WorldWideScience

Sample records for solid resin catalyst

  1. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  2. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  3. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    Science.gov (United States)

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  5. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  6. Modified resins for solid-phase extraction

    Science.gov (United States)

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  7. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  8. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  9. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  10. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  11. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Science.gov (United States)

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  13. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  14. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  15. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  16. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  17. Design of porous nanostructured solid catalysts

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar

    cells, as a mean to transform chemical as the main technique explained. The chapter will also cover degradation mechanisms of the catalyst employed in PEMFC, such as carbon corrosion and particle agglomeration. Strategies on how to increase resistance towards these degradation mechanisms...

  18. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  19. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  20. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  1. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  2. Modified calcium oxide as stable solid base catalyst for Aldol

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyse the Aldol condensation of cyclohexanone and benzaldehyde, as well as various benzaldehydes, to produce ...

  3. Modified calcium oxide as stable solid base catalyst for Aldol ...

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was ... was bonded on surface of CaO chemically and almost no Ca(OH)2 formed during the modification process. ... cation, corrosion and waste generation attract great.

  4. Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, CO–ethene–propene-based polyketone, base component for a new class of resins

    NARCIS (Netherlands)

    Broekhuis, Antonius A.; Dirkzwager, Hendrik; Mul, Wilhelmus P.; Heeres, Hero J.; Linden, Adrianus J. van der; Orpen, A. Guy

    2002-01-01

    A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO–ethene–propene-based polyketone (Carilite Oligomer), used for the manufacture of a new class of resins (Carilite Resins). The catalyst is composed of palladium acetate,

  5. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  6. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  7. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  8. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  9. Synthesis and properties of hydroxy acrylic resin with high solid content

    Science.gov (United States)

    Yu, Zhen; Hu, Mingguang; Cui, Han; Xiao, Jijun

    2017-10-01

    Manufacturers of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds in their paints in order to comply with increasingly strict environmental legislation. A high solid hydroxy acrylic resin was synthesised using CARDURA E10 and a type of hydroxyacrylic acid resin, its' acid value, hydroxylvalue, viscosity, structure, morphology was measured and film-forming properties after curing were characterised. The results show that the addition of CARDURA E10 in the copolymer composition significantly reduced the viscosity of the polymer system, improved the solid content of the resin and the physical properties of the coating. The hydroxyl acrylate resin with solid content of 90% and excellent comprehensive performance were successfully prepared by controlling the initiator dosage, polymerization temperature and monomer ratio.

  10. Imidazolium Ionic Liquid Modified Graphene Oxide: As a Reinforcing Filler and Catalyst in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Qing Lyu

    2017-09-01

    Full Text Available Surface modification of graphene oxide (GO is one of the most important issues to produce high performance GO/epoxy composites. In this paper, the imidazole ionic liquid (IMD-Si was introduced onto the surface of GO sheets by a cheap and simple method, to prepare a reinforcing filler, as well as a catalyst in epoxy resin. The interlayer spacing of GO sheets was obviously increased by the intercalation of IMD-Si, which strongly facilitated the dispersibility of graphene oxide in organic solvents and epoxy matrix. The addition of 0.4 wt % imidazolium ionic liquid modified graphene oxide (IMD-Si@GO, yielded a 12% increase in flexural strength (141.3 MPa, a 26% increase in flexural modulus (4.69 GPa, and a 52% increase in impact strength (18.7 kJ/m2, compared to the neat epoxy. Additionally the IMD-Si@GO sheets could catalyze the curing reaction of epoxy resin-anhydride system significantly. Moreover, the improved thermal conductivities and thermal stabilities of epoxy composites filled with IMD-Si@GO were also demonstrated.

  11. Starch saccharification by carbon-based solid acid catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  12. Aldol Condensation of Citral with Acetone on Basic Solid Catalysts

    Directory of Open Access Journals (Sweden)

    NODA C.

    1998-01-01

    Full Text Available The catalytic performance of solids with basic properties, such as CaO, MgO and hydrotalcites, was evaluated in the aldol condensation of citral and acetone, the first step in the synthesis of ionones from citral. The best results were obtained with CaO and hydrotalcite with high conversions (98% and selectivities (close to 70% for the main product observed for both of the catalyst. Such pseudoionone yields were greater than those reported in the literature for the homogeneous reaction.

  13. Solid-state /sup 13/C NMR study of cured resorcinol-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    Lippmaa, H.; Samoson, A.

    1988-08-01

    The curing process generally follows the pattern observed in the stage of prepolymer formation. Catalysts (NaOH, hexa, Mg(OCOCH/sub 3/)/sub 2/) that have no substantial influence on the isomeric composition of the resorcinol-formaldehyde prepolymers, do not affect the isomeric composition of the cured resins to any significant extent either. Isomeric composition of the cured resins depends mostly on the presence of water during the curing process, necessary for depolymerisation of the added paraformaldehyde. Curing in the melt leads to enhanced 2-substitution in the 1,3-dihydroxybenzene rings. In the /sup 13/C NMR spectra of cured powdered samples, the tendency of 5-methylresorcinol to form oligomers with a higher degree of 2-substitution than resorcinol is clearly apparent. Polycondensation process continues in the powdered resins after initial curing until complete consumption of all formaldehyde. Curing of phenol-formaldehyde resols proceeds through intermediate dimethylene ether formation.

  14. Development of transition metal oxide catalysts for treatment of off-gases released during pyrolysis of organic ion exchange resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-08-01

    The spent IX resin wastes arising from nuclear power plants have high radiation level due to fission product 137 Cesium and activation product 60 Cobalt. The pyrolysis and oxidative pyrolysis processes have potential to minimize final waste form volumes of these wastes. The major difficulty in deploying these processes for treatment of spent IX resins is release of off-gases containing large quantities of aromatic hydrocarbons, amines, sulphur dioxide, hydrogen sulphide, carbonyl sulphide etc. As an alternative to high temperature incineration of the pyrolysis off gases, feasibility of using catalytic combustion at moderate temperatures was investigated in the laboratory. Copper chromite, copper oxide-ceric oxide and vanadium pentaoxide catalysts supported on alumina were prepared and tested for oxidation of styrene monomer, toluene, ethyl benzene and trimethyl amine at 22500 hr -1 space velocity and temperature range of 300 to 500 degC. At temperatures over 475 degC, all three catatyst gave oxidation efficiency of over 97% for these compounds over concentration range of few tens of ppm to few thousands ppm. A composite catalyst bed of three catalysts comprising principally of copper chromite is proposed for treatment of IX resin pyrolysis off-gases. (author)

  15. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  16. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  17. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Use of solid-phase salt catalysts in furfural preparation

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, E.F.; Shkut, V.M.; Kebich, M.S.; Kuznetsova, T.A.

    1981-01-01

    The manufacture of furfural (I) from tanning waste, birch sawdust, or corncobs at 220-230 degrees in the presence of 2.0-3.0% double superphosphate, ammophos, (NH/sub 4/)/sub 2/SO/sub 4/, NH/sub 4/NO/sub 3/, or NH/sub 4/Cl was evaluated. Most of I is formed within 40 minutes in the presence of NH4NO3 or NH4Cl, and within 55 minutes in the presence of double superphosphate. The highest yield of I was obtained in the presence of NH4NO3 and/or NH4Cl. The solid-phase catalyst caused a little degradation of lignocellulose.

  19. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  20. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins

    DEFF Research Database (Denmark)

    Nandurkar, Nitin Subhash; Petersen, Rico; Qvortrup, Katrine

    2011-01-01

    An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method comprises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA...

  1. Linkers, resins, and general procedures for solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  2. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  3. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  4. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  5. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  6. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    Science.gov (United States)

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  7. Synthesis of 1, 4-Dioxan-2-one from 1, 3-Dioxolane and Carbon Monoxide over Cation-exchange Resin Catalyst

    OpenAIRE

    Takagi, Hiroyuki; Oumi, Yasunori; Uozumi, Toshiya; Masuda, Takashi; Sano, Tsuneji

    2001-01-01

    The possibility of the synthesis of 1, 4-dioxan-2-one (p-dioxanon) by carbonylation of 1, 3-dioxolane (cyclic ether) over Nafion® NR-50 cation-exchange resin catalyst was investigated. 1, 4-Dioxan-2-one, one of the cyclic esterethers used as a monomer of polyester, was obtained by depolymerization of polyester oligomers. The maximum yield (40%) of 1, 4-dioxan-2-one was achieved under reaction conditions of 25MPa initial PCO, 120°C reaction temperature and 4h reaction time.

  8. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Guoqing; Kusakabe, Katsuki; Yamasaki, Satoko [Department of Living Environmental Science, Fukuoka Women' s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529 (Japan)

    2009-04-15

    Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity. (author)

  9. Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst

    International Nuclear Information System (INIS)

    Zacharuk, Mario; Coelho, Luiz A.F.; Pezzin, Sergio H.; Becker, Daniela

    2009-01-01

    In this work the use of N,N-dimethylbenzylamine as a catalyst of the reaction of polyethylene glycol (PEG) and epoxy resin (DGEBA) was studied. The reaction products were evaluated by infra-red spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and viscosity measurements. Samples cured with a polyamine-based hardener were also submitted to tensile tests and differential scanning calorimetry (DSC). The results of the viscosity analyses, FTIR and RMN ( 1 H) had confirmed the occurrence of the reaction between DGEBA epoxy groups and PEG hydroxyl groups in the presence of N, N-dimethylbenzylamine as catalyst, at 100 deg C. DSC analyses and tensile tests of cured systems showed that the reaction of DGEBA with PEG leads to a reduction of the Tg, generating a more flexible material. (author)

  10. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-12-19

    In this paper, we report a simple method to evaluate biocompatibility of solid UV cross-linked resin as a material for microfluidic devices that can be used for biological applications. We evaluated the biocompatibility of the material in two different ways (1) determining if the UV cured resin inhibits the polymerase chain reaction (PCR) and (2) observing agglutination complex formed on the surface of the UV cured resin when anti-CRP antibodies and C- reactive protein (CRP) proteins were allowed to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used for PCR and protein interactions. Through these studies it is possible to estimate the curing time of various resin and their type of interaction with biomolecules. This study finds importance in on-chip tissue engineering and organ-on-chip applications.

  11. Review of the Production of Biodiesel from Waste Cooking Oil using Solid Catalysts

    Directory of Open Access Journals (Sweden)

    N.H. Said

    2015-06-01

    Full Text Available The need for fossil fuels and the emissions generated from these fuels are increasing daily. Researchers are concerned with global warming as well as climate change; and energy sustainability and material usages are important issues today. Waste cooking oil (WCO can be processed into biodiesel as an alternative fuel to replace diesel. Production of biodiesel using WCO as the feedstock has been of growing interest for the last two decades. A number of research papers related to the improvements in production, raw materials and catalyst selection have been published. This paper reviews the various types of heterogeneous solid catalyst in the production of biodiesel via the transesterification of WCO. The catalysts used can be classified according to their state presence in the transesterification reaction as homogeneous or heterogeneous catalysts. Homogeneous catalysts act in the same liquid phase as the reaction mixture, whereas heterogeneous catalysts act in a solid phase with the reaction mixture. Heterogeneous catalysts are non-corrosive, a green process and environmentally friendly. They can be recycled and used several times, thus offering a more economic pathway for biodiesel production. The advantages and drawbacks of these heterogeneous catalysts are presented. Future work focuses on the application of economically and environmentally friendly solid catalysts in the production of biodiesel using WCO as the raw material.

  12. Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Eyjolfsdottir, Ester; Gorbanev, Yury

    2012-01-01

    The aerobic oxidation of 5-(hydroxymethyl)furfural was investigated over solid ruthenium hydroxide catalysts in ionic liquids at elevated temperatures and pressures. Several different catalyst supports were tested in combination with various ionic liquids. The best result was obtained in [EMIm...

  13. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  15. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  16. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  17. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    Science.gov (United States)

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  18. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  19. Solid phase extraction of Am (III) by resins impregnated with multiply diglycolamide-functionalized ligands

    International Nuclear Information System (INIS)

    Gujar, R.B.; Ansari, S.A.; Mohapatra, P.K.; Verboom, W.

    2016-01-01

    Solvent extraction studies with multiply diglycolamide-functionalized extractants such as tripodal diglycolamide (T-DGA) or diglycolamide-functionalized calix(4)arene (C4DGA) ligands have shown excellent results as compared to those of normal DGA ligands such as TODGA. A very high selectivity for Am(III) has been reported with these ligands with respect to U(VI) and Pu(IV). High selectivities and large extraction efficiencies of these ligands towards trivalent f elements were ascribed to a co-operative complexation mechanism. Furthermore, the extraction efficiency of these ligands increased several folds in ionic liquid medium as compared to paraffinic solvents. It was of interest, therefore, to prepare extraction chromatographic resins by impregnation of solvent systems containing these ligands in an ionic liquid. In the present work, solid phase extraction studies were carried out using these two multiply diglycolamide-functionalized extractants, viz. T-DGA (resin I) and C4DGA (resin-II) containing the ionic liquid C 4 mim. NTf 2 impregnated on Chromosorb-W

  20. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Osmundsen, Christian Mårup

    2013-01-01

    to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests...

  1. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  2. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  4. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    International Nuclear Information System (INIS)

    Zhi, Chen; Dudu, Wu

    2012-01-01

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the α-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  5. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Chen; Dudu, Wu [Guangdong Medical College, Dongguan (China)

    2012-06-15

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the {alpha}-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  6. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Ronald [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  7. Effect of the reaction medium on the properties of solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boreskov, G.K.

    1980-01-01

    The effect of the reaction medium on the properties of solid catalysts, such as bulk or supported metals, alloys, or metal oxides, include variations in surface composition, structure, and catalytic properties due to catalyst interaction with the reactants. This interaction leads to the establishment of a steady state, which is determined by the composition of the reaction medium and temperature, but is independent of the initial state of the catalyst. This steady state for a catalyst of a given chemical composition is characterized by an approximately constant specific activity in most chemical reactions, which is almost independent of the preparation method, surface area, or crystal size of the catalyst. The structurally sensitive reactions, which occur only on limited segments of catalyst surface characterized by specific structures, are the exception. The effects of the variations in catalytic properties caused by the reaction medium on the steady-state and nonsteady-state reaction kinetics are also discussed based on the results obtained for oxidative dehydrogenation of 1-butene over an iron/antimony oxide catalyst.

  8. Structural investigation of e-beam cured epoxy resins through solid state NMR

    International Nuclear Information System (INIS)

    Alessi, Sabina; Spinella, Alberto; Caponetti, Eugenio; Dispenza, Clelia; Spadaro, Giuseppe

    2012-01-01

    In this paper the network structure of e-beam cured DGEBF based epoxy resins is investigated. Two epoxy systems, having different reactivity and cured in different process conditions, were analyzed through solid state NMR spectroscopy. The analysis shows that the more reactive system has higher cross-linking density and higher uniformity of network distribution. Similar information were obtained, in a previous work, on the same systems through dynamic mechanical thermal analysis. It is worth noting that unlike DMTA tests, which interfere with the molecular structure of the analyzed material, due to the heating during the analysis itself, more reliable information, without any artefact, are obtained by solid state NMR, carried out at constant room temperature. - Highlights: ► The structure of two e-beam cured epoxy systems is investigated through solid state NMR. ► The aim is to have direct information about the structure without inducing modifications. ► The different molecular structures are able to emphasize the response of solid state NMR. ► T 1 H, T 1ρ H and T CH measurements indicate different cross-linking degrees. ► The NMR results are in agreement with DMTA analysis performed in a previous paper.

  9. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  10. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  11. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  12. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  13. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of the butyl acetate synthesis - 1. Catalyst selection

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2004-01-01

    Full Text Available In this work, a laboratory scale selection study over eight catalytic agents was made, in the acetic acid and butyl alcohol esterification reaction (seven lon exchange resins and a zeolytic solid. Considering some physicochemical characteristics as the activation pre-treating requirements, acidity, thermal stability, reaction performance, etc., it was found that macroporous ion exchange resins are the most efficient catalysts, especially Lewatit K-2431 resin.

  15. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  16. Solid Silica-based Sulphonic Acid as an Efficient Green Catalyst for ...

    African Journals Online (AJOL)

    NJD

    Solid Silica-based Sulphonic Acid as an Efficient Green. Catalyst for the Selective Oxidation of Sulphides to. Sulphoxides using NaCIO in Aqueous Media. Ali Amoozadeh* and Firouzeh Nemati. Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran. Received 21 October 2008, revised 6 December ...

  17. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  18. Isobutane/butene alkylation on solid catalysts. Where do we stand?

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J.; Traa, Y. [Institute of Chemical Technology I, University of Stuttgart, D-70550 Stuttgart (Germany)

    1999-02-24

    Liquid-phase processes with concentrated sulfuric acid or hydrogen fluoride as catalysts are currently being used in petroleum refining for the manufacture of alkylation gasoline from isobutane and butenes. While the product, i.e., alkylate, is a most valuable gasoline component, the existing processes for its manufacture are less satisfactory. Replacement of the liquid catalysts by a solid acid is an important target of modern research. In the past two decades, a large number of solid acids have been scrutinized, and at least four developments were driven till the pilot plant stage. In this paper, an attempt is made to rationalize, on a mechanistic basis, the selectivity loss almost always encountered with solid acids after relatively short times-on-stream. Suggestions are made concerning a more target-oriented research on isobutane/alkene alkylation in the future

  19. An Efficient Solid-phase Parallel Synthesis of 2-Amino and 2-Amidobenzo[d]oxazole Derivatives via Cyclization Reactions of 2-Hydroxyphenylthiourea Resin

    International Nuclear Information System (INIS)

    Jung, Selin; Kim, Seulgi; Lee, Geehyung; Gong, Youngdae

    2012-01-01

    An efficient solid-phase methodology has been developed for the synthesis of 2-amino and 2-amidobenzo[d]-oxazole derivatives. The key step in this procedure involves the preparation of polymer-bound 2-aminobenzo-[d]oxazole resins 4 by cyclization reaction of 2-hydroxyphenylthiourea resin 3. The resin-bound 2-hydroxy-phenylthiourea 3 is produced by the addition of 2-aminophenol to the isothiocyanate-terminated resin 2 and serve as a key intermediate for the linker resin. This core skeleton 2-aminobenzo[d]oxazole resin 4 undergoes functionalization reaction with various electrophiles, such as alkylhalides and acid chlorides to generate 2-amino and 2-amidobenzo[d]oxazole resins 5 and 6 respectively. Finally, 2-amino and 2-amidobenzo[d]oxazole derivatives 7 and 8 are then generated in good yields and purities by cleavage of the respective resins 5 and 6 under trifluoroacetic acid (TFA) in dichloromethane (CH 2 Cl 2 )

  20. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  1. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  2. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  3. New materials for biodiesel production. The use of MgAl hydrotalcites solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Joao F.P.; Puna, Jaime F.B.; Goncalves, L. [Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa (Portugal). Chemical Engineering Dept.; Bordado, Joao C. [Instituto Superior Tecnico (IST), Lisboa (Portugal). Inst. of Biotechnology and Bioengineering

    2010-07-01

    This work, reports preliminary studies and experimental work done so far in this field, using new solid basic catalysts: Double oxides of Mg and Al, produced by the calcination, at high temperature, of MgAl lamellar structures, the hidrotalcites. A brief introduction of its characterization, utilisation and synthesis of these catalysts, experimental conditions, experimental results and respective conclusions are described, here, with specific detail. The oil treatment procedure, the biodiesel production and purification processes and their respective morphological and textural characterizations are also described, with appropriate tables and figures, using, for instance, SEM, X-Ray Diffraction, Thermo gravimetric analysis (TG) and Middle Infrared Spectroscopy (MIR). (orig.)

  4. Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts

    Directory of Open Access Journals (Sweden)

    Thana Jaafar Al-Hasani

    2017-02-01

    Full Text Available The p-phenylenediamine (PDA and dithiooxamide (DTO were immobilized onto silica from rice husk ash (RHA using 3-chloropropyltriethoxyilane (CPTES to form a solid catalyst denoted as RHAPDA and RHADTO, respectively. BET measurements of the catalysts showed the surface area to be 145 and 9.7 m2 g−1 with an average pore diameter of 9.8 and 10.9 nm, respectively. The catalytic performance of RHAPDA and RHADTO was tested in the esterification of ethyl alcohol with acetic acid. A conversion of 48% and 69% was achieved, respectively with 100% selectivity toward ethyl acetate.

  5. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  6. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    Science.gov (United States)

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  8. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  9. Synthesis of solid catalyst from egg shell waste and clay for biodiesel production

    Science.gov (United States)

    Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.

    2018-05-01

    Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.

  10. Evaluation of the resin oxidation process using Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro G.; Goes, Marcos M.; Marumo, Julio T.

