WorldWideScience

Sample records for solid resin catalyst

  1. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  2. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    Science.gov (United States)

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Resin catalysts and method of preparation

    Science.gov (United States)

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  4. Catalytic hydrodechlorination of triclosan using a new class of anion-exchange-resin supported palladium catalysts.

    Science.gov (United States)

    Han, Bing; Liu, Wen; Li, Jingwen; Wang, Jin; Zhao, Dongye; Xu, Rui; Lin, Zhang

    2017-09-01

    We prepared a new class of anion-exchange-resin supported Pd catalysts for efficient hydrodechlorination of triclosan in water. The catalysts were prepared through an initial ion-exchange uptake of PdCl 4 2- and subsequent reduction of Pd(II) to Pd(0) nanoparticles at ambient temperature. Two standard strong-base anion exchange resins (IRA-900 and IRA-958) with different matrices (polystyrene and polyacrylic) were chosen as the supports. SEM and TEM images showed that Pd(0) nanoparticles were evenly attached on the resin surface with a mean size of 3-5 nm. The resin supported Pd catalysts (Pd@IRA-900 and Pd@IRA-958) were able to facilitate rapid and complete hydrodechlorination of triclosan. At a Pd loading of 2.0 wt.%, the observed pseudo first-order rate constant (k obs ) was 1.25 ± 0.06 and 1.6 ± 0.1 L/g/min for Pd@IRA-900 and Pd@IRA-958, respectively. The catalysts were more resistant to Cl - poisoning and natural organic matter fouling than other supported-Pd catalysts. The presence of 10 mM NaCl suppressed the k obs value by 31% and 23% for Pd@IRA-900 and Pd@IRA-958, whereas the presence of humic acid at 30 mg/L as TOC lowered the rates by 28% and 27%, respectively. The better performance of Pd@IRA-958 was attributed to the polymeric matrix properties (i.e., hydrophobicity, pore size, and surface area) as well as Pd particle size. GC/MS analyses indicated that very low concentrations of chlorinated intermediates were detected in the early stage of the hydrodechlorination process, with 2-phenoxyphenol being the main byproduct. The catalysts can be repeatedly used in multiple operations without significant bleeding. The catalysts eliminate the need for calcination in preparing conventional supported catalysts, and the resin supports conveniently facilitate control of Pd loading and material properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of Highly Nano-Dispersed NiO/GDC Catalysts from Ion Exchange Resin Templates

    Directory of Open Access Journals (Sweden)

    Angel Caravaca

    2017-11-01

    Full Text Available Novel NiO/GDC (Gadolinium-doped Ceria cermet catalysts were developed by the Weak Acid Resin (WAR method using an ion exchange resin template. In addition, the specific surface area of these tunable materials was enhanced by NiO partial dissolution in aqueous acid solution. The whole procedure highly improved the micro-structural properties of these materials compared to previous studies. Catalysts with high metal loadings (≥10%, small Ni nanoparticles (<10 nm, and high specific surface areas (>70 m2/g were achieved. These properties are promising for catalytic applications such as methane steam reforming for H2 production.

  6. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  7. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  8. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  9. Used solid catalysts from chemical and petrochemical industries; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A comprehensive survey of the solid catalysts used in the chemical and petrochemical industries is presented; information on solid catalyst market demand prospective for 1998, the nature of solid catalysts used in the various industrial sectors and for the various chemical products production, the european catalysts manufacturers, solid catalyst poisons and inhibitors according to the various types of chemical reactions, mean compositions of used solid catalysts, an assessment of the volume of used solid catalysts generated by chemical and petrochemical industries, the various ways of solid catalyst regeneration and disposal, the potential for off-site regeneration of used catalysts, and French and European regulations, is presented

  10. Synthesis and properties of hydroxy acrylic resin with high solid content

    Science.gov (United States)

    Yu, Zhen; Hu, Mingguang; Cui, Han; Xiao, Jijun

    2017-10-01

    Manufacturers of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds in their paints in order to comply with increasingly strict environmental legislation. A high solid hydroxy acrylic resin was synthesised using CARDURA E10 and a type of hydroxyacrylic acid resin, its' acid value, hydroxylvalue, viscosity, structure, morphology was measured and film-forming properties after curing were characterised. The results show that the addition of CARDURA E10 in the copolymer composition significantly reduced the viscosity of the polymer system, improved the solid content of the resin and the physical properties of the coating. The hydroxyl acrylate resin with solid content of 90% and excellent comprehensive performance were successfully prepared by controlling the initiator dosage, polymerization temperature and monomer ratio.

  11. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  12. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  13. Study of the butyl acetate synthesis - 1. Catalyst selection

    Directory of Open Access Journals (Sweden)

    Álvaro Orjuela Londoño

    2004-01-01

    Full Text Available In this work, a laboratory scale selection study over eight catalytic agents was made, in the acetic acid and butyl alcohol esterification reaction (seven lon exchange resins and a zeolytic solid. Considering some physicochemical characteristics as the activation pre-treating requirements, acidity, thermal stability, reaction performance, etc., it was found that macroporous ion exchange resins are the most efficient catalysts, especially Lewatit K-2431 resin.

  14. 13C solid state NMR investigation of natural resins components

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Nogueira, Jose S.

    2001-01-01

    The objective of this work is to establish and analytical methodology as a routine using solid state nuclear magnetic resonance (NMR) techniques to investigate the mainly chemical components presented in natural resins in bulk. And also to evaluate the molecular behaviour of these resins. The routine solid state techniques allow us to assign the main compounds presented in the resins. Therefore, applying specialised techniques, like variable contact time, delayed contact time, dephasing time and proton spin lattice relaxation time in the rotating frame (T 1 H ρ), more information about chemical structure and molecular dynamic is available

  15. Studies on mixed metal oxides solid solutions as heterogeneous catalysts

    Directory of Open Access Journals (Sweden)

    H. R. Arandiyan

    2009-03-01

    Full Text Available In this work, a series of perovskite-type mixed oxide LaMo xV1-xO3+δ powder catalysts (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, with 0.5 < δ < 1.5, prepared by the sol-gel process and calcined at 750ºC, provide an attractive and effective alternative means of synthesizing materials with better control of morphology. Structures of resins obtained during the gel formation process by FT-IR spectroscopy and XRD analysis showed that all the LaMo xV1-xO3+δ samples are single phase perovskite-type solid solutions. The surface area (BET between 2.5 - 5.0 m²/g (x = 0.1 and 1.0 respectively increases with increasing Mo ratio in the samples. They show high purity, good chemical homogeneity, and lower calcinations temperatures as compared with the solid-state chemistry route. SEM coupled to EDS and thermogravimetric analysis/differential thermal analyses (TGA/DTA have been carried out in order to evaluate the homogeneity of the catalyst. Finally, the experimental studies show that the calcination temperature and Mo content exhibited a significant influence on catalytic activity. Among the LaMo xV1-xO3+δ samples, LaMo0.7V0.3O4.2 showed the best catalytic activity for the topic reaction and the best activity and stability for ethane reforming at 850ºC under 8 bar.

  16. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    Science.gov (United States)

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Esterification of Palmitic Acid with Methanol in the Presence of Macroporous Ion Exchange Resin as Catalyst

    Directory of Open Access Journals (Sweden)

    Amelia Qarina Yaakob and Subhash Bhatia

    2012-10-01

    Full Text Available The esterification of palmitic acid with methanol was studied in a batch reactor using macro porous ion exchange resin Amberlyst 15 as a catalyst. Methyl palmitate was produced from the reaction between palmitic acid and methanol in the presence of catalyst. The effects of processing parameters, molar ratio of alcohol to acid M, (4-10, catalyst loading (0-10 g cat/liter, water inhibition (0-2 mol/liter, agitator speed (200-800 rpm and reaction temperature (343-373K were studied. The experimental kinetic data were correlated using homogenous as well as heterogeneous models (based on single as well as dual site mechanisms. The activation energy of the reaction was 11.552 kJ/mol for forward reaction whilst 5.464 kJ/mol for backward reaction. The experimental data fitted well with the simulated data obtained from the kinetic models. Keywords: Palmitic Acid, Methanol, Esterification, Ion Exchange Resin, Kinetics.

  18. Highly active, recyclable catalyst for the manufacture of viscous, low molecular weight, CO–ethene–propene-based polyketone, base component for a new class of resins

    NARCIS (Netherlands)

    Broekhuis, Antonius A.; Dirkzwager, Hendrik; Mul, Wilhelmus P.; Heeres, Hero J.; Linden, Adrianus J. van der; Orpen, A. Guy

    2002-01-01

    A highly active, recyclable homogeneous palladium(II) catalyst is described for the manufacture of viscous, low molecular weight CO–ethene–propene-based polyketone (Carilite Oligomer), used for the manufacture of a new class of resins (Carilite Resins). The catalyst is composed of palladium acetate,

  19. Bio-phenolic resin from oil palm empty fruit bunches

    Science.gov (United States)

    Zakaria, Zuhaili; Zakaria, Sarani; Roslan, Rasidi; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Amran, Umar Adli

    2018-04-01

    Utilization of oil palm empty fruit bunches (EFB) in the production of bio-phenolic resin is an alternative way to reduce the dependency of petroleum-based phenol. In this study, resol type bio-phenolic resin (BPR) was synthesized from EFB fibers using sulfuric acid as the catalyst to produce liquefied empty fruit bunches (LEFB) followed by resinification reaction with formaldehyde in alkaline condition. The SEM image of LEFB residue showed separation of fiber bundles into individual fibers. This indicate that lignin was destroyed during the liquefaction process. The increased of formaldehyde/LEFB molar ratio has resulted an increase of viscosity, solid content and pH of the resin. The obtained FTIR spectra confirmed that functional groups of BPR resins was almost similar with commercial resin.

  20. Evaluation of the resin oxidation process using Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro G.; Goes, Marcos M.; Marumo, Julio T.

    2013-01-01

    The ion exchange resin is considered radioactive waste after its final useful life in nuclear reactors. Usually, this type of waste is treated with the immobilization in cement Portland, in order to form a solid monolithic matrix, reducing the possibility of radionuclides release in to environment. Because of the characteristic of expansion and contraction of the resins in presence of water, its incorporation in the common Portland cement is limited in 10% in direct immobilization, causing high costs in the final product. A pre-treatment would be able to reduce the volume, degrading the resins and increasing the load capacity of this material. This paper is about a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Fenton's reagent. The resin evaluated was a mixture of cationic and anionic resins. The reactions were conducted by varying the concentration of the catalyst (25 to 80 mM), with and without external heat. The time of reaction was two hours. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%. The resin degradation was confirmed by the presence of CaCO 3 as a white precipitate resulting from the reaction between the Ca(OH) 2 and the CO 2 from the resin degradation. It was possible to degrade the resins without external heating. The calcium carbonates showed no correlation with the residual resin mass. (author)

  1. Development of transition metal oxide catalysts for treatment of off-gases released during pyrolysis of organic ion exchange resins

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.

    2005-08-01

    The spent IX resin wastes arising from nuclear power plants have high radiation level due to fission product 137 Cesium and activation product 60 Cobalt. The pyrolysis and oxidative pyrolysis processes have potential to minimize final waste form volumes of these wastes. The major difficulty in deploying these processes for treatment of spent IX resins is release of off-gases containing large quantities of aromatic hydrocarbons, amines, sulphur dioxide, hydrogen sulphide, carbonyl sulphide etc. As an alternative to high temperature incineration of the pyrolysis off gases, feasibility of using catalytic combustion at moderate temperatures was investigated in the laboratory. Copper chromite, copper oxide-ceric oxide and vanadium pentaoxide catalysts supported on alumina were prepared and tested for oxidation of styrene monomer, toluene, ethyl benzene and trimethyl amine at 22500 hr -1 space velocity and temperature range of 300 to 500 degC. At temperatures over 475 degC, all three catatyst gave oxidation efficiency of over 97% for these compounds over concentration range of few tens of ppm to few thousands ppm. A composite catalyst bed of three catalysts comprising principally of copper chromite is proposed for treatment of IX resin pyrolysis off-gases. (author)

  2. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  3. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  4. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    Different acidic heterogeneous catalysts like alumina, aluminosilicate, zirconium phosphate, niobic acid, ion-exchange resin Amberlyst-15, and zeolite MOR have been studied in fructose dehydration to 5-hydroxymethylfurfural (HMF). The acidity of these materials was characterized using

  5. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    Science.gov (United States)

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  6. Solid-state /sup 13/C NMR study of cured resorcinol-formaldehyde resins

    Energy Technology Data Exchange (ETDEWEB)

    Lippmaa, H.; Samoson, A.

    1988-08-01

    The curing process generally follows the pattern observed in the stage of prepolymer formation. Catalysts (NaOH, hexa, Mg(OCOCH/sub 3/)/sub 2/) that have no substantial influence on the isomeric composition of the resorcinol-formaldehyde prepolymers, do not affect the isomeric composition of the cured resins to any significant extent either. Isomeric composition of the cured resins depends mostly on the presence of water during the curing process, necessary for depolymerisation of the added paraformaldehyde. Curing in the melt leads to enhanced 2-substitution in the 1,3-dihydroxybenzene rings. In the /sup 13/C NMR spectra of cured powdered samples, the tendency of 5-methylresorcinol to form oligomers with a higher degree of 2-substitution than resorcinol is clearly apparent. Polycondensation process continues in the powdered resins after initial curing until complete consumption of all formaldehyde. Curing of phenol-formaldehyde resols proceeds through intermediate dimethylene ether formation.

  7. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  8. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  9. Review of the Production of Biodiesel from Waste Cooking Oil using Solid Catalysts

    Directory of Open Access Journals (Sweden)

    N.H. Said

    2015-06-01

    Full Text Available The need for fossil fuels and the emissions generated from these fuels are increasing daily. Researchers are concerned with global warming as well as climate change; and energy sustainability and material usages are important issues today. Waste cooking oil (WCO can be processed into biodiesel as an alternative fuel to replace diesel. Production of biodiesel using WCO as the feedstock has been of growing interest for the last two decades. A number of research papers related to the improvements in production, raw materials and catalyst selection have been published. This paper reviews the various types of heterogeneous solid catalyst in the production of biodiesel via the transesterification of WCO. The catalysts used can be classified according to their state presence in the transesterification reaction as homogeneous or heterogeneous catalysts. Homogeneous catalysts act in the same liquid phase as the reaction mixture, whereas heterogeneous catalysts act in a solid phase with the reaction mixture. Heterogeneous catalysts are non-corrosive, a green process and environmentally friendly. They can be recycled and used several times, thus offering a more economic pathway for biodiesel production. The advantages and drawbacks of these heterogeneous catalysts are presented. Future work focuses on the application of economically and environmentally friendly solid catalysts in the production of biodiesel using WCO as the raw material.

  10. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A; Briand, Y

    1997-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  11. Spent solid catalysts of chemical industry and petroleum refining; Les catalyseurs solides uses de l`industrie chimique et du raffinage petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Paillier, A.; Briand, Y.

    1996-12-31

    The aim of this work is the analysis of the heterogeneous catalysis. In a first part are given the utilizing sectors. There are mainly the petroleum refining, the chemical industry and the environment. A catalyst is chosen according to its selectivity and velocity, its cost and the wastes it induces. Thus are found three main heterogeneous catalysts series: the bulky metals, the supported metals: precious or heavy or their compounds, the zeolites and other silico-aluminates. Their most frequent uses are given. The catalysts used in the main petroleum refining processes (distillation, catalytic hydro-treatment, desulfurization, catalytic reforming, catalytic cracking, catalytic hydrocracking, alkylation) are also detailed. The second part deals with the spent solid catalysts. The reasons of the deactivation (poisons or contaminants, structure modification) are given. The spent catalysts are either regenerated or eliminated. The regeneration methods are described. The solid catalysts cannot be stored without being stabilized (decrease of its water permeability and of its leachable fraction). The stabilization methods are reviewed. The regulations on the spent solid catalysts are given in the last part. (O.M.)

  12. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  13. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  14. Solid-Phase S-Alkylation Promoted by Molecular Sieves.

    Science.gov (United States)

    Calce, Enrica; Leone, Marilisa; Mercurio, Flavia Anna; Monfregola, Luca; De Luca, Stefania

    2015-11-20

    A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.

  15. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  16. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  17. [Mechanism of gold solid extraction from aurocyanide solution using D3520 resin impregnated with TRPO].

    Science.gov (United States)

    Yang, Xiang-Jun; Wang, Shi-Xiong; Zou, An-Qin; Chen, Jing; Guo, Hong

    2014-02-01

    Trialkyphosphine oxides (TRPO) was successfully used for the impregnation of D3520 resin to prepare an extractant-impregnated resin (EIR). Solid extraction of Au(I) from alkaline cyanide solution was studied using this extractant-impregnated resin (EIR), with addition of cetyltrimethylammonium bromide (CTMAB), directly into the aurous aqueous phase in advance. The mechanism of solid extraction was further investigated by means of FTIR, XPS and SEM. The column separation studies have shown that cationic surfactant CTMAB played a key role in the solid phase extraction, and the resin containing TRPO were effective for the extraction of gold when the molar ratio of CTMAB: Au( I ) reached 1:1. FTIR spectroscopy of gold loaded EIR showed that the frequency of C[triple bond]N stretching vibration was at 2144 cm(-1), and the frequency of P=O stretching vibration shifted to lower frequency from 1153 to 1150 cm(-1). The XPS spectrum of N(1s), Au(4f7/2) and Au(4f5/2) sugges- ted that the coordination environment of gold did not change before and after extraction, and gold was still as the form of Au (CN)2(-) anion exiting in the loaded resin; O(1s) spectrum showed that the chemically combined water significantly increased after solid extraction from 30.74% to 42.34%; Comparing to the P(2p) spectrum before and after extraction, the binding energy increased from 132. 15 to 132. 45 eV, indicating there maybe existing hydrogen-bond interaction between P=O and water molecule, such as P=O...H-O-H. The above results obtained established that in the solid extraction process, the hydrophobic ion association [CTMA+ x Au(CN)] diffused from the bulk solution into the pores of the EIR, and then be solvated by TRPO adsorbed in the pores through hydrogen bonding bridged by the water molecules.

  18. PEG-related polymer resins as synthetic supports

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combinatorial chemistry has become a significant part of the discovery and optimization process for novel drugs,affinity ligands,and catalysts.The polymeric supports play a key role in combinatory chemistry.Therefore,various kinds of functional polymer resins have been exploited as supports,reagents,and catalysts in organic synthesis.In comparison to the conventional Merrifield resins,the poly(ethylene glycol)(PEG)-related polymer resins have advantages including good compatibilities with polar solvents,good solvent absorbency and swelling properties.This review focuses primarily on the more recent work in the field of developing PEG-related polymer resins as supports for organic synthesis.

  19. Linkers, resins, and general procedures for solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen

    2013-01-01

    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  20. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-12-19

    In this paper, we report a simple method to evaluate biocompatibility of solid UV cross-linked resin as a material for microfluidic devices that can be used for biological applications. We evaluated the biocompatibility of the material in two different ways (1) determining if the UV cured resin inhibits the polymerase chain reaction (PCR) and (2) observing agglutination complex formed on the surface of the UV cured resin when anti-CRP antibodies and C- reactive protein (CRP) proteins were allowed to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used for PCR and protein interactions. Through these studies it is possible to estimate the curing time of various resin and their type of interaction with biomolecules. This study finds importance in on-chip tissue engineering and organ-on-chip applications.

  1. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  2. Synthesis and Mechanism of Metal-Mediated Polymerization of Phenolic Resins

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2016-04-01

    Full Text Available Phenol-formaldehyde (PF resin is a high performance adhesive, but has not been widely developed due to its slow curing rate and high curing temperature. To accelerate the curing rate and to lower the curing temperature of PF resin, four types of metal-mediated catalysts were employed in the synthesis of PF resin; namely, barium hydroxide (Ba(OH2, sodium carbonate (Na2CO3, lithium hydroxide (LiOH, and zinc acetate ((CH3COO2Zn. The cure-acceleration effects of these catalysts on the properties of PF resins were measured, and the chemical structures of the PF resins accelerated with the catalysts were investigated by using Fourier transform infrared (FT-IR spectroscopy and quantitative liquid carbon-13 nuclear magnetic resonance (13C NMR. The results showed that the accelerated efficiency of these catalysts to PF resin could be ordered in the following sequence: Na2CO3 > (CH3COO2Zn > Ba(OH2 > LiOH. The catalysts (CH3COO2Zn and Na2CO3 increased the reaction activity of the phenol ortho position and the condensation reaction of ortho methylol. The accelerating mechanism of (CH3COO2Zn on PF resin is probably different from that of Na2CO3, which can be confirmed by the differences in the differential thermogravimetric (DTG curve and thermogravimetric (TG data. Compared to the Na2CO3-accelerated PF resin, the (CH3COO2Zn-accelerated PF resin showed different peaks in the DTG curve and higher weight residues. In the synthesis process, the catalyst (CH3COO2Zn may form chelating compounds (containing a metal-ligand bond, which can promote the linkage of formaldehyde to the phenolic hydroxyl ortho position.

  3. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.

    1996-01-01

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  4. Isobutane/butene alkylation on solid catalysts. Where do we stand?

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J.; Traa, Y. [Institute of Chemical Technology I, University of Stuttgart, D-70550 Stuttgart (Germany)

    1999-02-24

    Liquid-phase processes with concentrated sulfuric acid or hydrogen fluoride as catalysts are currently being used in petroleum refining for the manufacture of alkylation gasoline from isobutane and butenes. While the product, i.e., alkylate, is a most valuable gasoline component, the existing processes for its manufacture are less satisfactory. Replacement of the liquid catalysts by a solid acid is an important target of modern research. In the past two decades, a large number of solid acids have been scrutinized, and at least four developments were driven till the pilot plant stage. In this paper, an attempt is made to rationalize, on a mechanistic basis, the selectivity loss almost always encountered with solid acids after relatively short times-on-stream. Suggestions are made concerning a more target-oriented research on isobutane/alkene alkylation in the future

  5. Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst.

    Science.gov (United States)

    Liu, Xuejun; Piao, Xianglan; Wang, Yujun; Zhu, Shenlin

    2010-03-25

    Modeling of the transesterification of vegetable oils to biodiesel using a solid base as a catalyst is very important because the mutual solubilities of oil and methanol will increase with the increasing biodiesel yield. The heterogeneous liquid-liquid-solid reaction system would become a liquid-solid system when the biodiesel reaches a certain content. In this work, we adopted a two-film theory and a steady state approximation assumption, then established a heterogeneous liquid-liquid-solid model in the first stage. After the diffusion coefficients on the liquid-liquid interface and the liquid-solid interface were calculated on the basis of the properties of the system, the theoretical value of biodiesel productivity changing with time was obtained. The predicted values were very near the experimental data, which indicated that the proposed models were suitable for the transesterification of soybean oil to biodiesel when solid bases were used as catalysts. Meanwhile, the model indicated that the transesterification reaction was controlled by both mass transfer and reaction. The total resistance will decrease with the increase in biodiesel yield in the liquid-liquid-solid stage. The solid base catalyst exhibited an activation energy range of 9-20 kcal/mol, which was consistent with the reported activation energy range of homogeneous catalysts.

  6. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  7. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  8. Recycling of spent hydroprocessing catalysts: EURECAT technology

    Energy Technology Data Exchange (ETDEWEB)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. (EURECAT-European Reprocessing Catalysts, La Voulte sur Rhone (France))

    1994-04-01

    Disposal of spent catalyst is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and there are State recommendations to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in the oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium, and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 2 tabs.

  9. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Guoqing; Kusakabe, Katsuki; Yamasaki, Satoko [Department of Living Environmental Science, Fukuoka Women' s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529 (Japan)

    2009-04-15

    Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity. (author)

  10. Solid Catalyst Nanoparticles derived from Oil-Palm Empty Fruit Bunches (OP-EFB) as a Renewable Catalyst for Biodiesel Production

    Science.gov (United States)

    Husin, H.; Asnawi, T. M.; Firdaus, A.; Husaini, H.; Ibrahim, I.; Hasfita, F.

    2018-05-01

    Solid nanocatalyst derived from oil-palm empty fruit bunches (OP-EFB) fiber was successfully synthesized and its application for biodiesel production was investigated. The OPEFB was treated by burning, milling and heating methods to generate ashes in a nanoparticle size. The nanoparticle palm-bunch ash was characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The effects of the calcination temperature and catalyst amounts for transesterification reactions were investigated. XRD analysis of palm bunch ash exhibited that the highest composition of peaks characteristic were potassium oxide (K2O). SEM analysis showed that the nano palm bunch ash have a particle size ranging of 150-400 nm. The highest conversion of palm-oil to biodiesel reach to 97.90% was observed by using of palm bunch ash nanocatalyst which heated at 600°C, 3 h reaction time and 1% catalyst amount. Reusability of palm bunch ash catalysts was also examined. It was found that of its high active sites, reusable solid catalyst was obtained by just heating of palm bunch ash. It has a capability to reduce not only the amount of catalyst consumption but also reduce the reaction time of transesterification process.

  11. Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst

    International Nuclear Information System (INIS)

    Zacharuk, Mario; Coelho, Luiz A.F.; Pezzin, Sergio H.; Becker, Daniela

    2009-01-01

    In this work the use of N,N-dimethylbenzylamine as a catalyst of the reaction of polyethylene glycol (PEG) and epoxy resin (DGEBA) was studied. The reaction products were evaluated by infra-red spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and viscosity measurements. Samples cured with a polyamine-based hardener were also submitted to tensile tests and differential scanning calorimetry (DSC). The results of the viscosity analyses, FTIR and RMN ( 1 H) had confirmed the occurrence of the reaction between DGEBA epoxy groups and PEG hydroxyl groups in the presence of N, N-dimethylbenzylamine as catalyst, at 100 deg C. DSC analyses and tensile tests of cured systems showed that the reaction of DGEBA with PEG leads to a reduction of the Tg, generating a more flexible material. (author)

  12. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  13. Starch saccharification by carbon-based solid acid catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  14. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  15. Effect of the reaction medium on the properties of solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boreskov, G.K.

    1980-01-01

    The effect of the reaction medium on the properties of solid catalysts, such as bulk or supported metals, alloys, or metal oxides, include variations in surface composition, structure, and catalytic properties due to catalyst interaction with the reactants. This interaction leads to the establishment of a steady state, which is determined by the composition of the reaction medium and temperature, but is independent of the initial state of the catalyst. This steady state for a catalyst of a given chemical composition is characterized by an approximately constant specific activity in most chemical reactions, which is almost independent of the preparation method, surface area, or crystal size of the catalyst. The structurally sensitive reactions, which occur only on limited segments of catalyst surface characterized by specific structures, are the exception. The effects of the variations in catalytic properties caused by the reaction medium on the steady-state and nonsteady-state reaction kinetics are also discussed based on the results obtained for oxidative dehydrogenation of 1-butene over an iron/antimony oxide catalyst.

  16. Modified calcium oxide as stable solid base catalyst for Aldol ...

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was ... was bonded on surface of CaO chemically and almost no Ca(OH)2 formed during the modification process. ... cation, corrosion and waste generation attract great.

  17. Aerobic Oxidation of 5-(Hydroxymethyl)furfural in Ionic Liquids with Solid Ruthenium Hydroxide Catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim Johannes Bjarki; Eyjolfsdottir, Ester; Gorbanev, Yury

    2012-01-01

    The aerobic oxidation of 5-(hydroxymethyl)furfural was investigated over solid ruthenium hydroxide catalysts in ionic liquids at elevated temperatures and pressures. Several different catalyst supports were tested in combination with various ionic liquids. The best result was obtained in [EMIm...

  18. Copolymerization of carbon monoxide and styrene catalyzed by resin-supported palladium polymer

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Polyketone was prepared by the copolymerization of carbon monoxide (CO and styrene (ST catalyzed by o-phenylenediamine resin-supported palladium acetate. Effects of each catalytic system component such as 2,2’-bipyridine, 1,4-quinone and p-toluene-sulphonate on the copolymerization were investigated. The resin-supported catalyst and the copolymerization product were characterized by infrared spectroscopy (IR, differential scanning calorimetry (DSC, thermogravimetry (TG, X-ray photoelectron spectroscopy (XPS, Scanning Electron Microscopy (SEM. Results indicated that the resin-supported catalyst has excellent catalytic property. Furthermore, partial catalytic activity was maintained after the catalyst was used for five times.

  19. Synthesis of novel perfluoroalkylglucosides on zeolite and non-zeolite catalysts.

    Science.gov (United States)

    Nowicki, Janusz; Mokrzycki, Łukasz; Sulikowski, Bogdan

    2015-04-08

    Perfluoroalkylglucosides comprise a very important class of fluorine-containing surfactants. These compounds can be synthesized by using the Fisher reaction, starting directly from glucose and the required perfluoroalcohols. We wish to report on the use of zeolite catalysts of different structure and composition for the synthesis of perfluoroalkylglucosides when using glucose and 1-octafluoropentanol as substrates. Zeolites of different pore architecture have been chosen (ZSM-5, ZSM-12, MCM-22 and Beta). Zeolites were characterized by XRD, nitrogen sorption, scanning electron microscopy (SEM) and solid-state 27Al MAS NMR spectroscopy. The activity of the zeolite catalysts in the glycosidation reaction was studied in a batch reactor at 100 °C below atmospheric pressure. The performance of zeolites was compared to other catalysts, an ion-exchange resin (Purolite) and a montmorillonite-type layered aluminosilicate. The catalytic performance of zeolite Beta was the highest among the zeolites studied and the results were comparable to those obtained over Purolite and montmorillonite type catalysts.

  20. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    International Nuclear Information System (INIS)

    Zhi, Chen; Dudu, Wu

    2012-01-01

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the α-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  1. Synthesis of Dimethyl Glutarate from Cyclobutanone and Dimethyl Carbonate over Solid Base Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Chen; Dudu, Wu [Guangdong Medical College, Dongguan (China)

    2012-06-15

    A facile route for the synthesis of dimethyl glutarate (DMG) from cyclobutanone and dimethyl carbonate (DMC) in the presence of solid base catalysts has been developed. It was found that the intermediate carbomethoxycyclobutanone (CMCB) was produced from cyclobutanone with DMC in the first step, and then CMCB was further converted to DMG by reacting with a methoxide group. The role of the basic catalysts can be mainly ascribed to the activation of cyclobutanone via the abstraction of a proton in the {alpha}-position by base sites, and solid bases with moderate strength, such as MgO, favor the formation of DMG

  2. Imidazolium Ionic Liquid Modified Graphene Oxide: As a Reinforcing Filler and Catalyst in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Qing Lyu

    2017-09-01

    Full Text Available Surface modification of graphene oxide (GO is one of the most important issues to produce high performance GO/epoxy composites. In this paper, the imidazole ionic liquid (IMD-Si was introduced onto the surface of GO sheets by a cheap and simple method, to prepare a reinforcing filler, as well as a catalyst in epoxy resin. The interlayer spacing of GO sheets was obviously increased by the intercalation of IMD-Si, which strongly facilitated the dispersibility of graphene oxide in organic solvents and epoxy matrix. The addition of 0.4 wt % imidazolium ionic liquid modified graphene oxide (IMD-Si@GO, yielded a 12% increase in flexural strength (141.3 MPa, a 26% increase in flexural modulus (4.69 GPa, and a 52% increase in impact strength (18.7 kJ/m2, compared to the neat epoxy. Additionally the IMD-Si@GO sheets could catalyze the curing reaction of epoxy resin-anhydride system significantly. Moreover, the improved thermal conductivities and thermal stabilities of epoxy composites filled with IMD-Si@GO were also demonstrated.

  3. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  5. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    Science.gov (United States)

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  6. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins

    DEFF Research Database (Denmark)

    Nandurkar, Nitin Subhash; Petersen, Rico; Qvortrup, Katrine

    2011-01-01

    An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method comprises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA...

  7. Modified calcium oxide as stable solid base catalyst for Aldol

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyse the Aldol condensation of cyclohexanone and benzaldehyde, as well as various benzaldehydes, to produce ...

  8. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    Science.gov (United States)

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  10. Modified resins for solid-phase extraction

    Science.gov (United States)

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  11. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  12. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  13. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Rice husk-derived sodium silicate exhibits high potential as a low-cost solid catalyst for industrial biodiesel production. - Highlights: • Rice husk-derived sodium silicate was employed as a high performance catalyst for biodiesel production. • 97% yield of FAME was achieved in 30 min at 65 °C. • The room-temperature transesterification gave 94% yield of FAME after only 150 min. - Abstract: In the present work, rice husk-derived sodium silicate was prepared and employed as a solid catalyst for simple conversion of oils to biodiesel via the transesterification reaction. The catalyst was characterized by TG–DTA, XRD, XRF, FT-IR, SEM, BET and Hammett indicator method. Under the optimal reaction conditions of catalyst loading amount of 2.5 wt.%, methanol/oil molar ratio of 12:1, the prepared catalysts gave 97% FAME yield in 30 min at 65 °C, and 94% FAME yield in 150 min at room temperature. The transesterification was proved to be pseudo-first order reaction with the activation energy (Ea) and the frequency factor (A) of 48.30 kJ/mol and 2.775 × 10"6 min"−"1 respectively. Purification with a cation-exchange resin efficiently removed all soluble ions providing high-quality biodiesel product that meets all the ASTM and EN standard specifications. Rice husk-derived sodium silicate showed high potential to be used as a low-cost, easy to prepare and high performance solid catalyst for biodiesel synthesis.

  14. Solid Silica-based Sulphonic Acid as an Efficient Green Catalyst for ...

    African Journals Online (AJOL)

    NJD

    Solid Silica-based Sulphonic Acid as an Efficient Green. Catalyst for the Selective Oxidation of Sulphides to. Sulphoxides using NaCIO in Aqueous Media. Ali Amoozadeh* and Firouzeh Nemati. Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran. Received 21 October 2008, revised 6 December ...

  15. Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts

    Directory of Open Access Journals (Sweden)

    Thana Jaafar Al-Hasani

    2017-02-01

    Full Text Available The p-phenylenediamine (PDA and dithiooxamide (DTO were immobilized onto silica from rice husk ash (RHA using 3-chloropropyltriethoxyilane (CPTES to form a solid catalyst denoted as RHAPDA and RHADTO, respectively. BET measurements of the catalysts showed the surface area to be 145 and 9.7 m2 g−1 with an average pore diameter of 9.8 and 10.9 nm, respectively. The catalytic performance of RHAPDA and RHADTO was tested in the esterification of ethyl alcohol with acetic acid. A conversion of 48% and 69% was achieved, respectively with 100% selectivity toward ethyl acetate.

  16. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  17. Experimental investigation of attrition resistance of zeolite catalysts in two particle gas-solid-solid fluidization system

    International Nuclear Information System (INIS)

    Nawaz, Z.; Ziaoping, T.; Shu, Q.; Wei, F.; Naveed, S.

