polymer structure. The chemical interaction of aluminum with polystyrene was less significant, but it showed a dramatic increase after ozone treatment of the polystyrene surface (due to the formation of exposed oxygen sites). Results showed a strong relationship between the surface reactivity and the condensation/sticking of the aluminum atoms on the surface. SEM analysis showed that, during the initial stages of the metallization, a significant clustering of aluminum takes place. FIB analysis showed that such clustering yields a notably porous structure. The chemical and the morphological properties of the vapor-deposited Al on organic semiconductor surfaces makes such electrical contacts more complicated. The possible effects of surface chemistry and interface morphology on the electrical properties and reliability of organic semiconductor devices are discussed in light of the experimental findings

  20. Exploring interface morphology of a deeply buried layer in periodic multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, Maharashtra (India); Khooha, Ajay; Singh, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013, Madhya Pradesh (India)

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection condition is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.

  1. Surface composition variation and high-vacuum performance of DLC/ILs solid-liquid lubricating coatings: Influence of space irradiation

    International Nuclear Information System (INIS)

    Liu Xiufang; Wang Liping; Pu Jibin; Xue Qunji

    2012-01-01

    In this paper, we fabricated a DLC/ionic liquid (DLC/ILs) solid-liquid lubricating coating and investigated the effect of atomic oxygen (AO), ultraviolet (UV), proton and electron irradiations on composition, structure, morphology and tribological properties of the DLC/ILs solid-liquid lubricating coatings. A ground-based simulation facility was employed to carry out the irradiation experiments. X-ray photoelectron spectroscope (XPS), Raman spectra, and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyzed the structure and composition changes of DLC film and IL lubricant before and after irradiations. The tribological behavior of the DLC/ILs solid-liquid lubricating coating before and after irradiations was investigated by a vacuum tribometer with the pressure of 10 -5 Pa. The experimental results revealed that irradiations induced the structural changes, including oxidation, bond break and crosslinking reactions of DLC film and IL lubricant. The damage of proton and AO irradiations to lubricating materials were the most serious, and UV irradiation was the slightest. After irradiations, the friction coefficient of the solid-liquid lubricating coatings decreased (except for AO irradiation), but the disc wear rate increased compared with non-irradiation coatings.

  2. Effect of ferrite-martensite interface morphology on bake hardening response of DP590 steel

    International Nuclear Information System (INIS)

    Chakraborty, Arnab; Adhikary, Manashi; Venugopalan, T.; Singh, Virender; Nanda, Tarun; Kumar, B. Ravi

    2016-01-01

    The effect of martensite spatial distribution and its interface morphology on the bake hardening characteristics of a dual phase steel was investigated. In one case, typical industrial continuous annealing line parameters were employed to anneal a 67% cold rolled steel to obtain a dual phase microstructure. In the other case, a modified annealing process with changed initial heating rates and peak annealing temperature was employed. The processed specimens were further tensile pre-strained within 1–5% strain range followed by a bake hardening treatment at 170 °C for 20 min. It was observed that industrial continuous annealing line processed specimen showed a peak of about 70 MPa in bake-hardening index at 2% pre-strain level. At higher pre-strain values a gradual drop in bake-hardening index was observed. On the contrary, modified annealing process showed near uniform bake-hardening response at all pre-strain levels and a decrease could be noted only above 4% pre-strain. The evolving microstructure at each stage of annealing process and after bake-hardening treatment was studied using field emission scanning electron microscope. The microstructure analysis distinctly revealed differences in martensite spatial distribution and interface morphologies between each annealing processes employed. The modified process showed predominant formation of martensite within the ferrite grains with serrated lath martensite interfaces. This nature of the martensite was considered responsible for the observed improvement in the bake-hardening response. Furthermore, along with improved bake-hardening response negligible loss in tensile ductility was also noted. This behaviour was correlated with delayed micro-crack initiation at martensite interface due to serrated nature.

  3. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  4. Gastric emptying of a physiologic mixed solid-liquid meal

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.S.; Malmud, L.S.; Bandini, P.; Rock, E.

    1982-05-01

    The purposes of this study were to use a noninvasive scintigraphic technique to measure gastric emptying of liquids and solids simultaneously, to study the interactions between emptying of the liquid and solid components of meals in normal subjects, and to employ dual isotope gastric scintigraphy to evaluate gastric emptying of liquids and solids in patients with clinical evidence of gastric outlet obstruction. The solid component of the test meal consisted of chicken liver, labeled in vivo with /sup 99m/Tc sulfur colloid, and the liquid component was water mixed with /sup 111/In DTPA. The rates of emptying were quantitated using a gamma camera on line to a digital computer. Twenty normal subjects were studied using this combined solid-liquid meal. Ten of them also ingested a liquid meal alone and ten a solid meal alone. Liquid emptied from the stomach significantly more rapidly than did solids. The emptying curve for liquids was exponential compared to a linear emptying curve for solids. The gastric emptying rate of the liquid component was slowed significantly by simultaneous ingestion of solids, but the emptying rate of solids was not affected by liquids. Several patients with clinical gastric outlet obstruction were evaluated. Both combined and selective abnormalities for gastric emptying of liquids and solids were demonstrated.

  5. The morphology of coating/substrate interface in hot-dip-aluminized steels

    International Nuclear Information System (INIS)

    Awan, Gul Hameed; Hasan, Faiz ul

    2008-01-01

    In hot-dip-aluminized (HAD) steels, the morphology and the profile of the interface between the aluminum coating and the substrate steel, are affected both by the composition of the molten aluminum as well as by the composition, and even the microstructure, of the substrate steel. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The reaction between the steel and the molten aluminum leads to the formation of Fe-Al inter-metallic compounds on the steel surface. The thickness of the inter-metallic compound layer as well as the morphology of the interface between the steel and the interlayer varies with the silicon content of the molten aluminum. In hot-dip-aluminizing with pure aluminum, the interlayer is 'thick' and exhibits a finger-like growth into the steel. With a gradually increasing addition of silicon into the aluminum melt, the thickness of the interlayer decreases while the interface between the interlayer and the substrate gradually becomes 'smoother'. With an increase in the carbon content of the substrate steel the growth of the interlayer into the steel is impeded by the pearlite phase, whereas the ferrite phase appears to dissolve more readily. X-ray diffraction and electron microscopic studies showed that the interlayer formed in samples aluminized in pure aluminum, essentially consisted of orthorhombic Fe 2 Al 5 . It was further observed that the finger-like grains of Fe 2 Al 5 phase exhibited a preferred lattice orientation. With a gradual addition of silicon into the aluminum melt, a cubic phase based on Fe 3 Al also started to form in the interlayer and replaced most of the Fe 2 Al 5

  6. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  7. Wastewater Triad Project: Solid-Liquid Separator FY 2000 Deployment

    International Nuclear Information System (INIS)

    Walker, J.F.

    2001-01-01

    The Wastewater Triad Project (WTP) consists of three operational units: the cesium removal (CsR) system, the out-of-tank evaporator (OTE) system, and the solid/liquid separation (SLS) system. These systems were designed to reduce the volume and radioactivity of low-level liquid waste (LLLW) stored in the Melton Valley Storage Tanks (MVSTs) and are operated independently or in series in order to accomplish the treatment goals. Each is a modular, skid-mounted system that is self-contained, individually shielded, and designed to be decontaminated and removed once the project has been completed. The CsR and OTE systems are installed inside Building 7877; the SLS system is installed adjacent to the east side of the MVST 7830 vault cover. The CsR, which consists of ion-exchange equipment for removing 137 Cs from LLLW, was demonstrated in 1997. During the Cesium Removal Demonstration, 30,853 gal of radioactive supernate was processed and 1142 Ci of 137 Cs was removed from the supernate and loaded onto 70 gal of a crystalline silicotitanate sorbent manufactured by UOP, Inc. The OTE system is a subatmospheric single-stage evaporator system designed to concentrate LLLW to smaller volumes. It was previously demonstrated in 1996 and was operated in 1998 to process about 80,000 gal of LLLW. The SLS system was designed to filter and remove suspended solids from LLLW in order to minimize further accumulation of sludge in new storage tanks or to prevent fouling of CsR and OTE systems. The SLS was installed and demonstrated in 1999; ∼45,000 gal of radioactive supernate was processed during the demonstration

  8. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Science.gov (United States)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  9. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, Ulrich E. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)], E-mail: klotz@fem-online.de; Liu Chunlei [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Khalid, Fazal A. [Faculty of Metallurgy and Materials Engineering, GIK Institute, Topi, NWFP (Pakistan); Elsener, Hans-Rudolf [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Joining and Interface Technology, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2008-11-15

    Active brazing is an effective technique for joining diamond or cBN grit to metallic substrates. This technique is currently used to manufacture superabrasive, high-performance tools. The investigation of interface reactions between diamond and active brazing alloys plays an important role in understanding and improving the brazing process and the resultant tool performance. Focused ion beam (FIB) milling enabled the high resolution investigation of these extremely difficult to prepare metal-diamond joints. The interfacial nanostructure is characterized by the formation of two layers of TiC with different morphologies. First a cuboidal layer forms directly on the diamond and reaches a thickness of approximately 70 nm. Then a second layer with columnar TiC crystals grows on the first layer into the brazing filler metal by a diffusion-controlled process. The combined thickness of both TiC layers varies between 50 nm and 600 nm depending on the brazing temperature and holding time.

  10. Effect of water layer at the SiO2/graphene interface on pentacene morphology.

    Science.gov (United States)

    Chhikara, Manisha; Pavlica, Egon; Matković, Aleksandar; Gajić, Radoš; Bratina, Gvido

    2014-10-07

    Atomic force microscopy has been used to examine early stages of pentacene growth on exfoliated single-layer graphene transferred to SiO2 substrates. We have observed 2D growth with mean height of 1.5 ± 0.2 nm on as-transferred graphene. Three-dimensional islands of pentacene with an average height of 11 ± 2 nm were observed on graphene that was annealed at 350 °C prior to pentacene growth. Compellingly similar 3D morphology has been observed on graphene transferred onto SiO2 that was treated with hexamethyldisilazane prior to the transfer of graphene. On multilayer graphene we have observed 2D growth, regardless of the treatment of SiO2. We interpret this behavior of pentacene molecules in terms of the influence of the dipolar field that emerges from the water monolayer at the graphene/SiO2 interface on the surface energy of graphene.

  11. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  12. From Morphology to Interfaces to Tandem Geometries: Enhancing the Performance of Perovskite/Polymer Solar Cells

    Science.gov (United States)

    Russell, Thomas

    We have taken a new approach to develop mesoporous lead iodide scaffolds, using the nucleation and growth of lead iodide crystallites in a wet film. A simple time-dependent growth control enabled the manipulation of the mesoporous lead iodide layer quality in a continuous manner. The morphology of lead iodide is shown to influence the subsequent crystallization of methyamoniumleadiodide film by using angle-dependent grazing incidence x-ray scattering. The morphology of lead iodide film can be fine-tuned, and thus the methyamoniumleadiodide film quality can be effectively controlled, leading to an optimization of the perovskite active layer. Using this strategy, perovskite solar cells with inverted PHJ structure showed a PCE of 15.7 per cent with little hysteresis. Interface engineering is critical for achieving efficient solar cells, yet a comprehensive understanding of the interface between metal electrode and electron transport layer (ETL) is lacking. A significant power conversion efficiency (PCE) improvement of fullerene/perovskite planar heterojunction solar cells was achieved by inserting a fulleropyrrolidine interlayer between the silver electrode and electron transport layer. The interlayer was found to enhance recombination resistance, increases electron extraction rate and prolongs free carrier lifetime. We also uncovered a facile solution-based fabrication of high performance tandem perovskite/polymer solar cells where the front sub-cell consists of perovskite and the back sub-cell is a polymer-based layer. A record maximum PCE of 15.96 per cent was achieved, demonstrating the synergy between the perovskite and semiconducting polymers. This design balances the absorption of the perovskite and the polymer, eliminates the adverse impact of thermal annealing during perovskite fabrication, and affords devices with no hysteresis. This work was performed in collaboration with Y. Liu, Z. Page, D. Venkataraman and T. Emrick (UMASS), F. Liu (LBNL) and Q. Hu and R

  13. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  14. Application of solid-liquid extraction separation in analytical chemistry: Pt. 1

    International Nuclear Information System (INIS)

    Xu Zulan; Dai Lixin

    1985-01-01

    Low m.p. waxes as solid solvents for solid-liquid extraction separation are advanced. Uranium in aqueous phase is extracted by homogeneous organic phase which is composed of waxes and various kinds of extractants. Various parameters of this extraction separation method are studied and compared with one of liquid-liquid extraction. The characteristic of wax as solvent, speciality and applicability of solid-liquid extraction separation method are evaluated

  15. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  16. Aan der Waals terminated silicon(111) surfaces and interfaces. Preparation, morphology, and electronic properties

    International Nuclear Information System (INIS)

    Fritsche, R.

    2004-01-01

    The aim of this thesis is the implementation of the concept of the quasi-van der Waals epitaxy as a new perspective for the integration of reactive and lattice-defect fitted materials into the silicon technology. The experimental characterization of this approach pursues in two subsequent sections. First the chemical and electronic passivation of a three-dimensional substrate (silicon) is studied by means of an ultrathin buffer layer from the material class of the layered-lattice chalcogenides (GaSe). The substrate surface (Si(111):GaSe) modified in this way possesses an inert van der Waals surface and serves in the following as base for the deposition of the against the non-passivated substrate really reactive and lattice-defect fitted materials (II-VI-compound semiconductors and metals) The characterization of the electronic and chemical properties of the surfaces and interfaces pursues with highly resolved photoelectron spectroscopy (SXPS). The results are supplemented by the characterization of the morphology by the diffraction of low-energy electrons (LEED) and the scanning tunnel microscopy (STM)

  17. Understanding the Influence of Interface Morphology on the Performance of Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Manuel Salado

    2018-06-01

    Full Text Available In recent years, organo-halide perovskite solar cells have garnered a surge of interest due to their high performance and low-cost fabrication processing. Owing to the multilayer architecture of perovskite solar cells, interface not only has a pivotal role to play in performance, but also influences long-term stability. Here we have employed diverse morphologies of electron selective layer (ESL to elucidate charge extraction behavior in perovskite solar cells. The TiO2 mesoporous structure (three-dimensional having varied thickness, and nanocolumns (1-dimensional with tunable length were employed. We found that a TiO2 electron selective layer with thickness of about c.a. 100 nm, irrespective of its microstructure, was optimal for efficient charge extraction. Furthermore, by employing impedance spectroscopy at different excitation wavelengths, we studied the nature of recombination and its dependence on the charge generation profile, and results showed that, irrespective of the wavelength region, the fresh devices do not possess any preferential recombination site, and recombination process is governed by the bulk of the perovskite layer. Moreover, depending on the type of ESL, a different recombination mechanism was observed that influences the final behavior of the devices.

  18. Accelerated Metastable Solid-liquid Interdiffusion Bonding with High Thermal Stability and Power Handling

    Science.gov (United States)

    Huang, Ting-Chia; Smet, Vanessa; Kawamoto, Satomi; Pulugurtha, Markondeya R.; Tummala, Rao R.

    2018-01-01

    Emerging high-performance systems are driving the need for advanced packaging solutions such as 3-D integrated circuits (ICs) and 2.5-D system integration with increasing performance and reliability requirements for off-chip interconnections. Solid-liquid interdiffusion (SLID) bonding resulting in all-intermetallic joints has been proposed to extend the applicability of solders, but faces fundamental and manufacturing challenges hindering its wide adoption. This paper introduces a Cu-Sn SLID interconnection technology, aiming at stabilization of the microstructure in the Cu6Sn5 metastable phase rather than the usual stable Cu3Sn phase. This enables formation of a void-free interface yielding higher mechanical strength than standard SLID bonding, as well as significantly reducing the transition time. The metastable SLID technology retains the benefits of standard SLID with superior I/O pitch scalability, thermal stability and current handling capability, while advancing assembly manufacturability. In the proposed concept, the interfacial reaction is controlled by introducing Ni(P) diffusion barrier layers, designed to effectively isolate the metastable Cu6Sn5 phase preventing any further transformation. Theoretical diffusion and kinetic models were applied to design the Ni-Cu-Sn interconnection stack to achieve the targeted joint composition. A daisy chain test vehicle was used to demonstrate this technology as a first proof of concept. Full transition to Cu6Sn5 was successfully achieved within a minute at 260°C as confirmed by scanning electron microscope (SEM) and x-ray energy dispersive spectroscopy (XEDS) analysis. The joint composition was stable through 10× reflow, with outstanding bond strength averaging 90 MPa. The metastable SLID interconnections also showed excellent electromigration performance, surviving 500 h of current stressing at 105 A/cm2 at 150°C.

  19. Invariance of the solid-liquid interfacial energy in electrowetting probed via capillary condensation.

    Science.gov (United States)

    Gupta, Rohini; Olivier, Gloria K; Frechette, Joelle

    2010-07-20

    Capillary condensation is employed to probe the solid-liquid interfacial energy in electrowetting on dielectric. The height of an annular water meniscus formed via capillary condensation inside the surface force apparatus is measured as a function of the potential applied across the meniscus and the dielectric stack where the meniscus is formed. According to the Kelvin equation, a decrease in the solid-liquid interfacial energy at constant temperature and relative humidity should lead to an increase in the meniscus height. Our experimental results on nanometer-sized meniscus are in agreement with the work of Mugele [J. Phys.: Condens. Matter 2007, 19, 375112] and unequivocally demonstrate that the real contact angle (or the solid-liquid interfacial energy) remains unaltered in electrowetting on dielectric.

  20. Heat and Mass Transfer during Solid-Liquid Phase Transition of n-Alkanes in the C{sub 16} to C{sub 19} Range

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Rune

    2002-07-01

    The main goal of this project has been to study heat and mass transfer during solid-liquid phase transition of n-alkanes in the in the C{sub 16} to C{sub 19} range. Phase transitions of both mixtures and pure components have been investigated. All experiments and simulations have been performed without any convection. Thermal conductivities have been determined at the melting point for solid and liquid unbranched alkanes ranging from C{sub 16} to C{sub 19}. An assessment of the error of the method has been performed. The measurements of solid conductivities are in accordance with measurements reported previously and confirm the applicability of the method. Liquid conductivities are higher than extrapolated values from the literature. The enhanced conductivity is believed to be caused by structural changes close to the melting point which is not taken into account when extrapolating values from the literature. Experiments have been performed for the purpose of investigating the freezing of mixtures of n-alkanes in the C{sub 16}-C{sub 19} range. The positions of the solid-liquid interfaces have been measured as freezing occurred. Calculations of the ratio of liquid and solid conductivities show that the solid structure of mixtures of the investigated n-alkanes is predominantly in a rotator structure at the temperatures investigated. There are indications of a transformation into an orthorhombic structure at lower temperatures. The temperatures on the solid-liquid interface have been measured, and compared with calculated values from chapter 4. The temperature of the interface is represented better by the measured interfacial temperatures than by the calculated interfacial temperatures. The experimental results indicate that the diffusion of heat is the limiting mechanism of phase transition. This result in a homogeneous liquid composition. A numerical model has been developed in order to simulate the experimental freezing of mixtures. The model represents the results

  1. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    Science.gov (United States)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  2. Experimental (solid + liquid) or (liquid + liquid) phase equilibria of (amine + nitrile) binary mixtures

    International Nuclear Information System (INIS)

    Domanska, Urszula; Marciniak, Malgorzata

    2007-01-01

    (Solid + liquid) phase diagrams have been determined for (hexylamine, or octylamine, or 1,3-diaminopropane + acetonitrile) mixtures. Simple eutectic systems have been observed in these mixtures. (Liquid + liquid) phase diagrams have been determined for (octylamine, or decylamine + propanenitrile, or + butanenitrile) mixtures. Mixtures with propanenitrile and butanenitrile show immiscibility in the liquid phase with an upper critical solution temperature, UCST. (Solid + liquid) phase diagrams have been correlated using NRTL, NRTL 1, Wilson and UNIQUAC equations. (Liquid + liquid) phase diagrams have been correlated using NRTL equation

  3. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  4. Dewetting of low-viscosity films at solid/liquid interfaces.

    Science.gov (United States)

    Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé

    2012-11-13

    We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.

  5. Recent Advances in Study of Solid-Liquid Interfaces and Solidification of Metals

    Directory of Open Access Journals (Sweden)

    Mohsen Asle Zaeem

    2018-02-01

    Full Text Available Solidification occurs in several material processing methods, such as in casting, welding, and laser additive manufacturing of metals, and it controls the nano- and microstructures, as well as the overall properties of the products[...

  6. Surface induced ordering of micelles at the solid-liquid interface

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. copyright 1998 The American Physical Society

  7. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  8. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  9. Molecular structure and Equilibrium forces of bovine submaxillary mucin adsorbed at a solid-liquid interface

    DEFF Research Database (Denmark)

    Zappone, Bruno; Patil, Navinkumar J.; Madsen, Jan Busk

    2015-01-01

    prepared by additional chromatographic purification of commercially available products. The mucin molecule was found to have a z-average hydrodynamic diameter of ca. 35 nm in phosphate buffered solution, without any particular secondary or tertiary structure. The contour length of the mucin is larger than...

  10. Solid-Liquid and Liquid-Liquid Equilibrium in the Formamide-Acetophenone System.

    Czech Academy of Sciences Publication Activity Database

    Malijevská, I.; Sedláková, Zuzana; Řehák, K.; Vrbka, P.

    2006-01-01

    Roč. 71, 9 (2006) , s. 1350-1358 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40720504 Keywords : solid-liquid equilibria * liquid-liquid equilibria * metastable Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.881, year: 2006

  11. Assessment of solid/liquid equilibria in the (U, Zr)O

    NARCIS (Netherlands)

    Mastromarino, S.; Seibert, AF; Hashem, E.; Ciccioli, A.; Prieur, Damien; Scheinost, Andreas C.; Stohr, S.; Lajarge, P; Boshoven, JG; Robba, D.; Ernstberger, M; Bottomley, D.; Manara, D

    2017-01-01

    Solid/liquid equilibria in the system UO2–ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the

  12. Detailed simulations of liquid and solid-liquid mixing : Turbulent agitated flow and mass transfer

    NARCIS (Netherlands)

    Hartmann, H.

    2005-01-01

    This thesis aims at a contribution to reliable and accurate predictions of complex, multi-phase processes. The reader is presented detailed simulations on liquid and solid-liquid mixing using large eddy simulations (LES) including scalar mixing and particle transport in a Rushton turbine stirred

  13. Computer simulation of solid-liquid coexistence in binary hard sphere mixtures

    NARCIS (Netherlands)

    Kranendonk, W.G.T.; Frenkel, D.

    1991-01-01

    We present the results of a computer simulation study of the solid-liquid coexistence of a binary hard sphere mixture for diameter ratios in the range 0·85 ⩽ ğa ⩽ 1>·00. For the solid phase we only consider substitutionally disordered FCC and HCP crystals. For 0·9425 < α < 1·00 we find a

  14. All about Solids, Liquids & Gases. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…

  15. Designing solid-liquid interphases for sodium batteries

    KAUST Repository

    Choudhury, Snehashis

    2017-10-06

    Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.

  16. Morphological instability of a non-equilibrium ice-colloid interface

    KAUST Repository

    Peppin, S. S. L.; Majumdar, A.; Wettlaufer, J. S.

    2009-01-01

    in frozen clays. A weakly nonlinear analysis yields a long-wave evolution equation for the interface shape containing a new parameter related to the highly nonlinear liquidus curve in colloidal systems. We discuss the implications of these results

  17. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    NARCIS (Netherlands)

    Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element

  18. Micro-mechanical modeling of the cement-bone interface: the effect of friction morphology and material properties on the micromechanical response

    NARCIS (Netherlands)

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nicolaas Jacobus Joseph

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement–bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement–bone interface were analyzed using a finite element approach. Finite element

  19. Cellular interface morphologies in directional solidification. III - The effects of heat transfer and solid diffusivity

    Science.gov (United States)

    Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.

    1985-01-01

    The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.

  20. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    Science.gov (United States)

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-01

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  1. Engineering evaluation of solids/liquids separation processes applicable to sludge treatment project

    International Nuclear Information System (INIS)

    Duncan, J.B.

    1998-01-01

    This engineering study looks at the solids/liquids separation unit operations after the acid dissolution of the K Basin sludge treatment. Unit operations considered were centrifugation, filtration (cartridge, cross flow, and high shear filtration) and gravity settling. The recommended unit operations for the solids/liquids separations are based upon the efficiency, complexity, and off-the-shelf availability and adaptability. The unit operations recommended were a Robatel DPC 900 centrifuge followed by a nuclearized 31WM cartridge filter. The Robatel DPC 900 has been successfully employed in the nuclear industry on a world wide scale. The 31WM cartridge filter has been employed for filtration campaigns in both the government and civilian nuclear arenas

  2. Solid-Liquid equilibrium of n-alkanes using the Chain Delta Lattice Parameter model

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1996-01-01

    The formation of a solid phase in liquid mixtures with large paraffinic molecules is a phenomenon of interest in the petroleum, pharmaceutical, and biotechnological industries among onters. Efforts to model the solid-liquid equilibrium in these systems have been mainly empirical and with different...... degrees of success.An attempt to describe the equilibrium between the high temperature form of a paraffinic solid solution, commonly known as rotator phase, and the liquid phase is performed. The Chain Delta Lattice Parameter model (CDLP) is developed allowing a successful description of the solid-liquid...... equilibrium of n-alkanes ranging from n-C_20 to n-C_40.The model is further modified to achieve a more correct temperature dependence because it severely underestimates the excess enthalpy. It is shown that the ratio of excess enthalpy and entropy for n-alkane solid solutions, as happens for other solid...

  3. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    Science.gov (United States)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  4. Solid-Liquid Equilibrium in the Systems with an Ionic Liquid

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Sauton, H.; Hynek, V.; Malijevská, I.

    2008-01-01

    Roč. 73, č. 5 (2008), s. 657-664 ISSN 0010-0765 R&D Projects: GA ČR GA104/07/0444; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : experimental data * solid-liquid equlibrium * 1-butyl-3-methylimidazolium chloride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  5. Solid-Liquid Equilibria in Systems [Cxmim][Tf2N] with Diethylamine

    Czech Academy of Sciences Publication Activity Database

    Rotrekl, Jan; Vrbka, P.; Sedláková, Zuzana; Wagner, Zdeněk; Jacquemin, J.; Bendová, Magdalena

    2015-01-01

    Roč. 87, č. 5 (2015), s. 453-460 ISSN 0033-4545. [International Symposium on Solubility Phenomena 2014. Karlsruhe, 20.07.2014-24.07.2014] R&D Projects: GA MŠk(CZ) LD14094; GA MŠk LG13060 Institutional support: RVO:67985858 Keywords : ionic liquids * solid-liquid equilibria * COSMO-RS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.615, year: 2015

  6. Spectromicroscopic Insights into the Morphology and Interfaces of Operational Organic Electronic Devices

    OpenAIRE

    Du, Xiaoyan

    2017-01-01

    Organic electronics, e.g., organic field-effect transistors (OFETs), organic solar cells (OSCs) and organic light-emitting diodes (OLEDs), have attracted strong interest in both academia and industry during the last decades due to their unique capabilities offered by organic semiconductors. The micro-/nano-structures in active layers and the interface engineering in organic electronics are extremely important for desired device functionalities. In this thesis, the structure-function relations...

  7. (Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS

    International Nuclear Information System (INIS)

    Altway, Saidah; Taha, Mohamed; Lee, Ming-Jer

    2015-01-01

    Graphical abstract: - Highlights: • MOPS buffer induced liquid phase splitting for mixtures of water with THF or 1,3-dioxolane. • Phase boundaries of LLE, SLE, and SLLE were determined experimentally. • Tie-lines at LLE and at SLLE were also measured. • Phase diagrams of MOPS + water + THF or 1,3-dioxolane are prepared. • LLE tie-line data are correlated satisfactorily with the NRTL model. - Abstract: Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane

  8. Synthesis and morphology of hydroxyapatite/polyethylene oxide nanocomposites with block copolymer compatibilized interfaces

    Science.gov (United States)

    Lee, Ji Hoon; Shofner, Meisha

    2012-02-01

    In order to exploit the promise of polymer nanocomposites, special consideration should be given to component interfaces during synthesis and processing. Previous results from this group have shown that nanoparticles clustered into larger structures consistent with their native shape when the polymer matrix crystallinity was high. Therefore in this research, the nanoparticles are disguised from a highly-crystalline polymer matrix by cloaking them with a matrix-compatible block copolymer. Specifically, spherical and needle-shaped hydroxyapatite nanoparticles were synthesized using a block copolymer templating method. The block copolymer used, polyethylene oxide-b-polymethacrylic acid, remained on the nanoparticle surface following synthesis with the polyethylene oxide block exposed. These nanoparticles were subsequently added to a polyethylene oxide matrix using solution processing. Characterization of the nanocomposites indicated that the copolymer coating prevented the nanoparticles from assembling into ordered clusters and that the matrix crystallinity was decreased at a nanoparticle spacing of approximately 100 nm.

  9. Solid-liquid phase equilibria of Fe-Cr-Al alloys and spinels

    Science.gov (United States)

    McMurray, J. W.; Hu, R.; Ushakov, S. V.; Shin, D.; Pint, B. A.; Terrani, K. A.; Navrotsky, A.

    2017-08-01

    Ferritic FeCrAl alloys are candidate accident tolerant cladding materials. There is a paucity of data concerning the melting behavior for FeCrAl and its oxides. Analysis tools have therefore had to utilize assumptions for simulations using FeCrAl cladding. The focus of this study is to examine in some detail the solid-liquid phase equilibria of FeCrAl alloys and spinels with the aim of improving the accuracy of severe accident scenario computational studies.

  10. An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces

    Science.gov (United States)

    Petersen, T. C.; Ringer, S. P.

    2010-03-01

    Upon discerning the mere shape of an imaged object, as portrayed by projected perimeters, the full three-dimensional scattering density may not be of particular interest. In this situation considerable simplifications to the reconstruction problem are possible, allowing calculations based upon geometric principles. Here we describe and provide an algorithm which reconstructs the three-dimensional morphology of specimens from tilt series of images for application to electron tomography. Our algorithm uses a differential approach to infer the intersection of projected tangent lines with surfaces which define boundaries between regions of different scattering densities within and around the perimeters of specimens. Details of the algorithm implementation are given and explained using reconstruction calculations from simulations, which are built into the code. An experimental application of the algorithm to a nano-sized Aluminium tip is also presented to demonstrate practical analysis for a real specimen. Program summaryProgram title: STOMO version 1.0 Catalogue identifier: AEFS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2988 No. of bytes in distributed program, including test data, etc.: 191 605 Distribution format: tar.gz Programming language: C/C++ Computer: PC Operating system: Windows XP RAM: Depends upon the size of experimental data as input, ranging from 200 Mb to 1.5 Gb Supplementary material: Sample output files, for the test run provided, are available. Classification: 7.4, 14 External routines: Dev-C++ ( http://www.bloodshed.net/devcpp.html) Nature of problem: Electron tomography of specimens for which conventional back projection may fail and/or data for which there is a limited angular

  11. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    Science.gov (United States)

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  12. Kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments

    International Nuclear Information System (INIS)

    Comans, R.N.J.