    2013-01-01

    The ion exchange resin is considered radioactive waste after its final useful life in nuclear reactors. Usually, this type of waste is treated with the immobilization in cement Portland, in order to form a solid monolithic matrix, reducing the possibility of radionuclides release in to environment. Because of the characteristic of expansion and contraction of the resins in presence of water, its incorporation in the common Portland cement is limited in 10% in direct immobilization, causing high costs in the final product. A pre-treatment would be able to reduce the volume, degrading the resins and increasing the load capacity of this material. This paper is about a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Fenton's reagent. The resin evaluated was a mixture of cationic and anionic resins. The reactions were conducted by varying the concentration of the catalyst (25 to 80 mM), with and without external heat. The time of reaction was two hours. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%. The resin degradation was confirmed by the presence of CaCO 3 as a white precipitate resulting from the reaction between the Ca(OH) 2 and the CO 2 from the resin degradation. It was possible to degrade the resins without external heating. The calcium carbonates showed no correlation with the residual resin mass. (author)

  11. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  12. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  13. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    Science.gov (United States)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  14. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  15. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  16. Solid-phase extraction with slurry injection of the resin into ETAAS for trace determination of thallium in natural water

    International Nuclear Information System (INIS)

    Isoshi, Nukatsuka; Hiroyuki, Seitoh; Kunio, Ohzeki

    2004-01-01

    Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A TI-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25 mm ) by filtration under suction using a glass funnel with an effective filtration area of 0.64 cm 2 . As a result, a circular thin layer of the resin phase with a diameter of 9 mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mm hole to put it into a sample cup containing 100 μL of 10 mM HNO 3 containing 0.5 mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15 min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0-4 ng of TI in 100 mL of a sample solution. The detection limit obtained by 3 σ method was 0.19 ng. The proposed method was applied to the determination of TI in natural water samples. The results showed the concentration of TI in seawater was 12.1 ± 1.8 pg mL -1 for the calibration graph method and 12.6 ± 1.4 pg mL -1 for the standard addition method. A snowmelt sample contained 20.7 ± 1.0 pg mL -1 of TI. (author)

  17. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  18. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  19. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst

    International Nuclear Information System (INIS)

    Li, Yuesong; Lian, Shuang; Tong, Dongmei; Song, Ruili; Yang, Wenyan; Fan, Yong; Qing, Renwei; Hu, Changwei

    2011-01-01

    Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg-Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.

  20. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  1. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  2. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract.

    Science.gov (United States)

    Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian

    2015-01-22

    In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  4. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  5. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  6. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  7. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  8. Towards long-term stable solid state electrolyzers with infiltrated catalysts

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Brodersen, Karen

    conventional power plants or fuel cells. Key challenges for a successful commercialization of solid oxide electrolyzers are up scale it, reduce cost and improve durability. Therefore, large efforts are allocated to improve cell performance. As a relatively novel method to introduce electro......Renewable energy sources like wind and solar are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure that energy supply can be covered in a stable and affordable......-catalysts into the porous structure of the electrodes, infiltration has shown very efficient. Solid oxide cells with infiltrated electrodes have been reported to show improved performance compared to conventional cells [1]. In this study, the development of infiltration procedures to improve the stability and catalytic...

  9. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  10. Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; An, Shengxin; Huang, Feng; Li, Xinzhe; Liu, Jingrong; Pei, Gang; Liu, Qiying

    2018-05-24

    In this work, p-hydroxybenzenesulfonic acid-formaldehyde resin acid catalyst (MSPFR), was synthesized by a hydrothermal method, and employed for the furfural production from raw corn stover. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption, elemental analysis (EA), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the MSPFR. The effects of reaction time, temperature, solvents and corn stover loading were investigated. The MSPFR presented high catalytic activity for the formation of furfural from corn stover. When the MSPFR/corn stover mass loading ratio was 0.5, a higher furfural yield of 43.4% could be achieved at 190 °C in 100 min with 30.7% 5-hydroxymethylfurfural (HMF) yield. Additionally, quite importantly, the recyclability of the MSPFR for xylose dehydration is good, and for the conversion of corn stover was reasonable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Bio-phenolic resin from oil palm empty fruit bunches

    Science.gov (United States)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  12. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used

  13. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  14. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  15. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  16. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  17. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  18. Comparison of TEVAR resin beads, PAN fibers, and ePTFE membranes as a solid support for Aliquat-336 in immobilized liquid extraction chromatography for separation of actinides

    International Nuclear Information System (INIS)

    Joe Dauner; Steve Workman

    2012-01-01

    The following paper covers a comparison of two new systems to traditional TEVA R resin systems for the analytical separation of actinides by immobilized liquid-liquid extraction using Aliquat-336. The new systems are using expanded polytetrafluroethane (ePTFE) membrane or polyacrylonitrile (PAN) fibers as the solid support. The systems are compared in two ways. First in how much Aliquat-336 they contain with the Vs, ratio of volume of Aliquat-336 to volume of polymeric support, being 0.158, 0.483, and 0.590 for the TEVA R resin, PAN fibers, and the ePTFE systems, respectively. The second comparison is in their performance capacity of extraction of uranyl chloride anion complex. The fiber and resins systems show similar capacities, and the membrane system being an order of magnitude less than the other systems. A cost comparison demonstrates the savings advantages of using a fiber based support compared with resin and membrane support systems. (author)

  19. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    Science.gov (United States)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  20. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst

    International Nuclear Information System (INIS)

    Poosumas, Jutipong; Ngaosuwan, Kanokwan; Quitain, Armando T.; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • Transesterification of palm oil using a circulated continuous flow ultrasonic reactor. • Heterogeneous system using CaO as catalyst. • Effects of ultrasonic frequency and power, and catalyst reusability were considered. • A single high frequency and high intensity irradiation is favorable for heterogeneous system. - Abstract: Biodiesel production from transesterification of palm oil using a circulated continuous flow ultrasonic reactor was investigated. Transesterification was carried out at 60 °C, 1 atm and a methanol-to-oil molar ratio of 9:1. The highest reaction rate was achieved at the catalyst loading of 2 wt%, and biodiesel yield constantly increased until transesterification equilibrium (about 80%) was reached. A higher ultrasonic frequency (50 kHz) promoted the heterogeneously catalyzed transesterification of refined palm oil, because the three-phase system (packed solid catalyst, methanol and oil) required more spatial distribution by ultrasonic irradiation. Moreover, the highest ultrasonic power also provided highest transesterification rate and biodiesel yield due to cavitation activity enhancement. Reusability of calcium oxide catalysts was also investigated, and results showed that this can be reused to provide high biodiesel yield for at least three operations with slight decrease in the rate of reaction due to counter balance effect of organic compounds deposition on the catalyst surface. The results from this study can be a basis for scaling up of the process to industrial scale.

  2. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  4. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  5. Development of a solid phantom prototype of Mo-99, Tc-99, and Co-57 in epoxy resins for evaluating of the uniformity in SPECT systems images

    International Nuclear Information System (INIS)

    Garcia D, O.C.; Cortes P, A.; Becerril V, A.; Garcia R, J.C.

    2002-01-01

    A manufacture method of solid phantoms prototype of resin with different radioisotopes is described. The phantom manufactured of molybdenum 99 has an uniformity of 96% determined with a Na(Tl) detector mono channel analyzer with a lead collimator of 1 cm diameter. (Author)

  6. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  7. Properties and efficiency of a Pt/Al2O3 catalyst applied in a solid fuel thermo-accumulating furnace

    Directory of Open Access Journals (Sweden)

    SRDJAN BELOSEVIC

    2007-08-01

    Full Text Available A prototype of a solid fuel thermo-accumulating furnace has been developed. In order to achieve a higher combustion efficiency, a Pt/Al2O3 catalyst in the form of 3 ± 0.3 mm spheres was applied, which enabled further combustion of flue gases within the furnace. Experimental investigation of the influence of the catalyst on the conversion of CO has been done for different operation regimes and positions of the catalyst. Paper presents selected results regarding CO emission during wood and coal combustion. Investigations suggest a considerable effect of the catalyst and a strong influence of the catalyst position to CO emission reduction. The microstructure of the catalyst beads, characterized by selective chemisorption of CO, has shown the decrease of the number of Pt sites as a consequence of blockage by coke deposits formed during the combustion of solid fuel.

  8. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  11. Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds over MoS2 Based Catalysts: A Step in Understanding and Optimizing Fuel Production from Solid Biomass

    DEFF Research Database (Denmark)

    Dabros, Trine Marie Hartmann

    This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass.......This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass....

  12. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    Science.gov (United States)

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  14. Chelating resin immobilizing carboxymethylated polyethyleneimine for selective solid-phase extraction of trace elements: Effect of the molecular weight of polyethyleneimine and its carboxymethylation rate.

    Science.gov (United States)

    Kagaya, Shigehiro; Kajiwara, Takehiro; Gemmei-Ide, Makoto; Kamichatani, Waka; Inoue, Yoshinori

    2016-01-15

    The effect of the molecular weight of polyethyleneimine (PEI), defined as a compound having two or more ethyleneamine units, and of its carboxymethylation rate (CM/N), represented by the ratio of ion-exchange capacity to the amount of N on the resin, on the selective solid-phase extraction ability of the chelating resin immobilizing carboxymethylated (CM) PEI was investigated. The chelating resins (24 types) were prepared by immobilization of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, PEI300 (MW=ca. 300), and PEI600 (MW=ca. 600) on methacrylate resins, followed by carboxymethylation with various amounts of sodium monochloroacetate. When resins with approximately the same CM/N ratio (0.242-0.271) were used, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, Zn, and alkaline earth elements increased with increasing the molecular weight of PEIs under acidic and weakly acidic conditions; however, the extraction behavior of Mo and V was only slightly affected. This was probably due to the increase in N content of the resin, resulting in an increase in carboxylic acid groups; the difference in the molecular weight of PEIs immobilized on the resin exerts an insignificant influence on the selective extraction ability. The CM/N ratio considerably affected the extraction behavior for various elements. Under acidic and neutral conditions, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, and Zn increased with increasing CM/N values. However, under these conditions, the recovery of alkaline earth elements was considerably low when a resin with low CM/N ratio was used. This is presumably attributed to the different stability constants of the complexes of these elements with aminocarboxylic acids and amines, and to the electrostatic repulsion between the elements and the protonated amino groups in the CM-PEI. The recovery of Mo and V decreased or varied with increasing CM/N values, suggesting that the extraction of these elements occurred mainly

  15. CO2 laser direct writing of silver lines on epoxy resin from solid film

    International Nuclear Information System (INIS)

    Liu, J.G.; Chen, C.H.; Zheng, J.S.; Huang, J.Y.

    2005-01-01

    A technique of CO 2 laser direct writing from solid film was proposed in this paper. Patterns of silver lines were locally deposited on the non-conductive substrate using a preset layer of silver compound solid film, which was irradiated by focused CO 2 laser beam. The deposits were analyzed by XPS and EPMA. Results showed that metallic silver was dominant with an even distribution on the surface of the substrate, and part of the deposited silver had diffused into the substrate interior. The deposits had catalytic activity for the further electroless copper plating and had strong adhesion to the substrate. At last, the deposition mechanism and the dependence of the width of silver lines on the laser power and scan speed were roughly explored

  16. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    International Nuclear Information System (INIS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-01-01

    Highlights: • A novel mesoporous ZrO_2/SO_4"2"− has been prepared via a facile one-pot EISA strategy. • The M-ZrO_2/SO_4"2"− exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO_2/SO_4"2"− exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO_2/SO_4"2"−) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N_2-physisorption and TEM characterization techniques indicated that M-ZrO_2/SO_4"2"− possessed distinct mesostructure with big specific surface area (133.5 m"2 g"−"1), large pore volume (0.18 cm"3 g"−"1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N_2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO_4"2"−, improved the textural properties of prepared materials. In addition, the NH_3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO_2/SO_4"2"− even evacuated at 400 °C. Furthermore, the M-ZrO_2/SO_4"2"− was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  17. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  18. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  19. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    Science.gov (United States)

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  1. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  2. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    International Nuclear Information System (INIS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. (focus issue review)

  3. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  4. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel

    International Nuclear Information System (INIS)

    Takase, Mohammed; Zhang, Min; Feng, Weiwei; Chen, Yao; Zhao, Ting; Cobbina, Samuel J.; Yang, Liuqing; Wu, Xiangyang

    2014-01-01

    Highlights: • Silybum marianum contain high amount of oil (46%) and Linoleic acids (65.68%). • Incipient wetness impregnation method was used to load KOH on ZrO 2. • KOH(32%)/ZrO 2 -5 was used to transesterificate Silybum marianum to biodiesel. • Conversion yield of triglycerides to biodiesel (90.8%) at 60 °C was obtained in 2 h. • The properties of the biodiesel were comparable to international standards. - Abstract: This study seeks to investigate zirconia modified with KOH as heterogeneous solid base catalyst for transesterification of new non-edible, Silybum marianum (oil content 46%, FFA 0.68% and linoleic acid 65.68%) oil using methanol to biodiesel. Having screened the catalytic performance of ZrO 2 loaded with different K-compounds, 32% KOH loaded on ZrO 2 was chosen. The catalyst was prepared using incipient wetness impregnation method. Following drying (after impregnation) and calcination at 530 °C for 5 h, the catalyst was characterized by means of Hammett indicators, XRD, FTIR, SEM, TGA and N 2 adsorption desorption measurements. It was found that the yield of the fatty acid methyl esters (FAME) was related to the catalyst base strength. The catalyst had granular and porous structures with high basicity and superior catalytic performance for the transesterification reaction. Maximum yield (90.8%) was obtained at 15:1 methanol to oil molar ratio, 6% catalyst amount, 60 °C reaction temperature in 2 h. The catalyst maintained sustained activity after five times of usage. The oxidative stability and iodine value were the only unsuitable properties of the biodiesel (out of range) but can easily be improved. The cetane number, flash point and the cold flow properties among others were however, comparable to international standards. The study indicated that KOH(32%)/ZrO 2 -5 is an economically, suitable catalyst for producing biodiesel from S. marianum oil which is a potential new non-edible feedstock that can contribute positively to biodiesel

  5. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    Science.gov (United States)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  6. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  7. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  8. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  9. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China); Chou, Lingjun, E-mail: ljchou@licp.cas.cn [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2017-07-31

    Highlights: • A novel mesoporous ZrO{sub 2}/SO{sub 4}{sup 2−} has been prepared via a facile one-pot EISA strategy. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO{sub 2}/SO{sub 4}{sup 2−}) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N{sub 2}-physisorption and TEM characterization techniques indicated that M-ZrO{sub 2}/SO{sub 4}{sup 2−} possessed distinct mesostructure with big specific surface area (133.5 m{sup 2} g{sup −1}), large pore volume (0.18 cm{sup 3} g{sup −1}) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N{sub 2}-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO{sub 4}{sup 2−}, improved the textural properties of prepared materials. In addition, the NH{sub 3}-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO{sub 2}/SO{sub 4}{sup 2−} even evacuated at 400 °C. Furthermore, the M-ZrO{sub 2}/SO{sub 4}{sup 2−} was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  10. Fracture strength and failure mode of maxillary implant-supported provisional single crowns: a comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments.

    Science.gov (United States)

    Santing, Hendrik Jacob; Meijer, Henny J A; Raghoebar, Gerry M; Özcan, Mutlu

    2012-12-01

    Polyetheretherketone (PEEK) temporary abutments have been recently introduced for making implant-supported provisional single crowns. Little information is available in the dental literature on the durability of provisional implant-supported restorations. The objectives of this study were to evaluate the fracture strength of implant-supported composite resin crowns on PEEK and solid titanium temporary abutments, and to analyze the failure types. Three types of provisional abutments, RN synOcta Temporary Meso Abutment (PEEK; Straumann), RN synOcta Titanium Post for Temporary Restorations (Straumann), and Temporary Abutment Engaging NobRplRP (Nobel Biocare) were used, and provisional screw-retained crowns using composite resin (Solidex) were fabricated for four different locations in the maxilla. The specimens were tested in a universal testing machine at a crosshead speed of 1 mm/minute until fracture occurred. The failure types were analyzed and further categorized as irreparable (Type 1) or reparable (Type 2). No significant difference was found between different abutment types. Only for the position of the maxillary central incisor, composite resin crowns on PEEK temporary abutments showed significantly lower (p Provisional crowns on PEEK abutments showed similar fracture strength as titanium temporary abutments except for central incisors. Maxillary right central incisor composite resin crowns on PEEK temporary abutments fractured below the mean anterior masticatory loading forces reported to be approximately 206 N. © 2010 Wiley Periodicals, Inc.

  11. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride

    International Nuclear Information System (INIS)

    Hu, Lei; Wu, Zhen; Xu, Jiaxing; Zhou, Shouyong; Tang, Guodong

    2016-01-01

    A green and efficient strategy for the hydrolysis of cellulose was developed by using a magnetic lignin-derived solid acid catalyst (MLC-SO 3 H) in the presence of ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). The results indicated that reaction temperature, reaction time, catalyst loading and water content have a big influence on the yield of total reducing sugars (TRS). By optimizing these reaction parameters, 69.3% TRS yield was observed at 140 .deg. C for 150 min with the addition of 40 wt% MLC-SO 3 H and 1 wt% water. More importantly, MLC-SO 3 H could be easily separated from the reaction mixture with an external magnet and could be repeatedly used five times without an obvious loss of catalytic activity, demonstrating that it possessed excellent recyclability. Furthermore, a plausible mechanism involving three consecutive processes of dissolution, adsorption and catalysis for the hydrolysis of cellulose in [BMIM]Cl over a catalyst of MLC-SO 3 H was also proposed.

  13. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Hairy foam: carbon nanofibers on solid foam as catalyst support : synthesis, mass transfer, and reactor modeling

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.

    2010-01-01

    The chemical reactor is at the heart of many chemical processes. The chemical industry strives for the most efficient, most compact, and safest chemical reactor. The efficiency of a chemical reactor is determined by the delicate balance of catalyst performance (i.e. selectivity and activity) and the

  15. Calcium Oxide Supported on Monoclinic Zirconia as a Highly Active Solid Base Catalyst

    NARCIS (Netherlands)

    Frey, A.M.; Haasterecht, van T.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Calcium oxide supported on ZrO2 is a highly active catalyst for base-catalyzed reactions such as aldol-type reactions and transesterification reactions. The role of key parameters during preparation, that is, impregnation versus precipitation, heat treatment, and metal oxide loading on the basicity

  16. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2016-01-01

    Full Text Available A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane copper(I complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.

  17. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  18. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  19. Effect of reverse Boudouard reaction catalyst on the performance of solid oxide carbon fuel cells integrated with a dry gasifier

    International Nuclear Information System (INIS)

    Kim, Sun-Kyung; Mehran, Muhammad Taqi; Mushtaq, Usman; Lim, Tak-Hyoung; Lee, Jong-Won; Lee, Seung-Bok; Park, Seok-Joo; Song, Rak-Hyun

    2016-01-01

    Highlights: • The addition of K_2CO_3 catalyst in carbon fuel improves the performance of SO-CFC. • Thermal and electrochemical analyses done to elucidate the catalytic enhancement. • Material characterization of SO-CFC performed after long-term degradation test. - Abstract: A solid oxide carbon fuel cell (SO-CFC) integrated with a dry gasifier was operated on activated carbon fuel and the effect of adding a reverse Boudouard gasification catalyst on the performance and long-term operation characteristics of the SO-CFC was investigated. The reactivity of the carbon fuels for the Boudouard gasification reaction was analyzed by a thermal analysis at various operating conditions. The SO-CFC was then operated on gasified fuel gas consisting of CO_2 and CO obtained from the integrated dry gasifier. The SO-CFC operated on activated carbon fuel with 5 wt.% K_2CO_3 achieved a maximum power density of 202, 262, and 271 mW/cm"2 at 750, 800, and 850 °C, respectively; the SO-CFC fueled with activated carbon fuel without a catalyst meanwhile yielded maximum power density of 168 mW/cm"2 at 850 °C. By using electrochemical impedance spectroscopy, the effect of adding the catalyst on the gasification products and subsequently on the performance of the SO-CFC was studied. A long-term degradation test was conducted by continuously operating the SO-CFC at 50 mA/cm"2 for 518 h at 750 °C. During the long-term degradation test, the average degradation rate of the SO-CFC was found to be 183 mV/kh. The post-mortem SEM and XRD analyses of the SO-CFC after the long-term test revealed the presence of carbon deposits and oxidation of Ni at the anode, causing a relatively higher degree of degradation in the SO-CFC integrated with the dry gasifier during the long-term operation. The addition of the K_2CO_3 based dry gasification catalyst significantly enhances the performance of the SO-CFC integrated with dry gasification, but during long-term operation, the degradation rate is found

  20. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  1. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  2. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  3. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  4. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  5. Biodiesel production from esterification of free fatty acid over PA/NaY solid catalyst

    International Nuclear Information System (INIS)

    Liu, Wei; Yin, Ping; Zhang, Jiang; Tang, Qinghua; Qu, Rongjun

    2014-01-01

    Highlights: • Biodiesel production from esterification of oleic acid was catalyzed by PA/NaY. • The influences of the process operating parameters were studied. • RSM was employed to optimize the experimental conditions. • The kinetic equation of the esterification reaction was investigated. - Abstract: Because of the incitements from increasing petroleum prices, diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum fueled engines, biodiesel has been used as a substitute of the regular diesel in recent years. In this paper, biodiesel production from the esterification of the free fatty oil oleic acid with ethanol catalyzed by PA/NaY (PA = organic phosphonic acid) was investigated, and the effect of reaction conditions such as PA loading, catalyst amount, molar ratio of alcohol to acid, reaction temperature and reaction time on the esterification reaction was examined. The process optimization using response surface methodology (RSM) was performed and the interactions between the operational variables were elucidated. The optimum values for maximum conversion ratio of oleic acid could be obtained by using a Box–Behnken center-united design with a minimum of experimental work. The oleic acid conversion reached 79.51 ± 0.68% with the molar ratio of alcohol to oleic acid being 7:1 and 1.7 g PA/NaY catalyst (20 ml of PA loading) at 105 °C for 7 h. Moreover, a kinetic model for the esterification catalyzed by PA/NaY catalyst was established. By fitting the kinetic model with the experimental results, the reaction order n = 2, activation energy of the positive reaction Ea + = 43.41 kJ/mol and that of the reverse reaction Ea − = 59.74 kJ/mol were obtained

  6. Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    G. Mohammadi Ziarani

    2012-06-01

    Full Text Available In this article, simple, convenient synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazole (1,2-disubstituted benzimidazoles via condensation of 1,2-phenylenediamine and aromatic aldehydes using SBA-Pr-SO3H as a nanoporous solid acid catalyst in green protocol was reported.