    2010-01-01

    In the study of mechanical degradation of 34 ZSM-5 and SAPO catalysts, using the gas jet attrition - ASTM standard fluidized bed test (D-5757), the effect of particle size and its quantitative analysis in co-fluidization environment was investigated on the air jet index (AJI) basis. In gas-solid-solid fluidized bed reactors (GSS-FBR), two different sized particles were fluidized under isothermal conditions. In case of ZSM-5 and SAPO-34, significant attrition resistance was observed, which was attributed to small pore size and specific structural strength of the mobile framework image (MFI) and chabasite (CHA) structures, respectively. The optimum AJI for SAPO-34 and ZSM-5 (of particle size 0.2 mm) in GSS-fluidization system was observed to be 0.0118 and 0.0062, respectively. In co-fluidization, deviations from Gwyn relationship were observed due to change in impact of collision. Therefore, zeolites are recommended as suitable catalysts or catalytic supports (for doping of expensive metals) and for commercial use in GSS-FBR. (author)

  18. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  19. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  20. Synthesis of 1, 4-Dioxan-2-one from 1, 3-Dioxolane and Carbon Monoxide over Cation-exchange Resin Catalyst

    OpenAIRE

    Takagi, Hiroyuki; Oumi, Yasunori; Uozumi, Toshiya; Masuda, Takashi; Sano, Tsuneji

    2001-01-01

    The possibility of the synthesis of 1, 4-dioxan-2-one (p-dioxanon) by carbonylation of 1, 3-dioxolane (cyclic ether) over Nafion® NR-50 cation-exchange resin catalyst was investigated. 1, 4-Dioxan-2-one, one of the cyclic esterethers used as a monomer of polyester, was obtained by depolymerization of polyester oligomers. The maximum yield (40%) of 1, 4-dioxan-2-one was achieved under reaction conditions of 25MPa initial PCO, 120°C reaction temperature and 4h reaction time.

  1. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  2. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    International Nuclear Information System (INIS)

    Xu, Dongyan; Ma, Hong; Cheng, Fei

    2014-01-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  3. Properties and efficiency of a Pt/Al2O3 catalyst applied in a solid fuel thermo-accumulating furnace

    Directory of Open Access Journals (Sweden)

    SRDJAN BELOSEVIC

    2007-08-01

    Full Text Available A prototype of a solid fuel thermo-accumulating furnace has been developed. In order to achieve a higher combustion efficiency, a Pt/Al2O3 catalyst in the form of 3 ± 0.3 mm spheres was applied, which enabled further combustion of flue gases within the furnace. Experimental investigation of the influence of the catalyst on the conversion of CO has been done for different operation regimes and positions of the catalyst. Paper presents selected results regarding CO emission during wood and coal combustion. Investigations suggest a considerable effect of the catalyst and a strong influence of the catalyst position to CO emission reduction. The microstructure of the catalyst beads, characterized by selective chemisorption of CO, has shown the decrease of the number of Pt sites as a consequence of blockage by coke deposits formed during the combustion of solid fuel.

  4. Solid phase extraction of Am (III) by resins impregnated with multiply diglycolamide-functionalized ligands

    International Nuclear Information System (INIS)

    Gujar, R.B.; Ansari, S.A.; Mohapatra, P.K.; Verboom, W.

    2016-01-01

    Solvent extraction studies with multiply diglycolamide-functionalized extractants such as tripodal diglycolamide (T-DGA) or diglycolamide-functionalized calix(4)arene (C4DGA) ligands have shown excellent results as compared to those of normal DGA ligands such as TODGA. A very high selectivity for Am(III) has been reported with these ligands with respect to U(VI) and Pu(IV). High selectivities and large extraction efficiencies of these ligands towards trivalent f elements were ascribed to a co-operative complexation mechanism. Furthermore, the extraction efficiency of these ligands increased several folds in ionic liquid medium as compared to paraffinic solvents. It was of interest, therefore, to prepare extraction chromatographic resins by impregnation of solvent systems containing these ligands in an ionic liquid. In the present work, solid phase extraction studies were carried out using these two multiply diglycolamide-functionalized extractants, viz. T-DGA (resin I) and C4DGA (resin-II) containing the ionic liquid C 4 mim. NTf 2 impregnated on Chromosorb-W

  5. Poly(N-4-vinylbenzyl-1,4,7-triazacyclononane Copper Complex Grafted Solid Catalyst for Oxidative Polymerization of 2,6-Dimethylphenol

    Directory of Open Access Journals (Sweden)

    Kei Saito

    2016-01-01

    Full Text Available A new solid phase catalyst, poly(N-4-vinylbenzyl-1,4,7-triazacyclononane copper(I complex, grafted onto polystyrene particles, has been employed for the oxidative polymerization of 2,6-dimethylphenol using an aqueous biphasic (water/toluene solvent system. The solid catalyst was synthesized by first grafting N-(4-vinylbenzyl-1,4,7-triaza-cyclononane onto polystyrene particles using a radical mediated polymerization method and next by creating the polymer-metal complex of copper-triazacyclononane with these modified particles. Poly(2,6-dimethyl-1,4-phenylene oxide was successfully obtained from the polymerization of 2,6-dimethylphenol using this new metal-organic solid phase catalyst.

  6. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    Science.gov (United States)

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  7. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  8. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  9. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  10. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao; Dou, Jian; Chen, Luwei; Lin, Jianyi; Zeng, Hua Chun

    2012-01-01

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  13. Comparison of Cashew Nut Shell Liquid (CNS) Resin with Polyester ...

    African Journals Online (AJOL)

    Akorede

    cobalt amine (accelerator), methyl ethyl ketone peroxide (catalyst) to develop two sets of ... shell liquid (CNSL) resin were comparable to those developed with polyester resin. ... permit diffusion of water, this function is often not adequately ... When designed ... blades in gas turbine engines, wing leading edges and flaps.

  14. Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst

    International Nuclear Information System (INIS)

    Zhang, Zhi-bo; Lu, Qiang; Ye, Xiao-ning; Li, Wen-tao; Hu, Bin; Dong, Chang-qing

    2015-01-01

    Highlights: • Phenolic-rich bio-oil was selectively produced from catalytic fast pyrolysis of biomass using magnetic solid base catalyst. • The actual yield of twelve major phenolic compounds reached 43.9 mg/g. • The peak area% of all phenolics reached 68.5% at the catalyst-to-biomass ratio of 7. • The potassium phosphate/ferroferric oxide catalyst possessed promising recycling properties. - Abstract: A magnetic solid base catalyst (potassium phosphate/ferroferric oxide) was prepared and used for catalytic fast pyrolysis of poplar wood to selectively produce phenolic-rich bio-oil. Pyrolysis–gas chromatography/mass spectrometry experiments were conducted to investigate the effects of pyrolysis temperature and catalyst-to-biomass ratio on the product distribution. The actual yields of important pyrolytic products were quantitatively determined by the external standard method. Moreover, recycling experiments were performed to determine the re-utilization abilities of the catalyst. The results showed that the catalyst exhibited promising activity to selectively produce phenolic-rich bio-oil, due to its capability of promoting the decomposition of lignin to generate phenolic compounds and meanwhile inhibiting the devolatilization of holocellulose. The maximal phenolic yield was obtained at the pyrolysis temperature of 400 °C and catalyst-to-biomass ratio of 2. The concentration of the phenolic compounds increased monotonically along with the increasing of the catalyst-to-biomass ratio, with the peak area% value increasing from 28.1% in the non-catalytic process to as high as 68.5% at the catalyst-to-biomass ratio of 7. The maximal total actual yield of twelve quantified major phenolic compounds was 43.9 mg/g, compared with the value of 29.0 mg/g in the non-catalytic process. In addition, the catalyst could be easily recovered and possessed promising recycling properties.

  15. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    Science.gov (United States)

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from refinery and perhaps other modern refineries during the timeframe examined. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. An Efficient Solid-phase Parallel Synthesis of 2-Amino and 2-Amidobenzo[d]oxazole Derivatives via Cyclization Reactions of 2-Hydroxyphenylthiourea Resin

    International Nuclear Information System (INIS)

    Jung, Selin; Kim, Seulgi; Lee, Geehyung; Gong, Youngdae

    2012-01-01

    An efficient solid-phase methodology has been developed for the synthesis of 2-amino and 2-amidobenzo[d]-oxazole derivatives. The key step in this procedure involves the preparation of polymer-bound 2-aminobenzo-[d]oxazole resins 4 by cyclization reaction of 2-hydroxyphenylthiourea resin 3. The resin-bound 2-hydroxy-phenylthiourea 3 is produced by the addition of 2-aminophenol to the isothiocyanate-terminated resin 2 and serve as a key intermediate for the linker resin. This core skeleton 2-aminobenzo[d]oxazole resin 4 undergoes functionalization reaction with various electrophiles, such as alkylhalides and acid chlorides to generate 2-amino and 2-amidobenzo[d]oxazole resins 5 and 6 respectively. Finally, 2-amino and 2-amidobenzo[d]oxazole derivatives 7 and 8 are then generated in good yields and purities by cleavage of the respective resins 5 and 6 under trifluoroacetic acid (TFA) in dichloromethane (CH 2 Cl 2 )

  17. Degradation of ion spent resin using the Fenton's reagent

    International Nuclear Information System (INIS)

    Araujo, Leandro Goulart de

    2013-01-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  18. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  19. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    International Nuclear Information System (INIS)

    Jiang, Tingshun; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-01-01

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH 3 -TPD and N 2 physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO 4 2− /Zr-MCM-48 and SO 4 2− /Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO 4 2− /Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h −1 and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO 4 2− /Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO 4 2− /Zr-MCM-48-25

  20. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Synthesis and Thermal Properties of a Novel Nitrogen-containing Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    Xing Hong ZHANG; Hong Mei WAN; Yu Qin MIN; Zuo FANG; Guo Rong QI

    2005-01-01

    A new nitrogen-containing epoxy resin (XT resin) was synthesized from chain extension of xylenephenolformaldehyde resin (XPF) and triglycidyl isocyanurate (TGIC) in the presence of base catalyst. FT-IR and 1H-NMR analysis confirmed the chemical structure of XT resin. It was cured with dicyandiamide (DICY) and diaminodiphenyl sulfone (DDS). Dynamic mechanical analysis (DMA) results showed that the introduction of triazine ring provides epoxy polymer with good thermal stability. Furthermore, high char yields at 800℃ in thermogravimetric (TGA)analysis indicated that XT resin had potential flame retardance.

  2. Synthesis of solid catalyst from egg shell waste and clay for biodiesel production

    Science.gov (United States)

    Setiadji, S.; Sundari, C. D. D.; Munir, M.; Fitriyah, S.

    2018-05-01

    Until now, energy consumption in Indonesia is almost entirely fulfilled by fossil fuels, thus, its availability will be limited and continue to decrease. To overcome these problems, development and utilization of renewable energy are required, one of which is biodiesel. Biodiesel can be prepared through transesterification reaction of vegetable oil using catalyst. In this research, a solid catalyst for biodiesel synthesis was prepared from chicken egg shell waste and clay. Optimization of the transesterification reaction of coconut (Cocos nucifera) oil to obtain biodiesel was also carried out. The formation of CaO/kaolin catalyst was confirmed based on the results of XRD and SEM-EDS. This catalyst is suitable for biodiesel synthesis from vegetable oils with lower FFA (free fatty acid) levels, i.e. coconut oil with FFA level of 0.18%. Based on FTIR result, FFA level and flame tests, it was found that biodiesel was successfully formed. Synthesis of biodiesel has the optimum conditions on reaction time of 16 hours and temperature of 64 °C, with oil: methanol ratio of 1: 15 and CaO/kaolin catalyst concentration of 0.9% in a reflux system.

  3. Structural investigation of e-beam cured epoxy resins through solid state NMR

    International Nuclear Information System (INIS)

    Alessi, Sabina; Spinella, Alberto; Caponetti, Eugenio; Dispenza, Clelia; Spadaro, Giuseppe

    2012-01-01

    In this paper the network structure of e-beam cured DGEBF based epoxy resins is investigated. Two epoxy systems, having different reactivity and cured in different process conditions, were analyzed through solid state NMR spectroscopy. The analysis shows that the more reactive system has higher cross-linking density and higher uniformity of network distribution. Similar information were obtained, in a previous work, on the same systems through dynamic mechanical thermal analysis. It is worth noting that unlike DMTA tests, which interfere with the molecular structure of the analyzed material, due to the heating during the analysis itself, more reliable information, without any artefact, are obtained by solid state NMR, carried out at constant room temperature. - Highlights: ► The structure of two e-beam cured epoxy systems is investigated through solid state NMR. ► The aim is to have direct information about the structure without inducing modifications. ► The different molecular structures are able to emphasize the response of solid state NMR. ► T 1 H, T 1ρ H and T CH measurements indicate different cross-linking degrees. ► The NMR results are in agreement with DMTA analysis performed in a previous paper.

  4. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  5. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-06-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)-(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized.

  6. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    International Nuclear Information System (INIS)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. (focus issue review)

  7. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals

    Science.gov (United States)

    Hara, Michikazu; Nakajima, Kiyotaka; Kamata, Keigo

    2015-01-01

    In recent decades, the substitution of non-renewable fossil resources by renewable biomass as a sustainable feedstock has been extensively investigated for the manufacture of high value-added products such as biofuels, commodity chemicals, and new bio-based materials such as bioplastics. Numerous solid catalyst systems for the effective conversion of biomass feedstocks into value-added chemicals and fuels have been developed. Solid catalysts are classified into four main groups with respect to their structures and substrate activation properties: (a) micro- and mesoporous materials, (b) metal oxides, (c) supported metal catalysts, and (d) sulfonated polymers. This review article focuses on the activation of substrates and/or reagents on the basis of groups (a)–(d), and the corresponding reaction mechanisms. In addition, recent progress in chemocatalytic processes for the production of five industrially important products (5-hydroxymethylfurfural, lactic acid, glyceraldehyde, 1,3-dihydroxyacetone, and furan-2,5-dicarboxylic acid) as bio-based plastic monomers and their intermediates is comprehensively summarized. PMID:27877800

  8. Aldol Condensation of Citral with Acetone on Basic Solid Catalysts

    Directory of Open Access Journals (Sweden)

    NODA C.

    1998-01-01

    Full Text Available The catalytic performance of solids with basic properties, such as CaO, MgO and hydrotalcites, was evaluated in the aldol condensation of citral and acetone, the first step in the synthesis of ionones from citral. The best results were obtained with CaO and hydrotalcite with high conversions (98% and selectivities (close to 70% for the main product observed for both of the catalyst. Such pseudoionone yields were greater than those reported in the literature for the homogeneous reaction.

  9. Towards long-term stable solid state electrolyzers with infiltrated catalysts

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Brodersen, Karen

    conventional power plants or fuel cells. Key challenges for a successful commercialization of solid oxide electrolyzers are up scale it, reduce cost and improve durability. Therefore, large efforts are allocated to improve cell performance. As a relatively novel method to introduce electro......Renewable energy sources like wind and solar are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure that energy supply can be covered in a stable and affordable......-catalysts into the porous structure of the electrodes, infiltration has shown very efficient. Solid oxide cells with infiltrated electrodes have been reported to show improved performance compared to conventional cells [1]. In this study, the development of infiltration procedures to improve the stability and catalytic...

  10. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  11. Sulfuric acid functional zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts for alkylation of phenol with tert-butyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tingshun, E-mail: tshjiang@mail.ujs.edu.cn; Cheng, Jinlian; Liu, Wangping; Fu, Lie; Zhou, Xuping; Zhao, Qian; Yin, Hengbo

    2014-10-15

    Several zirconium (or aluminum) incorporated mesoporous MCM-48 solid acid catalysts (SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48) were prepared by the impregnation method and their physicochemical properties were characterized by means of XRD, FT-IR, TEM, NH{sub 3}-TPD and N{sub 2} physical adsorption. Also, the catalytic activities of these solid acid catalysts were evaluated by the alkylation of phenol with tert-butyl alcohol. The effect of weight hour space velocity (WHSV), reaction time and reaction temperature on catalytic properties was also studied. The results show that the SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 still have good mesoporous structure and long range ordering. Compared with the Zr (or Al)–MCM-48 samples, SO{sub 4}{sup 2−}/Zr-MCM-48 and SO{sub 4}{sup 2−}/Al-MCM-48 solid acid catalysts have strong acidity and exhibit high activities in alkylation reaction of phenol with tert-butyl alcohol. The SO{sub 4}{sup 2−}/Zr-MCM-48-25 (molar ratio of Si/Zr=0.04) catalyst was found to be the most promising and gave the highest phenol conversion among all catalysts. A maximum phenol conversion of 91.6% with 4-tert-butyl phenol (4-TBP) selectivity of 81.8% was achieved when the molar ratio of tert-butyl alcohol:phenol is 2:1, reaction time is 2 h, the WHSV is 2 h{sup −1} and the reaction temperature is 140 °C. - Highlights: • Sulfuric acid functional mesoporous solid acid catalysts were prepared via impregnation method. • The alkylation of phenol with tert-butyl alcohol was carried out over these solid acid catalysts. • The catalytic activity of SO{sub 4}{sup 2−}/Zr-MCM-48-25 catalyst is much higher than that of the others. • A maximum phenol conversion of 91.6% was achieved under optimum reaction conditions for SO{sub 4}{sup 2−}/Zr-MCM-48-25.

  12. New materials for biodiesel production. The use of MgAl hydrotalcites solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Joao F.P.; Puna, Jaime F.B.; Goncalves, L. [Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa (Portugal). Chemical Engineering Dept.; Bordado, Joao C. [Instituto Superior Tecnico (IST), Lisboa (Portugal). Inst. of Biotechnology and Bioengineering

    2010-07-01

    This work, reports preliminary studies and experimental work done so far in this field, using new solid basic catalysts: Double oxides of Mg and Al, produced by the calcination, at high temperature, of MgAl lamellar structures, the hidrotalcites. A brief introduction of its characterization, utilisation and synthesis of these catalysts, experimental conditions, experimental results and respective conclusions are described, here, with specific detail. The oil treatment procedure, the biodiesel production and purification processes and their respective morphological and textural characterizations are also described, with appropriate tables and figures, using, for instance, SEM, X-Ray Diffraction, Thermo gravimetric analysis (TG) and Middle Infrared Spectroscopy (MIR). (orig.)

  13. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  14. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  15. Thermosetting behavior of pitch-resin from heavy residue

    Energy Technology Data Exchange (ETDEWEB)

    Qingfang, Z.; Yansheng, G.; Baohua, H.; Yuzhen, Z. [China Univ. of Petroleum, Dongying, Shandong (China). State Key LAboratory of Heavy Oil Processing, Heavy Oil Research Inst.

    2006-07-01

    Thermosetting resins are widely employed as a basic matrix for c/c composites in carbon materials production. A new type of synthesized thermosetting resin is called pitch resin. Pitch resin is a cheaper resin and possesses a potential opportunity for future use. However, the thermosetting behavior of pitch resin is not very clear. The hardening process and conditions for thermosetting are very important for future use of pitch resin. B-stage pitch resin is a soluble and meltable inter-media condensed polymer, which is not fully reacted and is of a low molecular weight. The insoluble and unmelted pitch resin can only be obtained from synthesized B-stage resin after a hardening stage. This paper presented an experiment that synthesized B-stage pitch resin with a link agent (PXG) under catalyst action from fluid catalytic cracking (FCC) of the slurry's aromatic enriched component (FCCDF). The paper discussed the experiment, including the synthesis of pitch resin and thermosetting of pitch resin. Two kinds of thermosetting procedures were used in the study called one-step thermosetting and two-step thermosetting. It was concluded that the B-stage pitch resin could be hardened after a thermosetting procedure by heat treatment. The thermosetting pitch resin from 2-step thermosetting possesses was found to have better thermal resistant properties than that of the 1-step thermosetting pitch resin. 13 refs., 2 tabs., 6 figs.

  16. The international symposium on 'chemical engineering of gas-liquid-solid catalyst reactions'

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H

    1978-06-01

    A report on the International Symposium on ''Chemical Engineering of Gas-Liquid-Solid Catalyst Reactions'', sponsored by the University of Liege (3/2-3/78), covers papers on the hydrodynamics, modeling and simulation, operating behavior, and chemical kinetics of trickle-bed reactors; scale-up of a trickle-bed reactor for hydrotreating Kuwait vacuum distillate; experimental results obtained in trickle-bed reactors for hydroprocessing atmospheric residua, hydrogenation of methylstyrene, hydrogenation of butanone, and hydrodemetallization of petroleum residua; advantages and disadvantages of various three-phase reactor types (e.g., for the liquid-phase hydrogenation of carbon monoxide to benzene, SNG, or methanol) and hydrodynamics, mass and heat transfer, and modeling of bubble columns with suspended catalysts (slurry reactors), and their applications (e.g., in SNG and fermentation processes).

  17. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active species....... However, as a consequence of the development of new processes for biorefineries, an increasing number of reactions deal with liquid media, and thus, the stability and reusability of a solid catalyst in this situation represent a huge challenge that requires specific attention. Leaching of active phases...... is particularly problematic because of its irreversibility and it can be one of the main causes of catalyst deactivation in liquid media, threatening the sustainability of the process. This tutorial review presents a survey of the main aspects concerning the deactivation due to leaching of active species from...

  18. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  19. Use of solid-phase salt catalysts in furfural preparation

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, E.F.; Shkut, V.M.; Kebich, M.S.; Kuznetsova, T.A.

    1981-01-01

    The manufacture of furfural (I) from tanning waste, birch sawdust, or corncobs at 220-230 degrees in the presence of 2.0-3.0% double superphosphate, ammophos, (NH/sub 4/)/sub 2/SO/sub 4/, NH/sub 4/NO/sub 3/, or NH/sub 4/Cl was evaluated. Most of I is formed within 40 minutes in the presence of NH4NO3 or NH4Cl, and within 55 minutes in the presence of double superphosphate. The highest yield of I was obtained in the presence of NH4NO3 and/or NH4Cl. The solid-phase catalyst caused a little degradation of lignocellulose.

  20. Operando Spectroscopy of the Gas-Phase Aldol Condensation of Propanal over Solid Base Catalysts

    NARCIS (Netherlands)

    Hernández-giménez, Ana M.; Ruiz-martínez, Javier; Puértolas, Begoña; Pérez-ramírez, Javier; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2017-01-01

    The gas-phase aldol condensation of propanal, taken as model for the aldehyde components in bio-oils, has been studied with a combined operando set-up allowing to perform FT-IR & UV–Vis diffuse reflectance spectroscopy (DRS) with on-line mass spectrometry (MS). The selected solid base catalysts, a

  1. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; Xu, Zhiping; Liu, Qiyu; Ma, Qiaozhi; Jameel, Hasan; Chang, Hou-min; Ma, Longlong

    2016-06-01

    A novel carbon solid acid catalyst was synthesized by the sulfonation of carbonaceous material which was prepared by carbonization of sucrose using 4-BDS as a sulfonating agent. TEM, N2 adsorption-desorption, elemental analysis, XPS and FT-IR were used to characterize the catalyst. Then, the catalyst was applied for the conversion of xylose and corn stalk into furfural in GVL. The influence of the reaction time, temperature and dosage of catalyst on xylose dehydration were also investigated. The Brønsted acid catalyst exhibited high activity in the dehydration of xylose, with a high furfural yield of 78.5% at 170°C in 30min. What's more, a 60.6% furfural yield from corn stalk was achieved in 100min at 200°C. The recyclability of the sulfonated carbon catalyst was perfect, and it could be reused for 5times without the loss of furfural yields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  3. Strengthening carbonate roof rock of workings by the use of resins in Karst disturbance zones

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, O.V.; Gerovich, E.G.

    1977-12-01

    Test results are given for a proposed method of injection strengthening of rock in sinkhole areas in order to stabilize the rock of mining areas. Tests were made of appropriately selected NaOH solutions to act as catalysts in the injection of resins. Relationships are given between the hardening time of the aqueous resin solutions and the concentration of the NaOH catalyst, the relationship between the viscosity of the resin solutions and the temperature at specific ratios, between the hardness of the polymer materials and age, and between the resinous mixture compression strength and its age at specific temperatures. A diagram is presented of the injection equipment, and data are presented on the number of boreholes receiving the injected resin in relation to physical measurements. The tests of the resinated areas indicate that the rock hardness of the treated zones approaches that of the fissured zones so that props with less supporting power can be used, and work safety is increased. 3 references, 6 figures, 1 table.

  4. Ion exchange resins destruction in a stirred supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O.

    2010-01-01

    Spent ion exchange resins (IERs) are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable treatment alternative to destroy the organic structure of resins, used to remove radioactivity. Up to now, studies carried out in supercritical water for IER destruction showed that degradation rates higher than 99% are difficult to obtain even using a catalyst or a large oxidant excess. In this study, a co-fuel, isopropanol, has been used in order to improve degradation rates by initiating the oxidation reaction and increasing temperature of the reaction medium. Concentrations up to 20 wt% were tested for anionic and cationic resins. Total organic carbon reduction rates higher than 99% were obtained from this process, without the use of a catalyst. The influence of operating parameters such as IERs feed concentration, nature and counterions of exchanged IERs were also studied. (authors)

  5. The mechanism of uranium adsorption on Resin 508 and isoelectric point of the resin

    International Nuclear Information System (INIS)

    Han Qingping; Lu Weichang; Su Huijuan; Hu Jinbo; Zhang Liqin; Chen Banglin

    1990-01-01

    The adsorption process of uranium by Resin 508 at the solid-liquid interface was investigated and the mechanism of uranium adsorption including adsorption dynamics, adsorption thermodynamics and isoelectric point of resin was studied. The results are as follows: The maximum of uranium adsorption is attained at pH5-7; Uranium adsorption isotherm by Resin 508 in experimental conditions agrees with Langmuir's adsorption isotherm, the maximum of uranium adsorbed (Vm) is 716 mg U/g-dried resin; The adsorption of uranium by Resin 508 is an endothermic reaction and ΔH = 16.87 kJ/mol; The exchange-adsorption rate is mainly controlled by liquid film diffusion; The isoelectric points of Resin 508 before and after uranium adsorption are found to be pH7.5 and pH5.7 respectively. It is a specific adsorption for uranium

  6. Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Sudipta Pathak

    2013-11-01

    Full Text Available A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

  7. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  8. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Science.gov (United States)

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Utilization of eggshell waste as low-cost solid base catalyst for biodiesel production from used cooking oil

    Science.gov (United States)

    Asri, N. P.; Podjojono, B.; Fujiani, R.; Nuraini

    2017-05-01

    A solid CaO-based catalyst of waste eggshell was developed for biodiesel production from used cooking oil. The waste eggshell powder was calcined in air at 90° C for 4 h to convert calcium species in the eggshells into active CaO catalysts. The characterization of CaO catalyst was done by XRD and BET analysis. The CaO catalyst was then introduced for transesterification of used cooking oil (UCO) for testing of its catalytic activity. The experiment was conducted in batch type reactor that consists of three-neck glass equipped by reflux condenser and magnetic stirrer. Before tranesterification process, the UCO was treated by coconut coir powder in order to reduce the free fatty acid content. The result showed that the catalyst was potentially use for transesterification of used cooking oil into biodiesel with relatively high yield of 75.92% was achieved at reaction temperature, reaction time, molar ratio UCO to methanol and catalyst amount of 65° C, 7 h, 1:15 and 6%, respectively.

  10. Two Iron Complexes as Homogeneous and Heterogeneous Catalysts for the Chemical Fixation of Carbon Dioxide.

    Science.gov (United States)

    Karan, Chandan Kumar; Bhattacharjee, Manish

    2018-04-16

    Two new bimetallic iron-alkali metal complexes of amino acid (serine)-based reduced Schiff base ligand were synthesized and structurally characterized. Their efficacy as catalysts for the chemical fixation of carbon dioxide was explored. The heterogeneous version of the catalytic reaction was developed by the immobilization of these homogeneous bimetallic iron-alkali metal complexes in an anion-exchange resin. The resin-bound complexes can be used as recyclable catalysts up to six cycles.

  11. An alternative preparation method for ion exchanged catalysts: Solid state redox reaction

    DEFF Research Database (Denmark)

    Schneider, E.; Hagen, A.; Grunwaldt, J.-D.

    2004-01-01

    A new method for modifying zeolites with zinc is proposed. The solid state redox reaction between metallic zinc and ZSM-5 zeolites with different Si/Al ratios was investigated by temperature programmed hydrogen evolution (TPHE), X-ray absorption near edge structure (XANES) and diffuse reflectance...... infrared Fourier transform spectroscopy (DRIFTS). The evolution of hydrogen was detected at temperatures above 620 K. The source of hydrogen was the solid state redox reaction of the metal with protons of the support. The samples exhibit catalytic activity in ethane aromatization indicating that zinc...... should be located at the same sites as in catalysts prepared by conventional methods. Combination of XANES and catalytic activity point to zinc being mainly present in tetrahedral geometry under reaction conditions....

  12. Solidifying power station resins and sludges

    International Nuclear Information System (INIS)

    Willis, A.S.D.; Haigh, C.P.

    1984-01-01

    Radioactive ion exchange resins and sludges arise at nuclear power stations from various operations associated with effluent treatment and liquid waste management. As the result of an intensive development programme, the Central Electricity Generating Board (CEGB) has designed a process to convert power station resins and sludges into a shielded, packaged solid monolithic form suitable for final disposal. Research and development, the generic CEGB sludge/resin conditioning plant and the CEGB Active Waste Project are described. (U.K.)

  13. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  14. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  15. Solid-phase extraction sorbent consisting of alkyltrimethylammonium surfactants immobilized onto strong cation-exchange polystyrene resin.

    Science.gov (United States)

    Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D

    2002-10-25

    Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.

  16. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    Science.gov (United States)

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  17. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  18. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  19. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Ronald [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  20. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  1. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  2. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    Science.gov (United States)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  3. One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst

    International Nuclear Information System (INIS)

    Li, Yuesong; Lian, Shuang; Tong, Dongmei; Song, Ruili; Yang, Wenyan; Fan, Yong; Qing, Renwei; Hu, Changwei

    2011-01-01

    Nannochloropsis sp., one kind of green microalgae cultivated autotrophically and axenically in laboratory, is used as raw material to produce biodiesel by one-step method in an amended reactor. The effects of several reaction parameters on transesterification over Mg-Zr solid base catalyst were investigated through both conventional method and one-step method. One-step method could give a higher yield of methyl ester than conventional two-step method, which demonstrates that the present one-step method is suitable for biodiesel production from the microalgae Nannochloropsis sp. Moreover, the present one-step method realizes the convenient in situ separation of catalyst from microalgae residue which can be easily used consequently, reducing the procedure units as well as the overall costs.

  4. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  5. Porous solid ion exchange wafer for immobilizing biomolecules

    Science.gov (United States)

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  6. Towards the computational design of solid catalysts

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Rossmeisl, Jan

    2009-01-01

    Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably...... with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts...

  7. Biodiesel production from non-edible Silybum marianum oil using heterogeneous solid base catalyst under ultrasonication.

    Science.gov (United States)

    Takase, Mohammed; Chen, Yao; Liu, Hongyang; Zhao, Ting; Yang, Liuqing; Wu, Xiangyang

    2014-09-01

    The aim of this study is to investigate modified TiO2 doped with C4H4O6HK as heterogeneous solid base catalyst for transesterification of non-edible, Silybum marianum oil to biodiesel using methanol under ultrasonication. Upon screening the catalytic performance of modified TiO2 doped with different K-compounds, 0.7 C4H4O6HK doped on TiO2 was selected. The preparation of the catalyst was done using incipient wetness impregnation method. Having doped modified TiO2 with C4H4O6HK, followed by impregnation, drying and calcination at 600 °C for 6 h, the catalyst was characterized by XRD, FTIR, SEM, BET, TGA, UV and the Hammett indicators. The yield of the biodiesel was proportional to the catalyst basicity. The catalyst had granular and porous structures with high basicity and superior performance. Combined conditions of 16:1 molar ratio of methanol to oil, 5 wt.% catalyst amount, 60 °C reaction temperature and 30 min reaction time was enough for maximum yield of 90.1%. The catalyst maintained sustained activity after five cycles of use. The oxidative stability which was the main problem of the biodiesel was improved from 2.0 h to 3.2h after 30 days using ascorbic acid as antioxidant. The other properties including the flash point, cetane number and the cold flow ones were however, comparable to international standards. The study indicated that Ti-0.7-600-6 is an efficient, economical and environmentally, friendly catalyst under ultrasonication for producing biodiesel from S. marianum oil with a substantial yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  9. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  10. Method of pyrolysis for spent ion-exchange resins

    International Nuclear Information System (INIS)

    Aoyama, Yoshiyuki; Matsuda, Masami; Kawamura, Fumio; Yusa, Hideo.

    1985-01-01

    Purpose: To prevent the generation of noxious sulfur oxide and ammonia on the pyrolysis for spent ion-exchange resins discharged from nuclear power plants. Method: In the case where the pyrolysis is made for the cationic exchange resins having sulfonic acids as the ion-exchange group, alkali metals or alkaline earth metals capable of reacting with sulfonic acid groups to form solid sulfates are previously deposited by way of ion-exchange reactions prior to the pyrolysis. In another case of the anionic exchange resins having quarternary ammonium groups as the ion-exchange groups, halogenic elements capable of reacting with the ammonium groups to form solid ammonium salts are deposited to the ion-exchange resins through ion-exchange reactions prior to the pyrolysis. As a result, the amount of the binders used can be reduced, and this method can be used in a relatively simple processing facility. (Horiuchi, T.)

  11. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  12. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  13. Influence of the Hardener on the Emission of Harmful Substances from Moulding Sands with Furan Resin in the Pyrolysis Process

    OpenAIRE

    Holtzer M.; Kmita A.; Żymankowska-Kumon S.; Bobrowski A.; Dańko R.

    2016-01-01

    The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts). The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability) [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according t...

  14. Hydrodeoxygenation of Biomass Pyrolysis Vapor Model Compounds over MoS2 Based Catalysts: A Step in Understanding and Optimizing Fuel Production from Solid Biomass

    DEFF Research Database (Denmark)

    Dabros, Trine Marie Hartmann

    This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass.......This thesis is dedicated to the investigation, development, and optimization of catalysts and operating conditions for catalytic hydropyrolysis and pyrolysis vapor hydrodeoxygenation (HDO) with the aim of producing liquid fuel from solid biomass....

  15. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  16. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid

    International Nuclear Information System (INIS)

    King, William D.; Fondeur, Fernando F.; Wilmarth, William R.; Pettis, Myra E.

    2005-01-01

    Solid-state infrared spectroscopy, differential scanning calorimetry, and elemental analysis have been used to evaluate the reactivity of resorcinol formaldehyde resin with nitric acid and characterize the solid product. Two distinct reactions were identified within the temperature range 25-55 C. The first reaction is primarily associated with resin nitration, while the second involves bulk oxidation and degradation of the polymer network leading to dissolution and off-gassing. The threshold conditions promoting reaction have been identified. Reaction was confirmed with nitric acid concentrations as low as 3 M at 25 C applied temperature and 0.625 M at 66 C. Although a nitrated resin product can be isolated under appropriate experimental conditions, calorimetry testing indicates no significant hazard associated with handling the dry material

  17. A conditioning process for ion exchanger resins contaminated with radioactive elements

    International Nuclear Information System (INIS)

    Legros, R.; Wiegert, B.; Zeh, J.L.

    1993-01-01

    Ion exchanger resins are embedded in a pre-polymer syrup prepared from acrylic monomers having high boiling point. A curing catalyst (a peroxide) and an activation agent (a tertiary amine) are added. 12 examples are given. 9 p

  18. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    Science.gov (United States)

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    Science.gov (United States)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  20. Mechanism for transporting used resin

    International Nuclear Information System (INIS)

    Sugimoto, Yoshikazu; Yusa, Hideo; Kamiya, Kunio.