    1998-01-01

    The kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments have been reviewed and interpreted in terms of a mechanistic framework. This framework is based on the premise that radiocaesium is almost exclusively and highly-selectively bound to the frayed particle edges of illitic clay minerals in the sediments. Several processes with distinctly different rates can be distinguished in radiocaesium sorption to sediments. 2- and 3-box kinetic models can describe both the overall solid/liquid partitioning in sediments and the reversible (exchangeable) and irreversible (nonexchangeable or 'fixed') fractions of radiocaesium in sediments over time scales relevant for natural aquatic systems. The obtained rate parameters indicate that reversible partitioning of radiocaesium dominates over the first few days following a contamination event, whereas irreversible kinetics becomes important over time scales of weeks to months. The slow process, which reduces the exchangeability of sediment-bound radiocaesium over time, is believed to result from a migration of radiocaesium from exchangeable sites on the frayed edges of illite towards less-exchangeable interlayer sites. Long-term extraction of radiocaesium from historically contaminated sediments has given evidence for a reverse (remobilization) process with a half-life of the order of tens of years. These findings suggest that the long-term exchangeability of radiocaesium in sediments may be higher than the few % which is generally assumed. (orig.)

  13. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  14. Evaluation and ranking of the tank focus area solid liquid separation needs

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.J.

    1995-08-17

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing.

  15. Evaluation and ranking of the tank focus area solid liquid separation needs

    International Nuclear Information System (INIS)

    McCadbe, D.J.

    1995-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) addresses remediation of liquid waste currently stored in underground tanks. Several baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment for ion exchange, and (c) volume reduction of sludge and wash water. The solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. Prior to ion exchange of radioactive ions, removal of insoluble solids is needed to prevent bed fouling and downstream contamination. Volume reduction of washed sludge solids would reduce the tank space required for interim storage. The scope of this document is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. The document summarizes previous alkaline waste testing, with an emphasis on crossflow filtration, to-obtain a general understanding of the behavior of radioactive wastes on available equipment. The document also provides general information about filtration and a path forward for testing

  16. Bond efficacy and interface morphology of self-etching adhesives to ground enamel.

    Science.gov (United States)

    Abdalla, Ali I; El Zohairy, Ahmed A; Abdel Mohsen, Mohamed M; Feilzer, Albert J

    2010-02-01

    This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) and Hybrid bond (Sun-Medical), a self-etching primer, Clearfil SE Bond (Kuraray), and an etch-and-rinse system, Admira Bond (Voco), were selected. Thirty human molars were used. The root of each tooth was removed and the crown was sectioned into halves. The convex enamel surfaces were reduced by polishing on silicone paper to prepare a flat surface. The bonding systems were applied on this surface. Prior to adhesive curing, a hollow cylinder (2.0 mm height/0.75 mm internal diameter) was placed on the treated surfaces. A resin composite was then inserted into the tube and cured. After water storage for 24 h, the tube was removed and shear bond strength was determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The results were analyzed with ANOVA and the Tukey.-Kramer test at a 59 degrees confidence level. The enamel of five additional teeth was ground, and the etching component of each adhesive was applied and removed with absolute ethanol instead of being light cured. These teeth and selected fractured surfaces were examined by SEM. Adhesion to ground enamel of the Futurabond DC (25 +/- 3.5 MPa) and Clearfil SE Bond (23 +/- 2.9 MPa) self-etching systems was not significantly different from the etch-and-rinse system Admira Bond (27 +/- 2.3 MPa). The two self-etching adhesives Clearfil S Tri bond and Hybrid Bond demonstrated significantly lower bond strengths (14 +/- 1.4 MPa; 11 +/- 1.9 MPa) with no significant differences between them (p adhesive systems are dependent on the type of adhesive system. Some of the new adhesive systems showed bond strength values comparable to that of etch-and-rinse systems. There was no correlation between bond strength and morphological changes in

  17. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    Science.gov (United States)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  18. Enzyme Activity and Biomolecule Templating at Liquid and Solid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harvey W. Blanch

    2004-12-01

    There are two main components of this research program. The first involves studies of the adsorption and catalytic activity of proteins at fluid-fluid and fluid-solid interfaces; the second employs biological macromolecules as templates at the solid-liquid interface for controlled crystallization of inorganic materials, to provide materials with specific functionality.

  19. Solid-Liquid Equilibria for the Binary Mixtures 1,4-Xylene + Ethylbenzene and 1,4-Xylene + Toluene

    DEFF Research Database (Denmark)

    Huyghe, Raphaël; Rasmussen, Peter; Thomsen, Kaj

    2004-01-01

    Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K.......Solid-liquid equilibrium (SLE) data for the binary mixtures 1,4-xylene + ethylbenzene, and 1,4-xylene + toluene have been measured using differential scanning calorimetry (DSC) in the temperature range from 133.15 K to 293.15 K....

  20. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  1. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  2. Clinical research of the obstructive interface morphology of the inferior vena cava and the method of choice for taking the 'pierce membrane'

    International Nuclear Information System (INIS)

    Wei Ning; Zu Maoheng; Xu Hao; Gu Yuming; Li Guojun; Zhang Qingqiao; Xu Wei; Liu Hongtao

    2008-01-01

    Objective: To evaluate the relation between the morphology of the obstructive interface of the inferior vena cava (IVC)and the method of choice for taking the 'pierce membrane'. Methods: Interventional therapy was performed in 155 patients with obstruction of inferior vena cave during 2003-2005. The types of proximal part and distal end of obstruction were classified on the base of inferior vane cavography and divid[d into two groups accordingly. The principle of taking 'pierce membrane' whether as accending or descending route was decided by the morphology of the obstructive interface. The complication rates of taking 'pierce membrane' were compared between the two groups including one of 2003-2005 and another of 1990 -1997 as the control. Results: 155 cases were classified to 7 types according to morphology of inferior vena cava obstruction of the distal interface, the type of membrane with hole (32 cases), the dome type (50 cases), the taper type (17 cases), the horizontal type (13 cases), the inclination type (10 cases), the irregular type (19 eases)and the type of obstruction with communicating branches (14 cases). The morphologies of the proximal part of the obstruction were mainly divided into the type of membrane with hole, dome type, taper type and horizontal type. All the cases were successfully taken 'pierce membrane', without complication of pericardial effusion and abdominal bleeding. In control group of 150 Budd-Chiari syndrome cases with obstruction of inferior vena cava, the complications of taking 'pierce membrane' included mis puncture into pericardium (16 cases) and abdominal hemorrhage because of rupturing the inferior vena cava in 2 cases. Comparing the two groups, there was statistical significance with severe complications. Conclusions: 'Pierce membrane' interventional technique for the obstruction of inferior vena eava by coinciding the morphology of the obstructive interface with suitable piercing direction can not only raise successful

  3. Solid Liquid Interdiffusion Bonding of (Pb, Sn)Te Thermoelectric Modules with Cu Electrodes Using a Thin-Film Sn Interlayer

    Science.gov (United States)

    Chuang, T. H.; Lin, H. J.; Chuang, C. H.; Yeh, W. T.; Hwang, J. D.; Chu, H. S.

    2014-12-01

    A (Pb, Sn)Te thermoelectric element plated with a Ni barrier layer and a Ag reaction layer has been joined with a Cu electrode coated with Ag and Sn thin films using a solid-liquid interdiffusion bonding method. This method allows the interfacial reaction between Ag and Sn such that Ag3Sn intermetallic compounds form at low temperature and are stable at high temperature. In this study, the bonding strength was about 6.6 MPa, and the specimens fractured along the interface between the (Pb, Sn)Te thermoelectric element and the Ni barrier layer. Pre-electroplating a film of Sn with a thickness of about 1 μm on the thermoelectric element and pre-heating at 250°C for 3 min ensures the adhesion between the thermoelectric material and the Ni barrier layer. The bonding strength is thus increased to a maximal value of 12.2 MPa, and most of the fractures occur inside the thermoelectric material. During the bonding process, not only the Ag3Sn intermetallics but also Cu6Sn5 forms at the Ag3Sn/Cu interface, which transforms into Cu3Sn with increases in the bonding temperature or bonding time.

  4. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Science.gov (United States)

    Yesudasan Daisy, Sumith

    equilibrium canonical ensemble (NVT) is simulated using thermostat algorithms. For research in heat transfer involving solid liquid interaction, we need to perform non equilibrium MD (NEMD) simulations. In such NEMD simulations, the methods used for simulating heating from a surface is very important and must capture proper physics and thermodynamic properties. Development of MD simulation techniques to simulate solid-liquid heating and the study of fundamental mechanism of passive flow is the main focus of this thesis. An accurate surface-heating algorithm was developed for water which can now allow the study of a whole new set of fundamental heat transfer problems at the nanoscale like surface heating/cooling of droplets, thin-films, etc. The developed algorithm is implemented in the in-house developed C++ MD code. A direct two dimensional local pressure estimation algorithm is also formulated and implemented in the code. With this algorithm, local pressure of argon and platinum interaction is studied. Also, the surface tension of platinum-argon (solid-liquid) was estimated directly from the MD simulations for the first time. Contact angle estimation studies of water on platinum, and argon on platinum were also performed. A thin film of argon is kept above platinum plate and heated in the middle region, leading to the evaporation and pressure reduction thus creating a strong passive flow in the near surface region. This observed passive liquid flow is characterized by estimating the pressure, density, velocity and surface tension using Eulerian mapping method. Using these simulation, we have demonstrated the fundamental nature and origin of surface-driven passive flow. Heat flux removed from the surface is also estimated from the results, which shows a significant improvement can be achieved in thermal management of electronic devices by taking advantage of surface-driven strong passive liquid flow. Further, the local pressure of water on silicon di-oxide surface is

  5. Enhanced mass transfer during solid-liquid extraction of gamma-irradiated red beetroot

    International Nuclear Information System (INIS)

    Nayak, Chetan A.; Chethana, S.; Rastogi, N.K.; Raghavarao, K.S.M.S.

    2006-01-01

    The exposure to gamma-irradiation pretreatment increases cell wall permeabilization, resulting in loss of turgor pressure, which led to the increase of extractability of betanin from red beetroot. The degree of extraction of betanin was investigated using gamma irradiation as a pretreatment prior to the solid-liquid extraction process and compared with control beetroot samples. The beetroot subjected to different doses of gamma irradiation (2.5, 5.0, 7.5, 10.0 kGy) and control was dipped in an acetic acid medium (1% v/v) to extract the betanin. The diffusion coefficients for betanin as well as ionic component were estimated considering Fickian diffusion. The results indicated an increase in the diffusion coefficient of betanin (0.302x10 -9 -0.463x10 -9 m 2 /s) and ionic component (0.248x10 -9 -0.453x10 -9 m 2 /s) as the dose rate increased (from 2.5 to 10.0 kGy). The degradation constant was found to increase (0.050-0.079 min -1 ) with an increase gamma-irradiation doses (2.5-10.0 kGy), indicating lower stability of the betanin as compared to control sample at 65 deg. C

  6. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations ( 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. DETERMINATION OF SOLID-LIQUID EQUILIBRIA DATA FOR MIXTURES OF HEAVY HYDROCARBONS IN A LIGHT SOLVENT

    Energy Technology Data Exchange (ETDEWEB)

    F.V. Hanson; J.V. Fletcher; Karthik R.

    2003-06-01

    A methodology was developed using an FT-IR spectroscopic technique to obtain solid-liquid equilibria (SLE) data for mixtures of heavy hydrocarbons in significantly lighter hydrocarbon diluents. SLE was examined in multiple Model Oils that were assembled to simulate waxes. The various Model oils were comprised of C-30 to C-44 hydrocarbons in decane. The FT-IR technique was used to identify the wax precipitation temperature (WPT). The DSC technique was also used in the identification of the onset of the two-phase equilibrium in this work. An additional Model oil made up of C-20 to C-30 hydrocarbons in decane was studied using the DSC experiment. The weight percent solid below the WPT was calculated using the FT-IR experimental results. The WPT and the weight percent solid below the WPT were predicted using an activity coefficient based thermodynamic model. The FT-IR spectroscopy method is found to successfully provide SLE data and also has several advantages over other laboratory-based methods.

  8. The Little Heat Engine: Heat Transfer in Solids, Liquids and Gases

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-10-01

    Full Text Available In this work, an introductory exposition of the laws of thermodynamics and radiative heat transfer is presented while exploring the concepts of the ideal solid, the lattice, and the vibrational, translational, and rotational degrees of freedom. Analysis of heat transfer in this manner helps scientists to recognize that the laws of thermal radiation are strictly applicable only to the ideal solid. On the Earth, such a solid is best represented by either graphite or soot. Indeed, certain forms of graphite can approach perfect absorption over a relatively large frequency range. Nonetheless, in dealing with heat, solids will eventually sublime or melt. Similarly, liquids will give way to the gas phase. That thermal conductivity eventually decreases in the solid signals an inability to further dissipate heat and the coming breakdown of Planck’s law. Ultimately, this breakdown is reflected in the thermal emission of gases. Interestingly, total gaseous emissivity can de- crease with increasing temperature. Consequently, neither solids, liquids, or gases can maintain the behavior predicted by the laws of thermal emission. Since the laws of thermal emission are, in fact, not universal, the extension of these principles to non-solids constitutes a serious overextension of the work of Kirchhoff, Wien, Stefan and Planck.

  9. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems

    Science.gov (United States)

    Hafner, Sarah C.; Watanabe, Naoko; Harter, Thomas; Bergamaschi, Brian; Parikh, Sanjai J.

    2017-01-01

    Environmental release of veterinary pharmaceuticals has been of regulatory concern for more than a decade. Monensin is a feed additive antibiotic that is prevalent throughout the dairy industry and is excreted in dairy waste. This study investigates the potential of dairy waste management practices to alter the amount of monensin available for release into the environment. Analysis of wastewater and groundwater from two dairy farms in California consistently concluded that monensin is most present in lagoon water and groundwater downgradient of lagoons. Since the lagoons represent a direct source of monensin to groundwater, the effect of waste management, by mechanical screen separation and lagoon aeration, on aqueous monensin concentration was investigated through construction of lagoon microcosms. The results indicate that monensin attenuation is not improved by increased solid-liquid separation prior to storage in lagoons, as monensin is rapidly desorbed after dilution with water. Monensin is also shown to be easily degraded in lagoon microcosms receiving aeration, but is relatively stable and available for leaching under typical anaerobic lagoon conditions.

  10. Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism.

    Science.gov (United States)

    Tang, Wei; Picraux, S Tom; Huang, Jian Yu; Liu, Xiaohua; Tu, K N; Dayeh, Shadi A

    2013-01-01

    The vapor-liquid-solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid-liquid-solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au-Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi2) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi2. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi2 is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au-Ni-Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi2 by 100 °C compared with an all solid state reaction.

  11. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  12. NMR studies of the molecules dynamics to the solid-liquid interfaces: from graded porous materials to oil rocks; Etudes RMN de la dynamique des molecules aux interfaces solide-liquide: des materiaux poreux calibres aux roches petroliferes

    Energy Technology Data Exchange (ETDEWEB)

    Godefroy, S

    2001-11-01

    Low field NMR relaxation for laboratory or in-situ applications provides critical information for oil recovery such as porosity, saturation, and permeability of rocks. In addition, pore size distribution and wettability can also be obtained in some cases. The technique relies on the measurement of proton longitudinal (T{sub 1}) or transverse (T{sub 2}) nuclear relaxation times. For better predictions, the surface micro-dynamics and the chemical properties of the liquids entrapped in the pore space are important and must be characterized. It is well known that the NMR relaxation is enhanced by the paramagnetic impurities at the pore surface but many other parameters influence the relaxation time distributions. These parameters are used to derive the petrophysical properties of the rocks. We propose here an original method to probe the dynamics of water and oil at the pore surface. In the present study, we used both nuclear relaxation at 2.2 MHz and field cycling Nuclear Magnetic Relaxation Dispersion (NMRD) techniques. We applied these two techniques to different kinds of water or oil saturated macroporous media (grain packings, outcrop and reservoir rocks with SiO{sub 2} or CaCO{sub 3} surfaces). We studied the dependence of NMR relaxation on pore size, magnetic field and temperature. Varying the pore size and the surface density of paramagnetic impurities of water saturated grain packings allowed experimental evidence for the two limiting regimes of the water relaxation in pores (surface- and diffusion-limited regimes). NMRD technique (evolution of 1/T{sub 1} with the magnetic field) allowed us to probe liquid surface dynamics in water or oil fully saturated grain packing, outcrop rocks or reservoir rocks (water- and oil-wet surfaces). We evidenced a two-dimensional molecular surface diffusion and directly estimated important parameters such as correlation times, residence times and molecular self-diffusion on the surface. Finally, we proved that the temperature dependence of T{sub 1} and T{sub 2} is directly related to the surface chemistry of the rocks. Such a dependence is clearly important for oil field in-situ measurements (well logging). (author)

  13. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    Science.gov (United States)

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  14. Light-Induced Contraction/Expansion of 1D Photoswitchable Metallopolymer Monitored at the Solid-Liquid Interface.

    Science.gov (United States)

    Garah, Mohamed El; Borré, Etienne; Ciesielski, Artur; Dianat, Arezoo; Gutierrez, Rafael; Cuniberti, Gianaurelio; Bellemin-Laponnaz, Stéphane; Mauro, Matteo; Samorì, Paolo

    2017-10-01

    The use of a bottom-up approach to the fabrication of nanopatterned functional surfaces, which are capable to respond to external stimuli, is of great current interest. Herein, the preparation of light-responsive, linear supramolecular metallopolymers constituted by the ideally infinite repetition of a ditopic ligand bearing an azoaryl moiety and Co(II) coordination nodes is described. The supramolecular polymerization process is followed by optical spectroscopy in dimethylformamide solution. Noteworthy, a submolecularly resolved scanning tunneling microscopy (STM) study of the in situ reversible trans-to-cis photoisomerization of a photoswitchable metallopolymer that self-assembles into 2D crystalline patterns onto a highly oriented pyrolytic graphite surface is achieved for the first time. The STM analysis of the nanopatterned surfaces is corroborated by modeling the physisorbed species onto a graphene slab before and after irradiation by means of density functional theory calculation. Significantly, switching of the monolayers consisting of supramolecular Co(II) metallopolymer bearing trans-azoaryl units to a novel pattern based on cis isomers can be triggered by UV light and reversed back to the trans conformer by using visible light, thereby restoring the trans-based supramolecular 2D packing. These findings represent a step forward toward the design and preparation of photoresponsive "smart" surfaces organized with an atomic precision. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. BEHAVIOR OF SURFACTANT MIXTURE AT SOLID/LIQUID AND OIL/LIQUID INTERFACE IN CHEMICAL FLOODING SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Prof. P. Somasundaran

    2002-03-01

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analytical ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.

  16. Liquid-gas and solid-liquid interface: thermodynamics of capillary condensation application to a prosimetry by calorimetric measurements

    International Nuclear Information System (INIS)

    Derrien, Francois; Hartmanshenn, Olivier.

    1978-01-01

    A direct determination of the pore radii distribution is proposed using calorimetric measurements during condensation and evacuation of pores by capillary condensate. This method is independant of any gravimetric or volumetric measurement of adsorption

  17. Solid-Liquid and Liquid-Liquid Equilibrium in the Ternary System Acetic Acid-Propanoic Acid-Formamide.

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Malijevská, I.

    2007-01-01

    Roč. 261, 1-2 (2007) , s. 129-132 ISSN 0378-3812. [International Conference on Properties and Phase Equilibria for Product and Process Design PPEPPD 2007 /11./. Hersonissos, Crete, 20.05.2007-25.05.2007] Institutional research plan: CEZ:AV0Z40720504 Keywords : solid-liquid equilibrium * ternary system * solid adduct Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.506, year: 2007

  18. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    Science.gov (United States)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  19. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    International Nuclear Information System (INIS)

    Stabnikova, O.; Liu, X.Y.; Wang, J.Y.

    2008-01-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment

  20. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  1. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  2. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  3. Investigation of interface morphology and composition mixing in CdTe/CdS heterojunction photovoltaic materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Soo, Y.L.; Huang, S.; Kao, Y.H.; Compaan, A.D.

    1998-01-01

    The interface microstructure in thin film photovoltaic materials is an important problem which can severely affect the light-conversion efficiency and stability of heterojunction solar cells. This is a long-standing fundamental problem, but has not been studied in the past by effective probing methods. In the present experiment, the interfacial roughness, correlation lengths of interface height fluctuations, effects of heat treatment, and diffusion of Te atoms across the heterojunction interface have been investigated by means of grazing incidence x-ray scattering and angular dependence of x-ray fluorescence using synchrotron radiation. We thus demonstrate that these x-ray techniques can provide a powerful tool for nondestructive characterization of the interfacial roughness and intermixing of selected atomic species in heterojunction photovoltaic materials. copyright 1998 American Institute of Physics

  4. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  5. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    Science.gov (United States)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties

  6. Experimental and computational study of the morphological evolution of intermetallic compound (Cu6Sn5) layers at the Cu/Sn interface under isothermal soldering conditions

    International Nuclear Information System (INIS)

    Park, M.S.; Stephenson, M.K.; Shannon, C.; Cáceres Díaz, L.A.; Hudspeth, K.A.; Gibbons, S.L.; Muñoz-Saldaña, J.; Arróyave, R.

    2012-01-01

    Cu/Sn soldering alloys have emerged as a viable alternative to Pb-based solders, and thus have been extensively explored in the past decade, although the fine-scale behavior of the resulting intermetallic compounds (IMCs), particularly during the early stages of interface formation, is still a source of debate. In this work, the microstructural evolution of Cu 6 Sn 5 , in a Cu/Sn soldering reaction at 523 K, was experimentally investigated by dipping a single Cu sample into molten Sn at a near-constant speed, yielding a continuous set of time evolution samples. The thickness, coarsening and morphology evolution of the Cu 6 Sn 5 layer is investigated through the use of scanning electron microscopy. The experimental results are also compared to phase-field simulations of the microstructural evolution of the Cu 6 Sn 5 layer. The influence of model parameters on the kinetics and morphological evolution of the IMC layer was examined. In general, good qualitative agreement is found between experiments and simulations and for a limited parameter set there appears to be good quantitative agreement between the growth kinetics of the Cu 6 Sn 5 layer, the grain boundary (GB) effect on grain coarsening, and the substrate/IMC interface roughness evolution. Furthermore, the parametric investigations of the model suggests that good agreement between experiments and simulations is achieved when the dominant transport mechanism for the reacting elements (Cu and Sn) is GB diffusion.

  7. The Effect of Water or Wax-based Binders on the Chemical and Morphological Characteristics of the Margin Ceramic-Framework Interface.

    Science.gov (United States)

    Güler, Umut; de Queiroz, José Renato Cavalcanti; de Oliveira, Luiz Fernando Cappa; Canay, Senay; Ozcan, Mutlu

    2015-09-01

    This study evaluated the effect of binder choice in mixing ceramic powder on the chemical and morphological features between the margin ceramic-framework interfaces. Titanium and zirconia frameworks (15 x 5 x 0.5 mm3) were veneered with margin ceramics prepared with two different binders, namely a) water/conventional or b) wax-based. For each zirconia framework material, four different margin ceramics were used: a- Creation Zi (Creation Willi Geller International); b- GC Initial Zr (GC America); Triceram (Dentaurum); and d- IPS emax (voclar Vivadent). For the titanium framework, three different margin ceramics were used: a- Creation Ti (Creation Willi Geller International); b- Triceram (Dentaurum); and c- VITA Titaniumkeramik (Vita Zahnfabrik). The chemical composition of the framework-margin ceramic interface was analyzed using Energy Dispersive X-ray Spectroscopy (EDS) and porosity level was quantified within the margin ceramic using an image program (ImageJ) from four random areas (100 x 100 pixels) on each SEM image. EDS analysis showed the presence of Carbon at the margin ceramic-framework interface in the groups where wax-based binder technique was used with the concentration being the highest for the IPS emax ZirCAD group. While IPS system (IPS ZirCAD and IPS Emax) presented higher porosity concentration using wax binder, in the other groups wax-based binder reduced the porosity of margin ceramic, except for Titanium - Triceram combination.

  8. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    Science.gov (United States)

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  9. Solid-Liquid Equilibria for Many-component Mixtures Using Cubic-Plus-Association (CPA) equation of state

    DEFF Research Database (Denmark)

    Fettouhi, André; Thomsen, Kaj

    2010-01-01

    In the creation of liquefied natural gas the formation of solids play a substantial role, hence detailed knowledge is needed about solid-liquid equilibria (SLE). In this abstract we shortly summarize the work we have carried out at CERE over the past year with SLE for many-component mixtures usin...... the Cubic-Plus-Association (CPA) equation of state. Components used in this work are highly relevant to the oil and gas industry and include light and heavy hydrocarbons, alcohols, water and carbon dioxide....

  10. Density of Ni-Al Alloys in Liquid and Solid-Liquid Coexistence State Measured by a Modified Pycnometric Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Feng XIAO; Zushu LI; Zainan TAO

    2004-01-01

    The density of Ni-Al alloys in both liquid state and solid-liquid coexistence state was measured with a modified pycnometric method. It was found that the density of NI-Al alloys decreases with increasing temperature and Al concentration in the alloys. The molar volume of liquid Ni-Al binary alloys increases with the increase of temperature and Al concentration. The partial molar volume of Al in NI-Al binary alloy was calculated approximately. The molar volume of liquid NI-Al alloy determined in the present work shows a negative deviation from the ideal linear molar volume.

  11. Distribution functions to estimate radionuclide solid-liquid distribution coefficients in soils: the case of Cs

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Mart i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    In the frame of the revision of the IAEA TRS 364 (Handbook of parameter values for the prediction of radionuclide transfer in temperate environments), a database of radionuclide solid-liquid distribution coefficients (K{sub d}) in soils was compiled with data coming from field and laboratory experiments, from references mostly from 1990 onwards, including data from reports, reviewed papers, and grey literature. The K{sub d} values were grouped for each radionuclide according to two criteria. The first criterion was based on the sand and clay mineral percentages referred to the mineral matter, and the organic matter (OM) content in the soil. This defined the 'texture/OM' criterion. The second criterion was to group soils regarding specific soil factors governing the radionuclide-soil interaction ('cofactor' criterion). The cofactors depended on the radionuclide considered. An advantage of using cofactors was that the variability of K{sub d} ranges for a given soil group decreased considerably compared with that observed when the classification was based solely on sand, clay and organic matter contents. The K{sub d} best estimates were defined as the calculated GM values assuming that K{sub d} values were always log-normally distributed. Risk assessment models may require as input data for a given parameter either a single value (a best estimate) or a continuous function from which not only individual best estimates but also confidence ranges and data variability can be derived. In the case of the K{sub d} parameter, a suitable continuous function which contains the statistical parameters (e.g. arithmetical/geometric mean, arithmetical/geometric standard deviation, mode, etc.) that better explain the distribution among the K{sub d} values of a dataset is the Cumulative Distribution Function (CDF). To our knowledge, appropriate CDFs has not been proposed for radionuclide K{sub d} in soils yet. Therefore, the aim of this works is to create CDFs for

  12. Morphological experimental study of bone stress at the interface acetabular bone/prosthetic cup in the bipolar hip prosthesis.

    Science.gov (United States)

    Anuşca, D; Pleşea, I E; Iliescu, N; Tomescu, P; Poenaru, F; Dascălu, V; Pop, O T

    2006-01-01

    By calculating the tension and distortion of the elements composing the bipolar prosthesis under extreme conditions encountered in real life using a special post-processing program, we established the variation curves of the contact pressure at the hip bone-cup, armor-cup and cup-femoral head interface. By comparing the data obtained from all the examined cases, important conclusions were drawn regarding the influence of tension and pressure distribution on the structural integrity and biomechanics of the prosthesis, as well as the acetabular wear and tear, in order to assess its reliability. The experimentally determined tension and distortion status at the acetabular bone-metal armour interface, lead to the wear and tear phenomenon, which can be explained by three mechanisms and theories incompletely reflecting the overall process. The histopathologic study of the acetabular bone tissue using FEM (finite elements method) on surgically removed specimens will probably lead to the identification of a series of factors that could reduce the rate of the wear and tear process.

  13. Tests of the Royce ultrasonic interface level analyzer

    International Nuclear Information System (INIS)

    WITWER, K.S.

    1999-01-01

    This document describes testing carried out in 1995 on the Royce Interface Level Analyzer. The testing was carried out in the 305 Bldg., Engineering Testing Laboratory, 300 Area. The Level Analyzer was shown to be able to effectively locate the solid liquid interface layer of two different simulants under various conditions and was able to do so after being irradiated with over 5 million RADS gamma from a Cobalt 60 source

  14. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  15. Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-08-01

    Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.

  16. A critical compilation and review of default soil solid/liquid partition coefficients, Kd, for use in environmental assessments

    International Nuclear Information System (INIS)

    Thibault, D.H.; Sheppard, M.I.; Smith, P.A.