  7. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  8. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  9. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  10. Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst

    Science.gov (United States)

    Ding, Ning; Zhou, Lan; Zhou, Changwei; Geng, Dongsheng; Yang, Jin; Chien, Sheau Wei; Liu, Zhaolin; Ng, Man-Fai; Yu, Aishui; Hor, T. S. Andy; Sullivan, Michael B.; Zong, Yun

    2016-09-01

    Lithium nitrate (LiNO3) is known as an important electrolyte additive in lithium-sulfur (Li-S) batteries. The prevailing understanding is that LiNO3 reacts with metallic lithium anode to form a passivation layer which suppresses redox shuttles of lithium polysulfides, enabling good rechargeability of Li-S batteries. However, this view is seeing more challenges in the recent studies, and above all, the inability of inhibiting polysulfide reduction on Li anode. A closely related issue is the progressive reduction of LiNO3 on Li anode which elevates internal resistance of the cell and compromises its cycling stability. Herein, we systematically investigated the function of LiNO3 in redox-shuttle suppression, and propose the suppression as a result of catalyzed oxidation of polysulfides to sulfur by nitrate anions on or in the proximity of the electrode surface upon cell charging. This hypothesis is supported by both density functional theory calculations and the nitrate anions-suppressed self-discharge rate in Li-S cells. The catalytic mechanism is further validated by the use of ruthenium oxide (RuO2, a good oxygen evolution catalyst) on cathode, which equips the LiNO3-free cell with higher capacity and improved capacity retention over 400 cycles.

  11. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  12. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  13. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  15. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  16. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  17. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA Resin for seawater monitoring.

    Science.gov (United States)

    Tazoe, Hirofumi; Obata, Hajime; Yamagata, Takeyasu; Karube, Zin'ichi; Nagai, Hisao; Yamada, Masatoshi

    2016-05-15

    It is important for public safety to monitor strontium-90 in aquatic environments in the vicinity of nuclear related facilities. Strontium-90 concentrations in seawater exceeding the background level have been observed in accidents of nuclear facilities. However, the analytical procedure for measuring strontium-90 in seawater is highly demanding. Here we show a simple and high throughput analytical technique for the determination of strontium-90 in seawater samples using a direct yttrium-90 separation. The DGA Resin is used to determine the abundance of strontium-90 by detecting yttrium-90 decay (beta-emission) in secular equilibrium. The DGA Resin can selectively collect yttrium-90 and remove naturally occurring radionuclides such as (40)K, (210)Pb, (214)Bi, (238)U, and (232)Th and anthropogenic radionuclides such as (140)Ba, and (140)La. Through a sample separation procedure, a high chemical yield of yttrium-90 was achieved at 95.5±2.3%. The result of IAEA-443 certified seawater analysis (107.7±3.4 mBq kg(-1)) was in good agreement with the certified value (110±5 mBq kg(-1)). By developed method, we can finish analyzing 8 samples per day after achieving secular equilibrium, which is a reasonably fast throughput in actual seawater monitoring. By processing 3 L of seawater sample and applying a counting time of 20 h, minimum detectable activity can be as low as 1.5 mBq kg(-1), which could be applied to monitoring for the contaminated marine environment. Reproducibility was found to be 3.4% according to 10 independent analyses of natural seawater samples from the vicinity of the Fukushima Daiichi Nuclear Power Plant in September 2013. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  19. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Science.gov (United States)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  20. Zirconyl (IV Nitrate as Efficient and Reusable Solid Lewis Acid Catalyst for the Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Pratapsinha B. Gorepatil

    2013-01-01

    Full Text Available The present paper introduces a simple and efficient method for the synthesis of substituted benzimidazoles by heterocyclization of different o-phenylenediamines and substituted aromatic carboxylic acid/aldehyde in the presence of zirconyl nitrate as catalyst in ethanol under reflux, which produced excellent yield of corresponding benzimidazoles in a short reaction time with reusability of catalyst.

  1. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  2. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Lahouaria Medjdoub

    2016-08-01

    Full Text Available Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP with allylamine in order to give hexa(allylaminocyclotriphosphazene (HACTP  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance and FTIR (Fourier Transform Infrared spectroscopy. MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery and TGA (Thermogravimetric Analysis show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 28th September 2015; Revised: 5th December 2015; Accepted: 4th January 2016 How to Cite: Medjdoub, L., Mohammed, B. (2016. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 151-160 (doi:10.9767/bcrec.11.2.541.151-160 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.541.151-160

  3. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    Science.gov (United States)

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  5. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    Science.gov (United States)

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  6. Water-compatible dummy molecularly imprinted resin prepared in aqueous solution for green miniaturized solid-phase extraction of plant growth regulators.

    Science.gov (United States)

    Wang, Mingyu; Chang, Xiaochen; Wu, Xingyu; Yan, Hongyuan; Qiao, Fengxia

    2016-08-05

    A water-compatible dummy molecularly imprinted resin (MIR) was synthesized in water using melamine, urea, and formaldehyde as hydrophilic monomers of co-polycondensation. A triblock copolymer (PEO-PPO-PEO, P123) was used as porogen to dredge the network structure of MIR, and N-(1-naphthyl) ethylenediamine dihydrochloride, which has similar shape and size to the target analytes, was the dummy template of molecular imprinting. The obtained MIR was used as the adsorbent in a green miniaturized solid-phase extraction (MIR⬜mini-SPE) of plant growth regulators, and there was no organic solvent used in the entire MIR⬜mini-SPE procedure. The calibration linearity of MIR⬜mini-SPE⬜HPLC method was obtained in a range 5⬜250ngmL(↙1) for IAA, IPA, IBA, and NAA with correlation coefficient (r) Ⱕ0.9998. Recoveries at three spike levels are in the range of 87.6⬜100.0% for coconut juice with relative standard deviations Ⱔ8.1%. The MIR⬜mini-SPE method possesses the advantages of environmental friendliness, simple operation, and high efficiency, so it is potential to apply the green pretreatment strategy to extraction of trace analytes in aqueous samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microwave-assisted solid-phase peptide synthesis of the 60-110 domain of human pleiotrophin on 2-chlorotrityl resin.

    Science.gov (United States)

    Friligou, Irene; Papadimitriou, Evangelia; Gatos, Dimitrios; Matsoukas, John; Tselios, Theodore

    2011-05-01

    A fast and efficient microwave-assisted solid phase peptide synthesis (MW-SPPS) of a 51mer peptide, the main heparin-binding site (60-110) of human pleiotrophin (hPTN), using 2-chlorotrityl chloride resin (CLTR-Cl) following the 9-fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) methodology and with the standard N,N'-diisopropylcarbodiimide/1-hydroxybenzotriazole (DIC/HOBt) coupling reagents, is described. An MW-SPPS protocol was for the first time successfully applied to the acid labile CLTR-Cl for the faster synthesis of long peptides (51mer peptide) and with an enhanced purity in comparison to conventional SPPS protocols. The synthesis of such long peptides is not trivial and it is generally achieved by recombinant techniques. The desired linear peptide was obtained in only 30 h of total processing time and in 51% crude yield, in which 60% was the purified product obtained with 99.4% purity. The synthesized peptide was purified by reversed phase high performance liquid chromatography (RP-HPLC) and identified by electrospray ionization mass spectrometry (ESI-MS). Then, the regioselective formation of the two disulfide bridges of hPTN 60-110 was successfully achieved by a two-step procedure, involving an oxidative folding step in dimethylsulfoxide (DMSO) to form the Cys(77)-Cys(109) bond, followed by iodine oxidation to form the Cys(67)-Cys(99) bond.

  8. Matrix effect on leaching of Bisphenol A diglycidyl ether (BADGE) from epoxy resin based inner lacquer of aluminium tubes into semi-solid dosage forms.

    Science.gov (United States)

    Lipke, Uwe; Haverkamp, Jan Boris; Zapf, Thomas; Lipperheide, Cornelia

    2016-04-01

    To study the impact of different semi-solid dosage form components on the leaching of Bisphenol A (BPA) and Bisphenol A diglycidyl ether (BADGE) from the epoxy resin-based inner lacquer of aluminium tubes, the tubes were filled with different matrix preparations and stored at an elevated temperature. Despite compliance with the European Standards EN 15348 and EN 15766 on porosity and polymerisation of internal coatings of aluminium tubes, the commercially available tubes used in the study contained an increased amount of polymerisation residues, such as unbound BPA, BADGE and BADGE derivatives in the lacquer, as determined by acetonitrile extraction. Storage of Macrogol ointments in these tubes resulted in an almost quantitative migration of the unbound polymerisation residues from the coating into the ointment. In addition, due to alterations observed in the RP-HPLC chromatograms of the matrix spiked with BADGE and BADGE derivatives it is supposed that the leachates can react with formulation components. The contamination of the medicinal product by BPA, BADGE and BADGE derivatives can be precluded by using aluminium tubes with an internal lacquer with a low degree of unbound polymerisation residues. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  10. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  11. Toluene and chlorobenzene dinitration over solid H3PO4/MoO3/SiO2 catalyst

    International Nuclear Information System (INIS)

    Adamiak, Joanna; Kalinowska-Alichnewicz, Dorota; Szadkowski, Michal; Skupinski, Wincenty

    2011-01-01

    Highlights: → A novel catalyst H 3 PO 4 /MoO 3 /SiO 2 was characterized and used in nitration. → On the surface domains of phosphomolybdic acid (HPM) are obtained. → Dinitrotoluene is obtained with very high yield i.e. 96 wt.% in mild conditions. → Dinitrochlorobenzene is obtained with only twelve-fold excess of nitric acid. → It is sulfuric acid free and solvent free nitration of aromatic compounds. - Abstract: A new catalyst, H 3 PO 4 /MoO 3 /SiO 2 , was prepared by modification of MoO 3 /SiO 2 using phosphoric acid. The characterization of the catalyst was performed using Infrared and Raman Spectroscopy, potentiometric titration and nitrogen adsorption-desorption methods. Molybdenum oxides were identified along with phosphomolybdic acid and polymolybdates on the modified surface. The suitability of the catalysts for toluene and chlorobenzene nitration in continuous process was examined. Toluene is effectively nitrated to dinitrotoluene (DNT) in one-stage process (96 wt.% of DNT in the product) and in mild conditions i.e. at room temperature and only with ten-fold excess of nitric acid. In chlorobenzene nitration only twelve-fold excess of nitric acid is needed to obtain as high yield as 95 wt.%. Most importantly, the novel catalysts we have developed, provide the opportunity for sulfuric acid- free nitration of aromatic compounds.

  12. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. PEG-related polymer resins as synthetic supports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combinatorial chemistry has become a significant part of the discovery and optimization process for novel drugs,affinity ligands,and catalysts.The polymeric supports play a key role in combinatory chemistry.Therefore,various kinds of functional polymer resins have been exploited as supports,reagents,and catalysts in organic synthesis.In comparison to the conventional Merrifield resins,the poly(ethylene glycol)(PEG)-related polymer resins have advantages including good compatibilities with polar solvents,good solvent absorbency and swelling properties.This review focuses primarily on the more recent work in the field of developing PEG-related polymer resins as supports for organic synthesis.

  14. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fe1-xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol.

    Science.gov (United States)

    Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue

    2018-07-05

    Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  17. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  18. Toluene and chlorobenzene dinitration over solid H3PO4/MoO3/SiO2 catalyst.

    Science.gov (United States)

    Adamiak, Joanna; Kalinowska-Alichnewicz, Dorota; Szadkowski, Michał; Skupiński, Wincenty

    2011-11-15

    A new catalyst, H(3)PO(4)/MoO(3)/SiO(2), was prepared by modification of MoO(3)/SiO(2) using phosphoric acid. The characterization of the catalyst was performed using Infrared and Raman Spectroscopy, potentiometric titration and nitrogen adsorption-desorption methods. Molybdenum oxides were identified along with phosphomolybdic acid and polymolybdates on the modified surface. The suitability of the catalysts for toluene and chlorobenzene nitration in continuous process was examined. Toluene is effectively nitrated to dinitrotoluene (DNT) in one-stage process (96 wt.% of DNT in the product) and in mild conditions i.e. at room temperature and only with ten-fold excess of nitric acid. In chlorobenzene nitration only twelve-fold excess of nitric acid is needed to obtain as high yield as 95 wt.%. Most importantly, the novel catalysts we have developed, provide the opportunity for sulfuric acid- free nitration of aromatic compounds. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Microvoid channel polymer photonic crystals with large infrared stop gaps and a multitude of higher-order bandgaps fabricated by femtosecond laser drilling in solid resin

    International Nuclear Information System (INIS)

    Straub, M.; Ventura, M.; Gu, M.

    2004-01-01

    Photosensitive polymer materials are ideally suited for laser-induced micro- and nanostructuring, as structural and compositional changes are achieved already under exposure to moderate intensities of high-repetition rate ultrashort-pulsed light. Photonic crystals with bandgaps in the infrared or the visible spectral region are a particularly interesting application, because highly correlated structural elements at a size of only a few hundred nanometers are required. We fabricated infrared photonic crystals based on microvoid channels inside solid polymer material. Femtosecond-pulsed visible light was focused into UV-cured Norland NOA63 resin by a high numerical aperture objective. In the focal spot microexplosions drive the material out of the center of the focus. Void channels of 0.7-1.3 μm diameter are generated by translating the sample along a preprogrammed pathway. Woodpile structures of void channels at layer spacings of 1.6-2.6 μm and in-plane channel spacings of 1.2-1.3 μm allowed for bandgap-induced suppression of infrared transmission in the stacking direction of as much as 86% by only 20 layers. As these structures are highly correlated and do not contain many imperfections, up to three higher-order stop gaps are observed. Consistent with theory, the number and gapwidth of higher-order gaps strongly increases with the ratio between layer- and in-plane spacing. Due to their low refractive index contrast and the missing interconnectivity of voids our structures do not provide complete photonic bandgaps. However, their manifold of sizable higher-order gaps allows for the engineering of photonic stop gaps down to the near-infrared wavelength region using comparatively large structural dimensions

  20. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  1. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  2. Investigation of the behaviour of solid acid catalysts for acylations and cyanisations of aromatics. Final report; Untersuchungen zur Wirkungsweise von festen sauren Katalysatoren bei Acylierungen und Cyanierungen von Aromaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, E.

    2002-01-01

    The present state of the art in the field of FRIEDEL-CRAFTS-ACYLATIONS is characterized by the application of homogenous catalysts (at least stochiometric amounts) like AlCl{sub 3} or FeCl{sub 3}. Problems arising from this application are corrosions, difficult product separations from the catalyst and the origin of acid waste water. Hence, the aim of this project was the development of suitable solid catalysts which overcome the problems ascribed above. Sulfated zirconia (SZ) was found to be an excellent solid Br.o/nsted-acid to be used especially in their aerogel or cryogel form. Thus with this catalyst system, in the benzoylation of anisol nearly 100% conversion may be achieved. In this way it could be proved, that with SZ a solid Br.o/nsted-acid might be available which gives reasonable hope to substitute in a near future, at least for some reactions, the classical homogeneous catalysts and to overcome their problems in use. (orig.)

  3. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    African Journals Online (AJOL)

    Akorede

    cobalt amine (accelerator), methyl ethyl ketone peroxide (catalyst) to develop two sets of ... shell liquid (CNSL) resin were comparable to those developed with polyester resin. ... permit diffusion of water, this function is often not adequately ... When designed ... blades in gas turbine engines, wing leading edges and flaps.

  4. Mechanism for transporting used resin

    International Nuclear Information System (INIS)

    Sugimoto, Yoshikazu; Yusa, Hideo; Kamiya, Kunio.

    1975-01-01

    Object: In the operation of a light water reactor type atomic power plant, to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Structure: Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use. (Kamimura, M.)

  5. Mechanism for transporting used resin

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H; Kamiya, K

    1975-01-16

    In the operation of a light water reactor type atomic power plant the objectives is to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use.

  6. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  7. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  9. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  10. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.

    Science.gov (United States)

    Zhang, Luxin; He, Yunfei; Zhu, Yujie; Liu, Yuting; Wang, Xiaochang

    2018-02-01

    This paper focuses on the high-value transformation of camellia oleifera shell, which is an agricultural waste enriched in hemicellulose. An efficient catalytic route employing sulfonated swelling mesoporous polydivinylbenzene (PDVB-SO 3 H) as catalyst in monophasic or biphasic solvents was developed for the conversion of raw camellia oleifera shell into furfural. The reaction parameters were evaluated and optimized for improving the furfural yield. It was found that the solvent greatly influenced the hydrolysis of camellia oleifera shells, and the highest furfural yield of 61.3% was obtained in "γ-butyrolactone + water" system when the feedstock-to-catalyst ratio was 2 for 30 min at 443 K. Camellia oleifera shell exhibited a high potential as feedstock to produce furfural in high yields. The outcome of this study provides an attractive utilization option to camellia oleifera shell, which is currently burned or discarded for producing a bio-based chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  12. Study of fluorine doped (Nb,Ir)O{sub 2} solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kadakia, Karan Sandeep [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Velikokhatnyi, Oleg I.; Datta, Moni Kanchan [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Patel, Prasad [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chung, Sung Jae [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Park, Sung Kyoo [Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N. [Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, PA 15261 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, PA 15217 (United States)

    2016-10-15

    Graphical abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of nominal composition (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb{sub 1−x}Ir{sub x})O{sub 2} with an optimal composition (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO{sub 2} and nanostructured in-house chemically synthesized IrO{sub 2}. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb{sub 0.75}Ir{sub 0.25})O{sub 2}:10F exhibits superior electrochemical activity than pure IrO{sub 2}. • Stability of the (Nb,Ir)O{sub 2}:10F nanomaterials is comparable to pure (Nb,Ir)O{sub 2}. • High surface area F doped (Nb,Ir)O{sub 2} are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m{sup 2}/g) nanostructured powders of (Nb{sub 1−x}Ir{sub x})O{sub 2} and (Nb{sub 1−x}Ir{sub x})O{sub 2}:10F (∼100 m{sup 2}/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb{sub 2}O{sub 5} and 10 wt.% F doped Nb{sub 2}O{sub 5} powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O{sub 2} and 10 wt.% F doped (Nb,Ir)O{sub 2} [(NbIr)O{sub 2}:10F] electro-catalysts by soaking in IrCl{sub 4} followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb{sub 0.75}Ir

  13. Flow-injection spectrophotometric determination of captopril in pharmaceutical formulations using a new solid-phase reactor containing AgSCN immobilized in a polyurethane resin

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Vicentini

    2012-06-01

    Full Text Available A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12 were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12 foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados

  14. Binding of Sr from milk by solid phase extraction with cryptand C222 sorbed on silica gel, cation exchange, chelating or adsorbent resins for simplified 90Sr analysis

    International Nuclear Information System (INIS)

    Tait, David; Wiechen, Arnold; Haase, Gerhard

    1995-01-01

    Several commercially available resins have been found to bind the bicyclic polyether cryptand C222 from aqueous acetonitrile solutions. The presence of C222 on some of these resins strongly improved their affinity for Sr, so that relatively small amounts of such resins sorbed Sr from milk. The resins investigated were silica gel, polyacrylic acid crosslinked with divinylbenzene (DVB), polystyrene crosslinked with divinylbenzene (PS-DVB) and PS-DVB containing sulphonate, aminomethylphosphonate, iminodiacetate and mercapto groups. The resins for which binding of C222 resulted in the largest improvement in Sr sorption from milk were PS-DVB containing mercapto groups (Chelite S) and silica gel (Si 60). Thus, 2 ml wet volume of either Chelite S containing 133 μmol of C222, or silica gel Si-60 containing 143 μmol of C222 sorbed 90 and 48%, respectively, of the Sr from 100-ml milk samples. As the sorption of Sr from milk by these systems is relatively slow, contact times of 24-36 h are required to attain these results. The Chelite S-C222 system separates Sr effectively from Cs and Ca. Under the conditions described here some 6% of the natural 40 K in milk sorbs with Sr to the resin. Ba behaves similarly to Sr. 90 Sr/ 90 Y sorbed on the silica gel Si-60-C222 system can be measured directly and efficiently by liquid scintillation counting. If adequate specificity can be attained this system might provide a very simple method of determining 90 Sr in milk

  15. Transesterification of linoleic and oleic sunflower oils to biodiesel using CaO as a solid base catalyst

    Directory of Open Access Journals (Sweden)

    Predojević Zlatica

    2012-01-01

    Full Text Available The purpose of this work is to characterize biodiesel (i.e. methyl esters, MEs produced from linoleic and oleic sunflower oils (LSO and OSO, respectively by alkali transesterification with methanol and CaO as a heterogeneous catalyst under different reaction parameters. The parameters investigated were the methanol/oil molar ratio (4.5:1, 6:1, 7.5:1, 9:1 and 12:1 and the mass ratio of CaO to oil (2% and 3%. The physical and chemical properties of the feedstocks and MEs, like density at 15oC, kinematic viscosity at 40oC, acid value, iodine value, saponification value, cetane index, fatty acid (methyl ester composition, were determined in order to investigate the effects of LSO and OSO properties and reaction parameters on the product characteristics, yields and purity. The properties of feedstock had decisive effect on the physical and chemical properties of MEs as majority of them did not differ significantly under studied reaction conditions. The MEs produced generally met the criteria required for commercial biodiesel; in fact, the only exception was in the case of iodine value of ME produced from LSO. The product yields only slightly changed with the applied conditions; the highest yield (99.22% was obtained for ME-LSO produced at 6 mol% methanol to oil ratio, while the lowest one (93.20% was for ME-OSO produced under the lowest methanol/oil molar ratio (4.5:1. The applied catalyst amounts had similar influence on the oil conversion to biodiesel. The yields of ME-LSOs were in general somewhat higher than those obtained for ME-OSOs under the same conditions, which was attributed to the influence of the respective feedstocks' acid value and viscosity.