    1975-01-01

    Object: In the operation of a light water reactor type atomic power plant, to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Structure: Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use. (Kamimura, M.)

  1. Mechanism for transporting used resin

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H; Kamiya, K

    1975-01-16

    In the operation of a light water reactor type atomic power plant the objectives is to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use.

  2. Investigation of the behaviour of solid acid catalysts for acylations and cyanisations of aromatics. Final report; Untersuchungen zur Wirkungsweise von festen sauren Katalysatoren bei Acylierungen und Cyanierungen von Aromaten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kemnitz, E.

    2002-01-01

    The present state of the art in the field of FRIEDEL-CRAFTS-ACYLATIONS is characterized by the application of homogenous catalysts (at least stochiometric amounts) like AlCl{sub 3} or FeCl{sub 3}. Problems arising from this application are corrosions, difficult product separations from the catalyst and the origin of acid waste water. Hence, the aim of this project was the development of suitable solid catalysts which overcome the problems ascribed above. Sulfated zirconia (SZ) was found to be an excellent solid Br.o/nsted-acid to be used especially in their aerogel or cryogel form. Thus with this catalyst system, in the benzoylation of anisol nearly 100% conversion may be achieved. In this way it could be proved, that with SZ a solid Br.o/nsted-acid might be available which gives reasonable hope to substitute in a near future, at least for some reactions, the classical homogeneous catalysts and to overcome their problems in use. (orig.)

  3. Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst

    International Nuclear Information System (INIS)

    Poosumas, Jutipong; Ngaosuwan, Kanokwan; Quitain, Armando T.; Assabumrungrat, Suttichai

    2016-01-01

    Highlights: • Transesterification of palm oil using a circulated continuous flow ultrasonic reactor. • Heterogeneous system using CaO as catalyst. • Effects of ultrasonic frequency and power, and catalyst reusability were considered. • A single high frequency and high intensity irradiation is favorable for heterogeneous system. - Abstract: Biodiesel production from transesterification of palm oil using a circulated continuous flow ultrasonic reactor was investigated. Transesterification was carried out at 60 °C, 1 atm and a methanol-to-oil molar ratio of 9:1. The highest reaction rate was achieved at the catalyst loading of 2 wt%, and biodiesel yield constantly increased until transesterification equilibrium (about 80%) was reached. A higher ultrasonic frequency (50 kHz) promoted the heterogeneously catalyzed transesterification of refined palm oil, because the three-phase system (packed solid catalyst, methanol and oil) required more spatial distribution by ultrasonic irradiation. Moreover, the highest ultrasonic power also provided highest transesterification rate and biodiesel yield due to cavitation activity enhancement. Reusability of calcium oxide catalysts was also investigated, and results showed that this can be reused to provide high biodiesel yield for at least three operations with slight decrease in the rate of reaction due to counter balance effect of organic compounds deposition on the catalyst surface. The results from this study can be a basis for scaling up of the process to industrial scale.

  4. Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wu

    2016-10-01

    Full Text Available The recovery of tungsten (W from a honeycomb-type spent selective catalytic reduction (SCR catalyst using an alkaline leaching–ion exchange method was investigated. Spent SCR catalyst mainly consists of TiO2 and other oxides (6.37% W, 1.57% vanadium (V, and 2.81% silicon (Si, etc.. The ground catalyst was leached at the optimal conditions, as follows: NaOH concentration of 0.3 kg/kg of catalyst, pulp density of 3%, leaching temperature of 70 °C, particle size of −74 μm, and leaching time of 30 min. In this study, the leaching rate values of V and W under the above conditions were 87 wt %, and 91 wt %, respectively. The pregnant solution was then passed through a strong base anion exchange resin (Amberlite IRA900. At high pH conditions, the use of strong base anion exchange resin led to selective loading of divalent WO42− from the solution, because the fraction of two adjacent positively-charged sites on the IRA900 resin was higher and separate from the coexisting VO43−. The adsorbed W could then be eluted with 1 M NaCl + 0.5 M NaOH. The final concentrated W solution had 8.4 g/L of W with 98% purity. The application of this process in industry is expected to have an important impact on the recovery of W from secondary sources of these metals.

  5. Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid.

    Science.gov (United States)

    Zhang, Tingwei; Li, Wenzhi; An, Shengxin; Huang, Feng; Li, Xinzhe; Liu, Jingrong; Pei, Gang; Liu, Qiying

    2018-05-24

    In this work, p-hydroxybenzenesulfonic acid-formaldehyde resin acid catalyst (MSPFR), was synthesized by a hydrothermal method, and employed for the furfural production from raw corn stover. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption, elemental analysis (EA), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the MSPFR. The effects of reaction time, temperature, solvents and corn stover loading were investigated. The MSPFR presented high catalytic activity for the formation of furfural from corn stover. When the MSPFR/corn stover mass loading ratio was 0.5, a higher furfural yield of 43.4% could be achieved at 190 °C in 100 min with 30.7% 5-hydroxymethylfurfural (HMF) yield. Additionally, quite importantly, the recyclability of the MSPFR for xylose dehydration is good, and for the conversion of corn stover was reasonable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Solid-phase extraction with slurry injection of the resin into ETAAS for trace determination of thallium in natural water

    International Nuclear Information System (INIS)

    Isoshi, Nukatsuka; Hiroyuki, Seitoh; Kunio, Ohzeki

    2004-01-01

    Thallium in natural water samples was determined by electrothermal atomic absorption spectrometry after 1000-fold enrichment by mini solid-phase extraction from a 100-mL sample solution. A TI-pyrrolidine-1-carbodithioate complex formed in a sample solution of pH 1.6 was extracted on fine particles of a cellulose nitrate resin dispersed in the sample solution. The cellulose nitrate resin was then collected on a membrane filter (25 mm ) by filtration under suction using a glass funnel with an effective filtration area of 0.64 cm 2 . As a result, a circular thin layer of the resin phase with a diameter of 9 mm was obtained. Then the resin phase was carved out by an acrylate resin puncher with a 10-mm hole to put it into a sample cup containing 100 μL of 10 mM HNO 3 containing 0.5 mM NaCl. The resin phase was suspended in the solution by ultrasonication. 1000-fold enrichment was thus attained within 15 min, and the suspension was delivered to electrothermal atomic absorption spectrometry. The linear calibration graph was obtained in the range of 0-4 ng of TI in 100 mL of a sample solution. The detection limit obtained by 3 σ method was 0.19 ng. The proposed method was applied to the determination of TI in natural water samples. The results showed the concentration of TI in seawater was 12.1 ± 1.8 pg mL -1 for the calibration graph method and 12.6 ± 1.4 pg mL -1 for the standard addition method. A snowmelt sample contained 20.7 ± 1.0 pg mL -1 of TI. (author)

  7. Solid Base Catalysis

    CERN Document Server

    Ono, Yoshio

    2011-01-01

    The importance of solid base catalysts has come to be recognized for their environmentally benign qualities, and much significant progress has been made over the past two decades in catalytic materials and solid base-catalyzed reactions. The book is focused on the solid base. Because of the advantages over liquid bases, the use of solid base catalysts in organic synthesis is expanding. Solid bases are easier to dispose than liquid bases, separation and recovery of products, catalysts and solvents are less difficult, and they are non-corrosive. Furthermore, base-catalyzed reactions can be performed without using solvents and even in the gas phase, opening up more possibilities for discovering novel reaction systems. Using numerous examples, the present volume describes the remarkable role solid base catalysis can play, given the ever increasing worldwide importance of "green" chemistry. The reader will obtain an overall view of solid base catalysis and gain insight into the versatility of the reactions to whic...

  8. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    Science.gov (United States)

    Lyons, P.C.; Mastalerz, Maria; Orem, W.H.

    2009-01-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state 13C nuclear magnetic resonance (13C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60??ppm range of solid-state 13C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000??cm- 1) of FTir spectra, all indicating a highly aliphatic molecular structure. The 13C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH2) groups with increasing degree of maturation, as shown by both 13C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The 13C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition in the soil for as little as 1000??years. The Morwell

  9. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: Diagenetic and taxonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, Paul C. [Lyons and Associates Consultants, 206 Amber Road, Middleboro, MA 02346 (United States); Mastalerz, Maria [Indiana Geological Survey, Indiana University, 611 North Walnut Grove, Bloomington, IN 47405 (United States); Orem, William H. [U.S. Geological Survey, MS 956 National Center, Reston, VA 20192 (United States)

    2009-10-01

    A maturation series of resins and fossil resins from New Zealand, ranging in age from Modern to Eocene and ranging from uncoalified to high volatile C bituminous coal, were analyzed by elemental, pyrolysis-gas chromatography (Py-GC), Fourier Transform infrared (FTir), and solid-state {sup 13}C nuclear magnetic resonance ({sup 13}C NMR) techniques. For comparison, four resin samples from the Latrobe Valley, Australia, were analyzed. All of the resins and fossil resins of this study show very high H/C atomic ratios, and are characterized by dominant peaks in the 10-60 ppm range of solid-state {sup 13}C NMR spectra and prominent bands in the aliphatic stretching region (2800-3000 cm{sup -} {sup 1}) of FTir spectra, all indicating a highly aliphatic molecular structure. The {sup 13}C NMR and FTir data indicate a diterpenoid structure for these resins. There is an abrupt loss of oxygen that occurs at the Lignite A/Subbituminous C stage, which is attributed to a dramatic loss of carboxyl (COOH) from the diterpenoid molecule. This is a new finding in the diagenesis of resins. This important loss in oxygenated functional groups is attributed to a maturation change. Also, there is a progressive loss of exomethylene (CH{sub 2}) groups with increasing degree of maturation, as shown by both {sup 13}C NMR and FTir data. This change has been noted by previous investigators. Exomethylene is absent in the fossil resins from the Eocene high volatile C bituminous coals. This progressive loss is characteristic of Class I resinites. FTir data indicate that the oxygenated functional groups are strong in all the resin samples except the fossil resin from high volatile C bituminous coal. This important change in oxygenated functional groups is attributed to maturation changes. The {sup 13}C NMR and FTir data indicate there are minor changes in the Agathis australis resin from the living tree and soil, which suggests that alteration of A. australis resins begins shortly after deposition

  10. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  11. Catalysis by nonmetals rules for catalyst selection

    CERN Document Server

    Krylov, Oleg V

    1970-01-01

    Catalysis by Non-metals: Rules of Catalyst Selection presents the development of scientific principles for the collection of catalysts. It discusses the investigation of the mechanism of chemosorption and catalysis. It addresses a series of properties of solid with catalytic activity. Some of the topics covered in the book are the properties of a solid and catalytic activity in oxidation-reduction reactions; the difference of electronegativities and the effective charges of atoms; the role of d-electrons in the catalytic properties of a solid; the color of solids; and proton-acid and proton-ba

  12. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Wan, Zhong; Xu, Lejin; Wang, Jianlong

    2015-01-01

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe 2+ ] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  13. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  14. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    International Nuclear Information System (INIS)

    Karve, M.; Rajgor, R.V.

    2008-01-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  15. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  16. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide

    International Nuclear Information System (INIS)

    Srinivas, C.; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Spent organic ion exchange resins are generated in large quantities during the operation of nuclear facilities. Wet oxidation as a mode of treatment of these gel-type ion exchange resins was investigated using H 2 O 2 as oxidant in the presence of CuSO 4 as catalyst. Experiments using commercial samples were conducted at 95-100 deg C under reflux conditions at atmospheric pressure. It was found that the reaction of cation resin with H 2 O 2 was instantaneous whereas with anion resin, there was a lag time. For efficient utilization of the oxidant, low rate of addition of H 2 O 2 , 0.01M concentration of CuSO 4 and neutral pH in mixed resin reactions, were found to be useful. Foaming was noted during reactions involving anion resins. This could be controlled by silicone-based agents. The residual solution left after resin oxidation is aqueous in nature and is expected to contain all the radioactivity originally present in the resin. Preliminary experiments showed that it could be efficiently trapped using available inorganic sorbents. Wet oxidation system offers a simple method of converting organic waste into environmentally acceptable inorganic products. (author). 8 refs., 6 figs., 2 tabs

  17. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  18. Synthesis and Characterization of Modified Epoxy Resins by Silicic Acid Tetraethyl Ester and Nano-SiO2

    Institute of Scientific and Technical Information of China (English)

    李海燕; 张之圣

    2004-01-01

    A kind of modified epoxy resins was obtained by condensation of epoxy resin with silicic acid tetraethyl ester(TEOS) and nano-SiO2. The reactions were performed with hydrochloric acid as a catalyst at 63 °C.The structure, thermal stability and morphological characteristics of the modified epoxy resins were studied through infrared spectra(FT-IR) analysis, thermogravimetric (TG) analysis and scanning electron microscopy respectively. It has been found from the IR and TG study that modified epoxy resins have greater thermal stability than epoxy resins, and its thermal stability has been improved by the formation of inter-crosslinked network structure. The modified epoxy resins exhibit heterogeneous morphology and heterogeneity increases with more TEOS feeding, which in turn confirms the formation of inter-crosslinked network structure in modified epoxy resins.

  19. Cu(3)(BTC)(2) as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes.

    Science.gov (United States)

    Nagaraj, Anbu; Amarajothi, Dhakshinamoorthy

    2017-05-15

    In the present work, Friedel-Crafts alkylation reaction of indole with β-nitrostyrene is examined using a readily available copper based metal-organic frameworks (MOFs) namely, Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) as solid catalyst under mild reaction conditions. Among the various catalysts screened for this reaction, Cu 3 (BTC) 2 exhibits higher activity under the optimized reaction conditions. Besides the absence of leaching of active sites, it is also observed that the catalyst can be reused for four cycles with a minimal decrease in its activity. Cu 3 (BTC) 2 is used as a catalyst to synthesise a series of heterocyclic compounds with different indole and β-nitrostyrene derivatives in moderate to high yields. The present catalytic system shows comparable activity against to recent reports but the advantage of Cu 3 (BTC) 2 is that it does not require any post-functionalization and above all it can be readily synthesised, thus contributing to the synthesis of heterocyclic compounds with high biological interest. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  1. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  2. Method of burning ion-exchange resin contaminated with radioactivity

    International Nuclear Information System (INIS)

    Suzuki, Shigenori.

    1986-01-01

    Purpose: To process spent ion exchange resins to reduce their volume, without increasing the load on a off-gas system and in a stable state and at the same time not leaving any uncombusted portions. Method: The water slurries of the ion exchange resins contaminated with radioactive materials is dehydrated or dry combusted to reduce the water content. A binder is then added to solidify the ion exchange resin. The solidified ion exchange resins are then combusted in a furnace. This prevents the ion exchange resin from being dispersed by air and combustion gases. Furthermore, the solidified ion exchange resins in the form of small pellets burn from the surface inwards. Moreover the binder is carbonized by the combustion heat and promotes combustion to convert the ion exchange resins into a solid mass, making sure that no uncombusted portion is left. (Takahashi, M.)

  3. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Qing; Gao, Jixian; Nawaz, Zeeshan; Liao, Yuhui; Wang, Dezheng; Wang, Jinfu [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A carbon-based solid acid catalyst was prepared by the sulfonation of carbonized vegetable oil asphalt. This catalyst was employed to simultaneously catalyze esterification and transesterification to synthesis biodiesel when a waste vegetable oil with large amounts of free fatty acids (FFAs) was used as feedstock. The physical and chemical properties of this catalyst were characterized by a variety of techniques. The maximum conversion of triglyceride and FFA reached 80.5 wt.% and 94.8 wt.% after 4.5 h at 220 C, when using a 16.8 M ratio of methanol to oil and 0.2 wt.% of catalyst to oil. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Broensted acid sites), hydrophobicity that prevented the hydration of -OH species, hydrophilic functional groups (-SO{sub 3}H) that gave improved accessibility of methanol to the triglyceride and FFAs, and large pores that provided more acid sites for the reactants. (author)

  4. Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd., 5-3 Ozushima, Izumiohtsu, Osaka 595-0074 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-04-01

    A novel method for preparing thin Au films directly on resin substrates using an electron beam was developed. The thin Au films were prepared on a resin substrate by the reduction of Au ions in an aqueous solution via irradiation with a high-energy electron beam (4.8 MeV). This reduction method required 7 s of the irradiation time of the electron beam. Furthermore, no reductant or catalyst was needed. As the concentration of Au ions in the precursor solution was increased, the amount of Au deposited on the resin substrate increased, too, and the structure of the prepared Au film changed. As a result, the film color changed as well. Cross-sectional scanning electron microscope images of the thus-prepared Au film indicated that the Au films were consisted of two layers: a particle layer and a bottom bulk layer. There was strong adhesion between the Au films and the underlying resin substrates. This was confirmed by the tape-peeling test and through ultrasonic cleaning. After both processes, Au remained on the resin substrates, while most of the particle-like moieties were removed. This indicated that the thin Au films prepared via irradiation with a high-energy electron beam adhered strongly to the resin substrates. - Highlights: • A thin gold (Au) film was formed by EBIRM for the first time. • The irradiation time of the electron beam was less than 10 s. • Thin Au films were obtained without reductant or catalyst. • Au films were consisted of two layers: a particle layer and a bottom bulk layer. • There was strong adhesion between the bottom bulk layer and the underlying resin substrates.

  5. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  6. Isobutane alkylation over solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kozorezov, Y.I.; Lisin, V.I.

    1979-05-01

    Commercial alumina modified with 6Vertical Bar3< by wt boron trifluoride was active in isobutane alkylation with ethylene in a flow reactor at 5:1 isobutane-ethylene and 5-20 min reaction time. The reaction rate was first-order in ethylene and increased with increasing temperature (20/sup 0/-80/sup 0/C) and ethylene pressure (0.2-3 atm). The calculated activation energy was 8.4 kj. Kinetic data and the activity of tert.-butyl chloride, but not ethyl chloride as alkylating agents in place of ethylene suggested a carbonium-ion chain mechanism involving both surface and gas-phase reactions. The ethylene-based yield of the alkylate decreased from 132 to 41Vertical Bar3< by wt after nine hours on stream, and its bromine number increased from 0.2 to 1 g Br/sub 2//100 ml. This inhibition was attributed to adsorption on the active acidic sites of the reaction products, particularly C/sub 10//sup +/ olefins. Catalyst stabilization could probably be achieved by selecting an appropriate solvent that would continuously desorb the inhibiting products from the catalyst surface.

  7. Flowsheet Validation For The Permanganate Digestion Of REILLEX(trademark) HPQ Anion Resin

    International Nuclear Information System (INIS)

    Kyser, E.

    2009-01-01

    The flowsheet for the digestion of Reillex(trademark) HPQ was validated both under the traditional alkaline conditions and under strongly acidic conditions. Due to difficulty in performing a pH adjustment in the large tank where this flowsheet must be performed, the recommended digestion conditions were changed from pH 8-10 to 8 M HNO 3 . Thus, no pH adjustment of the solution is required prior to performing the permanganate addition and digestion and the need to sample the digestion tank to confirm appropriate pH range for digestion may be avoided. Neutralization of the acidic digestion solution will be performed after completion of the resin digestion cycle. The amount of permanganate required for this type of resin (Reillex(trademark) HPQ) was increased from 1 kg/L resin to 4 kg/L resin to reduce the amount of residual resin solids to a minimal amount ( 2 ) solids (1.71 kg/L resin) and involves the generation of a significant liquid volume due to the low solubility of permanganate. However, since only two batches of resin (40 L each) are expected to be digested, the total waste generated is limited.

  8. Method of processing spent ion exchange resins

    International Nuclear Information System (INIS)

    Mori, Kazuhide; Tamada, Shin; Kikuchi, Makoto; Matsuda, Masami; Aoyama, Yoshiyuki.

    1985-01-01

    Purpose: To decrease the amount of radioactive spent ion exchange resins generated from nuclear power plants, etc and process them into stable inorganic compounds through heat decomposition. Method: Spent ion exchange resins are heat-decomposed in an inert atmosphere to selectively decompose only ion exchange groups in the preceeding step while high molecular skeltons are completely heat-decomposed in an oxidizing atmosphere in the succeeding step. In this way, gaseous sulfur oxides and nitrogen oxides are generated in the preceeding step, while gaseous carbon dioxide and hydrogen requiring no discharge gas procession are generated in the succeeding step. Accordingly, the amount of discharged gases requiring procession can significantly be reduced, as well as the residues can be converted into stable inorganic compounds. Further, if transition metals are ionically adsorbed as the catalyst to the ion exchange resins, the ion exchange groups are decomposed at 130 - 300 0 C, while the high molecular skeltons are thermally decomposed at 240 - 300 0 C. Thus, the temperature for the heat decomposition can be lowered to prevent the degradation of the reactor materials. (Kawakami, Y.)

  9. Ontario Hydro Research Division's program for treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Nott, B.R.; Dodd, D.J.R.

    1981-09-01

    A brief review of the evolution of work programmes for chemical treatment of spent ion-exchange resins in Ontario Hydro's Research Division is presented. Attention has been focussed on pre-treatment processes for the treatment of the spent resins prior to encapsulation of the products in solid matrices. Spent Resin Regeneration and Acid Stripping processes were considered in some detail. Particular attention was paid to carbon-14 on spent resins, its determination in and removal from the spent resins (with the acid stripping technique). The use of separate cation and anion resin beds instead of mixed bed resins was examined with a view to reducing the volume of resin usage and consequently the volume of waste radioactive ion-exchange resin generated. (author)

  10. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  11. Polystyrene-supported pyridinium chloroaluminate ionic liquid as a new heterogeneous Lewis acid catalyst for selective synthesis of benzimidazoles

    Directory of Open Access Journals (Sweden)

    Parvanak Boroujeni Kaveh

    2013-01-01

    Full Text Available Polystyrene-supported pyridinium chloroaluminate ionic liquid was prepared from the reaction of Merrifield resin with pyridine followed by reaction with aluminium chloride. This catalyst was used as a new chemoselective Lewis acid catalyst for the exclusive synthesis of 2-substituted benzimidazoles from the reaction of aldehydes with o-phenylenediamines. The catalyst is stable (as a bench top catalyst and can be easily recovered and reused without appreciable change in its efficiency.

  12. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-01-09

    ... Cooling Tower PEPO--Polyether Polyols PET--Poly (Ethylene Terephthalate) Resin PM--Particulate Matter POM...., fixed roofs on storage vessels and oil water separators; covers on surface impoundments, containers and... category: Solid-state resins (PET bottle grade resins), polyester film and engineering resins. They are all...

  13. Color test for selective detection of secondary amines on resin and in solution

    DEFF Research Database (Denmark)

    Boas, Ulrik; Mirsharghi, Sahar

    2014-01-01

    Resins for solid-phase synthesis give orange to red-brown resin beads selectively when secondary amines are present on the resin when treated with a solution of acetaldehyde and an Fmoc-amino acid in NMP. The method shows good specificity and gives colorless beads when exposed to a variety of oth...

  14. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Simsek, T. [Selcuk University, Konya (Turkey)

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

  15. Polystyrene-supported cu(II)-R-Box as recyclable catalyst in asymmetric Friedel–Crafts reaction

    KAUST Repository

    Desyatkin, V. G.

    2017-02-12

    The complex of copper(II) trifluoromethanesulfonate with chiral isopropyl bis(oxazoline) ligand (i-Pr-Box) was immobilized on accessible and inexpensive Merrifield resin according to a “click” procedure. The resulting catalyst showed high efficiency and recyclability in the asymmetric Friedel–Crafts alkylation of indole and its derivatives. The catalyst can be recycled five times without appreciable loss in activity and enantioselectivity.

  16. Polystyrene-supported cu(II)-R-Box as recyclable catalyst in asymmetric Friedel–Crafts reaction

    KAUST Repository

    Desyatkin, V. G.; Anokhin, M. V.; Rodionov, Valentin; Beletskaya, I. P.

    2017-01-01

    The complex of copper(II) trifluoromethanesulfonate with chiral isopropyl bis(oxazoline) ligand (i-Pr-Box) was immobilized on accessible and inexpensive Merrifield resin according to a “click” procedure. The resulting catalyst showed high efficiency and recyclability in the asymmetric Friedel–Crafts alkylation of indole and its derivatives. The catalyst can be recycled five times without appreciable loss in activity and enantioselectivity.

  17. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  18. Efficient hydrolysis of cellulose over a magnetic lignin-derived solid acid catalyst in 1-butyl-3-methylimidazolium chloride

    International Nuclear Information System (INIS)

    Hu, Lei; Wu, Zhen; Xu, Jiaxing; Zhou, Shouyong; Tang, Guodong

    2016-01-01

    A green and efficient strategy for the hydrolysis of cellulose was developed by using a magnetic lignin-derived solid acid catalyst (MLC-SO 3 H) in the presence of ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl). The results indicated that reaction temperature, reaction time, catalyst loading and water content have a big influence on the yield of total reducing sugars (TRS). By optimizing these reaction parameters, 69.3% TRS yield was observed at 140 .deg. C for 150 min with the addition of 40 wt% MLC-SO 3 H and 1 wt% water. More importantly, MLC-SO 3 H could be easily separated from the reaction mixture with an external magnet and could be repeatedly used five times without an obvious loss of catalytic activity, demonstrating that it possessed excellent recyclability. Furthermore, a plausible mechanism involving three consecutive processes of dissolution, adsorption and catalysis for the hydrolysis of cellulose in [BMIM]Cl over a catalyst of MLC-SO 3 H was also proposed.

  19. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  20. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth

    DEFF Research Database (Denmark)

    Hofmann, S; Sharma, R; Wirth, CT

    2008-01-01

    understanding of the role of commonly used catalysts and specifically of their interface dynamics1, 2. Although catalytic chemical vapour deposition of nanowires below the eutectic temperature has been demonstrated in many semiconductor–catalyst systems3, 4, 5, 6, growth from solid catalysts is still disputed...... as a comparative benchmark. The dominant coherent Pd silicide/Si growth interface subsequently advances by lateral propagation of ledges, driven by catalytic dissociation of disilane and coupled Pd and Si diffusion. Our results establish an atomistic framework for nanowire assembly from solid catalysts, relevant...

  1. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  2. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  3. Ion-exchange-resin-catalyzed adamantylation of phenol derivatives with adamantanols: Developing a clean process for synthesis of 2-(1-adamantyl-4-bromophenol, a key intermediate of adapalene

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2012-02-01

    Full Text Available A clean process has been developed for the synthesis of 2-adamantylphenol derivatives through adamantylation of substituted phenols with adamantanols catalyzed by commercially available and recyclable ion-exchange sulfonic acid resin in acetic acid. The sole byproduct of the adamantylation reaction, namely water, could be converted into the solvent acetic acid by addition of a slight excess of acetic anhydride during the work-up procedure, making the process waste-free except for regeneration of the ion-exchange resin, and facilitating the recycling of the resin catalyst. The ion-exchange sulfonic acid resin catalyst could be readily recycled by filtration and directly reused at least ten times without a significant loss of activity. The key intermediate of adapalene, 2-(1-adamantyl-4-bromophenol, could be produced by means of this waste-free process.

  4. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  5. Design of porous nanostructured solid catalysts

    DEFF Research Database (Denmark)

    Abildstrøm, Jacob Oskar

    cells, as a mean to transform chemical as the main technique explained. The chapter will also cover degradation mechanisms of the catalyst employed in PEMFC, such as carbon corrosion and particle agglomeration. Strategies on how to increase resistance towards these degradation mechanisms...

  6. Development of a solid phantom prototype of Mo-99, Tc-99, and Co-57 in epoxy resins for evaluating of the uniformity in SPECT systems images

    International Nuclear Information System (INIS)

    Garcia D, O.C.; Cortes P, A.; Becerril V, A.; Garcia R, J.C.

    2002-01-01

    A manufacture method of solid phantoms prototype of resin with different radioisotopes is described. The phantom manufactured of molybdenum 99 has an uniformity of 96% determined with a Na(Tl) detector mono channel analyzer with a lead collimator of 1 cm diameter. (Author)

  7. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  8. Comparison of TEVAR resin beads, PAN fibers, and ePTFE membranes as a solid support for Aliquat-336 in immobilized liquid extraction chromatography for separation of actinides

    International Nuclear Information System (INIS)

    Joe Dauner; Steve Workman

    2012-01-01

    The following paper covers a comparison of two new systems to traditional TEVA R resin systems for the analytical separation of actinides by immobilized liquid-liquid extraction using Aliquat-336. The new systems are using expanded polytetrafluroethane (ePTFE) membrane or polyacrylonitrile (PAN) fibers as the solid support. The systems are compared in two ways. First in how much Aliquat-336 they contain with the Vs, ratio of volume of Aliquat-336 to volume of polymeric support, being 0.158, 0.483, and 0.590 for the TEVA R resin, PAN fibers, and the ePTFE systems, respectively. The second comparison is in their performance capacity of extraction of uranyl chloride anion complex. The fiber and resins systems show similar capacities, and the membrane system being an order of magnitude less than the other systems. A cost comparison demonstrates the savings advantages of using a fiber based support compared with resin and membrane support systems. (author)

  9. Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J

    International Nuclear Information System (INIS)

    Shen Shaobo; Pan Tonglin; Liu Xinqiang; Yuan Lei; Wang Jinchao; Zhang Yongjian; Guo Zhanchen

    2010-01-01

    It was found that Rh, Pd and Pt contained in the spent ceramic automotive catalysts could be effectively extracted by dry chlorination with chlorine. In order to concentrate Rh(III) ions contained in the chloride solutions obtained, thermodynamic and kinetics studies for adsorption of Rh(III) complexes from the chloride solutions on an anionic exchange resin Diaion WA21J were carried out. Rh, Pd, Pt, Al, Fe, Si, Zn and Pb from the chloride solution could be adsorbed on the resin. The distribution coefficients (K d ) of Rh(III) decreased with the increase in initial Rh(III) concentration or in adsorption temperature. The isothermal adsorption of Rh(III) was found to fit Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich models under the adsorption conditions. The maximum monolayer adsorption capacities Q max based on Langmuir adsorption isotherms were 6.39, 6.61 and 5.81 mg/g for temperatures 18, 28 and 40 deg. C, respectively. The apparent adsorption energy of Rh was about -7.6 kJ/mol and thus Rh(III) adsorption was a physical type. The experimental data obtained could be better simulated by pseudo-first-order kinetic model and the activation energy obtained was 6.54 J/mol. The adsorption rate of Rh(III) was controlled by intraparticle diffusion in most of time of adsorption process.

  10. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  11. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    Science.gov (United States)

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  13. Resin bleed improvement on surface mount semiconductor device

    Science.gov (United States)

    Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd

    2018-04-01

    Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.

  14. Diffusion through composite materials made with thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-08-01

    Medium and low-level radioactive wastes may be coated in a solid matrix mainly made with thermosetting resins: the study of water and cesium migration through composite materials made with thermosetting resins is usefull to compare the water tightness of different coatings. Disks with a thickness of two millimeters were used to measure the water absorption. Diffusion cells including a plane membrane the thickness of which was at least 70μ were used to measure the diffusion of cesium 137. The diffusion coefficient of water in pure thermosetting resins, polyester or epoxyde, is about 10 -9 cm 2 .s -1 ; the diffusion coefficients of cesium in the same materials are about 10 -12 cm 2 .s -1 ; the introduction of solid particles in these polymers generally induces an acceleration of the diffusion process: the diffusion coefficient may reach 10 -8 cm 2 .s -1 . This lost of water-tightness may be reduced either by rendering insoluble the filler mixed to the polymer, or by diminushing the porosity of the interfacial zones by improving the bonding between the polymer and the filler [fr

  15. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract.

    Science.gov (United States)

    Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian

    2015-01-22

    In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The search for an 111In labeled agent for the solid component of gastric emptying

    International Nuclear Information System (INIS)

    Dewanjee, M.K.; Brown, M.L.; Chowdhury, S.; Thomforde, G.; Malagelada, J.

    1988-01-01

    111 In-labeled solid meal was prepared by chelation of 111 In with Chelex resin bead. The effect of grinding of normal Chelex bead on 111 In chelation and retention in solid meal was evaluated in an in vitro system. The Chelex resin beads were ground in a mortar-pestle to form ground Chelex resin beads. Fine particles were removed by resuspension in distilled water and centrifugation. One hundred to 150 μCi of 111 In chloride was diluted with HCl and mixed with 1g of Chelex resin beads. Unbound 111 In was removed by centrifugation. The 111 In-labeled Chelex resin beads were mixed with fresh egg and 111 In-labeled solid metal was prepared by heating until solid. The meals were digested with HCl-pepsin for 4 h in a stirrer-bath (37 0 C). Aliquots were collected at intervals for determination of 111 In loss from 111 In-labeled solid meal. These results suggest that 111 In Chelex resin beads were retained in solid meals at a higher level than normal Chelex resin beads and other 111 In-tracers. (author)

  17. Search for an /sup 111/In labeled agent for the solid component of gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Dewanjee, M.K.; Brown, M.L.; Chowdhury, S.; Thomforde, G.; Malagelada, J.

    1988-01-01

    /sup 111/In-labeled solid meal was prepared by chelation of /sup 111/In with Chelex resin bead. The effect of grinding of normal Chelex bead on /sup 111/In chelation and retention in solid meal was evaluated in an in vitro system. The Chelex resin beads were ground in a mortar-pestle to form ground Chelex resin beads. Fine particles were removed by resuspension in distilled water and centrifugation. One hundred to 150 ..mu..Ci of /sup 111/In chloride was diluted with HCl and mixed with 1g of Chelex resin beads. Unbound /sup 111/In was removed by centrifugation. The /sup 111/In-labeled Chelex resin beads were mixed with fresh egg and /sup 111/In-labeled solid metal was prepared by heating until solid. The meals were digested with HCl-pepsin for 4 h in a stirrer-bath (37/sup 0/C). Aliquots were collected at intervals for determination of /sup 111/In loss from /sup 111/In-labeled solid meal. These results suggest that /sup 111/In Chelex resin beads were retained in solid meals at a higher level than normal Chelex resin beads and other /sup 111/In-tracers.