    1990-03-01

    Environmental assessments of the Canadian concept for disposal of nuclear fuel waste in plutonic rock formations require analyses of the migration of nuclides from the disposal vault to the biosphere. Analyses of nuclide migration via groundwater through the geosphere, unconsolidated overburden and soil use models requiring solid/liquid partition coefficients (K d ) to describe the interaction of the nuclides with the solid materials. This report presents element-specific soil solid/liquid partition coefficients based on a detailed survey of the literature. Values for clays, silt, sand and organic soils are summarized. Partition coefficients for the following elements are presented: americium, antimony, arsenic, barium, boron, cadmium, calcium, carbon, cerium, cesium, chromium, cobalt, copper, curium, europium, iodine, iron, lead, lithium, manganese, molybdenum, neptunium, nickel, niobium, palladium, phosphorus, plutonium, polonium, radium, ruthenium, samarium, selenium, silver, strontium, technetium, tellurium, terbium, thorium, tin, tritium, uranium, zinc, and zirconium. The values compiled in this study are compared with earlier K d value compendiums and are the values recommended for the use in the soil, deep sediment and overburden models for the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

  17. Interface electronic structure and morphology of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on Au film

    Science.gov (United States)

    Wang, Shitan; Niu, Dongmei; Lyu, Lu; Huang, Yingbao; Wei, Xuhui; Wang, Can; Xie, Haipeng; Gao, Yongli

    2017-09-01

    The interfacial electronic structure and morphology of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene(C8-BTBT) on polycrystalline Au film was investigated with photoemission spectroscopy (PES), atomic force microscopy (AFM) and grazing incidence X-ray diffraction (GIXRD). The transport barriers of holes and electrons at the interface are 1.72 eV and 2.12 eV, respectively, from the UPS measurement. There is no chemical reaction of C8-BTBT with Au from the XPS investigation of core levels Au 4f, C 1s and S 2p. The upmost molecules adopt a standing up configuration deduced from the diffraction peaks in GIXRD and the step height in AFM. Increasing order of the upright orientation of C8-BTBT molecules with film growth result in decreasing work function of the C8-BTBT thin film by forming an outward pointing dipole layer with the ordered end Csbnd H bonds.

  18. Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties

    Science.gov (United States)

    Rousset, Baptiste; Lasserre, Cécile; Cubas, Nadaya; Graham, Shannon; Radiguet, Mathilde; DeMets, Charles; Socquet, Anne; Campillo, Michel; Kostoglodov, Vladimir; Cabral-Cano, Enrique; Cotte, Nathalie; Walpersdorf, Andrea

    2016-10-01

    Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling 0.7) and transitions to uncoupled, steady slip at a relatively uniform ˜ 175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional transitions along the subduction plate interface. Based on the

  19. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  20. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  1. Effect of Direct Current on Solid-Liquid Interfacial Tension and Wetting Behavior of Ga–In–Sn Alloy Melt on Cu Substrate

    Directory of Open Access Journals (Sweden)

    Limin Zhang

    2018-01-01

    Full Text Available The effect of direct current (DC on the wetting behavior of Cu substrate by liquid Ga–25In–13Sn alloy at room temperature is investigated using a sessile drop method. It is found that there is a critical value for current intensity, below which the decrease of contact angle with increasing current intensity is approximately linear and above which contact angle tends to a stable value from drop shape. Current polarity is a negligible factor in the observed trend. Additionally, the observed change in contact angles is translated into the corresponding change in solid-liquid interfacial tension using the equation of state for liquid interfacial tensions. The solid-liquid interfacial tension decreases under DC. DC-induced promotion of solute diffusion coefficient is likely to play an important role in determining the wettability and solid-liquid interfacial tension under DC.

  2. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 2O T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (Auth.)

  3. Multifilamentary superconducting (NbTa)-Sn composite wire by solid-liquid reaction for possible application above 20 tesla

    International Nuclear Information System (INIS)

    Hong, M.; Hull, G.W. Jr.; Fuchs, E.O.; Holthuis, J.T.

    1983-01-01

    Nb alloyed with Ta was employed in fabricating multifilamentary composite wires of (NbTa)-Sn using the liquid-infiltration process. The superconducting A15 phase was formed with subsequent heat treatments at 800-950 0 C by the solid-liquid reaction. High inductive Tsub(c)'s of 18.2 K with sharp transition width ( 4 A/cm 2 at 20 T and 4.2 K were obtained. It was found that 2 wt.% Ta in the Nb was sufficient in the enhancement of the overall Jsub(c) at the high fields and in increasing the Hsub(c2) (4.2 K) to 25 T. (orig.)

  4. Measurement of solid-liquid interfacial energy in the In-Bi eutectic alloy at low melting temperature

    International Nuclear Information System (INIS)

    Marasli, N; Akbulut, S; Ocak, Y; Keslioglu, K; Boeyuek, U; Kaya, H; Cadirli, E

    2007-01-01

    The Gibbs-Thomson coefficient and solid-liquid interfacial energy of the solid In solution in equilibrium with In Bi eutectic liquid have been determined to be (1.46 ± 0.07) x 10 -7 K m and (40.4 ± 4.0) x 10 -3 J m -2 by observing the equilibrated grain boundary groove shapes. The grain boundary energy of the solid In solution phase has been calculated to be (79.0 ± 8.7) x 10 -3 J m -2 by considering force balance at the grain boundary grooves. The thermal conductivities of the In-12.4 at.% Bi eutectic liquid phase and the solid In solution phase and their ratio at the eutectic melting temperature (72 deg. C) have also been measured with radial heat flow apparatus and Bridgman-type growth apparatus

  5. An in-plane solid-liquid-solid growth mode for self-avoiding lateral silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; Alet, Pierre-Jean; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2009-03-27

    We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.

  6. Temperature and compositional dependence of solid-liquid interfacial energy: application of the Cahn-Hilliard theory

    International Nuclear Information System (INIS)

    Shimizu, I.; Takei, Y.

    2005-01-01

    A simple thermodynamic method to estimate the solid-liquid interfacial energy (or interfacial tension) is proposed, based on the Cahn-Hilliard theory. In the model, the liquid is treated as a regular solution, and the interfacial layers are assumed to have liquid-like thermodynamic properties. In eutectic systems, interfacial adsorption occurs within a few atomic layers, and interfacial energy monotonously increases with decreasing concentration of the solid species in the liquid phase. If non-ideal atomic interaction is strong and the liquid immiscibility region appears in the phase diagrams (this is the case of monotectic systems), the interfacial thickness drastically increases and the interfacial energy is reduced around the immiscibility gap

  7. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    Science.gov (United States)

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations. © 2013 American Institute of Chemical Engineers.

  8. Analysis and Comparison of the Antioxidant Component of Portulaca Oleracea Leaves Obtained by Different Solid-Liquid Extraction Techniques

    Science.gov (United States)

    Conte, Esterina

    2017-01-01

    Portulaca oleracea is a wild plant pest of orchards and gardens, but is also an edible vegetable rich in beneficial nutrients. It possesses many antioxidant properties due to the high content of vitamins, minerals, omega-3 essential fatty acids and other healthful compounds; therefore, the intake of purslane and/or its bioactive compounds could help to improve the health and function of the whole human organism. Accordingly, in this work it was analyzed and compared to the extractive capacity of the antioxidant component of purslane leaves obtained by solid-liquid extraction techniques such as: hot-maceration, maceration with ultrasound, rapid solid-liquid dynamic extraction using the Naviglio extractor, and a combination of two techniques (mix extraction). The chromatographic analysis by High Performance Liquid Chromatography (HPLC) of the methanolic extract of dried purslane leaves allowed the identification of various polyphenolic compounds for comparison with the standards. In addition, the properties of the different extracts were calculated on dry matter and the antioxidant properties of the total polyphenol components analyzed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. The results showed that mix extraction was the most efficient compared to other techniques. In fact, it obtained a quantity of polyphenols amounting to 237.8 mg Gallic Acid Equivalents (GAE)/100 g of fresh weight, while in other techniques, the range varied from 60–160 mg GAE/100 g fresh weight. In addition, a qualitative analysis by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS) of the phenolic compounds present in the purslane leaves examined was carried out. The compounds were identified by comparison of their molecular weight, fragmentation pattern and retention time with those of standards, using the “Multiple Reaction Monitoring” mode (MRM). Therefore, this study allowed the re-evaluation of a little-known plant that possesses as its beneficial properties, a

  9. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Basic research needs and opportunities on interfaces in solar materials

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A. W.; Gottschall, R. J. [eds.

    1981-04-01

    The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)

  11. Morphological changes in gold core–chitosan shell nanostructures at the interface with physiological media. In vitro and in vivo approach

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.M., E-mail: carmen.mariana.popescu13@gmail.com [Department of Physics, University “Alexandru Ioan Cuza”, Carol I Bd., No. 11, Iasi 700506 (Romania); Hritcu, L. [Department of Biology, University “Alexandru Ioan Cuza” of Iasi, Carol I Bd., No. 20A, Iasi 700506 (Romania); Pricop, D.A.; Creanga, D. [Department of Physics, University “Alexandru Ioan Cuza”, Carol I Bd., No. 11, Iasi 700506 (Romania)

    2015-10-15

    Graphical abstract: - Highlights: • Chitosan easily adapts to pH changes reconstructing at the surface of AuNPs. • Chitosan offeres biocompatibility to AuNPs. • Polymeric shell allows the crossing of the blood–brain barrier. • AuNPs do not agglomerate inside the brain and have a good dispersion within tissue. • The polymeric coating did not degrade with pH increase. • Interaction between AuNPs inside brain tissues is limited in strength and abundance. - Abstract: Chitosan–gold nanoparticles (AuNPs) were prepared to investigate the behavior of such nanosystems at the interface with biological media. Microstructural characterization by Transmission Electron Microscopy, Atomic Force Microscopy, and Optical Microscopy was carried out in order to provide information regarding the morphology features and size distribution. In vivo studies showed no morphological changes within the brain tissue in rats after the administration of AuNPs. However, nanoparticles size distribution in the in vivo localized tissue areas indicated better dispersion than in the in vitro colloidal solution. Also the size of the AuNPs that reached the brain tissue seemed to decrease compared with their size in the colloidal solution. In order to understand the factors that contribute to the increase of AuNPs dispersion degree within the brain tissue, this study was focused on simulating the pH conditions from the hemato-encephalic medium. A theoretical model was also applied in order to correlate the intensity of the interaction between two AuNPs and their volume ratio to further explain the absence of the agglomerated AuNPs and their high degree of dispersion within the brain tissue.

  12. A modified free-volume-based model for predicting vapor-liquid and solid-liquid equilibria for size asymmetric systems

    DEFF Research Database (Denmark)

    Radfarnia, H.R.; Ghotbi, C.; Taghikhani, V.

    2005-01-01

    The main purpose of this work is to present a free-volume combinatorial term in predicting vapor-liquid equilibrium (VLE) and solid-liquid equilibrium (SLE) of polymer/solvent and light and heavy hydrocarbon/hydrocarbon mixtures. The proposed term is based on a modification of the original Freed ...

  13. Pre-Service Primary Science Teachers' Understandings of the Effect of Temperature and Pressure on Solid-Liquid Phase Transition of Water

    Science.gov (United States)

    Yalcin, Fatma Aggul

    2012-01-01

    The aim of this study was to explore pre-service primary teachers' understandings of the effect of temperature and pressure on the solid-liquid phase transition of water. In the study a survey approach was used, and the sample consisted of one-hundred and three, third year pre-service primary science teachers. As a tool for data collection, a test…

  14. Solid-liquid phase equilibrium in the systems of LiBr-H2O and LiCl-H2O

    Czech Academy of Sciences Publication Activity Database

    Pátek, Jaroslav; Klomfar, Jaroslav

    2006-01-01

    Roč. 250, - (2006), s. 138-149 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z20760514 Keywords : salt-water system * solubility * solid-liquid system * lithium bromide * litthium chloride Subject RIV: BJ - Thermodynamics Impact factor: 1.680, year: 2006

  15. Study on solid-liquid interfacial phenomena and advancement of migration model in diffusion and migration processes of radionuclides in buffer materials and rock matrixes for disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Haruo

    2004-06-01

    This study was performed particularly focused on diffusive pathway and effects receive when nuclides and ions diffuse near solid-liquid interface, among various interactions occurring in the diffusion process of nuclides and ions in buffer material and rock matrix composing multi-barrier system of the geological disposal of radioactive wastes. This study was carried out with the following objectives. (1) To clarify the effects of porewater chemistry (particularly ionic strength) and changes in diffusive pathway and micropore structure on diffusion from the viewpoint of thermodynamics. (2) To obtain information with regard to porewater properties, particularly viscosity. (3) To apply for predictions of diffusivities and diffusion process by developing a model concerning electrostatic interaction with ions near solid-liquid interface and viscosity distribution. This report consists of 9 chapters. Chapter 1 is the introduction, in which the background and objectives for this study are explained. In chapter 2, it is reported on physical and chemical properties for sandstone (Shirahama sandstone), of which fundamental data and information for diffusion is quite limited and physical properties for bentonite, which is important as a buffer material. In chapter 3, it is discussed on the results studied using tritiated water and deuterated water for the orientation properties of clay particles and the effect of the orientation of clay particles on diffusive pathway in compacted bentonite. In chapter 4, it is discussed on the effects of the orientation of clay particles and ionic strength on diffusivities and activation energies for Cs + and I - ions in compacted bentonite. In chapter 5, it is reported on the diffusion properties of Cs + and I - ions in sandstone obtained by a non-steady state diffusion method and it is discussed on applicability of a solid-liquid interfacial model based on electric double layer theory. In chapter 6, it is reported on thermodynamic

  16. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  17. Morphology of resin-dentin interfaces after Er,Cr:YSGG laser and acid etching preparation and application of different bonding systems.

    Science.gov (United States)

    Beer, Franziska; Buchmair, Alfred; Körpert, Wolfram; Marvastian, Leila; Wernisch, Johann; Moritz, Andreas

    2012-07-01

    The goal of this study was to show the modifications in the ultrastructure of the dentin surface morphology following different surface treatments. The stability of the adhesive compound with dentin after laser preparation compared with conventional preparation using different bonding agents was evaluated. An Er,Cr:YSGG laser and 36% phosphoric acid in combination with various bonding systems were used. A total of 100 caries-free human third molars were used in this study. Immediately after surgical removal teeth were cut using a band saw and 1-mm thick dentin slices were created starting at a distance of 4 mm from the cusp plane to ensure complete removal of the enamel. The discs were polished with silicon carbide paper into rectangular shapes to a size of 6 × 4 mm (±0,2 mm).The discs as well as the remaining teeth stumps were stored in 0.9% NaCl at room temperature. The specimens were divided into three main groups (group I laser group, group II etch group, group III laser and etch group) and each group was subdivided into three subgroups which were allocated to the different bonding systems (subgroup A Excite, subgroup B Scotchbond, subgroup C Syntac). Each disc and the corresponding tooth stump were treated in the same way. After preparation the bonding composite material was applied according to the manufacturers' guidelines in a hollow tube of 2 mm diameter to the disc as well as to the corresponding tooth stump. Shear bond strength testing and environmental scanning electron microscopy were used to assess the morphology and stability of the resin-dentin interface. The self-etching bonding system showed the highest and the most constant shear values in all three main groups, thus enabling etching with phosphoric acid after laser preparation to be avoided. Thus we conclude that laser preparation creates a surface texture that allows prediction of the quality of the restoration without the risk of negative influences during the following treatment steps. This

  18. QCM-D studies on polymer behavior at interfaces

    CERN Document Server

    Liu, Guangming

    2014-01-01

    QCM-D Studies on Polymer Behavior at Interfaces reviews the applications of quartz crystal microbalance with dissipation (QCM-D) in polymer research, including the conformational change of grafted polymer chains, the grafting kinetics of polymer chains, the growth mechanism of polyelectrolyte multilayers, and the interactions between polymers and phospholipid membranes. It focuses on how QCM-D can be applied to the study of polymer behavior at various solid-liquid interfaces. Moreover, it clearly reveals the physical significance of the changes in frequency and dissipation associated with the different polymer behaviors at the interfaces.

  19. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)

    Science.gov (United States)

    Winardi, S.; Widiyastuti, W.; Septiani, E. L.; Nurtono, T.

    2018-05-01

    The selection of simulation model is an important step in computational fluid dynamics (CFD) to obtain an agreement with experimental work. In addition, computational time and processor speed also influence the performance of the simulation results. Here, we report the simulation of solid-liquid flow in a bead mill using Eulerian model. Multiple Reference Frame (MRF) was also used to model the interaction between moving (shaft and disk) and stationary (chamber exclude shaft and disk) zones. Bead mill dimension was based on the experimental work of Yamada and Sakai (2013). The effect of shaft rotation speed of 1200 and 1800 rpm on the particle distribution and the flow field was discussed. For rotation speed of 1200 rpm, the particles spread evenly throughout the bead mill chamber. On the other hand, for the rotation speed of 1800 rpm, the particles tend to be thrown to the near wall region resulting in the dead zone and found no particle in the center region. The selected model agreed well to the experimental data with average discrepancies less than 10%. Furthermore, the simulation was run without excessive computational cost.

  1. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    Science.gov (United States)

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  2. Determination of solid-liquid partition coefficients (Kd) for the herbicides inspiration and trifluralin in five UK agricultural soils

    International Nuclear Information System (INIS)

    Cooke, Cindy M.; Shaw, George; Collins, Chris D.

    2004-01-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14 C-isoproturon and 14 C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K d values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K d range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K d range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances

  3. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    International Nuclear Information System (INIS)

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  4. A Real Time Investigation of Morphological Evolution During Solidification of Different Alloy Systems

    Science.gov (United States)

    Sen, S.; Kaukler, W. F.; Curreri, P. A.

    1999-01-01

    Solidification phenomenon which occur at the solid/liquid (s/I) interface play a major role in the determination of structure and hence the technologically important properties of a casting. However, metals being opaque, conclusions related to several important phenomenon such as boundary layer thickness, morphological evolution, and eutectic and cell spacing are deduced from quenching experiments and subsequent post solidification metallographic analysis. Consequently, limited information is obtained about the dynamics of the process. This paper will discuss the recent efforts at the Space Science Laboratory, NASA Marshall Space Flight Center, to view and quantify in-situ and in real time the dynamics of the solidification process and to measure interfacial undercooling. First, a high resolution x-ray transmission microscope (XTM) has been developed to monitor fundamental interfacial phenomena during directional solidification of metals and alloys. The XTM operates in the range of 10-100 KeV and through projection is capable of achieving magnification of up to 16OX. Secondly, an innovative collapsible furnace has been designed to quantify interfacial undercooling by measuring the temperature of a moving s/I interface in reference to a fixed s/l interface. This measurement technique is non-intrusive in nature and is based on the Seebeck principle. In this paper real time results obtained to characterize the dynamics of irregular eutectic spacing will be presented. As an example fiber to lamella or plate transition in the Al-Al2Au eutectic system will be discussed. Further, a resolution limit of 25 micron has permitted viewing in real time morphological instability and cellular growth in Al-Au and Al-Ag systems. Simultaneously, a systematic investigation has been carried out to measure interfacial undercooling for Pb-1 wt.% Sn at and near the marginal stability regime. In conjunction with the XTM observations this study attempts to validate existing relationships

  5. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  6. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    International Nuclear Information System (INIS)

    Yu, Tang-Qing; Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency

  7. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb [ECOMatters Inc., Pinawa (Canada); Sohlenius, Gustav [Geological Survey of Sweden (SGU), Uppsala (Sweden)

    2009-03-15

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  8. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    International Nuclear Information System (INIS)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb; Sohlenius, Gustav

    2009-03-01

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  9. Morphological changes of monolayers of two polymerizable pyridine amphiphiles upon complexation with Cu(II) ions at the air-water interface

    NARCIS (Netherlands)

    Werkman, P.J.; Schouten, A.J.; Noordegraaf, M.A.; Kimkes, P.; Sudhölter, E.J.R.

    1998-01-01

    The monolayer behavior of two amphiphilic, diacetylenic units containing pyridine Ligands at the air-water interface is studied by measuring the surface pressure-area isotherms and by Brewster angle microscopy(BAM). Both amphiphiles form stable monolayers at the air-water interface. The amphiphile

  10. Direct measurement of anisotropy of interfacial free energy from grain boundary groove morphology in transparent organic metal analong systems

    Energy Technology Data Exchange (ETDEWEB)

    Rustwick, Bryce A. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Both academia and industry alike have paid close attention to the mechanisms of microstructural selection during the solidification process. The forces that give rise to and the principles which rule the natural selection of particular morphologies are important to understanding and controlling new microstructures. Interfacial properties play a very crucial role to the selection of such microstructure formation. In the solidification of a metallic alloy, the solid-liquid interface is highly mobile and responds to very minute changes in the local conditions. At this interface, the driving force must be large enough to drive solute diffusion, maintain local curvature, and overcome the kinetic barrier to move the interface. Therefore, the anisotropy of interfacial free energy with respect to crystallographic orientation is has a significant influence on the solidification of metallic systems. Although it is generally accepted that the solid-liquid interfacial free energy and its associated anisotropy are highly important to the overall selection of morphology, the confident measurement of these particular quantities remains a challenge, and reported values are scarce. Methods for measurement of the interfacial free energy include nucleation experiments and grain boundary groove experiments. The predominant method used to determine anisotropy of interfacial energy has been equilibrium shape measurement. There have been numerous investigations involving grain boundaries at a solid-liquid interface. These studies indicated the GBG could be used to describe various interfacial energy values, which affect solidification. Early studies allowed for an estimate of interfacial energy with respect to the GBG energy, and finally absolute interfacial energy in a constant thermal gradient. These studies however, did not account for the anisotropic nature of the material at the GBG. Since interfacial energy is normally dependent on orientation of the crystallographic plane of the

  11. Influence of gold species (AuCl4(-) and AuCl2(-)) on self-assembly of PS-b-P2VP in solutions and morphology of composite thin films fabricated at the air/liquid interfaces.

    Science.gov (United States)

    Zhao, Xingjuan; Wang, Qian; Zhang, Xiaokai; Lee, Yong-Ill; Liu, Hong-Guo

    2016-01-21

    Composite thin films doped with Au species were fabricated at an air/liquid interface via a series of steps, including the mass transfer of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) across the liquid/liquid interface between a DMF/CHCl3 solution and an aqueous solution containing either AuCl4(-) or AuCl2(-), self-assembly of PS-b-P2VP in a mixed DMF-water solution, and adsorption and further self-organization of the formed aggregates at the air/liquid interface. This is a new approach for fabricating composite polymer films and can be completed within a very short time. AuCl4(-) and AuCl2(-) ions were found to significantly influence the self-assembly behavior of the block copolymer and the morphologies of the composite films, leading to the formation of nanowire arrays and a foam structure at the air/liquid interface, respectively, which originated from rod-like micelles and microcapsules that had formed in the respective solutions. The effect of the metal complex was analyzed based on the packing parameters of the amphiphilic polymer molecules in different microenvironments and the interactions between the pyridine groups and the metal chloride anions. In addition, these composite thin films exhibited stable and durable performance as heterogeneous catalysts for the hydrogenation of nitroaromatics in aqueous solutions.

  12. Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology

    Science.gov (United States)

    Zhang, Zhao; Bao, Yuchong; Liu, Lin; Pian, Song; Li, Ri

    2018-04-01

    A model that combines a cellular automaton (CA) and lattice Boltzmann method (LBM) is presented. The mechanism of A-segregation in an Fe-0.34 wt pct C alloy ingot is analyzed on the basis of microstructural morphology calculations. The CA is used to capture the solid/liquid interface, while the LBM is used to calculate the transport phenomena. (1) The solidification of global columnar dendrites was simulated, and two obvious A-segregation bands appeared in the middle-radius region between the ingot wall surface and the centerline. In addition, the angle of deflection to the centerline increased with the increasing heat dissipation rate of the wall surface. When natural convection was ignored, the A-segregation disappeared, and only positive segregation was present in the center and bottom corner of the ingot. (2) Mixed columnar-equiaxed solidification was simulated. Many A-segregation bands appeared in the ingot. (3) Global equiaxed solidification was simulated, and no A-segregation bands were found. The results show that the upward movement of the high-concentration melt is the key to the formation of A-segregation bands, and remelting and the emergence of equiaxed grains are not necessary conditions to develop these bands. However, the appearance of equiaxed grains accelerates the formation of vortexes; thus, many A-segregation bands appear during columnar-equiaxed solidification.

  13. An MCBJ case study : The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface

    NARCIS (Netherlands)

    Hong, Wenjing; Valkenier, Hennie; Meszaros, Gabor; Manrique, David Zsolt; Mishchenko, Artem; Putz, Alexander; Garcia, Pavel Moreno; Lambert, Colin J.; Hummelen, Jan C.; Wandlowski, Thomas

    2011-01-01

    π-Conjugation plays an important role in charge transport through single molecular junctions. We describe in this paper the construction of a mechanically controlled break-junction setup (MCBJ) equipped with a highly sensitive log I–V converter in order to measure ultralow conductances of molecular

  14. The impact of intramolecular π-coupling and steric flexibility on the ordering of organic films at solid/liquid-interfaces

    Science.gov (United States)

    Saracino, Martino; Breuer, Stephan; Barati, Gholamreza; Sak, Emilia; Hingerl, Kurt; Müller, Ute; Müller, Manfred; Höger, Sigurd; Wandelt, Klaus

    2013-01-01

    In the present work the effect of the intramolecular steric flexibility on the structural self-assembly of organic cations and their redox activity at a chloride precovered Cu(100) electrode is investigated. In particular the adsorption of 1,1‧-dibenzyl-4,4‧-(propane-1,3-diyl)dipyridinium (C3-DBDP) is studied by means of cyclic voltametry (CV), in situ scanning tunneling microscopy (EC-STM) and ex situ X-ray photoelectron spectroscopy (XPS) and the experimental results are compared to previously published findings on related bipyridinium (“viologen”) molecules. The CV measurements reveal a loss of the redox activity of the more flexible C3-DBDP2 + compared to dibenzylviologen (DBV2 +), as the first electron reduction step of C3-DBDP2 + does not appear within the potential window of the Cu(100), but is shifted below the hydrogen evolution regime. This reduced redox activity is the result of the lifting of the extended π-system of the bipyridinium core by introducing the propyl chain between the two pyridinium rings. In agreement with this result, XP spectra prove that the C3-DBDP2 + cations retain their initial dicationic charge within the entire potential window in solution but also upon adsorption on the Cl-c(2x2)/Cu(100) substrate, where they are found to form an inter-linked stripe phase. The building blocks of each stripe are attributed to one pyridinium-benzyl moiety, which represents half of one C3-DBDP2 + molecule. The resulting consecutive arrangement of half C3-DBDP2 + molecules along one stripe is stabilized by electrostatic attraction between the positively charged pyridinium rings and the negatively charged π-system of the benzyl rings.

  15. Triboelectric Charging at the Nanostructured Solid/Liquid Interface for Area-Scalable Wave Energy Conversion and Its Use in Corrosion Protection.

    Science.gov (United States)

    Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin

    2015-07-28

    We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.

  16. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  17. The adsorption of alkyl-dimethyl-benzyl-ammonium chloride onto cotton nonwoven hydroentangled substrates at the solid-liquid interface is minimized by additive chemistries

    Science.gov (United States)

    Quaternary ammonium compounds, commonly referred to as quats, are cationic surfactants widely used as the active biocide ingredient for disposable disinfecting wipes. The cationic nature of quats results in a strong ionic interaction and adsorption onto wipes materials that have an anionic surface ...

  18. Towards supramolecular engineering of functional nanomaterials: pre-programming multi-component 2D self-assembly at solid-liquid interfaces.

    Science.gov (United States)

    Ciesielski, Artur; Palma, Carlos-Andres; Bonini, Massimo; Samorì, Paolo

    2010-08-24

    Materials with a pre-programmed order at the supramolecular level can be engineered with a sub-nanometer precision making use of reversible non- covalent interactions. The intrinsic ability of supramolecular materials to recognize and exchange their constituents makes them constitutionally dynamic materials. The tailoring of the materials properties relies on the full control over the self-assembly behavior of molecular modules exposing recognition sites and incorporating functional units. In this review we focus on three classes of weak-interactions to form complex 2D architectures starting from properly designed molecular modules: van der Waals, metallo-ligand and hydrogen bonding. Scanning tunneling microscopy studies will provide evidence with a sub-nanometer resolution, on the formation of responsive multicomponent architectures with controlled geometries and properties. Such endeavor enriches the scientist capability of generating more and more complex smart materials featuring controlled functions and unprecedented properties.

  19. A technical review of liquid/liquid and solid/liquid separation equipment in the field of nuclear-fuel reprocessing

    International Nuclear Information System (INIS)

    Vassallo, G.

    1981-01-01

    Liquid/liquid extraction is generally accepted as the preferred method in nuclear-fuel reprocessing. However, although many types of liquid/liquid contactors are available, only a few meet the stringent specifications set by the nuclear industry. This report discusses the criteria for contactor selection and then reviews the most important types, namely packed columns, pulsed columns, mixer-setters and centrifugal contactors. Finally, a short section concerned with solid/liquid separations is included because of the possible deleterious effects caused by solids in liquid/liquid contactors

  20. Kinetics, morphology and thermodynamics of the solid--liquid transition of non-metals. Progress report for period, 1 December 1976--30 November 1977

    International Nuclear Information System (INIS)

    Serkerka, R.F.; Hartzell, R.A.

    1977-11-01

    Modeling of the process of Internal Centrifugal Zone Growth (ICZG) was completed. Both one-dimensional models (for infinitely long samples and induction coils) and two-dimensional models show similar S-curve instabilities on heating, but the two-dimensional models serve to define the shape of the molten zone. Molten zone shape was found to be a sensitive function of rf skin depth in the solid and induction coil geometry. Changes in these parameters lead to zone shapes which change from convex to concave. Practical guidelines were established for the suitability of the ICZG process by calculating a maximum rf frequency to obtain a suitable surface-to-center temperature difference in the sample and a minimum frequency to avoid heating instabilities. For there to be an allowable frequency range, it is necessary that 2hR/sub s//k greater than 1, where h is the surface heat transfer coefficient, R/sub s/ is the sample radius, and k is its thermal conductivity; this limits ICZG to poor conductors (nonmetals), except for very large samples and forced surface cooling. Experiments on silicon were used to verify the heating instability quantitatively. Internal susceptors were tried to heat oxides at low frequencies but led to local overheating and cracking. 2 figures, 2 tables

  1. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali

    2010-01-01

    This study is focused on the preparation, characterization and thermal properties of microencapsulated n-heptadecane with polymethylmethacrylate shell. The PMMA/heptadecane microcapsules were synthesized as novel solid-liquid microencapsulated phase change material (microPCMs) by emulsion polymerization method. The chemical and thermal characterization of the microPCMs were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The diameters of microPCMs were found in the narrow range (0.14-0.40 μm) under the stirring speed of 2000 rpm. The spherical surfaces of microPCMs were smooth and compact. The DSC results show that microPCMs have good energy storage capacity. Thermal cycling test showed that the microPCMs have good thermal reliability with respect to the changes in their thermal properties after repeated 5000 thermal cycling. TGA analyses also indicated that the microPCMs degraded in three steps and have good thermal stability. Based on all results, it can be considered that the PMMA/heptadecane microcapsules as novel solid-liquid microPCMs have good energy storage potential.

  2. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    Science.gov (United States)

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Paulo B. [Univ. of California, Berkeley, CA (United States)

    1998-12-14

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayer are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayer at Iiquidhapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the confirmational order of surfactant monolayers.