  16. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  17. Hairy foam" : carbon nanofibers grown on solid foam. A fully accessible, high surface area, graphitic catalyst support

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    This paper describes the synthesis of carbon nanofibers (CNFs) on solid carbon foam ("Hairy Foam") by catalytic decompn. of ethylene. The effect of nickel loading on fiber diam. and morphol., CNF coverage, and fiber layer thickness is studied using SEM and N2/Kr-physisorption. The surface area

  18. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-01-09

    ... Cooling Tower PEPO--Polyether Polyols PET--Poly (Ethylene Terephthalate) Resin PM--Particulate Matter POM...., fixed roofs on storage vessels and oil water separators; covers on surface impoundments, containers and... category: Solid-state resins (PET bottle grade resins), polyester film and engineering resins. They are all...

  19. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  20. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  1. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    Science.gov (United States)

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  2. MULTIELEMENT SOLID PHASE PRECONCENTRATION USING A CHELATING RESIN OF STYRENE DIVINYLBENZENE COPOLYMER AND APPLICATION TO ANALYSIS OF SEAWATER AND FISH OTOLITHS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP�MS)

    Science.gov (United States)

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A new chelating resin has been synthesized by immobilizing 4–(2–thiazolylazo) resorcinol (TAR) onto styrene divinlybenzene copolymer and examined for on-line solid phase extraction/preconcentration of Cd, Co, Cu, Ni, Pb and Zn in seawater and fish otoliths for determination by inductively plasma mass spectrometry (ICP-MS). A volume of 5.0 mL sample solution was loaded onto the mini column of TAR immobilized resin at 2.0 mL min−1 via a sequential injection system. The optimum pH for multielement preconcentration was around pH 5.5. Recoveries were better than 96% in artificial seawater. Elution was achieved with 1.0 mL of 0.75 mol L−1 HNO3. The resin possesses large sorption capacity ranging from 82.0 µmol g−1 for Pb to 319 µmol g−1 for Cu. The detection limits (3s) varied between 0.0016 µg L−1 (Cd) and to 0.015 µg L−1 (Zn) for preconcentration of 5.0 mL blank solutions (pH 5.5). Relative standard deviation (RSD)for three replicate runs was between 0.3% (Cd) and 6% (Zn) at 1.0 µg L−1 level. The procedure was validated by analysis of Nearshore Seawater certified reference material (CASS–4), and then successfully applied to the determination of the trace elements in fish otoliths (CRM 22) and in coastal seawater and estuarine water samples. PMID:24976635

  3. 1H MAS NMR (magic-angle spinning nuclear magnetic resonance) techniques for the quantitative determination of hydrogen types in solid catalysts and supports.

    Science.gov (United States)

    Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J

    2004-06-01

    Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.

  4. The mechanism of uranium adsorption on Resin 508 and isoelectric point of the resin

    International Nuclear Information System (INIS)

    Han Qingping; Lu Weichang; Su Huijuan; Hu Jinbo; Zhang Liqin; Chen Banglin

    1990-01-01

    The adsorption process of uranium by Resin 508 at the solid-liquid interface was investigated and the mechanism of uranium adsorption including adsorption dynamics, adsorption thermodynamics and isoelectric point of resin was studied. The results are as follows: The maximum of uranium adsorption is attained at pH5-7; Uranium adsorption isotherm by Resin 508 in experimental conditions agrees with Langmuir's adsorption isotherm, the maximum of uranium adsorbed (Vm) is 716 mg U/g-dried resin; The adsorption of uranium by Resin 508 is an endothermic reaction and ΔH = 16.87 kJ/mol; The exchange-adsorption rate is mainly controlled by liquid film diffusion; The isoelectric points of Resin 508 before and after uranium adsorption are found to be pH7.5 and pH5.7 respectively. It is a specific adsorption for uranium

  5. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ

  6. Copolymerization of carbon monoxide and styrene catalyzed by resin-supported palladium polymer

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Polyketone was prepared by the copolymerization of carbon monoxide (CO and styrene (ST catalyzed by o-phenylenediamine resin-supported palladium acetate. Effects of each catalytic system component such as 2,2’-bipyridine, 1,4-quinone and p-toluene-sulphonate on the copolymerization were investigated. The resin-supported catalyst and the copolymerization product were characterized by infrared spectroscopy (IR, differential scanning calorimetry (DSC, thermogravimetry (TG, X-ray photoelectron spectroscopy (XPS, Scanning Electron Microscopy (SEM. Results indicated that the resin-supported catalyst has excellent catalytic property. Furthermore, partial catalytic activity was maintained after the catalyst was used for five times.

  7. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  8. On-resin N-formylation of peptides: a head-to-head comparison of reagents in solid-phase synthesis of ligands for formyl peptide receptors

    DEFF Research Database (Denmark)

    Christensen, Simon Bendt; Hansen, Anna Mette; Franzyk, Henrik

    2017-01-01

    General conditions for efficient on-resin N-formylation of peptides were identified by screening of a number of reagents comprising aliphatic formates (ethyl formate, 2,2,2-trifluoroethyl formate, and cyanomethyl formate), aromatic esters (phenyl formate and p-nitrophenyl formate), and N-formylim...... available activated ester p-nitrophenyl formate proved to be most convenient and versatile as high formylation degrees were obtained after 1–3 h at room temperature, while either conventional or microwave-assisted heating allowed reduction of the formylation time to 20 min....

  9. Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids

    International Nuclear Information System (INIS)

    Gervasini, Antonella; Auroux, Aline

    2013-01-01

    Graphical abstract: Measurements of acidity of oxides of catalytic importance in various liquids open the possibility to know their effective acidity, which is related with their activity in liquid-heterogeneous catalysis. Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. - Highlights: • Measurements of acidity of oxides of catalytic importance in various liquids. • Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. • Effective acidities are expressed by given sample in various liquids. • Nb-containing samples are able to maintain acidity in protic liquids. - Abstract: The effective acid and base surface properties of selected acidic and basic samples of catalytic interest (alumina, titania, zirconia, silica–alumina, niobium oxide, niobium phosphate, boron nitride, and hydrotalcite) were measured by titration with basic and acidic molecular probes (aniline, 2-phenylethylamine, and phenol) in various liquids (cyclohexane, 1,4-dioxane, isopropanol, n-decane, and toluene) with different polar and protic characteristics. The combined use of a reaction calorimeter and a spectrofluorimeter has been performed. The set-up of the coupled technique and the most interesting results are shown here. The study confirmed that the acid–base properties of solids are deeply affected by the nature and properties of the liquid surrounding the samples. Few oxides are able to maintain their surface acidity in highly polar and protic solvents, in particular whose containing niobium. In general, the solvating and coordinative ability of the most polar and protic liquids caused remarkable loss of acidity/basicity of the oxide surfaces

  10. Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gervasini, Antonella, E-mail: antonella.gervasini@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi, 19, 20133 Milano (Italy); Auroux, Aline, E-mail: aline.auroux@ircelyon.univ-lyon1.fr [Université Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l‘Environnement de Lyon (IRCELYON), 2 Avenue A. Einstein, 69626 Villeurbanne (France)

    2013-09-10

    Graphical abstract: Measurements of acidity of oxides of catalytic importance in various liquids open the possibility to know their effective acidity, which is related with their activity in liquid-heterogeneous catalysis. Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. - Highlights: • Measurements of acidity of oxides of catalytic importance in various liquids. • Titration-calorimetry alone or in connection with spectrofluorimetry is efficient for this scope. • Effective acidities are expressed by given sample in various liquids. • Nb-containing samples are able to maintain acidity in protic liquids. - Abstract: The effective acid and base surface properties of selected acidic and basic samples of catalytic interest (alumina, titania, zirconia, silica–alumina, niobium oxide, niobium phosphate, boron nitride, and hydrotalcite) were measured by titration with basic and acidic molecular probes (aniline, 2-phenylethylamine, and phenol) in various liquids (cyclohexane, 1,4-dioxane, isopropanol, n-decane, and toluene) with different polar and protic characteristics. The combined use of a reaction calorimeter and a spectrofluorimeter has been performed. The set-up of the coupled technique and the most interesting results are shown here. The study confirmed that the acid–base properties of solids are deeply affected by the nature and properties of the liquid surrounding the samples. Few oxides are able to maintain their surface acidity in highly polar and protic solvents, in particular whose containing niobium. In general, the solvating and coordinative ability of the most polar and protic liquids caused remarkable loss of acidity/basicity of the oxide surfaces.

  11. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  12. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.

  13. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  14. Single Pellet String Reactor for Intensification of Catalyst Testing in Gas/Liquid/Solid Configuration Réacteur catalytique de type “filaire” pour l’intensification de tests catalytiques en configuration gaz/liquide/solide

    Directory of Open Access Journals (Sweden)

    Hipolito A.I.

    2010-09-01

    has been shown that the pressure drop is controlled by the liquid/solid friction surface and that the pressure drop is not a limiting parameter in the reactor’s operation (values always lower than 0.1 bar. So, from a hydrodynamic point of view, this new reactor exhibits characteristics suitable for its use in catalytic tests. Finally, this reactor was implemented under reaction conditions to study hydrogenation reactions with a real industrial catalyst. The selective hydrogenation of allene was studied. The string reactor was shown to run isothermal kinetic tests with a very small amount of industrial-sized catalyst particles (less than 2 cc and to explore kinetics of fast reaction at high space velocities impossible to achieve in standard fixed bed units with appropriate hydrodynamic conditions. For constant residence time, the allene conversion does not vary with pressure and feed flow rate, which confirms that the string reactor allows one to perform catalytic tests with such a fast reaction without external mass transfer resistance. L’optimisation du catalyseur est une etape cle pour l’optimisation d’un procede catalytique du point de vue des rendements, de l’efficacite energetique et de la selectivite des reactions. La strategie de developpement d’un catalyseur comprend des tests effectues sur des reacteurs pilotes avec des charges reelles ou modeles. Cette etape a fait l’objet de nombreuses etudes ces dernieres decennies portant sur le dimensionnement des reacteurs, l’amelioration des outils d’analyses et les procedures operatoires. La plupart des etudes ont pour but de determiner l’activite catalytique de catalyseur sous forme de grain dans des conditions isothermes de facon a pouvoir determiner les parametres cinetiques de la reaction. Avec l’optimisation des catalyseurs, les flux de transfert de matieres externes aux grains peuvent devenir l’etape limitante, dans les reacteurs de laboratoire standard, par rapport aux flux de reaction

  15. A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells

    Science.gov (United States)

    Lei, Libin; Tao, Zetian; Hong, Tao; Wang, Xiaoming; Chen, Fanglin

    2018-06-01

    The sluggish reaction kinetics in the cathode usually leads to considerable cathode polarization resistance, hindering the development of proton conducting solid oxide fuel cells (H-SOFCs) operated at intermediate temperatures (400-650 °C). To address this problem, for the first time, a novel hybrid catalyst consisting of PrNi0.5Mn0.5O3 and PrOx is impregnated in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF) cathode of H-SOFCs, resulting in significant enhancement of the cathode reaction kinetics. Single cells with impregnated LSCF cathode and BaZr0.8Y0.2O3 (BZY) electrolyte yield a maximum power density (MPD) of 0.198 W cm-2 at 600 °C, more than doubled of that with blank LSCF cathode (0.083 W cm-2). ECR and EIS studies reveal that the hybrid catalyst can substantially accelerate the oxygen-ion transfer and oxygen dissociation-absorption processes in the cathode, resulting in significantly lower polarization resistance and higher MPD. In addition, the hybrid catalyst possesses good chemical and microstructural stability at 600 °C. Consequently, the single cells with impregnated LSCF cathode show excellent durability. This study shows that the impregnation of this novel hybrid catalyst in the cathode could be a promising approach to improve the performance and stability of H-SOFCs.

  16. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2}/La{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Zhang, Xiao-Dong; Sun, Li; Zhang, Jie; Xu, Hai-Peng [Energy Research Institute of Shandong Academy of Sciences, Jinan 250014 (China)

    2010-01-15

    A new type of solid superacid catalyst with the composition of SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2} loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO{sub 3}){sub 3} was 0.1 wt.%, the concentration of H{sub 2}SO{sub 4} for impregnation was 0.5 mol l{sup -1} and calcination temperature was 550 C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times. (author)

  17. Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.

    Science.gov (United States)

    Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai

    2018-08-01

    Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.

  18. Evaluation report on the design of solid catalysts for saving energy in petrochemical industry; Sekiyu kagaku no tame no sho energy gata kotai shokubai sekkei hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The aim is to improve on hydrocarbon oxidation which is a difficult reaction (analogous to combustion and having potential for heat generation or explosion, with restrictions therefore imposed on reaction conditions) by use of a catalyst supporting porous membrane. The fiscal 1999-2000 results are stated. In this effort, the target reaction is promoted by a catalyst supported by a porous membrane while combustion is controlled by the said porous membrane that separates oxygen and hydrocarbon from each other. Such a design was not available since a catalyst supporting inorganic membrane withstanding so high a temperature was difficult to prepare. Recently, however, a porous membrane with its pores regulated to microstructural dimensions was developed. The activity of a Pd membrane catalyst is evaluated in view of the degree of oxidation of propylene, cyclohexene, and benzene. It is then found that hydrogen that has passed the Pd membrane participates in the reaction. In a propylene oxidation test using a membrane type Ag/Al{sub 2}O{sub 3} catalyst, it is found that acetone is generated and that oxygen after passing through the membrane participates in the reaction. Methods are studied for preparing a metal membrane in which the catalyst system comprises a catalyst supporting porous membrane and a Pd membrane. In the fabrication of metal membranes, a highly selective hydrogen permeable membrane is stably prepared by the thermal CVD (chemical vapor deposition) method. (NEDO)

  19. A conditioning process for ion exchanger resins contaminated with radioactive elements

    International Nuclear Information System (INIS)

    Legros, R.; Wiegert, B.; Zeh, J.L.

    1993-01-01

    Ion exchanger resins are embedded in a pre-polymer syrup prepared from acrylic monomers having high boiling point. A curing catalyst (a peroxide) and an activation agent (a tertiary amine) are added. 12 examples are given. 9 p

  20. Synthesis and Thermal Properties of a Novel Nitrogen-containing Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    Xing Hong ZHANG; Hong Mei WAN; Yu Qin MIN; Zuo FANG; Guo Rong QI

    2005-01-01

    A new nitrogen-containing epoxy resin (XT resin) was synthesized from chain extension of xylenephenolformaldehyde resin (XPF) and triglycidyl isocyanurate (TGIC) in the presence of base catalyst. FT-IR and 1H-NMR analysis confirmed the chemical structure of XT resin. It was cured with dicyandiamide (DICY) and diaminodiphenyl sulfone (DDS). Dynamic mechanical analysis (DMA) results showed that the introduction of triazine ring provides epoxy polymer with good thermal stability. Furthermore, high char yields at 800℃ in thermogravimetric (TGA)analysis indicated that XT resin had potential flame retardance.

  1. Method of burning ion-exchange resin contaminated with radioactivity

    International Nuclear Information System (INIS)

    Suzuki, Shigenori.

    1986-01-01

    Purpose: To process spent ion exchange resins to reduce their volume, without increasing the load on a off-gas system and in a stable state and at the same time not leaving any uncombusted portions. Method: The water slurries of the ion exchange resins contaminated with radioactive materials is dehydrated or dry combusted to reduce the water content. A binder is then added to solidify the ion exchange resin. The solidified ion exchange resins are then combusted in a furnace. This prevents the ion exchange resin from being dispersed by air and combustion gases. Furthermore, the solidified ion exchange resins in the form of small pellets burn from the surface inwards. Moreover the binder is carbonized by the combustion heat and promotes combustion to convert the ion exchange resins into a solid mass, making sure that no uncombusted portion is left. (Takahashi, M.)

  2. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha curcas Fruit Shell as Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2012-08-01

    Full Text Available The transesterification of waste frying oil (WFO with methanol in the presence of potassium hydroxide catalyst supported on Jatropha curcas fruit shell activated carbon (KOH/JS was studied. The catalyst systems were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and the Brunauer–Emmett–Teller (BET method. The effects of reaction variables such as residence time, reaction temperature, methanol/oil molar ratio and catalyst bed height in packed bed reactor (PBR on the yield of biodiesel were investigated. SEM images showed that KOH was well distributed on the catalyst support. The optimum conditions for achieving the conversion yield of 86.7% consisted of a residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar ratio of 16 and catalyst bed height of 250 mm. KOH/JS could be used repeatedly five times without any activation treatment, and no significant activity loss was observed. The results confirmed that KOH/JS catalyst had a great potential to be used for industrial application in the transesterification of WFO. The fuel properties of biodiesel were also determined.

  3. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  4. Sulfur Tolerance of Carbide Catalysts Under Hydrocarbon Reforming Conditions

    National Research Council Canada - National Science Library

    Thomson, William

    2004-01-01

    .... These conditions are all related to lowering gas-solid mass transfer rate has also been determined that tedious TPR catalyst synthesis techniques are not necessary to achieve either catalyst activity or stability...

  5. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  6. Toluene and chlorobenzene dinitration over solid H{sub 3}PO{sub 4}/MoO{sub 3}/SiO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak, Joanna, E-mail: jadamiak@ch.pw.edu.pl [Warsaw University of Technology, Faculty of Chemistry, Division of High Energetic Materials, Noakowskiego 3, 00-664 Warsaw (Poland); Kalinowska-Alichnewicz, Dorota; Szadkowski, Michal; Skupinski, Wincenty [Warsaw University of Technology, Faculty of Chemistry, Division of High Energetic Materials, Noakowskiego 3, 00-664 Warsaw (Poland)

    2011-11-15

    Highlights: {yields} A novel catalyst H{sub 3}PO{sub 4}/MoO{sub 3}/SiO{sub 2} was characterized and used in nitration. {yields} On the surface domains of phosphomolybdic acid (HPM) are obtained. {yields} Dinitrotoluene is obtained with very high yield i.e. 96 wt.% in mild conditions. {yields} Dinitrochlorobenzene is obtained with only twelve-fold excess of nitric acid. {yields} It is sulfuric acid free and solvent free nitration of aromatic compounds. - Abstract: A new catalyst, H{sub 3}PO{sub 4}/MoO{sub 3}/SiO{sub 2}, was prepared by modification of MoO{sub 3}/SiO{sub 2} using phosphoric acid. The characterization of the catalyst was performed using Infrared and Raman Spectroscopy, potentiometric titration and nitrogen adsorption-desorption methods. Molybdenum oxides were identified along with phosphomolybdic acid and polymolybdates on the modified surface. The suitability of the catalysts for toluene and chlorobenzene nitration in continuous process was examined. Toluene is effectively nitrated to dinitrotoluene (DNT) in one-stage process (96 wt.% of DNT in the product) and in mild conditions i.e. at room temperature and only with ten-fold excess of nitric acid. In chlorobenzene nitration only twelve-fold excess of nitric acid is needed to obtain as high yield as 95 wt.%. Most importantly, the novel catalysts we have developed, provide the opportunity for sulfuric acid- free nitration of aromatic compounds.

  7. Waste crab shell derived CaO impregnated Na-ZSM-5 as a solid base catalyst for the transesterification of neem oil into biodiesel

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Shankar

    2017-11-01

    Full Text Available Activated calcium oxide extracted from crab shell impregnated on Na-ZSM-5 has been investigated. Crab shells were collected, powdered and calcined at 900 °C, and CaO was impregnated on Na-ZSM-5 and calcined at 550 °C for 10 h. The CaO/Na-ZSM-5 was characterized by X-ray diffraction, scanning electron microscopy and BET surface area. The prepared catalyst was tested for its catalytic activity by transesterifing neem oil into biodiesel in the presence of methanol. The influence of various parameters including reaction time, temperature, methanol to oil ratio, catalyst concentration and dosage were also investigated. Produced biodiesel have also been tested using proton NMR spectroscopy. Biodiesel yield as 95% has been achieved with 15% CaO impregnated on Na-ZSM-5 at 75 °C. The optimum transesterification reaction conditions were identified as follows: reaction temperature, 75 °C; reaction time, 6 h; methanol-to-neem oil molar ratio, 12:1; catalyst dosage, 0.2 g; and catalyst concentration, 15%. Based on the above study, it can be concluded that the calcium oxide impregnated Na-ZSM-5 can be a potential catalyst for biodiesel production.

  8. Color test for selective detection of secondary amines on resin and in solution

    DEFF Research Database (Denmark)

    Boas, Ulrik; Mirsharghi, Sahar

    2014-01-01

    Resins for solid-phase synthesis give orange to red-brown resin beads selectively when secondary amines are present on the resin when treated with a solution of acetaldehyde and an Fmoc-amino acid in NMP. The method shows good specificity and gives colorless beads when exposed to a variety of oth...

  9. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  10. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  11. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  12. Determination of trace level thorium and uranium in high purity gadolinium sulfate using ICP-MS with solid-phase chromatographic extraction resins

    Science.gov (United States)

    Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.

    2018-01-01

    The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.

  13. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  14. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  15. A Mild and Green Route for Regio-selective Amination of Oxiranes Using Nanomagnetic Supported Ferrous Ion as a Solid Lewis Acid Catalyst in Water

    Directory of Open Access Journals (Sweden)

    Fariborz Mansouri

    2016-07-01

    Full Text Available A mild, green and highly efficient route for regio-selective amination of oxiranes was developed via incorporation of Mn(II, Fe(II, Co(II, Ni(II, Cu(II and Zn(II cations onto the surface of hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp. Among six magnetically recoverable catalytic systems denoted as [γ-Fe2O3@HAp-MII], the catalyst in which M designated as Fe(II showed the best efficiency as well as regio-selectivity in amination of oxiranes under an ambient reaction condition. A wide variety of aromatic and aliphatic amines were reacted with epoxides using magnetically separable iron catalyst to give the corresponding amino alcohols in excellent yields and selectivities in water as solvent at room temperature. In addition, recovery of the catalyst was successfully carried out in subsequent runs without any decrease in activity even after 5 runs. High regio-selectivity toward terminal ring-opening, efficient catalyst reusability using simple magnetic separation, high yields, simplicity in operation and diversity for various substrates are of advantages of this study.