  18. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel

    International Nuclear Information System (INIS)

    Takase, Mohammed; Zhang, Min; Feng, Weiwei; Chen, Yao; Zhao, Ting; Cobbina, Samuel J.; Yang, Liuqing; Wu, Xiangyang

    2014-01-01

    Highlights: • Silybum marianum contain high amount of oil (46%) and Linoleic acids (65.68%). • Incipient wetness impregnation method was used to load KOH on ZrO 2. • KOH(32%)/ZrO 2 -5 was used to transesterificate Silybum marianum to biodiesel. • Conversion yield of triglycerides to biodiesel (90.8%) at 60 °C was obtained in 2 h. • The properties of the biodiesel were comparable to international standards. - Abstract: This study seeks to investigate zirconia modified with KOH as heterogeneous solid base catalyst for transesterification of new non-edible, Silybum marianum (oil content 46%, FFA 0.68% and linoleic acid 65.68%) oil using methanol to biodiesel. Having screened the catalytic performance of ZrO 2 loaded with different K-compounds, 32% KOH loaded on ZrO 2 was chosen. The catalyst was prepared using incipient wetness impregnation method. Following drying (after impregnation) and calcination at 530 °C for 5 h, the catalyst was characterized by means of Hammett indicators, XRD, FTIR, SEM, TGA and N 2 adsorption desorption measurements. It was found that the yield of the fatty acid methyl esters (FAME) was related to the catalyst base strength. The catalyst had granular and porous structures with high basicity and superior catalytic performance for the transesterification reaction. Maximum yield (90.8%) was obtained at 15:1 methanol to oil molar ratio, 6% catalyst amount, 60 °C reaction temperature in 2 h. The catalyst maintained sustained activity after five times of usage. The oxidative stability and iodine value were the only unsuitable properties of the biodiesel (out of range) but can easily be improved. The cetane number, flash point and the cold flow properties among others were however, comparable to international standards. The study indicated that KOH(32%)/ZrO 2 -5 is an economically, suitable catalyst for producing biodiesel from S. marianum oil which is a potential new non-edible feedstock that can contribute positively to biodiesel

  19. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  20. Influence of the Hardener on the Emission of Harmful Substances from Moulding Sands with Furan Resin in the Pyrolysis Process

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2016-03-01

    Full Text Available The furan resin offers advantages such as high intensity, low viscosity, good humidity resistance and is suitable for cast different casting alloys: steel, cast iron and non-ferrous metal casting. For hardening furan resins are used different hardeners (acid catalysts. The acid catalysts have significant effects on the properties of the cured binder (e,g. binding strength and thermal stability [1 - 3]. Investigations of the gases emission in the test foundry plant were performed according to the original method developed in the Faculty of Foundry Engineering, AGH UST. The analysis is carried out by the gas chromatography method with the application of the flame-ionising detector (FID (TRACE GC Ultra THERMO SCIENTIFIC.

  1. Degradation of ion spent resin using the Fenton's reagent; Degradacao da resina de troca ionica utilizando o reagente de Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro Goulart de

    2013-07-01

    The most common method for spent radioactive ion exchange resin treatment is its immobilization in cement, which reduces the radionuclides release into the environment. Although this method is efficient, it increases considerably the final volume of the waste due to the low incorporation capacity. The objective of this work was to develop a degradation method of spent resins arising from the nuclear research reactor located at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), using an Advanced Oxidation Process (AOP) with Fenton's reagents. This method would allow a higher incorporation in cement. Three different resins were evaluated: cationic, anionic and a mixture of both resins. The reactions were conducted varying the catalyst concentration (25, 50, 100 and 150 mM), the volume of hydrogen peroxide (320 to 460 mL), and three different temperatures, 50, 60 and 70 deg C. Degradation of about 98% was achieved using a 50 mM catalyst solution and 330 mL of hydrogen peroxide solution. The most efficient temperature was 60 deg C. (author)

  2. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    International Nuclear Information System (INIS)

    Chun, Ung Kyung

    1997-01-01

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs

  3. Pyrolysis and oxidative pyrolysis experiments with organization exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Ung Kyung [Korea Electric Power Research Insititute, Taejon (Korea, Republic of)

    1997-12-31

    Pyrolysis may be an important pretreatment step before vitrification in a cold crucible melter (CCM). During vitrification of organic resin the carbon or other remaining residues may harm the performance of the cold crucible melter of the eventual stability of the final glass product. Hence, it is important to reduce or prevent such harmful waste from entry into the cold crucible melter. Pretreatment with pyrolysis will generally provide volume reduction resulting in less amount of solid waste that needs to be handled by the CCM; in addition, the pyrolytic processes may breakdown much of the complex organics causing release through volatilization resulting in less carbon and other harmful substances. Hence, KEPRI has undertaken studies on the pyrolysis and oxidative pyrolysis of organic ion exchange resin. Pyrolysis and oxidative pyrolysis were examined with TGA and a tube furnace. TGA results for pyrolysis with the flow of nitrogen indicate that even after pyrolyzing from room temperature to about 900 deg C, a significant mass fraction of the original cationic resin remains, approximately 46 %. The anionic resin when pyrolytically heated in a flow of nitrogen only, from room temperature to about 900 deg C, produced a final residue mass fraction of about 8 percent. Oxidation at a ratio of air to nitrogen, 1:2, reduced the cationic resin to 5.3% when heated at 5 C/min. Oxidation of anionic resin at the same ratio and same heating rate left almost no solid residue. Pyrolysis (e.g. nitrogen-only environment) in the tube furnace of larger samples relative to the TGA produced very similar results to the TGA. The differences may be attributed to the scale effects such as surface area exposure to the gas stream, temperature distributions throughout the resin, etc. (author) 7 refs., 7 figs.

  4. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.

    Science.gov (United States)

    Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2012-10-01

    Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  6. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Nalan Ozbay; Nuray Oktar; N. Alper Tapan [Gazi University, Ankara (Turkey). Faculty of Engineering and Architecture, Department of Chemical Engineering

    2008-08-15

    Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50-60{sup o}C and the effect of catalyst amount (1-2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area. 44 refs., 11 figs., 2 tabs.

  7. Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    G. Mohammadi Ziarani

    2012-06-01

    Full Text Available In this article, simple, convenient synthesis of 2-aryl-1- arylmethyl-1H-1,3-benzimidazole (1,2-disubstituted benzimidazoles via condensation of 1,2-phenylenediamine and aromatic aldehydes using SBA-Pr-SO3H as a nanoporous solid acid catalyst in green protocol was reported.

  8. New antipollution processing of a used refining catalyst and complete recovery of the catalyst metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Trinh Dinh Chan; Llido, E.

    1992-05-15

    The used refining catalyst, containing metals such as vanadium, nickel and iron, is first processed by stripping; it is then calcined in critical conditions and heat processed in the presence of a melted alkaline base; the resulting solid matter is then water processed. The antipollution process can be applied to oil fraction hydroconversion or hydroprocessing catalysts.

  9. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis.

    Science.gov (United States)

    Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe

    2017-12-06

    Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.

  10. Sulfur Tolerance of Carbide Catalysts Under Hydrocarbon Reforming Conditions

    National Research Council Canada - National Science Library

    Thomson, William

    2004-01-01

    .... These conditions are all related to lowering gas-solid mass transfer rate has also been determined that tedious TPR catalyst synthesis techniques are not necessary to achieve either catalyst activity or stability...

  11. Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andreia F.; Barella, Rodrigo A.; Silva, Edson A. [Department of Chemical Engineering, Universidade Estadual do Oeste do Parana, Toledo (Brazil); Pergher, Sibele B.C.; Treichel, Helen; Oliveira, Debora; Mazutti, Marcio A.; Oliveira, J. Vladimir [Department of Food Engineering, URI, Campus de Erechim, CEP 99700-000, Erechim (Brazil)

    2011-02-15

    This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 2{sup 3} full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions. (author)

  12. Gamma radiolysis and post-irradiation leaching of ion exchange resins

    International Nuclear Information System (INIS)

    Traboulsi, A.

    2012-01-01

    The knowledge of the behavior under irradiation and in presence of water of Ion Exchange Resins (IER) is very necessary to predict their impact on the environment during the storage phase and in a possible deep geological disposal. The IER studied are the MB400 mixed bed resin and its 'pure' anionic and cationic components. The experimental strategy used in this work was based on the use of chemometric tools permitting to estimate the effect of the irradiation atmosphere, the dose rate, the absorbed dose and the leaching temperature. The gaseous and water-soluble radiolysis products were analyzed by gas Mass Spectrometry (MS) and Ion Chromatography (IC). The IER generated principally H 2 g, CO 2 g and amines for which quantities depended of the resin nature and the irradiation conditions. The analysis of solid irradiated resins was investigated by Fourier Transformed Infrared (FTIR) and Nuclear Magnetic Resonance ( 13 C NMR) techniques. The last ones revealed structural modifications of the IER solid matrix in function of the experimental conditions. Their behavior in presence of water was studied during 143 days by characterization of the organic matter released after their post-irradiation leaching. The kinetics showed that all the water-soluble components were releasing at the first contact with water. The Total Organic Carbon (TOC) quantity released depends, according to the resin nature, either on the dose, either on the irradiation atmosphere. The dose rate has no effect on the degradation and the leaching of the MB400 resin, which behaved differently than its pure components. (author) [fr

  13. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  14. Color test for selective detection of secondary amines on resin and in solution.

    Science.gov (United States)

    Boas, Ulrik; Mirsharghi, Sahar

    2014-11-21

    Resins for solid-phase synthesis give orange to red-brown resin beads selectively when secondary amines are present on the resin when treated with a solution of acetaldehyde and an Fmoc-amino acid in NMP. The method shows good specificity and gives colorless beads when exposed to a variety of other functional groups. Furthermore, the acetaldehyde/Fmoc amino acid method can be used as a selective colorimetric test for secondary amines in solution.

  15. Incineration of spent ion exchange resins in a triphasic mixture at Belgoprocess

    International Nuclear Information System (INIS)

    Deckers, J.; Luycx, P.

    2003-01-01

    Up to 1998, spent ion exchange resins have been fed to the incinerator in combination with various other solid combustible wastes at Belgoprocess. However, thanks to sustained efforts to reduce radioactive waste production in all nuclear facilities in Belgium, the annual production of solid combustible waste is now much too small to allow this practice to be continued. Since the incinerator at Belgoprocess is not capable of treating spent ion exchange resins as such, it was decided to adopt the use of foam as a carrier to feed the resins to the incinerator. The mixture is a pseudohomogeneous charged foam, ensuring easy handling and allowing incineration in the existing furance, while a number of additives may be included, such as oil to increase the calorific value of the mixture and accelerate combustion. The first incineration campaign of spent ion exchange resins in a triphasic foam mixture, in conjunction with other liquid and solid combustible wastes, will be started in January 2000. The foam, comprising 70% by weight of resins, 29% by weight of water and 1% by weight of surfactant will be pulverized in the incinerator through an injection lance, at a feed rate of 40 to 100 kg/h. The incinerator and associated off-gas treatment system can be operated at standard conditions. Belgoprocess is the subsidiary of the Belgian national agency for the management of radioactive waste, known by its Dutch and French acronyms, NIRAS and ONDRAF respectively. The company ensures the treatment, conditioning and interim storage of nearly all radioactive waste produced in Belgium. (orig.)

  16. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  17. Solid acid zeolite catalysts for benzene/ ethylene alkylation reactions

    OpenAIRE

    2011-01-01

    Alkylation of benzene with ethylene to ethylbenzene is widely used in the petrochemical industry. Ethylbenzene is an important raw material in the petrochemical industry. It is used as feedstock for the production of styrene, an important material for plastic and rubber production.The conventional catalyst for this alkylation process is AlCl₃, which accounted for 24% of the worldwide ethylbenzene production in 2009.As utilization of this catalyst involves problems with separation, handling, s...

  18. Superior mercury-free catalysts for acetylene hydrochlorination to VCM. Achieving high productivities and long catalyst life-time

    Energy Technology Data Exchange (ETDEWEB)

    Liebens, A.T.; Piccinini, M. [Solvay S.A., Bruxelles (Belgium)

    2013-11-01

    New mercury-free catalytic systems based on the use of ionic liquids (IL) and noble metals (e.g. Pd, Au) have been evaluated for the hydrochlorination reaction of acetylene to produce Vinyl Chloride Monomer (VCM). Two different approaches have been investigated: gas-liquid homogeneous catalytic systems in the presence of molten IL/Metal and heterogeneous gas-solid ones using solid materials. For the latter case, very positive results have been obtained using SILP-type catalysts (SILP: Supported Ionic Liquid Phase) where IL/Metal were deposited onto a solid mesoporous support. Remarkably, both systems display very high Space Time Yield (STY) and breakthrough life-time stability. No deactivation is observed even after 500 h on stream indicating the strong advantages of these new materials compared to most investigated Au/C supported systems. The development of heterogeneous catalysts was preferred as the scale-up of gas-liquid technology implies important CAPEX investments to convert current plants from gas-solid to gas-liquid equipment. (orig.)

  19. Monitoring catalyst flow rate in a FCC cold pilot unity by gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Brito, Marcio F.P.; Netto, Wilson F.S.; Miranda, Marcia V.F.E.S.; Junior, Isacc A.S.; Dantas, Carlos C.; Melo, Silvio B.; Lima, Emerson A.O.

    2013-01-01

    A model for monitoring catalyst mass flow in riser of Fluid Catalytic Cracking - FCC, pilot unity as a function of air flow and solid injection is proposed. The fluidized FCC- catalyst bed system is investigated in an experimental setup the Cold Pilot Unity - CPU by means of gamma ray transmission measurements. Riser in CPU simulates the reactor in FCC process. By automation control air flow is instrumentally measured in riser and the solid injection is manually controlled by valve adjusting. Keeping a constant solid injection, catalyst level at the return column was measured by gamma transmission for several air flow values in riser. The operational condition reached a steady state regime before given to setup a new air flow value. A calibration of catalyst level as a function of air flow in riser is calculated, therefore, a model for solid feed rate is derived. Recent published work evaluates solid concentration in riser of the CPU by means of gamma ray transmission, and a correlation with air velocity is obtained. In this work, the model for solid feed rate was further investigated by carrying out experiments to measure catalyst concentration at the same air flow values. These experiments lead to a model for monitoring catalyst flow in riser as function of solid feed rate and air flow. Simulation with random numbers produced with Matlab software allows to define validation criteria for the model parameters. (author)

  20. Quantitative analysis of PMR-15 polyimide resin by HPLC

    Science.gov (United States)

    Roberts, Gary D.; Lauver, Richard W.

    1987-01-01

    The concentration of individual components and of total solids of 50 wt pct PMR-15 resin solutions was determined using reverse-phase HPLC to within + or - 8 percent accuracy. Acid impurities, the major source of impurities in 3,3', 4,4'-benzophenonetetracarboxylic acid (BTDE), were eliminated by recrystallizing the BTDE prior to esterification. Triester formation was not a problem because of the high rate of esterification of the anhydride relative to that of the carboxylic acid. Aging of PMR-15 resin solutions resulted in gradual formation of the mononadimide and bisnadimide of 4,4'-methylenedianiline, with the BTDE concentration remaining constant. Similar chemical reactions occurred at a reduced rate in dried films of PMR-15 resin.

  1. Destruction of Ion-Exchange Resin In Waste From the HFIR, T1 and T2 Tanks Using Fenton's Reagent

    International Nuclear Information System (INIS)

    Taylor, P.A.

    2002-01-01

    The use of Fenton's reagent (hydrogen peroxide and a ferrous iron catalyst) has been tested as a method for destroying ion-exchange resin in radioactive waste from three underground storage tanks at the Oak Ridge National Laboratory. The resin in these wastes must be destroyed before they can be transferred to the Melton Valley Storage Tanks (MVSTs) prior to solidification and disposal at the Waste Isolation Pilot Plant. The reaction with ion-exchange resin requires a dilute acidic solution (pH = 3 to 5) and moderate temperatures (T = 60 to 100 C). Laboratory-scale tests of the process have been successfully completed using both simulants and actual waste samples. The ion-exchange resin is oxidized to carbon dioxide and inorganic salts. The reaction rate is quite slow for temperatures below 70 C but increases almost linearly as the temperature of the slurry increases from 70 to 90 C. Pilot-scale tests have demonstrated the process using larger samples of actual waste slurries. A sample from the High Flux Isotope Reactor (HFIR) tank, containing 500 mL of settled solids (resin and inorganic sludge) in a total volume of 1800 mL, was successfully treated to meet MVST waste acceptance requirements in 9 h of processing time, using 1650 mL of 50 wt% hydrogen peroxide. A composite sample from the T1 and T2 tanks, which contained 1000 mL of settled solids in a total volume of 2000 mL required 8 h of treatment, using 1540 mL of 50 wt% peroxide, to meet waste acceptance requirements. Hydrogen peroxide reaction rates were 0.71 to 0.74 g H 2 O 2 /L/min, with very low (<2000 mg/L) concentrations of peroxide in the slurry. The reaction produces mostly carbon dioxide gas during the early part of the treatment, when organic carbon concentrations in the slurry are high, and then produces increasing amounts of oxygen as the organic carbon concentration drops. Small amounts (<3 vol%) of carbon monoxide are also generated. The off-gas from the pilot-scale tests, which was 81 vol

  2. Solid-State Polymerization of Poly(ethylene furanoate Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase

    Directory of Open Access Journals (Sweden)

    Nejib Kasmi

    2017-11-01

    Full Text Available In this work, we report the synthesis of poly(ethylene furanoate (PEF, catalyzed by three different catalysts, namely, titanium (IV isopropoxide (TIS, tetrabutyltitanate (TBT, and dibutyltin (IV oxide (DBTO, via the two-stage melt polycondensation method. Solid-state polymerization (SSP was conducted at different reaction times (1, 2, 3.5, and 5 h and temperatures 190, 200, and 205 °C, under vacuum. The resultant polymers were analyzed according to their intrinsic viscosity (IV, end groups (–COOH, and thermal properties, via differential scanning calorimetry. DSC results showed that the post polymerization process was favorable to enhance the melting point of the prepared PEF samples. As was expected, the intrinsic viscosity and the average molecular weight of PEF increased with the SSP time and temperature, whereas the number of carboxyl end-groups was decreased. A simple kinetic model was also developed and used to predict the time evolution of polymers IV, as well as the carboxyl and hydroxyl content of PEF during the SSP. From both the experimental measurements and the theoretical simulation results it was proved that the presence of the TIS catalyst resulted in higher transesterification kinetic rate constants and higher reaction rates. The activation energies were not much affected by the presence of different catalysts. Finally, using DBTO as a catalyst, the polyesters produced have higher crystallinity, and as a consequence, higher number of inactive carboxyl and hydroxyl groups.

  3. Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion

    Science.gov (United States)

    Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.; Lachgar, Abdessadek; Li, Yunchao; Naskar, Amit K.; Paranthaman, Mariappan Parans

    2018-02-06

    A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.

  4. Kinetics of transesterification of methyl acetate and n-octanol catalyzed by cation exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Gao, Li; Li, Xiying; Mao, Liqun [Henan University, Kaifeng (China); Wei, Min [Henan University of Technology, Zhengzhou (China)

    2013-05-15

    The transesterification kinetics of methyl acetate with n-octanol to octyl acetate and methanol were studied using Amberlyst 15 as catalyst in a batch stirred reactor. The influence of the agitation speed, particle size, temperature, catalyst loading, and initial reactants molar ratio was investigated in detail. A pseudo-homogeneous (PH) kinetic model was applied to correlate the experimental data in the temperature range of 313.15 K to 328.15 K. The estimated kinetic parameters made the calculated results in good agreement with the experimental data. A kinetic model describing the transesterification reaction catalyzed by cation exchange resins was developed.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    Science.gov (United States)

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  6. On the role of acidity in amorphous silica-alumina based catalysts

    NARCIS (Netherlands)

    Poduval, D.G.

    2011-01-01

    Amorphous silica-alumina (ASA) is widely used as a solid acid catalyst or as a carrier for well-dispersed metal sulfide or metal catalysts. They are often involved in hydrocracking catalyst formulations, especially so when the aim is to produce middle distillates from heavy oil fractions. With

  7. Calcined eggshell (CES): An efficient natural catalyst for ...

    Indian Academy of Sciences (India)

    hydes with active methylene compounds using calcined eggshell (CES) as an efficient ... of the important reactions to achieve carbon–carbon ... solid catalyst for biodiesel production,24 as a catalyst ... which supports for adsorption of water on CaO and ... The organic phase .... After extraction of the product with ethylac-.

  8. The dissolution of organic ion exchange resins using iron-catalysed hydrogen peroxide

    International Nuclear Information System (INIS)

    Hawkings, N.; Horton, K.D.; Snelling, K.W.

    1980-10-01

    Feasibility studies have been made of the dissolution/partial decomposition of radioactive waste resins by means of iron-catalysed hydrogen peroxide. They have shown that the procedure is limited in its application and successfully treats only polystyrene/divinylbenzene-based resins. Evaporation of the final solution produces a solid residue which is difficult to handle and results in only a relatively small reduction in volume. It is concluded that the method could be used to dissolve specific waste resins for easier handling and disposal, but is not of general applicability. (author)

  9. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  10. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  11. Pilot Plant for treating of spent exchange resins

    International Nuclear Information System (INIS)

    Iglesias, Alberto M.; Raffo Calderon, Maria del C.; Varani, Jose L.

    2004-01-01

    Spent exchange resins that have been accumulating during the last operational 30 years in Atucha I nuclear power plant (NPP) are a 'problematic' waste. These spent resins conform an intermediate level waste due to the total content of alpha, beta and gamma emitters (some samples of spent resins were analyzed in 2003). For this reason its treatment is more expensive since it is necessary to add more safety barriers for its final disposition and also for the radioprotection actions that are involved. Using sulfuric acid solutions it is possible to elute from the spent resins the ions that are retained. In the same operation are eluted Cobalt, Cesium and alpha emitters since that all these elements react as cations in aqueous solution. Decontamination by electrochemical methods was analyzed as an interesting method to apply after elution operation to these spent resins since that with the decontamination process it is possible to obtain a solid without activity and concentrate the activity in cells that are small in volume and its manipulation doesn't present any extra complication. Experiments made with active samples taken from the deposit were successful. Because of these results it was built a small plant to treat a batch of 100 dm 3 of wet spent exchange resins. Some problems with the material that was in the deposit together with spent resins caused that we had to plan a more complex strategy to obtain a complete decontamination of the spent resins (in this stage we used the cobalt retention cell that was described in other paper to retain Cobalt and alpha emitters and a sample of zeolites from Argentina ores to retain Cesium). Due to alpha emitters act electrochemically like cations it was possible to retain altogether with ionic Cobalt on the copper amalgam electrode. Working in the non-active lab with alcoholic solutions it was possible to retain ionic Cesium on a copper electrode (copper is covered by mercury fine film which forms a solid amalgam) with a

  12. Activation of a Cu/ZnO catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel; Rasmussen, F.B.; Helveg, S.

    2006-01-01

    The structural changes during activation by temperature-programmed reduction of a Cu/ZnO catalyst for methanol synthesis have been studied by several in situ techniques. The catalyst is prepared by coprecipitation and contains 4.76 wt% Cu, which forms a substitutional solid solution with Zn......O as determined by resonant X-ray diffraction. In situ resonant X-ray diffraction reveals that the Cu atoms are extracted from the solid solution by the reduction procedure, forming metallic Cu crystallites. Cu is redispersed in bulk or surface Zn lattice sites upon oxidation by heating in air. The results...... is highly dispersed and in intimate contact with the surface of the host ZnO particles. The possibility of re-forming the (Zn,Cu)O solid solution by oxidation may provide a means of redispersing Cu in a deactivated catalyst....

  13. Chelating resin immobilizing carboxymethylated polyethyleneimine for selective solid-phase extraction of trace elements: Effect of the molecular weight of polyethyleneimine and its carboxymethylation rate.

    Science.gov (United States)

    Kagaya, Shigehiro; Kajiwara, Takehiro; Gemmei-Ide, Makoto; Kamichatani, Waka; Inoue, Yoshinori

    2016-01-15

    The effect of the molecular weight of polyethyleneimine (PEI), defined as a compound having two or more ethyleneamine units, and of its carboxymethylation rate (CM/N), represented by the ratio of ion-exchange capacity to the amount of N on the resin, on the selective solid-phase extraction ability of the chelating resin immobilizing carboxymethylated (CM) PEI was investigated. The chelating resins (24 types) were prepared by immobilization of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, PEI300 (MW=ca. 300), and PEI600 (MW=ca. 600) on methacrylate resins, followed by carboxymethylation with various amounts of sodium monochloroacetate. When resins with approximately the same CM/N ratio (0.242-0.271) were used, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, Zn, and alkaline earth elements increased with increasing the molecular weight of PEIs under acidic and weakly acidic conditions; however, the extraction behavior of Mo and V was only slightly affected. This was probably due to the increase in N content of the resin, resulting in an increase in carboxylic acid groups; the difference in the molecular weight of PEIs immobilized on the resin exerts an insignificant influence on the selective extraction ability. The CM/N ratio considerably affected the extraction behavior for various elements. Under acidic and neutral conditions, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, and Zn increased with increasing CM/N values. However, under these conditions, the recovery of alkaline earth elements was considerably low when a resin with low CM/N ratio was used. This is presumably attributed to the different stability constants of the complexes of these elements with aminocarboxylic acids and amines, and to the electrostatic repulsion between the elements and the protonated amino groups in the CM-PEI. The recovery of Mo and V decreased or varied with increasing CM/N values, suggesting that the extraction of these elements occurred mainly

  14. Treatment of spent ion exchange resins IAEA research coordination programme

    International Nuclear Information System (INIS)

    Balu, K.; Bhatia, S.C.; Wattal, P.K.; Chanana, N.

    1981-09-01

    Spent ion-exchange resins arising from steam condensate systems, reactor coolant clean-up systems and rad-waste procession, are considered as a specific solid waste management problem. This is the second report on the product characterisation with respect to thermal properties, flammability, bio-organic degradation and leaching behaviours. All these studies are based on polyester-styrene polymer as a matrix for fixation of these spent Ix-resins. Choice of this matrix was dealt with in the first report. (author)

  15. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to

  16. Study on positron annihilation spectroscopy of methanol synthesis catalyst CuO/ZnO

    International Nuclear Information System (INIS)

    Liu Qisheng; Dai Guohuan; Sun Jiying; Ding Yingru; Yao Jianhua

    1989-01-01

    A new method was developed for determining the solid solubility of a metal oxide series prepared by precipitation using the positron lifetime parameters. The positron lifetime spectra of a series of CuO/ZnO catalysts prepared by precipitation were measured, in which the CuO at % contents were different before and after reducing. The relations between the solid solubility of the catalysts and the positron lifetime parameters were obtained, from which a result of solid solubility of 12 CuO at% after reducing had been found. The viewpoint that the Cu + ion acted as the active centre in the CuO/ZnO catalyst was supported

  17. Novel chelating resin with cyanoguanidine group: Useful recyclable materials for Hg(II) removal in aqueous environment

    International Nuclear Information System (INIS)

    Ma Xiaojie; Li Yanfeng; Ye Zhengfang; Yang Liuqing; Zhou Lincheng; Wang Liyuan

    2011-01-01

    A novel chelating resin containing cyanoguanidine moiety has been successfully prepared by the functionalizing reaction of a macroporous bead based on chloromethylated copolymer of styrene-divinylbenzene (CMPS) with dicyandiamide (DCDA) in the presence of phase transfer catalyst. The Fourier transform-infrared spectra (FT-IR) and scanning electron microscopy (SEM) were employed in the characterization of the resulting chelating resin, meanwhile, the adsorption properties of the resin for Hg(II) were investigated by batch and column methods. The results indicated that the resin displayed a marked advantage in Hg(II) binding capacity, and the saturated adsorption capacity estimated from the Langmuir model was dramatically up to 1077 mg g -1 at 45 deg. C. Furthermore, it was found that the resin was able to selectively separate Hg(II) from multicomponent solutions with Zn(II), Cu(II), Pb(II) and Mg(II). The desorption process of Hg(II) was tested with different eluents and the ratio of the highest recovery reached to 96% under eluting condition of 1 M HCl + 10% thiourea. Consequently, the resulting chelating resin would provide a potential application for treatment process of Hg(II) containing wastewater.

  18. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  19. Mobis HRH process residue hydroconversion using a recoverable nano-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.; Rhodey, G. [Mobis Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described a newly developed pseudo-homogeneous catalyst (PHC) for hydroconversion of heavy hydrocarbon feeds with high levels of sulphur, nitrogen, resins, asphaltenes and metals. An active catalyst is formed in the reaction system, consisting of particles that are 2-9 nm in size and whose properties resemble those of a colloid solution at both room and reaction temperature. Residue processing with this pseudo-homogeneous catalyst system results in better cracking and hydrogenation at lower process severity. The PHC system in heavy residue hydroconversion (HRH) process achieves up to 95 per cent residue conversion at pressures below 7.3 MPa, reaction temperatures between 400 to 460 degrees C, and with feed space velocity between 1 to 2 per hour, thus rendering the PHC catalyst system suitable for deep conversion of hydrocarbon residues. As much as 95 per cent of the catalyst can be recovered and regenerated within the process. Pilot plants are in operation for the hydroconversion of Athabasca vacuum bottoms using this technology. The use of the HRH process in oilsands and refinery operations were discussed along with comparative yields and economics. tabs., figs.

  20. Diffusion in composite materials made of thermosetting resins

    International Nuclear Information System (INIS)

    Morin, Bruno.

    1981-03-01

    The embedding process of low and medium level radioactive wastes in thermosetting resins allows their containment in a solid matrix. During storage the risk of circulation of water is possible. The aim of this containment process is to prevent radionuclide migration in environment. Ion migration through membranes of thermosetting resins alone or filler added were measured to evaluate released radioactivity by embedded blocks with time and to compare the different embedding formulas. Water influence on diffusion was taken into account considering that radioactive wastes dispersion is faster in a wet medium than in a dry one [fr

  1. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  2. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    Science.gov (United States)

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  3. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  4. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  5. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal

    2017-11-08

    A stable Periodic Mesoporous Organosilica (PMO) with accessible sulfonic acid functionalities is prepared via a one-pot-synthesis and is used as solid support for highly active catalysts, consisting of gold(I)-N-heterocyclic carbene (NHC) complexes. The gold complexes are successfully immobilized on the nanoporous hybrid material via a straightforward acid-base reaction with the corresponding [Au(OH)(NHC)] synthon. This catalyst design strategy results in a boomerang-type catalyst, allowing the active species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active in the latter reaction, and after an acidic work-up, the IPr*-based gold catalyst can be recovered and then reused several times without any loss in efficiency

  6. Structural parameters of polyethylenes obtained using a palladium catalyst: dilute solution and solid state studies

    International Nuclear Information System (INIS)

    Meneghetti, Simoni Plentz; Lutz, Pierre J.; Duval, M.; Kress, Jacky; Lapp, A.

    2001-01-01

    Polyethylenes were obtained using palladium catalyst [(Ar N=C(Me)-C(Me)=N Ar) Pd(CH 2 ) 3 (COOMe)] + BAr' 4 - (VERSIPOL TM ); Ar2,6-i-Pr 2 -C 6 H 3 and Ar'3,5-(CF 3 ) 2 -C 6 H 3 . The combination of dilute solution and solid state characterization of these polyethylenes revealed strong differences between structural parameters of samples prepared under almost identical conditions except ethylene pressure (6, 3 and 1 bar). These differences can be explained by the fact that samples prepared at 6 bar are almost linear, with only a few short branches, whereas those synthesized at 1 bar are highly branched or even hyper branched. (author)

  7. Treatment of spent ion-exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Ikladious, N.E.; Eskander, S.B.

    1981-01-01

    PMMA was studied with the aim to evaluate its usefulness as an incorporation medium for the final containment of spent ion-exchange resins. The study of the effect of water content (ranging from 25 to 100%) of the incorporated resin into PMMA on the compression strength of the final solid products shows that with the increasing water content the compression strength of the final products decreases sharply. Hardness of the final products follows nearly the same trend of compression strength. Increasing gamma irradiation doses, up to 7.77x10 7 rad, PMMA shows increase in compression strength and hardness for small doses and then decreases with increasing irradiation dose due to the increase in polymerization process and the degradation of the incorporation medium

  8. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Relix process for the resin-in-pulp recovery of uranium

    International Nuclear Information System (INIS)

    Cloete, F.L.D.

    1981-01-01

    The Relix process is based on direct contact between an ion-exchange resin and undiluted pulp, thus avoiding prior solid-liquid separation. The resin particles float near the surface of the pulp, forming an inverted fluidized bed with the pulp flowing downwards. The basic idea was demonstrated on a full-scale pachuca tank at Stilfontein Gold Mine in 1970, followed by a small-scale demonstration run in a laboratory at the National Institute for Metallurgy. A pilot plant based on a throughput of 60 tons of ore per day was subsequently operated at West Driefontein Gold Mine for several periods over two years. Although the plant proved operable from a mechanical point of view, the metallurgical performance was not up to expectation. The basic cause of the poor metallurgical performance was shown to be backmixing of both the resin and the pulp between stages. The values obtained for resin losses were inconclusive. Further development of resin-in-pulp processes for the recovery of uranium should be focused on the performance of various techniques for the screening of resin from pulp [af

  10. Speciation and surface interactions of actinides on aged ion-exchange resins

    International Nuclear Information System (INIS)

    Morris, D.E.; Buscher, C.T.; Donohoe, R.J.

    1997-01-01

    The United States Department of Energy is presently faced with the stabilization and safe disposition of hundreds of metric tons of residue materials resulting from 50+ years of nuclear weapons production activities. These residues encompass a broad range of substrates and radionuclides and include both solid and liquid materials. Combustible residues constitute a significant fraction of the total residue inventory, and an important constituent within the combustible category is spent anion ion-exchange resins. These resins are typically utilized for the separation of plutonium from other radionuclides under strongly acidic nitric or hydrochloric acid solution conditions which favor the formation and partitioning of anionic Pu(IV) nitrato or chloride species. The spent resins are usually rinsed prior to storage as residues to reduce both acid and radionuclide concentrations, but significant radionuclide concentrations remain in these resins, and the long-term effects of concentrated acid and radiolysis on the resin integrity are relatively unexplored. Thus, new research is needed to assess the stability of these resin residues and address the need for further treatment to ensure stability prior to long-term disposal

  11. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  12. Design and manufacturing concrete cells for shielding and storing radioactive semi liquid waste (resin) from MPR-GAS

    International Nuclear Information System (INIS)

    Pudjijanto-MS; Bahdir-Johan

    2003-01-01

    Semi liquid or quasi solid waste on Multipurpose Reactor G.A. Siwabessy (MPR-GAS) produced from operating resin rinsing systems and resin disposal systems during changes insert trap resin. Volume of the disposal resin waste in the filter mixed-bed per operation rinsing period are approx. 1.00 m 3 (in the Primary Cooling Water Treatment System) with activity ∼ 18.6 Ci/m 3 (0.688 TBq/m 3 ), 0.50 m 3 (in the Radioisotope Storage Pool Water Treatment System) with activity approx ∼ 0.162 Ci/m 3 (5.99 x 10 3 MBq/m 3 ) and 0.50 m 3 (in the Interim Spent Fuel Storage Pool Water Treatment System) with activity ∼ 0.162 Ci/m 3 (5.99 x 10 3 MBq/m 3 ) respectively. On the discharging and unloading, the gross radioactivity concentration of the resin waste loaded in the disposal resin waste tank are approx. 10 Ci/m 3 (0.37 TBq/m 3 ). After 6 months delayed, this activity is still 0.32 Ci/m 3 (11.84 GBq/m 3 ). Based on this data, some concrete cells to storage resin waste as semi liquid or quasi solid waste produced continuously by MPR-GAS installation has been designed and manufactured eternally

  13. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results

    Directory of Open Access Journals (Sweden)

    Shirley Nakagaki

    2016-02-01

    Full Text Available Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic. These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs and Layered Hydroxide Salts (LHSs, published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1 and intercalated with different anions (CO32− or NO3−. The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  14. Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results.