  4. Anodization parameters influencing the morphology and electrical properties of TiO{sub 2} nanotubes for living cell interfacing and investigations

    Energy Technology Data Exchange (ETDEWEB)

    Khudhair, D. [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia); Bhatti, A., E-mail: asim.bhatti@deakin.edu.au [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia); Li, Y. [RMIT University, Bundoora, Victoria 3083 (Australia); Hamedani, H. Amani; Garmestani, H. [Georgia Institute of Technology, GA 30332 (United States); Hodgson, P.; Nahavandi, S. [Deakin University, Waurn Ponds Campus, Vic 3216 (Australia)

    2016-02-01

    Nanotube structures have attracted tremendous attention in recent years in many applications. Among such nanotube structures, titania nanotubes (TiO{sub 2}) have received paramount attention in the medical domain due to their unique properties, represented by high corrosion resistance, good mechanical properties, high specific surface area, as well as great cell proliferation, adhesion and mineralization. Although lot of research has been reported in developing optimized titanium nanotube structures for different medical applications, however there is a lack of unified literature source that could provide information about the key parameters and experimental conditions required to develop such optimized structure. This paper addresses this gap, by focussing on the fabrication of TiO{sub 2} nanotubes through anodization process on both pure titanium and titanium alloys substrates to exploit the biocompatibility and electrical conductivity aspects, critical factors for many medical applications from implants to in-vivo and in-vitro living cell studies. It is shown that the morphology of TiO{sub 2} directly impacts the biocompatibility aspects of the titanium in terms of cell proliferation, adhesion and mineralization. Similarly, TiO{sub 2} nanotube wall thickness of 30–40 nm has shown to exhibit improved electrical behaviour, a critical factor in brain mapping and behaviour investigations if such nanotubes are employed as micro–nano-electrodes. - Highlights: • We spotlight on the importance of TiO{sub 2} nanotubes in medical applications. • The influence of nanotubes morphology on the electrical conductivity and biocompatibility properties • Influence of key anodizing parameters on the nanotube morphology • Methods to improve the electrical conductivity of TiO{sub 2} nanotubes • Potential of employment of TiO{sub 2} nanotubes as micro–nano-electrodes.

  5. Morphology of interior interfaces in dilute nitride III/V material systems; Morphologie innerer Grenzflaechen in verduennt stickstoffhaltigen III/V-Materialsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Oberhoff, S.

    2007-12-03

    This study aims to clarify structure formation processes in dilute N-containing III/V-based material systems, using highly selective etching methods and subsequent atomic force microscopy (AFM) to expose and analyse interior interfaces. In the first part of this study it was directly proved for the first time that adding Sb during growth interruption inhibits the GI-induced structural phase transition and reduces the diffusivity on GaAs and (GaIn)(NAs) surfaces. However, applying Sb during GI does not affect the driving force of the structural phase transition. Therefore a fundamental analysis about the incorporation of Sb into GaAs, Ga(NAs) and (GaIn)(NAs) was carried out in the second part of the study. Using a combination of high resolution X-ray diffraction, transmission electron microscopy and SIMS measurements, it was verified that incorporating Sb into (GaIn)(NAs) causes an increase of the In content and a decrease of the N content. In the third part of the study, novel etching methods for the GaP-based material system Ga(NAsP) are introduced which provide the opportunity to analyse structure formation processes on interior interfaces in this material system by AFM. (orig.)

  6. Effect of ageing on the gastro-intestinal transit of a lactulose-supplemented mixed solid-liquid meal in humans.

    Science.gov (United States)

    Wegener, M; Börsch, G; Schaffstein, J; Lüth, I; Rickels, R; Ricken, D

    1988-01-01

    Gastro-intestinal transit of a mixed solid-liquid meal containing wheat bread, scrambled eggs, coffee labelled with 99mTc, orange juice with lactulose and indigocarmine was evaluated in 21 young control (mean age 33.5 years) and 25 elderly subjects (mean age 81.7 years) without gastrointestinal complaints or severe medical illness. The rate of gastric emptying was determined by an anterior gamma camera technique, mouth-to-caecum transit by the hydrogen breath test and whole-gut transit by the first stool passage of indigocarmine. Gastric emptying was significantly prolonged in older subjects: t1/2 = 136 +/- (SEM) 13 versus 81 +/- 4 min; p less than 0.001. Concerning mouth-to-caecum or whole-gut transit time, significant differences between the two study groups were not detected.

  7. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  8. Comparison between 2 methods of solid-liquid extraction for the production of Cinchona calisaya elixir: an experimental kinetics and numerical modeling approach.

    Science.gov (United States)

    Naviglio, Daniele; Formato, Andrea; Gallo, Monica

    2014-09-01

    The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description. © 2014 Institute of Food Technologists®

  9. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 3: miscellany of radionuclides (Cd, Co, Ni, Zn, I, Se, Sb, Pu, Am, and others)

    International Nuclear Information System (INIS)

    Gil-Garcia, C.; Tagami, K.; Uchida, S.; Rigol, A.; Vidal, M.

    2009-01-01

    New best estimates for the solid-liquid distribution coefficient (K d ) for a set of radionuclides are proposed, based on a selective data search and subsequent calculation of geometric means. The K d best estimates are calculated for soils grouped according to the texture and organic matter content. For a limited number of radionuclides this is extended to consider soil cofactors affecting soil-radionuclide interaction, such as pH, organic matter content, and radionuclide chemical speciation. Correlations between main soil properties and radionuclide K d are examined to complete the information derived from the best estimates with a rough prediction of K d based on soil parameters. Although there are still gaps for many radionuclides, new data from recent studies improve the calculation of K d best estimates for a number of radionuclides, such as selenium, antimony, and iodine.

  10. The solid-liquid extraction separation of lithium isotopes by porous composite materials doped with ionic liquids and 2,2'-binaphthyldiyl-17-crown-5

    International Nuclear Information System (INIS)

    Xiao-Li Sun; Ling Gu; Dan Qiu; Dong-Hong Ren; Zaijun Li; Zhi-Guo Gu; Jiangnan University, Wuxi

    2015-01-01

    A green and efficient solid-liquid extraction method of lithium isotopes separation by porous composite materials doped with imidazolium ionic liquids and 2,2'-binaphthyldiyl-17-crown-5 has been reported in this paper. The composite materials of mesoporous silica and impregnated resin were synthesized by sol-gel and direct impregnation process, respectively. Various extraction parameters such as the concentration of lithium salt, anion of lithium salt, initial pH, time and temperature were investigated. Under optimized conditions, the maximum single-stage separation factor of 6 Li/ 7 Li was 1.048 ± 0.002, the maximum extraction efficiency was 15.86 %. The sorbents can be regenerated easily with HCl solution and reused repeatedly. (author)

  11. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    Science.gov (United States)

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions.

  12. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    Science.gov (United States)

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity

    Science.gov (United States)

    Chen, Tingting; Zhang, Jun

    2018-04-01

    The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.

  14. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  15. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  16. The significance of morphological changes in the brain-tumor interface for the pathogenesis of brain edema in meningioma: Magnetic resonance tomography and intraoperative findings

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Mundinger, P.; Voigt, K.; Freudenstein, D.; Heiss, E.

    1999-01-01

    Purpose: The aim of the study was to verify a possible correlation between macroscopic changes of the brain-tumor interface (BTI) and the development of a peritumoral brain edema in meningiomas. Methods: 27 meningiomas were investigated in this prospective study using an optimized inversion-recovery (IR) sequence. After i.v. administration of 0.2 mmol Gd-DTPA/kg axial and coronary images were acquired (slice thickness=2 mm). The distances of signal altered cortex and obliterations of the subarachnoid space (SAS) were measured at the BTI and related to the pial tumor circumference (cortical-index and SAS-index). Intraoperatively the BTI was divided into the following categories: 0: SAS not obliterated, 1: SAS partially obliterated, 2: Direct contact between tumor and white matter, 3: Tumor infiltration into brain. Results: Edema-associated meningiomas showed a significantly (p=0.0001) increased SAS-index (0.47 vs. 0.07) and cortical index (0.45 vs. 0.0) compared to cases without edema. Intraoperatively 95% of meningiomas with brain edema showed SAS-obliterations, compared to 50% of cases without an edema. Conclusions: Arachnoid adhesions at the BTI with obliteration of the SAS seem to play an essential role in the induction of brain edema in meningiomas. (orig.) [de

  17. Interface chemistry and surface morphology evolution study for InAs/Al2O3 stacks upon in situ ultrahigh vacuum annealing

    Science.gov (United States)

    Wang, Xinglu; Qin, Xiaoye; Wang, Wen; Liu, Yue; Shi, Xiaoran; Sun, Yong; Liu, Chen; Zhao, Jiali; Zhang, Guanhua; Liu, Hui; Cho, Kyeongjae; Wu, Rui; Wang, Jiaou; Zhang, Sen; Wallace, Robert M.; Dong, Hong

    2018-06-01

    A systematic study of the interfacial chemistry for the HCl pretreated and native oxide InAs(100) samples upon atomic layer deposition (ALD) of Al2O3, and the post deposition annealing (PDA) process has been carried out, using in situ synchrotron radiation photoelectron spectroscopy. The "clean up" effect for the native oxide sample is detected, but it is not observed for the HCl pretreated sample. The out-diffusion and desorption of both In and As oxides have been characterized during the ALD process and the following PDA process. The surface morphology evolution during the PDA process is studied by in situ photo-emission electron microscopy. The bubbles emerged after PDA at 360 °C and grew up at 370 °C. After PDA at 400 °C and at higher temperatures, pits are seen in some areas, and the tear up of the Al2O3 film is seen in other areas with the formation of indium droplets. This study gives insight in the mechanism of elemental diffusion/desorption, which may associate the reliability of III-V semiconductor based devices.

  18. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Duc, M

    2002-11-15

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  19. PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage

    Science.gov (United States)

    Andriamitantsoa, Radoelizo S.; Dong, Wenjun; Gao, Hongyi; Wang, Ge

    2017-03-01

    A series of porous triamide-linked polymers labeled as PTP were prepared by condensation of 1,3,5-benzenetricarbonyl trichloride with benzene-1,4-diamine (A), 4,4‧-methylenediamine (B) and 1,3,5-triazine-2,4,6-triamine (C) respectively. The as-synthesized polymers exhibit permanent porosity and high surface areas which guarantee to hold polyethylene glycol (PEG) molecules in their network for shape-stabilized phase change materials. They possess different effects on the phase change properties of the composite due to their different porosities. PTP-A have intrinsic well-ordered morphology, microstructure and good enough pores to keep the PCMs compared to PTP-B and PTP-C. PEG 2000 used as PCMs could be retained up to 85 wt% in PTP-A polymer materials and these composites were defined as form-stable composite PCMs without the leakage of melted PCM. The thermal study revealed a good storage effect of encapsulated polymer and the enthalpy of melting increases in the order PTP-C PCMs.

  20. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  1. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  2. Integral solution of equiaxed solidification with an interface kinetics model for nuclear waste management

    International Nuclear Information System (INIS)

    Naterer, G.F.

    1996-01-01

    In this paper, a one-dimensional analysis of energy and species transport during binary dendritic solidification is presented and compared to experimental results. The paper's objective is a continuation of previous studies of solidification control for the waste management of nuclear materials in the underground disposal concept. In the present analysis, interface kinetics at the solid - liquid interface accounts for recalescent thermal behaviour during solidification. The theoretical results were compared to available experimental results and the agreement appears fair although some discrepancies have been attributed to uncertainties with thermophysical properties. (author)

  3. Ultrasound-assisted extraction of fructans from agave (Agave tequilana Weber var. azul at different ultrasound powers and solid-liquid ratios

    Directory of Open Access Journals (Sweden)

    Miguel Ángel SÁNCHEZ-MADRIGAL

    Full Text Available Abstract The effects of ultrasound-assisted extraction (UAE at different ultrasound power densities (UPDs; 40, 80, and 120 mW/mL and solid:liquid (S:L ratio (1:2, 1:3, and 1:6 on the extraction of carbohydrates from Agave tequilana plant of different ages were evaluated. Extracts obtained (6- and 7-year-old plant were analyzed in the yield of carbohydrates (YC, fructan (FRU content, simple sugars, fructan profile and the average degree of polymerization (DPn. UPD, S:L ratio, and plant age all affected YC, FRU, and DPn. Maximum YC and FRU were obtained from the older agave with UPD and S:L ratio of 120 mW/mL and 1:6, respectively; while glucose, fructose, and sucrose were highly released from the younger plant. Agave of 7-year-old presented the highest DPn. Fructan degradation occurred at high UPD, increasing the simple sugars and decreasing the DPn. Thermal-traditional extraction without sonication caused more fructan degradation; and overall, ultrasound enhanced fructan extraction and minimized fructan damage, representing a technological alternative for fructan extraction from agave.

  4. Simultaneous analysis of carotenoids and tocopherols in botanical species using one step solid-liquid extraction followed by high performance liquid chromatography.

    Science.gov (United States)

    Valdivielso, Izaskun; Bustamante, María Ángeles; Ruiz de Gordoa, Juan Carlos; Nájera, Ana Isabel; de Renobales, Mertxe; Barron, Luis Javier R

    2015-04-15

    Carotenoids and tocopherols from botanical species abundant in Atlantic mountain grasslands were simultaneously extracted using one-step solid-liquid phase. A single n-hexane/2-propanol extract containing both types of compounds was injected twice under two different sets of HPLC conditions to separate the tocopherols by normal-phase chromatography and carotenoids by reverse-phase mode. The method allowed reproducible quantification in plant samples of very low amounts of α-, β-, γ- and δ-tocopherols (LOD from 0.0379 to 0.0720 μg g(-1) DM) and over 15 different xanthophylls and carotene isomers. The simplified one-step extraction without saponification significantly increased the recovery of tocopherols and carotenoids, thereby enabling the determination of α-tocopherol acetate in plant samples. The two different sets of chromatographic analysis provided near baseline separation of individual compounds without interference from other lipid compounds extracted from plants, and a very sensitive and accurate detection of tocopherols and carotenoids. The detection of minor individual components in botanical species from grasslands is nowadays of high interest in searching for biomarkers for foods derived from grazing animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pseudo-stir bar hollow fiber solid/liquid phase microextraction combined with anodic stripping voltammetry for determination of lead and cadmium in water samples

    Directory of Open Access Journals (Sweden)

    Zarrin Es’haghi

    2014-11-01

    Full Text Available A new procedure is presented for the determination of low concentrations of lead and cadmium in water samples. Ligand assisted pseudo-stir bar hollow fiber solid/liquid phase microextraction using sol–gel sorbent reinforced with carbon nanotubes was combined with differential pulse anodic stripping voltammetry for simultaneous determination of cadmium and lead in tap water, and Darongar river water samples. In the present work, differential pulse anodic stripping voltammetry (DPASV using a hanging mercury drop electrode (HMDE was used in order to determine the ultra trace level of lead and cadmium ions in real samples. This method is based on accumulation of lead and cadmium ions on the electrode using different ligands; Quinolin-8-ol, 5,7-diiodo quinoline-8-ol, 4,5-diphenyl-1H-imidazole-2(3H-one and 2-{[2-(2-Hydroxy-ethylamino-ethylamino]-methyl}-phenol as the complexing agent. The optimized conditions were obtained. The relationship between the peak current versus concentration was linear over the range of 0.05–500 ng mL−1 for Cd (II and Pb (II. The limits of detection for lead and cadmium were 0.015 ng mL−1 and 0.012 ng mL−1, respectively. Under the optimized conditions, the pre-concentration factors are 2440 and 3710 for Cd (II and Pb (II in 5 mL of water sample, respectively.

  6. Microstructure and transport current characterization of YBa2Cu3O7-x thick films prepared by modified solid-liquid melt growth and powder melt process routes

    International Nuclear Information System (INIS)

    Langhorn, J.; McGinn, P.J.

    1999-01-01

    From the characterization of superconducting YBa 2 Cu 3 O 7-x (YBCO) thick films processed by melt texturing on yttria-stabilized zirconia substrates from YBCO precursors it is clear that the properties are highly dependent on the precursor powder. Increased YBCO grain sizes have been induced in thick films processed from by modified solid-liquid melt growth (SLMG) and powder melt (PMP) processes with respect to those processed from pre-reacted YBCO materials. The SLMG and PMP routes utilize precursors consisting of BaCuO 2 -CuO flux material mixed with Y 2 O 3 and Y 2 BaCuO 5 respectively. Cross-sectional analysis of films textured by these routes shows a decreased Y 2 BaCuO 5 size and an increased homogeneity within the matrix with respect to films processed from YBCO powder. Such microstructural improvements lead to an improvement of both the flux pinning and current-carrying characteristics of the processed YBCO films. (author)

  7. The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation

    International Nuclear Information System (INIS)

    Piatek, A; Dawid, A; Gburski, Z

    2006-01-01

    We have simulated (by the molecular dymanics (MD) method) the dynamics of fullerenes (C 60 ) in an extremely small cluster composed of only as many as seven C 60 molecules. The interaction is taken to be the full 60-site pairwise additive Lennard-Jones (LJ) potential which generates both translational and anisotropic rotational motions of each molecule. Our atomically detailed MD simulations discover the plastic phase (no translations but active reorientations of fullerenes) at low energies (temperatures) of the (C 60 ) 7 cluster. We provide the in-depth evidence of the dynamical solid-liquid bistability region in the investigated cluster. Moreover, we confirm the existence of the liquid phase in (C 60 ) 7 , the finding of Gallego et al (1999 Phys. Rev. Lett. 83 5258) obtained earlier on the basis of Girifalco's model, which assumes single-site only and spherically symmetrical interaction between C 60 molecules. We have calculated the translational and angular velocity autocorrelation functions and estimated the diffusion coefficient of fullerene in the liquid phase

  8. [Gastric emptying of a solid-liquid meal in normal subjects: validity of the labeling (99mTc) of chicken liver by a multipuncture technic].

    Science.gov (United States)

    Hostein, J; Capony, P; Busquet, G; Bost, R; Fournet, J

    1985-04-01

    For gastric emptying studies of a solid-liquid meal by the scintigraphic method, a valid isotope labeling method for each phase of the meal must be obtained. The aim of this study was to validate a simple chicken liver labeling method in normal subjects by multipuncture technic with 99mtechnetium. Labeling according to Meyer's method was chosen as a reference. Simultaneously, a study of the quality of liquid phase labeling by 111indium was done. The labeling process quality for each phase of the meal was assessed: a) in vitro, after incubation of the meal with human gastric juice (n = 12); b) in vivo, after meal ingestion and sequential collection of gastric contents by aspiration (n = 4). Furthermore, in 8 healthy volunteers, gastric emptying curves of the solid and liquid phases of the meal were determined scintigraphically and compared. Our results showed: a) for the solid phase: a good specificity of the marker, which was assessed in vitro and in vivo, after liver labeling with multipuncture technique (89 p. 100 and 92 p. 100 after 180 min, respectively); b) for the liquid phase: a good specificity of the marker in vitro and a poor specificity in vivo (82 p. 100 and 27 p. 100 after 180 min, respectively); c) similar half-gastric emptying times and cumulative percentages for the solid and liquid phases with both liver labeling methods. In conclusion, the multipuncture technique for chicken liver labeling may be used for gastric emptying studies in humans.

  9. A validated solid-liquid extraction method for the HPLC determination of polyphenols in apple tissues Comparison with pressurised liquid extraction.

    Science.gov (United States)

    Alonso-Salces, Rosa M; Barranco, Alejandro; Corta, Edurne; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca

    2005-02-15

    A solid-liquid extraction procedure followed by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a photodiode array detector (DAD) for the determination of polyphenols in freeze-dried apple peel and pulp is reported. The extraction step consists in sonicating 0.5g of freeze-dried apple tissue with 30mL of methanol-water-acetic acid (30:69:1, v/v/v) containing 2g of ascorbic acid/L, for 10min in an ultrasonic bath. The whole method was validated, concluding that it is a robust method that presents high extraction efficiencies (peel: >91%, pulp: >95%) and appropriate precisions (within day: R.S.D. (n = 5) <5%, and between days: R.S.D. (n = 5) <7%) at the different concentration levels of polyphenols that can be found in apple samples. The method was compared with one previously published, consisting in a pressurized liquid extraction (PLE) followed by RP-HPLC-DAD determination. The advantages and disadvantages of both methods are discussed.

  10. Experimental Quantification of Pore-Scale Flow Phenomena in 2D Heterogeneous Porous Micromodels: Multiphase Flow Towards Coupled Solid-Liquid Interactions

    Science.gov (United States)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2017-12-01

    Geological sequestration of CO2 within saline aquifers is a viable technology for reducing CO2 emissions. Central to this goal is accurately predicting both the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local fluid pressure buildup may cause activation of small pre-existing unidentified faults, leading to micro-seismic events, which could prove disastrous for societal acceptance of CCS, and possibly compromise seal integrity. Recent evidence shows that large-scale events are coupled with pore-scale phenomena, which necessitates the representation of pore-scale stress, strain, and multiphase flow processes in large-scale modeling. To this end, the pore-scale flow of water and liquid/supercritical CO2 is investigated under reservoir-relevant conditions, over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of a real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed and fabricated, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions.

  11. Determination of solid-liquid partition coefficients (K{sub d}) for the herbicides inspiration and trifluralin in five UK agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Cindy M. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)]. E-mail: cindy.cooke@imperial.ac.uk; Shaw, George [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom); Collins, Chris D. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of {sup 14}C-isoproturon and {sup 14}C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K{sub d} values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K{sub d} range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K{sub d} range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances.

  12. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  13. Multiphase flow towards coupled solid-liquid interactions in 2D heterogeneous porous micromodels: a fluorescent microscopy and micro-PIV measurement at pore scale

    Science.gov (United States)

    Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth; Kenneth Christensen, Notre Dame Team

    2017-11-01

    Multiphase flow in porous media is relevant to a range of applications in the energy and environmental sectors. Recently, the interest has been renewed by geological storage of CO2 within saline aquifers. Central to this goal is predicting the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local pressure buildup may cause micro-seismic events, which could prove disastrous, and possibly compromise seal integrity. Evidence shows that the large-scale events are coupled with pore-scale phenomena, necessitating the understanding of pore-scale stress, strain, and flow processes and their representation in large-scale modeling. To this end, the pore-scale flow of water and supercritical CO2 is investigated under reservoir-relevant conditions over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions. This work was supported as part of the GSCO2, an EFRC funded by the US DOE, Office of Science, and partially supported by WPI-I2CNER.

  14. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  15. Amino acids separation with the tetracarboxylic derived of the para-ter-butylcalix[4]arene by means of solid-liquid extraction assisted with lanthanides

    International Nuclear Information System (INIS)

    Bernal R, R. del C.

    2014-01-01

    The tetracarboxylic derived of the para-ter-butylcalix[4]arene (B 4 ACEbL 4 ) does not exist commercially for what was synthesized and characterized at laboratory level. The separation of the L-tyrosine amino acid was studied by means of a solid-liquid extraction system with the B 4 ACEbL 4 as solid phase, in function of ph (2.5-7.5) and contact time (5 and 15 hours) to temperature of 15-17 grades C. Resulted that the ph and the contact time were decisive in the extraction percentage of water tyrosine. The lowest percentage was 49% to ph 4 and the highest percentage was 61% to ph 7.5 with 15 hours of contact. In a contact time of 5 hours the extraction was inferior to 32% (ph 4) and of 47% to ph 6.5. The europium effect (Eu (III)) was studied to ph acid in the tyrosine separation and was found that the tyrosine extraction is not increased neither decomposes in europium presence, this is simultaneously extracted by the calixarene but it does not enter in competition for the calixarene with the amino acid. The separate solid phases: calixarene-tyrosine was analyzed by Far infrared radiation (Fir), Mid-Infrared (Mir) spectroscopy and luminescence to check the tyrosine presence in the separate solids as well as the nature of the connection calixarene-tyrosine. In this way was possible to check the tyrosine presence and to propose the formed molecular species tyrosine-calixarene, those which interact mainly by means of hydrogen connections and Van der Waals forces. The liquid phases before and after the extraction were analyzed by UV-Vis spectrophotometry and luminescence. The Neutron activation analysis was used to determine the europium content in the solid and liquid phases of extractions in europium presence. The tyrosine degradation also shows dependence with the ph, obtaining 88% degradation to the 24 hours to ph 7.5, while to ph 3 is degraded the 54% of tyrosine present in the sample. The europium presence does not affect the tyrosine extraction but if its photo

  16. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  17. Evolution of the nickel/zirconia interface

    International Nuclear Information System (INIS)

    Shinde, S.L.; Olson, D.A.; De Jonghe, L.C.; Miller, R.A.

    1986-01-01

    The changes taking place at the nickel zirconia interface during oxidation in air at 900 0 C were studied using analytical electron microscopy (AEM). The nickel oxide layer growing at the interface and the stabilizers used in zirconia interact, giving different interface morphologies

  18. Determination of caffeoylquinic acids in feed and related products by focused ultrasound solid-liquid extraction and ultra-high performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Tena, M T; Martínez-Moral, M P; Cardozo, P W

    2015-06-26

    A method to determine caffeoylquinic acids (CQAs) in three sources (herbal extract, feed additive and finished feed) using for the first time focused ultrasound solid-liquid extraction (FUSLE) followed by ultra-high performance liquid chromatography (UPLC) coupled to quadrupole-time of flight mass spectrometry is presented. Pressurized liquid extraction (PLE) was also tested as extraction technique but it was discarded because cynarin was not stable under temperature values used in PLE. The separation of the CQAs isomers was carried out in only seven minutes. FUSLE variables such as extraction solvent, power and time were optimized by a central composite design. Under optimal conditions, FUSLE extraction was performed with 8mL of an 83:17 methanol-water mixture for 30s at a power of 60%. Only two extraction steps were found necessary to recover analytes quantitatively. Sensitivity, linearity, accuracy and precision were established. Matrix effect was studied for each type of sample. It was not detected for mono-CQAs, whereas the cynarin signal was strongly decreased due to ionization suppression in presence of matrix components; so the quantification by standard addition was mandatory for the determination of di-caffeoylquinic acids. Finally, the method was applied to the analysis of herbal extracts, feed additives and finished feed. In all samples, chlorogenic acid was the predominant CQA, followed by criptochlorogenic acid, neochlorogenic acid and cynarin. The method allows an efficient determination of chlorogenic acid with good recovery rates. Therefore, it may be used for screening of raw material and for process and quality control in feed manufacture. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.

    Science.gov (United States)

    Warzoha, Ronald J; Fleischer, Amy S

    2014-08-13

    Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems.

  20. Solid/liquid partition coefficients (K{sub d}) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Steve (ECOMatters Inc. (Canada)); Sohlenius, Gustav (Sveriges geologiska undersoekning (Sweden)); Omberg, Lars-Gunnar (ALS Scandinavia AB (Sweden)); Borgiel, Mikael (Sveriges Vattenekologer AB (Sweden)); Grolander, Sara (Facilia AB (Sweden)); Norden, Sara (Svensk Kaernbraenslehantering AB (Sweden))

    2011-11-15

    Solid/liquid partition coefficients (K{sub d}) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K{sub d} data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K{sub d} values were generally lower for peat compared to clay soils. There were also clear differences in K{sub d} resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K{sub d} values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K{sub d} values were generally consistent with the corresponding regolith K{sub d} values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  1. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    Science.gov (United States)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  2. Rapid Solid-Liquid Dynamic Extraction (RSLDE): a New Rapid and Greener Method for Extracting Two Steviol Glycosides (Stevioside and Rebaudioside A) from Stevia Leaves.

    Science.gov (United States)

    Gallo, Monica; Vitulano, Manuela; Andolfi, Anna; DellaGreca, Marina; Conte, Esterina; Ciaravolo, Martina; Naviglio, Daniele

    2017-06-01

    Stevioside and rebaudioside A are the main diterpene glycosides present in the leaves of the Stevia rebaudiana plant, which is used in the production of foods and low-calorie beverages. The difficulties associated with their extraction and purification are currently a problem for the food processing industries. The objective of this study was to develop an effective and economically viable method to obtain a high-quality product while trying to overcome the disadvantages derived from the conventional transformation processes. For this reason, extractions were carried out using a conventional maceration (CM) and a cyclically pressurized extraction known as rapid solid-liquid dynamic extraction (RSLDE) by the Naviglio extractor (NE). After only 20 min of extraction using the NE, a quantity of rebaudioside A and stevioside equal to 1197.8 and 413.6 mg/L was obtained, respectively, while for the CM, the optimum time was 90 min. From the results, it can be stated that the extraction process by NE and its subsequent purification developed in this study is a simple, economical, environmentally friendly method for producing steviol glycosides. Therefore, this method constitutes a valid alternative to conventional extraction by reducing the extraction time and the consumption of toxic solvents and favouring the use of the extracted metabolites as food additives and/or nutraceuticals. As an added value and of local interest, the experiment was carried out on stevia leaves from the Benevento area (Italy), where a high content of rebaudioside A was observed, which exhibits a sweet taste compared to stevioside, which has a significant bitter aftertaste.

  3. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography.

    Science.gov (United States)

    Song, Xin-Yue; Shi, Yan-Ping; Chen, Juan

    2012-10-15

    A novel design of carbon nanotubes reinforced hollow fiber solid/liquid phase microextraction (CNTs-HF-SLPME) was developed to determine piroxicam and diclofenac in different real water samples. Functionalized multi-walled carbon nanotubes (MWCNTs) were held in the pores of hollow fiber with sol-gel technology. The pores and lumen of carbon nanotubes reinforced hollow fiber were subsequently filled with a μL volume of organic solvent (1-octanol), and then the whole assembly was used for the extraction of the target analytes in direct immersion sampling mode. The target analytes were extracted from the sample by two extractants, one of which is organic solvent placed inside the pores and lumen of hollow fiber and the other one is CNTs held in the pores of hollow fiber. After extraction, the analytes were desorbed in acetonitrile and analyzed using high performance liquid chromatography. This novel extraction mode showed more excellent extraction performance in comparison with conventional hollow fiber liquid microextraction (without adding CNTs) and carbon nanotubes reinforced hollow fiber solid microextraction (CNTs held in the pores of hollow fiber, but no organic solvents placed inside the lumen of hollow fiber) under the respective optimum conditions. This method provided 47- and 184-fold enrichment factors for piroxicam and diclofenac, respectively, good inter-fiber repeatability and batch-to-batch reproducibility. Linearity was observed in the range of 20-960 μg L(-1) for piroxicam, and 10-2560 μg L(-1) for diclofenac, with correlation coefficients of 0.9985 and 0.9989, respectively. The limits of detection were 4.58 μg L(-1) for piroxicam and 0.40 μg L(-1) for diclofenac. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. High temperature investigation of the solid/liquid transition in the PuO{sub 2}–UO{sub 2}–ZrO{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Quaini, A. [CEA, DANS/DPC/SCCME/LM2T, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France); Guéneau, C., E-mail: christine.gueneau@cea.fr [CEA, DANS/DPC/SCCME/LM2T, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France); Gossé, S. [CEA, DANS/DPC/SCCME/LM2T, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France); Sundman, B. [INSTN, CEA Saclay (France); Manara, D.; Smith, A.L.; Bottomley, D.; Lajarge, P.; Ernstberger, M. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); Hodaj, F. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, Grenoble INP, SIMAP, F-38000 Grenoble (France)

    2015-12-15

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO{sub 2}–PuO{sub 2}–ZrO{sub 2}. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO{sub 2}){sub 0.50}(ZrO{sub 2}){sub 0.50}) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO{sub 2} in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO{sub 2}–PuO{sub 2}–ZrO{sub 2} system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O{sub 2±x}-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  5. Solid/liquid partition coefficients (Kd) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    International Nuclear Information System (INIS)

    Sheppard, Steve; Sohlenius, Gustav; Omberg, Lars-Gunnar; Borgiel, Mikael; Grolander, Sara; Norden, Sara

    2011-11-01

    Solid/liquid partition coefficients (K d ) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K d data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K d values were generally lower for peat compared to clay soils. There were also clear differences in K d resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K d values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K d values were generally consistent with the corresponding regolith K d values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  6. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    Science.gov (United States)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.