  16. Continuous-flow hydration–condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2011-12-01

    Full Text Available A simple, practical and efficient continuous-flow hydration–condensation protocol was developed for the synthesis of α,β-unsaturated ketones starting from alkynes and aldehydes by employing a heterogeneous catalyst in a flow microwave. The procedure presents a straightforward and convenient access to valuable differently substituted chalcones and can be applied on multigram scale.

  17. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts

    NARCIS (Netherlands)

    Notre, le J.E.L.; Witte-van Dijk, S.C.M.; Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2014-01-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200–2508C without any external added pressure, conditions

  18. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  19. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  20. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  1. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  2. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  3. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  4. A Scalable Process for Production of Single-walled Carbon Nanotubes (SWNTs) by Catalytic Disproportionation of CO on a Solid Catalyst

    International Nuclear Information System (INIS)

    Resasco, D.E.; Alvarez, W.E.; Pompeo, F.; Balzano, L.; Herrera, J.E.; Kitiyanan, B.; Borgna, A.

    2002-01-01

    Existing single-walled carbon nanotube synthesis methods are not easily scalable, operate under severe conditions, and involve high capital and operating costs. The current cost of SWNT is exceedingly high. A catalytic method of synthesis has been developed that has shown potential advantages over the existing methods. This method is based on a catalyst formulation that inhibits the formation of undesired forms of carbon; it can be scaled-up and may result in lower production costs

  5. Determination of trace levels of uranium and thorium in high purity gadolinium sulfate using the ICP-MS with solid-phase chromatographic extraction resin

    Science.gov (United States)

    Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.

    2017-11-01

    The new Super-Kamiokande-Gadolinium (SK-Gd) project is an upgrade of the Super-Kamiokande (SK) detector. In the SK-Gd project, 0.2% Gd_2(SO_4)_3 is loaded into the 50 kton water tank of the SK. One of the main purposes of the project is to discover supernova relic neutrinos. Neutrino measurements and proton decay searches will also be performed in the SK-Gd. In order to measure solar neutrinos with a low energy threshold of ˜3.5 MeV in the SK-Gd, the main radioactive contaminations, ^{238}U and ^{232}Th, in Gd_2(SO_4)_3{\\cdot}8H_2O, should be minimized before loading. Our maximum levels for U and Th are 5 mBq (U)/kg (Gd_2(SO_4)_3{\\cdot}8H_2O) and 0.05 mBq (Th)/kg (Gd_2(SO_4)_3{\\cdot}8H_2O). In order to measure such low concentrations of U and Th in Gd_2(SO_4)_3{\\cdot}8H_2O, we developed the solid-phase extraction technique. Using this method, about 90% or more U and Th could be efficiently extracted while Gd was reduced by a factor of about 104. This allowed these radioactivity contaminations to be measured precisely as 0.04 mBq/kg (Gd_2(SO_4)_3{\\cdot}8H_2O) for U and 0.01 mBq/kg (Gd_2(SO_4)_3{\\cdot}8H_2O) for Th. We measured three pure Gd_2(SO_4)_3{\\cdot}8H_2O samples using this method and estimated that the purest one contained <0.04 mBq (U)/kg (Gd_2(SO_4)_3{\\cdot}8H_2O) and 0.06 ± 0.01 mBq (Th)/kg (Gd_2(SO_4)_3{\\cdot}8H_2O) by the ICP-MS.

  6. Influence of the Hardener on the Emission of Harmful Substances from Moulding Sands with Furan Resin in the Pyrolysis Process

    OpenAIRE

    Holtzer M.; Kmita A.; Żymankowska-Kumon S.; Bobrowski A.; Dańko R.

    2016-01-01

    The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts). The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability) [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according t...

  7. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  8. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    Science.gov (United States)

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  9. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  10. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  11. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  12. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  13. Resin bleed improvement on surface mount semiconductor device

    Science.gov (United States)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  14. Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

  15. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    Science.gov (United States)

    Lyons, P.C.; Mastalerz, Maria; Orem, W.H.

    2009-01-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell

  16. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Paul C. [Lyons and Associates Consultants, 206 Amber Road, Middleboro, MA 02346 (United States); Mastalerz, Maria [Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405 (United States); Orem, William H. [U.S. Geological Survey, MS 956 National Center, Reston, VA 20192 (United States)

    2009-10-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state {sup 13}C nuclear magnetic resonance ({sup 13}C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60 ppm range of solid-state {sup 13}C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000 cm{sup -} {sup 1}) of FTir spectra, all indicating a highly aliphatic molecular structure. The {sup 13}C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH{sub 2}) groups with increasing degree of maturation, as shown by both {sup 13}C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The {sup 13}C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition

  17. Method of pyrolysis for spent ion-exchange resins

    International Nuclear Information System (INIS)

    Aoyama, Yoshiyuki; Matsuda, Masami; Kawamura, Fumio; Yusa, Hideo.

    1985-01-01

    Purpose: To prevent the generation of noxious sulfur oxide and ammonia on the pyrolysis for spent ion-exchange resins discharged from nuclear power plants. Method: In the case where the pyrolysis is made for the cationic exchange resins having sulfonic acids as the ion-exchange group, alkali metals or alkaline earth metals capable of reacting with sulfonic acid groups to form solid sulfates are previously deposited by way of ion-exchange reactions prior to the pyrolysis. In another case of the anionic exchange resins having quarternary ammonium groups as the ion-exchange groups, halogenic elements capable of reacting with the ammonium groups to form solid ammonium salts are deposited to the ion-exchange resins through ion-exchange reactions prior to the pyrolysis. As a result, the amount of the binders used can be reduced, and this method can be used in a relatively simple processing facility. (Horiuchi, T.)

  18. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  19. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  20. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  1. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    Science.gov (United States)

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  3. Synthesis and Characterization of Modified Epoxy Resins by Silicic Acid Tetraethyl Ester and Nano-SiO2

    Institute of Scientific and Technical Information of China (English)

    李海燕; 张之圣

    2004-01-01

    A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 °C.The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric (TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.

  4. Determination of Human-Health Pharmaceuticals in Filtered Water by Chemically Modified Styrene-Divinylbenzene Resin-Based Solid-Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry

    Science.gov (United States)

    Furlong, Edward T.; Werner, Stephen L.; Anderson, Bruce D.; Cahill, Jeffery D.

    2008-01-01

    In 1999, the Methods Research and Development Program of the U.S. Geological Survey National Water Quality Laboratory began the process of developing a method designed to identify and quantify human-health pharmaceuticals in four filtered water-sample types: reagent water, ground water, surface water minimally affected by human contributions, and surface water that contains a substantial fraction of treated wastewater. Compounds derived from human pharmaceutical and personal-care product use, which enter the environment through wastewater discharge, are a newly emerging area of concern; this method was intended to fulfill the need for a highly sensitive and highly selective means to identify and quantify 14 commonly used human pharmaceuticals in filtered-water samples. The concentrations of 12 pharmaceuticals are reported without qualification; the concentrations of two pharmaceuticals are reported as estimates because long-term reagent-spike sample recoveries fall below acceptance criteria for reporting concentrations without qualification. The method uses a chemically modified styrene-divinylbenzene resin-based solid-phase extraction (SPE) cartridge for analyte isolation and concentration. For analyte detection and quantitation, an instrumental method was developed that used a high-performance liquid chromatography/mass spectrometry (HPLC/MS) system to separate the pharmaceuticals of interest from each other and coextracted material. Immediately following separation, the pharmaceuticals are ionized by electrospray ionization operated in the positive mode, and the positive ions produced are detected, identified, and quantified using a quadrupole mass spectrometer. In this method, 1-liter water samples are first filtered, either in the field or in the laboratory, using a 0.7-micrometer (um) nominal pore size glass-fiber filter to remove suspended solids. The filtered samples then are passed through cleaned and conditioned SPE cartridges at a rate of about 15

  5. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  6. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  7. Facile solid-phase ruthenium assisted azide-alkyne cycloaddition (RuAAC) utilizing the Cp*RuCl(COD)-catalyst

    DEFF Research Database (Denmark)

    Engholm, Ebbe; sgz228, sgz228; Blixt, Klas Ola

    2017-01-01

    The ruthenium assisted azide-alkyne cycloaddition (RuAAC) reaction is a well-established method for the generation of 1,5- and 1,4,5-substituted 1,2,3-triazoles, which we have extended to the solid-phase synthesis of 1,2,3-triazole-peptides. The 1,2,3-triazole moieties were formed upon the reacti...

  8. Preparation of FexCe1-xOy solid solution and its application in Pd-only three-way catalysts

    Institute of Scientific and Technical Information of China (English)

    Jianqiang Wang; Meiqing Shen; Jun Wang; Mingshan Cui; Jidong Gao; Jie Ma; Shuangxi Liu

    2012-01-01

    FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD),Brunauer-Emmett-Teller (BET) and Hydrogen temperature-programmed reduction (H2-TPR) techniques.The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O2 transient pulses.The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO2 was 5 mol% based on Fe/(Ce+Fe).The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO2.TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties,which influenced the oxygen handling properties.DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC.The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect.The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO2 and interacted with the ceria and Pd species on the surface,which seriously influenced the catalytic properties,especially after hydrothermal aging treatment.

  9. The n-butyl amine TPD measurement of Brönsted acidity for solid catalysts by simultaneous TG/DTG-DTA

    Science.gov (United States)

    Sasca, V.; Avram, Livia; Verdes, Orsina; Popa, A.

    2010-06-01

    The method for Brönsted acidity measurement based on TPD of alkyl amines desorption by gas-chromatography or thermogravimetry was adapted for simultaneous TG/DTG-DTA analysis. The acidity measurements were focused on the 12-tungstophosphoric acid (H 3PW 12O 40) and its salts, especially with Cesium since these posses the highest Brönsted acidity and they are among the most interesting catalysts. The n-butyl amine (NBA) desorption takes place in three steps for Cs xH 3- xPW 12O 40, x = 0-2, and four steps for the Cs 2.5H 0.5PW 12O 40. The steps of desorption correspond to the release of NBA molecules in stages, as NBA or butene molecules resulted from the Hofmann elimination reaction and NH 3 + H 2O formed by decomposition of ammonium salt. The quantities of desorption products, C 4H 8 and NH 3 + H 2O, corresponding to the stages with the maximum desorption rates at 400-420 °C, respectively 560-600 °C, are in the stoichiometric ratio with the Brönsted acidity.

  10. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  11. Destruction of Ion-Exchange Resin In Waste From the HFIR, T1 and T2 Tanks Using Fenton's Reagent

    International Nuclear Information System (INIS)

    Taylor, P.A.

    2002-01-01

    The use of Fenton's reagent (hydrogen peroxide and a ferrous iron catalyst) has been tested as a method for destroying ion-exchange resin in radioactive waste from three underground storage tanks at the Oak Ridge National Laboratory. The resin in these wastes must be destroyed before they can be transferred to the Melton Valley Storage Tanks (MVSTs) prior to solidification and disposal at the Waste Isolation Pilot Plant. The reaction with ion-exchange resin requires a dilute acidic solution (pH = 3 to 5) and moderate temperatures (T = 60 to 100 C). Laboratory-scale tests of the process have been successfully completed using both simulants and actual waste samples. The ion-exchange resin is oxidized to carbon dioxide and inorganic salts. The reaction rate is quite slow for temperatures below 70 C but increases almost linearly as the temperature of the slurry increases from 70 to 90 C. Pilot-scale tests have demonstrated the process using larger samples of actual waste slurries. A sample from the High Flux Isotope Reactor (HFIR) tank, containing 500 mL of settled solids (resin and inorganic sludge) in a total volume of 1800 mL, was successfully treated to meet MVST waste acceptance requirements in 9 h of processing time, using 1650 mL of 50 wt% hydrogen peroxide. A composite sample from the T1 and T2 tanks, which contained 1000 mL of settled solids in a total volume of 2000 mL required 8 h of treatment, using 1540 mL of 50 wt% peroxide, to meet waste acceptance requirements. Hydrogen peroxide reaction rates were 0.71 to 0.74 g H 2 O 2 /L/min, with very low (<2000 mg/L) concentrations of peroxide in the slurry. The reaction produces mostly carbon dioxide gas during the early part of the treatment, when organic carbon concentrations in the slurry are high, and then produces increasing amounts of oxygen as the organic carbon concentration drops. Small amounts (<3 vol%) of carbon monoxide are also generated. The off-gas from the pilot-scale tests, which was 81 vol

  12. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  13. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  14. Color test for selective detection of secondary amines on resin and in solution.

    Science.gov (United States)

    Boas, Ulrik; Mirsharghi, Sahar

    2014-11-21

    Resins for solid-phase synthesis give orange to red-brown resin beads selectively when secondary amines are present on the resin when treated with a solution of acetaldehyde and an Fmoc-amino acid in NMP. The method shows good specificity and gives colorless beads when exposed to a variety of other functional groups. Furthermore, the acetaldehyde/Fmoc amino acid method can be used as a selective colorimetric test for secondary amines in solution.

  15. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  16. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  17. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  18. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  19. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Wan, Zhong; Xu, Lejin; Wang, Jianlong

    2015-01-01

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe 2+ ] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  20. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Kutty, P.V.E.; Janaradanan, C.; Ramanujam, A.; Dhumwad, R.K.

    1989-01-01

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH - form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  1. Radiation curable epoxy resin

    International Nuclear Information System (INIS)

    Najvar, D.J.

    1978-01-01

    A carboxyl containing polymer is either prepared in the presence of a polyepoxide or reacted with a polyepoxide. The polymer has sufficient acid groups to react with only about 1 to 10 percent of the epoxide (oxirane) groups. The remaining epoxide groups are reacted with an unsaturated monocarboxylic acid such as acrylic or methacrylic acid to form a radiation curable resin

  2. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  3. Treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Ikladious, N.E.; Eskander, S.B.

    1981-01-01

    PMMA was studied with the aim to evaluate its usefulness as an incorporation medium for the final containment of spent ion-exchange resins. The study of the effect of water content (ranging from 25 to 100%) of the incorporated resin into PMMA on the compression strength of the final solid products shows that with the increasing water content the compression strength of the final products decreases sharply. Hardness of the final products follows nearly the same trend of compression strength. Increasing gamma irradiation doses, up to 7.77x10 7 rad, PMMA shows increase in compression strength and hardness for small doses and then decreases with increasing irradiation dose due to the increase in polymerization process and the degradation of the incorporation medium

  4. Electrodeposition of a Au-Dy2O3 Composite Solid Oxide Fuel Cell Catalyst from Eutectic Urea/Choline Chloride Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Claudio Mele

    2012-12-01

    Full Text Available  In this research we have fabricated and tested Au/Dy2O3 composites for applications as Solid Oxide Fuel Cell (SOFC electrocatalysts. The material was obtained by a process involving electrodeposition of a Au-Dy alloy from a urea/choline chloride ionic liquid electrolyte, followed by selective oxidation of Dy to Dy2O3 in air at high temperature. The electrochemical kinetics of the electrodeposition bath were studied by cyclic voltammetry, whence optimal electrodeposition conditions were identified. The heat-treated material was characterised from the morphological (scanning electron microscopy, compositional (X-ray fluorescence spectroscopy and structural (X-ray diffractometry points of view. The electrocatalytic activity towards H2 oxidation and O2 reduction was tested at 650 °C by electrochemical impedance spectrometry. Our composite electrodes exhibit an anodic activity that compares favourably with the only literature result available at the time of this writing for Dy2O3 and an even better cathodic performance.

  5. Leaching of iodine from composites based on epoxy resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    The scope for using solid composites obtained by incorporating dry powdery lead iodide and its aqueous suspension into epoxy resin for prolonged immobilization of iodine-129 under monitorable storage conditions has been assessed by a study of leaching of iodine

  6. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  7. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  8. Embedding in thermosetting resins

    International Nuclear Information System (INIS)

    Buzonniere, A. de

    1985-01-01

    Medium activity waste coming either from nuclear power plants in operation such as evaporator concentrates, spent resins, filter cartridges or the dismantling of installations are embedded in order to obtain a product suitable for long term disposal. Embedding in thermosetting resins (polyester or epoxy) is one among currently used techniques; it is being developed by the CEA (Commissariat a l'Energie Atomique) and Technicatome (subsidiary of CEA and EDF). The process is easy to operate and yields excellent results particularly as far as volume reduction and radioelement containment (cesium particularly) are concerned. The process has already been in operation in four stationary plants for several years. Extension of the process to mobile units has been completed by Technicatome in collaboration with the CEA [fr

  9. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide

    International Nuclear Information System (INIS)

    Srinivas, C.; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Spent organic ion exchange resins are generated in large quantities during the operation of nuclear facilities. Wet oxidation as a mode of treatment of these gel-type ion exchange resins was investigated using H 2 O 2 as oxidant in the presence of CuSO 4 as catalyst. Experiments using commercial samples were conducted at 95-100 deg C under reflux conditions at atmospheric pressure. It was found that the reaction of cation resin with H 2 O 2 was instantaneous whereas with anion resin, there was a lag time. For efficient utilization of the oxidant, low rate of addition of H 2 O 2 , 0.01M concentration of CuSO 4 and neutral pH in mixed resin reactions, were found to be useful. Foaming was noted during reactions involving anion resins. This could be controlled by silicone-based agents. The residual solution left after resin oxidation is aqueous in nature and is expected to contain all the radioactivity originally present in the resin. Preliminary experiments showed that it could be efficiently trapped using available inorganic sorbents. Wet oxidation system offers a simple method of converting organic waste into environmentally acceptable inorganic products. (author). 8 refs., 6 figs., 2 tabs

  10. Ion exchange resins destruction in a stirred supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O.

    2010-01-01

    Spent ion exchange resins (IERs) are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable treatment alternative to destroy the organic structure of resins, used to remove radioactivity. Up to now, studies carried out in supercritical water for IER destruction showed that degradation rates higher than 99% are difficult to obtain even using a catalyst or a large oxidant excess. In this study, a co-fuel, isopropanol, has been used in order to improve degradation rates by initiating the oxidation reaction and increasing temperature of the reaction medium. Concentrations up to 20 wt% were tested for anionic and cationic resins. Total organic carbon reduction rates higher than 99% were obtained from this process, without the use of a catalyst. The influence of operating parameters such as IERs feed concentration, nature and counterions of exchanged IERs were also studied. (authors)

  11. Calcined eggshell (CES): An efficient natural catalyst for ...

    Indian Academy of Sciences (India)

    hydes with active methylene compounds using calcined eggshell (CES) as an efficient ... of the important reactions to achieve carbon–carbon ... solid catalyst for biodiesel production,24 as a catalyst ... which supports for adsorption of water on CaO and ... The organic phase .... After extraction of the product with ethylac-.

  12. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  13. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  14. Strengthening carbonate roof rock of workings by the use of resins in Karst disturbance zones

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, O.V.; Gerovich, E.G.

    1977-12-01

    Test results are given for a proposed method of injection strengthening of rock in sinkhole areas in order to stabilize the rock of mining areas. Tests were made of appropriately selected NaOH solutions to act as catalysts in the injection of resins. Relationships are given between the hardening time of the aqueous resin solutions and the concentration of the NaOH catalyst, the relationship between the viscosity of the resin solutions and the temperature at specific ratios, between the hardness of the polymer materials and age, and between the resinous mixture compression strength and its age at specific temperatures. A diagram is presented of the injection equipment, and data are presented on the number of boreholes receiving the injected resin in relation to physical measurements. The tests of the resinated areas indicate that the rock hardness of the treated zones approaches that of the fissured zones so that props with less supporting power can be used, and work safety is increased. 3 references, 6 figures, 1 table.

  15. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  16. synthesis and charact catalyst for the production o thesis

    African Journals Online (AJOL)

    userpc

    THESIS AND CHARACTERIZATION OF SOLID HETEROGENEOUS. R THE PRODUCTION OF ... r ratio, 2wt% catalyst loading, 80oC reaction temperature and talyst maintained ... The analysis was carried out on a Shimadzu model XRD6000 ...

  17. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  18. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    International Nuclear Information System (INIS)

    Chun, Ung Kyung

    1997-01-01

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs

  19. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ung Kyung [Korea Electric Power Research Insititute, Taejon (Korea, Republic of)

    1997-12-31

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs.

  20. Spatial heterogeneities within an individual catalyst particle during reaction as revealed by in-situ micro-spectroscopy

    NARCIS (Netherlands)

    Kox, M.H.F.

    2009-01-01

    Heterogeneous catalysts are solids, which are of fundamental importance in (petro-) chemical, pharmaceutical and environmental industries. The majority (> 85%) of all chemicals and transportation fuels have come into contact with at least one catalyst material during their manufacturing process. In

  1. On the role of acidity in amorphous silica-alumina based catalysts

    NARCIS (Netherlands)

    Poduval, D.G.

    2011-01-01

    Amorphous silica-alumina (ASA) is widely used as a solid acid catalyst or as a carrier for well-dispersed metal sulfide or metal catalysts. They are often involved in hydrocracking catalyst formulations, especially so when the aim is to produce middle distillates from heavy oil fractions. With

  2. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    Background. Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown...... in an educational programme. Conclusion. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required....

  3. Diffusion in composite materials made of thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-03-01

    The embedding process of low and medium level radioactive wastes in thermosetting resins allows their containment in a solid matrix. During storage the risk of circulation of water is possible. The aim of this containment process is to prevent radionuclide migration in environment. Ion migration through membranes of thermosetting resins alone or filler added were measured to evaluate released radioactivity by embedded blocks with time and to compare the different embedding formulas. Water influence on diffusion was taken into account considering that radioactive wastes dispersion is faster in a wet medium than in a dry one [fr

  4. Treatment of spent ion exchange resins IAEA research coordination programme

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.; Wattal, P.K.; Chanana, N.

    1981-09-01

    Spent ion-exchange resins arising from steam condensate systems, reactor coolant clean-up systems and rad-waste procession, are considered as a specific solid waste management problem. This is the second report on the product characterisation with respect to thermal properties, flammability, bio-organic degradation and leaching behaviours. All these studies are based on polyester-styrene polymer as a matrix for fixation of these spent Ix-resins. Choice of this matrix was dealt with in the first report. (author)

  5. Resin regenerating device in condensate desalting system

    International Nuclear Information System (INIS)

    Sato, Yoshiaki; Igarashi, Hiroo; Oosumi, Katsumi; Nishimura, Yusaku; Ebara, Katsuya; Shindo, Norikazu.

    1984-01-01

    Purpose: To improve the accuracy in the separation of anionic and cationic exchange resins. Constitution: Resins transferred from a condensate desalting column are charged in a cationic exchange resin column. The temperature of water for separating and transferring the resins is measured by a temperature detector disposed in a purified water injection line, and water is adjusted to a suitable flow rate for the separation and transfer of the resins by an automatic flow rate control valve, and then is injected. The resins are separated into cationic exchange resins and anionic exchange resins, in which only the anionic exchange resins are transferred, through an anionic exchange transfer line, into an anionic exchange resin column. By controlling the flow rate depending on the temperature of the injected water, the developing rate of the resin layer is made constant to enable separation and transfer of the resins at high accuracy. (Seki, T.)

  6. The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol

    International Nuclear Information System (INIS)

    Fu Hongbo; Yao Wenqing; Zhang Liwu; Zhu Yongfa

    2008-01-01

    Nanosized Bi 2 WO 6 catalyst exhibited the enhanced photoactivity for the degradation of 4-chlorophenol (4-CP) under visible irradiation compared to the sample prepared by high-temperature solid reaction. The photoactivity of the catalyst was sensitive to pH variation of the suspension. Nanosized Bi 2 WO 6 catalyst showed the highest activity at pH 7.2. The photodegradation of 4-CP by nanosized Bi 2 WO 6 catalyst followed a pseudo-first-order reaction. After three recycling runs for the photodegradation of 4-CP, the activity of the catalyst did not show any significant loss, suggesting that the catalyst was stable under visible irradiation

  7. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  8. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  9. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  10. Chemoviscosity modeling for thermosetting resins

    Science.gov (United States)

    Tiwari, S. N.; Hou, T. H.; Bai, J. M.

    1985-01-01

    A chemoviscosity model, which describes viscosity rise profiles accurately under various cure cycles, and correlates viscosity data to the changes of physical properties associated with structural transformations of the thermosetting resin system during cure, was established. Work completed on chemoviscosity modeling for thermosetting resins is reported.

  11. Cure shrinkage in casting resins

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J. Brock [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    A method is described whereby the shrinkage of a casting resin can be determined. Values for the shrinkage of several resin systems in frequent use by Sandia have been measured. A discussion of possible methods for determining the stresses generated by cure shrinkage and thermal contraction is also included.

  12. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40}

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Shu-wen; Liu, Li-jun; Zhang, Qian; Wang, Liang-yin [Liaocheng University, Liaocheng (China)

    2012-04-15

    Silica supported Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs{sub 2.5}H{sub 0.5}PMo{sub 12}O{sub 40} particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  13. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials.

    Science.gov (United States)

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin

    2017-06-18

    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  14. Quantitative analysis of PMR-15 polyimide resin by HPLC

    Science.gov (United States)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  15. Pilot Plant for treating of spent exchange resins

    International Nuclear Information System (INIS)

    Iglesias, Alberto M.; Raffo Calderon, Maria del C.; Varani, Jose L.

    2004-01-01

    Spent exchange resins that have been accumulating during the last operational 30 years in Atucha I nuclear power plant (NPP) are a 'problematic' waste. These spent resins conform an intermediate level waste due to the total content of alpha, beta and gamma emitters (some samples of spent resins were analyzed in 2003). For this reason its treatment is more expensive since it is necessary to add more safety barriers for its final disposition and also for the radioprotection actions that are involved. Using sulfuric acid solutions it is possible to elute from the spent resins the ions that are retained. In the same operation are eluted Cobalt, Cesium and alpha emitters since that all these elements react as cations in aqueous solution. Decontamination by electrochemical methods was analyzed as an interesting method to apply after elution operation to these spent resins since that with the decontamination process it is possible to obtain a solid without activity and concentrate the activity in cells that are small in volume and its manipulation doesn't present any extra complication. Experiments made with active samples taken from the deposit were successful. Because of these results it was built a small plant to treat a batch of 100 dm 3 of wet spent exchange resins. Some problems with the material that was in the deposit together with spent resins caused that we had to plan a more complex strategy to obtain a complete decontamination of the spent resins (in this stage we used the cobalt retention cell that was described in other paper to retain Cobalt and alpha emitters and a sample of zeolites from Argentina ores to retain Cesium). Due to alpha emitters act electrochemically like cations it was possible to retain altogether with ionic Cobalt on the copper amalgam electrode. Working in the non-active lab with alcoholic solutions it was possible to retain ionic Cesium on a copper electrode (copper is covered by mercury fine film which forms a solid amalgam) with a

  16. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  17. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  18. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  19. Effects of blood contamination on resin-resin bond strength.

    Science.gov (United States)

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (pcontamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  20. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    International Nuclear Information System (INIS)

    Karve, M.; Rajgor, R.V.

    2008-01-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  1. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  2. Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd., 5-3 Ozushima, Izumiohtsu, Osaka 595-0074 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-04-01

    A novel method for preparing thin Au films directly on resin substrates using an electron beam was developed. The thin Au films were prepared on a resin substrate by the reduction of Au ions in an aqueous solution via irradiation with a high-energy electron beam (4.8 MeV). This reduction method required 7 s of the irradiation time of the electron beam. Furthermore, no reductant or catalyst was needed. As the concentration of Au ions in the precursor solution was increased, the amount of Au deposited on the resin substrate increased, too, and the structure of the prepared Au film changed. As a result, the film color changed as well. Cross-sectional scanning electron microscope images of the thus-prepared Au film indicated that the Au films were consisted of two layers: a particle layer and a bottom bulk layer. There was strong adhesion between the Au films and the underlying resin substrates. This was confirmed by the tape-peeling test and through ultrasonic cleaning. After both processes, Au remained on the resin substrates, while most of the particle-like moieties were removed. This indicated that the thin Au films prepared via irradiation with a high-energy electron beam adhered strongly to the resin substrates. - Highlights: • A thin gold (Au) film was formed by EBIRM for the first time. • The irradiation time of the electron beam was less than 10 s. • Thin Au films were obtained without reductant or catalyst. • Au films were consisted of two layers: a particle layer and a bottom bulk layer. • There was strong adhesion between the bottom bulk layer and the underlying resin substrates.

  3. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    exposure temperatures slowdown the deactivation. K2SO4 causes a lower rate of deactivation compared to KCl. This may be related to a faster transfer of potassium from the solid KCl matrix to the catalyst, however, it cannot be ruled out toalso be caused by a significantly larger particle size of the K2SO4...

  4. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  5. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  6. Solid-Phase Extraction of Trace Amounts of Uranium(VI in Environmental Water Samples Using an Extractant-Impregnated Resin Followed by Detection with UV-Vis Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Ahmad Hosseini-Bandegharaei

    2013-01-01

    Full Text Available A stable extractant-impregnated resin (EIR containing Chrome Azurol B was prepared using Amberlite XAD-2010 as a porous polymeric support. The new EIR was employed for trace separation and preconcentration of U(VI ion followed by spectrophotometric determination with the arsenazo III procedure. CAB/XAD-2010 exhibited excellent selectivity for U(VI ion over coexisting ions. Experimental parameters including pH, contact time, shaking speed, and ionic strength were investigated by batch extraction methods. Maximum sorption of U(VI ions occurred at pH 4.3–6.9. The capacity of EIR was found to be 0.632 mmol·g−1. Equilibrium was reached in 25 min and the loading half-time, t1/2, was less than 6 min. The equilibrium adsorption isotherm of U(VI was fitted with the Langmuir adsorption model. In addition, a column packed with CAB/XAD-2010 was used for column-mode separation and preconcentration of U(VI ion. For the optimization of the dynamic procedure, effects of sample volume, sample and eluent flow rate, eluent concentration, and its volume were investigated. The preconcentration factors for U(VI were found out to be 160. But, for convenience, a preconcentration factor of 150 was utilized for the column-mode preconcentration. The dynamic procedure gave a detection limit of 5.0×10-10 mol·L−1 (0.12 μg·L−1 for U(VI ion. The proposed dynamic method showed good performance in analyzing environmental water samples.

  7. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  8. Flowsheet Validation For The Permanganate Digestion Of REILLEX(trademark) HPQ Anion Resin

    International Nuclear Information System (INIS)

    Kyser, E.

    2009-01-01

    The flowsheet for the digestion of Reillex(trademark) HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO 3 . Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion of the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex(trademark) HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount ( 2 ) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.

  9. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  10. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  11. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    Science.gov (United States)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  12. The dissolution of organic ion exchange resins using iron-catalysed hydrogen peroxide

    International Nuclear Information System (INIS)

    Hawkings, N.; Horton, K.D.; Snelling, K.W.

    1980-10-01

    Feasibility studies have been made of the dissolution/partial decomposition of radioactive waste resins by means of iron-catalysed hydrogen peroxide. They have shown that the procedure is limited in its application and successfully treats only polystyrene/divinylbenzene-based resins. Evaporation of the final solution produces a solid residue which is difficult to handle and results in only a relatively small reduction in volume. It is concluded that the method could be used to dissolve specific waste resins for easier handling and disposal, but is not of general applicability. (author)

  13. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  14. Organic and inorganic ion exchangers as catalysts for the heterogeneous alkylation of aromatics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J; Widdecke, H [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Chemische Technologie

    1979-06-01

    Ion exchangers have advantages over low molecular for use in industrial alkylation reactions. The reactivity and selectivity behaviour of the polymeric catalysts was found to be markedly influenced by the structure of the polymeric matrix as well as the type and number of the functional groups. In this connection many similarities between inorganic ion exchangers (zeolites) and organic ion exchange resins were detected.

  15. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  16. Pigment Production from Immobilized Monascus sp. Utilizing Polymeric Resin Adsorption

    OpenAIRE

    Evans, Patrick J.; Wang, Henry Y.

    1984-01-01

    Pigment production by the fungus Monascus sp. was studied to determine why Monascus sp. provides more pigment in solid culture than in submerged culture. Adding a sterilized nonionic polymeric adsorbent resin directly to the growing submerged culture did not enhance the pigment production, thus indicating that pigment extraction is probably not a factor. Monascus cells immobilized in hydrogel were studied and exhibited decreased pigment production as a result of immobilization. This result is...

  17. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2017-06-01

    Full Text Available In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF resin—a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC and thermal gravimetric analysis (TGA. Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM. The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  18. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  19. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  20. Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Gao, Li; Li, Xiying; Mao, Liqun [Henan University, Kaifeng (China); Wei, Min [Henan University of Technology, Zhengzhou (China)

    2013-05-15

    The transesterification kinetics of methyl acetate with n-octanol to octyl acetate and methanol were studied using Amberlyst 15 as catalyst in a batch stirred reactor. The influence of the agitation speed, particle size, temperature, catalyst loading, and initial reactants molar ratio was investigated in detail. A pseudo-homogeneous (PH) kinetic model was applied to correlate the experimental data in the temperature range of 313.15 K to 328.15 K. The estimated kinetic parameters made the calculated results in good agreement with the experimental data. A kinetic model describing the transesterification reaction catalyzed by cation exchange resins was developed.

  1. Embedding of radioactive wastes by thermosetting resins

    International Nuclear Information System (INIS)

    Baer, A.; Traxler, A.; Limongi, A.; Thiery, D.

    The process for embedding radioactive wastes in thermosetting resins perfected and applied at the Grenoble Nuclear Research Center and its application to the treatment of radioactive wastes from Light-Water Nuclear Power Plants (PWR and BWR) are presented. The various types of wastes are enumerated and their activities and quantities are estimated: evaporator concentrates, ion exchange resins, filtration sludges, filters, various solid wastes, etc. The authors review the orientations of the research performed and indicate, for each type of waste considered, the cycle of treatment operations from rendering the radioelements insoluble to drying the concentrates to final embedding. The operational safety of the process and the safety of transport and storage of the embedded wastes are investigated. The essential technical features concerning the safety of the installation and of the final product obtained are presented. In particular, results are presented from tests of resistance to fire, irradiation, leaching, etc., these being characteristics which represent safety criteria. The economic aspects of the process are considered by presenting the influences of the reduction of volume and weight of wastes to be stored, simplicity of installations and cost of primary materials

  2. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  3. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  4. An Eco-Friendly Improved Protocol for the Synthesis of Bis(3-indolyl)methanes Using Poly(4-vinylpyridinium)hydrogen Sulfate as Efficient, Heterogeneous, and Recyclable Solid Acid Catalyst

    Science.gov (United States)

    Banothu, Janardhan; Gali, Rajitha; Velpula, Ravibabu; Bavantula, Rajitha; Crooks, Peter A.

    2013-01-01

    Highly efficient and eco-friendly protocol for the synthesis of bis(3-indolyl)methanes by the electrophilic substitution reaction of indole with aldehydes catalyzed by poly(4-vinylpyridinium)hydrogen sulfate was described. Excellent yields, shorter reaction times, simple work-up procedure, avoiding hazardous organic solvents, and reusability of the catalyst are the most obvious advantages of this method. PMID:24052864

  5. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  6. Substitution determination of Fmoc-substituted resins at different wavelengths.

    Science.gov (United States)

    Eissler, Stefan; Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel

    2017-10-01

    In solid-phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc-substituted resins, substitution determination is often performed by suspending the Fmoc-protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene-piperidine adduct that is quantified by ultraviolet-visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene-piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert-Beer's law, together with the substance-specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol -1  cm -1 and 8100 l mol -1  cm -1 have been reported for the dibenzofulvene-piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

  7. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Wirth, CT

    2008-01-01

    understanding of the role of commonly used catalysts and specifically of their interface dynamics1, 2. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor–catalyst systems3, 4, 5, 6, growth from solid catalysts is still disputed...... as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant...

  8. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  9. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  10. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  11. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  12. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  13. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  14. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)

  15. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  16. K Basin sludge/resin bead separation test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1998-01-01

    The K Basin sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt and minor amounts of other organic material. The sludge will be collected and treated for storage and eventual disposal. This process will remove the large solid materials by a 1/4 inch screen. The screened material will be subjected to nitric acid in a chemical treatment process. The organic ion exchange resin beads produce undesirable chemical reactions with the nitric acid. The resin beads must be removed from the bulk material and treated by another process. An effective bead separation method must extract 95% of the resin bead mass without entraining more than 5% of the other sludge component mass. The test plan I-INF-2729, ''Organic Ion Exchange Resin Separation Methods Evaluation,'' proposed the evaluation of air lift, hydro cyclone, agitated slurry and elutriation resin bead separation methods. This follows the testing strategy outlined in section 4.1 of BNF-2574, ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process''. Engineering study BNF-3128, ''Separation of Organic Ion Exchange Resins from Sludge,'' Rev. 0, focused the evaluation tests on a method that removed the fine sludge particles by a sieve and then extracted the beads by means of a elutriation column. Ninety-nine percent of the resin beads are larger than 125 microns and 98.5 percent are 300 microns and larger. Particles smaller than 125 microns make up the largest portion of sludge in the K Basins. Eliminating a large part of the sludge's non-bead component will reduce the quantity that is lifted with the resin beads in the elutriation column. Resin bead particle size distribution measurements are given in Appendix A The Engineering Testing Laboratory conducted measurements of a elutriation column's ability to extract resin beads from a sieved, non-radioactive sludge

  17. Application of THOR-Technology on resins

    International Nuclear Information System (INIS)

    Lorenzen, J.; Lindberg, M.

    2003-01-01

    The THermal Organic Reduction (THOR) process, developed and patented by studsvik utilises pyrolysis / steam reforming technology. The THOR-process provides a reliable and safe method for treating a wide variety of LLW in a unique, fluidised bed treatment system at moderate temperature. This technology is suitable for processing hazardous, mixed and dry active LLW with appropriate waste feed modifications. Both solid and liquid LLRW and ILRW streams including ion exchange resins, activated carbon (charcoal), graphite, oils, solvents and cleaning solutions with contact radiation levels of up to 4 Sv/hr can be processed. Studsvik has completed over four years of operation at its facility at Erwin, Tennessee, USA. During this period studsvik has processed more than 1,5 thousand tons of radioactive ion exchange bead resins. powdered filter media and active carbon, with a cumulative total radioactivity of about 7 (E+8) MBq. Operations have demonstrated consistent, reliable, robust operating characteristics. Due to the widely varying characteristics of the incoming waste streams various efficiencies and volume reductions have been experienced. Input waste has varied in total inorganic content from 90%. A substantial element of this variability has been the ''soluble salt'' content of the input waste streams. Final reformed residue comprises a non-dispersible, granular solid which is suitable for long-term storage or direct burial in a qualified container. Special containers, THOR-liners, are available from studsvik for the transport of waste from the customer to the Erwin facility and HICs (high integrity containers) for transport of the residues to Barnwell. The paper will give an overview of the last four years of commercial operations processing LLRW from commercial nuclear power plans. (orig.)

  18. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  19. Efecto de surfactantes polimerizables en la distribución de tamaño de partícula, pH, viscosidad, contenidos de sólidos y de monómero residual de una resina estireno-butilacrilato Effect of polymerizable surfactants on particle size distribution, pH, viscosity, contents of solids and residual monomer of a styrene-butylacrylate resin

    Directory of Open Access Journals (Sweden)

    Luis A. Rios

    2013-01-01

    Full Text Available Se presentan los resultados de la polimerización en emulsión de una resina acrílica estirenada usando surfactantes polimerizables, los cuales presentan ventajas técnicas como baja formación de espuma, alta resistencia de la película al contacto con agua y buena estabilidad en la polimerización. Se evaluó el efecto de estos surfactantes polimerizables en la distribución de tamaños de partícula de la resina; además se determinaron propiedades finales de la resina tales como porcentaje de sólidos, porcentaje de monómero libre, viscosidad y pH. Estos resultados se compararon con los obtenidos usando surfactantes convencionales no polimerizables del tipo alquil fenol etoxilado y alquilarilpoliglicol éter sulfato de sodio. Los resultados indican que que se pueden remplazar totalmente los surfactantes convencionales no polimerizables por los surfactantes poliméricos evaluados sin afectar significativamente las propiedades de la resina, mientras que la sustitución parcial de los surfactantes no polimerizables por los polimerizables induce, en algunos casos, a la formación de partículas con mayor tamaño a las presentes en la muestra estándar.Results on the emulsion polymerization of a styrenated acrylic resin using polymerizable surfactants are presented. These surfactants exhibit low foaming, high film strength upon contact with water and good stability in the polymerization. A comparison was made with results for conventional non-polymerizable alkyl aryl polyglycol ether sulphate, sodium salt and nonylphenolethoxylate surfactants. The effect of these polymerizable surfactants on the particle size distribution of the resin was evaluated; in addition to determining the final properties of the resin such as solids content, free monomer content, viscosity and pH. It is feasible to totally replace non-polymerizable surfactants by the polymerizable surfactants evaluated without affecting significantly the properties of the resin, while

  20. Manufacturing of microcapsules with liquid core and their healing performance in epoxy for resin transfer molding

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay

    2013-01-01

    Microcapsules with different active core materials have been receiving a great deal of attention for developing polymer based materials with selfhealing abilities. The self-healing ability is crucial in particular for matrix materials having brittle nature such as epoxy resin. In order for abstaining from an abrupt failure of structural brittle manner polymeric materials, microcapsules can be used excellently as a viable repair agent. In this work, we present a study on the catalyst-free micr...

  1. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    OpenAIRE

    Jiongjiong Li; Jizhi Zhang; Shifeng Zhang; Qiang Gao; Jianzhang Li; Wei Zhang

    2017-01-01

    Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL) reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance) and Fourier transform infrared (FT-IR) spectroscopy to determine the deme...

  2. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts

    International Nuclear Information System (INIS)

    Xie, Wenlei; Zhao, Liangliang

    2013-01-01

    Highlights: • Heterogeneous catalysts were prepared by an impregnation method with different conditions. • The catalysts were efficient in the soybean oil transesterification. • The catalytic activity and stability of the catalyst were investigated. - Abstract: The main objective of this work was to develop an environmentally benign process for the production of biodiesel by using a stable solid base catalyst. To this purpose, different heterogeneous CaO–SnO 2 catalysts have been prepared by means of impregnation methods. Various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied for the catalyst characterization. The transesterification of soybean oil with methanol, to produce biodiesel, was carried out under batch conditions at refluxed methanol over the CaO–SnO 2 catalysts. The catalytic activity is found to be highly dependent on the Ca/Sn ratio and calcination temperature. The solid catalyst with the Ca/Sn molar ratio of 4:1 and calcined at a temperature of 973 K, performed the best activity, reaching the conversion to methyl esters of 89.3% after 6 h of reaction at methanol reflux temperature (343 K) when a methanol/oil molar ratio of 12:1 and catalyst dosage of 8 wt.% were employed. Further, the solid catalyst is proved to be stable and durable for the transesterification reaction

  3. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  4. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  5. Polystyrene-supported cu(II)-R-Box as recyclable catalyst in asymmetric Friedel–Crafts reaction

    KAUST Repository

    Desyatkin, V. G.

    2017-02-12

    The complex of copper(II) trifluoromethanesulfonate with chiral isopropyl bis(oxazoline) ligand (i-Pr-Box) was immobilized on accessible and inexpensive Merrifield resin according to a “click” procedure. The resulting catalyst showed high efficiency and recyclability in the asymmetric Friedel–Crafts alkylation of indole and its derivatives. The catalyst can be recycled five times without appreciable loss in activity and enantioselectivity.

  6. Polystyrene-supported cu(II)-R-Box as recyclable catalyst in asymmetric Friedel–Crafts reaction

    KAUST Repository

    Desyatkin, V. G.; Anokhin, M. V.; Rodionov, Valentin; Beletskaya, I. P.

    2017-01-01

    The complex of copper(II) trifluoromethanesulfonate with chiral isopropyl bis(oxazoline) ligand (i-Pr-Box) was immobilized on accessible and inexpensive Merrifield resin according to a “click” procedure. The resulting catalyst showed high efficiency and recyclability in the asymmetric Friedel–Crafts alkylation of indole and its derivatives. The catalyst can be recycled five times without appreciable loss in activity and enantioselectivity.

  7. Utilization of m-Phenylenediamine-Furfural Resin for Removal of Cu(II from Aqueous Solution-A Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Tariq S. Najim

    2010-01-01

    Full Text Available m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II from aqueous solution. The pH for the optimum removal of Cu(II was 6. The negative values of Gibbs free energy at low concentration of Cu(II (20, 30 ppm indicative of the spontaneous adsorption process, while, at higher Cu(II concentration (40,50 ppm the positive and weak values of ∆G° indicate that the process is feasible but non spontaneous. The values of ∆H° were positive indicating that the sorption process is endothermic. On the other hand, the values of activation energy (Ea were inconsistent with the values of ∆H° both are positive and lie in the range of physisorption. The entropy ∆S° of the process was positive indicative of the randomness of the Cu(II ions at the solid / liquid interface. The values of sticking probability S* were less than one which indicate a preferable adsorption process and the mechanism is physisorption.

  8. Study on positron annihilation spectroscopy of methanol synthesis catalyst CuO/ZnO

    International Nuclear Information System (INIS)

    Liu Qisheng; Dai Guohuan; Sun Jiying; Ding Yingru; Yao Jianhua

    1989-01-01

    A new method was developed for determining the solid solubility of a metal oxide series prepared by precipitation using the positron lifetime parameters. The positron lifetime spectra of a series of CuO/ZnO catalysts prepared by precipitation were measured, in which the CuO at % contents were different before and after reducing. The relations between the solid solubility of the catalysts and the positron lifetime parameters were obtained, from which a result of solid solubility of 12 CuO at% after reducing had been found. The viewpoint that the Cu + ion acted as the active centre in the CuO/ZnO catalyst was supported

  9. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  10. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  11. Action of ionizing radiation on epoxy resins

    Energy Technology Data Exchange (ETDEWEB)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship between chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)

  12. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  13. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  14. Method for loading resin beds

    International Nuclear Information System (INIS)

    Notz, K.J.; Rainey, R.H.; Greene, C.W.; Shockley, W.E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145 to 200 0 C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145 0 C with a second aqueous component to provide a gaseous phase containing HNO 3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate

  15. Resin for processing radioactive waste water

    International Nuclear Information System (INIS)

    Onozuka, Teruo; Shindo, Manabu; Kiba, Hideaki; Kubota, Hirohisa; Sawada, Shintaro.

    1995-01-01

    The present invention concerns an anionic exchange resin having a long service life with less radiation degradation. The resin is an anionic exchange resin in which a trimethyl ammonium group is introduced to a copolymer of 4-bromo-butoxymethyl styrene and divinyl benzene. The resin is excellent in economic performance, and can reduce the frequency for the exchange of cross-linked anionic exchangers. (T.M.)

  16. Resin for processing radioactive waste water

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Teruo; Shindo, Manabu [Tohoku Electric Power Co., Inc., Sendai (Japan); Kiba, Hideaki; Kubota, Hirohisa; Sawada, Shintaro

    1995-11-07

    The present invention concerns an anionic exchange resin having a long service life with less radiation degradation. The resin is an anionic exchange resin in which a trimethyl ammonium group is introduced to a copolymer of 4-bromo-butoxymethyl styrene and divinyl benzene. The resin is excellent in economic performance, and can reduce the frequency for the exchange of cross-linked anionic exchangers. (T.M.).

  17. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  18. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  19. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  20. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    -particles dispersed in water which also contains the catalyst precursor nitrate salt. This support-catalyst precursor fluid must have a sufficiently low viscosity but high elastic modulus (high extensional viscosity to form films and bubbles when exposed to processing energy sources such as microwave, thermal, ultra-sound or UV-radiation or their combination. The micro-to-nano structures of the catalyst system are essentially formed at an early stage of energy input. It is shown that the primary particles of silica are transformed to a proto-silica particle state and form lamellar structures with the catalyst precursor. While the nano-structure is forming, water is evaporated leaving a highly porous solid support-catalyst precursor which then undergoes decomposition to form a silica-catalyst oxide system. The final catalyst system is obtained after catalyst oxide reduction. Although the XRD-based catalyst size changes slightly during the subsequent heat treatments, the nano-structure of the catalyst system remains substantially unaltered as evaluated through TEM images. However, if the catalyst preparation is carried out without film formation, the XRD-based catalyst size increases substantially by a factor of 2–8, with no significant alteration in surface area.

  1. 21 CFR 177.1680 - Polyurethane resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food... of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of the...

  2. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  3. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  4. Development of volume-reduction system for ion exchange resin using inductively coupled plasma

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Katagiri, Genichi

    2002-01-01

    The spent ion exchange resin generated as radioactive waste in water purifying system at nuclear power stations or related facilities of nuclear power has been stored in the site, and its volume has been increasing year by year. We had developed a full-scale system of IC plasma volume-reduction system for the spent resin, and have performed basic performance test using some samples imitating the spent resin. As the results, the imitation of the resin can be reduced in volume by more than 90% so that the processing performance in actual scale was proved to be effective. In addition, it was clarified that the residuum after volume-reduction process is easy to mix with cement, and solidity containing 30wt% residuum provides high strength of 68 MPa. Therefore, we evaluate the application of this process to stabilization of the disposal to be very effective. (author)

  5. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  6. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    Science.gov (United States)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  7. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  8. Resins production: batch plant automation

    International Nuclear Information System (INIS)

    Banti, M.; Mauri, G.

    1996-01-01

    Companies that look for automation in their plants without external resources, have at their disposal flexible, custom and easy to use DCS, open towards PLC. In this article it is explained why Hoechts has followed this way of new plants for resins production automation

  9. Occupational exposure to epoxy resins

    NARCIS (Netherlands)

    Terwoert, J.; Kersting, K.

    2014-01-01

    Products based on epoxy resins as a binder have become popular in various settings, among which the construction industry and in windmill blade production, as a result of their excellent technical properties. However, due to the same properties epoxy products are a notorious cause of allergic skin

  10. Carbon dioxide capture using resin-wafer electrodeionization

    Science.gov (United States)

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    Science.gov (United States)

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  12. Thermoanalytical Study and Kinetics of New 8-Hydroxyquinoline 5-sulphonic Acid-Oxamide-Formaldehyde Terpolymer Resins

    Directory of Open Access Journals (Sweden)

    Rajesh N. Singru

    2009-01-01

    Full Text Available The terpolymer resins (8-HQ5-SAOF have been synthesized by the condensation of 8-hydroxyquinoline 5-sulphonic acid (8-HQ5-SA and oxamide (O with formaldehyde (F in the presence of acid catalyst and using varied molar proportion of the reacting monomers. The synthesized terpolymer resins have been characterized by different physico-chemical techniques. Thermogravimetric analysis of all terpolymer resins in present study have been carried out by non-isothermal thermogravimetric analysis technique in which sample is subjected to condition of continuous increase in temperature at linear rate. Thermal study of the resins was carried out to determine their mode of decomposition and relative thermal stabilities. Thermal decomposition curves were studied carefully with minute details. The Freeman-Carroll and Sharp-Wentworth methods have been used in the present investigation to calculate thermal activation energy and different kinetic parameter of the terpolymer resins. Thermal activation energy (Ea calculated with above two mentioned methods are in close agreement. The advantage of Freeman-Carroll method is to calculate both the order of reaction (n and energy of activation in one single stage by keeping heating rate constant. By using data of thermogravimetric analysis, various thermodynamic parameters like frequency factor (Z, entropy change (Δ S, free energy change (Δ F and apparent entropy (S* have been determined using Freeman-Carroll method.

  13. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  14. Oxygen index tests of thermosetting resins

    Science.gov (United States)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  15. Commercial Ion Exchange Resin Vitrification Studies

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A

    2002-01-01

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces

  16. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  17. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  18. Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol

    Science.gov (United States)

    Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa

    2016-01-01

    In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…

  19. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  20. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  1. Highly efficient synthetic method onpyroacm resin using the boc SPPS protocol for C-terminal cysteine peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Juvekar, Vinayak; Kim, Kang Tae; Gong, Young Dae [Innovative Drug Library Research Center, Dept. of Chemistry, College of Science, Dongguk University, Seoul (Korea, Republic of)

    2017-01-15

    A very effective process on Pyroacm resin was developed for solid-phase peptide synthesis (SPPS) of C-terminal cysteine and cysteine ester peptides. The process uses cysteine side chain anchoring to the Pyroacm resin and the Boc protocol for SPPS. The Pyroacm resin showed remarkable stability under standard trifluoromethanesulfonic acid (TFMSA) cleavage condition. TFMSA cleavage of protecting groups generates a peptide-linked resin, which can be subjected to peptide modification reactions. Finally, the peptide can be cleaved from the resin using methoxycarbonylsulfenyl chloride. The utility of this protocol was demonstrated by its applications to the synthesis of model peptides, key intermediates in the preparation of natural products riparin 1.2 and a-factor.

  2. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  3. Preparation of minor actinides targets or blankets by the means of Ionic Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Ramiere, I.; Jobelin, I. [CEA, Nuclear Energy Division, RadioChemistry and Process Department, Actinides Chemistry Laboratory, BP17171, Bagnols-sur-Ceze, 30207 (France)

    2009-06-15

    The objective of our R and D work is the elaboration by the use of ionic exchange resin of minor actinide precursors for target or blanket dedicated to their transmutation in sodium fast reactor. From the beginning, the resin process called WAR (acronym of Weak Acid Resin) was developed in the 70's at the ORNL for the making of uranium carbide kernels for the high temperature gas reactor [1] [2]. By now, our aim is to extend this concept to the manufacturing of minor actinides oxide mixed with uranium oxides [3]. More precisely, this process can be divided in two major steps: the loading of the resin and the thermal treatment of the fully loaded resin driving either to oxide or carbide phases depending on the gas atmosphere. The difficulty stems from the preparation of the loading solutions which must fulfill precise conditions of pH in presence of actinides cations prone to hydrolysis. Furthermore, the proportions of uranium and minor actinides in solutions must be adjusted to fit the right ratio in the solid. The study presented here will then focus on the experiments and tests which enable us to optimize the fixing of minor actinides on ionic exchange resin and their carbonization in oxide. [1] G. W. Weber, R. L. Beatty et V. J. Tennery, Nuclear Technology, 35, 217-226, (1977), 'Processing and composition control of weak-acid-resin derived fuel microspheres'. [2] K. J. Notz, P. A. Haas, J. H. Shaffer, Radiochimica Acta, 25, 153-160, (1978). 'The preparation of HTGR Fissile Fuel Kernels by Uranium Loading of Ion Exchange Resin'. [3] S. Picart, H. Mokhtari, I. Ramiere, 'Plutonium Futures, The Science 2008', 7-11 july 2008, Dijon, France. 'Modelling of the ionic Exchange between a weak acid resin in its ammonium form and a minor actinide'. (authors)

  4. Refining of fossil resin flotation concentrate from western coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.F.; Miller, J.D.

    1995-02-16

    During the past several years, significant research efforts have been made to develop process technology for the selective flotation of fossil resin from western coals. As a result of these efforts, several new flotation technologies have been developed. Operation of a proof-of-concept continuous flotation circuit showed the selective flotation process to be sufficiently profitable to justify the development of a fossil resin industry. However, little attention has been given to the refining of the fossil resin flotation concentrate although solvent refining is a critical step for the fossil resin to become a marketable product. In view of this situation, DOE funded this two-year project to evaluate the following aspects of the fossil resin refining technology: 1) Characterization of the fossil resin flotation concentrate and its refined products; 2) Kinetics of fossil resin extraction; 3) Effects of operating variables on solvent extraction; 4) Extraction solvents; 5) Proof-of-concept continuous refining tests; and 6) Technical and economic analysis. The results from this research effort have led to the following conclusions: Hexane- or heptane-refined fossil resin has a light-yellow color, a melting point of 140 - 142{degrees}C, a density of 1.034 gram/cm, and good solubility in nonpolar solvents. Among the four solvents evaluated (hexane, heptane, toluene and ethyl acetate), hexane is the most appropriate solvent based on overall technical and economic considerations. Batch extraction tests and kinetic studies suggest that the main interaction between the resin and the solvent is expected to be the forces associated with solvation phenomena. Temperature has the most significant effect on extraction rate. With hexane as the solvent, a recovery of 90% cam be achieved at 50{degrees}C and 10% solids concentration with moderate agitation for 1 hour.

  5. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  6. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  7. Pd-catalysts for DFAFC prepared by magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Bieloshapka, Igor; Jiříček, Petr; Vorokhta, M.; Tomšík, Elena; Rednyk, A.; Perekrestov, R.; Jurek, Karel; Ukraintsev, Egor; Hruška, Karel; Romanyuk, Olexandr; Lesiak, B.

    2017-01-01

    Roč. 419, Oct (2017), s. 838-846 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : Pd catalyst * formic acid fuel cell * magnetron sputtering * DFAFC * surface morphology Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UMCH-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UMCH-V) Impact factor: 3.387, year: 2016

  8. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    Science.gov (United States)

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  9. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  10. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  11. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  12. Eco-friendly Crosslinking Agent for Acid Functional Acrylic Resin

    Directory of Open Access Journals (Sweden)

    Archana Shah

    2009-01-01

    Full Text Available Oil from J. multifida was extracted and it was first converted into N,N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA. HEJFA has been synthesized by reaction between Jatropha oil and diethanol amine in presence of zinc oxide as a catalyst. The reaction is relatively rapid and proceeded to high yield at 200±5 OC. The resulting HEJFA was used to formulate thermosetting coating compositions. Films were cured at ambient (air drying and elevated (stove drying temperatures using N, N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA as eco-friendly crosslinking agent for acrylic resin. The coating performance of the various compositions was tested by measurement of scratch hardness, impact strength and chemical resistance. The results show better performance of the HEJFA based compositions compared to butylated melamine formaldehyde (MF based compositions.

  13. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  14. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  15. Generating Palladium Nanoclusters Inside Very Lipophilic Gel-Type Functional Resins: Preliminary Catalytic Tests in the Hydrogenation of 2-Ethyl-Anthraquinone to 2-Ethylanthrahydroquinone

    Czech Academy of Sciences Publication Activity Database

    Bombi, G.; Lora, S.; Zancato, M.; D'Archivio, A. A.; Jeřábek, Karel; Corain, B.

    2003-01-01

    Roč. 194, 1-2 (2003), s. 273-281 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : palladium nanoclusters * gel-type resins * catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.264, year: 2003

  16. Ring opening of a resin-bound chiral aziridine with phenol nucleophiles

    DEFF Research Database (Denmark)

    Ottesen, Lars Korsgaard; Jaroszewski, Jerzy W; Franzyk, Henrik

    2010-01-01

    An efficient and versatile solid-phase route for the preparation of aryl-alkyl ethers is described. Regioselective ring opening of a resin-bound chiral aziridine with phenolic nucleophiles constitutes the key feature of the present protocol that allows incorporation of fluorescent moieties...

  17. Design and manufacturing concrete cells for shielding and storing radioactive semi liquid waste (resin) from MPR-GAS

    International Nuclear Information System (INIS)

    Pudjijanto-MS; Bahdir-Johan

    2003-01-01

    Semi liquid or quasi solid waste on Multipurpose Reactor G.A. Siwabessy (MPR-GAS) produced from operating resin rinsing systems and resin disposal systems during changes insert trap resin. Volume of the disposal resin waste in the filter mixed-bed per operation rinsing period are approx. 1.00 m 3 (in the Primary Cooling Water Treatment System) with activity ∼ 18.6 Ci/m 3 (0.688 TBq/m 3 ), 0.50 m 3 (in the Radioisotope Storage Pool Water Treatment System) with activity approx ∼ 0.162 Ci/m 3 (5.99 x 10 3 MBq/m 3 ) and 0.50 m 3 (in the Interim Spent Fuel Storage Pool Water Treatment System) with activity ∼ 0.162 Ci/m 3 (5.99 x 10 3 MBq/m 3 ) respectively. On the discharging and unloading, the gross radioactivity concentration of the resin waste loaded in the disposal resin waste tank are approx. 10 Ci/m 3 (0.37 TBq/m 3 ). After 6 months delayed, this activity is still 0.32 Ci/m 3 (11.84 GBq/m 3 ). Based on this data, some concrete cells to storage resin waste as semi liquid or quasi solid waste produced continuously by MPR-GAS installation has been designed and manufactured eternally

  18. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.

    1995-01-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  19. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, N K; Eskander, S B [Radioisotope dept., atomic energy authority, (Egypt)

    1995-10-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs.

  20. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  1. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  2. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  3. Determination of concentration distribution and velocity of a catalyst in a model of a fluidized bed reactor using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos.

    1981-09-01

    A simplified model of a cracking unit was construct. The gaseous phase consisted of air, the solid phase (zeolite catalyst cracking) and both the phases circulate at the ambiente temperature in the steady state with 500 g of catalyst and air flow of 1600 1/h. Measurements for the circulation time of the solid phase (catalyst), concentration and radial distribution of catalyst have been carried out. The reduced experimental model of the cracking reactor (FCC) was used and radioctive tracer and attenuation of γ-radiation techniques were employed. (E.G.) [pt

  4. Preparation of molecularly imprinted adsorptive resin for trapping of ligustrazine from the traditional Chinese herb Ligusticum chuanxiong Hort

    International Nuclear Information System (INIS)

    Guo Zhifeng; Guo Tingting; Guo Mufan

    2008-01-01

    A highly selective molecularly imprinted adsorptive resin for ligustrazine was prepared by melamine-urea-formaldehyde (MUF) gel. In the experiments, two pieces of MUF gel were synthesized firstly; one was added ligustrazine hydrochloride as the template molecule in it to prepare the imprinted adsorptive resin, and the other was not. Scanning electron microscopy (SEM) revealed that both resins were the porous with a network structure whether or not it was added template molecule. The imprinted adsorptive resin had an absorbability of 85.22% measured by a 200 mg L -1 solution of ligustrazine hydrochloride at room temperature. The resin of MUF without template, on the other hand, displayed an adsorption capacity of almost zero. It illuminated the imprinted adsorptive resin formed ligustrazine recognition sites when the template molecule had been eluted. In the present paper, ligustrazine was effectively separated and enriched from herbs by using a solid-phase adsorptive column filled with the imprinted adsorptive resin. Its eluate, obtained from three kinds of solvents, was analyzed by GC-MS, and the results indicated that the imprinted adsorptive resin showed a high selectivity for ligustrazine. This is believed to be beneficial for extracting natural and highly purified ligustrazine

  5. Method for coating a resinous coating material. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, T; Fujioka, S; Mibae, J; Takahashi, M

    1968-07-13

    The strength, flexibility and durability of a vinyl chloride resin, acryl resin and the like are improved. This method of application comprises the steps of applying and thereafter radically curing a mixture composed of a polymer (II) having double bond(s) on its side chain and an ethylenic unsaturated monomer, said polymer (II) being obtained by the reaction between an unsaturated carboxylic acid or anhydride represented by the formula XCH = CHY (X = (CH/sub 2/)sub(n)COOH, where 0 <= n <= 2, Y = COOR/sub 1/ or R/sub 2/(R/sub 1/ and R/sub 2/ are hydrogen or an alkyl group having from 1 to 10 atoms of carbon)) and the acrylic copolymer (I), containing a hydroxyl group, obtained by copolymerization of 10 to 50% by weight of at least one selected from the group of beta-hydroxy alkyl acrylate, beta-hydroxy alkyl methacrylate, N-methylol acrylamide and N-methylol methacryl amide with at least one selected from the group of acrylic ester, methacrylic ester and stylene. The copolymer (I) can be obtained by the usual radical polymerization such as bulk polymerization, solution polymerization, suspension polymerization or the like. The polymer (II) is dissolved in the ethylenic unsaturated monomer and radically cured with radical polymerization catalysts or electron beams, etc. The energy range of the electron beams may be 0.1 to 3 MeV. Any type of electron accelerator may be used.

  6. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...... under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...

  7. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  8. Speciation of Fe in Fe-modified zeolite catalysts

    Czech Academy of Sciences Publication Activity Database

    Smoláková, L.; Grygar, Tomáš; Čapek, L.; Schneeweiss, Oldřich; Zbořil, R.

    2010-01-01

    Roč. 647, č. 1 (2010), s. 8-19 ISSN 1572-6657 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20410507 Keywords : solid state speciation * Fe2O3 * heterogeneous catalysts Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.732, year: 2010

  9. Macromolecular Architectures Designed by Living Radical Polymerization with Organic Catalysts

    Directory of Open Access Journals (Sweden)

    Miho Tanishima

    2014-01-01

    Full Text Available Well-defined diblock and triblock copolymers, star polymers, and concentrated polymer brushes on solid surfaces were prepared using living radical polymerization with organic catalysts. Polymerizations of methyl methacrylate, butyl acrylate, and selected functional methacrylates were performed with a monofunctional initiator, a difunctional initiator, a trifunctional initiator, and a surface-immobilized initiator.

  10. Ion-exchange-resin-catalyzed adamantylation of phenol derivatives with adamantanols: Developing a clean process for synthesis of 2-(1-adamantyl-4-bromophenol, a key intermediate of adapalene

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2012-02-01

    Full Text Available A clean process has been developed for the synthesis of 2-adamantylphenol derivatives through adamantylation of substituted phenols with adamantanols catalyzed by commercially available and recyclable ion-exchange sulfonic acid resin in acetic acid. The sole byproduct of the adamantylation reaction, namely water, could be converted into the solvent acetic acid by addition of a slight excess of acetic anhydride during the work-up procedure, making the process waste-free except for regeneration of the ion-exchange resin, and facilitating the recycling of the resin catalyst. The ion-exchange sulfonic acid resin catalyst could be readily recycled by filtration and directly reused at least ten times without a significant loss of activity. The key intermediate of adapalene, 2-(1-adamantyl-4-bromophenol, could be produced by means of this waste-free process.

  11. Novel chelating resin with cyanoguanidine group: Useful recyclable materials for Hg(II) removal in aqueous environment

    International Nuclear Information System (INIS)

    Ma Xiaojie; Li Yanfeng; Ye Zhengfang; Yang Liuqing; Zhou Lincheng; Wang Liyuan

    2011-01-01

    A novel chelating resin containing cyanoguanidine moiety has been successfully prepared by the functionalizing reaction of a macroporous bead based on chloromethylated copolymer of styrene-divinylbenzene (CMPS) with dicyandiamide (DCDA) in the presence of phase transfer catalyst. The Fourier transform-infrared spectra (FT-IR) and scanning electron microscopy (SEM) were employed in the characterization of the resulting chelating resin, meanwhile, the adsorption properties of the resin for Hg(II) were investigated by batch and column methods. The results indicated that the resin displayed a marked advantage in Hg(II) binding capacity, and the saturated adsorption capacity estimated from the Langmuir model was dramatically up to 1077 mg g -1 at 45 deg. C. Furthermore, it was found that the resin was able to selectively separate Hg(II) from multicomponent solutions with Zn(II), Cu(II), Pb(II) and Mg(II). The desorption process of Hg(II) was tested with different eluents and the ratio of the highest recovery reached to 96% under eluting condition of 1 M HCl + 10% thiourea. Consequently, the resulting chelating resin would provide a potential application for treatment process of Hg(II) containing wastewater.

  12. The Relix process for the resin-in-pulp recovery of uranium

    International Nuclear Information System (INIS)

    Cloete, F.L.D.

    1981-01-01

    The Relix process is based on direct contact between an ion-exchange resin and undiluted pulp, thus avoiding prior solid-liquid separation. The resin particles float near the surface of the pulp, forming an inverted fluidized bed with the pulp flowing downwards. The basic idea was demonstrated on a full-scale pachuca tank at Stilfontein Gold Mine in 1970, followed by a small-scale demonstration run in a laboratory at the National Institute for Metallurgy. A pilot plant based on a throughput of 60 tons of ore per day was subsequently operated at West Driefontein Gold Mine for several periods over two years. Although the plant proved operable from a mechanical point of view, the metallurgical performance was not up to expectation. The basic cause of the poor metallurgical performance was shown to be backmixing of both the resin and the pulp between stages. The values obtained for resin losses were inconclusive. Further development of resin-in-pulp processes for the recovery of uranium should be focused on the performance of various techniques for the screening of resin from pulp [af

  13. Application of Resin in Pulp Technique for Ion Exchange Separation of Uranium from Alkaline Leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Chakravartty, J.K.

    2014-01-01

    Conclusions: • Resin-in-pulp technique was applied for purification and enrichment of uranium values from a finely ground uranium ore leach slurry of alkaline nature using strong base anion exchange resin (size 500 - 675μm). • The chemical composition of the solution phase of the alkaline leach slurry (pH 9.5) was consisting of about 40 g/L of total dissolved solutes (TDS) predominantly with Na_2CO_3 and NaHCO_3 and minor levels of Na_2SO_4. The uranium content was only 730 mg/L and d50 of solids was 34μm. • Amongst the various commercially available resins studied PFA 4740 and 4783 having quaternary ammonium ion on polystyrene crosslink with divibyl benzez (DVB) gave best performance. The maximum loading capacity achieved in the RIP studies was about 60-65 g of U_3O_8/L of wet settled resin amounting to 98% of loading. This has necessitated 4 stages of counter-current extraction with overall contact time of 100 minutes at a resin to leach slurry volume ratio of about 1:50. Practically the entire uranium values loaded on the resin were eluted using NaCl. • The RIP process was found quite efficient for uranium bearing alkaline leach slurries.

  14. Speciation and surface interactions of actinides on aged ion-exchange resins

    International Nuclear Information System (INIS)

    Morris, D.E.; Buscher, C.T.; Donohoe, R.J.

    1997-01-01

    The United States Department of Energy is presently faced with the stabilization and safe disposition of hundreds of metric tons of residue materials resulting from 50+ years of nuclear weapons production activities. These residues encompass a broad range of substrates and radionuclides and include both solid and liquid materials. Combustible residues constitute a significant fraction of the total residue inventory, and an important constituent within the combustible category is spent anion ion-exchange resins. These resins are typically utilized for the separation of plutonium from other radionuclides under strongly acidic nitric or hydrochloric acid solution conditions which favor the formation and partitioning of anionic Pu(IV) nitrato or chloride species. The spent resins are usually rinsed prior to storage as residues to reduce both acid and radionuclide concentrations, but significant radionuclide concentrations remain in these resins, and the long-term effects of concentrated acid and radiolysis on the resin integrity are relatively unexplored. Thus, new research is needed to assess the stability of these resin residues and address the need for further treatment to ensure stability prior to long-term disposal

  15. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  16. Dilute chemical decontamination resins and the mixed waste issue

    International Nuclear Information System (INIS)

    Denault, R.P.; Hallman, J.T.

    1988-01-01

    The decontamination of reactor primary systems, sub-systems and components is an important method used to reduce the occupational radiation exposure of nuclear plant personnel. The waste produced by the application of this technology is mainly solid in the form of ion exchange resins. As a result of a recent agreement between the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), all radioactive waste must meet EPA burial criteria. The chemicals used in a decontamination and certain metals dissolved during the process, primarily chromium, could render the waste hazardous as well as radioactive or more commonly called a mixed waste. This paper defines mixed waste as described in the EPA directive 9432.00-2, and examine the criteria by which waste is categorized as hazardous. The decontamination waste resin generated by two processes, the CAN-DEREM and the LOMI process, is described in detail. Waste data obtained from decontaminations performed by LN Technologies Corporation including chemical, metal and radionuclide loadings on resins from both PWR and BWR applications are presented

  17. Polymerization of epoxy resins studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Radiation Science Center, High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hayashi, T. [Fine Chemical Research Lab., Sumitomo Chemical, Tsukuba (Japan); Ito, Y. [Research Center for Nuclear Science and Technology, Univ. of Tokyo (Japan)

    2001-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been applied to study polymerization of epoxy resins of cresole novolac with a hardener of phenol novolac. PALS uses positrons to probe the microstructure of a nanometer (nm) size. Using PALS polymerization can be followed through three states: powder (monomer), liquid and solid. PALS is a unique method for the detection of intermolecular spaces, hence polymerization was followed from the point of view of free spaces (inter-molecular spaces) between polymer networks. The glass transition temperature (T{sub g}) was determined from the temperature dependence of the positronium (Ps) lifetime. Although Tg determined by PALS is usually lower than that determined by a mechanical analysis (TMA), it was observed that T{sub g} approached the value determined by TMA after long curing. Ps can form bubbles in a liquid, and the surface tension of a mixture of the resin and the hardener was calculated from a simple empirical formula using the Ps lifetime; the resulting value is similar to that of the bisphenol-A epoxy resin. Gelation was observed as an increase in the intensity of Ps and a sharp decrease in the lifetime. (orig.)

  18. Influence of the Hardener on the Emission of Harmful Substances from Moulding Sands with Furan Resin in the Pyrolysis Process

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2016-03-01

    Full Text Available The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts. The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according to the original method developed in the Faculty of Foundry Engineering, AGH UST. The analysis is carried out by the gas chromatography method with the application of the flame-ionising detector (FID (TRACE GC Ultra THERMO SCIENTIFIC.

  19. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  20. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal

    2017-11-08

    A stable Periodic Mesoporous Organosilica (PMO) with accessible sulfonic acid functionalities is prepared via a one-pot-synthesis and is used as solid support for highly active catalysts, consisting of gold(I)-N-heterocyclic carbene (NHC) complexes. The gold complexes are successfully immobilized on the nanoporous hybrid material via a straightforward acid-base reaction with the corresponding [Au(OH)(NHC)] synthon. This catalyst design strategy results in a boomerang-type catalyst, allowing the active species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active in the latter reaction, and after an acidic work-up, the IPr*-based gold catalyst can be recovered and then reused several times without any loss in efficiency

  1. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  2. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based

  3. Sabatier Catalyst Poisoning Investigation

    Science.gov (United States)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  4. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  5. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  6. Ion exchange resins. February 1983-February 1990 (A Bibliography from the NTIS data base). Report for February 1983-February 1990

    International Nuclear Information System (INIS)

    1990-02-01

    This bibliography contains citations concerning the preparation and applications of ion exchange resins. Their use as catalysts and in treatment of water and wastes, chemical analysis and reactions, nuclear fuels and reactors, and in various recovery, purification, and separation processes are discussed. Performance evaluations are also included relative to air-purification processes. (This updated bibliography contains 280 citations, 129 of which are new entries to the previous edition.)

  7. Removal of radiocesium using cation exchange resin

    International Nuclear Information System (INIS)

    Morita-Murase, Yuko; Mizumura, Ryosuke; Tachibana, Yoshitaka; Kanazawa, Hideko

    2013-01-01

    Cation exchange resins (calcium polystyrene sulfonate, Ca-resin and sodium polystyrene sulfonate, Na-resin) have been used as agents to improve hyperkerlemia. For removing 137 Cs from the human body, the adsorption ability of the resin for 137 Cs was examined and evaluated. Resin (0.03 g) and 137 Cs (ca.1 kBq) were introduced into 3 mL of water, the Japanese Pharmacopoeia 1st fluid for a dissolution test (pH 1.2) and 2nd fluid (pH 6.8), respectively, and shaken. After 1-3 hours, the 137 Cs adsorption (%) of Na-resin was 99% in water, 60% in a pH 1.2 fluid and, 66% in a pH 6.8 fluid. By adding potassium, the 137 Cs adsorption (%) of Ca-resin was reduced. However, the 137 Cs adsorption (%) of Na-resin was almost unchanged. These results show that both resins have adsorption ability for 137 Cs in the stomach and the intestines. Therefore, the proposed method will be an effective means in the case of a radiological emergency due to 137 Cs. (author)

  8. The absorption of plutonium by anion resins

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R. W.; Mills, R.

    1961-10-15

    Equilibrium experiments have shown Pu{sup +4} to be absorbed from nitric acid onto an anion resin as a complex anion Pu(NO{sub 3}){sub 6}{sup -2}. The amount of absorption is dependent on the plutonium and nitric acid concentrations in the equilibrium solution with a maximum at 7N to 8N HNO{sub 3}. A low cross-linked resin has a higher capacity and reaches equilibrium more rapidly than the normally supplied resin. Saturation capacity of one per cent cross-linked Nalcite SBR (Dowex 1), 50 -- 100 mesh, is 385 mg Pu/gram dry resin. (author)

  9. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  10. Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andreia F.; Barella, Rodrigo A.; Silva, Edson A. [Department of Chemical Engineering, Universidade Estadual do Oeste do Parana, Toledo (Brazil); Pergher, Sibele B.C.; Treichel, Helen; Oliveira, Debora; Mazutti, Marcio A.; Oliveira, J. Vladimir [Department of Food Engineering, URI, Campus de Erechim, CEP 99700-000, Erechim (Brazil)

    2011-02-15

    This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 2{sup 3} full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions. (author)

  11. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  12. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  13. Cooperative catalysis designing efficient catalysts for synthesis

    CERN Document Server

    Peters, René

    2015-01-01

    Written by experts in the field, this is a much-needed overview of the rapidly emerging field of cooperative catalysis. The authors focus on the design and development of novel high-performance catalysts for applications in organic synthesis (particularly asymmetric synthesis), covering a broad range of topics, from the latest progress in Lewis acid / Br?nsted base catalysis to e.g. metal-assisted organocatalysis, cooperative metal/enzyme catalysis, and cooperative catalysis in polymerization reactions and on solid surfaces. The chapters are classified according to the type of cooperating acti

  14. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  15. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  16. Rotating solid foam reactors : mass transfer and reaction rate

    NARCIS (Netherlands)

    Tschentscher, R.

    2012-01-01

    In this thesis the performance and applicability of rotating solid foam stirrers is investigated. The stirrer consists, thereby of a solid, highly porous structure, which is used as stirrer and catalyst support simultaneously. The solid foam block occupies a large part of the reactor volume.

  17. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    Science.gov (United States)

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Test plan for demonstrating plutonium extraction from 10-L solutions using EIChrom extraction chromatographic resins

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-01-01

    Corrosive plutonium solutions stored in 10-L containers at the Plutonium Finishing Plant must be treated to convert the plutonium to a safe, solid form for storage and to remove the americium so that radiation exposure can be reduced. Extraction chromatographic resins will be tested for separating plutonium from these solutions in the laboratory. Separation parameters will be developed during the testing for large scale processing of the 10-L solutions and solutions of similar composition. Use of chromatographic resins will allow plutonium separation with minimum of chemical addition to the feed and without the need for plutonium valence adjustment. The separated plutonium will be calcined to plutonium oxide by direct solution calcination

  19. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  20. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  1. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  2. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  3. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  4. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  5. Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization

    Science.gov (United States)

    Barton, Katherine; Abney, Morgan B.

    2011-01-01

    Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.

  6. The search for an 111In labeled agent for the solid component of gastric emptying

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Brown, M.L.; Chowdhury, S.; Thomforde, G.; Malagelada, J.

    1988-01-01

    111 In-labeled solid meal was prepared by chelation of 111 In with Chelex resin bead. The effect of grinding of normal Chelex bead on 111 In chelation and retention in solid meal was evaluated in an in vitro system. The Chelex resin beads were ground in a mortar-pestle to form ground Chelex resin beads. Fine particles were removed by resuspension in distilled water and centrifugation. One hundred to 150 μCi of 111 In chloride was diluted with HCl and mixed with 1g of Chelex resin beads. Unbound 111 In was removed by centrifugation. The 111 In-labeled Chelex resin beads were mixed with fresh egg and 111 In-labeled solid metal was prepared by heating until solid. The meals were digested with HCl-pepsin for 4 h in a stirrer-bath (37 0 C). Aliquots were collected at intervals for determination of 111 In loss from 111 In-labeled solid meal. These results suggest that 111 In Chelex resin beads were retained in solid meals at a higher level than normal Chelex resin beads and other 111 In-tracers. (author)

  7. Search for an /sup 111/In labeled agent for the solid component of gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Dewanjee, M.K.; Brown, M.L.; Chowdhury, S.; Thomforde, G.; Malagelada, J.

    1988-01-01

    /sup 111/In-labeled solid meal was prepared by chelation of /sup 111/In with Chelex resin bead. The effect of grinding of normal Chelex bead on /sup 111/In chelation and retention in solid meal was evaluated in an in vitro system. The Chelex resin beads were ground in a mortar-pestle to form ground Chelex resin beads. Fine particles were removed by resuspension in distilled water and centrifugation. One hundred to 150 ..mu..Ci of /sup 111/In chloride was diluted with HCl and mixed with 1g of Chelex resin beads. Unbound /sup 111/In was removed by centrifugation. The /sup 111/In-labeled Chelex resin beads were mixed with fresh egg and /sup 111/In-labeled solid metal was prepared by heating until solid. The meals were digested with HCl-pepsin for 4 h in a stirrer-bath (37/sup 0/C). Aliquots were collected at intervals for determination of /sup 111/In loss from /sup 111/In-labeled solid meal. These results suggest that /sup 111/In Chelex resin beads were retained in solid meals at a higher level than normal Chelex resin beads and other /sup 111/In-tracers.

  8. Ion Exchange Properties of a Terpolymer Resin Derived from 2, 4-Dihydroxybenzaldehyde, Oxamide and Formaldehyde

    Directory of Open Access Journals (Sweden)

    M. V. Tarase

    2009-01-01

    Full Text Available Terpolymer resins (2,4-DHBOF were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2 and Pb+2 ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2 and Co+2 ions than for Cu+2, Hg+2, Zn+2, Ni+2 and Pb+2 ions.

  9. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  10. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    Science.gov (United States)

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  11. Input to Resin Column Structural Analysis if Autocatalytic Resin Reaction Occurs in HB-Line Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, D.F.

    2001-07-10

    Solutions of plutonium in nitric acid are purified and concentrated using anion resin prior to precipitation. There have been instances of resin column explosions caused by autocatalytic reactions of anion resins in nitric acid within the DOE complex

  12. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    Science.gov (United States)

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  13. A Catalyst for Change

    DEFF Research Database (Denmark)

    Lønsmann, Dorte

    2017-01-01

    This case study of a team in an international workplace investigates processes of language socialization in a transient multilingual setting. Using interview and observational data, the analysis shows how social and linguistic norms are negotiated, with the newcomer positioned as a catalyst...... for changing language practices toward more English, with the ultimate aim of creating a 'global mindset' in the organization. Language socialization in a transient multilingual setting is shown to focus on and assign positive value to new linguistic norms that experienced members are socialized...... into in a process that hinges on new members functioning as tools for management to bring about the desired change. The article shows that while the newcomer is used as a catalyst for increased use of English and for the creation of a 'global mindset,' she is at the same time socialized into the existing Danish...

  14. Photo catalyst; Ko shokubai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    While titanium oxide is excited by the light, electrons of titanium oxide are taken away by the light energy to form positive holes. Water will be decomposed into hydrogen ion and hydroxy radical (OH) by these positive holes. This hydroxy radical is a strong reactive substance called active oxygen, it decomposes organisms. Besides this photo- catalyst function, the titanium oxide can also make surface of a substance superhydrophilic. The super hydrophilicity results in not forming water drops on the glass surface but spreading all over the surface to prevent a covering of fog on the glass surface. The published patents concerning the photo catalysts were 593 from Jan. 1998 to Jan. 1999. The applicant order is the first TOTO 143, the second Daikin Industry 19, the third Toshiba Raitech, Nitto Denko, Hitachi 17 respectively. (NEDO)

  15. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  16. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  17. Overview on resins available in microlithography

    International Nuclear Information System (INIS)

    Serre, B.; Schue, F.; Montginoul, C.; Giral, L.

    1985-01-01

    Lithographic equipments using electrons and X radiation are developed. Velocity and resolution requirements fix the nature of the material to irradiate. Circuit making principles are recalled here; resists (organic polymers) are employed for it. The different types of resins and then needed characteristics are reviewed here. In the scope of electron sensitive resins methyl polymethacrylate and derivative and its copolymers (and copolymers of methacrylonitrile) and reticulated copolymers are studied. Polysulfones are also presented (poly(buten-1 sulfone), poly(styrene sulfone), poly(methyl-1 cyclopentene-1 sulfone). The interest in photosensitive resins (such as AZ) as electron sensitive resins is recalled. In the field of negative resins, the polyepoxyds, polystyrene and halogenated derivates from polystyrene (CMS and PCMS), the poly(vinyl-2 naphtalene) and its derivatives (PSTTF) are presented. The X radiation sensitive resins are also reviewed: the methyl polymethacrylate and its halogenated derivates, the acrylic homopolymers and copolymers (example of poly(acrylate of chlorinated alcoyls). The resins developable by plasma are mentioned. At last, for photosensitive resins, the diazide polydiene systems are presented together with systems diazo-2 2H-naphtalenone-1. The systems with salt photolysis are just recalled [fr

  18. Epoxidation of linseed oil-Alkyd resins

    International Nuclear Information System (INIS)

    Motawie, A.M.; Ismail, E.A.; Mazroua, A.M.; Abd EI Aziem, M.S.; Ramadan, A.M.

    2004-01-01

    Three types of different linseed oil-alkyd resin ( Alk (I), Alk (II), and Alk (III) ) were prepared with the calculated amounts of mono glycerides and adipic acid (1:1, 1:2, and 2:1 Eq.Wt) respectively via monoglyceride method. The obtained alkyd resins were epoxidized via reaction with the calculated quantities of peracetic acid, which was prepared by the reaction of acetic anhydride with H 2 O 2 . Epoxidation occurred with the ratio (1: 1, 1 :3, and 1:6 Eq. Wt) of alkyd to peracetic acid. The effect of reaction time on the epoxy group content was measured during the epoxidation process. The prepared alkyd resins were analyzed by IR and H 1 NMR. The metal coated film properties of epoxidized alkyd resins were compared with those of unmodified alkyd resins. It was observed that the coating films of epoxidized alkyd resins have better in drying properties, hardness, adhesion, impact and flexibility than those of un epoxidized alkyd resins. The flammability properties of the paper coated films for the prepared brominated epoxidized alkyd resins were found to be fire retardant

  19. 21 CFR 177.1655 - Polysulfone resins.

    Science.gov (United States)

    2010-04-01

    ... disodium salt of 4,4′-isopropylidenediphenol is made to react with 4,4′-dichlorodiphenyl sulfone in such a... Limitations Dimethyl sulfoxide Not to exceed 50 parts per million as residual solvent in finished basic resin... residual solvent in finished basic resin in paragraph (a)(1) of this section. N-methyl-2-pyrrolidone Not to...

  20. 21 CFR 177.1580 - Polycarbonate resins.

    Science.gov (United States)

    2010-04-01

    ...′-iso-propylidenediphenol with molten diphenyl carbonate in the presence of the disodium salt of 4,4... chloride Monochlorobenzene Not to exceed 500 p.p.m. as residual solvent in finished resin. Pentaerythritol...-88-3) Not to exceed 800 parts per million as residual solvent in finished resin. Triethylamine (c...