    Science.gov (United States)

    Nakagaki, Shirley; Mantovani, Karen Mary; Machado, Guilherme Sippel; Castro, Kelly Aparecida Dias de Freitas; Wypych, Fernando

    2016-02-29

    Layered materials are a very interesting class of compounds obtained by stacking of two-dimensional layers along the basal axis. A remarkable property of these materials is their capacity to interact with a variety of chemical species, irrespective of their charge (neutral, cationic or anionic). These species can be grafted onto the surface of the layered materials or intercalated between the layers, to expand or contract the interlayer distance. Metalloporphyrins, which are typically soluble oxidation catalysts, are examples of molecules that can interact with layered materials. This work presents a short review of the studies involving metalloporphyrin immobilization on two different anionic exchangers, Layered Double Hydroxides (LDHs) and Layered Hydroxide Salts (LHSs), published over the past year. After immobilization of anionic porphyrins, the resulting solids behave as reusable catalysts for heterogeneous oxidation processes. Although a large number of publications involving metalloporphyrin immobilization on LDHs exist, only a few papers have dealt with LHSs as supports, so metalloporphyrins immobilized on LHSs represent a new and promising research field. This work also describes new results on an anionic manganese porphyrin (MnP) immobilized on Mg/Al-LDH solids with different nominal Mg/Al molar ratios (2:1, 3:1 and 4:1) and intercalated with different anions (CO₃(2-) or NO₃(-)). The influence of the support composition on the MnP immobilization rates and the catalytic performance of the resulting solid in cyclooctene oxidation reactions will be reported.

  15. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    Science.gov (United States)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  16. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fe1-xZnxS ternary solid solution as an efficient Fenton-like catalyst for ultrafast degradation of phenol.

    Science.gov (United States)

    Gao, Jing; Liu, Yutang; Xia, Xinnian; Wang, Longlu; Dong, Wanyue

    2018-07-05

    Heterogeneous Fenton-like system has been proved to be an promising alternative to Fenton system due to its easy separation. However, it's a challenge to design heterogeneous Fenton-like catalysts with high activity and great durability. Here, ternary solid solution Fe 1-x Zn x S were prepared via hydrothermal synthesis as heterogeneous Fenton-like catalysts. The Fe 0.7 Zn 0.3 S sample exhibited state of the art activity for yielding OH by H 2 O 2 decomposition, and the ultrafast degradation of phenol was achieved in 4 min at initial acidic condition under room temperature. The phenol degradation rate constant of Fe 0.7 Zn 0.3 S was 99 and 70 times of ZnS and FeS, respectively. Further, we show that the unique structural configuration of iron atoms, the formation of FeS 2 -pyrite with (200) plane, are responsible for the excellent activity. The intermediate products were identified by LC-MS and a possible pathway was accordingly proposed to elucidate the mechanism of phenol degradation by OH. Overall, this work provides an idea for the rational design of the relevant heterogeneous Fenton-like catalysts. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Immobilization of spent resin with epoxy resin

    International Nuclear Information System (INIS)

    Gultom, O.; Suryanto; Sayogo; Ramdan

    1997-01-01

    immobilization of spent resin using epoxy resin has been conducted. The spent resin was mixtured with epoxy resin in variation of concentration, i.e., 30, 40, 50, 60, 70 weight percent of spent resin. The mixture were pour into the plastic tube, with a diameter of 40 mm and height of 40 mm. The density, compressive strength and leaching rate were respectively measured by quanta chrome, paul weber apparatus and gamma spectrometer. The results showed that the increasing of waste concentration would be decreased the compressive strength, and increased density by immobilized waste. The leaching rate of 137 Cs from waste product was not detected in experiment (author)

  19. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Kutty, P.V.E.; Janaradanan, C.; Ramanujam, A.; Dhumwad, R.K.

    1989-01-01

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH - form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  1. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    OpenAIRE

    Jiongjiong Li; Jizhi Zhang; Shifeng Zhang; Qiang Gao; Jianzhang Li; Wei Zhang

    2017-01-01

    Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL) reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance) and Fourier transform infrared (FT-IR) spectroscopy to determine the deme...

  3. Technological aspects of vegetable oils epoxidation in the presence of ion exchange resins: a review

    Directory of Open Access Journals (Sweden)

    Milchert Eugeniusz

    2016-09-01

    Full Text Available A review paper of the technology basics of vegetable oils epoxidation by means of peracetic or performic acid in the presence of acidic ion exchange resins has been presented. The influence of the following parameters: temperature, molar ratio of acetic acid and hydrogen peroxide to ethylenic unsaturation, catalyst loading, stirring intensity and the reaction time on a conversion of ethylenic unsaturation, the relative percentage conversion to oxirane and the iodine number was discussed. Optimal technological parameters, mechanism of epoxidation by carboxylic peracids and the possibilities of catalyst recycling have been also discussed. This review paper shows the application of epoxidized oils.

  4. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  5. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  6. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  7. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  8. Fracture strength and failure mode of maxillary implant-supported provisional single crowns: a comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments.

    Science.gov (United States)

    Santing, Hendrik Jacob; Meijer, Henny J A; Raghoebar, Gerry M; Özcan, Mutlu

    2012-12-01

    Polyetheretherketone (PEEK) temporary abutments have been recently introduced for making implant-supported provisional single crowns. Little information is available in the dental literature on the durability of provisional implant-supported restorations. The objectives of this study were to evaluate the fracture strength of implant-supported composite resin crowns on PEEK and solid titanium temporary abutments, and to analyze the failure types. Three types of provisional abutments, RN synOcta Temporary Meso Abutment (PEEK; Straumann), RN synOcta Titanium Post for Temporary Restorations (Straumann), and Temporary Abutment Engaging NobRplRP (Nobel Biocare) were used, and provisional screw-retained crowns using composite resin (Solidex) were fabricated for four different locations in the maxilla. The specimens were tested in a universal testing machine at a crosshead speed of 1 mm/minute until fracture occurred. The failure types were analyzed and further categorized as irreparable (Type 1) or reparable (Type 2). No significant difference was found between different abutment types. Only for the position of the maxillary central incisor, composite resin crowns on PEEK temporary abutments showed significantly lower (p Provisional crowns on PEEK abutments showed similar fracture strength as titanium temporary abutments except for central incisors. Maxillary right central incisor composite resin crowns on PEEK temporary abutments fractured below the mean anterior masticatory loading forces reported to be approximately 206 N. © 2010 Wiley Periodicals, Inc.

  9. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts

    International Nuclear Information System (INIS)

    Xie, Wenlei; Zhao, Liangliang

    2013-01-01

    Highlights: • Heterogeneous catalysts were prepared by an impregnation method with different conditions. • The catalysts were efficient in the soybean oil transesterification. • The catalytic activity and stability of the catalyst were investigated. - Abstract: The main objective of this work was to develop an environmentally benign process for the production of biodiesel by using a stable solid base catalyst. To this purpose, different heterogeneous CaO–SnO 2 catalysts have been prepared by means of impregnation methods. Various techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were applied for the catalyst characterization. The transesterification of soybean oil with methanol, to produce biodiesel, was carried out under batch conditions at refluxed methanol over the CaO–SnO 2 catalysts. The catalytic activity is found to be highly dependent on the Ca/Sn ratio and calcination temperature. The solid catalyst with the Ca/Sn molar ratio of 4:1 and calcined at a temperature of 973 K, performed the best activity, reaching the conversion to methyl esters of 89.3% after 6 h of reaction at methanol reflux temperature (343 K) when a methanol/oil molar ratio of 12:1 and catalyst dosage of 8 wt.% were employed. Further, the solid catalyst is proved to be stable and durable for the transesterification reaction

  10. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  11. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    Science.gov (United States)

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  12. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts

    International Nuclear Information System (INIS)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Liu, Changye; Yan, Beibei

    2015-01-01

    Highlights: • Novel heterogeneous animal bone-based catalysts were developed. • The optimum catalyst is 30K/HAP-600. • Maximum biodiesel yield of 96.4% was achieved using the novel catalyst. • The novel catalyst can achieve a desirable recyclability. • Little deactivation was found due to K + ions leaching to the product. - Abstract: In the present study, calcined waste pig bone (CB, a solid waste from animal) derived hydroxyapatite (HAP) was served as the support for K 2 CO 3 to prepare a cost-effective solid base catalyst for biodiesel production. The catalysts were characterized by XRD, FTIR, SEM–EDS, N 2 adsorption–desorption and the Hammett indicator method. The effects of catalyst preparation conditions (such as the loading of K 2 CO 3 on the CB and the calcination temperature), reaction conditions (such as reaction time, methanol/oil molar ratio and catalyst loading) and the catalyst reusability were studied in detail. The experimental results revealed that the highest biodiesel yield of 96.4% was obtained using the 30K/HAP-600 catalyst under the optimum reaction condition (reaction time of 1.5 h, catalyst loading of 8 wt.% and methanol/oil molar ratio of 9:1) due to its highest total basicity. Moreover, after reused for more than 8 cycles, the catalyst can still possess a rather high biodiesel yield (above 90%). A little deactivation was found due to K + ions leaching to the product

  13. Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491

    Energy Technology Data Exchange (ETDEWEB)

    Fehrmann, Henning [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

  14. The mild liquid-phase synthesis of 3-picoline from acrolein diethyl acetal and ammonia over heterogeneous catalysts

    Science.gov (United States)

    Luo, Cai-Wu; Chao, Zi-Sheng; Lei, Bo; Wang, Hong; Zhang, Jun; Wang, Zheng-Hao

    2017-11-01

    The liquid-phase synthesis of 3-picoline from the reaction of acrolein diethyl acetal and ammonia over ion-exchanged resins (D402 and D002) and HZSM-5 (Si/Al = 25) was carried out in a batch reactor. Various influencing parameters, including by the addition of water, ion-exchanged resins, reaction temperature and HZSM-5, were systematically investigated. The results showed that the reaction could be directly conducted, and organic acid wasn’t utilized. The highest yield of 3-picoline reached up to 24% using HZSM-5 as catalyst at 110 °C.

  15. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  16. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  17. Organic and inorganic ion exchangers as catalysts for the heterogeneous alkylation of aromatics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J; Widdecke, H [Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Chemische Technologie

    1979-06-01

    Ion exchangers have advantages over low molecular for use in industrial alkylation reactions. The reactivity and selectivity behaviour of the polymeric catalysts was found to be markedly influenced by the structure of the polymeric matrix as well as the type and number of the functional groups. In this connection many similarities between inorganic ion exchangers (zeolites) and organic ion exchange resins were detected.

  18. Heterogenization of Homogeneous Catalysts: the Effect of the Support

    Energy Technology Data Exchange (ETDEWEB)

    Earl, W.L.; Ott, K.C.; Hall, K.A.; de Rege, F.M.; Morita, D.K.; Tumas, W.; Brown, G.H.; Broene, R.D.

    1999-06-29

    We have studied the influence of placing a soluble, homogeneous catalyst onto a solid support. We determined that such a 'heterogenized' homogeneous catalyst can have improved activity and selectivity for the asymmetric hydrogenation of enamides to amino acid derivatives. The route of heterogenization of RhDuPhos(COD){sup +} cations occurs via electrostatic interactions with anions that are capable of strong hydrogen bonding to silica surfaces. This is a novel approach to supported catalysis. Supported RhDuPhos(COD){sup +} is a recyclable, non-leaching catalyst in non-polar media. This is one of the few heterogenized catalysts that exhibits improved catalytic performance as compared to its homogeneous analog.

  19. A critical analysis of the degree of conversion of resin-based luting cements

    Science.gov (United States)

    NORONHA FILHO, Jaime Dutra; BRANDÃO, Natasha Lamego; POSKUS, Laiza Tatiana; GUIMARÃES, José Guilherme Antunes; da SILVA, Eduardo Moreira

    2010-01-01

    Objective This study analyzed the degree of conversion (DC%) of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II) activated by two modes (chemical and dual), and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. Material and Methods In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm2 for 40 s. In a third group, the cements were lightactivated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR). The data were analyzed by two-way ANOVA and Tukey's HSD test. Results For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (pEmpress 2 disc (pEmpress 2. PMID:21085798

  20. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution.

    Science.gov (United States)

    Ma, Jie; Yang, Mingxuan; Yu, Fei; Chen, Junhong

    2015-04-15

    We report a facile solid method to synthesize efficient carbon-based Fenton-like catalyst (CNTs/FeS) using as-prepared carbon nanotubes (APCNTs), which makes full use of the iron nanoparticles in APCNTs without needless purification. Furthermore, the CNTs/FeS was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric (TG) and other analysis techniques, and then the CNTs/FeS was used as a Fenton-like catalyst for removing ciprofloxacin from aqueous solution. Response Surface Methodology (RSM) was applied to find the effect of the reaction parameter and the optimum operating condition. Results shows the catalytic reaction had better suitability than previous studies in a wide range of pH values (pH 3-8) and the Fenton-like catalyst CNTs/FeS exhibits good catalytic activity for removing of antibiotic, which be attributed to the synergistic effect of adsorption-advanced oxidation and significantly improves efficiency of advanced oxidation. More importantly, the CNTs/FeS catalyst exhibit good regeneration performance and retains a high catalytic capacity (>75%) even after four reaction cycles. The catalytic mechanism were also studied further, the removal mechanism of ciprofloxacin by a CNTs/FeS heterogeneous Fenton-like process primarily involves three removal pathways occurring simultaneously: (a) adsorption removal by CNTs, (b) Fenton-like degradation catalyzed by FeS, (c) catalytic degradation by CNTs catalyst. And these actions also have synergistic effects for ciprofloxacin removal. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    Science.gov (United States)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  2. Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-01

    Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.

  3. HPLC Characterization of Phenol-Formaldehyde Resole Resin Used in Fabrication of Shuttle Booster Nozzles

    Science.gov (United States)

    Young, Philip R.

    1999-01-01

    A reverse phase High Performance Liquid Chromatographic method was developed to rapidly fingerprint a phenol-formaldehyde resole resin similar to Durite(R) SC-1008. This resin is used in the fabrication of carbon-carbon composite materials from which Space Shuttle Solid Rocket Booster nozzles are manufactured. A knowledge of resin chemistry is essential to successful composite processing and performance. The results indicate that a high quality separation of over 35 peaks in 25 minutes were obtained using a 15 cm Phenomenex LUNA C8 bonded reverse phase column, a three-way water-acetonitrile-methanol nonlinear gradient, and LTV detection at 280 nm.

  4. Highly efficient synthetic method onpyroacm resin using the boc SPPS protocol for C-terminal cysteine peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Juvekar, Vinayak; Kim, Kang Tae; Gong, Young Dae [Innovative Drug Library Research Center, Dept. of Chemistry, College of Science, Dongguk University, Seoul (Korea, Republic of)

    2017-01-15

    A very effective process on Pyroacm resin was developed for solid-phase peptide synthesis (SPPS) of C-terminal cysteine and cysteine ester peptides. The process uses cysteine side chain anchoring to the Pyroacm resin and the Boc protocol for SPPS. The Pyroacm resin showed remarkable stability under standard trifluoromethanesulfonic acid (TFMSA) cleavage condition. TFMSA cleavage of protecting groups generates a peptide-linked resin, which can be subjected to peptide modification reactions. Finally, the peptide can be cleaved from the resin using methoxycarbonylsulfenyl chloride. The utility of this protocol was demonstrated by its applications to the synthesis of model peptides, key intermediates in the preparation of natural products riparin 1.2 and a-factor.

  5. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2}/La{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Zhang, Xiao-Dong; Sun, Li; Zhang, Jie; Xu, Hai-Peng [Energy Research Institute of Shandong Academy of Sciences, Jinan 250014 (China)

    2010-01-15

    A new type of solid superacid catalyst with the composition of SO{sub 4}{sup 2-}/ZrO{sub 2}-TiO{sub 2} loaded with lanthanum was prepared by precipitation and impregnation. The catalytic performance for the synthesis of fatty acid methyl ester from fatty acid and methanol was investigated. The influences of preparation conditions on catalyst performance were studied, the optimum results of which showed that amount of La(NO{sub 3}){sub 3} was 0.1 wt.%, the concentration of H{sub 2}SO{sub 4} for impregnation was 0.5 mol l{sup -1} and calcination temperature was 550 C. In addition, the effects of reaction parameters on esterification efficiency were also studied. With the catalyst amount of 5 wt.%, methanol amount of 1 ml/g fatty acid (FA) and reaction duration of 5 h at 60 C, the conversion ratio could reach above 95%. The catalyst recycled without any treatments could exhibit high activity with the conversion efficiency of above 90% after being reused five times. (author)

  6. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials.

    Science.gov (United States)

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin

    2017-06-18

    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  7. Generating Palladium Nanoclusters Inside Very Lipophilic Gel-Type Functional Resins: Preliminary Catalytic Tests in the Hydrogenation of 2-Ethyl-Anthraquinone to 2-Ethylanthrahydroquinone

    Czech Academy of Sciences Publication Activity Database

    Bombi, G.; Lora, S.; Zancato, M.; D'Archivio, A. A.; Jeřábek, Karel; Corain, B.

    2003-01-01

    Roč. 194, 1-2 (2003), s. 273-281 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : palladium nanoclusters * gel-type resins * catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.264, year: 2003

  8. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  9. Condensate-polisher resin-leakage quantification and resin-transport studies

    International Nuclear Information System (INIS)

    Stauffer, C.C.; Doss, P.L.

    1983-04-01

    The objectives of this program were to: (1) determine the extent of resin leakage from current generation condensate polisher systems, both deep bed and powdered resin design, during cut-in, steady-state and flow transient operation, (2) analyze moisture separator drains and other secondary system samples for resin fragments and (3) document the level of organics in the secondary system. Resin leakage samples were obtained from nine-power stations that have either recirculating steam generators or once through steam generators. Secondary system samples were obtained from steam generator feedwater, recirculating steam generator blowdown and moisture separator drains. Analysis included ultraviolet light examination, SEM/EDX, resin quantification and infrared analysis. Data obtained from the various plants were compared and factors affecting resin leakage were summarized

  10. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    Science.gov (United States)

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates

    Directory of Open Access Journals (Sweden)

    Ina Schoon

    2017-12-01

    Full Text Available Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application.

  12. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877 ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.922, year: 2015

  13. Non-hydrolytic sol-gel synthesis of epoxysilane-based inorganic-organic hybrid resins

    International Nuclear Information System (INIS)

    Jana, Sunirmal; Lim, Mi Ae; Baek, In Chan; Kim, Chang Hae; Seok, Sang Il

    2008-01-01

    A silica-based inorganic-organic hybrid resins (IOHR) were synthesized by non-hydrolytic sol-gel process from 3-glycidoxypropyltrimethoxysilane (GLYMO) and diphenylsilanediol (DPSD) at a fixed amount of (20 mol%) phenyltrimethoxysilane using barium hydroxide as a catalyst. The confirmation of condensation reaction in the IOHR was done by liquid state 29 Si NMR (Nuclear Magnetic Resonance) spectroscopy, measurement of viscosity as well as weight average molecular weight (W m ) of the IOHR. The W m of the IOHR was varied from 1091 to 2151, depending upon the DPSD content. Fourier transform infrared (FTIR) spectroscopic measurements were performed to investigate the details of vibrational absorption bands in the IOHR. It was seen that up to 50 mol% of DPSD there were no absorption peaks in the region of 3000-3600 cm -1 responsible for O-H groups and it reappeared at 60 mol% of DPSD due to some unreacted OH groups present in the resin. The IOHR at all the compositions was oily transparent liquid, miscible with various organic solvents like toluene, cyclohexanone, chloroform, tehrahydrofuran (THF), etc., and also commercial epoxy resins but immiscible with water. The color of the IOHR was pale yellow, which lightened with increasing DPSD content. The IOHR having 40-50 mol% of DPSD were storable. The refractive index at 632.8 nm of the resin films varied from 1.556 to 1.588, depending upon the resin composition. Physico-chemical properties such as the thermal stability, visible transparency, etc. after curing were investigated as a function of the chemical composition

  14. Utilization of m-Phenylenediamine-Furfural Resin for Removal of Cu(II from Aqueous Solution-A Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Tariq S. Najim

    2010-01-01

    Full Text Available m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II from aqueous solution. The pH for the optimum removal of Cu(II was 6. The negative values of Gibbs free energy at low concentration of Cu(II (20, 30 ppm indicative of the spontaneous adsorption process, while, at higher Cu(II concentration (40,50 ppm the positive and weak values of ∆G° indicate that the process is feasible but non spontaneous. The values of ∆H° were positive indicating that the sorption process is endothermic. On the other hand, the values of activation energy (Ea were inconsistent with the values of ∆H° both are positive and lie in the range of physisorption. The entropy ∆S° of the process was positive indicative of the randomness of the Cu(II ions at the solid / liquid interface. The values of sticking probability S* were less than one which indicate a preferable adsorption process and the mechanism is physisorption.

  15. Ring opening of a resin-bound chiral aziridine with phenol nucleophiles

    DEFF Research Database (Denmark)

    Ottesen, Lars Korsgaard; Jaroszewski, Jerzy W; Franzyk, Henrik

    2010-01-01

    An efficient and versatile solid-phase route for the preparation of aryl-alkyl ethers is described. Regioselective ring opening of a resin-bound chiral aziridine with phenolic nucleophiles constitutes the key feature of the present protocol that allows incorporation of fluorescent moieties...

  16. Thermoanalytical Study and Kinetics of New 8-Hydroxyquinoline 5-sulphonic Acid-Oxamide-Formaldehyde Terpolymer Resins

    Directory of Open Access Journals (Sweden)

    Rajesh N. Singru

    2009-01-01

    Full Text Available The terpolymer resins (8-HQ5-SAOF have been synthesized by the condensation of 8-hydroxyquinoline 5-sulphonic acid (8-HQ5-SA and oxamide (O with formaldehyde (F in the presence of acid catalyst and using varied molar proportion of the reacting monomers. The synthesized terpolymer resins have been characterized by different physico-chemical techniques. Thermogravimetric analysis of all terpolymer resins in present study have been carried out by non-isothermal thermogravimetric analysis technique in which sample is subjected to condition of continuous increase in temperature at linear rate. Thermal study of the resins was carried out to determine their mode of decomposition and relative thermal stabilities. Thermal decomposition curves were studied carefully with minute details. The Freeman-Carroll and Sharp-Wentworth methods have been used in the present investigation to calculate thermal activation energy and different kinetic parameter of the terpolymer resins. Thermal activation energy (Ea calculated with above two mentioned methods are in close agreement. The advantage of Freeman-Carroll method is to calculate both the order of reaction (n and energy of activation in one single stage by keeping heating rate constant. By using data of thermogravimetric analysis, various thermodynamic parameters like frequency factor (Z, entropy change (Δ S, free energy change (Δ F and apparent entropy (S* have been determined using Freeman-Carroll method.

  17. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Liu

    2010-10-01

    Full Text Available Sulfonated (SO3H-bearing activated carbon (AC-SO3H was synthesized by an aryl diazonium salt reduction process. The obtained material had a SO3H density of 0.64 mmol·g-1 and a specific surface area of 602 m2·g-1. The catalytic properties of AC-SO3H were compared with that of two commercial solid acid catalysts, Nafion NR50 and Amberlyst-15. In a 10-h esterification reaction of acetic acid with ethanol, the acid conversion with AC-SO3H (78% was lower than that of Amberlyst-15 (86%, which could be attributed to the fact that the SO3H density of the sulfonated carbon was lower than that of Amberlyst-15 (4.60 mmol·g-1. However, AC-SO3H exhibited comparable and even much higher catalytic activities than the commercial catalysts in the esterification of aliphatic acids with longer carbon chains such as hexanoic acid and decanoic acid, which may be due to the large specific surface area and mesoporous structures of the activated carbon. The disadvantage of AC-SO3H is the leaching of SO3H group during the reactions.

  18. Pd-catalysts for DFAFC prepared by magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Bieloshapka, Igor; Jiříček, Petr; Vorokhta, M.; Tomšík, Elena; Rednyk, A.; Perekrestov, R.; Jurek, Karel; Ukraintsev, Egor; Hruška, Karel; Romanyuk, Olexandr; Lesiak, B.

    2017-01-01

    Roč. 419, Oct (2017), s. 838-846 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015088 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : Pd catalyst * formic acid fuel cell * magnetron sputtering * DFAFC * surface morphology Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (UMCH-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Condensed matter physics (including formerly solid state physics, supercond.) (UMCH-V) Impact factor: 3.387, year: 2016

  19. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  20. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  1. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  2. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2017-06-01

    Full Text Available In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF resin—a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC and thermal gravimetric analysis (TGA. Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM. The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  3. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    Science.gov (United States)

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  4. Effect of resin composition to the electrical and mechanical properties of high voltage insulator material

    International Nuclear Information System (INIS)

    Totok Dermawan; Elin Nuraini; Suyamto

    2012-01-01

    A solid insulator manufacture of resins for high voltage with a variation of resin and hardener composition has been made. The purpose of research to know electrical and mechanical properties of high voltage insulator material of resin. To determine its electric properties, the material is tested its breakdown voltage and the flashover voltage that occurred on the surface. While to determine the mechanical properties were tested by measuring its strength with a tensile test. From testing with variety of mixed composition it is known that for composition between hardener and resin of 1 : 800 has most advantageous properties because it has good strength with a tensile strength of 19.86 MPa and enough high dielectric strength of 43.2 kV / mm). (author)

  5. Characterization of solid UV curable 3D printer resins for biological applications

    KAUST Repository

    Sivashankar, Shilpa; Agambayev, Sumeyra; Buttner, Ulrich; Salama, Khaled N.

    2016-01-01

    to agglutinate. Six different types of 3D printer resins were compared to test the biocompatibility. The study showed that only few among them could be used for fabrication of micro channels and that had least effect on biological molecules that could be used

  6. Carbon dioxide capture using resin-wafer electrodeionization

    Science.gov (United States)

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  7. K Basin sludge/resin bead separation test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1998-01-01

    The K Basin sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt and minor amounts of other organic material. The sludge will be collected and treated for storage and eventual disposal. This process will remove the large solid materials by a 1/4 inch screen. The screened material will be subjected to nitric acid in a chemical treatment process. The organic ion exchange resin beads produce undesirable chemical reactions with the nitric acid. The resin beads must be removed from the bulk material and treated by another process. An effective bead separation method must extract 95% of the resin bead mass without entraining more than 5% of the other sludge component mass. The test plan I-INF-2729, ''Organic Ion Exchange Resin Separation Methods Evaluation,'' proposed the evaluation of air lift, hydro cyclone, agitated slurry and elutriation resin bead separation methods. This follows the testing strategy outlined in section 4.1 of BNF-2574, ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process''. Engineering study BNF-3128, ''Separation of Organic Ion Exchange Resins from Sludge,'' Rev. 0, focused the evaluation tests on a method that removed the fine sludge particles by a sieve and then extracted the beads by means of a elutriation column. Ninety-nine percent of the resin beads are larger than 125 microns and 98.5 percent are 300 microns and larger. Particles smaller than 125 microns make up the largest portion of sludge in the K Basins. Eliminating a large part of the sludge's non-bead component will reduce the quantity that is lifted with the resin beads in the elutriation column. Resin bead particle size distribution measurements are given in Appendix A The Engineering Testing Laboratory conducted measurements of a elutriation column's ability to extract resin beads from a sieved, non-radioactive sludge

  8. Leaching of iodine from composites based on epoxy resin and lead iodide

    International Nuclear Information System (INIS)

    Kalinin, N.N.; Elizarova, A.N.

    1988-01-01

    The scope for using solid composites obtained by incorporating dry powdery lead iodide and its aqueous suspension into epoxy resin for prolonged immobilization of iodine-129 under monitorable storage conditions has been assessed by a study of leaching of iodine

  9. Copper (0) nanoparticles onto silica: A stable and facile catalyst for ...

    Indian Academy of Sciences (India)

    Abstract. Solid supported copper (0) nanoparticles were prepared by physical adsorption of copper (0)nanoparticles (synthesized through bottom-up approach) on the solid supports such as silica, HAP, cellulose andbasic alumina. Studies comparing these supported catalysts were done with the synthesis of ...

  10. Development of volume-reduction system for ion exchange resin using inductively coupled plasma

    International Nuclear Information System (INIS)

    Fujisawa, Morio; Katagiri, Genichi

    2002-01-01

    The spent ion exchange resin generated as radioactive waste in water purifying system at nuclear power stations or related facilities of nuclear power has been stored in the site, and its volume has been increasing year by year. We had developed a full-scale system of IC plasma volume-reduction system for the spent resin, and have performed basic performance test using some samples imitating the spent resin. As the results, the imitation of the resin can be reduced in volume by more than 90% so that the processing performance in actual scale was proved to be effective. In addition, it was clarified that the residuum after volume-reduction process is easy to mix with cement, and solidity containing 30wt% residuum provides high strength of 68 MPa. Therefore, we evaluate the application of this process to stabilization of the disposal to be very effective. (author)

  11. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone.

    Science.gov (United States)

    Xu, Zhiping; Li, Wenzhi; Du, Zhijie; Wu, Hao; Jameel, Hasan; Chang, Hou-Min; Ma, Longlong

    2015-12-01

    A novel solid acid catalyst was prepared by the copolymerization of p-toluenesulfonic acid and paraformaldehyde and then characterized by FT-IR, TG/DTG, HRTEM and N2-BET. Furfural was successfully produced by the dehydration of xylose and xylan using the novel catalyst in γ-valerolactone. This investigation focused on effects of various reaction conditions including solvent, acid catalyst, reaction temperature, residence time, water concentration, xylose loading and catalyst dosage on the dehydration of xylose to furfural. It was found that the solid catalyst displayed extremely high activity for furfural production. 80.4% furfural yield with 98.8% xylose conversion was achieved at 170°C for 10 min. The catalyst could be recycled at least five times without significant loss of activity. Furthermore, 83.5% furfural yield and 19.5% HMF yield were obtained from raw corn stalk under more severe conditions (190°C for 100 min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2018-06-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  13. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  14. An investigation of problematic solids in oil sands processing : separation and characterization of organic matter strongly bound to oil sands solids

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, T.; Woods, J.R.; Kung, J.; Fu, D.; Kingston, D.; Kotlyar, L.S. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology; Sparks, B.D. [V. Bede Technical Associates, Ottawa, ON (Canada)

    2009-07-01

    Some of the solid fractions in Athabasca oilsands are associated with strongly bound organic matter that is insoluble in toluene, a solvent commonly used to extract bitumen. The presence of toluene insoluble organic matter (TIOM) increases oil wettability of solids which may adversely affect the release of bitumen from the oilsands. Some of the solid material from the coking operation may be carried over to downstream operations where it can cause fouling. This study used supercritical fluid extraction with methanol to remove TIOM from oilsands after extraction of bitumen by toluene. The methanol extract (ME) is soluble in toluene and was analyzed. Results were compared with corresponding bitumen fractions prepared using a modified HPLC SARA separation technique. Number average molecular weights for the ME were similar to those for resins separated from bitumen. The study also showed that the number of alkyl substituents on aromatic ring systems and the lengths of paraffinic straight chains for resins and ME samples were similar, with only minor differences in terms of H/C atomic ratios and aromaticities. The ME was more polar than the resin and asphaltene fractions, which may explain the selective adsorption of this fraction. tabs., figs.

  15. Refining of fossil resin flotation concentrate from western coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.F.; Miller, J.D.

    1995-02-16

    During the past several years, significant research efforts have been made to develop process technology for the selective flotation of fossil resin from western coals. As a result of these efforts, several new flotation technologies have been developed. Operation of a proof-of-concept continuous flotation circuit showed the selective flotation process to be sufficiently profitable to justify the development of a fossil resin industry. However, little attention has been given to the refining of the fossil resin flotation concentrate although solvent refining is a critical step for the fossil resin to become a marketable product. In view of this situation, DOE funded this two-year project to evaluate the following aspects of the fossil resin refining technology: 1) Characterization of the fossil resin flotation concentrate and its refined products; 2) Kinetics of fossil resin extraction; 3) Effects of operating variables on solvent extraction; 4) Extraction solvents; 5) Proof-of-concept continuous refining tests; and 6) Technical and economic analysis. The results from this research effort have led to the following conclusions: Hexane- or heptane-refined fossil resin has a light-yellow color, a melting point of 140 - 142{degrees}C, a density of 1.034 gram/cm, and good solubility in nonpolar solvents. Among the four solvents evaluated (hexane, heptane, toluene and ethyl acetate), hexane is the most appropriate solvent based on overall technical and economic considerations. Batch extraction tests and kinetic studies suggest that the main interaction between the resin and the solvent is expected to be the forces associated with solvation phenomena. Temperature has the most significant effect on extraction rate. With hexane as the solvent, a recovery of 90% cam be achieved at 50{degrees}C and 10% solids concentration with moderate agitation for 1 hour.

  16. Determination of concentration distribution and velocity of a catalyst in a model of a fluidized bed reactor using nuclear techniques

    International Nuclear Information System (INIS)

    Santos, V.A. dos.

    1981-09-01

    A simplified model of a cracking unit was construct. The gaseous phase consisted of air, the solid phase (zeolite catalyst cracking) and both the phases circulate at the ambiente temperature in the steady state with 500 g of catalyst and air flow of 1600 1/h. Measurements for the circulation time of the solid phase (catalyst), concentration and radial distribution of catalyst have been carried out. The reduced experimental model of the cracking reactor (FCC) was used and radioctive tracer and attenuation of γ-radiation techniques were employed. (E.G.) [pt

  17. Approach to the surface characteristics of the H+ and H+-La3+ forms of cation-exchange resins by measurement of the heat of immersion

    International Nuclear Information System (INIS)

    Suzuki, T.; Uematsu, T.

    1985-01-01

    Surface characteristics of H + and its multivalent cation-exchanged resins, which have been used as catalysts, were probed by measurement of the heats of immersion in 1-nitropropane, n-hexane, and water. It was found that the electrostatic field strengths (F) calculated from the heats of immersion in 1-nitropropane and n-hexane increased with increasing ratios of the exchanged multivalent cation (La 3+ ) in the univalent form (H + ) cation-exchange resin. This tendency was also observed in the differences in F between the La 3+ exchanged resins and H + form of the resin by using the calorimetric data obtained from the heats of immersion in water. These results suggest that the exchanged La 3 μ ion does not homogeneously interact with three univalent anionic sites (SO 3 - ) of the cation-exchange resin, but interacts with only two SO 3 - ions, that is, the La 3+ ion is localized on the surface of the resin. The difference in F obtained from the heats of immersion into water was found to be useful as a simple and rapid criterion of the surface characteristics of the cation-exchange resins. 18 references, 4 figures, 1 table

  18. Effects of blood contamination on resin-resin bond strength.

    Science.gov (United States)

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (pcontamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  19. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst

    Science.gov (United States)

    Hartono, R.; Wijanarko, A.; Hermansyah, H.

    2018-04-01

    Production of biodiesel using homogen catalyst: alkaline catalysts, acid catalysts, biocatalysts, and supercritical methanol are very inefficient, because these catalysts have a very high cost production of biodiesel and non-ecofriendly. The heterogeneous catalyst is then used to avoid adverse reaction of biodiesel production. The heterogeneous catalysts used is ion exchanger using natural zeolit catalists bayah banten (ZABBrht) and macroporous lewatit that can be used to produce biodiesel in the solid phase so that the separation is easier and can be used repeatedly. The results of biodiesel reach its optimum in engineering ion exchange catalyst natural zeolit bayah and macroporous lewatit which has been impregnated and calcinated at temperature 60 °C at reaction time 2 hours, are 94.8% and 95.24%, using 100 gr.KOH/100 mL Aquadest.

  20. Summary of pilot-scale activities with resorcinol ion exchange resin

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Sargent, T.N.; Andrews, M.K.; Bibler, J.P.; Bibler, N.E.; Jantzen, C.M.