  7. Liquid phase stabilization versus bubble formation at a nanoscale curved interface

    Science.gov (United States)

    Schiffbauer, Jarrod; Luo, Tengfei

    2018-03-01

    We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.

  8. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  9. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  10. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  11. Organic interfaces

    NARCIS (Netherlands)

    Poelman, W.A.; Tempelman, E.

    2014-01-01

    This paper deals with the consequences for product designers resulting from the replacement of traditional interfaces by responsive materials. Part 1 presents a theoretical framework regarding a new paradigm for man-machine interfacing. Part 2 provides an analysis of the opportunities offered by new

  12. Interface Realisms

    DEFF Research Database (Denmark)

    Pold, Søren

    2005-01-01

    This article argues for seeing the interface as an important representational and aesthetic form with implications for postmodern culture and digital aesthetics. The interface emphasizes realism due in part to the desire for transparency in Human-Computer Interaction (HCI) and partly...

  13. A simple and rapid technique for recovery of 99mTc from low specific activity (n,γ)99Mo based on solid-liquid extraction and column chromatography methodologies

    International Nuclear Information System (INIS)

    Chattopadhyay, Sankha; Das, Sujata Saha; Barua, Luna

    2010-01-01

    A simple and inexpensive method has been developed for the separation of 99m Tc from 99 Mo produced from the neutron activation of 98 Mo by 98 Mo(n,γ) 99 Mo nuclear reaction. The recovery of 99m Tc was performed by solid-liquid extraction based on alumina column chromatography. The overall radiochemical yield for the complete separation of 99m Tc was 85-97% (n=5). The separated Na[ 99m Tc]TcO 4 was of high radionuclidic, radiochemical and chemical purities. The method can be adopted for routine processing and use of 99m Tc in radiopharmacy operations.

  14. Microprocessor interfacing

    CERN Document Server

    Vears, R E

    2014-01-01

    Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl

  15. Synchrotron X-ray scattering studies at mineral-water interfaces

    International Nuclear Information System (INIS)

    Chiarello, R.P.; Sturchio, N.C.

    1995-01-01

    Synchrotron X-ray scattering techniques provide a powerful tool for the in situ study of atomic scale processes occurring at solid-liquid interfaces. We have applied these techniques to characterize and study reactions at mineral-water interfaces. Here we present two examples. The first is the characterization of the calcite (CaCO 3 ) (10 bar 14) cleavage surface, in equilibrium with deionized water, by crystal truncation rod measurements. The second is the in situ study of the heteroepitaxial growth of otavite (CdCO 3 ) on the calcite (10 bar 14) cleavage surface. The results of such studies will lead to significant progress in understanding mineral-water interface geochemistry

  16. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  17. Interface Anywhere

    Data.gov (United States)

    National Aeronautics and Space Administration — Current paradigms for crew interfaces to the systems that require control are constrained by decades old technologies which require the crew to be physically near an...

  18. Morphological demosaicking

    Science.gov (United States)

    Quan, Shuxue

    2009-02-01

    Bayer patterns, in which a single value of red, green or blue is available for each pixel, are widely used in digital color cameras. The reconstruction of the full color image is often referred to as demosaicking. This paper introduced a new approach - morphological demosaicking. The approach is based on strong edge directionality selection and interpolation, followed by morphological operations to refine edge directionality selection and reduce color aliasing. Finally performance evaluation and examples of color artifacts reduction are shown.

  19. Ultra-short laser processing of transparent material at the interface to liquid

    International Nuclear Information System (INIS)

    Boehme, R; Pissadakis, S; Ehrhardt, M; Ruthe, D; Zimmer, K

    2006-01-01

    Similarly to laser-induced backside wet etching (LIBWE) with nanosecond ultraviolet (ns UV) laser pulses, the irradiation of the solid/liquid interface of fused silica with sub-picosecond (sub-ps) UV and femtosecond near infrared (fs NIR) laser pulses results in etching of the fused silica surface and deposition of decomposition products from liquid. Furthermore, the etch threshold is reduced compared with both direct ablation with an fs laser in air and backside etching with UV ns pulses. Using 0.5 M pyrene/toluene as absorbing liquid, the thresholds were determined to be 70 mJ cm -2 (sub-ps UV) and 330 mJ cm -2 (fs NIR). Furthermore, an almost linear increase in the etch rate with increasing laser fluence was found. The roughness of surfaces backside etched with ultra-short pulses is higher in comparison with ns pulses but lower than that obtained using direct fs laser ablation. Hence a combination of processes involved in fs laser ablation and ns backside etching can be expected. The processes at the ultra-short pulse laser irradiated solid/liquid interface are discussed, considering the effects of ultra-fast heating, multi-photon absorption processes, as well as defect generation in the materials

  20. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  1. Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework

    Czech Academy of Sciences Publication Activity Database

    Machesky, M.L.; Předota, Milan; Wesolowski, D.J.; Vlček, Lukáš; Cummings, P. T.; Rosenqvist, J.; Ridley, M.K.; Kubicki, J.D.; Bandura, A.V.; Kumar, N.; Sofo, J.O.

    2008-01-01

    Roč. 24, č. 21 (2008), s. 12331-12339 ISSN 0743-7463 R&D Projects: GA ČR GA203/08/0094; GA AV ČR 1ET400720507 Grant - others:M.K.R.(US) EAR/0124001; M.L.M(US) DE/AC05/00OR22725 Institutional research plan: CEZ:AV0Z40720504 Keywords : solid-liquid interface * surface * simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.097, year: 2008

  2. Computational and experimental analyses of the wave propagation through a bar structure including liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [UST Graduate School, Daejeon (Korea, Republic of); Rhee, Hui Nam [Division of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon (Korea, Republic of); Yoon, Doo Byung; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

  3. Interface unit

    NARCIS (Netherlands)

    Keyson, D.V.; Freudenthal, A.; De Hoogh, M.P.A.; Dekoven, E.A.M.

    2001-01-01

    The invention relates to an interface unit comprising at least a display unit for communication with a user, which is designed for being coupled with a control unit for at least one or more parameters in a living or working environment, such as the temperature setting in a house, which control unit

  4. Energy and fuels from electrochemical interfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.

    2017-01-01

    Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  5. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  6. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    "Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...

  7. Towards High-Performance Aqueous Sodium-Ion Batteries: Stabilizing the Solid/Liquid Interface for NASICON-Type Na2 VTi(PO4 )3 using Concentrated Electrolytes.

    Science.gov (United States)

    Zhang, Huang; Jeong, Sangsik; Qin, Bingsheng; Vieira Carvalho, Diogo; Buchholz, Daniel; Passerini, Stefano

    2018-02-22

    Aqueous Na-ion batteries may offer a solution to the cost and safety issues of high-energy batteries. However, substantial challenges remain in the development of electrode materials and electrolytes enabling high performance and long cycle life. Herein, we report the characterization of a symmetric Na-ion battery with a NASICON-type Na 2 VTi(PO 4 ) 3 electrode material in conventional aqueous and "water-in-salt" electrolytes. Extremely stable cycling performance for 1000 cycles at a high rate (20 C) is found with the highly concentrated aqueous electrolytes owing to the formation of a resistive but protective interphase between the electrode and electrolyte. These results provide important insight for the development of aqueous Na-ion batteries with stable long-term cycling performance for large-scale energy storage. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Acoustic sensors for the control of liquid-solid interface evolution and chemical reactivity

    International Nuclear Information System (INIS)

    Ferrandis, J.Y.; Tingry, S.; Attal, J.; Seta, P.

    2006-01-01

    Less classical than far-field acoustic investigations of solid materials and/or solid-liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole-biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin-avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor

  9. Thermodynamics of binary mixtures of N-methyl-2-pyrrolidinone and ketone. Experimental results and modelling of the (solid + liquid) equilibrium and the (vapour + liquid) equilibrium. The modified UNIFAC (Do) model characterization

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lachwa, Joanna

    2005-01-01

    The (solid + liquid) equilibrium (SLE) of eight binary systems containing N-methyl-2-pyrrolidinone (NMP) with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) were carried out by using a dynamic method from T = 200 K to the melting point of the NMP. The isothermal (vapour + liquid) equilibrium data (VLE) have been measured for three binary mixtures of NMP with 2-propanone, 3-pentanone and 2-hexanone at pressure range from p = 0 kPa to p = 115 kPa. Data were obtained at the temperature T = 333.15 K for the first system and at T = 373.15 K for the second two systems. The experimental results of SLE have been correlated using the binary parameters Wilson, UNIQUAC ASM and two modified NRTL equations. The root-mean-square deviations of the solubility temperatures for all the calculated values vary from (0.32 K to 0.68 K) and depend on the particular equation used. The data of VLE were correlated with one to three parameters in the Redlich-Kister expansion. Binary mixtures of NMP with (2-propanone, or 2-butanone, or 2-pentanone, or 3-pentanone, or cyclopentanone, or 2-hexanone, or 4-methyl-2-pentanone, or 3-heptanone) have been investigated in the framework of the modified UNIFAC (Do) model. The reported new interaction parameters for NMP-group (c-CONCH 3 ) and carbonyl group ( C=O) let the model consistently described a set of thermodynamic properties, including (solid + liquid) equilibrium (vapour + liquid) equilibrium, excess Gibbs energy and molar excess enthalpies of mixing. Our experimental and literature data of binary mixtures containing NMP and ketones were compared with the results of prediction with the modified UNIFAC (Do) model

  10. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    Science.gov (United States)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  11. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  12. Interface Screenings

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2015-01-01

    In Wim Wenders' film Until the End of the World (1991), three different diagrams for the visual integration of bodies are presented: 1) GPS tracking and mapping in a landscape, 2) video recordings layered with the memory perception of these recordings, and 3) data-created images from dreams...... and memories. From a transvisual perspective, the question is whether or not these (by now realized) diagrammatic modes involving the body in ubiquitous global media can be analysed in terms of the affects and events created in concrete interfaces. The examples used are filmic as felt sensations...

  13. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  14. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  15. Museets interface

    DEFF Research Database (Denmark)

    Pold, Søren

    2007-01-01

    Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes i...... tilrettelæggelsen af den fremtidige formidling. Samtidig får museets genstande en ny status som flygtige ikoner i det digitale rum, og alt i alt inviterer det til, at museerne kan forholde sig mere åbent og eksperimenterende til egen praksis og rolle som kulturinstitution....

  16. Interfaces habladas

    Directory of Open Access Journals (Sweden)

    María Teresa Soto Sanfiel

    2012-04-01

    Full Text Available Este artículo describe y piensa al fenómeno de las Interfaces habladas (IH desde variados puntos de vista y niveles de análisis. El texto se ha concebido con los objetivos específicos de: 1.- procurar una visión panorámica de aspectos de la producción y consumo comunicativo de las IH; 2.- ofrecer recomendaciones para su creación y uso eficaz, y 3.- llamar la atención sobre su proliferación e inspirar su estudio desde la comunicación. A pesar de la creciente presencia de las IF en nues-tras vidas cotidianas, hay ausencia de textos que las caractericen y analicen por sus aspectos comunicativos. El trabajo es pertinente porque el fenómeno significa un cambio respecto a estadios comunica-tivos precedentes con consecuencias en las concepciones intelectuales y emocionales de los usuarios. La proliferación de IH nos abre a nue-vas realidades comunicativas: hablamos con máquinas.

  17. Phase-field simulations of dendrite morphologies and selected evolution of primary {alpha}-Mg phases during the solidification of Mg-rich Mg-Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyue [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Jing, Tao; Liu, Baicheng [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-10-15

    A formulation of solid-liquid interfacial thermodynamic and kinetic anisotropic characteristics for hexagonal close-packed metals is proposed. The two- and three-dimensional dendritic growth of primary Mg in undercooled Mg-Al alloy melts is modeled using the phase-field method, based on a combination of crystallographic lattice symmetry and experimental observations. The morphologies of three-dimensional dendrites are obtained and the calculated results show intricately hierarchical branched structures. The excess free energy of the solution system is based on the Redlich-Kister model.

  18. Phase-field simulations of dendrite morphologies and selected evolution of primary α-Mg phases during the solidification of Mg-rich Mg-Al-based alloys

    International Nuclear Information System (INIS)

    Wang, Mingyue; Jing, Tao; Liu, Baicheng

    2009-01-01

    A formulation of solid-liquid interfacial thermodynamic and kinetic anisotropic characteristics for hexagonal close-packed metals is proposed. The two- and three-dimensional dendritic growth of primary Mg in undercooled Mg-Al alloy melts is modeled using the phase-field method, based on a combination of crystallographic lattice symmetry and experimental observations. The morphologies of three-dimensional dendrites are obtained and the calculated results show intricately hierarchical branched structures. The excess free energy of the solution system is based on the Redlich-Kister model.

  19. Development and application of a generic CFD toolkit covering the heat flows in combined solid-liquid systems with emphasis on the thermal design of HiLumi superconducting magnets

    Science.gov (United States)

    Bozza, Gennaro; Malecha, Ziemowit M.; Van Weelderen, Rob

    2016-12-01

    The main objective of this work is to develop a robust multi-region numerical toolkit for the modeling of heat flows in combined solid-liquid systems. Specifically heat transfer in complex cryogenic system geometries involving super-fluid helium. The incentive originates from the need to support the design of superconductive magnets in the framework of the HiLumi-LHC project (Brüning and Rossi, 2015) [1]. The intent is, instead of solving heat flows in restricted domains, to be able to model a full magnet section in one go including all relevant construction details as accurately as possible. The toolkit was applied to the so-called MQXF quadrupole magnet design. Parametrisation studies were used to find a compromise in thermal design and electro-mechanical construction constraints. The cooling performance is evaluated in terms of temperature margin of the magnets under full steady state heat load conditions and in terms of maximal sustainable load. We also present transient response to pulse heat loads of varying duration and power and the system response to time-varying cold source temperatures.

  20. Micro-focused ultrasonic solid-liquid extraction (muFUSLE) combined with HPLC and fluorescence detection for PAHs determination in sediments: optimization and linking with the analytical minimalism concept.

    Science.gov (United States)

    Capelo, J L; Galesio, M M; Felisberto, G M; Vaz, C; Pessoa, J Costa

    2005-06-15

    Analytical minimalism is a concept that deals with the optimization of all stages of an analytical procedure so that it becomes less time, cost, sample, reagent and energy consuming. The guide-lines provided in the USEPA extraction method 3550B recommend the use of focused ultrasound (FU), i.e., probe sonication, for the solid-liquid extraction of Polycyclic Aromatic Hydrocarbons, PAHs, but ignore the principle of analytical minimalism. The problems related with the dead sonication zones, often present when high volumes are sonicated with probe, are also not addressed. In this work, we demonstrate that successful extraction and quantification of PAHs from sediments can be done with low sample mass (0.125g), low reagent volume (4ml), short sonication time (3min) and low sonication amplitude (40%). Two variables are here particularly taken into account for total extraction: (i) the design of the extraction vessel and (ii) the solvent used to carry out the extraction. Results showed PAHs recoveries (EPA priority list) ranged between 77 and 101%, accounting for more than 95% for most of the PAHs here studied, as compared with the values obtained after soxhlet extraction. Taking into account the results reported in this work we recommend a revision of the EPA guidelines for PAHs extraction from solid matrices with focused ultrasound, so that these match the analytical minimalism concept.

  1. Ultra-fast liquid chromatography with tandem mass spectrometry determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up.

    Science.gov (United States)

    Yang, Xihui; Hu, Yichen; Kong, Weijun; Chu, Xianfeng; Yang, Meihua; Zhao, Ming; Ouyang, Zhen

    2014-11-01

    A rapid, selective, and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was developed for the determination of ochratoxin A in traditional Chinese medicines based on vortex-assisted solid-liquid microextraction and aptamer-affinity column clean-up. Through optimizing the sample pretreatment procedures and chromatographic conditions, good linearity (r(2) ≥ 0.9993), low limit of detection (0.5-0.8 μg/kg), and satisfactory recovery (83.54-94.44%) expressed the good reliability and applicability of the established method in various traditional Chinese medicines. Moreover, the aptamer-affinity column, prepared in-house, showed an excellent feasibility owing to its specific identification of ochratoxin A in various kinds of selected traditional Chinese medicines. The maximum adsorption amount and applicability value were 188.96 ± 10.56 ng and 72.3%, respectively. The matrix effects were effectively eliminated, especially for m/z 404.2→358.0 of ochratoxin A. The application of the developed method for screening the natural contamination levels of ochratoxin A in 25 random traditional Chinese medicines on the market in China indicated that only eight samples were contaminated with low levels below the legal limit (5.0 μg/kg) set by the European Union. This study provided a preferred choice for the rapid and accurate monitoring of ochratoxin A in complex matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of perfluorinated alkyl acids in corn, popcorn and popcorn bags before and after cooking by focused ultrasound solid-liquid extraction, liquid chromatography and quadrupole-time of flight mass spectrometry.

    Science.gov (United States)

    Moreta, Cristina; Tena, María Teresa

    2014-08-15

    An analytical method is proposed to determine ten perfluorinated alkyl acids (PFAAs) [nine perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS)] in corn, popcorn and microwave popcorn packaging by focused ultrasound solid-liquid extraction (FUSLE) and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight mass spectrometry (QTOF-MS/MS). Selected PFAAs were extracted efficiently in only one 10-s cycle by FUSLE, a simple, safe and inexpensive technique. The developed method was validated for microwave popcorn bags matrix as well as corn and popcorn matrices in terms of linearity, matrix effect error, detection and quantification limits, repeatability and recovery values. The method showed good accuracy with recovery values around 100% except for the lowest chain length PFAAs, satisfactory reproducibility with RSDs under 16%, and sensitivity with limits of detection in the order of hundreds picograms per gram of sample (between 0.2 and 0.7ng/g). This method was also applied to the analysis of six microwave popcorn bags and the popcorn inside before and after cooking. PFCAs contents between 3.50ng/g and 750ng/g were found in bags, being PFHxA (perfluorohexanoic acid) the most abundant of them. However, no PFAAs were detected either corn or popcorn, therefore no migration was assumed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Auroral morphology

    International Nuclear Information System (INIS)

    Deehr, C.S.; Romick, G.J.; Sivjee, G.G.

    1981-01-01

    The aurora is a radiant manifestation of solar particle emissions and their control by intervening electromagnetic fields. The analogy with a television system was first made, we believe, by Elvey, (1958). The latest concepts of solar-terrestrial control are included in description by Akasofu (1979) showing the phosphor screen as the upper atmosphere with an auroral image produced by particles from a source on the sun, modulated by electric and magnetic fields with the magnetohydrodynamic (MDH) generator formed by electrons and protons from the solar wind across the geomagnetic tail as the power supply. Thus, the size and shape of the aurora must reflect all the forces acting in the auroral particles on their way from the sun to the earth. Auroral morphology, therefore, is the study of the occurence of aurora in space and time for the purpose of describing the origin of solar particels and the forces acting upon them between the time of their production on the sun and their loss in the atmosphere. The advantage of using the aurora as a television monitor of this process over any conceivable system of in situ measurements is obvious when one considers the large number of space vehicles which would be necessary to record the information concentrated in the auroral oval which differs in scale with the magnetosphere by perhaps 10 6 . (orig.)

  4. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Heat transfer on the liquid-liquid interface between molten core pool and coolant. JAERI's nuclear research promotion program, H10-027-6. Contract research

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Saito, Yasushi

    2002-03-01

    Heat transfer experiments under steady and transient conditions were performed using molten Wood's metal and distilled water to study heat transfer on the liquid-liquid interface between molten fuel pool and coolant under severe accident conditions. In the steady state experiment, boiling curve was measured over the range from natural convection region to film boiling region. The boiling behavior was observed using a high-speed video camera. In the transient experiment, distilled water was poured onto the hot molten metal surface, and the boiling curve was obtained in the cooling process. Comparing the measured boiling curve with existing correlations and experimental data for solid-liquid and liquid-liquid systems, the following conclusions were drawn: (a) When the interface surge is negligible and oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface could be approximately reproduced by the heat transfer correlations for nucleate boiling and film boiling regions and the critical heat flux correlation for a liquid-solid system. (b) When no oxide layer is formed on the interface, the boiling curve at the liquid-liquid surface moved towards higher wall superheat than that at the liquid-solid surface, as Novakovic et al. observed in their experiment using mercury. (c) Transient heat transfer coefficient for film boiling at the liquid-liquid surface was about 100% higher than that predicted by the heat transfer correlation for a solid-liquid system. (author)

  5. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces

    Science.gov (United States)

    Miranda, Paulo Barbeitas

    Surfactants are widely used to modify physical and chemical properties of interfaces. They play an important role in many technological problems. Surfactant monolayers are also of great scientific interest because they are two-dimensional systems that may exhibit a very rich phase transition behavior and can also be considered as a model system for biological interfaces. In this Thesis, we use a second-order nonlinear optical technique (Sum-Frequency Generation - SFG) to obtain vibrational spectra of surfactant monolayers at liquid/vapor and solid/liquid interfaces. The technique has several advantages: it is intrinsically surface-specific, can be applied to buried interfaces, has submonolayer sensitivity and is remarkably sensitive to the conformational order of surfactant monolayers. The first part of the Thesis is concerned with surfactant monolayers at the air/water interface (Langmuir films). Surface crystallization of an alcohol Langmuir film and of liquid alkanes are studied and their phase transition behaviors are found to be of different nature, although driven by similar intermolecular interactions. The effect of crystalline order of Langmuir monolayers on the interfacial water structure is also investigated. It is shown that water forms a well-ordered hydrogen-bonded network underneath an alcohol monolayer, in contrast to a fatty acid monolayer which induces a more disordered structure. In the latter case, ionization of the monolayer becomes more significant with increase of the water pH value, leading to an electric-field-induced ordering of interfacial water molecules. We also show that the orientation and conformation of fairly complicated molecules in a Langmuir monolayer can be completely mapped out using a combination of SFG and second harmonic generation (SHG). For a quantitative analysis of molecular orientation at an interface, local-field corrections must be included. The second part is a study of self-assembled surfactant monolayers at the

  6. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    electrolyte revealed a hexagonal, rotated adlayer structure, which was not reported before for this system. In comparison to other halide-metal(111) systems, the potential dependence of this structure suggests a strong adsorbate-adsorbate interaction. Operating under diffusion-limited conditions, i.e., at constant deposition rate, homoepitaxial growth of the Cu(001) single crystal electrode in chloride-containing solution has been investigated in situ for 1 and 5 mM Cu ion concentrations as a function of deposition overpotential. Detailed insight into the complex relationship between the atomic-scale structure of the solid-liquid interface, the growth behavior, and the resulting surface morphology was gained, revealing a pronounced mutual interaction of the Cu growth process and the Cl adlayer order. Depending on the latter, transitions from step-flow to layer-by-layer to 3D growth are observed, attributed to a reduction in the Cu surface mobility with increasing order. The kinetics of the c(2 x 2) adlayer ordering, in turn, are strongly affected during Cu deposition as compared to results obtained in Cu-free solution. Moreover, an oscillatory average strain in the surface layer is observed during layer-by-layer growth, indicating an expansion of the topmost layer occurring periodically for fractional coverages. Addition of polyethylene glycol (PEG), a commonly used inhibitor in the industrial damascene process, considerably changes the growth conditions. The chloride ordering kinetics are influenced such that the c(2 x 2) covered phase is stabilized in a widened potential regime. The onset of the transition to 3D growth is observed at more negative potentials, limiting the occurrence of layering oscillations to a narrower potential regime. Compared to the PEG-free electrolyte, the deposition rate is notably slowed down by a factor of approximately 3. The present study reports new direct experimental observations of the growth mechanisms at electrochemical interfaces on the

  7. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    hexagonal, rotated adlayer structure, which was not reported before for this system. In comparison to other halide-metal(111) systems, the potential dependence of this structure suggests a strong adsorbate-adsorbate interaction. Operating under diffusion-limited conditions, i.e., at constant deposition rate, homoepitaxial growth of the Cu(001) single crystal electrode in chloride-containing solution has been investigated in situ for 1 and 5 mM Cu ion concentrations as a function of deposition overpotential. Detailed insight into the complex relationship between the atomic-scale structure of the solid-liquid interface, the growth behavior, and the resulting surface morphology was gained, revealing a pronounced mutual interaction of the Cu growth process and the Cl adlayer order. Depending on the latter, transitions from step-flow to layer-by-layer to 3D growth are observed, attributed to a reduction in the Cu surface mobility with increasing order. The kinetics of the c(2 x 2) adlayer ordering, in turn, are strongly affected during Cu deposition as compared to results obtained in Cu-free solution. Moreover, an oscillatory average strain in the surface layer is observed during layer-by-layer growth, indicating an expansion of the topmost layer occurring periodically for fractional coverages. Addition of polyethylene glycol (PEG), a commonly used inhibitor in the industrial damascene process, considerably changes the growth conditions. The chloride ordering kinetics are influenced such that the c(2 x 2) covered phase is stabilized in a widened potential regime. The onset of the transition to 3D growth is observed at more negative potentials, limiting the occurrence of layering oscillations to a narrower potential regime. Compared to the PEG-free electrolyte, the deposition rate is notably slowed down by a factor of approximately 3. The present study reports new direct experimental observations of the growth mechanisms at electrochemical interfaces on the atomic-scale.

  8. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a solvent extraction and liquefaction plant (research and development of solid-liquid separation process); Sekitan ekika gijutsu no kenkyu kaihatsu, yozai chushutsu ekika plant no kaihatsu, koeki bunriho no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Among researches on solvent extraction and liquefaction technologies in the Sunshine Project in fiscal 1981, this paper describes the achievements in development of a solid-liquid separation technology. In the research of operation of a centrifugal separation device, a solid-liquid separation test was performed on slurry extracted from the Australian Wandoan coal being sub-bituminous coal. The deliming rate has reached 99% equilibrium at an addition rate of 20% by weight of anti-solvent (a kind of normal paraffin, which reduces solubility of part of coal extracts and enhances removal rates of ash and solids by utilizing coagulating action of the extracts). Asphaltene among the liquefaction formed materials may be recovered nearly completely, but the recovery rate for pre-asphaltene was lower. An operation test was also carried out by using slurry extracted in a 1 t/d experimental plant. In the study on operation of a 5-l/h continuous sedimentation and separation device, a maximum effect was derived with addition of anti-solvent at 25% by weight and at a stirring rate of 700 rpm. The solid-liquid separability changes depending on the kind of slurry. The low conversion rate slurry becomes difficult of separation because its viscosity is high and the difference in density between solids and liquid is small. Furthermore, the high conversion rate slurry has become difficult of separation due to small particle size of the solids. (NEDO)

  9. Morphology and fracture of enamel.

    Science.gov (United States)

    Myoung, Sangwon; Lee, James; Constantino, Paul; Lucas, Peter; Chai, Herzl; Lawn, Brian

    2009-08-25

    This study examines the inter-relation between enamel morphology and crack resistance by sectioning extracted human molars after loading to fracture. Cracks appear to initiate from tufts, hypocalcified defects at the enamel-dentin junction, and grow longitudinally around the enamel coat to produce failure. Microindentation corner cracks placed next to the tufts in the sections deflect along the tuft interfaces and occasionally penetrate into the adjacent enamel. Although they constitute weak interfaces, the tufts are nevertheless filled with organic matter, and appear to be stabilized against easy extension by self-healing, as well as by mutual stress-shielding and decussation, accounting at least in part for the capacity of tooth enamel to survive high functional forces.

  10. (Solid + liquid) phase diagram for (indomethacin + nicotinamide)-methanol or methanol/ethyl acetate mixture and solubility behavior of 1:1 (indomethacin + nicotinamide) co-crystal at T = (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Sun, Xiaowei; Yin, Qiuxiang; Ding, Suping; Shen, Zhiming; Bao, Ying; Gong, Junbo; Hou, Baohong; Hao, Hongxun; Wang, Yongli; Wang, Jingkang; Xie, Chuang

    2015-01-01

    Highlights: • Ternary phase diagrams of (IMC + NCT)-methanol or methanol/ethyl acetate mixture at T = (298.15 and 313.15) K were measured. • The effects of temperature and introduced ethyl acetate on solid phase stability were discussed. • Solubility of (IMC + NCT) cocrystals was first correlated using a model considering solubility product and complexation. • Solubility of (IMC + NCT) cocrystals as a function of co-former concentration was evaluated. - Abstract: (Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal

  11. Simultaneous determination of four trace estrogens in feces, leachate, tap and groundwater using solid-liquid extraction/auto solid-phase extraction and high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Liu, Na; Shi, Yue-e; Li, Mengyan; Zhang, Ting-di; Gao, Song

    2015-10-01

    A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) μg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa

    2012-09-15

    Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 μg/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Simultaneous multi-mycotoxin determination in nutmeg by ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection.

    Science.gov (United States)

    Kong, Wei-Jun; Liu, Shu-Yu; Qiu, Feng; Xiao, Xiao-He; Yang, Mei-Hua

    2013-05-07

    A simple and sensitive analytical method based on ultrasound-assisted solid-liquid extraction and immunoaffinity column clean-up coupled with high performance liquid chromatography and on-line post-column photochemical derivatization-fluorescence detection (USLE-IAC-HPLC-PCD-FLD) has been developed for simultaneous multi-mycotoxin determination of aflatoxins B1, B2, G1, G2 (AFB1, AFB2, AFG1, AFG2) and ochratoxin A (OTA) in 13 edible and medicinal nutmeg samples marketed in China. AFs and OTA were extracted from nutmeg samples by ultrasonication using a methanol : water (80 : 20, v/v) solution, followed by an IAC clean-up step. Different USL extraction conditions, pre-processing ways for nutmeg sample and clean-up columns for mycotoxins, as well as HPLC-PCD-FLD parameters (mobile phase, column temperature, elution procedure, excitation and emission wavelengths) were optimized. This method, which was appraised for analyzing nutmeg samples, showed satisfactory results with reference to limits of detection (LODs) (from 0.02 to 0.25 μg kg(-1)), limits of quantification (LOQs) (from 0.06 to 0.8 μg kg(-1)), linear ranges (up to 30 ng mL(-1) for AFB1, AFG1 and OTA and 9 ng mL(-1) for AFB2 and AFG2), intra- and inter-day variability (all application of developed method in nutmeg samples have elucidated that four samples were detected with contamination of AFs and one with OTA. AFB1 was the most frequently found mycotoxin in 30.8% of nutmeg samples at contamination levels of 0.73-16.31 μg kg(-1). At least two different mycotoxins were co-occurred in three samples, and three AFs were simultaneously detected in one sample.

  14. Close contacts at the interface: Experimental-computational synergies for solving complexity problems

    Science.gov (United States)

    Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem

    2018-02-01

    The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.

  15. Adsorption of surfactants and polymers at interfaces

    Science.gov (United States)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge

  16. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  17. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  18. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  19. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  20. A Visual Galaxy Classification Interface and its Classroom Application

    Science.gov (United States)

    Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H

    2014-06-01

    Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.

  1. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices.

    Science.gov (United States)

    Hemmati, Maryam; Rajabi, Maryam; Asghari, Alireza

    2017-11-17

    In this research work, two consecutive dispersive solid/liquid phase microextractions based on efficient extraction media were developed for the influential and clean pre-concentration of clonazepam and lorazepam from complicated bio-samples. The magnetism nature of the proposed nanoadsorbent proceeded the clean-up step conveniently and swiftly (∼5min), pursued by a further enrichment via a highly effective and rapid emulsification microextraction process (∼4min) based on a deep eutectic solvent (DES). Finally, the instrumental analysis step was practicable via high performance liquid chromatography-ultraviolet detection. The solid phase used was an adequate magnetic nanocomposite termed as polythiophene-sodium dodecyl benzene sulfonate/iron oxide (PTh-DBSNa/Fe 3 O 4 ), easily and cost-effectively prepared by the impressive co-precipitation method followed by the efficient in situ sonochemical oxidative polymerization approach. The identification techniques viz. FESEM, XRD, and EDX certified the supreme physico-chemical properties of this effective nanosorbent. Also the powerful liquid extraction agent, DES, based on bio-degradable choline chloride, possessed a high efficiency, tolerable safety, low cost, and facile and mild synthesis route. The parameters involved in this versatile hyphenated procedure, efficiently evaluated via the central composite design (CCD), showed that the best extraction conditions consisted of an initial pH value of 7.2, 17mg of the PTh-DBSNa/Fe 3 O 4 nanocomposite, 20 air-agitation cycles (first step), 245μL of methanol, 250μL of DES, 440μL of THF, and 8 air-agitation cycles (second step). Under the optimal conditions, the understudied drugs could be accurately determined in the wide linear dynamic ranges (LDRs) of 4.0-3000ngmL -1 and 2.0-2000ngmL -1 for clonazepam and lorazepam, respectively, with low limits of detection (LODs) ranged from 0.7 to 1.0ngmL -1 . The enrichment factor (EF) and percentage extraction recovery (%ER

  2. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 1,8-dinitronaphthalene and 1,5-dinitronaphthalene and N-methyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Xie, Yong; Du, Cunbin; Cong, Yang; Wang, Jian; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • SLE formed by 1,5 and/or 1,8-dinitronaphthalene and NMP was determined. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated and calculated using thermodynamic models. - Abstract: The solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone at (293.15–343.15) K and the mutual solubility of the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone mixture at (313.15, 328.15 and 343.15) K were determined experimentally using the isothermal saturation method under atmospheric pressure (101.2 kPa). The solubility of 1,8-dinitronaphthalene in N-methyl-2-pyrrolidone is larger than that of 1,5-dinitronaphthalene. Three isothermal ternary phase diagrams were built according to the measured mutual solubility data. In each ternary phase diagram, there were one co-saturated point, two boundary curves, and three crystalline regions. Two pure solids (pure 1,8-dinitronaphthalene and pure 1,5-dinitronaphthalene) were formed in the ternary system at a given temperature, which were identified by Schreinemaker’s method of wet residue and powder X-ray diffraction (PXRD) pattern. The crystallization region of 1,8-dinitronaphthalene was smaller than that of 1,5-dinitronaphthalene at each temperature. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone; and the NRTL and Wilson models were employed to correlate and calculate the mutual solubility for the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone system. The largest value of root-mean-square deviation (RMSD) was 20.34 × 10 −4 for the binary systems; and 7.38 × 10 −3 for ternary system. The calculated results via these models are all acceptable for the binary and ternary solid-liquid phase equilibrium.

  3. Simultaneous determination of a variety of endocrine disrupting compounds in carrot, lettuce and amended soil by means of focused ultrasonic solid-liquid extraction and dispersive solid-phase extraction as simplified clean-up strategy.

    Science.gov (United States)

    Mijangos, L; Bizkarguenaga, E; Prieto, A; Fernández, L A; Zuloaga, O

    2015-04-10

    The present study is focused on the development of an analytical method based on focused ultrasonic solid-liquid extraction (FUSLE) followed by dispersive solid-phase extraction (dSPE) clean-up and liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) optimised for the simultaneous analysis of certain endocrine disrupting compounds (EDCs), including alkylphenols (APs), bisphenol A (BPA), triclosan (TCS) and several hormones and sterols in vegetables (lettuce and carrot) and amended soil samples. Different variables affecting the chromatographic separation, the electrospray ionisation and mass spectrometric detection were optimised in order to improve the sensitivity of the separation and detection steps. Under the optimised extraction conditions (sonication of 5min at 33% of power with pulse times on of 0.8s and pulse times off of 0.2s in 10mL of n-hexane:acetone (30:70, v:v) mixture using an ice bath), different dSPE clean-up sorbents, such as Florisil, Envi-Carb, primary-secondary amine bonded silica (PSA) and C18, or combinations of them were evaluated for FUSLE extracts before LC-MS/MS. Apparent recoveries and precision in terms of relative standard deviation (RSDs %) of the method were determined at two different fortification levels (according to the matrix and the analyte) and values in the 70-130% and 2-27% ranges, respectively, were obtained for most of the target analytes and matrices. Matrix-matched calibration approach and the use of labelled standards as surrogates were needed for the properly quantification of most analytes and matrices. Method detection limits (MDLs), estimated with fortified samples, in the ranges of 0.1-100ng/g for carrot, 0.2-152ng/g for lettuce and 0.9-31ng/g for amended soil were obtained. The developed methodology was applied to the analysis of 11 EDCs in both real vegetable bought in a local market and in compost (from a local wastewater treatment plant, WWTP) amended soil samples. Copyright © 2015

  4. Brain–muscle interface

    Indian Academy of Sciences (India)

    2011-05-16

    May 16, 2011 ... Clipboard: Brain–muscle interface: The next-generation BMI. Radhika Rajan Neeraj Jain ... Keywords. Assistive devices; brain–machine interface; motor cortex; paralysis; spinal cord injury ... Journal of Biosciences | News ...

  5. Garbage collector interface

    OpenAIRE

    Ive, Anders; Blomdell, Anders; Ekman, Torbjörn; Henriksson, Roger; Nilsson, Anders; Nilsson, Klas; Robertz, Sven

    2002-01-01

    The purpose of the presented garbage collector interface is to provide a universal interface for many different implementations of garbage collectors. This is to simplify the integration and exchange of garbage collectors, but also to support incremental, non-conservative, and thread safe implementations. Due to the complexity of the interface, it is aimed at code generators and preprocessors. Experiences from ongoing implementations indicate that the garbage collector interface successfully ...

  6. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A

    1990-01-01

    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  7. Interface magnons. Magnetic superstructure

    International Nuclear Information System (INIS)

    Djafari-Rouhani, B.; Dobrzynski, L.

    1975-01-01

    The localized magnons at an interface between two Heisenberg ferromagnets are studied with a simple model. The effect of the coupling at the interface on the existence condition for the localized modes, the dispersion laws and the possible occurrence of magnetic superstructures due to soft modes are investigated. Finally a comparison is made with the similar results obtained for interface phonons [fr

  8. Water at Interfaces

    DEFF Research Database (Denmark)

    Björneholm, Olle; Hansen, Martin Hangaard; Hodgson, Andrew

    2016-01-01

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives...

  9. User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms; Myers, Brad A

    2008-01-01

    User Interfaces have been around as long as computers have existed, even well before the field of Human-Computer Interaction was established. Over the years, some papers on the history of Human-Computer Interaction and User Interfaces have appeared, primarily focusing on the graphical interface e...

  10. Graphical Interfaces for Simulation.

    Science.gov (United States)

    Hollan, J. D.; And Others

    This document presents a discussion of the development of a set of software tools to assist in the construction of interfaces to simulations and real-time systems. Presuppositions to the approach to interface design that was used are surveyed, the tools are described, and the conclusions drawn from these experiences in graphical interface design…

  11. Investigation of the dissolution of uranium dioxide in nitric media: a new approach aiming at understanding interface mechanisms

    International Nuclear Information System (INIS)

    Delwaulle, Celine

    2011-01-01

    This research thesis deals with the back-end cycle of the nuclear fuel by improving, modernizing and optimizing the processes used for all types of fuels which are to be re-processed. After a presentation of the industrial context and of the state of the art concerning dissolution kinetic data for uranium dioxide and mixed oxide, the author proposes a model which couples dissolution kinetics and hydrodynamics of a solid in presence of auto-catalytic species, in order to better understand phenomena occurring at the solid-liquid-gas interface. The next part reports dissolution experiments on a non-radioactive material (copper) and out of a nuclear environment. Then, the author identifies steps which are required to transpose this experiment within a nuclear environment. The first results obtained on uranium dioxide are discussed. Recommendations for further studies conclude the report

  12. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  13. Water at Interfaces.

    Science.gov (United States)

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding.

  14. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  15. Gross morphology betrays phylogeny

    DEFF Research Database (Denmark)

    Alström, Per; Fjeldså, Jon; Fregin, Silke

    2011-01-01

    .). Superficial morphological similarity to cisticolid warblers has previously clouded the species true relationship. Detailed morphology, such as facial bristles and claw and footpad structure, also supports a closer relationship to Cettiidae and some other non-cisticolid warblers....

  16. [Neotropical plant morphology].

    Science.gov (United States)

    Pérez-García, Blanca; Mendoza, Aniceto

    2002-01-01

    An analysis on plant morphology and the sources that are important to the morphologic interpretations is done. An additional analysis is presented on all published papers in this subject by the Revista de Biología Tropical since its foundation, as well as its contribution to the plant morphology development in the neotropics.

  17. Twinned feathery grains and related morphologies in aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S. [Compagnie de Produits Chimiques et Electrometallurgiques Pechiney, Centre de Recherches de Voreppe, 38 (France); Lab. de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne (Switzerland); Rappaz, M. [Lab. de Metallurgie Physique, Ecole Polytechnique Federale de Lausanne (Switzerland)

    2000-07-01

    Al-Cu, Al-Mg and Al-Si alloys without grain refiner addition have been directionally solidified under well-controlled thermal and convection conditions. For relatively high solidification rates, several changes in the dendrite growth morphology were observed. One of the most common structure that may appear under such conditions is called ''feathery grains'' : it was demonstrated recently that this lamellar structure is constituted of left angle 110 right angle dendrites whose trunks are cut through by {l_brace}111{r_brace} twin planes. These grains undergo a selection mechanism which is similar to that occurring for regular left angle 100 right angle dendritic grains. The transition between left angle 100 right angle and left angle 110 right angle dendrite forms is progressive and morphologies that develop arms in both type of crystallographic directions can be observed. Moreover, in the case of a 5182 Al-Mg alloy, regular left angle 110 right angle dendrites, without twins, could also be obtained. This dendritic growth along left angle 110 right angle crystallographic directions is supposed to be due to a change in the anisotropy of certain properties of the alloy, such as the solid/liquid interfacial energy and/or the atom attachment kinetics. The possibility of growth along other directions than the usual left angle 100 right angle was further demonstrated by the observation of dendrites developing in an Al-Cu-Mg solidified in a Bridgman device. In this case, left angle 112 right angle trunks form and progressively change their growth direction, thus showing curved shapes. (orig.)

  18. Imaging the hard/soft tissue interface.

    Science.gov (United States)

    Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M

    2014-03-01

    Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.

  19. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  20. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  1. User interface support

    Science.gov (United States)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  2. Complex Interfaces Under Change

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    The hydrosphere is dynamic across the major compartments of the Earth system: the atmosphere, the oceans and seas, the land surface water, and the groundwater within the strata below the two last compartments. The global geography of the hydrosphere essentially depends on thermodynamic and mechan...... these interfaces and interfaced compartments and processes. Climate, sea-level, oceanographic currents and hydrological processes are all affected, while anthropogenic changes are often intense in the geographic settings corresponding to such interfaces....... and mechanical processes that develop within this structure. Water-related processes at the interfaces between the compartments are complex, depending both on the interface itself, and on the characteristics of the interfaced compartments. Various aspects of global change directly or indirectly impact...

  3. Refinement by interface instantiation

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Hoang, Thai Son

    2012-01-01

    be easily refined. Our first contribution hence is a proposal for a new construct called interface that encapsulates the external variables, along with a mechanism for interface instantiation. Using the new construct and mechanism, external variables can be refined consistently. Our second contribution...... is an approach for verifying the correctness of Event-B extensions using the supporting Rodin tool. We illustrate our approach by proving the correctness of interface instantiation....

  4. Universal computer interfaces

    CERN Document Server

    Dheere, RFBM

    1988-01-01

    Presents a survey of the latest developments in the field of the universal computer interface, resulting from a study of the world patent literature. Illustrating the state of the art today, the book ranges from basic interface structure, through parameters and common characteristics, to the most important industrial bus realizations. Recent technical enhancements are also included, with special emphasis devoted to the universal interface adapter circuit. Comprehensively indexed.

  5. The Silica-Water Interface from the Analysis of Molecular Dynamic Simulations

    KAUST Repository

    Lardhi, Sheikha F.

    2013-05-01

    Surface chemistry is an emerging field that can give detailed insight about the elec- tronic properties and the interaction of complex material surfaces with their neigh- bors. This is for both solid-solid and solid-liquid interfaces. Among the latter class, the silica-water interface plays a major role in nature. Silica is among the most abundant materials on earth, as well in advanced technological applications such as catalysis and nanotechnology. This immediately indicates the relevance of a detailed understanding of the silica-water interface. In this study, we investigate the details of this interaction at microscopic level by analyzing trajectories obtained with ab initio molecular dynamic simulations. The system we consider consists of bulk liquid water confined between two β-cristobalite silica surfaces. The molecular dynamics were generated with the CP2K, an ab initio molecular dynamic simulation tool. The simulations are 25 picoseconds long, and the CP2K program was run on 64 cores on a supercomputer cluster. During the simulations the program integrates Newton’s equations of motion for the system and generates the trajectory for analysis. For analysis, we focused on the following properties that characterize the silica water interface. We calculated the density profile of the water layers from the silica surface, and we also calculated the radial distribution function (RDF) of the hydrogen bond at the silanols on the silica surface. The main focus of this thesis is to write the programs for calculating the atom density profile and the RDF from the generated MD trajectories. The atomic probability density profile shows that water is strongly adsorbed on the (001) cristobalite surface, while the RDF indicates differently ad- sorbed water molecules in the first adsorption layer. As final remark, the protocol and the tools developed in this thesis can be applied to the study of basically any crystal-water interface.

  6. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  7. Surface morphology of erbium silicide

    International Nuclear Information System (INIS)

    Lau, S.S.; Pai, C.S.; Wu, C.S.; Kuech, T.F.; Liu, B.X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology

  8. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  9. Some aspects of the solid - liquid transition; Quelques aspects de la transition solide-liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hicter, P [Ecole Nationale Superieure d' Electrochimie et d' Electrometallurgie, 38 - Grenoble (France); Malmejac, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-05-01

    Current theories of fusion are analysed and grouped by analogies using a unified symbolism to facilitate comparisons. Theories are presented based on solid state vibrational models nucleation models, order-disorder models, vacancies and dislocations. For each model the authors have separated out the hypotheses underlying the theoretical analysis and defined the essential parts of the theoretical development. Principal results are compared with experimental data.(authors) [French] Les theories de la fusion les plus courantes sont analysees et groupees par analogies; la symbolique a ete unifiee pour faciliter les comparaisons. Sont presentes les modeles derivant des theories harmoniques de l'etat solide, des theories communautaires, de la theorie de l'ordre-desordre ainsi que des modeles en lacunes et en dislocations. Les auteurs ont pour chaque modele, degage les hypotheses, limite a l'essentiel les developpements theoriques, et presente les resultats principaux, confrontes avec les valeurs experimentales. (auteurs)

  10. Interface, a dispersed architecture

    NARCIS (Netherlands)

    Vissers, C.A.

    1976-01-01

    Past and current specification techniques use timing diagrams and written text to describe the phenomenology of an interface. This paper treats an interface as the architecture of a number of processes, which are dispersed over the related system parts and the message path. This approach yields a

  11. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  12. Verden som interface

    DEFF Research Database (Denmark)

    2007-01-01

    Oversættelse af Peter Weibels tekst "The World as Interface" i Passepartout # 27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07......Oversættelse af Peter Weibels tekst "The World as Interface" i Passepartout # 27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07...

  13. Ecological Interface Design

    DEFF Research Database (Denmark)

    Vicente, Kim J.; Rasmussen, Jens

    1992-01-01

    A theoretical framework for designing interfaces for complex human-machine systems is proposed. The framework, called ecological interface design (EID), is based on the skills, rules, knowledge taxonomy of cognitive control. The basic goal of EID is twofold: first, not to force processing...

  14. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  15. Adaptive user interfaces

    CERN Document Server

    1990-01-01

    This book describes techniques for designing and building adaptive user interfaces developed in the large AID project undertaken by the contributors.Key Features* Describes one of the few large-scale adaptive interface projects in the world* Outlines the principles of adaptivity in human-computer interaction

  16. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  17. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective

    Science.gov (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2016-11-01

    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  18. Chemical and physical changes at sodium-stainless steel interfaces in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, C K [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.

    1977-01-01

    In the sodium loops of a fast reactor, mass transfer occurs due to the interaction of flowing sodium on stainless steel surfaces. Under the non-isothermal conditions prevailing in the loop some elements are preferentially leached from the surface layers of the hot zone and transported by sodium to the cooled zone where deposition may take place. The available information on the mass transport in non-isothermal sodium loops has been summarised, and an attempt has been made to understand the mechanisms involved, of which the chemical reactions at the sodium-stainless steel interface are especially important. The rate of diffusion towards the solid/liquid interface may be the rate-determining step in some of these reactions. When a ferritic surface layer is formed by the selective removal of austenitic stabilizing elements, diffusion of alloying constituents through the ferritic layer limits the growth of this layer. Only when the surface film is adherent, the diffusion across this layer becomes important. NaCrO/sub 2/, for instance, has poor adherence, and a surface film of this compound may not inhibit further corrosion.

  19. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.

    2000-12-01

    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  20. Kinetic and equilibrium aspects of adsorption and desorption of class II hydrophobins HFBI and HFBII at silicon oxynitride/water and air/water interfaces.

    Science.gov (United States)

    Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M

    2013-02-26

    Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.

  1. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  2. Operator interface for vehicles

    Science.gov (United States)

    Bissontz, Jay E

    2015-03-10

    A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.

  3. The interface effect

    CERN Document Server

    Galloway, Alexander R

    2013-01-01

    Interfaces are back, or perhaps they never left. The familiar Socratic conceit from the Phaedrus, of communication as the process of writing directly on the soul of the other, has returned to center stage in today's discussions of culture and media. Indeed Western thought has long construed media as a grand choice between two kinds of interfaces. Following the optimistic path, media seamlessly interface self and other in a transparent and immediate connection. But, following the pessimistic path, media are the obstacles to direct communion, disintegrating self and other into misunderstanding

  4. The computer graphics interface

    CERN Document Server

    Steinbrugge Chauveau, Karla; Niles Reed, Theodore; Shepherd, B

    2014-01-01

    The Computer Graphics Interface provides a concise discussion of computer graphics interface (CGI) standards. The title is comprised of seven chapters that cover the concepts of the CGI standard. Figures and examples are also included. The first chapter provides a general overview of CGI; this chapter covers graphics standards, functional specifications, and syntactic interfaces. Next, the book discusses the basic concepts of CGI, such as inquiry, profiles, and registration. The third chapter covers the CGI concepts and functions, while the fourth chapter deals with the concept of graphic obje

  5. Generalized Morphology using Sponges

    NARCIS (Netherlands)

    van de Gronde, Jasper J.; Roerdink, Jos B.T.M.

    2016-01-01

    Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological

  6. Extrinsic morphology of graphene

    International Nuclear Information System (INIS)

    Li, Teng

    2011-01-01

    Graphene is intrinsically non-flat and corrugates randomly. Since the corrugating physics of atomically thin graphene is strongly tied to its electronics properties, randomly corrugating morphology of graphene poses a significant challenge to its application in nanoelectronic devices for which precise (digital) control is the key. Recent studies revealed that the morphology of substrate-supported graphene is regulated by the graphene–substrate interaction, thus is distinct from the random intrinsic morphology of freestanding graphene. The regulated extrinsic morphology of graphene sheds light on new pathways to fine tune the properties of graphene. To guide further research to explore these fertile opportunities, this paper reviews recent progress on modeling and experimental studies of the extrinsic morphology of graphene under a wide range of external regulation, including two-dimensional and one-dimensional substrate surface features and one-dimensional and zero-dimensional nanoscale scaffolds (e.g. nanowires and nanoparticles)

  7. User interface development

    Science.gov (United States)

    Aggrawal, Bharat

    1994-01-01

    This viewgraph presentation describes the development of user interfaces for OS/2 versions of computer codes for the analysis of seals. Current status, new features, work in progress, and future plans are discussed.

  8. Natural gesture interfaces

    Science.gov (United States)

    Starodubtsev, Illya

    2017-09-01

    The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.

  9. Pattern formation at interfaces

    CERN Document Server

    Maier, Giulio; Nepomnyashchy, Alexander

    2010-01-01

    Applying modern nonlinear stability theory to problems of continuous media mechanics in the presence of interfaces, this text is relevant to materials science, chemical engineering, and heat transfer technologies, as well as to reaction-diffusion systems.

  10. Universal quantum interfaces

    International Nuclear Information System (INIS)

    Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.

    2004-01-01

    To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored

  11. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  12. Introduction to interfaces 3

    DEFF Research Database (Denmark)

    Mortensen, Lars Boje; Høgel, Christian; Borsa, Paolo

    2017-01-01

    The Editors introduce Issue No. 3 of Interfaces: A Journal of Medieval European Literatures, dedicated to "Rediscovery and Canonization: The Roman Classics in the Middle Ages," and offer a general overview of the matter and contents of the contributions.......The Editors introduce Issue No. 3 of Interfaces: A Journal of Medieval European Literatures, dedicated to "Rediscovery and Canonization: The Roman Classics in the Middle Ages," and offer a general overview of the matter and contents of the contributions....

  13. Energy level alignment and molecular conformation at rubrene/Ag interfaces: Impact of contact contaminations on the interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sumona, E-mail: sumona.net.09@gmail.com [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Wang, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Mukherjee, M. [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2017-07-01

    Highlights: • Impact of contact contaminations on the energy level alignment and molecular conformation at rubrene/Ag interfaces. • Adventitious contamination layer was acted as a spacer layer between Ag substrate surface and rubrene molecular layer. • Hole injection barrier height and interface dipole at rubrene/Ag interfaces depend on the cleanliness of Ag substrate. • Molecular conformation as well as orientation controlled by the cleanliness of Ag surface. • Resulted different surface morphology of rubrene thin films on unclean and clean Ag substrate. - Abstract: This paper addresses the impact of electrode contaminations on the interfacial energy level alignment, the molecular conformation, orientation and surface morphology deposited organic film at organic semiconductor/noble metal interfaces by varying of film thickness from sub-monolayer to multilayer, which currently draws significant attention with regard to its application in organic electronics. The UHV clean Ag and unclean Ag were employed as substrate whereas rubrene was used as an organic semiconducting material. The photoelectron spectroscopy (XPS and UPS) was engaged to investigate the evolution of interfacial energetics; polarization dependent near edge x-ray absorption fine structure spectroscopy (NEXAFS) was employed to understand the molecular conformation as well as orientation whereas atomic force microscopy (AFM) was used to investigate the surface morphologies of the films. The adventitious contamination layer was acted as a spacer layer between clean Ag substrate surface and rubrene molecular layer. As a consequence, hole injection barrier height, interface dipole as well as molecular-conformation, molecular-orientation and surface morphology of rubrene thin films were found to depend on the cleanliness of Ag substrate. The results have important inferences about the understanding of the impact of substrate contamination on the energy level alignment, the molecular conformation

  14. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  15. MER SPICE Interface

    Science.gov (United States)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  16. Lectures on random interfaces

    CERN Document Server

    Funaki, Tadahisa

    2016-01-01

    Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hyd...

  17. Touchfree medical interfaces.

    Science.gov (United States)

    Rossol, Nathaniel; Cheng, Irene; Rui Shen; Basu, Anup

    2014-01-01

    Real-time control of visual display systems via mid-air hand gestures offers many advantages over traditional interaction modalities. In medicine, for example, it allows a practitioner to adjust display values, e.g. contrast or zoom, on a medical visualization interface without the need to re-sterilize the interface. However, when users are holding a small tool (such as a pen, surgical needle, or computer stylus) the need to constantly put the tool down in order to make hand gesture interactions is not ideal. This work presents a novel interface that automatically adjusts for gesturing with hands and hand-held tools to precisely control medical displays. The novelty of our interface is that it uses a single set of gestures designed to be equally effective for fingers and hand-held tools without using markers. This type of interface was previously not feasible with low-resolution depth sensors such as Kinect, but is now achieved by using the recently released Leap Motion controller. Our interface is validated through a user study on a group of people given the task of adjusting parameters on a medical image.

  18. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  19. FABRICATION, MORPHOLOGICAL AND OPTOELECTRONIC ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... porous silicon has better optoelectronic properties than bulk .... Measurement: The morphological properties of PS layer such as nanocrystalline size, the .... excess carrier removal by internal recombination and diffusion.

  20. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  1. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-01

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  2. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-15

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  3. Morphological stability of Sm123 superconductor during peritectic solidification from Sm211 + L mixture

    International Nuclear Information System (INIS)

    Sumida, Masaki; Shiohara, Yuh; Umeda, Takateru

    2000-01-01

    The interface stability of the Sm 123 superconductor was analyzed in accordance with the constitutional undercooling criterion. As the single-crystal growth of the 123 phase is largely dependent on the growth-interface stability, a quantitative analysis was very much required. From this analysis, it was clarified that the constitutional undercooling must exist in the liquid when the 123 growth interface comes close to a 211 particle during the peritectic solidification. It was also predicted that the larger 211 particle radius, smaller volume fraction of the 211 particles, larger growth rate, or smaller imposed temperature gradient would cause easy occurrence of the constitutional undercooling ahead of the 123 growth interface. Taking into account the nucleation at the L/211 interface just ahead of the 123 growth front due to the constitutional undercooling, the transition of 123 growth from a planar-interface morphology to an equiaxed blocky morphology was investigated quantitatively and qualitatively

  4. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-11-01

    In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.

  5. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  6. User interface design considerations

    DEFF Research Database (Denmark)

    Andersen, Simon Engedal; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    and output variables. This feature requires special attention when designing the user interface and a special approach for controlling the user selection of input and output variables are developed. To obtain a consistent system description the different input variables are grouped corresponding......When designing a user interface for a simulation model there are several important issues to consider: Who is the target user group, and which a priori information can be expected. What questions do the users want answers to and what questions are answered using a specific model?When developing...... the user interface of EESCoolTools these issues led to a series of simulation tools each with a specific purpose and a carefully selected set of input and output variables. To allow a more wide range of questions to be answered by the same model, the user can change between different sets of input...

  7. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  8. High-bandwidth memory interface

    CERN Document Server

    Kim, Chulwoo; Song, Junyoung

    2014-01-01

    This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.   • Enables readers with minimal background in memory design to understand the basics of high-bandwidth memory interface design; • Presents state-of-the-art techniques for memory interface design; • Covers memory interface design at both the circuit level and system architecture level.

  9. An Approach to Interface Synthesis

    DEFF Research Database (Denmark)

    Madsen, Jan; Hald, Bjarne

    1995-01-01

    Presents a novel interface synthesis approach based on a one-sided interface description. Whereas most other approaches consider interface synthesis as optimizing a channel to existing client/server modules, we consider the interface synthesis as part of the client/server module synthesis (which...... may contain the re-use of existing modules). The interface synthesis approach describes the basic transformations needed to transform the server interface description into an interface description on the client side of the communication medium. The synthesis approach is illustrated through a point...

  10. Natural User Interfaces

    OpenAIRE

    Câmara , António

    2011-01-01

    Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra This project’s main subject are Natural User Interfaces. These interfaces’ main purpose is to allow the user to interact with computer systems in a more direct and natural way. The popularization of touch and gesture devices in the last few years has allowed for them to become increasingly common and today we are experiencing a transition of interface p...

  11. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  12. Virtual interface environment workstations

    Science.gov (United States)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  13. After Rigid Interfaces

    DEFF Research Database (Denmark)

    Troiano, Giovanni Maria

    (1) a user study with a prototype of an elastic, deformable display, and (2) a user study of deformable interfaces for performing music. The first study reports a guessability study with an elastic, deformable display where 17 participants suggested fitting gestures for 29 tasks, including navigation......, Transformation, Adaptation and Physicalization. In synthesis, the work presented in this thesis shows (1) implications of usefulness for deformable interfaces and how their new input modalities can redefine the way users interact with computers, and (2) how a systematic understanding of conventional design...