    1995-01-01

    The Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) is currently investigating vitrification technology for treatment of low level mixed wastes (LLMW). They have chartered the Savannah River Technology Center (SRTC) to study vitrification of the wastes through an Office of Technology Development (OTD) Technical Task Plan (TTP). SRTC's efforts have included crucible-scale studies and pilot scale testing on simulated LLMW sludges, resins, soils, and other solid wastes. Results from the crucible-scale studies have been used as the basis for the pilot-scale demonstrations. As part of the fiscal year (FY) 1995 activities, SRTC performed crucible-scale studies with organic resins. This waste stream was selected because of the large number of DOE sites, as well as commercial industries, that use resins for treatment of liquid wastes. Pilot-scale studies were to be completed in FY 1995, but could not be due to a reduction in funding. Instead, a compilation of pilot-scale tests with organic resins performed under the guidance of SRTC was provided in this report. The studies which will be discussed used a resorcinol- formaldehyde resin loaded with non-radioactive cesium, which was fed with simulated wastewater treatment sludge feed. The first study was performed at the SRTC in the mini-melter, 1/100th scale of the Defense Waste Processing Facility (DWPF) melter, and also involved limited crucible-scale studies to determine the resin loading obtainable. The other study was performed at the DOE/Industrial Center for Vitrification Research (Center) and involved both crucible and pilot-scale testing in the Stir-Melter stirred-melter. Both studies were successful in vitrifying the resin in simulated radioactive sludge and glass additive feeds

  1. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  2. Homogenization-assisted cavitation hybrid rotation extraction and macroporous resin enrichment of dihydroquercetin from Larix gmelinii.

    Science.gov (United States)

    Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin

    2017-12-01

    Cavitation hybrid rotation, which was and is still looked upon as an unavoidable nuisance in the flow systems, for extraction processing intensification of active chemical compounds from natural products. In this study, a homogenization-assisted cavitation hybrid rotation extraction method was applied to extract dihydroquercetin (DHQ) from larch (Larix gmelinii) wood root. The extraction parameters were optimized in single factor experiments with the DHQ extraction yields as the response values. The optimum conditions were as follows: number of extractions, three; ethanol volume fraction for the extraction, 60%; liquid-solid ratio for homogenization, 10mL/g; homogenization time, 8min; liquid-solid ratio for cavitation extraction, 9mL/g, and cavitation extraction time, 35min. Under these conditions, the DHQ content in extract was 4.50±0.02mg/g, and the extraction efficiency was higher than those of traditional techniques. Cavitation can be effectively used to improve the extraction rate by increasing the mass transfer rates and possible rupture of cell wall due to formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. After the extraction process, macroporous resin column chromatography was used to concentrate and purify the DHQ. Three resins were selected from fifteen macroporous resins for further investigation of their performance. Among these resins, AB-8 resin exhibited relatively better adsorption capacities and desorption ratios for DHQ. The ethanol volume fraction of the solutions for sample loading and desorption, and flow rates for loading and desorption were optimized for the macroporous resin column chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  4. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  5. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  6. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo, E-mail: mcarmov@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Grupo de Estudos em Cinetica e Catalise; Ballarini, Adriana; Maina, Silvia [Instituto de Investigaciones en Catalisis Y Petroquimica Ing. Jose Miguel Parera (INCAPE), Santa Fe (Argentina)

    2017-01-15

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  7. Evaluation of nickel and copper catalysts in biogas reforming for hydrogen production in SOFC

    International Nuclear Information System (INIS)

    Silva, Leonardo Alves; Martins, Andre Rosa; Rangel, Maria do Carmo

    2017-01-01

    The solid oxide fuel cells (SOFC) enable the efficient generation of clean energy, fitting the current requirements of the growing demand for electricity and for the environment preservation. When powered with biogas (from digesters of municipal wastes), the SOFCs also contribute to reduce the environmental impact of these wastes. The most suitable route to produce hydrogen inside SOFC from biogas is through dry reforming but the catalyst is easily deactivated by coke, because of the high amounts of carbon in the stream. A promising way to overcome this drawback is by adding a second metal to nickel-based catalysts. Aiming to obtain active, selective and stable catalysts for biogas dry reforming, solids based on nickel (15%) and copper (5%) supported on aluminum and magnesium oxide were studied in this work. Samples were prepared by impregnating the support with nickel and copper nitrate, followed by calcination at 500, 600 and 800 deg C. It was noted that all solids were made of nickel oxide, nickel aluminate and magnesium aluminate but no copper compound was found. The specific surface areas did not changed with calcination temperature but the nickel oxide average particles size increased. The solids reducibility decreased with increasing temperature. All catalysts were active in methane dry reforming, leading to similar conversions but different selectivities to hydrogen and different activities in water gas shift reaction (WGSR). This behavior was assigned to different interactions between nickel and copper, at different calcination temperatures. All catalysts were active in WGSR, decreasing the hydrogen to carbon monoxide molar ratio and producing water. The catalyst calcined at 500 deg C was the most promising one, leading to the highest hydrogen yield, besides the advantage of being produced at the lowest calcination temperature, requiring less energy in its preparation. (author)

  8. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Ghompson; Kyle C. Burch

    2005-01-01

    Off-line, in-situ alkylation activity recovery from a completely deactivated solid acid catalyst was examined in a continuous-flow reaction system employing supercritical isobutane. A USY zeolite catalyst was initially deactivated during the liquid phase alkylation of butene with isobutane in a single-pass reactor and then varying amounts of alkylation activity were recovered by passing supercritical isobutane over the catalyst bed at different reactivation conditions. Temperature, pressure and regeneration time were found to play important roles in the supercritical isobutane regeneration process when applied to a completely deactivated USY zeolite alkylation catalyst. Manipulation of the variables that influence solvent strength, diffusivity, surface desorption, hydride transfer rates, and coke aging, strongly influence regeneration effectiveness.

  9. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    exposure temperatures slowdown the deactivation. K2SO4 causes a lower rate of deactivation compared to KCl. This may be related to a faster transfer of potassium from the solid KCl matrix to the catalyst, however, it cannot be ruled out toalso be caused by a significantly larger particle size of the K2SO4...

  10. Substitution determination of Fmoc-substituted resins at different wavelengths.

    Science.gov (United States)

    Eissler, Stefan; Kley, Markus; Bächle, Dirk; Loidl, Günther; Meier, Thomas; Samson, Daniel

    2017-10-01

    In solid-phase peptide synthesis, the nominal batch size is calculated using the starting resin substitution and the mass of the starting resin. The starting resin substitution constitutes the basis for the calculation of a whole set of important process parameters, such as the number of amino acid derivative equivalents. For Fmoc-substituted resins, substitution determination is often performed by suspending the Fmoc-protected starting resin in 20% (v/v) piperidine in DMF to generate the dibenzofulvene-piperidine adduct that is quantified by ultraviolet-visible spectroscopy. The spectrometric measurement is performed at the maximum absorption wavelength of the dibenzofulvene-piperidine adduct, that is, at 301.0 nm. The recorded absorption value, the resin weight and the volume are entered into an equation derived from Lambert-Beer's law, together with the substance-specific molar absorption coefficient at 301.0 nm, in order to calculate the nominal substitution. To our knowledge, molar absorption coefficients between 7100 l mol -1  cm -1 and 8100 l mol -1  cm -1 have been reported for the dibenzofulvene-piperidine adduct at 301.0 nm. Depending on the applied value, the nominal batch size may differ up to 14%. In this publication, a determination of the molar absorption coefficients at 301.0 and 289.8 nm is reported. Furthermore, proof is given that by measuring the absorption at 289.8 nm the impact of wavelength accuracy is reduced. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.

  11. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  12. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  13. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  14. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  15. Hydrogen Production from Water by Photolysis, Sonolysis and Sonophotolysis with Solid Solutions of Rare Earth, Gallium and Indium Oxides as Heterogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Marta Penconi

    2015-07-01

    Full Text Available In this work, we present the hydrogen production by photolysis, sonolysis and sonophotolysis of water in the presence of newly synthesized solid solutions of rare earth, gallium and indium oxides playing as catalysts. From the experiments of photolysis, we found that the best photocatalyst is the solid solution Y0.8Ga0.2InO3 doped by sulphur atoms. In experiments of sonolysis, we optimized the rate of hydrogen production by changing the amount of water, adding ethanol and tuning the power of our piezoelectric transducer. Finally, we performed sonolysis and sonophotolysis experiments in the presence of S:Y0.8Ga0.2InO3 finding a promising synergistic effect of UV-visible electromagnetic waves and 38 kHz ultrasound waves in producing H2.

  16. Microemulsion and Sol-Gel Synthesized ZrO₂-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural.

    Science.gov (United States)

    Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J

    2017-12-18

    Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  17. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  18. Dilute chemical decontamination resins and the mixed waste issue

    International Nuclear Information System (INIS)

    Denault, R.P.; Hallman, J.T.

    1988-01-01

    The decontamination of reactor primary systems, sub-systems and components is an important method used to reduce the occupational radiation exposure of nuclear plant personnel. The waste produced by the application of this technology is mainly solid in the form of ion exchange resins. As a result of a recent agreement between the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC), all radioactive waste must meet EPA burial criteria. The chemicals used in a decontamination and certain metals dissolved during the process, primarily chromium, could render the waste hazardous as well as radioactive or more commonly called a mixed waste. This paper defines mixed waste as described in the EPA directive 9432.00-2, and examine the criteria by which waste is categorized as hazardous. The decontamination waste resin generated by two processes, the CAN-DEREM and the LOMI process, is described in detail. Waste data obtained from decontaminations performed by LN Technologies Corporation including chemical, metal and radionuclide loadings on resins from both PWR and BWR applications are presented

  19. Solid State Self-Healing System: Effects of Using Immiscible Healing Agents

    International Nuclear Information System (INIS)

    Noor Nabilah Muhamad; Mohd Suzeren Mohd Jamil

    2015-01-01

    The solid state self-healing system was obtained by employs a thermosetting epoxy resin, into which a thermoplastic is dissolved. The aim of this study is to identify the effect of using immiscible healing agents, which are polyvinyl chloride and polyvinyl alcohol, on solid state self-healing system. Healing was achieved by heating the fractured resins to a specific temperature; above their glass transition temperature (Tg) which obtained from dynamic mechanical analysis (DMA) in order for thermal expansion to occur. The thermal properties and bonding formed in the epoxy resins were characterized by means of Fourier Transform Infrared Spectroscopy (FTIR). Izod impact test was performed in preliminary work. Further work then has been done using compact tension test to demonstrate details self-healing capability of the different specimens. Under compact tension test, it was found that healable resin with PVC has highest healing efficiency followed PVA with 7.4 % and 3 % of average percentage healing efficiencies respectively. These results are due to the different solubility parameters of the thermoset/ network and thermoplastic polymer which led to the phase separation. Morphological studies using microscope optic prove the fracture-healing process and morphological properties of the resins. (author)

  20. Fe-Ti-O based catalyst for large-chiral-angle single-walled carbon nanotube growth

    DEFF Research Database (Denmark)

    He, Maoshuai; Zhang, Lili; Jiang, Hua

    2016-01-01

    Catalyst selection is very crucial for controlled growth of single-walled carbon nanotubes (SWNTs). Here we introduce a well-designed Fe-Ti-O solid solution for SWNT growth with a high preference to large chiral angles. The Fe-Ti-O catalyst was prepared by combining Ti layer deposition onto premade...... Fe nanoparticles with subsequent high-temperature air calcination, which favours the formation of a homogeneous Fe-Ti-O solid solution. Using CO as the carbon feedstock, chemical vapour deposition growth of SWNTs at 800 °C was demonstrated on the Fe-Ti-O catalyst. Nanobeam electron diffraction...... characterization on a number of individual SWNTs revealed that more than 94% of SWNTs have chiral angles larger than 15°. In situ environmental transmission electron microscopy study was carried out to reveal the catalyst dynamics upon reduction. Our results identify that the phase segregation through reducing Fe...

  1. Polymerization of epoxy resins studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Radiation Science Center, High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hayashi, T. [Fine Chemical Research Lab., Sumitomo Chemical, Tsukuba (Japan); Ito, Y. [Research Center for Nuclear Science and Technology, Univ. of Tokyo (Japan)

    2001-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been applied to study polymerization of epoxy resins of cresole novolac with a hardener of phenol novolac. PALS uses positrons to probe the microstructure of a nanometer (nm) size. Using PALS polymerization can be followed through three states: powder (monomer), liquid and solid. PALS is a unique method for the detection of intermolecular spaces, hence polymerization was followed from the point of view of free spaces (inter-molecular spaces) between polymer networks. The glass transition temperature (T{sub g}) was determined from the temperature dependence of the positronium (Ps) lifetime. Although Tg determined by PALS is usually lower than that determined by a mechanical analysis (TMA), it was observed that T{sub g} approached the value determined by TMA after long curing. Ps can form bubbles in a liquid, and the surface tension of a mixture of the resin and the hardener was calculated from a simple empirical formula using the Ps lifetime; the resulting value is similar to that of the bisphenol-A epoxy resin. Gelation was observed as an increase in the intensity of Ps and a sharp decrease in the lifetime. (orig.)

  2. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  3. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Marinković Aleksandar D.

    2013-01-01

    Full Text Available Composites based on unsaturated polyester (UPe resins and fumed silica AEROSIL® RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate with dipropylene glycol (UPe1 resin and triethylene glycol (UPe2 resin in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  4. POLYETHYLENEIMINE (PEI ON SILICA AS CATALYST IN KNOEVENAGEL AND MICHAEL REACTIONS

    Directory of Open Access Journals (Sweden)

    FATIHA ZAOUI

    2017-03-01

    Full Text Available After the synthesis of polyethylenimine supported on silica, it has been used as a new and efficient catalyst in Knoevenagel and Michael condensations. The presence of the polyethylenimine in the catalytic system together with silica displays an acido-basic character allows a better catalytic activity in the condensations. Carried out under microwave irradiation, without organic solvent and during short time, the syntheses are respectful towards green chemistry. The solid catalyst can be easily reused. This catalyst has the acido-basic character at the same time.

  5. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  6. New photo-curable resin compositions for stereolithography with a new photo-fabricator: SCS-300P

    International Nuclear Information System (INIS)

    Yamamura Tetsuya; Tanabe Takayoshi; Ukachi Takashi

    1999-01-01

    Stereolithography is the technology which can create a three-dimensional free-forin in short time according to the slice data of an object. A thin layer of the solidified resin is formed at the surface of the liquid UV curable resin by irradiation of UV laser which is driven by the slice data of the object. Ever since the invention of the stereolithography, there has been a considerable interest to realize the CAD date into a practical three dimensional model. Conventional stereolithographic machines equip gas lasers which are operated at high voltage and requires water cooling system. These disadvantages prevent a wide spread of application of stereolithographic technology. A new sterolithographic machine, SCS-300P has been developed and introduced by SONY Corporation last year. This brand new machine is featuring a high power solid-state UV laser, low machine price, small in size and equips easy-resin-exchange system for maintenance. The biggest difference of SCS-300P from the conventional machines is the laser system. SCS-300P equips pulse laser with the wave length of 355 run which is a third harmonic of YAG laser. The energy of each pulse with a duration time of 20 nsec is more than five thousand times higher than that of continuous emission such as Argon ion laser employed in the conventional machines. With using conventional LTV curable resins, high photo-energy tends to give a gelation even in a dark region or give an undesirable excess-cure underneath of the cured layer. It is thus needed to develop the resin suitable for high power pulse lasers. In this paper, we report a newly developed UV curable resin compositions suitable for SCS-300P which equips high power solid-state pulse laser

  7. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  8. Advanced technologies in biodiesel new advances in designed and optimized catalysts

    CERN Document Server

    Islam, Aminul

    2015-01-01

    The inadequacy of fossil fuel is the main driving force of the future sustainable energy around the world. Since heterogeneous catalysis is used in chemical industry for biodiesel production, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. Enormous attention has been placed in recent years on the selection of heterogeneous catalyst in biodiesel industry, where the catalyst could be facilitated highly selective toward desired products, easily handled, separated from the reaction medium, and subsequently reused. This book stresses an overview on the contributions of tailored solid acid and base catalysts to catalytic biodiesel synthesis, and the in uences of heterogeneous catalyst properties on biodiesel yield in order to develop a better understanding of catalyst design for the green production process as well as practical applications in the biodiesel industry.

  9. Microemulsion and Sol-Gel Synthesized ZrO2-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural

    Directory of Open Access Journals (Sweden)

    Almudena Parejas

    2017-12-01

    Full Text Available Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively. Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO2 (especially Zr-SG are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  10. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Lahouaria Medjdoub

    2016-08-01

    Full Text Available Nucleophilic substitution on hexachlorocyclotriphosphazene (HCCTP with allylamine in order to give hexa(allylaminocyclotriphosphazene (HACTP  is performed for the first time under mild conditions by using diethylether as solvent to replace benzene which is very toxic. The reaction time is reduced to half and also performed at room temperature but especially in the presence of an eco-catalyst called Maghnite-H+. This catalyst has a significant role in the industrial scale. In fact, the use of Maghnite is preferred for its many advantages: a very low purchase price compared to other catalysts, the easy removal of the reaction mixture. Then, Maghnite-H+ is became an excellent catalyst for many chemical reactions. The structure of HACTP synthesized in the presence of Maghnite-H+ to 5% by weight is confirmed by 1H-NMR, 13C-NMR, 31P-NMR (Nuclear magnetic resonance and FTIR (Fourier Transform Infrared spectroscopy. MALDI-TOF (Matrix-Assisted Laser Desorption/Ionisation-time-of-flight mass spectrometry is used to establish the molecular weight of HACTP which is 471 g/mol. DSC (Differential Scanning Calorimetery and TGA (Thermogravimetric Analysis show that HACTP is a crystalline product with a melting point of 88 °C. It is reactive after melting but is degraded from 230 °C. Copyright © 2016 BCREC GROUP. All rights reserved Received: 28th September 2015; Revised: 5th December 2015; Accepted: 4th January 2016 How to Cite: Medjdoub, L., Mohammed, B. (2016. New Method for Nucleophilic Substitution on Hexachlorocyclotriphosphazene by Allylamine Using an Algerian Proton Exchanged Montmorillonite Clay (Maghnite-H+ as a Green Solid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 151-160 (doi:10.9767/bcrec.11.2.541.151-160 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.541.151-160

  11. Synthesis of Alkylpoly glucoside from Dextrose-Decanol in the Presence of Silicotungstic Acid Sol-Gel Catalyst

    International Nuclear Information System (INIS)

    Izazi Azzahidah Amin; Mohd Ambar Yarmo; Nik Idris Nik Yusoff

    2013-01-01

    The purpose of this study is to synthesis alkylpoly glucoside via condensation of decanol with dextrose in the presence of heterogenous catalyst. In this study, silicotungstic acid sol-gel (STSG) prepared using sol-gel was used as solid acid catalyst. The catalyst was characterized using BET surface area measurement, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) surface analysis. The final product was easy to be separated from catalyst without the need of a further neutralization. Silicotungstic acid sol-gel has been found efficient to be solid catalyst for synthesis alkylpoly glucosides. Condensation reaction was carried out 8 hours at 110-120 degree Celsius under vacuum condition at 10 mmHg. The determination of decyl glucoside has been achieved by LC/ ESI-MS/ MS (ToF) giving a mass peak at m/z = 343.2 correspond to the m/z of [M+Na] + . Alkylpoly glucoside produced was analysed by FTIR, 1 H and 13 C NMR spectrometric technique. (author)

  12. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  13. Effect of reverse Boudouard reaction catalyst on the performance of solid oxide carbon fuel cells integrated with a dry gasifier

    International Nuclear Information System (INIS)

    Kim, Sun-Kyung; Mehran, Muhammad Taqi; Mushtaq, Usman; Lim, Tak-Hyoung; Lee, Jong-Won; Lee, Seung-Bok; Park, Seok-Joo; Song, Rak-Hyun

    2016-01-01

    Highlights: • The addition of K_2CO_3 catalyst in carbon fuel improves the performance of SO-CFC. • Thermal and electrochemical analyses done to elucidate the catalytic enhancement. • Material characterization of SO-CFC performed after long-term degradation test. - Abstract: A solid oxide carbon fuel cell (SO-CFC) integrated with a dry gasifier was operated on activated carbon fuel and the effect of adding a reverse Boudouard gasification catalyst on the performance and long-term operation characteristics of the SO-CFC was investigated. The reactivity of the carbon fuels for the Boudouard gasification reaction was analyzed by a thermal analysis at various operating conditions. The SO-CFC was then operated on gasified fuel gas consisting of CO_2 and CO obtained from the integrated dry gasifier. The SO-CFC operated on activated carbon fuel with 5 wt.% K_2CO_3 achieved a maximum power density of 202, 262, and 271 mW/cm"2 at 750, 800, and 850 °C, respectively; the SO-CFC fueled with activated carbon fuel without a catalyst meanwhile yielded maximum power density of 168 mW/cm"2 at 850 °C. By using electrochemical impedance spectroscopy, the effect of adding the catalyst on the gasification products and subsequently on the performance of the SO-CFC was studied. A long-term degradation test was conducted by continuously operating the SO-CFC at 50 mA/cm"2 for 518 h at 750 °C. During the long-term degradation test, the average degradation rate of the SO-CFC was found to be 183 mV/kh. The post-mortem SEM and XRD analyses of the SO-CFC after the long-term test revealed the presence of carbon deposits and oxidation of Ni at the anode, causing a relatively higher degree of degradation in the SO-CFC integrated with the dry gasifier during the long-term operation. The addition of the K_2CO_3 based dry gasification catalyst significantly enhances the performance of the SO-CFC integrated with dry gasification, but during long-term operation, the degradation rate is found

  14. Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Iwona Pełech

    2015-01-01

    Full Text Available Polymer composites based on epoxy resin were prepared. Multiwalled carbon nanotubes synthesized on iron-cobalt catalyst were applied as a filler in a polymer matrix. Chlorine or hydroxyl groups were incorporated on the carbon nanotubes surface via chlorination or chlorination followed by hydroxylation. The effect of functionalized carbon nanotubes on the epoxy resin matrix is discussed in terms of the state of CNTs dispersion in composites as well as electrical properties. For the obtained materials current-voltage characteristics were determined. They had a nonlinear character and were well described by an exponential-type equation. For all the obtained materials the percolation threshold occurred at a concentration of about 1 wt%. At a higher filler concentration >2 wt%, better conductivity was demonstrated by polymer composites with raw carbon nanotubes. At a lower filler concentration <2 wt%, higher values of electrical conductivity were obtained for polymer composites with modified carbon nanotubes.

  15. Rotating solid foam reactors : mass transfer and reaction rate

    NARCIS (Netherlands)

    Tschentscher, R.

    2012-01-01

    In this thesis the performance and applicability of rotating solid foam stirrers is investigated. The stirrer consists, thereby of a solid, highly porous structure, which is used as stirrer and catalyst support simultaneously. The solid foam block occupies a large part of the reactor volume.

  16. synthesis and charact catalyst for the production o thesis

    African Journals Online (AJOL)

    userpc

    THESIS AND CHARACTERIZATION OF SOLID HETEROGENEOUS. R THE PRODUCTION OF ... r ratio, 2wt% catalyst loading, 80oC reaction temperature and talyst maintained ... The analysis was carried out on a Shimadzu model XRD6000 ...

  17. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Osmundsen, Christian Mårup

    2013-01-01

    to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests...

  18. Manufacturing of microcapsules with liquid core and their healing performance in epoxy for resin transfer molding

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay

    2013-01-01

    Microcapsules with different active core materials have been receiving a great deal of attention for developing polymer based materials with selfhealing abilities. The self-healing ability is crucial in particular for matrix materials having brittle nature such as epoxy resin. In order for abstaining from an abrupt failure of structural brittle manner polymeric materials, microcapsules can be used excellently as a viable repair agent. In this work, we present a study on the catalyst-free micr...

  19. Preparation of molecularly imprinted adsorptive resin for trapping of ligustrazine from the traditional Chinese herb Ligusticum chuanxiong Hort

    International Nuclear Information System (INIS)

    Guo Zhifeng; Guo Tingting; Guo Mufan

    2008-01-01

    A highly selective molecularly imprinted adsorptive resin for ligustrazine was prepared by melamine-urea-formaldehyde (MUF) gel. In the experiments, two pieces of MUF gel were synthesized firstly; one was added ligustrazine hydrochloride as the template molecule in it to prepare the imprinted adsorptive resin, and the other was not. Scanning electron microscopy (SEM) revealed that both resins were the porous with a network structure whether or not it was added template molecule. The imprinted adsorptive resin had an absorbability of 85.22% measured by a 200 mg L -1 solution of ligustrazine hydrochloride at room temperature. The resin of MUF without template, on the other hand, displayed an adsorption capacity of almost zero. It illuminated the imprinted adsorptive resin formed ligustrazine recognition sites when the template molecule had been eluted. In the present paper, ligustrazine was effectively separated and enriched from herbs by using a solid-phase adsorptive column filled with the imprinted adsorptive resin. Its eluate, obtained from three kinds of solvents, was analyzed by GC-MS, and the results indicated that the imprinted adsorptive resin showed a high selectivity for ligustrazine. This is believed to be beneficial for extracting natural and highly purified ligustrazine

  20. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, N K; Eskander, S B [Radioisotope dept., atomic energy authority, (Egypt)

    1995-10-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs.

  1. Oxidative degradation of low and intermediate level Radioactive organic wastes 2. Acid decomposition on spent Ion-Exchange resins

    International Nuclear Information System (INIS)

    Ghattas, N.K.; Eskander, S.B.

    1995-01-01

    The present work provides a simplified, effective and economic method for the chemical decomposition of radioactively contaminated solid organic waste, especially spent ion - exchange resins. The goal is to achieve volume reduction and to avoid technical problems encountered in processes used for similar purposes (incineration, pyrolysis). Factors efficiency and kinetics of the oxidation of the ion exchange resins in acid medium using hydrogen peroxide as oxidant, namely, duration of treatment and the acid to resin ratio were studied systematically on a laboratory scale. Moreover the percent composition of the off-gas evolved during the decomposition process was analysed. 3 figs., 5 tabs

  2. Application of Heterogeneous Copper Catalyst in a Continuous Flow Process: Dehydrogenation of Cyclohexanol

    Science.gov (United States)

    Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa

    2016-01-01

    In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…

  3. Monitoring of mass flux of catalyst FCC in a Cold Pilot Unit by gamma radiation transmission

    International Nuclear Information System (INIS)

    Brito, Marcio Fernando Paixao de

    2014-01-01

    This paper proposes a model for monitoring the mass flow of catalyst FCC - Fluid Catalytic Cracking - in a CPU - Cold Pilot unit - due to the injection of air and solid by gamma radiation transmission. The CPU simplifies the process of FCC, which is represented by the catalyst cycle, and it was constructed of acrylic, so that the flow can be visualized. The CPU consists of riser separation chamber and return column, and simulates the riser reactor of the FCC process. The catalyst is injected into the column back to the base of the riser, an inclined tube, where the compressed air means that there fluidization along the riser. When the catalyst comes in the separation chamber, the solid phase is sent to the return column, and the gas phase exits the system through one of the four cyclones at the top of the separation chamber. The transmission gamma of measures will be made by means of three test sections that have source and detector shielded. Pressure drop in the riser measurements are made through three pressure gauges positioned on the riser. The source used was Am-241 gamma ray with energy of 60 keV, and detector used was a scintillator of NaI (Tl) of 2 x 2 . Measures the mass flow of catalyst are made by varying the seal of the catalyst, and density of solid in the riser because with the combination of these measures can determine the speed of the catalyst in the riser. The results show that the transmission gamma is a suitable technique for monitoring the flow of catalyst, flow model in CPU is annular, tomography third generation is more appropriate to study the CPU and the density variation in circulation in the CPU decreases linearly with increasing air flow. (author)

  4. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap

    Directory of Open Access Journals (Sweden)

    Ramesh Karunagaran

    2018-01-01

    Full Text Available Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF and carbon microspheres (N-CMS synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  5. Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap.

    Science.gov (United States)

    Karunagaran, Ramesh; Coghlan, Campbell; Shearer, Cameron; Tran, Diana; Gulati, Karan; Tung, Tran Thanh; Doonan, Christian; Losic, Dusan

    2018-01-28

    Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas) into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR) in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF) and carbon microspheres (N-CMS) synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

  6. Cationic Zn-Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates.

    Science.gov (United States)

    Jayakumar, Sanjeevi; Li, He; Chen, Jian; Yang, Qihua

    2018-01-24

    The development of solid catalysts containing multiple active sites that work cooperatively is very attractive for biomimetic catalysis. Herein, we report the synthesis of bifunctional catalysts by supporting cationic porphyrin-based polymers on carbon nanotubes (CNTs) using the direct reaction of 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), di(1H-imidazol-1-yl)methane, and 1,4-bis(bromomethyl)benzene in the presence of CNTs. The bifunctional catalysts could efficiently catalyze the cycloaddition reaction of epoxides and CO 2 under solvent-free conditions with porphyrin zinc(II) as the Lewis acid site and a bromine anion as a nucleophilic agent working in a cooperative way. Furthermore, a relative amount of porphyrin zinc(II) and quaternary ammonium bromide could be facilely adjusted for facilitating cooperative behavior. The bifunctional catalyst with a TOF up to 2602 h -1 is much more active than the corresponding homogeneous counterpart and is one of the most active heterogeneous catalysts ever reported under cocatalyst-free conditions. The high activity is mainly attributed to the enhanced cooperation effect of the bifunctional catalyst. With a wide substrate scope, the bifunctional catalyst could be stably recycled. This work demonstrates a new approach for the generation of a cooperative activation effect for solid catalysts.

  7. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  8. Spatial heterogeneities within an individual catalyst particle during reaction as revealed by in-situ micro-spectroscopy

    NARCIS (Netherlands)

    Kox, M.H.F.

    2009-01-01

    Heterogeneous catalysts are solids, which are of fundamental importance in (petro-) chemical, pharmaceutical and environmental industries. The majority (> 85%) of all chemicals and transportation fuels have come into contact with at least one catalyst material during their manufacturing process. In

  9. Mechanisms and modeling development of water transport/phase change in catalyst layers of portion exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yexiang [Dept. of Thermal Engineering, Tsinghua University Beijing (China)], email: Yexiang.Xiao@energy.lth.se; Yuan, Jinliang; Sunden, Bengt [Dept. of Energy Sciences, Faculty of Engineering, Lund University (Sweden)], email: Jinliang.yuan@energy.lth.se, email: bengt.sunden@energy.lth.se

    2011-07-01

    Research on proton exchange membrane fuel cells has shown that incorporation of nanosized catalysts can effectively increase active areas and catalyst activity and make a great contribution to development in performance and catalyst utilization. Multiphase transport processes are as significant and complicated as water generation/transfer processes which occur in nano-structured catalyst layers. A review project has been launched aimed at gaining a comprehensive understanding of the mechanisms of water generation or transport phenomena. It covers catalytic reactions and water-phase change within the catalyst layers. The review proceeds in three main stages: Firstly, it characterizes and reconstructs the nano/micro-structured pores and solid-phases; secondly, it emphasises the importance of sensitive and consistent analysis of various water-phase change and transport schemes; and thirdly, it recommends development of microscopic models for multi-phase transport processes in the pores and the solid phases.

  10. Thermal and electrochemical stability of tungsten carbide catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Materials Engineering, University of British Columbia, Vancouver, BC (Canada); Campbell, S. [Ballard Power Systems, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC (Canada)

    2007-02-10

    The thermal and electrochemical stability of tungsten carbide (WC), with and without a catalyst dispersed on it, have been investigated to evaluate the potential suitability of the material as an oxidation-resistant catalyst support. Standard techniques currently used to disperse Pt on carbon could not be used to disperse Pt on WC, so an alternative method was developed and used to disperse Pt on both commercially available WC and on carbon for comparison of stability. Electrochemical testing was performed by applying oxidation cycles between +0.6 V and +1.8 V to the support-catalyst material combinations and monitoring the activity of the supported catalyst over 100 oxidation cycles. Comparisons of activity change with cumulative oxidation cycles were made between C and WC supports with comparable loadings of catalyst by weight, solid volume, and powder volume. WC was found to be more thermally and electrochemically stable than currently used carbon support material Vulcan XC-72R. However, further optimization of the particle sizes and dispersion of Pt/WC catalyst/support materials and of comparison standards between new candidate materials and existing carbon-based supports are required. (author)

  11. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    Science.gov (United States)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  12. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Mohamed, N.M. [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Shaharun, M.S. [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Naz, M.Y. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia)

    2016-06-15

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al{sub 2}O{sub 3} supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I{sub D}/I{sub G} ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  13. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N.M.; Shaharun, M.S.; Naz, M.Y.

    2016-01-01

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al_2O_3 supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I_D/I_G ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  14. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  15. Sorption Efficiency of a New Sorbent towards Cadmium(II: Methylphosphonic Acid Grafted Polystyrene Resin

    Directory of Open Access Journals (Sweden)

    Nacer Ferrah

    2013-01-01

    Full Text Available A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid-solid extraction of cadmium(II. The results indicated that phosphonic resin could adsorb Cd(II ion effectively from aqueous solution. The adsorption was strongly dependent on the pH of the medium and the optimum pH value level for better sorption was between 3.2 and 5.2. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and the presence of some electrolytes was investigated. The maximum uptake capacity of Cd(II ions was 37,9 mg·g−1 grafted resin at ambient temperature, at an initial pH value of 5.0. The overall adsorption process was best described by pseudo second-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, more than 92% of Cd(II could be eluted by using 1.0 mol·L−1 HCl in one cycle.

  16. The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol

    International Nuclear Information System (INIS)

    Fu Hongbo; Yao Wenqing; Zhang Liwu; Zhu Yongfa

    2008-01-01

    Nanosized Bi 2 WO 6 catalyst exhibited the enhanced photoactivity for the degradation of 4-chlorophenol (4-CP) under visible irradiation compared to the sample prepared by high-temperature solid reaction. The photoactivity of the catalyst was sensitive to pH variation of the suspension. Nanosized Bi 2 WO 6 catalyst showed the highest activity at pH 7.2. The photodegradation of 4-CP by nanosized Bi 2 WO 6 catalyst followed a pseudo-first-order reaction. After three recycling runs for the photodegradation of 4-CP, the activity of the catalyst did not show any significant loss, suggesting that the catalyst was stable under visible irradiation

  17. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  19. Ion Exchange Properties of a Terpolymer Resin Derived from 2, 4-Dihydroxybenzaldehyde, Oxamide and Formaldehyde

    Directory of Open Access Journals (Sweden)

    M. V. Tarase

    2009-01-01

    Full Text Available Terpolymer resins (2,4-DHBOF were synthesized by the condensation of 2,4-dihydroxybenzaldehyde and oxamide with formaldehyde in the presence of hydrochloric acid as catalyst, proved to be selective chelation ion exchange terpolymer resins for certain metals. Chelation ion exchange properties of these polymers were studied for Fe+3, Cu+2, Hg+2, Cd+2, Co+2, Zn+2, Ni+2 and Pb+2 ions. A batch equilibrium method was employed in the study of the selectivity of the distribution of a given metal ions between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in a media of various ionic strengths. The polymer showed a higher selectivity for Fe+3, Cd+2 and Co+2 ions than for Cu+2, Hg+2, Zn+2, Ni+2 and Pb+2 ions.

  20. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  1. Novel thermal curing of cycloaliphatic resins by thiol-epoxy click process with several multifunctional thiols

    OpenAIRE

    Guzman, Dailyn; Mateu, Blai; Fernández Francos, Xavier; Ramis Juan, Xavier; Serra Albet, Àngels

    2017-01-01

    Novel thermosets were prepared by the base-catalysed reaction between a cycloaliphatic resin (ECC) and various thiol crosslinkers. 4-(N,N-Dimethylaminopyridine) (DMAP) was used as base catalyst for the thiol–epoxy reaction. A commercial tetrathiol (PETMP) and three different thiols synthesized by us, 6SH-SQ, 3SH-EU and 3SH-ISO, were tested. 6SH-SQ and 3SH-EU were prepared from vinyl or allyl compounds from renewable resources such as squalene and eugenol, respectively. Thiol 3SH-ISO was prepa...

  2. Produced water treatment using polymeric resins; Resinas polimericas para tratamento da agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Freire, Norma de Oliveira [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Queiros, Yure Gomes de Carvalho; Silva, Carla Michele Frota da; Barros, Cintia Chagas; Lucas, Elizabeth Fernandes [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The treatment and disposal of oily waters from oil production and refining processes represent an important technological pass for attendance of the ambient legislation and to the politics of the Cia of search of the environmental excellence. The reuse or reinjection of the co-produced water has been considered an interesting strategical alternative, however, the water quality requirement for these processes demands a pretreatment step, considering the exit effluent from primary and secondary treatment processes currently used. This work presents resulted of the polymeric resin development for tertiary treatment of oily waters with low oil and grasses content and fine solids, including the dissolved fraction. These resins can adsorb, in reversible form, organic components. Its high adsorption capacity is determined by the polarity, superficial area, range of porosity and a wide distribution of particle size and pore. Another important characteristic is the possibility of its use in some cycles of work due to its weak forces of interaction between the contaminants and the surface of the resin. Regeneration can be carried through of diverse forms, including the use of solvent, with or without the variation of temperature and/or pH. The gotten results indicated a high resin adsorption capacity, with concentrated oily water treatment volume 10,000 times the volume of resin used. (author)

  3. Speciation of Fe in Fe-modified zeolite catalysts

    Czech Academy of Sciences Publication Activity Database

    Smoláková, L.; Grygar, Tomáš; Čapek, L.; Schneeweiss, Oldřich; Zbořil, R.

    2010-01-01

    Roč. 647, č. 1 (2010), s. 8-19 ISSN 1572-6657 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z20410507 Keywords : solid state speciation * Fe2O3 * heterogeneous catalysts Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.732, year: 2010

  4. In-situ development of carbon nanotubes network and graphitic carbon by catalytic modification of phenolic resin binder in Al2O3–MgO–C refractories

    Directory of Open Access Journals (Sweden)

    Atul V. Maldhure

    2017-09-01

    Full Text Available In-situ formation of cross-linked carbon nanotubes network reinforced the refractory matrix and helps to improve the mechanical properties at elevated temperature. In this paper, the effect of modified phenol-formaldehyde (PF resin binder on the various mechanical properties of alumina–magnesia–carbon (AMC refractories was investigated. Initially, PF resin was modified by adding a different proportion of nickel catalyst. The AMC specimens (with the 7% carbon were prepared by using 5% of modified PF resin. The pressed samples were cured at 180 °C for 24 h and characterized by XRD, Raman spectroscopy, and FE-SEM. The characterisation shows that, in-situ formation of graphitic carbon and carbon nanotubes network in the specimens due to modification of PF resin. In-situ formation of phases leads to enhancement of density and mechanical properties of refractory at elevated temperature due to the reinforcing effect.

  5. Pyrolysis of plastic waste using alumina-pumice as catalyst

    International Nuclear Information System (INIS)

    Warnijati, S.; Agra, I.B.; Wibowo, W.

    2000-01-01

    Efforts to convert plastic waste to liquid fuel have been carried out, but the yield was not so promising yet. Various catalysts have been studied to drive the product more to the liquid fuel. In this study, alumina-pumice produced from cheap local materials, was used as catalyst. Solid polyethylene plastic waste was melted in a feed compartment surrounding the tube reactor, and the vapor flowed downward through the catalyst bed which was supported by small glass marbles. Air and water coolers were used to cool and condense the product. Liquid and uncondensable gas were collected in receivers and bottle filled with brine, respectively. The physical properties of a specific liquid product were tested according to the ASTM methods. Liquid and gas products increased with time and temperature, and the rate of liquid and gas formations followed first order reaction. Using 100 g of plastic waste and 40 g of catalyst, the favorable time and temperature of pyrolysis were 105 minutes and 653-673 K, respectively. Under this condition, 86 - 87 % of liquid, 45 - 53 mL/g of gas, and 1% of solid residue were obtained. The quantity of liquid product was higher than the previous work (which was just 70-75 %) and its physical properties were between those of kerosene and diesel oil. The gross heating value of the liquid was 49 796.03 J/g, and the gas burnt with yellow flame and some soot. (Author)

  6. Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis

    International Nuclear Information System (INIS)

    Han, Wenfeng; Huang, Shiliang; Cheng, Tianhong; Tang, Haodong; Li, Ying; Liu, Huazhang

    2015-01-01

    Highlights: • Niobium enhances the reduction of wustite-based ammonia synthesis catalyst significantly. • Nb 2 O 5 inhibits the segregation or formation of solid solutions on the catalyst surface. • Nb 2 O 5 doping enhances the growth rates of [2 1 1] and [2 0 0] planes rather than their amounts. - Abstract: Niobium was selected and investigated as a potential promoter for wustite-based catalyst (WBC) for ammonia synthesis. Experiments on reduction performance, activity test and H 2 -TGA, in situ XRD as well as XPS were carried out to obtain the promotion effect and mechanism involved. Niobium as a promoter was confirmed to enhance the reduction of WBC significantly. This behavior is highly desired for industry in terms of catalyst regeneration and lesser pretreatment time for fabrication regardless the unimproved catalytic performance for Nb 2 O 5 -doped wustite-based catalyst (Nb-WBC). Possible reasons for these phenomena are discussed. It is suggested that Nb 2 O 5 is not favorable for the segregation or formation of solid solutions on the catalyst surface, which are difficult to be reduced. However, it seems that niobium does not promote the growth of [2 1 1] plane, which is active for ammonia synthesis.

  7. Infrared absorption spectroscopy characterization of liquid-solid interfaces: The case of chiral modification of catalysts

    Science.gov (United States)

    Zaera, Francisco

    2018-03-01

    An overview is provided here of our work on the characterization of chiral modifiers for the bestowing of enantioselectivity to metal-based hydrogenation catalysts, with specific reference to the so-called Orito reaction. We start with a brief discussion of the use of infrared absorption spectroscopy (IR) for the characterization of chemical species at liquid-solid interfaces, describing the options available as well as the information that can be extracted from such experiments and the advantages and disadvantages associated with the technique. We then summarize the main results that we have reported to date from our IR study of the adsorption of cinchona alkaloids and related compounds from solutions onto platinum surfaces. Several observations are highlighted and placed in context in terms of the existing knowledge and their relevance to catalysis. Key conclusions include the uniqueness of the nature of the adsorbed species when in the presence of the solvent (versus when the uptake is done under vacuum, or versus the pure or dissolved molecules), the fact that each modifier adopts unique and distinct adsorption geometries on the surface and that those change with the concentration of the solution in ways that correlate well with the performance of the catalyst, the potential tendency of at least some of these chiral modifiers to bind to the surface primarily via the nitrogen atom of the amine group, not the aromatic ring as it is often assumed, and the observation that the ability of one modifier to dominate the catalytic chemistry in solutions containing mixtures of two or more of those is linked to their capacity for displacing each other from the surface, which in turn is determined by a balance between the strength of their binding to the surface and their solubility in the liquid solvent.

  8. Vitrification of ion-exchange (IEX) resins: Advantages and technical challenges

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Peeler, D.K.; Cicero, C.A.

    1995-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Savannah River Site (SRS) in conjunction with the Electric Power Research Institute (EPRI) and the commercial sector to convert low-level radioactive ion exchange (IEX) resin wastes from the nuclear utilities to solid stabilized waste forms for permanent disposal. One of the alternative waste stabilization technologies is vitrification of the resin into glass. Wastes can be vitrified at elevated temperatures by thermal treatment. One alternative thermal treatment is conventional Joule heated melting. Vitrification of wastes into glass is an attractive option because it atomistically bonds both hazardous and radioactive species in the glass structure, and volume reduces the wastes by 70-80%. The large volume reductions allow for large associated savings in disposal and/or long term storage costs

  9. Application of Resin in Pulp Technique for Ion Exchange Separation of Uranium from Alkaline Leachate

    International Nuclear Information System (INIS)

    Sreenivas, T.; Rajan, K.C.; Chakravartty, J.K.

    2014-01-01

    Conclusions: • Resin-in-pulp technique was applied for purification and enrichment of uranium values from a finely ground uranium ore leach slurry of alkaline nature using strong base anion exchange resin (size 500 - 675μm). • The chemical composition of the solution phase of the alkaline leach slurry (pH 9.5) was consisting of about 40 g/L of total dissolved solutes (TDS) predominantly with Na_2CO_3 and NaHCO_3 and minor levels of Na_2SO_4. The uranium content was only 730 mg/L and d50 of solids was 34μm. • Amongst the various commercially available resins studied PFA 4740 and 4783 having quaternary ammonium ion on polystyrene crosslink with divibyl benzez (DVB) gave best performance. The maximum loading capacity achieved in the RIP studies was about 60-65 g of U_3O_8/L of wet settled resin amounting to 98% of loading. This has necessitated 4 stages of counter-current extraction with overall contact time of 100 minutes at a resin to leach slurry volume ratio of about 1:50. Practically the entire uranium values loaded on the resin were eluted using NaCl. • The RIP process was found quite efficient for uranium bearing alkaline leach slurries.

  10. Polymer-Supported Cinchona Alkaloid-Derived Ammonium Salts as Recoverable Phase-Transfer Catalysts for the Asymmetric Synthesis of α-Amino Acids

    Directory of Open Access Journals (Sweden)

    Carmen Nájera

    2004-04-01

    Full Text Available Alkaloids such as cinchonidine, quinine and N-methylephedrine have been N-alkylated using polymeric benzyl halides or co-polymerized and then N-alkylated, thus affording a series of polymer-supported chiral ammonium salts which have been employed as phase-transfer catalysts in the asymmetric benzylation of an N-(diphenylmethyleneglycine ester. These new polymeric catalysts can be easily recovered by simple filtration after the reaction and reused. The best ee’s were achieved when Merrifield resin-anchored cinchonidinium ammonium salts were employed.

  11. Novel Ion-Exchange Catalysts for Reactions Involving Lipophilic Reagents: Perspectives in the Reaction of Esterifications of Fatty Acids with Methanol

    Czech Academy of Sciences Publication Activity Database

    Centomo, P.; Bonato, I.; Hanková, Libuše; Holub, Ladislav; Jeřábek, Karel; Zecca, M.

    2013-01-01

    Roč. 56, 9-10 (2013), s. 611-617 ISSN 1022-5528. [Nordic Symposium on Catalysis /15./. Mariehamn, Åland, 10.06.2012-12.06.2012] Grant - others:IMUR(IT) 2008SXASBC_004 Institutional support: RVO:67985858 Keywords : sulfonated resin s * acylation * lipophilic acid catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.220, year: 2013

  12. Ionic liquid and solid HF equivalent amine-poly(hydrogen fluoride) complexes effecting efficient environmentally friendly isobutane-isobutylene alkylation.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Goeppert, Alain; Török, Béla; Bucsi, Imre; Li, Xing-Ya; Wang, Qi; Marinez, Eric R; Batamack, Patrice; Aniszfeld, Robert; Prakash, G K Surya

    2005-04-27

    Isoparaffin-olefin alkylation was investigated using liquid as well as solid onium poly(hydrogen fluoride) catalysts. These new immobilized anhydrous HF catalysts contain varied amines and nitrogen-containing polymers as complexing agents. The liquid poly(hydrogen fluoride) complexes of amines are typical ionic liquids, which are convenient media and serve as HF equivalent catalysts with decreased volatility for isoparaffin-olefin alkylation. Polymeric solid amine:poly(hydrogen fluoride) complexes are excellent solid HF equivalents for similar alkylation acid catalysis. Isobutane-isobutylene or 2-butene alkylation gave excellent yields of high octane alkylates (up to RON = 94). Apart from their excellent catalytic performance, the new catalyst systems significantly reduce environmental hazards due to the low volatility of complexed HF. They represent a new, "green" class of catalyst systems for alkylation reactions, maintaining activity of HF while minimizing its environmental hazards.

  13. Retrofitting and operation solid radwaste system Dresden Station, Units 2 and 3

    International Nuclear Information System (INIS)

    Testa, J.; Homer, J.C.

    1982-01-01

    Units 2 and 3 at Dresden Station are twin 794 MW (net) BWR units that became operational in 1970 and 1971. The waste streams are typical of BWR stations, namely, bead resin and filter sludge (powdered resins and diatomaceous earth), evaporator concentrate containing approximately 25% dissolved solids and dry active waste. The original solid radwaste system utilized cement for solidification in open top 55 gallon drums. Remote handling was provided by means of a monorail with moving platforms supporting the drums. A relatively light-weight compactor was used to compact DAW into 55 gallon drums. Difficulties were experienced with this system

  14. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  15. Effect of light-curing units, post-cured time and shade of resin cement on knoop hardness.

    Science.gov (United States)

    Reges, Rogério Vieira; Costa, Ana Rosa; Correr, Américo Bortolazzo; Piva, Evandro; Puppin-Rontani, Regina Maria; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2009-01-01

    The aim of this study was to evaluate the Knoop hardness after 15 min and 24 h of different shades of a dual-cured resin-based cement after indirect photoactivation (ceramic restoration) with 2 light-curing units (LCUs). The resin cement Variolink II (Ivoclar Vivadent) shade XL, A2, A3 and opaque were mixed with the catalyst paste and inserted into a black Teflon mold (5 mm diameter x 1 mm high). A transparent strip was placed over the mold and a ceramic disc (Duceram Plus, shade A3) was positioned over the resin cement. Light-activation was performed through the ceramic for 40 s using quartz-tungsten-halogen (QTH) (XL 2500; 3M ESPE) or light-emitting diode (LED) (Ultrablue Is, DMC) LCUs with power density of 615 and 610 mW/cm(2), respectively. The Koop hardness was measured using a microhardness tester HMV 2 (Shimadzu) after 15 min or 24 h. Four indentations were made in each specimen. Data were subjected to ANOVA and Tukey's test (alpha=0.05). The QTH LCU provided significantly higher (pcement showed lower Knoop hardness than the other shades for both LCUs and post-cure times.

  16. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs).

    Science.gov (United States)

    Thomas, John Meurig

    2014-05-07

    Very substantial advances have recently been made in the design and construction of solid catalysts and in elucidating both their mode of operation and the factors that determine their selectivity and longevity. This Perspective explains how and why such progress has been made. One important factor, the deployment of single-site heterogeneous and enzymatic catalysts, used either alone or in conjunction with other strategies, including metabolic engineering, enables a multitude of new products (for example, environmentally clean jet fuel) to be readily manufactured. In a practical sense SSHCs enable the advantages of homogeneous and to a lesser degree enzymatic catalysts to be united with those of heterogeneous ones. With the aid of the vastly increasing families of nanoporous solids, desired catalytically active sites may be engineered in atomic detail on their inner, accessible surfaces, thereby opening up new possibilities in synthetic organic chemistry - as in the smooth formation of C-C and C[double bond, length as m-dash]N bonds in a number of intermolecular reactions - as well as in photocatalysts and in fluidized catalytic cracking of hydrocarbons.

  17. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  18. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    Science.gov (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  19. Transesterification of Jatropha curcas crude oil to biodiesel on calcium lanthanum mixed oxide catalyst: Effect of stoichiometric composition

    International Nuclear Information System (INIS)

    Taufiq-Yap, Yun Hin; Teo, Siow Hwa; Rashid, Umer; Islam, Aminul; Hussien, Mohd Zobir; Lee, Keat Teong

    2014-01-01

    Highlights: • Biodiesel synthesis from Jatropha curcas oil catalyzed by CaO–La 2 O 3 mixed oxide. • Effects of Ca-to-La ratio, catalyst concentration, methanol/oil ratio and reaction temperature were optimized. • Biodiesel yield >85% was achieved at 65 °C temperature. • CaO–La 2 O 3 catalyst can be easy regenerated. - Abstract: Heterogeneous solid mixed oxide (CaO–La 2 O 3 ) catalysts with different molar ratios of calcium to lanthanum (Ca-to-La) were synthesized by co-precipitation method. The synthesized solid CaO–La 2 O 3 mixed metal oxide catalysts were utilized in transesterification of Jatropha curcus oil as feedstock to produce biodiesel. Under the optimized conditions at 65 °C, 4% catalyst dose with 24:1 MeOH to Jatropha oil molar ratio, the transesterification reaction exhibited 86.51% of biodiesel yield. The prepared catalysts were characterized using various techniques such as X-ray diffraction (XRD), nitrogen sorption with Brunauer–Emmer–Teller (BET) method, temperature-programmed desorption of CO 2 (CO 2 -TPD) and scanning electron microscopy (SEM). Influence of Ca-to-La atomic ratio in the mixed metal oxide catalyst, catalyst amount, methanol to oil molar ratio, reaction time, different oils on the fatty acid methyl ester (FAME) yield were appraised. Different catalyst regeneration procedures were also performed to investigate the reusability of the CaO–La 2 O 3 catalyst

  20. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  1. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  2. Preparation of minor actinides targets or blankets by the means of Ionic Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Ramiere, I.; Jobelin, I. [CEA, Nuclear Energy Division, RadioChemistry and Process Department, Actinides Chemistry Laboratory, BP17171, Bagnols-sur-Ceze, 30207 (France)

    2009-06-15

    The objective of our R and D work is the elaboration by the use of ionic exchange resin of minor actinide precursors for target or blanket dedicated to their transmutation in sodium fast reactor. From the beginning, the resin process called WAR (acronym of Weak Acid Resin) was developed in the 70's at the ORNL for the making of uranium carbide kernels for the high temperature gas reactor [1] [2]. By now, our aim is to extend this concept to the manufacturing of minor actinides oxide mixed with uranium oxides [3]. More precisely, this process can be divided in two major steps: the loading of the resin and the thermal treatment of the fully loaded resin driving either to oxide or carbide phases depending on the gas atmosphere. The difficulty stems from the preparation of the loading solutions which must fulfill precise conditions of pH in presence of actinides cations prone to hydrolysis. Furthermore, the proportions of uranium and minor actinides in solutions must be adjusted to fit the right ratio in the solid. The study presented here will then focus on the experiments and tests which enable us to optimize the fixing of minor actinides on ionic exchange resin and their carbonization in oxide. [1] G. W. Weber, R. L. Beatty et V. J. Tennery, Nuclear Technology, 35, 217-226, (1977), 'Processing and composition control of weak-acid-resin derived fuel microspheres'. [2] K. J. Notz, P. A. Haas, J. H. Shaffer, Radiochimica Acta, 25, 153-160, (1978). 'The preparation of HTGR Fissile Fuel Kernels by Uranium Loading of Ion Exchange Resin'. [3] S. Picart, H. Mokhtari, I. Ramiere, 'Plutonium Futures, The Science 2008', 7-11 july 2008, Dijon, France. 'Modelling of the ionic Exchange between a weak acid resin in its ammonium form and a minor actinide'. (authors)

  3. Polyvinyl chloride resin

    International Nuclear Information System (INIS)

    Kim, Hong Jae

    1976-06-01

    This book contains polyvinyl chloride resin industry with present condition such as plastic industry and polyvinyl chloride in the world and Japan, manufacture of polyvinyl chloride resin ; suspension polymerization and solution polymerization, extruding, injection process, hollow molding vinyl record, vacuum forming, polymer powders process, vinyl chloride varnish, vinyl chloride latex, safety and construction on vinyl chloride. Each chapter has descriptions on of process and kinds of polyvinyl chloride resin.

  4. Ion exchange resins. February 1983-February 1990 (A Bibliography from the NTIS data base). Report for February 1983-February 1990

    International Nuclear Information System (INIS)

    1990-02-01

    This bibliography contains citations concerning the preparation and applications of ion exchange resins. Their use as catalysts and in treatment of water and wastes, chemical analysis and reactions, nuclear fuels and reactors, and in various recovery, purification, and separation processes are discussed. Performance evaluations are also included relative to air-purification processes. (This updated bibliography contains 280 citations, 129 of which are new entries to the previous edition.)

  5. Application of THOR-Technology on resins

    International Nuclear Information System (INIS)

    Lorenzen, J.; Lindberg, M.

    2003-01-01

    The THermal Organic Reduction (THOR) process, developed and patented by studsvik utilises pyrolysis / steam reforming technology. The THOR-process provides a reliable and safe method for treating a wide variety of LLW in a unique, fluidised bed treatment system at moderate temperature. This technology is suitable for processing hazardous, mixed and dry active LLW with appropriate waste feed modifications. Both solid and liquid LLRW and ILRW streams including ion exchange resins, activated carbon (charcoal), graphite, oils, solvents and cleaning solutions with contact radiation levels of up to 4 Sv/hr can be processed. Studsvik has completed over four years of operation at its facility at Erwin, Tennessee, USA. During this period studsvik has processed more than 1,5 thousand tons of radioactive ion exchange bead resins. powdered filter media and active carbon, with a cumulative total radioactivity of about 7 (E+8) MBq. Operations have demonstrated consistent, reliable, robust operating characteristics. Due to the widely varying characteristics of the incoming waste streams various efficiencies and volume reductions have been experienced. Input waste has varied in total inorganic content from 90%. A substantial element of this variability has been the ''soluble salt'' content of the input waste streams. Final reformed residue comprises a non-dispersible, granular solid which is suitable for long-term storage or direct burial in a qualified container. Special containers, THOR-liners, are available from studsvik for the transport of waste from the customer to the Erwin facility and HICs (high integrity containers) for transport of the residues to Barnwell. The paper will give an overview of the last four years of commercial operations processing LLRW from commercial nuclear power plans. (orig.)

  6. Fast Curing Bio-Based Phenolic Resins via Lignin Demethylated under Mild Reaction Condition

    Directory of Open Access Journals (Sweden)

    Jiongjiong Li

    2017-09-01

    Full Text Available Demethylation technique has been used to enhance lignin reactivity for preparation of phenolic resins. However, the demethylation efficiency and the demethylated lignin (DL reactivity were still unsatisfactory. To improve the demethylation efficiency, alkali lignin was demethylated under different mild conditions using sodium sulfite as a catalyst. Lignin and DL were characterized by 1H-NMR (nuclear magnetic resonance and Fourier transform infrared (FT-IR spectroscopy to determine the demethylation mechanism. With the demethylation of lignin, the methoxyl group content decreased from 1.93 m mol/g to 1.09 m mol/g, and the phenolic hydroxyl group content increased from 0.56 m mol/g to 0.82 m mol/g. These results revealed that methoxyl groups were attacked by SO32−, and some methoxyl groups were converted to phenolic hydroxyl groups by a nucleophilic substitution reaction, generating DL with high reactivity. The chemical properties of lignin-based phenolic resins were studied by 13C-NMR and FT-IR spectroscopy, and their physical properties were also investigated. The results indicated that lignin-based phenolic resins exhibited faster curing rate and shorter gel time. In addition, the bonding strength increased from 0.92 MPa to 1.07 MPa, and the formaldehyde emission decreased from 0.58 mg/L to 0.22 mg/L after lignin demethylated at the optimum condition.

  7. Polyolefin polymerization catalyst and method of production use

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, K.E.; Hawley, G.R.; Godbehere, D.W.

    1991-01-29

    This patent describes a process for the preparation of a catalyst suitable for the polymerization of an {alpha}-olefin. It comprises: forming a first component by reacting reactants comprising a magnesium dihalide, a phenol, an alkylbenzoate, and a titanium tetrahydrocarbyloxide; reacting the first component with an organoaluminum halide comprising ethylaluminum sesquichloride to produce a solid product; and then contacting the resulting solid product with an activating liquid comprising titanium tetrachloride and trichlorosilane in a confined zone under pressure of at least about 70 psi.

  8. Full Scale Alternative Catalyst Testing for Bosch Reactor Optimization

    Science.gov (United States)

    Barton, Katherine; Abney, Morgan B.

    2011-01-01

    Current air revitalization technology onboard the International Space Station (ISS) cannot provide complete closure of the oxygen and hydrogen loops. This makes re-supply necessary, which is possible for missions in low Earth orbit (LEO) like the ISS, but unviable for long term space missions outside LEO. In comparison, Bosch technology reduces carbon dioxide with hydrogen, traditionally over a steel wool catalyst, to create water and solid carbon. The Bosch product water can then be fed to the oxygen generation assembly to produce oxygen for crew members and hydrogen necessary to reduce more carbon dioxide. Bosch technology can achieve complete oxygen loop closure, but has many undesirable factors that result in a high energy, mass, and volume system. Finding a different catalyst with an equal reaction rate at lower temperatures with less catalyst mass and longer lifespan would make a Bosch flight system more feasible. Developmental testing of alternative catalysts for the Bosch has been performed using the Horizontal Bosch Test Stand. Nickel foam, nickel shavings, and cobalt shavings were tested at 500 C and compared to the original catalyst, steel wool. This paper presents data and analysis on the performance of each catalyst tested at comparable temperatures and recycle flow rates.

  9. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    International Nuclear Information System (INIS)

    Calahorra, Yonatan; Kerlich, Alexander; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan; Amram, Dor

    2016-01-01

    Catalyst assisted vapour-liquid–solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120–450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2–3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology. (paper)

  10. Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production

    Science.gov (United States)

    Zheng, Y. C.; Yu, X. H.; Yang, J.

    2017-06-01

    Biodiesel has recently gained extensive attention. Catalysts play an important role in producing biodiesel by transesterification reaction. In this study, CaO-CeO2 catalysts are developed as the solid base catalyst. Using PDMS-PEO as a structure-directing agent, the prepared CaO-CeO2 catalysts have a three-dimensional interconnected porous structure, which benefits the transesterification reaction. While the added Ce slightly decreases the catalytic activity, the stability of the catalyst shows remarkable improvement. Considering the catalytic activity and stability, the best catalyst is determined to be catalyst 0.15-1073 (Ce/Ca molar ratio of 0.15 and calcination temperature of 1073 K). Under optimum reaction conditions, the biodiesel yield reaches to 97.5% and metal leaching is 117.7 ppm. For catalyst 0.15-1073 regenerated after four reaction cycles, the biodiesel yield is 94.1%. The results reveal that the CaO-CeO2 catalyst has good potential for application in large-scale biodiesel production in the future.

  11. Bio diesel synthesis from pongamia pinnata oil over modified CeO2 catalysts

    International Nuclear Information System (INIS)

    Venkatesh; Sathgatta Z, M. S.; Manjunatha, S.; Thammannigowda V, V.

    2014-01-01

    This study investigates the use of CeO 2 , ZrO 2 , Mg O and CeO 2 -ZrO 2 , CeO 2 -Mg O, CeO 2 -ZrO 2 -Mg O mixed oxides as solid base catalysts for the transesterification of Pongamia pinnata oil with methanol to produce bio diesel. SO 4 2- /CeO 2 and SO 4 2- /CeO 2 -ZrO 2 were also prepared and used as solid acid catalysts for esterification of Pongamia pinnata oil (P-oil) to reduce the % of free fatty acid (FFA) in P-oil. The oxide catalysts were prepared by an incipient wetness impregnation method and characterized by techniques such as NH 3 -Tpd for surface acidity, CO 2 -Tpd for surface basicity and powder X-ray diffraction for crystallinity. The effect of nature of the catalyst, methanol to P-oil molar ratio and reaction time in esterification as well as in transesterification was investigated. The catalytic materials were reactive d and reused for five reaction cycles and the results showed that the ceria based catalysts have reasonably good reusability both in esterification and transesterification reaction. The test results also revealed that the CeO 2 -ZrO 2 modified with Mg O could have potential for use in the large scale bio diesel production. (Author)

  12. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    Science.gov (United States)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  13. The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Gwang-Seok Song

    2016-04-01

    Full Text Available A novel method for preparing epoxy/silver nanocomposites was developed via the in situ formation of silver nanoparticles (AgNPs within the epoxy resin matrix while using silver nanowires (AgNWs as a conductive filler. The silver–imidazole complex was synthesized from silver acetate (AgAc and 1-(2-cyanoethyl-2-ethyl-4-methylimidazole (imidazole. AgNPs were generated in situ during the curing of the epoxy resin through the thermal decomposition of the AgAc–imidazole complex, which was capable of reducing Ag+ to Ag by itself. The released imidazole acted as a catalyst to cure the epoxy. Additionally, after the curing process, the in situ-generated AgNPs were stabilized by the formed epoxy network. Therefore, by using the thermal decomposition method, uniformly dispersed AgNPs of approximately 100 nm were formed in situ in the epoxy matrix filled with AgNWs. It was observed that the nanocomposites containing in situ-formed AgNPs exhibited isotropic electrical properties in the epoxy resins in the presence of AgNWs.

  14. Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.

    Science.gov (United States)

    Debecker, Damien P

    2017-12-11

    Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intermediate Product Regulation in Tandem Solid Catalysts with Multimodal Porosity for High-Yield Synthetic Fuel Production.

    Science.gov (United States)

    Duyckaerts, Nicolas; Bartsch, Mathias; Trotuş, Ioan-Teodor; Pfänder, Norbert; Lorke, Axel; Schüth, Ferdi; Prieto, Gonzalo

    2017-09-11

    Tandem catalysis is an attractive strategy to intensify chemical technologies. However, simultaneous control over the individual and concerted catalyst performances poses a challenge. We demonstrate that enhanced pore transport within a Co/Al 2 O 3 Fischer-Tropsch (FT) catalyst with hierarchical porosity enables its tandem integration with a Pt/ZSM-5 zeolitic hydrotreating catalyst in a spatially distant fashion that allows for catalyst-specific temperature adjustment. Nevertheless, this system resembles the case of close active-site proximity by mitigating secondary reactions of primary FT α-olefin products. This approach enables the combination of in situ dewaxing with a minimum production of gaseous hydrocarbons (18 wt %) and an up to twofold higher (50 wt %) selectivity to middle distillates compared to tandem pairs based on benchmark mesoporous FT catalysts. An overall 80 % selectivity to liquid hydrocarbons from syngas is attained in one step, attesting to the potential of this strategy for increasing the carbon efficiency in intensified gas-to-liquid technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  17. EPICOR-II resin degradation results from first resin samples of PF-8 and PF-20

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Sanders, R.D. Sr.

    1985-12-01

    The 28 March 1979 accident at Three Mile Island Unit 2 released approximately 560,000 gallons of contaminated water to the Auxiliary and Fuel Handling Buildings. The water was decontaminated using a demineralization system called EPICOR-II developed by Epicor, Inc. The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Project is studying the chemical and physical conditions of the synthetic ion exchange resins found in several EPICOR-II prefilters. This report summarizes results and analyses of the first sampling of ion exchange resins from EPICOR-II prefilters PE-8 and -20. Results are compared with baseline data from tests performed on unirradiated Epicor, Inc. resins to determine if degradation has occurred due to the high internal radiation dose received by the EPICOR-II resins. Results also are compared with recent findings on resin degradation by Battelle Columbus Laboratories and Brookhaven National Laboratory. Analyses comparing test results of resins from EPICOR-II prefilters PF-8 and -20 with unirradiated resins obtained from Epicor, Inc. show resin degradation has occurred in some of the EPICOR-II resins examined. The mechanism of degradation is compared with work of other researchers and is consistent with their findings. The strong acid cation resins (divinylbenzene, styrene base structure) are losing effective cross-linking along with scission of functional groups and are experiencing first an increase and eventually a decrease in total exchange capacity as the absorbed radiation dose increases. The phenolic cation resins (phenol-formaldehyde base structure) show a loss of effective cross-linking and oxidation of the polymer chain. Analyses of resins removed from EPICOR-II prefilters PF-8 and -20 over the next several years should show a further increase in degradation

  18. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin

    International Nuclear Information System (INIS)

    Lee, I.H.; Kuan, Y.-C.; Chern, J.-M.

    2006-01-01

    Wastewaters containing heavy metals are usually treated by chemical precipitation method in Taiwan. This method can remove heavy metals form wastewaters efficiently, but the resultant heavy metal sludge is classified as hazardous solid waste and becomes another environmental problem. If we can remove heavy metals from sludge, it becomes non-hazardous waste and the treatment cost can be greatly reduced. This study aims at using ion-exchange resin to remove heavy metals such as copper, zinc, cadmium, and chromium from sludge generated by a PCB manufacturing plant. Factorial experimental design methodology was used to study the heavy metal removal efficiency. The total metal concentrations in the sludge, resin, and solution phases were measured respectively after 30 min reaction with varying leaching agents (citric acid and nitric acid); ion-exchange resins (Amberlite IRC-718 and IR-120), and temperatures (50 and 70 deg. C). The experimental results and statistical analysis show that a stronger leaching acid and a higher temperature both favor lower heavy metal residues in the sludge. Two-factors and even three-factor interaction effects on the heavy metal sorption in the resin phase are not negligible. The ion-exchange resin plays an important role in the sludge extraction or metal recovery. Empirical regression models were also obtained and used to predict the heavy metal profiles with satisfactory results

  19. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  20. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  1. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  2. A critical analysis of the degree of conversion of resin-based luting cements

    Directory of Open Access Journals (Sweden)

    Jaime Dutra Noronha Filho

    2010-10-01

    Full Text Available OBJECTIVE: This study analyzed the degree of conversion (DC% of four resin-based cements (All Ceram, Enforce, Rely X ARC and Variolink II activated by two modes (chemical and dual, and evaluated the decrease of DC% in the dual mode promoted by the interposition of a 2.0-mm-thick IPS Empress 2 disc. MATERIAL AND METHODS: In the chemical activation, the resin-based cements were prepared by mixing equal amounts of base and catalyst pastes. In the dual activation, after mixing, the cements were light-activated at 650 mW/cm² for 40 s. In a third group, the cements were light-activated through a 2.0-mm-thick IPS Empress 2 disc. The DC% was evaluated in a FT-IR spectrometer equipped with an attenuated total reflectance crystal (ATR. The data were analyzed by two-way ANOVA and Tukey's HSD test. RESULTS: For all resin-based cements, the DC% was significantly higher with dual activation, followed by dual activation through IPS Empress 2, and chemical activation (p<0.05. Irrespective of the activation mode, Rely X presented the highest DC% (p<0.05. Chemically activated Variolink and All Ceram showed the worst results (p<0.05. The DC% decreased significantly when activation was performed through a 2.0-mm-thick IPS Empress 2 disc (p<0.05. CONCLUSION: The results of the present study suggest that resin-based cements could present low DC% when the materials are dually activated through 2.0 mm of reinforced ceramic materials with translucency equal to or less than that of IPS-Empress 2.

  3. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  4. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  5. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Mingyue [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Qiu, Minghuang [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Graduate School of Chinese Academy of Science, Beijing 100049 (China); Wang, Tiejun [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Ma, Longlong; Wu, Chuangzhi [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Liu, Jianguo [Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou Guangdong 510640 (China); Graduate School of Chinese Academy of Science, Beijing 100049 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Incorporation of iron promotes the dispersion of catalyst particles. Black-Right-Pointing-Pointer Adding iron facilitates the separation of CuO from the Cu-Mn solid solution. Black-Right-Pointing-Pointer Both the copper and iron carbides are well dispersed in higher iron amount. Black-Right-Pointing-Pointer The selectivity to C{sub 2}{sup +}OH is promoted by increasing iron concentration. -- Abstract: Effect of iron promoter on the microstructures of CuMnZnO catalysts was investigated by N{sub 2} physical adsorption (BET), X-ray diffraction (XRD), and temperature-programmed reduction of hydrogen (H{sub 2}-TPR). Higher alcohols synthesis (HAS) was performed in a fixed bed reactor. The characterization results indicated that incorporation of iron in the CuMnZnO catalyst resulted in the increase of BET surface area and the dispersion of catalyst particles. Adding iron facilitated the formation of Fe-Mn solid solution and reduced the interaction between copper and manganese, which promoted the separation of CuO from the Cu-Mn solid solution and the reduction of the catalyst. In the HAS reaction, the catalytic activity of CO hydrogenation and the selectivity to C{sub 2}{sup +}OH and hydrocarbons presented an increasing trend with the increase in iron concentration, which may be attributed to the synergistic effect between the dispersed copper and iron carbides.

  6. Transesterification of jatropha oil with methanol over Mg–Zn mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    Lee, H.V.; Taufiq-Yap, Y.H.; Hussein, M.Z.; Yunus, R.

    2013-01-01

    A design was developed for the transesterification reaction of non-edible Jatropha Curcas oil using a heterogeneous catalysis system to replace the use of a homogeneous catalytic reaction. Investigations were conducted on solid MgO–ZnO mixed metal oxide catalyst bases with different atomic ratios of magnesium to zinc (Mg/Zn). These catalysts were characterized by BET (Brunauer–Emmer–Teller) surface area analysis, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and the alkalinity of the catalysts was studied by Temperature Programmed Desorption of carbon dioxide (TPD-CO 2 ). The physicochemical properties of the MgO–ZnO binary system were superior to those of the individual bulk oxides of MgO and ZnO. In addition, the formation of a binary system between MgO and ZnO established an effective method for transesterification processes. In this study, the effects of stoichiometric composition and surface characteristics on the transesterification activity of MgO–ZnO were investigated. The catalysts exhibited high catalytic activity (∼80%) with reliable reusability for biodiesel production. -- Highlights: ► Transesterification reaction of non-edible jatropha oil using solid base catalyst. ► MgO–ZnO binary system showed superior effect than the individual MgO and ZnO. ► More than 80% of FAME yield was achieved under mild condition. ► MgO–ZnO catalyst showed reliable reusability throughout 5 runs. ► Fuel properties of prepared biodiesel were complying with the biodiesel standards.

  7. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  9. Pigment Production from Immobilized Monascus sp. Utilizing Polymeric Resin Adsorption

    OpenAIRE

    Evans, Patrick J.; Wang, Henry Y.

    1984-01-01

    Pigment production by the fungus Monascus sp. was studied to determine why Monascus sp. provides more pigment in solid culture than in submerged culture. Adding a sterilized nonionic polymeric adsorbent resin directly to the growing submerged culture did not enhance the pigment production, thus indicating that pigment extraction is probably not a factor. Monascus cells immobilized in hydrogel were studied and exhibited decreased pigment production as a result of immobilization. This result is...

  10. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  11. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  12. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ

  13. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  14. Method of processing radioactive solid wastes

    International Nuclear Information System (INIS)

    Ootaka, Hisashi; Aizu, Tadashi.

    1980-01-01

    Purpose: To improve the volume-reducing effect for the radioactive solids wastes by freezing and then pulverizing them. Method: Miscellaneous radioactive solid wastes produced from a nuclear power plant and packed in vinyl resin bags are filled in a drum can and nitrogen gas at low temperature (lower than 0 0 C) from a cylinder previously prepared by filling liquid nitrogen (at 15kg/cm 2 , -196 0 C) to freeze the radioactive solid wastes. Thereafter, a hydraulic press is inserted into the drum can to compress and pulverize the thus freezed miscellaneous radioactive solid wastes into powder. The powder thus formed does not expand even after removing the hydraulic press from the drum can, whereby the volume reduction of the radioactive solid wastes can be carried out effectively. (Horiuchi, T.)

  15. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  16. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  17. Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts

    NARCIS (Netherlands)

    Prieto, G.; de Jong, K.P.; de Jongh, P.E.

    2013-01-01

    The generation of large volumes of nitrate-containing wastewater is a major issue in the industrial production of solid catalysts such as Cu/ZnO/Al2O3 employed in methanol synthesis. Extensive washing with water is needed to remove nitrate (and sodium) residues in the as-precipitated metal

  18. MULTIELEMENT SOLID PHASE PRECONCENTRATION USING A CHELATING RESIN OF STYRENE DIVINYLBENZENE COPOLYMER AND APPLICATION TO ANALYSIS OF SEAWATER AND FISH OTOLITHS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP�MS)

    Science.gov (United States)

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A new chelating resin has been synthesized by immobilizing 4–(2–thiazolylazo) resorcinol (TAR) onto styrene divinlybenzene copolymer and examined for on-line solid phase extraction/preconcentration of Cd, Co, Cu, Ni, Pb and Zn in seawater and fish otoliths for determination by inductively plasma mass spectrometry (ICP-MS). A volume of 5.0 mL sample solution was loaded onto the mini column of TAR immobilized resin at 2.0 mL min−1 via a sequential injection system. The optimum pH for multielement preconcentration was around pH 5.5. Recoveries were better than 96% in artificial seawater. Elution was achieved with 1.0 mL of 0.75 mol L−1 HNO3. The resin possesses large sorption capacity ranging from 82.0 µmol g−1 for Pb to 319 µmol g−1 for Cu. The detection limits (3s) varied between 0.0016 µg L−1 (Cd) and to 0.015 µg L−1 (Zn) for preconcentration of 5.0 mL blank solutions (pH 5.5). Relative standard deviation (RSD)for three replicate runs was between 0.3% (Cd) and 6% (Zn) at 1.0 µg L−1 level. The procedure was validated by analysis of Nearshore Seawater certified reference material (CASS–4), and then successfully applied to the determination of the trace elements in fish otoliths (CRM 22) and in coastal seawater and estuarine water samples. PMID:24976635

  19. Utilization of m-Phenylenediamine-Furfural Resin for Removal of Cu(II) from Aqueous Solution-A Thermodynamic Study

    OpenAIRE

    Najim, Tariq S.; Zainal, Israa G.; Ali, Dina A.

    2010-01-01

    m-Phenylenediamine was condensed with furfural in absence of catalyst at room temperature. The produced m-phenylenediamine-furfural resin was used for the removal of Cu(II) from aqueous solution. The pH for the optimum removal of Cu(II) was 6. The negative values of Gibbs free energy at low concentration of Cu(II) (20, 30 ppm) indicative of the spontaneous adsorption process, while, at higher Cu(II) concentration (40,50 ppm) the positive and weak values of ∆G° indicate that the process is fea...

  20. Influence of the silica fillers on the ageing of epoxy resins under irradiations

    International Nuclear Information System (INIS)

    Benard, F.

    2004-01-01

    Various studies were carried out on the ageing of epoxy resins under irradiations. In all cases, pure polymers were studied. The aim of our work managed by the CEA and the CNRS consists on studying the part of fillers and particularly the part of silica on ageing process under electron beam irradiations. Because of their wide use in industrial applications and especially in nuclear environment, the DGEBA-TETA resins (Diglycidylether of Bisphenol A - Triethylenetetramine) were chosen. Those epoxy resins are difficult to analyse because of their insolubility. Some pure and nano-metric silica filled chemical models which chemical structure very close to the one the DGEBA/TETA resin were synthesized and analysed with classical methods in organic chemistry. A major phenomenon of rupture of the C-O and C-N chemical bonds with creation of phenolic extremities, methylketone extremities, of primary and tertiary amines and notably enamine functions were revealed by the analyses. The quantitative 1 H and 13 C NMR analyses revealed the screen effect due to the silica and the reactions between the chemical species created by the irradiations and the silica surface. Thermic and thermodynamic analyses of the different epoxy resins in function of the irradiation dose and of the kind of silica showed the decrease of the glass transition temperature, of the relaxation temperature and of the crosslink density confirming the major phenomenon of bond ruptures during irradiations. With silica, the decrease of the crosslink density is slowed. This phenomenon can be explained with interactions between the nano-metric silica surface and the epoxy resin offsetting the effect of the chain rupture on the resin mechanical properties. The 13 C solid state NMR analyses confirmed the choice of the chemical models and permitted to detect the chemical species created by the irradiations. The analyse of the polarization transfers with 13 C CP-MAS NMR spectroscopy revealed the stiffening of the nano

  1. Preparation of the Pt/CNTs Catalyst and Its Application to the Fabrication of Hydrogenated Soybean Oil Containing a Low Content of Trans Fatty Acids Using the Solid Polymer Electrolyte Reactor.

    Science.gov (United States)

    Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai

    2018-08-01

    Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.

  2. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    Science.gov (United States)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  3. Resin regenerating device in condensate desalting system

    International Nuclear Information System (INIS)

    Sato, Yoshiaki; Igarashi, Hiroo; Oosumi, Katsumi; Nishimura, Yusaku; Ebara, Katsuya; Shindo, Norikazu.

    1984-01-01

    Purpose: To improve the accuracy in the separation of anionic and cationic exchange resins. Constitution: Resins transferred from a condensate desalting column are charged in a cationic exchange resin column. The temperature of water for separating and transferring the resins is measured by a temperature detector disposed in a purified water injection line, and water is adjusted to a suitable flow rate for the separation and transfer of the resins by an automatic flow rate control valve, and then is injected. The resins are separated into cationic exchange resins and anionic exchange resins, in which only the anionic exchange resins are transferred, through an anionic exchange transfer line, into an anionic exchange resin column. By controlling the flow rate depending on the temperature of the injected water, the developing rate of the resin layer is made constant to enable separation and transfer of the resins at high accuracy. (Seki, T.)

  4. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  5. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  6. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.

    Science.gov (United States)

    Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A; Li, Xuebing; Lercher, Johannes A

    2010-01-21

    A simple, green, cost- and energy-efficient route for converting phenolic components in bio-oil to hydrocarbons and methanol has been developed, with nearly 100% yields. In the heterogeneous catalysts, RANEY Ni acts as the hydrogenation catalyst and Nafion/SiO(2) acts as the Brønsted solid acid for hydrolysis and dehydration.

  7. Effect of treatment with adsorbent resin on the volatile profile and physicochemical characteristics of clarified cashew apple juice

    Directory of Open Access Journals (Sweden)

    Adriana Dutra Sousa

    2013-12-01

    Full Text Available Increased preference for healthy and functional foods could be an opportunity to increase the consumption of clarified cashew apple juice. Given its level of fructose, glucose, and vitamin C, it can be used as a base in blends. However, its characteristic odor can interfere with the acceptance of these formulations, especially by consumers who are not familiar with cashew aroma. The aim of this study was to evaluate the effect of treatment with macroporous resins (FPA54, FPX66, XAD761, and XAD4 on the volatile profile and physicochemical characteristics of clarified cashew apple juice. After the treatment with the resins, the volatile profile was evaluated using solid-phase microextraction (SPME and gas chromatography/mass spectrometry (GC/MS. The physicochemical analyses performed were: pH, soluble solids (ºBrix, total titrable acidity, reducing sugars, and vitamin C. Gas chromatography analyses showed that XAD4 and FPX66 led to a reduction of the initial amount of volatile compounds to 14.05% and 15.72%, respectively. These two resins also did not affect the physicochemical characteristics of the clarified cashew apple juice.

  8. Supramolecular water oxidation with Ru-bda-based catalysts.

    Science.gov (United States)

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. EDF specifications on nuclear grade resins

    International Nuclear Information System (INIS)

    Mascarenhas, Darren; Gressier, Frederic; Taunier, Stephane; Le-Calvar, Marc; Ranchoux, Gilles; Marteau, Herve; Labed, Veronique

    2012-09-01

    Ion exchange resins are widely used across EDF, especially within the nuclear division for the purification of water. Important applications include primary circuit, secondary circuit and effluent treatment, which require high quality nuclear grade resins to retain the dissolved species, some of which may be radioactive. There is a need for more and more efficient purification in order to decrease worker dose during maintenance but also to decrease volumes of radioactive resin waste. Resin performance is subject to several forms of degradation, including physical, chemical, thermal and radioactive, therefore appropriate resin properties have to be selected to reduce such effects. Work has been done with research institutes, manufacturers and on EDF sites to select these properties, create specifications and to continuously improve on these specifications. An interesting example of research regarding resin performance is the resin degradation under irradiation. Resins used in the CVCS circuit of EDF nuclear power plants are subject to irradiation over their lifetime. A study was carried out on the effects of total integrated doses of 0.1, 1 and 10 MGy on typically used EDF mixed bed resins in a 'mini-CVCS' apparatus to simultaneously test actual primary circuit fluid. The tests confirmed that the resins still perform efficiently after a typical CVCS radiation dose. Certain resins also need additional specifications in order to maintain the integrity of the particular circuits they are used in. Recently, EDF has updated its requirements on these high purity nuclear grade resins, produced generic doctrines for all products and materials used on site which include resins of all grades, and as a result have also updated a guide on recommended resin usage for the French fleet of reactors. An overview of the evolutions will be presented. (authors)

  10. Study of fluorine doped (Nb,Ir)O_2 solid solution electro-catalyst powders for proton exchange membrane based oxygen evolution reaction

    International Nuclear Information System (INIS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Patel, Prasad; Chung, Sung Jae; Park, Sung Kyoo; Poston, James A.; Manivannan, Ayyakkannu; Kumta, Prashant N.

    2016-01-01

    Graphical abstract: High surface area (∼300 m"2/g) nanostructured powders of nominal composition (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F have been synthesized and tested as oxygen evolution electro-catalysts for PEM based water electrolysis using a simple two-step chemical synthesis procedure. Superior electrochemical activity was demonstrated by fluorine doped compositions of (Nb_1_−_xIr_x)O_2 with an optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F (x = 0.25) demonstrating on-par performance with commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2. Using first principles calculations, the electronic structure modification resulting in ∼75 at.% reduction (experimentally observed) in noble metal content without loss in catalytic performance and stability has been established. - Highlights: • (Nb_1_−_xIr_x)O_2:10F nanopowder electrocatalysts have been wet chemically synthesized. • (Nb_0_._7_5Ir_0_._2_5)O_2:10F exhibits superior electrochemical activity than pure IrO_2. • Stability of the (Nb,Ir)O_2:10F nanomaterials is comparable to pure (Nb,Ir)O_2. • High surface area F doped (Nb,Ir)O_2 are promising OER anode electro-catalysts. - Abstract: High surface area (∼300 m"2/g) nanostructured powders of (Nb_1_−_xIr_x)O_2 and (Nb_1_−_xIr_x)O_2:10F (∼100 m"2/g) have been examined as promising oxygen evolution reaction (OER) electro-catalysts for proton exchange membrane (PEM) based water electrolysis. Nb_2O_5 and 10 wt.% F doped Nb_2O_5 powders were prepared by a low temperature sol-gel process which were then converted to solid solution (Nb,Ir)O_2 and 10 wt.% F doped (Nb,Ir)O_2 [(NbIr)O_2:10F] electro-catalysts by soaking in IrCl_4 followed by heat treatment in air. Electro-catalyst powders of optimal composition (Nb_0_._7_5Ir_0_._2_5)O_2:10F with ∼75 at.% reduction in noble metal content exhibited comparable OER activity to commercial hydrated IrO_2 and nanostructured in-house chemically synthesized IrO_2

  11. Eco-friendly Crosslinking Agent for Acid Functional Acrylic Resin

    Directory of Open Access Journals (Sweden)

    Archana Shah

    2009-01-01

    Full Text Available Oil from J. multifida was extracted and it was first converted into N,N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA. HEJFA has been synthesized by reaction between Jatropha oil and diethanol amine in presence of zinc oxide as a catalyst. The reaction is relatively rapid and proceeded to high yield at 200±5 OC. The resulting HEJFA was used to formulate thermosetting coating compositions. Films were cured at ambient (air drying and elevated (stove drying temperatures using N, N-bis(2-hydroxyethyl Jatropha fatty amide (HEJFA as eco-friendly crosslinking agent for acrylic resin. The coating performance of the various compositions was tested by measurement of scratch hardness, impact strength and chemical resistance. The results show better performance of the HEJFA based compositions compared to butylated melamine formaldehyde (MF based compositions.

  12. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    International Nuclear Information System (INIS)

    Lakshmi, B.; Mahendra, K. N.; Shivananda, K. N.

    2010-01-01

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems

  13. Synthesis, Characterization and Curing Studies of Thermosetting Epoxy Resin with Amines

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, B.; Mahendra, K. N. [Bangalore University, Bangalore (India); Shivananda, K. N. [Technion - Israel Institute of Technology, Haifa (Israel)

    2010-08-15

    A new hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) is prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with Epichlorohydrin by using benzyltrimethylammonium chloride as a catalyst. The resulting compound possesses both the oxirane ring and maleimide group. The curing reaction of these maleimidophenyl glycidylether epoxy compound (N-MPGE) with amines as curing agents such as ethylendiamine (EDA), diethylentriamine (DETA) and triethylenetetramine (TETA), aminoethylpiperazine (AEP) and isophoronediamine, IPDA), are studied. Incorporation of maleimide groups in the epichlorohydrin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples exhibited good thermal stability, excellent chemical (acid/alkali/solvent) and water absorption resistance. Morphological studies by the SEM technique further confirmed the phase homogeneity net work of the cured systems.

  14. Effect of resins of heat exchanger fouling by asphaltene-containing oils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Atar, E.; Watkinson, A.P. [British Columbia Univ., Dept. of Chemical and Bio-Resource Engineering, Vancouver, BC (Canada)

    1999-07-01

    The effects of resins on the thermal fouling of asphaltene containing oils in heat exchangers was investigated as well as the nature of the deposits. Building on previous research, a sample of de-asphalted vacuum bottoms (DAO), serving as a source of natural resins, heavy oil (HO) and fuel oil was used to investigate the effects of resin concentration on the rate of thermal fouling. The conditions of the study included: fluid circulation through the UBC annular fouling test section for up to 30 hour periods, monitoring of thermal fouling by measurement, and nitrogen atmospheres at a bulk temperature of 85 degrees C, a bulk velocity of 0.85 am/s, and a pressure of 410 kPa. Physical and chemical characterization of the deposits was affected, and filtration at the bulk temperature before and after a run was used to determine the occurrence of fine solids in the fluid. The rate of fouling generally decreased tending generally towards asymptotic behavior in the limit, and after one day Rf values up to 0.3 m2K/kW occurred with severe fouling. An increase in the fouling rate occurred with increased DAO concentration in the mixture, at a fixed heavy oil concentration of 5 weight percent, and the relation between Asomaning's colloidal instability index and the trends in fouling rate was not observed, although there were some indications of reduced fouling as there was an increase in the ratio of resins to asphaltenes, however, blends of the DAO-HO-FO helped to control the concentration of asphaltenes and resins that are possible. (Abstract only).

  15. Embedding of radioactive wastes by thermosetting resins

    International Nuclear Information System (INIS)

    Baer, A.; Traxler, A.; Limongi, A.; Thiery, D.

    The process for embedding radioactive wastes in thermosetting resins perfected and applied at the Grenoble Nuclear Research Center and its application to the treatment of radioactive wastes from Light-Water Nuclear Power Plants (PWR and BWR) are presented. The various types of wastes are enumerated and their activities and quantities are estimated: evaporator concentrates, ion exchange resins, filtration sludges, filters, various solid wastes, etc. The authors review the orientations of the research performed and indicate, for each type of waste considered, the cycle of treatment operations from rendering the radioelements insoluble to drying the concentrates to final embedding. The operational safety of the process and the safety of transport and storage of the embedded wastes are investigated. The essential technical features concerning the safety of the installation and of the final product obtained are presented. In particular, results are presented from tests of resistance to fire, irradiation, leaching, etc., these being characteristics which represent safety criteria. The economic aspects of the process are considered by presenting the influences of the reduction of volume and weight of wastes to be stored, simplicity of installations and cost of primary materials

  16. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  17. A small-angle neutron scattering investigation of coke deposits on catalysts

    International Nuclear Information System (INIS)

    Acharya, D.R.; Hughes, R.; Allen, A.J.

    1990-01-01

    Small-angle neutron scattering (SANS) has been used to characterize a silica-alumina catalyst before and after coke deposition. The reaction used to deactivate the catalyst was the isomerization of xylenes. The results showed that, while most of the surface area in this type of catalyst resides in the ultrafine pores of diameters less than 1 nm occupying about 7% of the sample volume, there appears to be no coke deposition in these pores. The coke seems to coat the solid structures of 3.3-nm diameter which are of capillary shape. Such structures occupy about 6% of the sample volume. The coke was found to correspond to amonolayer of composition CH 0.3 with a density of 1660 kg/m 3

  18. Thiophene hydrodesulfurization over CoMo/Al2O3-CuY catalysts: Temperature effect study

    OpenAIRE

    Boukoberine, Yamina; Hamada, Boudjema

    2016-01-01

    CoMo/γ-Al2O3-CuY catalysts are prepared by physically mixing CoMo/γ-Al2O3 catalyst with Cu-exchanged Y zeolite. The CuY zeolite is prepared by the solid state ion exchange technique. The thiophene hydrodesulfurization is performed in a fixed bed reactor at high temperature and atmospheric pressure. The results show that the presence of CuY zeolite particles in CoMo/Al2O3 catalyst can have a noticeable effect on both the conversion and product selectivities. An increasing zeolite loading in ca...

  19. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    Science.gov (United States)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  20. Catalytic hydrothermal liquefaction (HTL of biomass for bio-crude production using Ni/HZSM-5 catalysts

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2017-04-01

    Full Text Available Hydrothermal liquefaction (HTL is an effective method that can convert biomass into bio-crude, but direct use of bio-crude derived from biomass HTL remains a challenge due to the lower quality. In this study, bifunctional Ni/HZSM-5 catalysts and zinc hydrolysis were combined to produce upgraded bio-crude in an in-situ HTL process. The K2CO3 and HZSM-5 catalysts with different Ni loading ratios were tested. The effects of different catalysts on the yield and quality of bio-crude and gas were investigated. The results indicated that the catalysts improved bio-crude and gas yields, compared to pine sawdust liquefaction without catalyst. The catalysts reduced the contents of undesirable oxygenated compounds such as acids, ketones, phenols, alcohols and esters in bio-crude products while increased desirable hydrocarbons content. K2CO3 produced highest bio-crude yield and lowest solid residue yield among all catalysts. Compared to parent HZSM-5 catalyst, bifunctional Ni/HZSM-5 catalysts exhibited higher catalyst activity to improve quality of upgraded bio-crude due to its integration of cracking and hydrodeoxygenation reactions. 6%Ni/HZSM-5 catalyst produced the bio-crude with the highest hydrocarbons content at 11.02%. This catalyst can be a candidate for bio-crude production from biomass HTL.

  1. [Acrylic resin removable partial dentures].

    Science.gov (United States)

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  2. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osmaa, A.; Johansson, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    High yields (61% of the original lignin) of low molecular weight oil (84% of the oil eluted through GC) have been obtained by hydrotreating kraft pine lignin with a water-soluble molybdenum catalyst at 430[degree]C for 60 min. The main compounds in the product oil were phenols (8.7% of the original lignin), cyclohexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%). The degree of hydrodeoxygenation was 98%. The quality (measured by GPC and GC) of the product was as good as when using more expensive solid NiMo-CR[sub 2]O[sub 3] catalysts. 30 refs., 6 tabs.

  3. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  4. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  5. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    -particles dispersed in water which also contains the catalyst precursor nitrate salt. This support-catalyst precursor fluid must have a sufficiently low viscosity but high elastic modulus (high extensional viscosity to form films and bubbles when exposed to processing energy sources such as microwave, thermal, ultra-sound or UV-radiation or their combination. The micro-to-nano structures of the catalyst system are essentially formed at an early stage of energy input. It is shown that the primary particles of silica are transformed to a proto-silica particle state and form lamellar structures with the catalyst precursor. While the nano-structure is forming, water is evaporated leaving a highly porous solid support-catalyst precursor which then undergoes decomposition to form a silica-catalyst oxide system. The final catalyst system is obtained after catalyst oxide reduction. Although the XRD-based catalyst size changes slightly during the subsequent heat treatments, the nano-structure of the catalyst system remains substantially unaltered as evaluated through TEM images. However, if the catalyst preparation is carried out without film formation, the XRD-based catalyst size increases substantially by a factor of 2–8, with no significant alteration in surface area.

  6. In-Water and Neat Batch and Continuous-Flow Direct Esterification and Transesterification by a Porous Polymeric Acid Catalyst

    OpenAIRE

    Heeyoel Baek; Maki Minakawa; Yoichi M. A. Yamada; Jin Wook Han; Yasuhiro Uozumi

    2016-01-01

    A porous phenolsulphonic acid?formaldehyde resin (PAFR) was developed. The heterogeneous catalyst PAFR was applied to the esterification of carboxylic acids and alcohols, affording the carboxylic acid esters in a yield of up to 95% where water was not removed from the reaction mixture. Surprisingly, the esterification in water as a solvent proceeded to afford the desired esters in high yield. PAFR provided the corresponding esters in higher yield than other homogeneous and heterogeneous catal...

  7. In-situ environmental (scanning) transmission electron microscopy of catalysts at the atomic level

    International Nuclear Information System (INIS)

    Gai, P L; Boyes, E D

    2014-01-01

    Observing reacting single atoms on the solid catalyst surfaces under controlled reaction conditions is a key goal in understanding and controlling heterogeneous catalytic reactions. In-situ real time aberration corrected environmental (scanning) transmission electron microscopy (E(S)TEM permit the direct imaging of dynamic surface and sub-surface structures of reacting catalysts. In this paper in-situ AC ETEM and AC ESTEM studies under controlled reaction environments of oxide catalysts and supported metal nanocatalysts important in chemical industry are presented. They provide the direct evidence of dynamic processes at the oxide catalyst surface at the atomic scale and single atom dynamics in catalytic reactions. The ESTEM studies of single atom dynamics in controlled reaction environments show that nanoparticles act as reservoirs of ad-atoms. The results have important implications in catalysis and nanoparticle studies

  8. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous Catalyst for Aerobic Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available A series of Au catalysts with different sizes were synthesized and employed on amine group functionalized ordered mesoporous silica solid supports as catalyst for the aerobic oxidation of various alcohols. The mesoporous silica of MCM-41 supported Au nanoparticles (Au-1 exhibited the smallest particle size at ~1.8 nm with superior catalytic activities owing to the confinement effect of the mesoporous channels. Au-1 catalyst is also very stable and reusable under aerobic condition. Therefore, this presented work would obviously provide us a platform for synthesizing more size-controlled metal catalysts to improve the catalytic performances.

  9. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  10. Preparation, characterization and testing of SiC-based catalytic sponges as structured catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, A.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Inst.

    2011-07-01

    Solid sponges (open-cell foams) may be used as catalyst support, due to favorable thermal properties and low pressure drop. As an example, they may lead to improved temperature control in Fischer-Tropsch applications, if compared to fixed beds of catalyst particles. The aim of this study was to develop and test a wet method for impregnating ceramic foam materials with a CoRe/{gamma}-Al{sub 2}O{sub 3} catalyst. Defined catalyst layers were generated on 20 ppi SiC-sponges. Resulting catalytic activities are nearly identical to those of the corresponding powder catalyst material. The difference observed can be explained by either mass transfer limitation or backmixing in the fixed bed configuration used. (orig.)

  11. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    Directory of Open Access Journals (Sweden)

    Adilson Yoshio Furuse

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1 rinsing with water and drying; (G2 application of an adhesive system; (G3 rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4 rinsing and drying, etching, application of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (p<0.05. Similar values to the original bond strength were obtained after abrasion and application of adhesive (G3 or etching and application of silane and adhesive (G4. If contamination occurs, a surface treatment is required to guarantee an adequate interaction between the resin increments.

  12. Comparative study of resin sealant and resin modified glass ionomer as pit and fissure sealant

    Directory of Open Access Journals (Sweden)

    Shirin Malek

    2017-02-01

    Full Text Available The purpose of the present study was to compare the marginal integrity of resin modified glass ionomer cement with that of resin sealant, in vitro. Forty artificial pit and fissure cavities were prepared in occlusal surface of extracted premolar teeth by using ¼ round carbide bur. Cavities were condensed with artificial organic debris followed by cleaning with prophylaxis pumice brush and paste and then separated into two treatment groups. In Group A, 15 fissure cavities were sealed by resin sealant and in Group B, 15 fissure cavities were sealed by resin modified glass ionomer sealant. These specimens were subjected to thermo-cycling followed by dye penetration test. The remaining 5 cavities from each group were analyzed for debris score by the SEM. The results of the microleakage test showed that the efficacy of preventing microleakage of samples sealed by resin modified glass ionomer sealant was higher than the samples sealed by resin sealant. However, no significant differences were found. It can be concluded that use of resin modified glass ionomer sealant is a good alternative for sealing pits and fissures.

  13. PMO-immobilized Au(I)-NHC complexes: Heterogeneous catalysts for sustainable processes

    KAUST Repository

    van der Voort, Pascal; De Canck, Els; Nahra, Fady; Bevernaege, Kevin; Vanden Broeck, Sofie; Ouwehand, Judith; Maes, Diederick; Nolan, Steven P.

    2017-01-01

    species to detach from the surface to perform the catalysis and then to recombine with the solid after all the starting material is consumed. This boomerang behavior is assessed in the hydration of alkynes. The tested catalysts were found to be active

  14. Activation of Mg-Al hydrotalcite catalysts for transesterification of rape oil

    Energy Technology Data Exchange (ETDEWEB)

    Hong-yan Zeng; Zhen Feng; Xin Deng; Yu-qin Li [University of Xiangtan, Hunan (China). Institute of Biotechnology

    2008-10-15

    Mg-Al hydrotalcites with different Mg/Al molar ratios were prepared and characterized by powder X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), thermogravimetric apparatus and differential thermal analysis (TGA-DTA) and scanning electron micrograph (SEM). It was confirmed by XRD that the materials had hydrotalcite structure. The hydrotalcite catalyst calcined at 773 K with Mg/Al molar ratio of 3.0 exhibited the highest catalytic activity in the transesterification. In addition, a study for optimizing the transesterification reaction conditions such as molar ratio of the methanol to oil, the reaction temperature, the reaction time, the stirring speed and the amount of catalyst, was performed. The optimized parameters, 6:1 methanol/oil molar ratio with 1.5% catalyst (w/w of oil) reacted under stirring speed 300 rpm at 65{sup o}C for 4 h reaction, gave a maximum ester conversion of 90.5%. Moreover, the solid catalyst could be easily separated and possibly reused. 33 refs., 5 figs., 1 tab.

  15. Rape oil transesterification over heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Encinar, J.M.; Martinez, G. [Dpto. Ingenieria Quimica y Quimica Fisica, UEX, Avda. Elvas s/n, 06071-Badajoz (Spain); Gonzalez, J.F. [Dpto. Fisica Aplicada, UEX, Avda Elvas s/n, 06071-Badajoz (Spain); Pardal, A. [Dpto. Ciencias do Ambiente, ESAB, IPBeja, Rua Pedro Soares s/n, 7800-Beja (Portugal)

    2010-11-15

    This work studies the application of KNO{sub 3}/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO{sub 3} impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions. The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO{sub 3}, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst. The biodiesel with the best properties was obtained using an amount of KNO{sub 3} of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels. (author)

  16. Hydrocracking of α-Cellulose Using Co, Ni, and Pd Supported on Mordenite Catalysts

    Directory of Open Access Journals (Sweden)

    Wega Trisunaryanti

    2018-02-01

    Full Text Available Hydrocracking of α-cellulose has been conducted in a semi-batch reactor at 400, 450, and 500 °C with hydrogen flow (30 mL/min. for 4 h. Mordenite (MOR and Co, Ni and Pd metal supported on the MOR were used as solid catalysts. The catalysts were characterized using X-ray Diffractometer (XRD, Fourier Transform Infrared (FTIR spectroscopy, and Scanning Electron Microscopy (SEM to evaluate the physical-chemical properties. Energy Dispersive X-ray (EDX and Inductively Coupled Plasma (ICP were used to analyze the amount of metal impregnated on the catalysts. The liquid product was analyzed using Gas Chromatograph-Mass Spectroscopy (GC-MS. Thermal hydrocracking was also conducted at 450 °C with the amount of liquid product was 37.86 wt.%. The highest liquid conversion obtained by mordenite catalyst was 94.66 wt.% at 450 °C and the highest liquid conversion (98.08 wt.% was reached by Pd/MOR catalyst at 400 °C.

  17. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    Science.gov (United States)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  18. Taylor flow hydrodynamics in gas-liquid-solid micro reactors

    NARCIS (Netherlands)

    Warnier, M.J.F.

    2009-01-01

    Chemical reactions in which a gas phase component reacts with a liquid phase omponent at the surface of a solid catalyst are often encountered in chemical industry. The rate of such a gas-liquid-solid reaction is often limited by the mass transfer rate of the gas phase component, which depends on

  19. 4-META opaque resin--a new resin strongly adhesive to nickel-chromium alloy.

    Science.gov (United States)

    Tanaka, T; Nagata, K; Takeyama, M; Atsuta, M; Nakabayashi, N; Masuhara, E

    1981-09-01

    1) A new adhesive opaque resin containing a reactive monomer, 4-methacryloxy-ethyl trimellitate anhydride (4-META), was prepared, and its application to thermosetting acrylic resin veneer crowns was studied. 2) The 4-META opaque resin was applied to a variety of nickel-chromium dental alloy specimens which had undergone different treatment, and endurance tests were conducted to evaluate the durability of adhesion. 3) Stable adhesion against water penetration was achieved with metal surfaces first etched with HCl and then oxidized with HNO3. A bond strength of 250 kg/cm2 was maintained even after immersion in water at 37 degrees C for 30 wk or at 80 degrees C for ten wk. Furthermore, this value did not decrease even after the specimens were subjected to 500 thermal cycles. 4) The 4-META opaque resin studied can eliminate the necessity for retention devices on metal castings. 5) The smooth 4-META opaque resin should have no adverse effects on gingivae.

  20. Method of solidifying radioactive ion exchange resin

    International Nuclear Information System (INIS)

    Minami, Yuji; Tomita, Toshihide

    1989-01-01

    Spent anion exchange resin formed in nuclear power plants, etc. generally catch only a portion of anions in view of the ion exchange resins capacity and most of the anions are sent while possessing activities to radioactive waste processing systems. Then, the anion exchange resins increase the specific gravity by the capture of the anions. Accordingly, anions are caused to be captured on the anion exchange resin wastes such that the specific gravity of the anion exchange resin wastes is greater than that of the thermosetting resins to be mixed. This enables satisfactory mixing with the thermosetting resins and, in addition, enables to form integral solidification products in which anion exchange resins and cation exchange resins are not locallized separately and which are homogenous and free from cracks. (T.M.)