  14. Interface or Interlace?

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Wamberg, Jacob

    2005-01-01

    Departing from an analysis of the computer's indeterminate location between medium and machine, this paper problematises the idea of a clear-cut interface in complex computing, especially Augmented Reality. The idea and pratice of the interface is derived from the medium as a representational...... surface and thus demands the overview of an autonomous consciouness. Instead we introduce the term interlace, a mingling of representational and physical levels, thus describing the computer's ambiguous blending of imaginary and real. The proposition is demonstrated through analysis of different recent...

  15. CAMAC to GPIB interface

    International Nuclear Information System (INIS)

    Naivar, F.J.

    1978-01-01

    A CAMAC module developed at the Los Alamos Scientific Laboratory allows any device conforming to the GPIB standard to be connected to a CAMAC system. This module incorporates a microprocessor to control up to 14 GPIB-compatible instruments using a restricted set of CAMAC F-N-A commands. The marriage of a device-independent bus (IEEE Standard 488-1975) to a computer-independent bus (IEEE Standard 583-1975) provides a general method for interfacing a system of programmable instruments to any computer. This module is being used to interface a variety of interactive devices on a control console to a control computer

  16. Nonlinear optics at interfaces

    International Nuclear Information System (INIS)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

  17. Papers on Morphology. The Ohio State University Working Papers in Linguistics #29.

    Science.gov (United States)

    Zwicky, Arnold M., Ed.; Wallace, Rex E., Ed.

    A collection of papers on morphology in relation to other grammar components and on the morphology-syntax interface includes: "Locative Plural Forms in Classical Sanskrit" (Belinda Brodie); "On Explaining Morpheme Structure" (Donald G. Churma); "Lexical Relatedness, Head of a Word and the Misanalysis of Latin" (Brian D. Joseph and Rex E. Wallace);…

  18. Space as interface

    DEFF Research Database (Denmark)

    Lykke-Olesen, Andreas

    2006-01-01

    multiple projects spanning over fields such as tangible user interfaces, augmented reality, and mobile computing, a conceptual framework characterizing camera-based mixed interaction spaces is developed. To show the applicability of the framework, it is deployed on one of the presented cases and discussed...

  19. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  20. Photochemistry at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eisenthal, Kenneth B [Columbia Univ., New York, NY (United States)

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  1. Is the interface OK?

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    When a peripheral device fails, software methods can be initially resorted to before the usual hardware test procedures are used. A test program is presented here that allows various peripherals, inter-faced to a Norsk Data computer, to be tested...

  2. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.

    Science.gov (United States)

    Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo

    2015-04-07

    In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.

  3. Workflow User Interfaces Patterns

    Directory of Open Access Journals (Sweden)

    Jean Vanderdonckt

    2012-03-01

    Full Text Available Este trabajo presenta una colección de patrones de diseño de interfaces de usuario para sistemas de información para el flujo de trabajo; la colección incluye cuarenta y tres patrones clasificados en siete categorías identificados a partir de la lógica del ciclo de vida de la tarea sobre la base de la oferta y la asignación de tareas a los responsables de realizarlas (i. e. recursos humanos durante el flujo de trabajo. Cada patrón de la interfaz de usuario de flujo de trabajo (WUIP, por sus siglas en inglés se caracteriza por las propiedades expresadas en el lenguaje PLML para expresar patrones y complementado por otros atributos y modelos que se adjuntan a dicho modelo: la interfaz de usuario abstracta y el modelo de tareas correspondiente. Estos modelos se especifican en un lenguaje de descripción de interfaces de usuario. Todos los WUIPs se almacenan en una biblioteca y se pueden recuperar a través de un editor de flujo de trabajo que vincula a cada patrón de asignación de trabajo a su WUIP correspondiente.A collection of user interface design patterns for workflow information systems is presented that contains forty three resource patterns classified in seven categories. These categories and their corresponding patterns have been logically identified from the task life cycle based on offering and allocation operations. Each Workflow User Interface Pattern (WUIP is characterized by properties expressed in the PLML markup language for expressing patterns and augmented by additional attributes and models attached to the pattern: the abstract user interface and the corresponding task model. These models are specified in a User Interface Description Language. All WUIPs are stored in a library and can be retrieved within a workflow editor that links each workflow pattern to its corresponding WUIP, thus giving rise to a user interface for each workflow pattern.

  4. Atomic structures and compositions of internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, D.N. (Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering); Merkle, K.L. (Argonne National Lab., IL (United States))

    1992-03-01

    This research program addresses fundamental questions concerning the relationships between atomic structures and chemical compositions of metal/ceramic heterophase interfaces. The chemical composition profile across a Cu/MgO {l brace}111{r brace}-type heterophase interface, produced by the internal oxidation of a Cu(Mg) single phase alloy, is measured via atom-probe field-ion microscopy with a spatial resolution of 0.121 nm; this resolution is equal to the interplanar space of the {l brace}222{r brace} MgO planes. In particular, we demonstrate for the first time that the bonding across a Cu/MgO {l brace}111{r brace}-type heterophase interface, along a <111> direction common to both the Cu matrix and an MgO precipitate, has the sequence Cu{vert bar}O{vert bar}Mg{hor ellipsis} and not Cu{vert bar}Mg{vert bar}O{hor ellipsis}; this result is achieved without any deconvolution of the experimental data. Before determining this chemical sequence it was established, via high resolution electron microscopy, that the morphology of an MgO precipitate in a Cu matrix is an octahedron faceted on {l brace}111{r brace} planes with a cube-on-cube relationship between a precipitate and the matrix. First results are also presented for the Ni/Cr{sub 2}O{sub 4} interface; for this system selected area atom probe microscopy was used to analyze this interface; Cr{sub 2}O{sub 4} precipitates are located in a field-ion microscope tip and a precipitate is brought into the tip region via a highly controlled electropolishing technique.

  5. Morphology of PVD films

    International Nuclear Information System (INIS)

    Carr, M.J.; Grotzky, V.K.; Helms, C.J.; Johns, W.L.; Naimon, E.R.; Rafalski, A.L.; Smith, C.J.

    1982-01-01

    Experimental data show that the morphology of PVD chromium coatings is dependent on substrate temperature, deposition rate, and the oxygen content of the chromium source material. For chromium containing about 700-ppM oxygen, a variety of morphologies can form depending on substrate temperature and deposition rate. For chromium contaning 1000 to 2000 ppM of oxygen, porous coatings of the Type IV variety are produced over essentially the full range of temperatures and rates possible with current coating equipment. For chromium containing less than about 400 ppM of oxygen, dense coatings of the Type I variety are produced over the range of temperatures and rates investigated

  6. System-morphological approach: Another look at morphology research and geomorphological mapping

    Science.gov (United States)

    Lastochkin, Alexander N.; Zhirov, Andrey I.; Boltramovich, Sergei F.

    2018-02-01

    A large number of studies require a clear and unambiguous morphological basis. For over thirty years, Russian scientists have been applying a system-morphological approach for the Arctic and Antarctic research, ocean floor investigation, for various infrastructure construction projects (oil and gas, sports, etc.), in landscape and environmental studies. This article is a review aimed to introduce this methodological approach to the international scientific community. The details of the methods and techniques can be found in a series of earlier papers published in the Russian language in 1987-2016. The proposed system-morphological approach includes: 1) partitioning of the Earth surface, i.e. precise identification of linear, point, and areal elements of topography considered as a two-dimensional surface without any geological substance; 2) further identification of larger formations: geomorphological systems and regions; 3) analysis of structural relations and symmetry of topography; and 4) various dynamic (litho- and glaciodynamic, tectonic, etc.) interpretations of the observed morphology. This method can be used to study the morphology of the surface topography as well as less accessible interfaces such as submarine and subglacial ones.

  7. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  8. Easy-to-use interface

    International Nuclear Information System (INIS)

    Blattner, D O; Blattner, M M; Tong, Y.

    1999-01-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future

  9. FEM simulation study on relationship of interfacial morphology and residual stress in TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang Chen; Shengkai Gong; Huibin Xu [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    It is generally believed that the failure of TBCs is attributed to the spallation occurred in the ceramic coat. The spallation is closed linked with sinuate morphology factors, including its amplitude and period, at the TGO/bond coat interface. In this work, dependence of the residual stress distribution on the sinuate morphology in the TBCs has been studied by means of finite element method (FEM) simulation for isothermally annealed specimens. The simulation results indicated that the maximum value of residual stress existed inside the TGO layer. It was also found that the maximum residual stress occurred at different points, near the TGO/bond coat interface at the peak of the sinuate interface, while near the TGO/ceramic coat interface at the valley, respectively. And the maximum residual stress increased with increasing the ratio of the amplitude to period in the sine morphology, which has been proved by the thermal cycle experimental results. (orig.)

  10. Needlelike morphology of aspartame

    NARCIS (Netherlands)

    Cuppen, H.M.; van Eerd, A.R.T.; Meekes, H.L.M.

    2004-01-01

    The needlelike morphology of aspartame form II-A is studied by means of Monte Carlo simulations. Growth simulations for all F faces show merely three faces with a nucleation barrier for growth: two side faces and one top face. Calculations of the energies involved in the growth for a few

  11. Morphology at the Rijksherbarium

    NARCIS (Netherlands)

    Heel, van W.A.

    1979-01-01

    In the following the role of morphology, anatomy and palynology in systematics at the Rijksherbarium will be discussed, as far as flowering plants are concerned. It will be demonstrated that most of the research in this field is rooted in the interest of individual workers, and that no planning was

  12. Safety Parameters Graphical Interface

    International Nuclear Information System (INIS)

    Canamero, B.

    1998-01-01

    Nuclear power plant data are received at the Operations Center of the Consejo de Seguridad Nuclear in emergency situations. In order to achieve the required interface and to prepare those data to perform simulation and forecasting with already existing computer codes a Safety Parameters Graphical Interface (IGPS) has been developed. The system runs in a UNIX environment and use the Xwindows capabilities. The received data are stored in such a way that it can be easily used for further analysis and training activities. The system consists of task-oriented modules (processes) which communicate each other using well known UNIX mechanisms (signals, sockets and shared memory segments). IGPS conceptually have two different parts: Data collection and preparation, and Data monitorization. (Author)

  13. Politics at the interface

    DEFF Research Database (Denmark)

    Kannabiran, Gobinaath; Petersen, Marianne Graves

    2010-01-01

    At the birth of participatory design, there was a strong political consciousness surrounding the design of new technology, the design process in particular, establishing a rich set of methods and tools for user-centered design. Today, the term design has extended its scope of concern beyond...... the process of design and into how users interact with the designed product on a day-to-day basis. This paper is an attempt to call to attention the need for a new set of methods, attitudes and approaches, along with the existing, to discuss, analyze and reflect upon the politics at the interface....... By presenting a critical analysis of two design cases, we elicit the importance of such an agenda and the implications for design in doing so. We use the Foucauldian notion of power to analyze the power relationships in these two cases and to articulate the politics at the interface. We conclude by emphasizing...

  14. Urban Sound Interfaces

    DEFF Research Database (Denmark)

    Breinbjerg, Morten

    2012-01-01

    This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live. In this pa......This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live....... In this paper, three sound works are discussed in relation to the iPod, which is considered as a more private way to explore urban environments, and as a way to control the individual perception of urban spaces....

  15. The technical supervision interface

    CERN Document Server

    Sollander, P

    1998-01-01

    The Technical Control Room (TCR) is currently using 30 different applications for the remote supervision of the technical infrastructure at CERN. These applications have all been developed with the CERN made Uniform Man Machine Interface (UMMI) tools built in 1990. However, the visualization technology has evolved phenomenally since 1990, the Technical Data Server (TDS) has radically changed our control system architecture, and the standardization and the maintenance of the UMMI applications have become important issues as their number increases. The Technical Supervision Interface is intended to replace the UMMI and solve the above problems. Using a standard WWW-browser for the display, it will be inherently multi-platform and hence available for control room operators, equipment specialists and on-call personnel.

  16. Mass and charge transport in IPMC actuators with fractal interfaces

    Science.gov (United States)

    Chang, Longfei; Wu, Yucheng; Zhu, Zicai; Li, Heng

    2016-04-01

    Ionic Polymer-Metal Composite (IPMC) actuators have been attracting a growing interest in extensive applications, which consequently raises the demands on the accuracy of its theoretical modeling. For the last few years, rough landscape of the interface between the electrode and the ionic membrane of IPMC has been well-documented as one of the key elements to ensure a satisfied performance. However, in most of the available work, the interface morphology of IPMC was simplified with structural idealization, which lead to perplexity in the physical interpretation on its interface mechanism. In this paper, the quasi-random rough interface of IPMC was described with fractal dimension and scaling parameters. And the electro-chemical field was modeled by Poisson equation and a properly simplified Nernst-Planck equation set. Then, by simulation with Finite Element Method, a comprehensive analysis on he inner mass and charge transportation in IPMC actuators with different fractal interfaces was provided, which may be further adopted to instruct the performance-oriented interface design for ionic electro-active actuators. The results also verified that rough interface can impact the electrical and mechanical response of IPMC, not only from the respect of the real surface increase, but also from mass distribution difference caused by the complexity of the micro profile.

  17. Virtual button interface

    Science.gov (United States)

    Jones, J.S.

    1999-01-12

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  18. Noise at the Interface

    DEFF Research Database (Denmark)

    Prior, Andrew

    2011-01-01

    The notion of noise occupies a contested territory, in which it is framed as pollution and detritus even as it makes its opposite a possibility - noise is always defined in opposition to something else, even if this ‘other’ is not quite clear. This paper explores noise in the context of ‘the...... interface’ asking what its affordances as an idea may contribute to our understanding of interface. I draw historically on information theory in particular to initiate this exploration....

  19. Report on results of R and D of coal liquefaction technology under Sunshine Project in fiscal 1981. Development of direct hydro-liquefaction plant (research on liquefaction by bench scale equipment, and research on solid-liquid separation method); 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu, chokusetsu suiten ekika plant no kaihatsu seika hokokusho. Bench scale sochi ni yoru ekika kenkyu, koeki bunriho ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper explains the results of development of direct hydro-liquefaction plant under the Sunshine Project in fiscal 1981. As element studies for supplementing and supporting a 2.4 t/day PDU (process development unit), in the research using a 0.1 t/day bench scale continuous type equipment of fiscal 1981, a hydrogenation experiment was conducted for anthracene oil and also, an examination was made on the reaction conditions of Taiheiyo coal and Horonai coal, as well as on the catalyst and reaction ratio and on the product material distribution. A medium oil equalizing test was performed using Taiheiyo coal in order to obtain knowledge about equalized medium oil. Liquefaction characteristics in the preheating process and reaction process were elucidated by means of a semi-batch device. Comparative studies were made between domestic and overseas coals, in coal properties and liquefaction characteristics using a shaking type autoclave. The performance of iron-sulfur based catalysts was also examined. In the research on a solid-liquid separation method, the basic properties of coal liquefied crude oil were measured such as general properties, solid grading distribution and distillation characteristics, with the basic tests carried out for standing separation, filtrating separation and centrifuging separation, providing selected materials of the solid-liquid separation method suitable for the crude oil produced by the direct hydro-liquefaction method. In addition, studies were conducted on the use of residual oil generated by solid-liquid separation, providing knowledge of the viscosity and thermal cracking. (NEDO)

  20. Planning and User Interface Affordances

    National Research Council Canada - National Science Library

    St. Amant, Robert

    1999-01-01

    .... We identify a number of similarities between executing plans and interacting with a graphical user interface, and argue that affordances for planning environments apply equally well to user interface environments...

  1. Interface Input/Output Automata

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Nyman, Ulrik; Wasowski, Andrzej

    2006-01-01

    Building on the theory of interface automata by de Alfaro and Henzinger we design an interface language for Lynch’s I/O, a popular formalism used in the development of distributed asynchronous systems, not addressed by previous interface research. We introduce an explicit separation of assumptions...... a method for solving systems of relativized behavioral inequalities as used in our setup and draw a formal correspondence between our work and interface automata....

  2. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101 \\xAF 0) interface from a high-dimensional neural network potential

    Science.gov (United States)

    Quaranta, Vanessa; Hellström, Matti; Behler, Jörg; Kullgren, Jolla; Mitev, Pavlin D.; Hermansson, Kersti

    2018-06-01

    Unraveling the atomistic details of solid/liquid interfaces, e.g., by means of vibrational spectroscopy, is of vital importance in numerous applications, from electrochemistry to heterogeneous catalysis. Water-oxide interfaces represent a formidable challenge because a large variety of molecular and dissociated water species are present at the surface. Here, we present a comprehensive theoretical analysis of the anharmonic OH stretching vibrations at the water/ZnO(101 ¯ 0) interface as a prototypical case. Molecular dynamics simulations employing a reactive high-dimensional neural network potential based on density functional theory calculations have been used to sample the interfacial structures. In the second step, one-dimensional potential energy curves have been generated for a large number of configurations to solve the nuclear Schrödinger equation. We find that (i) the ZnO surface gives rise to OH frequency shifts up to a distance of about 4 Å from the surface; (ii) the spectrum contains a number of overlapping signals arising from different chemical species, with the frequencies decreasing in the order ν(adsorbed hydroxide) > ν(non-adsorbed water) > ν(surface hydroxide) > ν(adsorbed water); (iii) stretching frequencies are strongly influenced by the hydrogen bond pattern of these interfacial species. Finally, we have been able to identify substantial correlations between the stretching frequencies and hydrogen bond lengths for all species.

  3. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  4. Advances in clinical application of optical coherence tomography in vitreomacular interface disease

    Directory of Open Access Journals (Sweden)

    Xiao-Li Xing

    2013-08-01

    Full Text Available Vitreous macular interface disease mainly includes vitreomacular traction syndrome, idiopathic macular epiretinal membrane and idiopathic macular hole. Optical coherence tomography(OCTas a new tool that provides high resolution biopsy cross section image non traumatic imaging inspection, has a unique high resolution, no damage characteristics, and hence clinical widely used, vitreous macular interface for clinical disease diagnosis, differential diagnosis and condition monitoring and quantitative evaluation, treatment options, etc provides important information and reference value. Vitreous macular interface disease in OCT image of anatomical morphology characteristics, improve the clinical on disease occurrence and development of knowledge. We reviewed the advances in the application of OCT in vitreomacular interface disease.

  5. Morphology of leukaemias

    Directory of Open Access Journals (Sweden)

    W. Ladines-Castro

    2016-04-01

    Full Text Available Acute leukaemias are characterised by uncontrolled proliferation of immature blood cells with lymphoid or myeloid lineage. Morphological classification is based on the identification of the leukaemia cell line and its stage of differentiation. The first microscopic descriptions dating from the 1930s pointed to 2 different types of leukaemia cells: lymphoid and myeloid. In 1976, the consensus that led to the French-American-British (FAB classification was achieved. This includes criteria for identifying myeloid and lymphoid leukaemias, and gives a list of morphological subtypes, describing how these affect the patient's prognosis. Today, despite new classifications based on sophisticated studies, FAB classification is widely used by experts due to its technical simplicity, good diagnostic reliability and cost-effectiveness.

  6. NESSUS/NASTRAN Interface

    Science.gov (United States)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.

  7. Morphology targets: What do seedling morphological attributes tell us?

    Science.gov (United States)

    Jeremiah R. Pinto

    2011-01-01

    Morphology is classically defined as the form and structure of individual organisms, as distinct from their anatomy or physiology. We use morphological targets in the nursery because they are easy to measure, and because we can often quantitatively link seedling morphological traits with survival and growth performance in the field. In the 20 years since the Target...

  8. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  9. Magnons and interface magnetic substructures

    International Nuclear Information System (INIS)

    Djafari-Rouhani, B.; Dobrzynski, L.

    1975-01-01

    The localized magnons at an interface between two Heisenberg ferromagnets and the ferromagnetic stability at the interface are studied. The authors consider simple cubic crystals having the same lattice parameter and the same spin value in the fundamental state on each site, but different exchange integrals between first and second nearest neighbours. An interface by coupling two semi-infinite crystals having the same crystallographic surface is defined. The conditions for the existence of localized magnons at (001) interfaces as well as the dispersion curves of localized and resonant magnons in the high symmetry directions of the Brillouin zone are studied. The effect of the interface interactions on these modes is determined. It is shown that magnetic superstructures may exist at (110) interfaces. Such an instability is given by the existence of a soft localized mode at the interface [fr

  10. NESSUS/NASTRAN Interface

    Science.gov (United States)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS and NASTRAN computer codes were successfully integrated. The enhanced NESSUS code will use NASTRAN for the structural Analysis and NESSUS for the probabilistic analysis. Any quantities in the NASTRAN bulk data input can be random variables. Any NASTRAN result that is written to the output2 file can be returned to NESSUS as the finite element result. The interfacing between NESSUS and NASTRAN is handled automatically by NESSUS. NESSUS and NASTRAN can be run on different machines using the remote host option.

  11. Curriculum at the Interface

    DEFF Research Database (Denmark)

    This Symposium presents curriculum design and content issues in a Scandinavian business school at its Centenary. The aim is an exploration of an educational institution at the interface of the European Higher Education Area (EHEA) within the historical trends of the European Union. We hope...... of interdisciplinarity, use of text production as a tool in support of project and thesis writing, and the use of plurilingual content based teaching in a cooperative learning model for European studies. The history of one curriculum model initiated to educate better citizens, combining interdisciplinary methods...

  12. Virtual interface environment

    Science.gov (United States)

    Fisher, Scott S.

    1986-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed for use as a multipurpose interface environment. The system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, application scenarios, and research directions are described.

  13. Interfaces para control cerebral

    OpenAIRE

    Spinelli, Enrique Mario

    2000-01-01

    La función de una interfaz para control cerebral basada en señales de electroencefalograma (EEG), en forma general denominada BCI (Brain control Interface), es establecer un enlace directo entre el cerebro y una máquina, sin utilizar acciones motoras directas. Una BCI permite realizar operaciones simples a partir de la interpretación de las señales de EEG. Su desarrollo está principalmente orientado hacia la ayuda a personas con discapacidades motoras severas, que poseen deterioros en el sist...

  14. Brain-computer interface

    DEFF Research Database (Denmark)

    2014-01-01

    A computer-implemented method of providing an interface between a user and a processing unit, the method comprising : presenting one or more stimuli to a user, each stimulus varying at a respective stimulation frequency, each stimulation frequency being associated with a respective user......-selectable input; receiving at least one signal indicative of brain activity of the user; and determining, from the received signal, which of the one or more stimuli the user attends to and selecting the user-selectable input associated with the stimulation frequency of the determined stimuli as being a user...

  15. Superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Simanek, E.

    1979-01-01

    The increase of the superconducting transition temperature Tsub(c) due to the tunneling of conduction electrons into negative-u centers at a disordered metal-semiconductor interface is calculated. The strong dependence of the experimental increase of Tsub(c) on the Fermi energy of the metal is accounted for by the polaronic reduction of the tunneling matrix elements. The latter reduction is dynamically suppressed by the decreasing lifetime of the localized state as Esub(F) increases. The theoretical enhancement is sufficiently strong to explain the increase of Tsub(c) observed in eutectic alloys. (author)

  16. Portraying User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2008-01-01

    history. Next the paper analyses a selected sample of papers on UI history at large. The analysis shows that the current state-of-art is featured by three aspects: Firstly internalism, in that the papers adress the tech­nologies in their own right with little con­text­ualization, secondly whiggism...... in that they largely address prevailing UI techno­logies, and thirdly history from above in that they focus on the great deeds of the visionaries. The paper then compares this state-of-art in UI history to the much more mature fields history of computing and history of technology. Based hereon, some speculations......The user interface is coming of age. Papers adressing UI history have appeared in fair amounts in the last 25 years. Most of them address particular aspects such as an in­novative interface paradigm or the contribution of a visionary or a research lab. Contrasting this, papers addres­sing UI...

  17. Evidence for quantum interference in sams of arylethynylene thiolates in tunneling junctions with eutectic Ga-In (EGaIn) top-contacts : The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface

    NARCIS (Netherlands)

    Fracasso, Davide; Valkenier, Hennie; Hummelen, Jan C.; Solomon, Gemma C.; Chiechi, Ryan C.; Hong, Wenjing; Mészáros, Gábor; Zsolt Manrique, David; Mishchenko, Artem; Putz, Alexander; Moreno García, Pavel; Lambert, Colin J.; Wandlowski, Thomas; Ruitenbeek, J.M. van

    2011-01-01

    This paper compares the current density (J) versus applied bias (V) of self-assembled monolayers (SAMs) of three different ethynylthiophenol-functionalized anthracene derivatives of approximately the same thickness with linear-conjugation (AC), cross-conjugation (AQ), and broken-conjugation (AH)

  18. Solid/liquid phase change heat transfer in porous media. Effect of density inversion of water on melting process in a rectangular region; Takoshitsu sonai no ko-ekiso henka. Mizu no mitsudo gyakuten ga kukei ryoiki no yukai katei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sasaguchi, K [Kumamoto University, Kumamoto (Japan). Faculty of Engineering

    1994-12-25

    Solid/liquid phase change in porous media has a wide relation with freezing and melting of ground bed, storage of cold heat in soil, and underground heat exchangers. This paper describes an investigation on the effect of density inversion on melting of ice in porous media by using the previously reported numerical analysis method. The high-temperature side temperature and the Darcy number were varied and investigated systematically on the ice in a porous media sealed in a rectangular container of which right hand side is maintained at elevated temperatures and the other three sides are insulated of heat. As a result, a large number of findings were obtained including the following matters: when the Darcy number is fixed at 4.01 {times} 10{sup {minus}5} and the high-temperature side temperature, Tw, is varied, the fluid descends along the high-temperature side because of the density inversion at Tw=4{degree}C, and forms one weak circulation that rotates clockwise; however, when the temperature reaches 16{degree}C, the circulation disappears, and a circulation rotating counterclockwise is observed, becoming identical to the case of a fluid where there is no density inversion; and change in the Nusselt number against the melting ratio, R, is the smallest at Tw=8{degree}C, and decreases monotonously with the R. 15 refs., 12 figs.

  19. Multiple network interface core apparatus and method

    Science.gov (United States)

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  20. Applications of Computed Tomography to Evaluate Cellular Solid Interfaces

    Science.gov (United States)

    Maisano, Josephine; Marse, Daryl J.; Schilling, Paul J.

    2008-01-01

    The major morphological features - foam cells, voids, knit lines, and the bondline interface were evaluated. The features identified by micro-CT correlate well to those observed by SEM. 3D reconstructions yielded volumetric dimensions for large voids (max 30 mm). Internal voids and groupings of smaller cells at the bondline are concluded to be the cause of the indications noted during the NDE prescreening process.

  1. Interface characteristics of peeling-off damages of laser coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yun, E-mail: coating@siom.ac.cn; Yi, Kui; Guohang, Hu; Shao, Jianda

    2014-01-30

    Coating stacks of HfO{sub 2}/SiO{sub 2} and Ta{sub 2}O{sub 5}/SiO{sub 2} were separately prepared by electron beam evaporation and dual ion beam sputtering. Damage characteristics at the interlayer interfaces were analyzed after irradiation of the coatings by a 1064 nm laser. The cross-sectional morphologies of damage spots indicated that peeling-off damages always occurred at the interface where the low refractive index material (SiO{sub 2}) was deposited on the high refractive index material (HfO{sub 2} or Ta{sub 2}O{sub 5}). The effects of interface microstructure and components on peeling-off damages were also discussed. The microstructure of the interface was not a major factor that influenced peeling-off damages. Incomplete oxides (SiO{sub x}) and Na, K, Li ions accumulated near the interface and caused the formation of micro-defects layers with nano-sized thicknesses. Micro-defects layers maybe reduced adhesion of different interfaces and formed plasmas by absorbing laser energy. Finally stripping damages happened from micro-defects layers during irradiation by a 1064 nm laser.

  2. Morphological analysis of ionomers

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the progress made during the period of April 1st, 1989 and March 31st, 1990. Topics covered are: SANS of Telechelic Ionomers, SANS of Sulfonated Polyurethanes, Effect of Matrix Polarity and Ambient Aging on the Morphology of Sulfonated Polyurethane Ionomers, Adhesive Sphere Model for Analysis of SAXS Data from Ionomers, Comparison of Structure-Property Relationships in Carboxylated and Sulfonated Polyurethane Ionomers, Development of a Liquid-like Hard Sphere Model for Deformed Ionomer Samples, and Polymer Synthesis for Proposed Research

  3. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  4. Morphological modification of TiC by laser irradiation

    International Nuclear Information System (INIS)

    Baechli, A.; Blatter, A.

    1991-01-01

    The technique of laser quenching has been applied to TiC coatings on cemented carbide WC/Co material. In contrast to the original columnar morphology of TiC prepared by chemical vapour deposition, the laser-processed surface is isotropic and flat. With the proper parameters a smooth interface is formed and the TiC is alloyed to the substrate. The chemical composition as well as the beneficial tribological properties can be preserved. (orig.)

  5. Morphology of urethral tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Herzen, Julia; Mushkolaj, Shpend; Bormann, Therese; Beckmann, Felix; Püschel, Klaus

    2010-09-01

    Micro computed tomography has been developed to a powerful technique for the characterization of hard and soft human and animal tissues. Soft tissues including the urethra, however, are difficult to be analyzed, since the microstructures of interest exhibit X-ray absorption values very similar to the surroundings. Selective staining using highly absorbing species is a widely used approach, but associated with significant tissue modification. Alternatively, one can suitably embed the soft tissue, which requires the exchange of water. Therefore, the more recently developed phase contrast modes providing much better contrast of low X-ray absorbing species are especially accommodating in soft tissue characterization. The present communication deals with the morphological characterization of sheep, pig and human urethras on the micrometer scale taking advantage of micro computed tomography in absorption and phase contrast modes. The performance of grating-based tomography is demonstrated for freshly explanted male and female urethras in saline solution. The micro-morphology of the urethra is important to understand how the muscles close the urethra to reach continence. As the number of incontinent patients is steadily increasing, the function under static and, more important, under stress conditions has to be uncovered for the realization of artificial urinary sphincters, which needs sophisticated, biologically inspired concepts to become nature analogue.

  6. Urban Media and Interfaces

    DEFF Research Database (Denmark)

    2013-01-01

    For ten weeks in 2013, nineteen eclectic students from Anthropology, Ethnology and Design formed cross-disciplinary teams to research existing practices and possible futures in Blågården. Social media is radically changing how urban space is explored, experienced and communicated. For example...... for current and potential visitors as mentioned in the social housing plan for the area. On the other hand, the area's mixed ethnicity, colorful shops and cafes are valued by city tourists and other visitors who seek authentic experiences in local contexts. Against this background, Det Gode Naboskab......, Wonderful Copenhagen and Socialsquare jointly raise these questions: What is the role of social media as interface between the area around Blågårds Plads, its local communities and (potential) visitors, considering perspectives of security, control and planning? What are the challenges and opportunities...

  7. Embodiment and Interface

    DEFF Research Database (Denmark)

    Gregersen, Andreas Lindegaard; Grodal, Torben Kragh

    2008-01-01

    The article discusses – based on neurological and phenomenological theory - how the human embodiment supports and constrains the interaction between players and video games. It analyses embodied interaction with the specific hardware/software configuration of the Nintendo Wii and Wii Tennis as well...... as other game system configurations. The article argues that playing video games may provide experiences of extended embodiment where players may experience ownership of both actions and virtual bodies related to the represented game world. The article shows how ownership may be related to differences...... of the player as patient, i.e. being the object of another agent’s actions.  Keywords: Video games, embodiment, interface, agency, action, control, cognition  ...

  8. Porphyrins at interfaces

    Science.gov (United States)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.

    2015-02-01

    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  9. APST interfaces in LINCS

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.G.

    1995-07-01

    APST is an acronym for the four highest of the seven layers of the LINCS hierarchy of communication protocols: (from high to low) Application, Presentation, Session, and Transport. Routines in each but the lowest of these APST layers can utilize the facilities of any lower APST layer (normally, but not necessarily, the immediately next lower layer) by invoking various primitives (macros that in most cases are subroutine calls) defining the upper interface of the lower layer. So there are three APST interfaces: Presentation layer, used by the Application layer; Session layer, normally used by the Presentation layer; and Transport layer, normally used by the Session layer. Logically, each end of a stream (unidirectional sequence of transmitted information) is handled by three modules, one module each for the Presentation, Session, and Transport layers, and each of these modules deals with only that one end of that one stream. The internal workings of the layers, particularly the Transport layer, do not necessarily exhibit this same modularization; for example, the two oppositely directed streams between the same two ends (constituting an association) may interact within a layer. However, such interaction is an implementational detail of no direct interest to those utilizing the layer. The present document does not describe implementation, nor does it discuss in any detail how the modules employ packet headings and data formats to communicate with their partner modules at the other end of a stream. There being one logical module per end of stream is a characteristic only of the Presentation, Session, and Transport layers. An Application layer module usually manages several streams, orchestrating them to achieve some desired purpose. The modules of the layers (Network, Link, and Physical) below the APST layers each handle many streams, multiplexing them through the nodes and channels of the network to transmit them from their origins to their destinations.

  10. Extremal-point densities of interface fluctuations

    International Nuclear Information System (INIS)

    Toroczkai, Z.; Korniss, G.; Das Sarma, S.; Zia, R. K. P.

    2000-01-01

    We introduce and investigate the stochastic dynamics of the density of local extrema (minima and maxima) of nonequilibrium surface fluctuations. We give a number of analytic results for interface fluctuations described by linear Langevin equations, and for on-lattice, solid-on-solid surface-growth models. We show that, in spite of the nonuniversal character of the quantities studied, their behavior against the variation of the microscopic length scales can present generic features, characteristic of the macroscopic observables of the system. The quantities investigated here provide us with tools that give an unorthodox approach to the dynamics of surface morphologies: a statistical analysis from the short-wavelength end of the Fourier decomposition spectrum. In addition to surface-growth applications, our results can be used to solve the asymptotic scalability problem of massively parallel algorithms for discrete-event simulations, which are extensively used in Monte Carlo simulations on parallel architectures. (c) 2000 The American Physical Society

  11. Acid chat: gestural interface design

    OpenAIRE

    Gökhan, Ali Oytun; Gokhan, Ali Oytun

    2005-01-01

    AcidChat is an experimental design project that aims to create an innovative computer software interface for Internet chat software using today's well known technologies; Adobe Photoshop, Macromedia Freehand and digital photography. The aim of the project is to create new understandings of interface and it's usage, by adding new conceptions to chat based interfaces which creates a totally new look at the computer software and application. One of the key features is to add a gestural approach ...

  12. Phase transition of LB films of mixed diblock copolymer at the air/water interface

    Science.gov (United States)

    Seo, Y. S.; Kim, K. S.; Samuilov, V.; Rafailovich, M. H.; Sokolov, J.; Lammertink, Rob G. H.; Vancso, G. J.

    2000-03-01

    We have studied the morphology of Langmuir blodgett films at the air/water interface of mixed diblock copolymer films. Solutions of poly(styrene-b-ferrocenyldimethylsilane) and PS-b-P2VP mixed in a ratio of 20/80 in chloroform were spread at the air/water interface. The morphology of the films was studied with AFM as a function of the surface pressure and the diblock copolymer molecular weight. The results show that the two diblock copolymers can be induced to mix at the air/water interface with increasing surface pressure. A reversible transition from spherical to cylindrical morphologies is induced in the mixture which can not be observed in films formed of the two components separately. The effective surface phase diagram as a function of block copolymer composition and pressure will be presented.

  13. Playful User Interfaces. Interfaces that Invite Social and Physical Interaction.

    NARCIS (Netherlands)

    Nijholt, Antinus; Unknown, [Unknown

    2014-01-01

    This book is about user interfaces to applications that can be considered as ‘playful’. The interfaces to such applications should be ‘playful’ as well. The application should be fun, and interacting with such an application should, of course, be fun as well. Maybe more. Why not expect that the

  14. Configurations of NPD : production interfaces and interface integration mechanisms

    NARCIS (Netherlands)

    Smulders, F.E.H.M.; Boer, H.; Hansen, P.H.K.; Gubi, E.; Dorst, C.H.

    2002-01-01

    This paper describes and illustrates different configurations of the interface between new product development and production processes, including both intra–firm and inter–firm interfaces. These configurations are partly based on a process view of product innovation and partly on a structural view

  15. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    Science.gov (United States)

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  16. TEM characterization of invariant line interfaces and structural ledges in a Mo-Si alloy

    International Nuclear Information System (INIS)

    Xiao, S.Q.; Dahmen, U.; Maloy, S.A.; Heuer, A.H.

    1995-06-01

    Two distinct lath morphologies of Mo 5 Si 3 precipitates observed in MoSi 2 differ in their cross-sectional shape and lattice orientation. Type I laths exhibit a rectangular cross section, with interfaces parallel to low-index planes, while Type II laths are parallelogram-shaped, with their major interface at 13 degree to the Type I precipitate. The corresponding orientation relationships differ by a 1.8 degree rotation around the lath axis. In this study, the difference between the two characteristic morphologies and orientation relationships is shown to be the formation of an invariant line strain for Type II precipitates. On an atomic scale, both interfaces have a terrace and ledge structure but differ in the stacking sequence of interfacial ledges associated with partial dislocations. The structural unit model and the invariant line model predict identical interface geometries which agree closely with the observations

  17. Interfacial Effects on the Spherulitic Morphology of Isotactic Polystyrene Thin Films on Liquid Substrates

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2016-01-01

    Full Text Available The influence of interfaces on the morphology of flat spherulites of isotactic polystyrene (iPS grown in thin films on liquid substrates was investigated. Amorphous iPS thin films spin-cast from a solution were annealed for cold crystallization on glycerol and silicone oil (nonsolvents for iPS. The number density of grown spherulites was revealed to be higher on the glycerol substrate than on the silicone oil substrate. This implies that the primary nucleation rate of crystallization is greater at the iPS/glycerol interface than at the iPS/silicone oil interface. The results may be consistent with the previous findings that concern the molecular interaction between atactic polystyrene and nonsolvents at the interface. In some cases, holes were formed in the thin films during the cold crystallization due to dewetting, which also significantly affect the spherulite morphology via, for example, transcrystallization.

  18. Furthering interface design in services

    NARCIS (Netherlands)

    Secomandi, F.; Snelders, Dirk

    2010-01-01

    This paper critically discusses ideas from the book Interface: An Approach to Design (Bonsiepe 1999) as a springboard for thinking through the design and use of services. We introduce Bonsiepe’s take on phenomenological philosophy of technology in his conception of the user interface. Next to that,

  19. Human-machine interface upgrade

    International Nuclear Information System (INIS)

    Kropik, M.; Matejka, K.; Sklenka, L.; Chab, V.

    2002-01-01

    The article describes a new human-machine interface that was installed at the VR-1 training reactor. The human-machine interface upgrade was completed in the summer 2001. The interface was designed with respect to functional, ergonomic and aesthetic requirements. The interface is based on a personal computer equipped with two displays. One display enables alphanumeric communication between the reactor operator and the nuclear reactor I and C. The second display is a graphical one. It presents the status of the reactor, principal parameters (as power, period), control rods positions, course of the reactor power. Furthermore, it is possible to set parameters, to show the active core configuration, to perform reactivity calculations, etc. The software for the new human-machine interface was produced with the InTouch developing tool of the Wonder-Ware Company. It is possible to switch the language of the interface between Czech and English because of many foreign students and visitors to the reactor. Microcomputer based communication units with proper software were developed to connect the new human-machine interface with the present reactor I and C. The new human-machine interface at the VR-1 training reactor improves the comfort and safety of the reactor utilisation, facilitates experiments and training, and provides better support for foreign visitors. (orig.)

  20. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  1. GRAPHIC INTERFACES FOR ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ion PANA,

    2012-05-01

    Full Text Available Using effective the method of calculating Fitness for Service requires the achievement of graphical interfaces. This paper presents an example of such interfaces, made with Visual Basic program and used in the evaluation of pipelines in a research contract [4

  2. Preface (to Playful User Interfaces)

    NARCIS (Netherlands)

    Unknown, [Unknown; Nijholt, A.; Nijholt, Antinus

    2014-01-01

    This book is about user interfaces to applications that can be considered as ‘playful’. The interfaces to such applications should be ‘playful’ as well. The application should be fun, and interacting with such an application should, of course, be fun as well. Maybe more. Why not expect that the

  3. Overview of Graphical User Interfaces.

    Science.gov (United States)

    Hulser, Richard P.

    1993-01-01

    Discussion of graphical user interfaces for online public access catalogs (OPACs) covers the history of OPACs; OPAC front-end design, including examples from Indiana University and the University of Illinois; and planning and implementation of a user interface. (10 references) (EA)

  4. Playful Interfaces : Introduction and History

    NARCIS (Netherlands)

    Nijholt, Anton; Nijholt, A.

    2014-01-01

    In this short survey we have some historical notes about human-computer interface development with an emphasis on interface technology that has allowed us to design playful interactions with applications. The applications do not necessarily have to be entertainment applications. We can have playful

  5. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  6. Power User Interface

    Science.gov (United States)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Power User Interface 5.0 (PUI) is a system of middleware, written for expert users in the Earth-science community, PUI enables expedited ordering of data granules on the basis of specific granule-identifying information that the users already know or can assemble. PUI also enables expert users to perform quick searches for orderablegranule information for use in preparing orders. PUI 5.0 is available in two versions (note: PUI 6.0 has command-line mode only): a Web-based application program and a UNIX command-line- mode client program. Both versions include modules that perform data-granule-ordering functions in conjunction with external systems. The Web-based version works with Earth Observing System Clearing House (ECHO) metadata catalog and order-entry services and with an open-source order-service broker server component, called the Mercury Shopping Cart, that is provided separately by Oak Ridge National Laboratory through the Department of Energy. The command-line version works with the ECHO metadata and order-entry process service. Both versions of PUI ultimately use ECHO to process an order to be sent to a data provider. Ordered data are provided through means outside the PUI software system.

  7. Amino acids separation with the tetracarboxylic derived of the para-ter-butylcalix[4]arene by means of solid-liquid extraction assisted with lanthanides; Separacion de aminoacidos con el derivado tetracarboxilico del para-ter-butilcalix[4]areno mediante extraccion solido-liquido asistida con lantanidos

    Energy Technology Data Exchange (ETDEWEB)

    Bernal R, R. del C.

    2014-07-01

    The tetracarboxylic derived of the para-ter-butylcalix[4]arene (B{sub 4}ACEbL{sup 4}) does not exist commercially for what was synthesized and characterized at laboratory level. The separation of the L-tyrosine amino acid was studied by means of a solid-liquid extraction system with the B{sub 4}ACEbL{sup 4} as solid phase, in function of ph (2.5-7.5) and contact time (5 and 15 hours) to temperature of 15-17 grades C. Resulted that the ph and the contact time were decisive in the extraction percentage of water tyrosine. The lowest percentage was 49% to ph 4 and the highest percentage was 61% to ph 7.5 with 15 hours of contact. In a contact time of 5 hours the extraction was inferior to 32% (ph 4) and of 47% to ph 6.5. The europium effect (Eu (III)) was studied to ph acid in the tyrosine separation and was found that the tyrosine extraction is not increased neither decomposes in europium presence, this is simultaneously extracted by the calixarene but it does not enter in competition for the calixarene with the amino acid. The separate solid phases: calixarene-tyrosine was analyzed by Far infrared radiation (Fir), Mid-Infrared (Mir) spectroscopy and luminescence to check the tyrosine presence in the separate solids as well as the nature of the connection calixarene-tyrosine. In this way was possible to check the tyrosine presence and to propose the formed molecular species tyrosine-calixarene, those which interact mainly by means of hydrogen connections and Van der Waals forces. The liquid phases before and after the extraction were analyzed by UV-Vis spectrophotometry and luminescence. The Neutron activation analysis was used to determine the europium content in the solid and liquid phases of extractions in europium presence. The tyrosine degradation also shows dependence with the ph, obtaining 88% degradation to the 24 hours to ph 7.5, while to ph 3 is degraded the 54% of tyrosine present in the sample. The europium presence does not affect the tyrosine extraction

  8. DEMorphy, German Language Morphological Analyzer

    OpenAIRE

    Altinok, Duygu

    2018-01-01

    DEMorphy is a morphological analyzer for German. It is built onto large, compactified lexicons from German Morphological Dictionary. A guesser based on German declension suffixed is also provided. For German, we provided a state-of-art morphological analyzer. DEMorphy is implemented in Python with ease of usability and accompanying documentation. The package is suitable for both academic and commercial purposes wit a permissive licence.

  9. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films

    KAUST Repository

    Pokuri, Balaji Sesha Sarath

    2017-08-17

    Recent advances in efficiency of organic photovoltaics are driven by judicious selection of processing conditions that result in a “desired” morphology. An important theme of morphology research is quantifying the effect of processing conditions on morphology and relating it to device efficiency. State-of-the-art morphology quantification methods provide film-averaged or 2D-projected features that only indirectly correlate with performance, making causal reasoning nontrivial. Accessing the 3D distribution of material, however, provides a means of directly mapping processing to performance. In this paper, two recently developed techniques are integrated—reconstruction of 3D morphology and subsequent conversion into intuitive morphology descriptors —to comprehensively image and quantify morphology. These techniques are applied on films generated by doctor blading and spin coating, additionally investigating the effect of thermal annealing. It is found that morphology of all samples exhibits very high connectivity to electrodes. Not surprisingly, thermal annealing consistently increases the average domain size in the samples, aiding exciton generation. Furthermore, annealing also improves the balance of interfaces, enhancing exciton dissociation. A comparison of morphology descriptors impacting each stage of photophysics (exciton generation, dissociation, and charge transport) reveals that spin-annealed sample exhibits superior morphology-based performance indicators. This suggests substantial room for improvement of blade-based methods (process optimization) for morphology tuning to enhance performance of large area devices.

  10. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K

    International Nuclear Information System (INIS)

    Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min

    2016-01-01

    Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.

  11. Influence of the preparation method on the morphology of templated NiCo{sub 2}O{sub 4} spinel

    Energy Technology Data Exchange (ETDEWEB)

    Cabo, Moises; Pellicer, Eva, E-mail: eva.pellicer.icn@uab.cat; Rossinyol, Emma; Solsona, Pau [Universitat Autonoma de Barcelona, Departament de Fisica, Facultat de Ciencies (Spain); Castell, Onofre [Universitat Autonoma de Barcelona, Servei de Microscopia, Facultat de Ciencies (Spain); Surinach, Santiago; Baro, Maria Dolors [Universitat Autonoma de Barcelona, Departament de Fisica, Facultat de Ciencies (Spain)

    2011-09-15

    The synthesis of NiCo{sub 2}O{sub 4} spinel by several nanocasting strategies (i.e., multi-step nanocasting, one-step nanocasting and soft-templating), in which nickel and cobalt nitrates are used as precursors and Pluronic P123 as surfactant, is explored. First, in the multi-step nanocasting, the effect of the impregnation method (evaporation, solid-liquid and two-solvent) of the SBA-15 silica template on the morphology of NiCo{sub 2}O{sub 4} replica is investigated. The evaporation method seems to be the best choice to obtain mesoporous NiCo{sub 2}O{sub 4} powder which, after calcination at 375 Degree-Sign C and subsequent template removal, displays the highest surface area (93.1 m{sup 2}/g). We have also checked the feasibility of the one-step nanoscating approach for the synthesis of ordered NiCo{sub 2}O{sub 4} arrays, though this methodology entails severe difficulties, mainly related to the different decomposition temperature of the nitrate precursors and the P123 surfactant. Finally, randomly oriented, aggregated NiCo{sub 2}O{sub 4} nanoparticles are obtained by means of P123 surfactant-assisted soft-templating approach.

  12. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kobayashi, Kei [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8520 (Japan)

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  13. Physico-chemical laws governing solid-liquid interaction

    International Nuclear Information System (INIS)

    Schweich, D.

    1984-01-01

    Physico-chemical interactions between solutes in the aqueous phase and a natural solid are described in terms of four types of mechanisms: linear or non-linear adsorption, ion-exchange, precipitation/dissolution, and chemical reaction. Emphasis is placed on the qualitative differences in behaviour implicit in these mechanisms, attention being drawn to the respective roles of thermodynamics and kinetics. On the quantitative plane, simple theoretical models (and ones that can be used) are presented in parallel to experimental protocols necessary for measuring the interaction parameters. It is pointed out, in particular, that the concept of the distribution coefficient (Ksub(d)) is only an empirical approach to problems which could easily be 'debunked' by means of more realistic, yet at the same time simple, models. (author)

  14. Enhanced electroforced sedimentation of various solid- liquid systems

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Application of electric field, to enhance the separation, is one of the techniques .... the material; Ce the modified consolidation coefficient and θ time. ... sedimentation of thick clay suspensions in consolidation region. Chemical ...

  15. Dynamic data evaluation for solid-liquid equilibria

    DEFF Research Database (Denmark)

    Cunico, Larissa; Ceriani, Roberta; Kang, Jeong Won

    The accuracy and reliability of the measured data sets to be used in regression of model parameters is an important issue related to modeling of phase equilibria. It is clear that good parameters for any model cannot be obtained from low quality data. A thermodynamic consistency test for solid...... and parameter regression. The paper will highlight the data collection, the data analysis for SLE data and the thermodynamic model performance (such as NRTL, UNIQUAC and original UNIFAC)....... studies considering the methodology proposed for SLE thermodynamic consistency tests and data from open literature and databases such as NIST-TDE®, DIPPR® and DECHEMA® are presented. The SLE consistency test and data evaluation is performed in a software containing option for data analysis, model analysis...

  16. Enhanced electroforced sedimentation of various solid- liquid systems

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... liquid systems. Mohammed S. Jami1* ... significant challenges in wastewater management. ... environmental sludge and biosolids, thereby reducing the volumes to be disposed through landfills, incineration or other means.

  17. UKAEA contract no. 3: miscellaneous solid, liquid and gaseous wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-12-01

    This document reports work carried out in 1982/83 on the following topics concerned with the treatment and disposal of intermediate level wastes: flowsheeting; dewatering low and medium level radioactive wastes; applications of ultrafiltration in the treatment of radioactive liquid wastes; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; chemical conversion of Zircaloy cladding to oxide; fast reactor fuel element cladding; dissolver residues; fuel cladding and ion exchanger immobilisation - radioactive trials; thermal techniques; development and assessment of medium level waste forms. (U.K.)

  18. Insight into solid-liquid phase transfer catalyzed synthesis of ...

    Indian Academy of Sciences (India)

    Ganapati D Yadav

    2017-11-16

    Nov 16, 2017 ... Mecoprop ester using K2CO3 as base and development of new kinetic model ... acid family.1 Several salts and esters of Mecoprop are used as active ..... Influence of mass transfer was determined by varying the stirring speed ...

  19. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  20. Playful user interfaces interfaces that invite social and physical interaction

    CERN Document Server

    2014-01-01

    The book is about user interfaces to applications that have been designed for social and physical interaction. The interfaces are ‘playful’, that is, users feel challenged to engage in social and physical interaction because that will be fun. The topics that will be present in this book are interactive playgrounds, urban games using mobiles, sensor-equipped environments for playing, child-computer interaction, tangible game interfaces, interactive tabletop technology and applications, full-body interaction, exertion games, persuasion, engagement, evaluation, and user experience. Readers of the book will not only get a survey of state-of-the-art research in these areas, but the chapters in this book will also provide a vision of the future where playful interfaces will be ubiquitous, that is, present and integrated in home, office, recreational, sports and urban environments, emphasizing that in the future in these environments game elements will be integrated and welcomed.

  1. Through the Interface - a human activity approach to user interfaces

    DEFF Research Database (Denmark)

    Bødker, Susanne

    In providing a theoretical framework for understanding human- computer interaction as well as design of user interfaces, this book combines elements of anthropology, psychology, cognitive science, software engineering, and computer science. The framework examines the everyday work practices of us...

  2. Practical speech user interface design

    CERN Document Server

    Lewis, James R

    2010-01-01

    Although speech is the most natural form of communication between humans, most people find using speech to communicate with machines anything but natural. Drawing from psychology, human-computer interaction, linguistics, and communication theory, Practical Speech User Interface Design provides a comprehensive yet concise survey of practical speech user interface (SUI) design. It offers practice-based and research-based guidance on how to design effective, efficient, and pleasant speech applications that people can really use. Focusing on the design of speech user interfaces for IVR application

  3. Designing end-user interfaces

    CERN Document Server

    Heaton, N

    1988-01-01

    Designing End-User Interfaces: State of the Art Report focuses on the field of human/computer interaction (HCI) that reviews the design of end-user interfaces.This compilation is divided into two parts. Part I examines specific aspects of the problem in HCI that range from basic definitions of the problem, evaluation of how to look at the problem domain, and fundamental work aimed at introducing human factors into all aspects of the design cycle. Part II consists of six main topics-definition of the problem, psychological and social factors, principles of interface design, computer intelligenc

  4. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  5. Molecular characterization of composite interfaces

    International Nuclear Information System (INIS)

    Ishida, H.

    1982-01-01

    The Fourier Transform Infrared Spectroscopy was applied to elucidate the molecular structures of the glass/matrix interface. The various interfaces and interphases were studied. It is found that the structure of the silane in a treating solution is important in determining the structure of the silane on glass fibers, influences the macroscopic properties of composites. The amount of silane on glass fibers, the state of hydrogen bonding, orientation, copolymerization of the organicfunctionality with the matrix, curing of the silane, and effect of water on the interface were investigated. It is shown that the molecular approach is useful to interpret and predict physicomechanical properties of composites

  6. Search-User Interface Design

    CERN Document Server

    Wilson, Max

    2011-01-01

    Search User Interfaces (SUIs) represent the gateway between people who have a task to complete, and the repositories of information and data stored around the world. Not surprisingly, therefore, there are many communities who have a vested interest in the way SUIs are designed. There are people who study how humans search for information, and people who study how humans use computers. There are people who study good user interface design, and people who design aesthetically pleasing user interfaces. There are also people who curate and manage valuable information resources, and people who desi

  7. The molecule-metal interface

    CERN Document Server

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  8. VMEbus interface for spectroscopy ADCs

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, M.

    1987-01-01

    A high performance VMEbus interface for spectroscopy ADCs and other similar devices used in nuclear spectroscopy coincidence experiments has been developed. This new module can be used to interface existing spectroscopy ADCs with fast parallel data transfer into the industry standard multiprocessor VMEbus. The unit provides a fast direct readout of the ADC data into the VMEbus memory. The interface also has built-in capabilities that enable it to be used in coincidence experiments for slow data timing and ADC pattern recognition. (orig.)

  9. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  10. Morphology of open bite.

    Science.gov (United States)

    Krey, Karl-Friedrich; Dannhauer, Karl-Heinz; Hierl, Thomas

    2015-05-01

    The purpose of this work was to define and illustrate the skeletal morphology of open-bite patients against the background of sagittal jaw relationships on the basis of lateral cephalograms. Lateral cephalograms of 197 untreated adults were analyzed in dental imaging software (Onyx Ceph 3™; Image Instruments, Chemnitz, Germany). Four groups were formed based on vertical (Index scores) and sagittal (individualized ANB values) parameters. Ninety-nine patients were defined as the control group due to their neutral sagittal and vertical relationships. The remaining patients were found by their vertical relationships to represent open-bite cases and were divided by their sagittal relationships into three study groups: neutral (Class I, n = 34), distal (Class II, n = 26), and mesial (Class III, n = 38). A geometric morphometric approach was used to analyze the x,y-coordinates of 28 skeletal landmarks on each cephalogram. Relative size was captured based on centroid size (CS). The shape-determining factors in the groups were compared by permutation testing after Procrustes transformation, and intergroup differences were visualized in the form of thin-plate splines. While size (CS) was significantly increased in the Class III group, the other two groups were not different from the control group. After Procrustes transformation, characteristic and invariably significant (p common that the mandibular ramus is compressed, but marked differences are seen in terms of vertical development of the maxilla. This differentiated view of open-bite cases should be taken into consideration during individual etiology assessment and treatment planning.

  11. Interface-mediated amorphization of coesite by 200 keV electron irradiation

    International Nuclear Information System (INIS)

    Gong, W.L.; Wang, L.M.; Ewing, R.C.; Xie, H.S.

    1997-01-01

    Electron-induced amorphization of coesite was studied as a function of irradiation temperature by in situ transmission electron microscopy at an incident energy of 200 keV. Electron-induced amorphization of coesite is induced by an ionization mechanism and is mainly dominated by an interface-mediated, heterogeneous nucleation-and-growth controlled process. Amorphous domains nucleate at surfaces, crystalline-amorphous (c-a) interfaces, and grain boundaries. This is the same process as the interface-mediated vitrification of coesite by isothermal annealing above the thermodynamic melting temperature (875 K), but below the glass transition temperature (1480 K). The interface-mediated amorphization of coesite by electron irradiation is morphologically similar to interface-mediated thermodynamic melting. copyright 1997 American Institute of Physics

  12. Influence of nanocrystal growth kinetics on interface roughness in nickel-aluminum multilayers

    International Nuclear Information System (INIS)

    Aurongzeb, D.; Holtz, M.; Daugherty, M.; Berg, J.M.; Chandolu, A.; Yun, J.; Temkin, H.

    2003-01-01

    We study the layer morphology of Ni/Al multilayer structures, with 50 nm period, as deposited and following 10 min anneals up through the melting temperature of Al. X-ray reflectivity measurement of the as-deposited film shows interference fringes, characteristic of a well-defined multilayer stack, with ∼1 nm interface roughness. Over a narrow anneal range of 360-500 deg. C these fringes diminish in amplitude and disappear, indicating elevated interface roughening. However, fringes are observed for anneal temperatures both below and above this range, indicating the presence of well-defined layers with smooth interfaces. A model, in which nanocrystal domains of intermetallic nickel aluminides form at the interfaces, is developed to quantify the annealing induced interface roughness. This model agrees well with the experimental results

  13. The HEASARC graphical user interface

    Science.gov (United States)

    White, N.; Barrett, P.; Jacobs, P.; Oneel, B.

    1992-01-01

    An OSF/Motif-based graphical user interface has been developed to facilitate the use of the database and data analysis software packages available from the High Energy Astrophysics Science Archive Research Center (HEASARC). It can also be used as an interface to other, similar, routines. A small number of tables are constructed to specify the possible commands and command parameters for a given set of analysis routines. These tables can be modified by a designer to affect the appearance of the interface screens. They can also be dynamically changed in response to parameter adjustments made while the underlying program is running. Additionally, a communication protocol has been designed so that the interface can operate locally or across a network. It is intended that this software be able to run on a variety of workstations and X terminals.

  14. Implantable Neural Interfaces for Sharks

    Science.gov (United States)

    2007-05-01

    technology for recording and stimulating from the auditory and olfactory sensory nervous systems of the awake, swimming nurse shark , G. cirratum (Figures...overlay of the central nervous system of the nurse shark on a horizontal MR image. Implantable Neural Interfaces for Sharks ...Neural Interfaces for Characterizing Population Responses to Odorants and Electrical Stimuli in the Nurse Shark , Ginglymostoma cirratum.” AChemS Abs

  15. Flippable User Interfaces for Internationalization

    OpenAIRE

    Khaddam, Iyad; Vanderdonckt, Jean; 3rd ACM Symposium on Engineering Interactive Computing Systems EICS’2011

    2011-01-01

    The language reading direction is probably one of the most determinant factors influencing the successful internationalization of graphical user interfaces, beyond their mere translation. Western languages are read from left to right and top to bottom, while Arabic languages and Hebrew are read from right to left and top to bottom, and Oriental languages are read from top to bottom. In order to address this challenge, we introduce flippable user interfaces that enable the end user to change t...

  16. Interface of Chemistry and Biology

    OpenAIRE

    I. Kira Astakhova

    2013-01-01

    Many exciting research studies in Science today lie at the interface between various disciplines. The interface between Chemistry and Biology is particularly rich, since it closely reflects Nature and the origins of Life. Multiple research groups in the Chemistry Departments around the world have made substantial efforts to interweave ideas from Chemistry and Biology to solve important questions related to material science and healthcare, just to name a few. International Journal of Bioorgani...

  17. Fluid mechanics of environmental interfaces

    CERN Document Server

    Gualtieri, Carlo

    2008-01-01

    Fluid Mechanics of Environmental Interfaces describes the concept of the environmental interface, defined as a surface between two either abiotic or biotic systems. These are in relative motion and exchange mass, heat and momentum through biophysical and/or chemical processes. These processes are fluctuating temporally and spatially.The book will be of interest to graduate students, PhD students as well as researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.

  18. Optoelectronics Interfaces for Power Converters

    Directory of Open Access Journals (Sweden)

    Ovidiu Neamtu

    2009-05-01

    Full Text Available The most important issue interface is galvanicseparation between the signal part and the power board.Standards in the field have increased continuouslyelectro-security requirements on the rigidity of thedielectric and insulation resistance. Recommendations forclassical solutions require the use of galvanic separationoptoelectronics devices. Interfacing with a PC or DSP -controller is a target of interposition optical signals viathe power hardware commands.

  19. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  20. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt