WorldWideScience

Sample records for solid potassium cyanide

  1. The oxidative disposition of potassium cyanide in mice

    International Nuclear Information System (INIS)

    Johnson, J.D.; Isom, G.E.

    1986-01-01

    The role of oxidative metabolism in the disposition of potassium cyanide (KCN), was investigated in mice administered KCN (4.6 mg/kg, s.c.) containing 4.5 uCi ( 14 C)KCN. The expired pulmonary metabolites, ( 14 C) hydrocyanic acid (HCN) and 14 CO 2 , were collected and analyzed. Approximately 1% and 2% of the KCN dose was expired as ( 14 C)HCN and 14 CO 2 , respectively. Expiration of the pulmonary metabolites was decreased following pretreatment with sodium nitrite, sodium thiosulfate, oxygen, or a combination of cyanide antidotes. Treatment with hydrogen peroxide lowered the amount of ( 14 C)HCN expired and did not alter the expiration of 14 CO 2 . Treatment with 3-amino-1,2,4-triazole (catalase inhibitor), superoxide dismutase, or diethyldithiocarbamic acid (superoxide dismutase inhibitor) did not change the amount of ( 14 C)HCN expired. However, superoxide dismutase significantly increased the amount of 14 CO 2 expired, whereas diethyldithiocarbamic acid decreased 14 CO 2 expiration. The results from these studies suggest that in vivo cyanide can be oxidized to CO 2 and treatment with agents that alter the availability of endogenous superoxide and/or hydrogen peroxide can alter the rate of cyanide oxidation. (author)

  2. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    Science.gov (United States)

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  3. Hydrocyanation of sulfonylimines using potassium hexacyanoferrate(II) as an eco-friendly cyanide source

    International Nuclear Information System (INIS)

    Li, Zheng; Li, Rongzhi; Zheng, Huanhuan; Wen, Fei; Li, Hongbo; Yin, Junjun; Yang, Jingya

    2013-01-01

    An efficient and eco-friendly method for hydrocyanation of sulfonylimines via one-pot two-step procedure using potassium hexacyanoferrate)II) as cyanide source, benzoyl chloride as a promoter, and potassium carbonate as a base is described. This protocol has the features of using nontoxic, nonvolatile and inexpensive cyanide source, high yield, and simple work-up procedure. (author)

  4. Hydrocyanation of sulfonylimines using potassium hexacyanoferrate(II) as an eco-friendly cyanide source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Li, Rongzhi; Zheng, Huanhuan; Wen, Fei; Li, Hongbo; Yin, Junjun; Yang, Jingya, E-mail: lizheng@nwnu.edu.cn [Key Laboratory of Eco-Environment-Related Polymer Materials for Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu (China)

    2013-11-15

    An efficient and eco-friendly method for hydrocyanation of sulfonylimines via one-pot two-step procedure using potassium hexacyanoferrate)II) as cyanide source, benzoyl chloride as a promoter, and potassium carbonate as a base is described. This protocol has the features of using nontoxic, nonvolatile and inexpensive cyanide source, high yield, and simple work-up procedure. (author)

  5. Toxicity of potassium cyanide to trout. [Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, D W.M.; Merkens, J C

    1952-01-01

    The toxicity of KCN was tested on 50 rainbow trout using a flow through bioassay system. The system was designed to allow water conditions to remain constant throughout the test rather than change through metabolic activities of the fish. Results show: cyanide causes fish to loose equilibrium; cyanide resistance increases if the trout are allowed to acclimate to test temperatures before cyanides is added; young trout are more resistant to cyanide; and the distribution of trout survival times to cyanide concentration approximates a normal distribution. (14 references, 5 figures, 6 tables.

  6. Cyanide

    Science.gov (United States)

    ... cyanide is Cyanide is a rapidly acting, potentially deadly chemical that can exist in various forms. Cyanide ... natural substances in some foods and in certain plants such as cassava, lima beans and almonds. Pits ...

  7. Excretion of 14C-labeled cyanide in rats exposed to chronic intake of potassium cyanide

    International Nuclear Information System (INIS)

    Okoh, P.N.

    1983-01-01

    The excretion of an acute dose of 14C-labeled cyanide in urine, feces, and expired air was studied in rats exposed to daily intake of unlabeled KCN in the diet for 6 weeks. Urinary excretion was the main route of elimination of cyanide carbon in these rats, accounting for 83% of the total excreted radioactivity in 12 hr and 89% of the total excreted radioactivity in 24 hr. The major excretion metabolite of cyanide in urine was thiocyanate, and this metabolite accounted for 71 and 79% of the total urinary activity in 12 hr and 24 hr, respectively. The mean total activity excreted in expired air after 12 hr was only 4%, and this value did not change after 24 hr. Of the total activity in expired air in 24 hr, 90% was present as carbon dioxide and 9% as cyanide. When these results were compared with those observed for control rats, it was clear that the mode of elimination of cyanide carbon in both urine and breath was not altered by the chronic intake of cyanide

  8. Solid, double-metal cyanide catalysts for synthesis of ...

    Indian Academy of Sciences (India)

    Sci. Vol. 126, No. 2, March 2014, pp. 499–509. c Indian Academy of Sciences. Solid, double-metal cyanide catalysts for ... drimers, HPs have a highly branched structural design ... geneous catalysts and corrosion of the reactor lin- ... Carbon dioxide is a greenhouse gas. .... polymer product was reprecipitated from the liquid.

  9. Influence of dissolved oxygen concentration on the toxicity of potassium cyanide to rainbow trout. [Salmo gairdneri

    Energy Technology Data Exchange (ETDEWEB)

    Downing, K M

    1954-01-01

    The present work was undertaken to see if similar results were obtained when fish were tested in a continuous flow of water in which the concentrations of oxygen and cyanide were kept constant. Periods of survival were measured this way to minimize distortion of results by accumulation of metabolic waste, depletion of oxygen or depletion of poison. Results are summarized as follows: rainbow trout survival in potassium cyanide increased with increase in dissolved oxygen; increase in survival times did not decline as oxygen saturation was approached; and medium survival times of 3.3 minutes or less were normally distributed while those of greater than 13 minutes were log normally distributed. 6 references, 1 figure.

  10. Electron spin ressonance of radicals produced by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate

    International Nuclear Information System (INIS)

    Duran, J.E.R.

    1975-01-01

    The production of radicals by ultra-violet photolysis of KCL dopped with potassium cyanide and potassium cyanate is studied by electron spin resonance. Several new paramagnetic species are detected which are identified as HCNO - , NCN - /NCNO - , CNN - /CNON - and CNOsup(=) all giving isotropic spectra at 77 0 K. The temperature dependence of the CNOsup(=) spectrum is investigated down to 1.6 0 K. It is found that two different recrientation motions ocurr which freeze at different temperatures. The effect of this motion on the line width is analized using Anderson's theory of exchange narrowing. The electronic structure of the CNOsup(=) radical is discussed using the measured the carbon and nitrogen hfs constants. It is found that a bonding scheme similar to that accepted for the isoelectronic molecule NO 2 is applicable, and a one electron molecular orbital scheme is given. Within this scheme a negative contribution to the nitrogen isotropic hfs constant is found which is assumed to originate from the polarization of the fully occupied ls orbitals [pt

  11. Study of solid phase kinetics during cyanidation using the 198 Au radioactive tracer

    International Nuclear Information System (INIS)

    Barbus, A.; Pop, I.I.; Gaspar, E.

    1995-01-01

    During cyanidation, the various gold bearing pyrite sorts exhibit different behaviour, that sometimes cause increased cyanidation times influencing the reagent and power consumption, in the same time generating fluctuations in the recovery efficiencies. The introduction of the 198 Au radioactive tracer into the cyanidation circuit enabled us to follow several parameters of the cyanidation kinetics: the average residence time of the gold bearing pyrite in the technological equipment, information about the homogenization process, dispersion of solids and gold dissolution efficiency on each technological stage. (author)

  12. Neurobehavioral and Cardiovascular Effects of Potassium Cyanide Administered Orally to Mice.

    Science.gov (United States)

    Hawk, Michael A; Ritchie, Glenn D; Henderson, Kim A; Knostman, Katherine A B; Roche, Brian M; Ma, Zhenxu J; Matthews, Claire M; Sabourin, Carol L; Wakayama, Edward J; Sabourin, Patrick J

    2016-09-01

    The Food and Drug Administration Animal Rule requires evaluation of cardiovascular and central nervous system (CNS) effects of new therapeutics. To characterize an adult and juvenile mouse model, neurobehavioral and cardiovascular effects and pathology of a single sublethal but toxic, 8 mg/kg, oral dose of potassium cyanide (KCN) for up to 41 days postdosing were investigated. This study describes the short- and long-term sensory, motor, cognitive, and behavioral changes associated with oral dosing of a sublethal but toxic dose of KCN utilizing functional observation battery and Tier II CNS testing in adult and juvenile mice of both sexes. Selected tissues (histopathology) were evaluated for changes associated with KCN exposure with special attention to brain regions. Telemetry (adult mice only) was used to evaluate cardiovascular and temperature changes. Neurobehavioral capacity, sensorimotor responsivity or spontaneous locomotor activity, and rectal temperature were significantly reduced in adult and juvenile mice at 30 minutes post-8 mg/kg KCN dose. Immediate effects of cyanide included bradycardia, adverse electrocardiogram arrhythmic events, hypotension, and hypothermia with recovery by approximately 1 hour for blood pressure and heart rate effects and by 2 hours for body temperature. Lesions consistent with hypoxia, such as mild acute tubular necrosis in the kidneys corticomedullary junction, were the only histopathological findings and occurred at a very low incidence. The mouse KCN intoxication model indicates rapid and completely reversible effects in adult and juvenile mice following a single oral 8 mg/kg dose. Neurobehavioral and cardiovascular measurements can be used in this animal model as a trigger for treatment. © The Author(s) 2016.

  13. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.

  14. EPA Method 3135.2I: Cyanide, Total and Amenable in Aqueous and Solid Samples Automated Colorimetric With Manual Digestion

    Science.gov (United States)

    This method describes procedures for preparation and analysis of solid, water and wipe samples for detection and measurement of cyanide amendable to chlorination using acid digestion and spectrophotometry.

  15. Technetium cyanide chemistry: synthesis and characterization of technetium(III) and -(V) cyanide complexes

    International Nuclear Information System (INIS)

    Trop, H.S.; Jones, A.G.; Davison, A.

    1980-01-01

    Several new technetium cyanide complexes have been prepared and characterized. The reaction of ammonium hexaiodotechnetate(IV) with potassium cyanide in refluxing aqueous methanol under nitrogen yields potassium heptacyanotechnetate(III) dihydrate, K 4 Tc(CN) 7 .2H 2 O (1). Infrared and Raman measurements indicate that 1 has a pentagonal bipyramidal structure (D/sub 5h/) in both solid and solution. Aqueous solutions of 1 are air sensitive, decomposing to potassium oxopentacyanotechnetate(V) tetrahydrate, K 2 TcO(CN) 5 .4H 2 O (2). This species can also be prepared from the reaction of TcO 2 .xH 2 O with hot aqueous potassium cyanide solutions. Hydrolysis of 2 in water yields potassium trans-dioxo-tetracyanotechnetate(V), K 3 TcO 2 (CN) 4 (3). Preparation of 3 can also be achieved from the treatment of [TcO 2 (Py) 4 ]ClO 4 .2H 2 O with aqueous potassium cyanide. Infrared and Raman measurements on 3 are consistent with the proposed trans-dioxo (D/sub 4h/) structure. Reaction of the oxotetrachlorotechnetate(V) anion, TcOCl 4 , with potassium cyanide in methanol produces trans-oxomethoxytetracyanotechnetate(V). [TcO(OMe)(CN) 4 ] (4). The full details of the synthesis and characterization of these interesting technetium(III) and -(V) complexes, as well as observations on the infrared and Raman spectra of trans-dioxo metal complexes and the hydrolysis of species 2, are presented

  16. One-pot four-component synthesis of 2-aryl-3,3-dihaloacrylonitriles using potassium hexacyanoferrate(II) as environmentally benign cyanide source

    International Nuclear Information System (INIS)

    Zhao, Zhouxing; Li, Zheng

    2011-01-01

    An efficient route to one-pot four-component reactions of aroyl chlorides, potassium hexacyanoferrate(II), triphenylphosphine and carbon tetrahalides to synthesize 2-aryl-3,3-dichloroacrylonitriles and 2-aryl-3,3-dibromoacrylonitriles was described. This protocol has advantages of use of non-toxic cyanide source, high yield and simple work-up procedure. (author)

  17. Effect of cyanide additive on the radiolytic decomposition of sodium and potassium nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1994-01-01

    Gamma ray induced decomposition of NaNO 3 and KNO 3 in presence of 90-99.5 mol% of NaCN and KCN has been studied at different absorbed doses up to 250 kGy. [NO 2 - ] varied with the concentration of the cyanide additive and absorbed dose. G(NO 2 - ) values calculated on the basis of electron fraction of the nitrate salt are enhanced by 2-4 orders of magnitude compared to pure nitrate salt. It is proposed that radical species of nitrate may interact with the colour/radical species of cyanide by energy transfer so as to enhance G-value. Nature of cation and absorbed dose also play an important role. (author). 6 refs., 1 tab., 2 figs

  18. Uses of the potassium permanganate to eliminate copper cyanide from waste water resulting from a lixiviation plant in a gold mine (I)

    International Nuclear Information System (INIS)

    Sancho, J. P.; Fernandez, B.; Ayala, J.; Garcia, M. P.; Lavandeira, A.

    2009-01-01

    The use of cyanide in the hydrometallurgical and chemical industries has led to the emergence of a major environmental problem due to its high toxicity. Te wastewater generated at these plants is hazardous to the environment and therefore must be managed properly. For this purpose, they undergo detoxification processes after lodes from the plant are accumulated in waste-resistant containment ponds that mast be waterproof to prevent environmental disasters from leakages or massive flood. This work shows the results obtained in laboratory tests carried out with plant waters and demonstrates the efficacy of potassium permanganate as an oxidant of cyanide wastewater from a gold hydrometallurgical plant. In the process the destruction of the copper cyanide complexes is solution is achieved and copper metal ions are eliminated through precipitation mostly as hydroxide. (Author) 28 refs.

  19. Cyanide and antimony thermodynamic database for the aqueous species and solids for the EPA-MINTEQ geochemical code

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1989-05-01

    Thermodynamic data for aqueous species and solids that contain cyanide and antimony were tabulated from several commonly accepted, published sources of thermodynamic data and recent journal article. The review does not include gases or organic complexes of either antimony or cyanide, nor does the review include the sulfur compounds of cyanide. The basic thermodynamic data, ΔG/sub f,298//sup o/, ΔH/sub f,298//sup o/, and S/sub f//sup o/ values, were chosen to represent each solid phase and aqueous species for which data were available in the appropriate standard state. From these data the equilibrium constants (log K/sub r,298//sup o/) and enthalpies of reaction (ΔH/sub r,298//sup o/) at 298 K (25/degree/C) were calculated for reactions involving the formation of these aqueous species and solids from the basic components. 34 refs., 14 tabs

  20. Solid-state emissive triarylborane-based BODIPY dyes: photophysical properties and fluorescent sensing for fluoride and cyanide ions.

    Science.gov (United States)

    Fu, Guang-Liang; Pan, Hong; Zhao, Yi-Hong; Zhao, Cui-Hua

    2011-12-07

    We disclose two novel BODIPY dyes, which contain the bulky substituent, [(4-dimesitylboryl)phenyl]ethynyl at 2- and 2,6-positions. The steric bulkiness of the boryl group is effective to suppress the intermolecular interaction in the solid state and thus these two compounds display intense fluorescence not only in solution but also in the solid state. In addition, the BODIPY dyes display sensitive fluorescence responses to fluoride and cyanide anions through the complexation with the boron center of the boryl group and the subsequent decomposition of the BODIPY core, illustrating their potential uses for the fluorescence sensing of fluoride and cyanide ions.

  1. A Highly Selective Sensor for Cyanide in Organic Media and on Solid Surfaces

    Directory of Open Access Journals (Sweden)

    Belygona Barare

    2016-02-01

    Full Text Available The application of IR 786 perchlorate (IR-786 as a selective optical sensor for cyanide anion in both organic solution (acetonitrile (MeCN, 100% and solvent-free solid surfaces was demonstrated. In MeCN, IR-786 was selective to two anions in the following order: CN− > OH−. A significant change in the characteristic dark green color of IR-786 in MeCN to yellow was observed as a result of nucleophilic addition of CN− to the fluorophore, i.e., formation of IR 786-(CN, which was also verified by a blue shift in the 775 nm absorbance peak to 430 nm. A distinct green fluorescence emission from the IR-786-(CN in MeCN was also observed, which demonstrated the selectivity of IR-786 towards CN− in MeCN. Fluorescence emission studies of IR-786 showed that the lower detection limit and the sensitivity of IR-786 for CN− in MeCN was 0.5 μM and 0.5 to 8 μM, respectively. The potential use of IR-786 as a solvent-free solid state sensor for the selective sensing and monitoring of CN− in the environment was also demonstrated. On solvent-free solid state surfaces, the sensitivity of the IR-786 to CN− in water samples was in the range of 50–300 μM with minimal interference by OH−.

  2. A one-dimensional polymeric cobalt(III–potassium complex with 18-crown-6, cyanide and porphyrinate ligands

    Directory of Open Access Journals (Sweden)

    Yassine Belghith

    2014-03-01

    Full Text Available The reaction of CoII(TpivPP {TpivPP is the dianion of 5,10,15,20-tetrakis[2-(2,2-dimethylpropanamidophenyl]porphyrin} with an excess of KCN salts and an excess of the 18-crown-6 in chlorobenzene leads to the polymeric title compound catena-poly[[dicyanido-2κ2C-(1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O{μ3-(2α,2β-5,10,15,20-tetrakis[2-(2,2-dimethylpropanamidophenyl]porphyrinato-1κO5:2κ4N,N′,N′′,N′′′:1′κO15}cobalt(IIIpotassium] dihydrate], {[CoK(CN2(C12H24O6(C64H64N8O4]·2H2O}n. The CoIII ion lies on an inversion center, and the asymmetric unit contains one half of a [CoIII(2α,2β-TpivPP(CN2]− ion complex and one half of a [K(18-C-6]+ counter-ion (18-C-6 is 1,4,7,10,13,16-hexaoxacyclooctadecane, where the KI ion lies on an inversion center. The CoIII ion is hexacoordinated by two C-bonded axial cyanide ligands and the four pyrrole N atoms of the porphyrin ligand. The KI ion is chelated by the six O atoms of the 18-crown-6 molecule and is further coordinated by two O atoms of pivalamido groups of the porphyrin ligands, leading to the formation of polymeric chains running along [011]. In the crystal, the polymeric chains and the lattice water molecules are linked by N—H...O and O—H...N hydrogen bonds, as well as weak C—H...O, O—H...π and C—H...π interactions into a three-dimensional supramolecular architecture.

  3. Uses of the potassium permanganate to eliminate copper cyanide from waste water resulting from a lixiviation plant in a gold mine (II): Pilot plant experiences; Aplicacion del permanganato potasico para la eliminacion de cianuros de cobre en aguas residuales de la planta de lixiviacion en una mina de oro (II): Ensayos en planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    Sancho, J. P.; Fernandez, B.; Ayala, J.; Gracia, M. P.; Lavandeira, A.

    2011-07-01

    The search for a detoxification treatment of the wastewater generated during industrial processes, has been a constant for all companies in general and for gold mining in particular, whose wastewater generally contains high concentrations of cyanide compounds with high toxicity. In the previous research work, developed in the laboratory, the efficacy of potassium permanganate as an oxidizing agent for cyanidic wastewater, from a gold hydrometallurgical plant, has been demonstrated, achieving the destruction of copper cyanide complexes present in solution and the subsequent metal removal by precipitation as hydroxide. This paper presents the conclusions obtained after the implementation of the process developed in the laboratory, at pilot-plant scale. (Author) 30 refs.

  4. The first actinyl cyanide

    International Nuclear Information System (INIS)

    Berthet, J.C.; Thuery, P.; Ephritikhine, M.

    2007-01-01

    Reaction of UO 2 (OTf) 2 with 5 molar equivalents of NEt 4 CN in acetonitrile led to the formation of the penta-cyano uranyl complex [NEt 4 ] 3 [UO 2 (CN) 5 ] which is monomeric in the solid state with the five C-coordinated cyanide ions lying in the equatorial plane perpendicular to the linear { UO 2 } axis. (authors)

  5. Formation of 1,2-diaminomaleicdinitrile crystals in radiolized solid hydrogen cyanide

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Aliev, Z.G.; Kiryukhin, D.P.; Atovmyan, L.O.; Barkalov, I.M.

    1994-01-01

    A study was made on possibility of formation of 1,2-diaminomaleicdinitrile and mechanism of its occurrence in space environment. It was shown in experiments, that 1,2-diaminomaleicdinitrile crystals formed in solid HCN matrix, decomposed radiolytically at 77 K by 60 Co γ-rays with dose of 800 kGy during its sublimation T ≤ 260 K along with conjugated polymer of -C=N-C=N- type. It is shown that radiolysis of solid hydrocyanic acid results to formation of 1,2-diaminomaleicdinitrile with radiation yield G > 2. 11 refs., 1 fig., 1 tab

  6. Oxidation of volatile organic vapours in air by solid potassium permanganate.

    Science.gov (United States)

    Mahmoodlu, Mojtaba Ghareh; Hartog, Niels; Majid Hassanizadeh, S; Raoof, Amir

    2013-06-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far there have been few studies on the use of in situ chemical oxidation (ISCO) of vapour phase contaminants. In this study, batch experiments were carried out to evaluate the oxidation of trichloroethylene (TCE), ethanol, and toluene vapours by solid potassium permanganate. Results revealed that solid potassium permanganate is able to transform the vapour of these compounds into harmless oxidation products. The degradation rates for TCE and ethanol were higher than for toluene. The degradation process was modelled using a kinetic model, linear in the gas concentration of VOC [ML(-3)] and relative surface area of potassium permanganate grains (surface area of potassium permanganate divided by gas volume) [L(-1)]. The second-order reaction rate constants for TCE, ethanol, and toluene were found to be equal to 2.0×10(-6) cm s(-1), 1.7×10(-7) cm s(-1), and 7.0×10(-8) cm s(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Solution properties of solid and liquid potassium-indium alloys

    International Nuclear Information System (INIS)

    Takenaka, T.; Saboungi, M.L.

    1987-01-01

    It was recently shown by a combination of electrical resistivity, thermodynamic, and structural measurements that equiatomic alloys formed between K or Na and either Bi, Sb, Te, or Pb show pronounced deviations from ordinary metallic behavior and from ideal solution behavior, e.g., small values for the electrical conductivity and sharp peaks for the Darken excess stability function. Physical explanation of this behavior has been advanced on the basis of the formation of complex structural species similar to those reported for the corresponding solid alloys. The authors have chosen K-In alloys for several reasons. Phase diagram considerations coupled with small electronegativity differences between K and In would lead one to predict small deviations from ideal behavior, thus, this system would be suitable to test for oddities in alloy solution behavior in systems which deviate little from ideal behavior. Others have demonstrated that the position of the peak in the electrical resistivity changed in going from Li to Na and to K in the following sequence X/sub In/ ≅ 0.25, 0.40, and 0.50, respectively. The thermodynamic properties of these alloys would be expected to present similar trends

  8. Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Guoqing; Kusakabe, Katsuki; Yamasaki, Satoko [Department of Living Environmental Science, Fukuoka Women' s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529 (Japan)

    2009-04-15

    Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity. (author)

  9. In situ treatment of cyanide-contaminated groundwater by iron cyanide precipitation

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Smith, J.R.

    1999-01-01

    Groundwater contamination with cyanide is common at many former or active industrial sites. Metal-cyanide complexes typically dominate aqueous speciation of cyanide in groundwater systems, with iron-cyanide complexes often most abundant. Typically, metal-cyanide complexes behave as nonadsorbing solutes in sand-gravel aquifer systems in the neutral pH range, rendering cyanide relatively mobile in groundwater systems. Groundwater pump-and-treat systems have often been used to manage cyanide contamination in groundwater. This study examined the feasibility of using in situ precipitation of iron cyanide in a reactive barrier to attenuate the movement of cyanide in groundwater. Laboratory column experiments were performed in which cyanide solutions were passed through mixtures of sand and elemental iron filings. Removal of dissolved cyanide was evaluated in a variety of cyanide-containing influents under various flow rates and sand-to-iron weight ratios. Long-term column tests performed with various cyanide-containing influents under both oxic and anoxic conditions, at neutral pH and at flow rates typical of sand-gravel porous media, yielded effluent concentrations of total cyanide as low as 0.5 mg/L. Effluent cyanide concentrations achieved were close to the solubilities of Turnbull's blue-hydrous ferric oxide solid solutions, indicating co-precipitation of the two solids. Maximum cyanide removal efficiency was achieved with approximately 10% by weight of iron in the sand-iron mixtures; higher iron contents did not increase removal efficiency significantly. Results obtained indicate that in situ precipitation is a promising passive treatment approach for cyanide in groundwater

  10. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  11. OPTIMIZATION OF POTASSIUM NITRATE BASED SOLID PROPELLANT GRAINS FORMULATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-08-01

    Full Text Available This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2 for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa, temperature (1618.3 K and thrust (834.83 N were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.

  12. Transport of complexed cyanide in soil

    International Nuclear Information System (INIS)

    Meeussen, J.C.L.; Zee, S.E.A.T.M. van der; Bosma, W.J.P.; Keizer, M.G.

    1994-01-01

    Contamination of the soil with cyanide is common at sites of several types of industries. Risks for adverse effects of this cyanide for human health or for the environment are largely determined by the behaviour of this cyanide in soil. In acidic soils this behaviour is probably dominated by precipitation and dissolution of prussian blue, Fe 4 (Fe(CN) 6 ) 3 (s), an iron cyanide precipitate. Calculations of multi-component cyanide transport, including equilibrium with this solid phase, iron hydroxide and several redox reactions, are compared with cyanide concentrations observed in contaminated soils. The calculated cyanide concentrations, as well as the pH and redox potentials, agree well with the field situations

  13. A Moessbauer study on the photolysis of potassium trisoxalatoferrate(III) in solid and solutions

    International Nuclear Information System (INIS)

    Sato, H.; Tominaga, T.

    1977-01-01

    The photolysis of potassium trisoxalatoferrate(III) in solid and aqueous solutions was studied by Moessbauer spectroscopy. A ferrous species was mainly detected as an intermediate product in the photoirradiated solutions. A tentative mechanism was proposed for the overall reactions in and after the photolysis of this compound. The Moessbauer spectra were measured with a Hitachi AA-40 or Shimadzu MEG-2 Moessbauer spectrometer against Co-57 in copper foil. Acrylic holders (32 mm in diameter) were used for measurements of solutions: the irradiated solution was quickly frozen before measurement by adding it dropwise into the acrylic holder which had been cooled with liquid nitrogen or dry-ice. (T.I.)

  14. Metal cyanides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the biewpoint of general crystal T chemistry principles and on the basis of modern data the structural chemistry of metal cyanites is presented. The features of the structure of the following compounds are considered: simple ionic alkali cyanides (Li-Cs) containing CN - ions; molybdenum (4,5), tungsten (4,5), rhenium (5,6) complexes etc, where-CN group is only connected with one metal atom; covalent cyanides of cadmium and other elements in which the CN-group serves as a bridge

  15. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  16. Uses of the potassium permanganate to eliminate copper cyanide from waste water resulting from a lixiviation plant in a gold mine (I); Aplicacion del permanganato potasico para la eliminacion de cianuros de cobre en aguas residuales de la planta de lixiviacion en una mina de oro (I)

    Energy Technology Data Exchange (ETDEWEB)

    Sancho, J. P.; Fernandez, B.; Ayala, J.; Garcia, M. P.; Lavandeira, A.

    2009-07-01

    The use of cyanide in the hydrometallurgical and chemical industries has led to the emergence of a major environmental problem due to its high toxicity. Te wastewater generated at these plants is hazardous to the environment and therefore must be managed properly. For this purpose, they undergo detoxification processes after lodes from the plant are accumulated in waste-resistant containment ponds that mast be waterproof to prevent environmental disasters from leakages or massive flood. This work shows the results obtained in laboratory tests carried out with plant waters and demonstrates the efficacy of potassium permanganate as an oxidant of cyanide wastewater from a gold hydrometallurgical plant. In the process the destruction of the copper cyanide complexes is solution is achieved and copper metal ions are eliminated through precipitation mostly as hydroxide. (Author) 28 refs.

  17. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  18. Effect of temperature on the uptake and metabolism of cyanide by weeping willows

    DEFF Research Database (Denmark)

    Yu, X.-Z.; Trapp, Stefan; Zhou, P.-H.

    2007-01-01

    Plants’ uptake and metabolism of cyanide in response to changes in temperature was investigated. Pre-rooted weeping willows (Salix babylonica L.) were exposed to hydroponic solution spiked with potassium cyanide for 2–3 d. Ten different temperatures were used, ranging from 11◦C to 32◦C. Cyanide...

  19. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  20. Solid contact potassium selective electrodes for biomedical applications – a review

    NARCIS (Netherlands)

    van de Velde, Lennart; d'Angremont, E.; Olthuis, Wouter

    2016-01-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium

  1. Biological Treatment of Cyanide by Using Klebsiella pneumoniae Species

    Directory of Open Access Journals (Sweden)

    Isil Seyis Bilkay

    2016-01-01

    Full Text Available In this study, optimization conditions for cyanide biodegradation by Klebsiella pneumoniae strain were determined to be 25 °C, pH=7 and 150 rpm at the concentration of 0.5 mM potassium cyanide in the medium. Additionally, it was found that K. pneumoniae strain is not only able to degrade potassium cyanide, but also to degrade potassium hexacyanoferrate(II trihydrate and sodium ferrocyanide decahydrate with the efficiencies of 85 and 87.5 %, respectively. Furthermore, this strain degraded potassium cyanide in the presence of different ions such as magnesium, nickel, cobalt, iron, chromium, arsenic and zinc, in variable concentrations (0.1, 0.25 and 0.5 mM and as a result the amount of the bacteria in the biodegradation media decreased with the increase of ion concentration. Lastly, it was also observed that sterile crude extract of K. pneumoniae strain degraded potassium cyanide on the fifth day of incubation. Based on these results, it is concluded that both culture and sterile crude extract of K. pnemoniae will be used in cyanide removal from different wastes.

  2. Survival of fish upon removal of cyanide from water

    International Nuclear Information System (INIS)

    Gacsi, Mariann; Czegeny, Ildiko; Nagy, Gabor; Banfalvi, Gaspar

    2005-01-01

    The effects of potassium cyanide and the removal of cyanide from water in vivo on the survival of fish were investigated. This research was initiated because of the catastrophe that took place at the end of January 2000 in the Carpathian basin, when an enormous amount of cyanide pollution swept through the Samos and Tisza rivers, and then to the Danube. Since nothing was done against the disaster, we have suggested a chemical solution to remove cyanide from waterways (Chem. Innovat. 30 (2000b) 53). Based on experiments, we describe that the most effective and harmless way to remove cyanide and to save the lives of fish from 40 to 160x the lethal doses of cyanide is to use carbogen gas containing 5% carbon dioxide and 95% oxygen followed by aeration with air

  3. Obtaining of potassium dicyan-argentate

    International Nuclear Information System (INIS)

    Sattarova, M.A.; Solojenkin, P.M.

    1997-01-01

    This work is devoted to obtaining of potassium dicyan-argentate. By means of exchange reaction between silver nitrate and potassium cyanide the potassium dicyan-argentate was synthesized. The analysis of obtained samples was carried out by means of titration and potentiometry.

  4. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of cyanide using cadmium carbonate as a new solid-phase reactor

    International Nuclear Information System (INIS)

    Noroozifar, M.; Khorasani-Motlagh, M.; Hosseini, S.-N.

    2005-01-01

    A new and simple flow injection system procedure has been developed for the indirect determination of cyanide. The method is based on insertion of aqueous cyanide solutions into an on-line cadmium carbonate packed column (25% m/m suspended on silica gel beads) and a sodium hydroxide with pH 10 is used as the carrier stream. The eluent containing the analyte as cadmiumcyanide complexes, produced from reaction between cadmium carbonate and cyanide, measured by flame atomic absorption spectrometry. The absorbance is proportional to the concentration of cyanide in the sample. The linear range of the system is up to 15 mg L -1 with a detection limit 0.2 mg L -1 and sampling rate 72 h -1 . The method is suitable for determination of cyanide in industrial waste waters with a relative standard deviation better than 1.22%

  5. Contribution to the study of the Szilard-Chalmers effect in potassium ferro-cyanide; Contribution a l'etude de l'effet Szilard-Chalmers dans le ferrocyanure de potassium

    Energy Technology Data Exchange (ETDEWEB)

    Meriadec, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-01-01

    With a view to studying the Szilard-Chalmers effect in potassium ferrocyanide, a chemical separation method has been developed for the different ions formed by recoil: Fe{sup 2+}, Fe{sup 3+} and the complex forms of iron. A measurement method has been developed also for analyzing separately the isotopes {sup 55}Fe and {sup 59}Fe, and determining the relative amounts of these two isotopes in the different chemical states. The experimental results show that the activity of the two isotopes is distributed differently between the complex forms of iron, the ferrous ions and the ferric ions. This difference is of the order of 40 per cent in the ferrous solution and of 2 to 5 per cent in the ferric retention and ferric solution. (author) [French] En vue d'etudier l'effet Szilard-Chalmers dans le ferrocyanure de potassium, on a mis au point une methode de separation chimique permettant d'obtenir les differents ions formes par recul: Fe{sup 2+}, Fe{sup 3+} et les formes complexes du fer. Une methode de mesure a ete egalement mise au point pour analyser separement les isotopes {sup 55}Fe et {sup 59}Fe et determiner les proportions relatives de ces 2 isotopes dans les differents etats chimiques. Les resultats experimentaux montrent que l'activite des deux isotopes est repartie differemment entre les formes complexes du fer, les ions ferreux et les ions ferriques. Cette difference est de l'ordre de 40 pour cent dans la solution ferreuse et de 2 a 5 pour cent dans la retention et la solution ferrique. (auteur)

  6. Solid state green synthesis and catalytic activity of CuO nanorods in thermal decomposition of potassium periodate

    Science.gov (United States)

    Patel, Vinay Kumar; Bhattacharya, Shantanu

    2017-09-01

    The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.

  7. Speciation and evolution of cyanide compounds contained in industrial residues from coal pyrolysis; Speciation et evolution des composes cyanures contenus dans des residus industriels issus de la pyrolyse de la houille

    Energy Technology Data Exchange (ETDEWEB)

    Proffit, D.

    2002-10-15

    Occurrence of cyanide compounds, mainly [Fe(CN)6]2-/3-, in soils and groundwater is due to industrial waste deposits. The main polluting source are purifier wastes stored on former manufactured gas plant sites. In order to estimate the environmental risks associated with cyanide, a specific analytical procedure combining analyses on the solids (optical and scanning electron microscopies, infrared spectroscopy and x-ray diffraction) with analyses carried out on leachates obtained by aqueous extraction at various pHs was developed. For a given purifier waste, Prussian blue was evidenced as the major cyanide species but other minor compounds were also observed. Some of them are extremely soluble (e.g. potassium ferrocyanide) whereas others are very stable (e.g. potassium and zinc ferrocyanide). The study of other polluted solids allowed to predict the hazards linked with their storage. Measurements realized on percolation columns effluents revealed that cyanide species can migrate as colloidal species as well as under soluble forms, which confirmed some site observations where cyanide pollution was observed in soils located beneath a priori stable wastes. Such a combination of techniques can then be considered as a useful diagnosis and risk assessment tool. However, as the full procedure is rather time-consuming a partial combination of the techniques developed can even be used advantageously in some specific cases. We also developed a quantification and speciation method (spectrometric UV-Visible - mathematical code) to determine cyanide compounds concentrations in water extraction filtrates. Finally, irradiation tests of purifier wastes were carried out. They revealed that the influence of natural light could be considered as negligible in comparison to the other factors affecting cyanide compounds migration.

  8. Alkali cyanides; destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, J C

    1925-12-02

    The destructive distillation of carbonaceous substances can be accomplished by heating them in a bath of molten alkali and cyanide. Liquid hydrocarbons are produced. The separation of the cyanide from the coke or carbonaceous residues by filtration leaves a substantial quantity of cyanide absorbed by the carbon. A feasible method for removal has been developed by mixing the mixture of cyanide and coke with sodium carbonate or other alkali in the molten state, then treating this substance with nitrogen with or without ammonia to convert most of the carbon to cyanide. The carbonaceous material may be mixed with a liquid hydrocarbon such as petroleum, shale oil, or heavy tar oil, heated, and introduced below the surface of the liquid cyanide which partially decomposes and hydrogenates the coal to increase the yield of hydrocarbons. Dry ammonia may be bubbled through the reaction mixture to effect agitation and to form more cyanide.

  9. determination of free cyanide and total cyanide concentrations

    African Journals Online (AJOL)

    Bogoso Gold Limited (BGL), have adopted the use of cyanide solution in ... cyanide compounds, cyanide spillages into nearby water bodies and limitations in ..... 1. Amegbey, N.A.; Adimado, A.A. Min. Extract. Metallurgy 2003, 112, 126. 2.

  10. Potassium permanganate and tetraethylammonium chloride are a safe and effective substitute for osmium tetroxide in solid-phase fluorescent chemical cleavage of mismatch.

    OpenAIRE

    Roberts, E; Deeble, V J; Woods, C G; Taylor, G R

    1997-01-01

    Whilst chemical cleavage of mismatch (CCM) detects all point mutations in DNA, its widespread use has been hampered by the complex multistage methodology and the need for toxic chemicals, in particular osmium tetroxide. Here we show that osmium tetroxide can be replaced by potassium permanganate, giving the same spectrum of mutation detection, but with greater sensitivity. The use of potassium permanganate is compatible with solid phase capture and fluorescent detection, giving a safer method...

  11. An uncommon case of a suicide with inhalation of hydrogen cyanide.

    Science.gov (United States)

    Musshoff, F; Kirschbaum, K M; Madea, B

    2011-01-30

    An uncommon suicide by oral ingestion of potassium cyanide salts and contemporaneous inhalation of hydrogen cyanide is presented. A 48-year-old tradesman was found dead sitting in his car. A penetrating odor of bitter almonds was noticed when opening the doors. A camping stove and a cooking pot containing large amounts of dark blue crystals were found in the footwell of the car. White powder adhered to his fingers and to the area around the mouth. Furthermore bottles containing potassium ferrocyanide and different kinds of acid and leach were found in the car together with internet information about, e.g. potassium ferrocyanide and potassium cyanide. At autopsy hemorrhages and erosions of the mucosa of the respiratory tract, esophagus and stomach were found. Concentrations of cyanide were 0.2mg/l in stomach contents, 0.96mg/kg in brain tissue, 2.79mg/kg in lungs, and 5.3mg/l in blood. The white and toxic powder potassium cyanide was formed by heating of the yellow crystals of potassium ferrocyanide on the camping stove. This powder was probably ingested orally. Addition of acid converted the salt into the highly toxic gas hydrogen cyanide. Oxidation with atmospheric oxygen built the dark blue ferrous compound Prussian blue. This case report of a person who was not familiar with chemicals demonstrates the acquisition of professional information via the internet, enabling a suicide with a complex procedure. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Headspace sorptive solid phase microextraction (HS-SPME) combined with a spectrophotometry system: A simple glass devise for extraction and simultaneous determination of cyanide and thiocyanate in environmental and biological samples.

    Science.gov (United States)

    Al-Saidi, H M; Al-Harbi, Sami A; Aljuhani, E H; El-Shahawi, M S

    2016-10-01

    A simple, low cost and efficient headspace sorptive solid phase microextraction (HS-SPME) method for determination of cyanide has been developed. The system comprises of a glass tube with two valves and a moveable glass slide fixed at its centre. It includes an acceptor phase polyurethane foam treated mercury (II) dithizonate [Hg(HDz)2-PUF] complex fixed inside by a septum cap in a cylindrical configuration (5.0cm length and 1.0cm diameter). The extraction is based upon the contact of the acceptor phase to the headspace and subsequently measuring the absorbance of the recovered mercury (II) dithizonate from PUFs sorbent. Unlike other HSSE, extraction and back - extractions was carried out in a closed system, thereby improving the analytical performance by preventing the analyte loss. Under the optimized conditions, a linear calibration plot in the range of 1.0-50.0µmolL(-1) was achieved with limits of detection (LOD) and quantification (LOQ) of 0.34, 1.2µmolL(-1) CN(-), respectively. Simultaneous analysis of cyanide and thiocyanate in saliva was also performed with satisfactory recoveries. Copyright © 2016. Published by Elsevier B.V.

  13. Cyanides: decomposition and determination

    International Nuclear Information System (INIS)

    Gilath, I.; Cohen, L.

    1977-08-01

    Different cyanide destruction methods such as electrolysis (with and without the addition of salt), hypochlorite treatment and ion exchange detoxication were evaluated on a laboratory scale using model solutions. Parameters were determined for the optimal operation of the investigated processes. Analytical methods were adapted for concentrations and compositions of interest. An easy and rapid method of complex cyanide breakdown by ion exchange treatment was developed for analytical purposes. (author)

  14. Antidotes for Cyanide Poisoning

    Science.gov (United States)

    2013-01-01

    treatment, six task forces formulated recom- mendations for a national structure of prehospital EM by family physicians, ambulance nurses , and hospital...competencies between ambulance nurses and prehospital physicians. Eur J Emerg Med 2011; 18:322 327. Antidotes for cyanide poisoning Vikhyat S. Bebarta...the study model (limited to 60 min after the start of cyanide infusion) and the hemodynamic parameters as end points, instead of long-term sequelae

  15. Biodegradation of cyanide using Serratia sp. isolated from contaminated soil of gold mine in Takab

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohseni

    2014-07-01

    Full Text Available   Introduction : Cyanide is a toxic and hazardous compound for all organisms which is produced enormously by human being and causes the environment pollution. Biodegradation is the best method for cyanide elimination in industrial wastewater. The aims of this study were isolation of cyanide degrading bacteria from contaminated soil and investigation of their ability for cyanide degradation.   Materials and methods: After soil samples collection, enrichment of cyanide degrading bacteria was performed in a minimal medium containing 0.5 mM potassium cyanide. The ability of isolated bacterium to utilize the cyanide as sole carbon and nitrogen source was investigated. Cyanide degradation and ammonium production was determined in growth medium using picric acid and Nessler’s regent methods. Toxicity effect of different cyanide compounds on bacterial growth was determined using minimum inhibitory concentration. In addition, the ability of the isolated bacterium to utilize different cyanide compounds was investigated . Identification of the isolate was undertaken using morphological, physiological and biochemical characteristics and molecular analysis .   Results : A bacterium with ability to degrade cyanide as sole carbon and nitrogen source was isolated from soil. This bacterium named as isolate MF1. MF1 degraded cyanide in growth medium in alkaline condition after 40 hours. Moreover this isolate tolerated more than 7 mM potassium cyanide. The results showed that there was a direct relation between decreasing of cyanide concentration, increasing of ammonia concentration and growth of MF1. In addition, the isolated bacterium demonstrated the ability to utilize different cyanide compounds as sole carbon and nitrogen source. The results of morphological and physiological characteristics showed that this bacterium belonged to the Serratia sp. Moreover, 16S rDNA sequencing and phylogenetic analyses exhibited that MF1 strain was similar to Serratia

  16. Isotopic studies on ligand exchange between complex and simple cyanides in water medium and in liquid hydrogen cyanide. Part 2. Radiocyanide ligand exchange study between hydrogen cyanide and octacyanotungstate(4) in water solutions of mineral acids

    International Nuclear Information System (INIS)

    Zielinski, M.

    1979-01-01

    Radiocyanide ligand exchange between potassium octacyanotungstate(4) and hydrogen cyanide in aqueous solutions of sulfuric acid and between octacyanotungstic(4) acid and hydrogen cyanide in aqueous solutions have been investigated experimentally. The observed enhancement of the rate of ligand exchange in acidic medium has been rationalized in terms of the proposed new general reaction scheme taking into account the reversible decomposition of complex cyanide at low pH, and irreversible one at high pH. The discussion on the results obtained has been carried out within the framework of derived formal kinetic equations. (author)

  17. Potassium Permanganate as an Alternative for Gold Mining Wastewater Treatment

    Science.gov (United States)

    Ordiales, M.; Fernández, D.; Verdeja, L. F.; Sancho, J.

    2015-09-01

    The feasibility of using potassium permanganate as a reagent for cyanide oxidation in wastewater was experimentally studied. Both artificial and production wastewater from two different gold mines were tested. The experiments had three goals: determine the optimum reagent concentration and reaction time required to achieve total cyanide removal, obtain knowledge of the reaction kinetics, and improve the management of the amount of reagent. The results indicate that potassium permanganate is an effective and reliable oxidizing agent for the removal of cyanide from gold mining wastewater.

  18. The fate of cyanide in leach wastes at gold mines: An environmental perspective

    International Nuclear Information System (INIS)

    Johnson, Craig A.

    2015-01-01

    Highlights: • This paper reviews the fate of cyanide in mineral processing wastes at gold mines. • Ore leaching produces numerous cyanide-containing species besides the gold complex. • Many cyanide species are eliminated or sequestered naturally over time. • Sequestered cyanide can be remobilized if conditions change. • Toxicity of released solutions can be reduced by photolytic reactions or offgassing. - Abstract: This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN − anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO − ); and thiocyanate (SCN − ). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment. Cyanide-containing and cyanide-related species are subject to attenuation mechanisms that lead to dispersal to the atmosphere, chemical transformation to other carbon and nitrogen species, or sequestration as cyanometallic precipitates or adsorbed species on mineral surfaces. Dispersal to the atmosphere and chemical transformation amount to permanent elimination of cyanide, whereas sequestration amounts to storage of cyanide in locations from which it can potentially be remobilized by

  19. Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids - Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method

    International Nuclear Information System (INIS)

    2004-01-01

    This first edition of ISO 7097-1 together with ISO 7097-2:2004 cancels and replaces ISO 7097:1983, which has been technically revised, and ISO 9989:1996. ISO 7097 consists of the following parts, under the general title Nuclear fuel technology - Determination of uranium in solutions, uranium hexafluoride and solids: Part 1: Iron(II) reduction/potassium dichromate oxidation titrimetric method; Part 2: Iron(II) reduction/cerium(IV) oxidation titrimetric method. This part 1. of ISO 7097 describes procedures for the determination of uranium in solutions, uranium hexafluoride and solids. The procedures described in the two independent parts of this International Standard are similar: this part uses a titration with potassium dichromate and ISO 7097-2 uses a titration with cerium(IV)

  20. Chemical analysis of cyanide in cyanidation process: review of methods

    International Nuclear Information System (INIS)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-01-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  1. On the interaction of molybdenum cyanide complexes with hydroperoxide of tertiary butyl

    International Nuclear Information System (INIS)

    Vretsena, N.B.; Nikipanchuk, M.V.; Chernyak, B.I.

    1979-01-01

    Conducted is investigation of interaction of potassium dioxotetracyanomolybdate (4) K 4 [MoO 2 (CN) 4 ], potassium oxotetracyanomolybdate (2) K 4 [MoO(CN) 4 ] and potassium tetracyanomolybdate K 4 [Mo(CN) 4 ] in CCl 4 and hydroperoxide of tertiary butyl medium, (HPTB). Shown is the process complex mechanism which leads to molybdenum oxidation in complexes and also to coordination and HPTB decomposition. Calculated are parameters of complex formation process of molybdenum with HPTB cyanide complexes

  2. Electroplating and Cyanide Waste.

    Science.gov (United States)

    Torpy, Michael F.; Runke, Henry M.

    1978-01-01

    Presents a literature review of wastes from electroplating industry, covering publications of 1977. This review covers studies such as: (1) ion exchange treatment process; (2) use of reverse osmosis; and (3) cyanide removal and detection. A list of 75 references is also presented. (HM)

  3. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    Science.gov (United States)

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, pcyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  4. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    Lung infections with Pseudomonas aeruginosa (PA) is the most common cause of morbidity and mortality in cystic fibrosis (CF) patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN......) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...... substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN) demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb...

  5. Sustained-release diclofenac potassium-loaded solid lipid microparticle based on solidified reverse micellar solution: in vitro and in vivo evaluation.

    Science.gov (United States)

    Chime, Salome Amarachi; Attama, Anthony Amaechi; Builders, Philip F; Onunkwo, Godswill C

    2013-01-01

    To formulate sustained-release diclofenac potassium-loaded solid lipid microparticles (SLMs) based on solidified reverse micellar solution (SRMS) and to evaluate the in vitro and in vivo properties. SRMS consisting of mixtures of Phospholipon® 90H and Softisan® 154 were used to formulate diclofenac potassium-loaded SLMs. Characterization based on the particle size and morphology, stability and encapsulation efficiency (EE%) were carried out on the SLMs. In vitro release was carried out in simulated intestinal fluid (pH 7.5). Anti-inflammatory and ulcerogenic properties were studied using rats. Maximum EE% of 95%, 94% and 93% were obtained for SLMs formulated with SRMS 1:1, 2:1 and 1:2, respectively. In vitro release showed about 85-90% drug release at 13 h. Diclofenac potassium-loaded SLMs showed good anti-inflammatory and gastro-protective properties. Diclofenac potassium-loaded SLMs based on SRMS could be used orally or parenterally under controlled conditions, for once daily administration.

  6. The mode of occurrence of gold and silver in the Dominian Reef and their response to cyanidation after pressure leading

    International Nuclear Information System (INIS)

    Glatthaar, C.W.; Feather, C.E.

    1985-01-01

    Gold and silver in the Upper Reef of the Dominion Group in the Afrikander Lease area occur in several minerals. Native gold, electrum, and amalgam are the main gold bearers, whereas silver, in addition to being present in the above alloys, is also represented by native silver, in mercurian silver (arquerite), acanthite, stromeyerite, and a bismuth-silver sulphide (schaba-chite or pavionite), and in solid solution in galena. Only minute quantities of these silver-bearing minerals were found, and attempts to evaluate their relative abundances in the ore proved to be difficult. It was possible, however, by use of an electron microprobe, to quantify the silver contents in electrum, amalgam, mercurian silver, and galena. Mass-balance studies based on the calculated galena content suggest that about half of the total silver is associated with galena in solid solution. In practice, the uranium present in the conglomerates of the Dominion Group is extracted first. Because of the refractory nature of the uranium-bearing minerals, a leach at high temperature and high pressure is recommended. While this pressure leach is beneficial to the subsequent cyanidation of gold, a large proportion of the silver present is rendered refractory. The poor recoveries of silver are believed to be due close association of silver and galena. It is believed that silver is released during the dissolution of galena, acanthite, other silver sulphides, and native silver, and subsequently precipitated either as an insoluble complex silver-iron sulphate (argentojarosite) or in solid solution in jarosite (potassium-iron sulphate). Neither compound is amenable to cyanidation. A mixture of plumbojarosite (lead-iron sulphate) and jarosite were seen to form protective coatings on galena particles, and may occlude other silver-bearing minerals in the same manner. In contrast, finely divided gold particles are liberated from pyrite and other minerals during pressure leaching and become readily available to

  7. TiO2 Photocatalyzed Oxidation of Free and Complex Metallic Cyanides.

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, J. E.; Esteghamatdarsthad, B.; Renteria, J.

    2006-07-01

    The TiO2 photo catalyzed oxidation of free cyanide and transition metal cyanide complexes often found in industrial mining wastes were studied. The photoreactor system used was a UV illuminated and stirred tank with suspended particles of TiO2. After to determine the optimization parameters such as light intensity, concentration of complex and free cyanides, in ideal conditions, the effect of the presence of different type of anions was also studied. The model substances chosen were potassium cyanide and cyanides complexes of Iron, Cobalt and Copper in a strong alkaline solution (pH = 11.0 - 12.0). The experimental results indicate that in the case of the hexaferricyanide complex Fe(CN)6 3, the reaction occur in two steps. The first step is the breakdown of the metal-cyanide bond (photo-dissociation) forming free cyanide (CN-) and Fe3+ ions. The second step is the photo-oxidation of the free cyanides formed before. The ions Fe3+ and OH- present in the alkaline solution, precipitate as iron hydroxide Fe(OH)3. During the photo-dissociation step of the iron complex, free CN- ions produced reaches a maximum concentration before it is eliminated by photo-oxidation. The free cyanide produced from the hexaferricyanide complex disappears rapidly at a velocity of 64.6 + - 5.0 ?M/min. This rate of photo-oxidation is comparable with the experiments using just alkaline solutions of potassium cyanide ('free cyanides'). In contrast, in alkaline solutions of cyanide complexes of Cu and Co the rate of photo-oxidation was substantially reduced (6.17+ - 0.80 ?M/min and 0.04 + - 0.010 ?M/min, respectively) and do not show any initial increase of free cyanides in the suspension. The slower rate of photo-oxidation suggests the formation of very stable hydroxyl-cyanide polymeric metallic complexes in the reaction mix. The photo-oxidation pathway of the nitrogen oxide products was also investigated and found that the final product consists mainly of nitrate ions. (Author)

  8. Effect of cyanide on the distribution of 60Co in mice

    International Nuclear Information System (INIS)

    Frankenberg, L.

    1982-01-01

    The effect of cyanide on the distribution of cobalt was studied by injecting mice i.p. with potassium cyanide 61.4 μmoles/kg, followed 1 min later by 60 CoCl 2 38.5 μmoles/kg i.v. Blood and tissue concentrations of 60 Co were then determined up to 48 h after injection and the results were compared with those obtained from control animals receiving 60 CoCl 2 only. In animals treated with cobalt plus cyanide, considerably higher concentrations of 60 Co were found in the spleen in comparison with controls during the whole observation period, whereas the 60 Co concentration in the pancreas was lower than that of controls during the first 4 h. In other tissues no significant differences between cyanide-treated animals and controls were noticed. Determination of complex-bound cyanide demonstrated that the increased uptake of cobalt in the spleen observed in cyanide-treated animals was due to cobalt-cyanide complex(es). Cyanide did not affect the plasma protein binding of cobalt. (orig.)

  9. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  10. Aufnahme von Cyanid in Pflanzen

    DEFF Research Database (Denmark)

    Trapp, Stefan; Koch, Ines; Christiansen, Helle

    2001-01-01

    Cyanides are waste products from the pyrolysis of coal and are frequent soil pollutants in cities nowadays. Prussic acid (HCN) is a fast acting, highly toxic poison, but iron-complexed cyanides in soil are far less toxic. The phytotoxicity of free CN to basket willows (Salix viminalis) was determ...

  11. Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Veselá, Alicja Barbara; Rinágelová, Anna; Chmátal, Martin

    2015-01-01

    Roč. 99, č. 21 (2015), s. 8875-8882 ISSN 0175-7598 R&D Projects: GA TA ČR TA01021368; GA ČR(CZ) GAP504/11/0394 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Cyanide dihydratase * Enzyme production Subject RIV: CE - Biochemistry Impact factor: 3.376, year: 2015

  12. Quantitative measurement of cyanide species in simulated ferrocyanide Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Matheson, J.D.

    1993-02-01

    Analytical methods for the quantification of cyanide species in Hanford simulated high-level radioactive waste were pursued in this work. Methods studied include infrared spectroscopy (solid state and solution), Raman spectroscopy, Moessbauer spectroscopy, X-ray diffraction, scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS), and ion chromatography. Of these, infrared, Raman, X-ray diffraction, and ion chromatography techniques show promise in the concentration range of interest. Quantitation limits for these latter four techniques were demonstrated to be approximately 0.1 wt% (as cyanide) using simulated Hanford wastes

  13. Behaviour of cyanides in soil and groundwater

    DEFF Research Database (Denmark)

    Kjeldsen, P.

    1999-01-01

    contamination in soils and groundwater are discussed. Toxicological and analytical aspects of cyanide containing compounds are briefly touched. The behaviour of cyanide compounds in soil and groundwater is governed by many interacting chemical and microbial processes. Redox conditions and pH are of importance...... is evaluated. At gas work sites, where cyanide is mainly present as iron cyanide complexes, the risk for effects on humans from exposure to cyanide compounds seems to be of minor relevance....

  14. determination of free cyanide and total cyanide concentrations

    African Journals Online (AJOL)

    permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that ... means that, the resident in and around Bogoso are at risk. ... Several methods exist for treating cyanide-contaminated solutions.

  15. Muonium addition to cyanides

    International Nuclear Information System (INIS)

    Stadlbauer, J.M.; Ng, B.W.; Jean, Y.C.; Walker, D.C.

    1982-10-01

    Muonium, the light radioactive isotope of hydrogen, was found to add to the CN triple bond of acetonitrile, cyanoacetate, cyanide and tetracyanocadmate(II) with room temperature rate constants, K sub(M), of 5.1 x 10 7 , 7.7 x l0 7 , 3.0 x 10 9 , and 1.7 x 10 10 (all M -1 s -1 ), respectively. While Cd(CN) 4 -2 is diffusion controlled with an activation energy of approximately 15 kJ/mole the others appear to be activation controlled as with cyanoacetate's activation barrier of approximately 35 kJ/mole. Kinetic isotope effects range from 0.7 to 24

  16. Cyanide utilization and degradation by microorganisms.

    Science.gov (United States)

    Knowles, C J

    1988-01-01

    Various microorganisms can produce (cyanogenesis) or degrade cyanide. They degrade cyanide either to detoxify it, or to use it as a source of nitrogen for growth. Significant amounts of cyanide are formed as a secondary metabolite by a wide range of fungi and a few bacteria by decarboxylation of glycine. When cyanide has been formed by the snow mould fungus it is degraded by conversion to carbon dioxide and ammonia via an unknown pathway. In contrast, cyanogenic bacteria either do not further catabolize cyanide or they convert it into beta-cyanoalanine by addition to cysteine or O-acetylserine. Several non-cyanogenic fungi that are pathogens of cyanogenic plants are known to degrade cyanide by hydration to formamide by the enzyme cyanide hydratase. Such fungi can be immobilized and used in packed-cell columns to continuously detoxify cyanide. ICI Biological Products Business market a preparation of spray-dried fungal mycelia, 'CYCLEAR', to detoxify industrial wastes. Novo Industri have also introduced a cyanidase preparation to convert cyanide directly into formate and ammonia. Bacteria have been isolated that use cyanide as a source of nitrogen for growth. Because cyanide, as KCN or NaCN, is toxic for growth, the bacteria (Pseudomonas fluorescens) have to be grown in fed-batch culture with cyanide as the limiting nutrient. Cyanide is converted to carbon dioxide and ammonia (which is then assimilated) by an NADH-linked cyanide oxygenase system.

  17. Cyanide wastes treatment by bioremediation

    International Nuclear Information System (INIS)

    Deloya Martinez, Alma

    2012-01-01

    The results of the development of an autochthonous consortium of degrader microorganisms of the cyanide for the application in the biological treatment of the dangerous wastes of cyanide, were presented. The autochthonous microorganisms obtained were lyophilized in different protective environments, such as gelatin and lactose broth at different temperatures (-35, -45, -55 and -65). A pretreatment method in slurry was applied for the preliminary treatment of the cyanide wastes: for the preliminary leaching of the waste, with periods between 3 and 5 days and a posterior treatment, by aerated lagoons, applying the consortium of lyophilized microorganisms. Eight different lyophilized were obtained in different temperature conditions and with two lyophilization protective media that have presented excellent recovery at six months of lyophilization. The consortium of lyophilized microorganisms has presented 70 to 80 percent of viability, with cyanide removal percentages higher than 95% and it can be conserved active for a prolonged time (for years). The lyophilized microorganisms can be applied in the biodegradation of the cyanide wastes from the gold mines or any other cyanide waste such as metal electroplanting baths, as well as from jewelry manufacturing. (author) [es

  18. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    Science.gov (United States)

    Johnson, Craig A.

    2015-01-01

    This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN− anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO−); and thiocyanate (SCN−). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment.

  19. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method

    International Nuclear Information System (INIS)

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF 6 and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  20. Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide.

    Science.gov (United States)

    Martínková, Ludmila; Veselá, Alicja Barbara; Rinágelová, Anna; Chmátal, Martin

    2015-11-01

    The purpose of this study is to summarize the current knowledge of the enzymes which are involved in the hydrolysis of cyanide, i.e., cyanide hydratases (CHTs; EC 4.2.1.66) and cyanide dihydratases (CynD; EC 3.5.5.1). CHTs are probably exclusively produced by filamentous fungi and widely occur in these organisms; in contrast, CynDs were only found in a few bacterial genera. CHTs differ from CynDs in their reaction products (formamide vs. formic acid and ammonia, respectively). Several CHTs were also found to transform nitriles but with lower relative activities compared to HCN. Mutants of CynDs and CHTs were constructed to study the structure-activity relationships in these enzymes or to improve their catalytic properties. The effect of the C-terminal part of the protein on the enzyme activity was determined by constructing the corresponding deletion mutants. CynDs are less active at alkaline pH than CHTs. To improve its bioremediation potential, CynD from Bacillus pumilus was engineered by directed evolution combined with site-directed mutagenesis, and its operation at pH 10 was thus enabled. Some of the enzymes have been tested for their potential to eliminate cyanide from cyanide-containing wastewaters. CynDs were also used to construct cyanide biosensors.

  1. Synthesis and derivatographic investigation of potassium octacyanotungstate (4)

    International Nuclear Information System (INIS)

    Kovbashin, V.I.; Dovgej, V.V.; Chernyak, B.I.

    1983-01-01

    The interaction between the rated quantities of potassium cyanide and WO(OH) 3 hydroxide resulted in preparation of potassium dioxytetracyanotungstate (4), K 4 [WO 2 (CN) 4 ]X6H 2 O. The latter, while interacting with a saturated potassium cyanide solution in a carbon dioxide flow transforms to potassium octacyanotungstate (4). The process of K 4 [W(CH) 8 ]x2H 2 O compound thermolysis in argon atmosphere is studied. It is found that, after dehydration of the complex, there occurs thermal transformation of K 4 [W(CN) 8 ] to K 3 [W(CN) 7 ] and then to K 3 [W(CN) 6 ]. The thermolysis final product is tungsten carbide WC

  2. NF ISO 7097-1. Nuclear fuel technology - Uranium dosimetry in solutions, in uranium hexafluoride and in solids - Part 1: reduction with iron (II) / oxidation with potassium bi-chromate / titration method; NF ISO 7097-1. Technologie du combustible nucleaire. Dosage de l'uranium dans des solutions, l'hexafluorure d'uranium et des solides. Partie 1: reduction par fer (II) / oxydation par bichromate de potassium / methode par titrage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This standard document describes the mode of operation of three different methods for the quantitative dosimetry of uranium in solutions, in UF{sub 6} and in solids: reduction by iron (II), oxidation by potassium bi-chromate and titration. (J.S.)

  3. Studying the molecular determinants of potassium channel structure and function in membranes by solid-state NMR

    NARCIS (Netherlands)

    van der Cruijsen, Elwin

    2014-01-01

    Solid-state Nuclear Magnetic Resonance (ssNMR) has made remarkable progress in the structural characterization of membrane proteins systems at atomic resolution. Such studies can be further aided by the use of molecular dynamic simulations. Moreover, ssNMR data can be directly compared to functional

  4. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    Science.gov (United States)

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  5. CYANIDE HEAP BILOGICAL DETOXIFICATION - PHASE II

    Science.gov (United States)

    Many active mine sites, mines in closure stage and some abandoned mines are and have utilized cyanidation to remove and recover precious metals. Discharges from these sites normally contain significant amounts of metal cyanide complexes and concentrations of thiocyanate, soluble...

  6. Biological Remediation of Cyanide: a Review

    OpenAIRE

    Ibrahim, Karamba Kabiru; Syed, Mohd Arif; Shukor, Mohd Yunus; Ahmad, Siti Aqlima

    2015-01-01

    Cyanide and its complexes are produced by industries all over the world as waste or effluents. Biodegradation is considered to be the cheapest and the most effective method to get rid of cyanide in the environment. Several studies on different types of microorganisms that can degrade cyanide in the environment have been carried out. Hydrolytic, oxidative, reductive, and substitutive/transfer reactions are some of the common pathways used by microorganisms in cyanide degradation. Biodegradatio...

  7. Hydrostatic pressure effects on the dielectric response of potassium cyanide

    International Nuclear Information System (INIS)

    Ortiz Lopez, J.

    1992-01-01

    The complex dielectric constant of crystalline KCN was measured under hydrostatic pressures up to 6.1 kbar in the temperature and frequency ranges of 50-300 K and 10-10 5 Hz, respectively. It is found that the pressure derivative of the real part of the dielectric constant at all measured temperatures is negative. From these results we obtain estimates for the pressure and volume derivatives of polarizabilities. The anomaly in the real part of the dielectric constant at the elastic order-disorder transition shifts to higher temperatures with increasing pressure at a rate of 2.05 K/kbar. By carefully avoiding thermal cycling through this transition we find no evidence of the monoclinic phase reported to exist in the P-T phase diagram of KCN at relatively low pressures. Dielectric loss measurements show thermally-activated CN - reorientation rates in the elastically ordered phase with pressure-independent reorientational barriers and decreasing attempt frequencies for increasing pressures. Additional pressure effects on dielectric loss allow to obtain the pressure derivative of the antiferroelectric transition temperature as 1.97 K/kbar. (Author)

  8. Dose and time-dependent effects of cyanide on thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine λ-lyase activities.

    Science.gov (United States)

    Singh, Poonam; Rao, Pooja; Bhattacharya, Rahul

    2013-12-01

    We assessed the dose-dependent effect of potassium cyanide (KCN) on thiosulfate sulfurtransferase (TST), 3-mercaptopyruvate sulfurtransferase (3-MPST), and cystathionine λ-lyase (CST) activities in mice. The time-dependent effect of 0.5 LD50 KCN on cyanide level and cytochrome c oxidase (CCO), TST, 3-MPST, and CST activities was also examined. Furthermore, TST, 3-MPST, and CST activities were measured in stored mice cadavers. Hepatic and renal TST activity increased by 0.5 LD50 KCN but diminished by ≥2.0 LD50. After 0.5 LD50 KCN, the elevated hepatic cyanide level was accompanied by increased TST, 3-MPST, and CST activities, and CCO inhibition. Elevated renal cyanide level was only accompanied by increased 3-MPST activity. No appreciable change in enzyme activities was observed in mice cadavers. The study concludes that high doses of cyanide exert saturating effects on its detoxification enzymes, indicating their exogenous use during cyanide poisoning. Also, these enzymes are not reliable markers of cyanide poisoning in autopsied samples. © 2013 Wiley Periodicals, Inc.

  9. Removal of copper and nickel contaminants from Si surface by use of cyanide solutions

    International Nuclear Information System (INIS)

    Fujiwara, N.; Liu, Y.-L.; Nakamura, T.; Maida, O.; Takahashi, M.; Kobayashi, H.

    2004-01-01

    The cleaning method using cyanide solutions has been developed to remove heavy metals such as copper (Cu) and nickel (Ni) from Si surfaces. Immersion of Si wafers with both Cu and Ni contaminants in potassium cyanide (KCN) solutions of methanol at room temperature decreases these surface concentrations below the detection limit of total reflection X-ray fluorescence spectroscopy of ∼3x10 9 atoms/cm 2 . UV spectra of the KCN solutions after cleaning of the Cu-contaminated Si surface show that stable copper-cyanide complexes are formed in the solution, leading to the prevention of the re-adsorption of copper in the solutions. From the complex stability constants, it is concluded that the Cu(CN) 4 3- is the most dominant species in the KCN solutions

  10. Treatment of cyanide containing wastewater using cavitation based approach.

    Science.gov (United States)

    Jawale, Rajashree H; Gogate, Parag R; Pandit, Aniruddha B

    2014-07-01

    Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Exciton emissions in alkali cyanides

    International Nuclear Information System (INIS)

    Weid, J.P. von der.

    1979-10-01

    The emissions of Alkali Cyanides X irradiated at low temperature were measured. In addition to the molecular (Frenkel Type) exciton emissions, another emitting centre was found and tentatively assigned to a charge transfer self trapped exciton. The nature of the molecular exciton emitting state is discussed. (Author) [pt

  12. Therapeutic problems in cyanide poisoning

    NARCIS (Netherlands)

    van Heijst, A. N.; Douze, J. M.; van Kesteren, R. G.; van Bergen, J. E.; van Dijk, A.

    1987-01-01

    In three patients with severe acute cyanide poisoning, a cyanosis was observed instead of the bright pink skin coloration often mentioned as a sign in textbooks. Treatment of cardiopulmonary insufficiency is as essential as antidotal therapy and the use of sodium nitrite and 4-DMAP is not without

  13. Measurement of Cerium and Gadolinium in Solid Lithium Chloride-Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Williams, Ammon; Bryce, Keith; Phongikaroon, Supathorn

    2017-10-01

    Pyroprocessing of used nuclear fuel (UNF) has many advantages-including that it is proliferation resistant. However, as part of the process, special nuclear materials accumulate in the electrolyte salt and present material accountability and safeguards concerns. The main motivation of this work was to explore a laser-induced breakdown spectroscopy (LIBS) approach as an online monitoring technique to enhance the material accountability of special nuclear materials in pyroprocessing. In this work, a vacuum extraction method was used to draw the molten salt (CeCl 3 -GdCl 3 -LiCl-KCl) up into 4 mm diameter Pyrex tubes where it froze. The salt was then removed and the solid salt was measured using LIBS and inductively coupled plasma mass spectroscopy (ICP-MS). A total of 36 samples were made that varied the CeCl 3 and GdCl 3 (surrogates for uranium and plutonium, respectively) concentrations from 0.5 wt% to 5 wt%. From these samples, univariate calibration curves for Ce and Gd were generated using peak area and peak intensity methods. For Ce, the Ce 551.1 nm line using the peak area provided the best calibration curve with a limit of detection (LOD) of 0.099 wt% and a root mean squared error of cross-validation (RMSECV) of 0.197 wt%. For Gd, the best curve was generated using the peak intensities of the Gd 564.2 nm line resulting in a LOD of 0.027 wt% and a RMSECV of 0.295 wt%. The RMSECV for the univariate cases were determined using leave-one-out cross-validation. In addition to the univariate calibration curves, partial least squares (PLS) regression was done to develop a calibration model. The PLS models yielded similar results with RMSECV (determined using Venetian blind cross-validation with 17% left out per split) values of 0.30 wt% and 0.29 wt% for Ce and Gd, respectively. This work has shown that solid pyroprocessing salt can be qualitatively and quantitatively monitored using LIBS. This work has the potential of significantly enhancing

  14. The visual pigment cyanide effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1989-12-01

    The visual pigment of the Tokay gecko (Gekko gekko) with its in situ absorption maximum at 521 nm has its spectral position at 500 to 505 nm when chloride-deficient digitonin is used for the extraction. In this case the addition of chloride or bromide to the extract restores the maximum to 521 nm. This property, characteristic of gecko pigments in general, does not occur with any of the rhodopsins that have been tested. Simple salts of cyanide, a pseudohalogenoid with an ionic radius close to those of chloride and bromide and/or its hydrolysis product attacks both this gecko pigment and rhodopsins in the dark. This is seen as a slow thermal loss of photopigment if (sodium) cyanide is present at concentrations above 40 mM for the gecko pigment and 150 mM for the rhodopsins of the midshipman (Porichthys notatus) and of the frog (Rana pipiens). In all cases the loss of the photopigment is accompanied by the appearance of a spectral product with maximum absorption at about 340 nm. Cyanide addition has no effect on the photosensitivity of the native pigments and neither does it alter, as do chloride, bromide and other anions, the spectral absorbance curve. The spectral product at 340 nm also appears when the visual pigments are photolyzed in the presence of cyanide salts below the threshold concentrations given above. Incubation of digitonin-solubilized all-trans-retinal with (sodium) cyanide leads to a reaction product with absorption spectrum similar to that obtained with visual pigments under comparable conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    Souza Camargo Junior, S.A. de.

    1982-09-01

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X 1 Σ + →a' 3 Σ + transitions of the CN - molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN - concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author) [pt

  16. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range. Keywords: Surface-Enhanced Raman Spectroscopy, Hydrogen cyanide, Pseudomonas aeruginosa, Cystic fibrosis, Breath analysis

  17. Sodium Nitrite and Sodium Thiosulfate Are Effective Against Acute Cyanide Poisoning When Administered by Intramuscular Injection.

    Science.gov (United States)

    Bebarta, Vikhyat S; Brittain, Matthew; Chan, Adriano; Garrett, Norma; Yoon, David; Burney, Tanya; Mukai, David; Babin, Michael; Pilz, Renate B; Mahon, Sari B; Brenner, Matthew; Boss, Gerry R

    2017-06-01

    The 2 antidotes for acute cyanide poisoning in the United States must be administered by intravenous injection. In the out-of-hospital setting, intravenous injection is not practical, particularly for mass casualties, and intramuscular injection would be preferred. The purpose of this study is to determine whether sodium nitrite and sodium thiosulfate are effective cyanide antidotes when administered by intramuscular injection. We used a randomized, nonblinded, parallel-group study design in 3 mammalian models: cyanide gas inhalation in mice, with treatment postexposure; intravenous sodium cyanide infusion in rabbits, with severe hypotension as the trigger for treatment; and intravenous potassium cyanide infusion in pigs, with apnea as the trigger for treatment. The drugs were administered by intramuscular injection, and all 3 models were lethal in the absence of therapy. We found that sodium nitrite and sodium thiosulfate individually rescued 100% of the mice, and that the combination of the 2 drugs rescued 73% of the rabbits and 80% of the pigs. In all 3 species, survival in treated animals was significantly better than in control animals (log rank test, Pcyanide poisoning in 3 clinically relevant animal models of out-of-hospital emergency care. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  18. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA is releasing the draft report, Toxicological Review of Hydrogen Cyanide (HCN) and Cyanide Salts, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS As...

  19. Assay development status report for total cyanide

    International Nuclear Information System (INIS)

    Simpson, B.C.; Jones, T.E.; Pool, K.H.

    1993-02-01

    A validated cyanide assay that is applicable to a variety of tank waste matrices is necessary to resolve certain waste tank safety issues and for purposes of overall waste characterization. The target for this effort is an assay with an applicable range of greater than 1,000 ppM (0.10 wt%) total cyanide and a confidence level greater than 80%. Figure 1 illustrates the operating regime of the proposed cyanide assay method. The Assay Development Status Report for Total Cyanide will summarize the past experience with cyanide analyses on-tank waste matrices and will rate the status of the analytical methods used to assay total cyanide (CN - ion) in the tank waste matrices as acceptable or unacceptable. This paper will also briefly describe the current efforts for improving analytical resolution of the assays and the attempts at speciation

  20. Cyanide bioremediation: the potential of engineered nitrilases.

    Science.gov (United States)

    Park, Jason M; Trevor Sewell, B; Benedik, Michael J

    2017-04-01

    The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.

  1. Potassium test

    Science.gov (United States)

    ... hyperkalemia ) may be due to: Addison disease (rare) Blood transfusion Certain medicines Crushed tissue injury Hyperkalemic periodic paralysis ... released. This may cause a falsely high result. Alternative Names Hypokalemia test; K+ Images Blood test References Mount DB. Disorders of potassium balance. ...

  2. Potassium Iodide

    Science.gov (United States)

    ... certain other liquids including low-fat white or chocolate milk, flat soda, orange juice, raspberry syrup, or ... Potassium iodide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: swollen glands metallic taste in the ...

  3. Low Potassium (Hypokalemia)

    Science.gov (United States)

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  4. CYANIDE HEAP BIOLOGICAL DETOXIFICATION - PHASE II

    Science.gov (United States)

    Many active mine sites, mines in the closure stage and some abandoned mines are and have utilized cyanidation to remove and recover precious metals. Discharges from these sites normally contain significant amounts of metal cyanide complexes and concentrations of thiocyanate, solu...

  5. Anaerobic biodegradation of cyanide under methanogenic conditions.

    Science.gov (United States)

    Fallon, R D; Cooper, D A; Speece, R; Henson, M

    1991-01-01

    Upflow, anaerobic, fixed-bed, activated charcoal biotreatment columns capable of operating at free cyanide concentrations of greater than 100 mg liter-1 with a hydraulic retention time of less than 48 h were developed. Methanogenesis was maintained under a variety of feed medium conditions which included ethanol, phenol, or methanol as the primary reduced carbon source. Under optimal conditions, greater than 70% of the inflow free cyanide was removed in the first 30% of the column height. Strongly complexed cyanides were resistant to removal. Ammonia was the nitrogen end product of cyanide transformation. In cell material removed from the charcoal columns, [14C]bicarbonate was the major carbon end product of [14C]cyanide transformation. PMID:1872600

  6. Non-cyanide silver plating

    International Nuclear Information System (INIS)

    Dini, J.W.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) and Technic, Inc. have entered into a CRADA (Cooperative Research and Development Agreement) with the goal of providing industry with an environmentally benign alternative to the presently used silver cyanide plating process. This project has been in place for about six months and results are quite promising. The main objective, that of deposition of deposits as thick as 125 um (5 mils), has been met. Property data such as stress and hardness have been obtained and the structure of the deposit has been analyzed via metallography and x-ray diffraction. These results will be presented in this paper, along with plans for future work

  7. 40 CFR 180.130 - Hydrogen Cyanide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen Cyanide; tolerances for... § 180.130 Hydrogen Cyanide; tolerances for residues. (a) General. A tolerance for residues of the insecticide hydrogen cyanide from postharvest fumigation as a result of application of sodium cyanide is...

  8. Influence of Arbuscular Mycorrhizal Fungus (AMF) on degradation of iron-cyanide complexes

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2015-04-01

    Soil contamination in the vicinities of former Manufactured Gas Plant (MGP) sites is a worldwide known environmental issue. The pollutants, in form of iron-cyanide complexes, originating from the gas purification process, create a risk for human health due to potential release of toxic free cyanide, CN(aq) and HCN(g), (aq).The management and remediation of cyanide contaminated soil can be very challenging due to the complex chemistry and toxicity of CN compounds. The employment of phytoremediation to remove or stabilize contaminants at a former MGP site is an inexpensive process, but can be limited through shallow rotting, decreased biomass, poor growing and the risk of secondary accumulation. However, this adaptation may be enhanced via arbuscular mycorrhizal fungi (AMF) activity, which may cooperate on the degradation, transformation or uptake of the contaminants. We would like to present our preliminary results from the ongoing project concerning toxic substrate-AMF-plant relation, based on studying the site of a former MGP site. In situ experiments contributed to identifying those fungi that are likely to persist in extremely acidic and toxic conditions. Subsequently, commercially available Rhizophagus irregularis was grown in sterilized, un-spiked soil with the roots of the host plant Calamagrostis epigejos. Extracted roots and AMF hyphae were used in the batch experiment, were the potential of this association on degradation of iron-cyanide complexes, in form of potassium ferrocyanide solution, was assessed.

  9. Determination of cyanide using a chemiluminescence system composed of permanganate, rhodamine B, and gold nanoparticles

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Hassanzadeh, Javad; Manzoori, Jamshid L.

    2014-01-01

    We describe a new chemiluminescence (CL) system based on the oxidation of rhodamine B (RhoB) with alkaline potassium permanganate in the presence of gold nanoparticles (Au-NPs) and anionic detergent sodium dodecyl sulfate. Free RhoB is weakly chemiluminescent when oxidized with permanganate at alkaline pH values. However, a remarkably strong enhancement of CL is observed in the presence of Au-NPs, probably due to a strong interaction between RhoB and the NPs. The possible mechanism was studied via recording the CL emission. It is also found that the intensity of CL gradually decreases in the presence of cyanide due to its interaction with the Au-NPs. The relation between the decreased CL intensity and cyanide concentration was exploited to develop a method for the determination of cyanide in the 0.01–0.5 μM concentration range, with a detection limit of 2.8 nM. The method was used to determine cyanide in spiked water, urine, and serum. (author)

  10. Decomposition yields of the functional groups in gamma-radiolysis of the potassium and N,N'-dibenzylethylenediamine salts of benzylpenicillin in solid state

    International Nuclear Information System (INIS)

    Dziegielewski, J.O.

    1976-01-01

    The yields of particular groups in the potassium of benzylpenicillin and benzatine penicillin were determined by the NMR method. The total yields of groups are in agreement with the total radiation decomposition yields of the penicillin molecules, as determined by the spectrophotometric, polarimetric and iodometric methods. (author)

  11. Potassium tetracyanidoaurate(III monohydrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsushita

    2017-03-01

    Full Text Available The structure of the title metal complex salt, K[Au(CN4]·H2O, has been redetermined using X-ray diffraction data at 173 K in order to improve the precision. The previous determination was based on neutron diffraction data [Bertinotti & Bertinotti (1970. Acta Cryst. B26, 422–428]. The title compound crystallizes in the space group P212121 with one potassium cation, one [Au(CN4]− anion and one water molecule in the asymmetric unit. The AuIII atom lies on a general position and has an almost square-planar coordination sphere defined by four cyanide ligands. Interactions between the potassium cation and N atoms of the complex anion, as well as O—H...N hydrogen bonds, lead to the formation of a three-dimensional framework structure.

  12. Comparative effects of prolonged administration of cyanide, thiocyanate and chokecherry (Prunus virginiana) to goats.

    Science.gov (United States)

    Soto-Blanco, B; Stegelmeier, B L; Pfister, J A; Gardner, D R; Panter, K E

    2008-04-01

    The aim of the present study was to determine and compare the clinical, hematological, biochemical and histopathological changes induced by cyanide, thiocyanate and chokecherry (Prunus virginiana) in goats. Sixteen Boer-Spanish cross-bred female goats were divided into four treatment groups: (1) control, (2) potassium cyanide (KCN) at 3.8 mg kg(-1) day(-1), (3) potassium thiocyanate (KSCN) at 4.5 mg kg(-1) day(-1) and (4) ground frozen chokecherry leaves and flowers at a target dose of 2.5 mg HCN kg(-1) day(-1), all for 4 weeks. Clinical signs were observed in two goats treated with chokecherry. Only sporadic changes were found in the hematological and blood chemical panel. Goats treated with chokecherry and thiocyanate had an increased number of vacuoles in the colloid of thyroid glands. Spongiosis and spheroids were found in the mesencephalon from goats treated with KCN and chokecherry. These findings suggest the thyroid lesions can be attributed to thiocyanate, whereas the effects on the nervous system were most likely caused by cyanide.

  13. Prophylaxis and Treatment of Cyanide Intoxication Cyanide - Mechanism of Prophylaxis.

    Science.gov (United States)

    1982-07-15

    concentrations of cyanide (C ) and plasma concentrations of thiocyanate (Ce) to obtain esti- mates of K1 3, K3 1 , K3 0 , and V3: dCCN K 2 1 CON(4)C - (K12 + K...the following equations were used for this model: LdyN - K31CcC N - ( K3 1 + KI0)CpCN (7) dt dCcCN .K21CON(4)CC + CpCNK13 - (K12 + K13)CcCN (8) dt V2...manifestation of vitamin -Bl2 deficiency. Lancet. 2, 286-290. Herrington, M. D., Elliott, R. C. and Brown, J. E. (1971). Diagnosis and treatment of

  14. Refractory concentrate gold leaching: Cyanide vs. bromine

    Science.gov (United States)

    Dadgar, Ahmad

    1989-12-01

    Gold extraction, recovery and economics for two refractory concentrates were investigated using cyanide and bromine reagents. Gold extractions for cyanide leaching (24-48 hours) and bromine leaching (six hours) were the same and ranged from 94 to 96%. Gold recoveries from bromine pregnant solutions using carbon adsorption, ion exchange, solvent extraction, and zinc and aluminum precipitation methods were better than 99.9%. A preliminary economic analysis indicates that chemical costs for cyanidation and bromine process are 11.70 and 11.60 respectively, per tonne of calcine processed.

  15. Modification of the SERS spectrum of cyanide traces due to complex formation between cyanide and silver

    Science.gov (United States)

    Cao Dao, Tran; Kieu, Ngoc Minh; Quynh Ngan Luong, Truc; Cao, Tuan Anh; Hai Nguyen, Ngoc; Le, Van Vu

    2018-06-01

    It is well known that cyanide is an extremely toxic lethal poison with human death within minutes after exposure to only 300 ppm cyanide. On the other hand, cyanide is released into the environment (mainly through waste water) every day from various human activities. Therefore, rapid, sensitive and cost-effective cyanide trace detection is an urgent need. Surface-enhanced Raman scattering (SERS) is a method that meets these requirements. It should be noted, however, that in this technique SERS substrates, which are usually made of gold or silver, will be leached with aqueous cyanide by the formation of complexes between gold or silver with cyanide. This will cause the SERS spectrum of cyanide to be modified. When determining cyanide concentrations by SERS analysis, this spectral modification should be taken into account. This report presents the SERS spectral modification of aqueous cyanide traces (in ppm and lower concentration range) when the SERS substrates used are flower-like silver micro-structures.

  16. A novel cyanide ion sensing approach based on Raman scattering for the detection of environmental cyanides.

    Science.gov (United States)

    Yan, Fei; Gopal Reddy, C V; Zhang, Yan; Vo-Dinh, Tuan

    2010-09-01

    This paper describes a direct optical approach based on Raman scattering for selective and sensitive detection of cyanide ions in aqueous environment without requiring time-consuming sample pretreatment and the formation of hydrogen cyanide. Due to the strong affinity between copper (I) and cyanide ion, evaporated copper (I) iodide (CuI) thin films are shown to be excellent substrates for selective recognition of free cyanide ions in aqueous matrices. The amount of cyanide ion retained by the copper (I) in the CuI thin films reflects its actual concentration in tested samples, and the subsequent Raman measurements of the substrate are shown to be capable of detecting toxic cyanide content at levels under international drinking water standard and environmental regulatory concentrations. Measurements obtained from the same batch of evaporated CuI thin films (approximately 100-nm thickness) show excellent linearity over a variety of cyanide concentrations ranging from 1.5 microM to 0.15 mM. This detection method offers the advantage of selectively detecting cyanides causing a health hazard while avoiding detection of other common interfering anions such as Cl-, Br-, PO4(3-), SO4(2-), NO2-, S2- and SCN-. Coupled with portable Raman systems that are commercially available, our detection approach will provide on-site monitoring capability with little sample preparation or instrument supervision, which will greatly expedite the assessment of potential environmental cyanide risks. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. CAPSULE REPORT - MANAGING CYANIDE IN METAL FINISHING

    Science.gov (United States)

    The purpose of this document is to provide guidance to surface finishing manufacturers, metal finishing decision maker and regulators on management practices and control technologies for managing cyanide in the workplace. This information can benefit key industry stakeholder gro...

  18. Characterization and treatment of cyanide in MGP purifier wastes

    Energy Technology Data Exchange (ETDEWEB)

    Theis, T.L. [Clarkson University, Potsdam, NY (United States). Dept. of Civil and Environmental Engineering

    1995-12-31

    Purifier wastes were generated from the clean-up gaseous impurities, principally hydrogen sulfide and hydrogen cyanide, contained in raw gas from MGP operations through retention by iron oxide solids. These materials were generated at a rate of about 10-20 kg/1000 m{sup 3} of gas produced, and although regeneration was sometimes practised, eventual disposal as fill material, usually on site, was eventually necessary. The remediation of MGP sites generally requires that the disposition of these waste solids be addressed. The effective treatment of purifier wastes presents special problems due to the acid-base properties of the material, its elevated sulfur content, and the significant quantities of carbon both added as wood shavings and present as compounds generated as a result of gas manufacture. In broad terms, treatment approaches can be divided into two classes, those aimed at destroying the cyanide and objectionable carbon compounds and otherwise disposing of the residual, and those which attempt to isolate the waste from its surroundings. The latter approach attempts to take advantage of the natural insolubility of most of the constituents of concern found in purifier wastes, while destructive technologies limit potential liability. 9 refs.

  19. The determination of total cyanide in solutions containing uranium and gold

    International Nuclear Information System (INIS)

    Solomons, M.; Dixon, K.

    1983-01-01

    This report gives the results of a limited investigation of three distillation procedures and their variants for the separation of cyanide. The spectrophotometric measurement, which follows the distillation, uses either a mixture of pyridine and pyrazolone, or a mixture of pyridine and barbituric acid. It was found that the method published in the South Africa Government Gazette in 1969 gives quantitative recoveries from potassium cyanide solutions but not in the presence of gold. The ligand-displacement method did not give quantitative recoveries in the presence of gold, except when zinc was added to the distilland, and it then failed to give a quantitative recovery of cyanide from ferrocyanide. These two methods were therefore rejected as unsuitable for the determination of cyanide in solutions containing small amounts of uranium and gold. The procedure of the American Public Health Association (APHA) was found to give quantitative recoveries in the presence of gold, uranium, thiocyanate, and ferrocyanide when cuprous chloride, or cuprous chloride with magnesium chloride, are added to the distilland. The spectrophotometric measurement using a mixture of pyridine and barbituric acid is preferred. The calibration range of the method is 0,5 to 6μg of cyanide, and the limit of determination is 0,04μg/cm 3 . (The relative standard deviation of the method is 0,05.) The distillation time in the APHA method is approximately two and a half hours; with 3 distillation trains, up to 9 distillations can be made per day, plus a further 2 hours for the spectrophotometric determination. The preferred laboratory method is detailed in an appendix

  20. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Hydrogen Cyanide and Cyanide Salts: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  1. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    Science.gov (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Radiation purification of water from cyanides

    International Nuclear Information System (INIS)

    Piskarev, I.M.; Rylova, A.E.; Sevast'yanov, A.I.

    1994-01-01

    Attempts at performing the process of radiation purification of water from cyanides have been described in the literature and were briefly reviewed earlier. Sodium cyanide solutions were examined in a concentration range from 26 mg/l to 80 g/l. The data given in various publications often disagree. Radiation yields of cyanide decay vary from 0.48 to 28 molecule/100 eV for equal dose rates, according to the data presented by various authors, and the maximum yield of 1200 was attained at a low dose rate (0.18 kGy/h) in a neutral solution. Chain decomposition of cyanides was observed in some studies, but not in others; the acidity of the solution examined was not necessarily reported. It was specified that complete decomposition of cyanides occurs; however, no detection limits for the analytical procedures of cyanide determination were reported. The authors performed experiments on the purification of actual industrial waste waters (solution and slurry), which were preliminarily preserved with sodium hydroxide (pH 9; the cyanide content was 90 mg/1). Solutions in dishes 40 mm in diameter and 20 or 40 mm in height were exposed to X-rays with a maximum energy of bremsstrahlung spectrum of 70 keV. Volumes of the solutions were 20 and 40 ml. With consideration for angular divergence and beam attenuation by solution, the average absorbed-dose rates were 1.5 and 3.1 kGy/h for dishes of V equal to 40 and 20 ml, respectively. Measurements of the absorbed dose were made with a ferrosulfate dosimeter

  3. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  4. C-11 cyanide production system

    Science.gov (United States)

    Kim, Dohyun; Alexoff, David; Kim, Sung Won; Hooker, Jacob M.; Ferrieri, Richard A.

    2017-11-21

    A method for providing .sup.11C-labeled cyanides from .sup.11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O.sub.2, wherein .sup.11C labeled oxides are reduced with H.sub.2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% .sup.11CH.sub.4, the .sup.11CH.sub.4 is then combined with an excess of NH.sub.3 in a carrier/reaction stream flowing at an accelerated velocity and the combined .sup.11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900.degree. C., whereby a product stream comprising at least about 60% H.sup.11CN is provided in less than 10 minutes from retrieval of the .sup.11C labeled oxide.

  5. Determination of radiocesium in environmental water samples using copper ferro(II)cyanide and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Popov, L.; Kuleff, I.; Djingova, R.

    2006-01-01

    A procedure for the radiochemical separation and radiochemical purification of radiocesium ( 134 Cs and 137 Cs) in bulk environmental water samples is proposed. Radiocesium was removed from the water by cation-exchange with copper ferro(II)cyanide and was purified by precipitation with sodium tetraphenylborate. The influence of the concentration of potassium in the water sample on the chemical yield was investigated. The validation of the proposed method was carried out by analyzing reference materials. The application of the method was demonstrated with the determination of the concentration of radiocesium in water samples from rivers around NPP 'Kozloduy', Bulgaria, Danube and Ogosta. (author)

  6. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  7. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  8. IRIS Toxicological Review of Hydrogen Cyanide (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hydrogen cyanide and cyanide salts that will appear on the Integrated Risk Information System (IRIS) database.

  9. Influence of cyanide on diauxic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Smrcinova, Miroslava; Sørensen, Preben Graae

    2012-01-01

    Coherent glycolytic oscillations in Saccharomyces cerevisiae are a multicellular property induced by addition of glucose to a starved cell population of sufficient density. However, initiation of oscillations requires an additional perturbation, usually addition of cyanide. The fate of cyanide...... during glycolytic oscillations has not previously been studied, and is the subject of the present paper. Using a cyanide electrode, a substantial decrease in cyanide concentration was observed. In the pH range 6-7, we found experimentally that the electrode behaves reasonably well, provided changes in p......H are taken into account. To our knowledge, use of a cyanide electrode to study cyanide dynamics in living biological systems is new. Cyanide was found to enter starving yeast cells in only negligible amounts, and did not react significantly with glucose. Thus, cyanide consumption must be explained...

  10. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  11. Electrophoretic analysis of cyanide depletion by Pseudomonas alcaligenes.

    Science.gov (United States)

    Zaugg, S E; Davidson, R A; Walker, J C; Walker, E B

    1997-02-01

    Bacterial-facilitated depletion of cyanide is under development for remediation of heap leach operations in the gold mining industry. Capillary electrophoresis was found to be a powerful tool for quantifying cyanide depletion. Changes in cyanide concentration in aqueous suspensions of Pseudomonas alcaligenes bacteria and cyanide at elevated pH were easily monitored by capillary electrophoresis. The resulting data can be used to study rates of cyanide depletion by this strain of bacteria. Concentrations of these bacteria at 10(5) cells/mL were found to reduce cyanide from 100 ppm to less than 8 ppm in four days. In addition, other ions of interest in cyanide metabolism, such as formate, can be simultaneously analyzed. Direct UV detection of cyanide at 192 nm further simplifies the analytical method for these ions.

  12. Recent developments in cyanide detection: A review

    International Nuclear Information System (INIS)

    Ma Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years, there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors.

  13. Recent developments in cyanide detection: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jian [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019-0065 (United States); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019-0065 (United States)

    2010-07-19

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years, there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors.

  14. Recent developments in cyanide detection: A review

    Science.gov (United States)

    Ma, Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024

  15. Cyanide speciation at four gold leach operations undergoing remediation.

    Science.gov (United States)

    Johnson, Craig A; Grimes, David J; Leinz, Reinhard W; Rye, Robert O

    2008-02-15

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most -persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)6s3- or Fe(CN)6(4-), but cobalt was abundant enough to implicate Co(CN)6(3-) or its dissociation products (Co(CN)(6-x)(H2O)x((3-x)-)). Supporting evidenceforcobalt-cyanide complexationwas found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification atfour separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  16. Determination of cyanide by a highly sensitive indirect spectrophotometric method.

    Science.gov (United States)

    Blanco, M; Maspoch, S

    1984-01-01

    Complexation of Pd(2+) with cyanide inhibits the extraction of the palladium complex of 5-phenylazo-8-aminoquinoline. This effect is used for the indirect spectrophotometric determination of cyanide at the mug level. Cyanide in industrial waste water and in sea-water is determined after distillation as HCN from the sample and collection in sodium hydroxide solution.

  17. Rhodanese is a Possible Enzyme Marker for Cyanide ...

    African Journals Online (AJOL)

    Rhodanese is a cyanide detoxifying enzyme. The role of man through his anthropogenic activities in and around water bodies have increased in recent times. These have led to constant exposure of water body to cyanide and cyanide compounds with increase to loss of many aquatic lives. There are limited methods ...

  18. Induction by ethylene of cyanide-resistant respiration

    Energy Technology Data Exchange (ETDEWEB)

    Solomos, T.; Laties, G.G.

    1976-05-17

    Ethylene and cyanide induce an increase in respiration in a variety of plant tissues, whereas ethylene has no effect on tissues whose respiration is strongly inhibited by cyanide. It is suggested that the existence of a cyanide-insensitive electron transport path is a prerequisite for stimulation of respiration by ethylene.

  19. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  20. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-01-01

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  1. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  2. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    Science.gov (United States)

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Characterization of a supported ionic liquid membrane used for the removal of cyanide from wastewater.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    2017-12-01

    This work evaluated the performance of ionic liquids (ILs) in supported liquid membranes in the removal of total cyanide from wastewater. Membranes were characterized by scanning electron microscopy and contact angle measurements to study the membrane morphology and wetting ability. In particular, the effects of operational parameters such as membrane immersion time, feed-phase concentration, and pH on cyanide removal were investigated. ILs are organic salts that are entirely composed of organic cations and either organic or inorganic anions. Since their vapor pressure is negligible, they can be handled easily; this characteristic gives rise to their 'green' nature. In this study, a hydrophobic IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF 6 ), was immobilized in the pores of a solid polymeric support made of polyvinylidene fluoride. The optimal conditions were as follows: 1 hour membrane immersion time, 312.24 mg/L feed-phase concentration, a feed-phase pH of 4, 3% NaOH solution, and 1 hour stirring time. The cyanide removal was 95.31%. The treatment of cyanide using supported ionic liquid membrane (SILM) technology is a method with potential applications in industry.

  4. Penicillin V Potassium

    Science.gov (United States)

    Penicillin V potassium is used to treat certain infections caused by bacteria such as pneumonia and other ... heart valves and other symptoms) from coming back. Penicillin V potassium is in a class of medications ...

  5. Potassium maldistribution revisited

    African Journals Online (AJOL)

    Background:This study investigated maldistribution of concentrated 15% potassium chloride after injection into .... and latter experiments referred to for example as “Control 1” ..... be further investigated as a reliable, simple method of potassium.

  6. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha curcas Fruit Shell as Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2012-08-01

    Full Text Available The transesterification of waste frying oil (WFO with methanol in the presence of potassium hydroxide catalyst supported on Jatropha curcas fruit shell activated carbon (KOH/JS was studied. The catalyst systems were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and the Brunauer–Emmett–Teller (BET method. The effects of reaction variables such as residence time, reaction temperature, methanol/oil molar ratio and catalyst bed height in packed bed reactor (PBR on the yield of biodiesel were investigated. SEM images showed that KOH was well distributed on the catalyst support. The optimum conditions for achieving the conversion yield of 86.7% consisted of a residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar ratio of 16 and catalyst bed height of 250 mm. KOH/JS could be used repeatedly five times without any activation treatment, and no significant activity loss was observed. The results confirmed that KOH/JS catalyst had a great potential to be used for industrial application in the transesterification of WFO. The fuel properties of biodiesel were also determined.

  7. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    International Nuclear Information System (INIS)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju

    2016-01-01

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN"- selective, colorimetric sensor either without or with UV irradiation

  8. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  9. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide

    International Nuclear Information System (INIS)

    Sharma, Virender K.; Yngard, Ria A.; Cabelli, Diane E.; Clayton Baum, J.

    2008-01-01

    Cyanide (CN - ), thiocyanate (SCN - ), and copper(I) cyanide (Cu(CN) 4 3- ) are common constituents in the wastes of many industrial processes such as metal finishing and gold mining, and their treatment is required before the safe discharge of effluent. The oxidation of CN - , SCN - , and Cu(CN) 4 3- by ferrate(VI) (Fe VI O 4 2- ; Fe(VI)) and ferrate(V) (Fe V O 4 3- ; Fe(V)) has been studied using stopped-flow and premix pulse radiolysis techniques. The rate laws for the oxidation of cyanides were found to be first-order with respect to each reactant. The second-order rate constants decreased with increasing pH because the deprotonated species, FeO 4 2- , is less reactive than the protonated Fe(VI) species, HFeO 4 - . Cyanides react 10 3 -10 5 times faster with Fe(V) than with Fe(VI). The Fe(V) reaction with CN - proceeds by sequential one-electron reductions from Fe(V) to Fe(IV) to Fe(III). However, a two-electron transfer process from Fe(V) to Fe(III) occurs in the reaction of Fe(V) with SCN - and Cu(CN) 4 3- . The toxic CN - species of cyanide wastes is converted into relatively non-toxic cyanate (NCO - ). Results indicate that Fe(VI) is highly efficient in removing cyanides from electroplating rinse water and gold mill effluent

  10. Cyanide ion complexation by a cationic borane.

    Science.gov (United States)

    Chiu, Ching-Wen; Gabbaï, François P

    2008-02-14

    While we have previously reported that [1-(Mes2B)-8-(Me3NCH2)-C10H6]+ ([2]+) complexes fluoride ions to form [1-(Mes2FB)-8-(Me3NCH2)-C10H6] (2-F), we now show that this cationic borane also complexes cyanide to form [1-(Mes2(NC)B)-8-(Me3NCH2)-C10H6] (2-CN). This reaction also occurs under biphasic conditions (H2O-CHCl3) and may serve to transport cyanide in organic phases. The zwitterionic cyanoborate 2-CN has been fully characterized and its crystal structure determined. UV-vis titration experiments carried out in THF indicate that [2]+ has a higher affinity for fluoride (K > 10(8) M(-1)) than cyanide (K = 8.0 (+/-0.5) x 10(5) M(-1)). Steric effects which impede cyanide binding to the sterically congested boron center of [2]+ are most likely at the origin of this selectivity. Finally, electrochemical studies indicate that [2]+ is significantly more electrophilic than its neutral precursor 1-(Mes2B)-8-(Me2NCH2)-(C10H6) (1). These studies also show that reduction of [2]+ is irreversible, possibly because of elimination of the NMe3 moiety under reductive conditions. In fact, [2]OTf reacts with NaBH4 to afford 1-(Mes2B)-8-(CH3)-(C10H6) (4) which has also been fully characterized.

  11. CIRCULATORY FAILURE DURING NON-INHALED FORMS OF CYANIDE INTOXICATION

    Science.gov (United States)

    Haouzi, Philippe; Tubbs, Nicole; Rannals, Matthew D.; Judenherc-Haouzi, Annick; Cabell, Larry A.; McDonough, Joe A.; Sonobe, Takashi

    2016-01-01

    Our objective was to determine how circulatory failure develops following systemic administration of potassium cyanide (KCN). We used a non-inhaled modality of intoxication, wherein the change in breathing pattern would not influence the diffusion of CN into the blood, akin to the effects of ingesting toxic levels of CN. In a group of 300–400 g rats, CN-induced coma (CN IP, 7 mg/kg) produced a central apnea within 2–3 minutes along with a potent and prolonged gasping pattern leading to auto-resuscitation in 38% of the animals. Motor deficits and neuronal necrosis were nevertheless observed in the surviving animals. To clarify the mechanisms leading to potential auto-resuscitation versus asystole, 12 urethane-anesthetized rats were then exposed to the lowest possible levels of CN exposure that would lead to breathing depression within 7–8 minutes; this dose averaged 0.375 mg/kg/min iv. At this level of intoxication, a cardiac depression developed several minutes only after the onset of the apnea, leading to cardiac asystole as PaO2 reached value around 15 Torr, unless breathing was maintained by mechanical ventilation or through spontaneous gasping. Higher levels of KCN exposure in 10 animals provoked a primary cardiac depression, which led to a rapid cardiac arrest by pulseless electrical activity despite the maintenance of PaO2 by mechanical ventilation. These effects were totally unrelated to the potassium contained in KCN. It is concluded that circulatory failure can develop as a direct consequence of CN induced apnea but in a narrow range of exposure. In this “low” range, maintaining pulmonary gas exchange after exposure, through mechanical ventilation (or spontaneous gasping) can reverse cardiac depression and restore spontaneous breathing. At higher level of intoxication, cardiac depression is to be treated as a specific and spontaneously irreversible consequence of CN exposure, leading to a pulseless electrical activity. PMID:27513083

  12. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  13. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system

    Science.gov (United States)

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 °C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (Δ Ip) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot -1 (or 0.0040-0.80 ng ml -1 with a sample volume of 0.4 μl). The regression equation of working curve can be expressed as Δ Ip = 13.12 + 0.4839 CSe(IV) (fg spot -1) ( n = 6), with correlation coefficient r = 0.9991 and a detection limit of 0.28 fg spot -1 (corresponding to a concentration range of 7.0 × 10 -13 g ml -1 Se(IV), n = 11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml -1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  14. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  15. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  16. Oxidative damage mediated iNOS and UCP-2 upregulation in rat brain after sub-acute cyanide exposure: dose and time-dependent effects.

    Science.gov (United States)

    Bhattacharya, Rahul; Singh, Poonam; John, Jebin Jacob; Gujar, Niranjan L

    2018-04-03

    Cyanide-induced chemical hypoxia is responsible for pronounced oxidative damage in the central nervous system. The disruption of mitochondrial oxidative metabolism has been associated with upregulation of uncoupling proteins (UCPs). The present study addresses the dose- and time-dependent effect of sub-acute cyanide exposure on various non-enzymatic and enzymatic oxidative stress markers and their correlation with inducible-nitric oxide synthase (iNOS) and uncoupling protein-2 (UCP-2) expression. Animals received (oral) triple distilled water (vehicle control), 0.25 LD50 potassium cyanide (KCN) or 0.50 LD50 KCN daily for 21 d. Animals were sacrificed on 7, 14 and 21 d post-exposure to measure serum cyanide and nitrite, and brain malondialdehyde (MDA), reduced glutathione (GSH), glutathione disulfide (GSSG), cytochrome c oxidase (CCO), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CA) levels, together with iNOS and UCP-2 expression, and DNA damage. The study revealed that a dose- and time-dependent increase in cyanide concentration was accompanied by corresponding CCO inhibition and elevated MDA levels. Decrease in GSH levels was not followed by reciprocal change in GSSG levels. Diminution of SOD, GPx, GR and CA activity was congruent with elevated nitrite levels and upregulation of iNOS and UCP-2 expression, without any DNA damage. It was concluded that long-term cyanide exposure caused oxidative stress, accompanied by upregulation of iNOS. The upregulation of UCP-2 further sensitized the cells to cyanide and accentuated the oxidative stress, which was independent of DNA damage.

  17. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  18. Recovery of copper and cyanide from waste cyanide solutions using emulsion liquid membrane with LIX 7950 as the carrier.

    Science.gov (United States)

    Xie, Feng; Wang, Wei

    2017-08-01

    The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.

  19. Thermal decomposition and isomerization of cis-permethrin and beta-cypermethrin in the solid phase.

    Science.gov (United States)

    González Audino, Paola; Licastro, Susana A; Zerba, Eduardo

    2002-02-01

    The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.

  20. Determination of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid in Urine and Plasma by Gas Chromatography-Mass Spectrometry

    National Research Council Canada - National Science Library

    Logue, Brian A; Kirschten, Nicholas P; Petrikovics, Ilona; Moser, Matthew A; Rockwood, Gary A; Baskin, Steven I

    2005-01-01

    The cyanide metabolite 2-aminothiazoline.4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites...

  1. Cyanides in the environment-analysis-problems and challenges.

    Science.gov (United States)

    Jaszczak, Ewa; Polkowska, Żaneta; Narkowicz, Sylwia; Namieśnik, Jacek

    2017-07-01

    Cyanide toxicity and their environmental impact are well known. Nevertheless, they are still used in the mining, galvanic and chemical industries. As a result of industrial activities, cyanides are released in various forms to all elements of the environment. In a natural environment, cyanide exists as cyanogenic glycosides in plants seeds. Too much consumption can cause unpleasant side effects. However, environmental tobacco smoke (ETS) is the most common source of cyanide. Live organisms have the ability to convert cyanide into less toxic compounds excreted with physiological fluids. The aim of this paper is to review the current state of knowledge on the behaviour of cyanide in the environment and its impact on the health and human life.

  2. SYNTHESES AND CHARACTERIZATIONS OF THE CYANIDE ...

    African Journals Online (AJOL)

    2015-10-28

    (Received October 28, 2015; revised June 25, 2016) ... suggest that the Ni(II) ion is four coordinate with four cyanide-carbon atoms in ... However, there have been many studies on octahedral [M(CN)6]n- but little ... were synthesized and investigated by vibrational spectral (FT-IR and ..... Karaağaç, D.; Kürkçüoğlu, G.S. Bull.

  3. Supramolecular Ferric Porphyrins as Cyanide Receptors in Aqueous Solution

    Science.gov (United States)

    2011-01-01

    All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe(III)TPPS) indicate that the Fe(III)TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood. PMID:24900285

  4. Inhibitory effect of cyanide on wastewater nitrification ...

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  5. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  6. Cyanide metallocenes of trivalent f-elements

    International Nuclear Information System (INIS)

    Maynadie, J.; Berthet, J.C.; Thuery, P.; Ephritikhine, M.

    2007-01-01

    Addition of N n Bu 4 CN to (C 5 Me 5 ) 2 UI(py), (C 5 Me 5 ) 2 CeI, or (C 5 Me 5 ) 2 M(OTf) (M = U, Ce) in acetonitrile led to the precipitation of the neutral mono-cyanide species [(C 5 Me 5 ) 2 M(μ-CN)] n [M = U (1), Ce (2)], which likely have an oligomeric structure, as shown by the tri-meric cyanide-bridged complex [(C 5 Me 5 ) 2 Ce(μ-CN)(CN t Bu)] 3 (3) obtained by addition of excess t BuNC into a suspension of 2 in acetonitrile. The structure of the U(III,IV) mixed valence compound [{(C 5 Me 5 ) 2 U} 2 (μ-CN){(μ-CN) 2 Na(thf)} 2 ] ∞ (4), which crystallized from a thf solution of (C 5 Me 5 ) 2 UI(py) in the presence of excess NaCN, reveals a unique example of an f-element-(μ-CN)-M interaction (M = main group or d transition metal). The anionic poly-cyanides [(C 5 Me 5 ) 2 M(CN) 3 ][N n Bu 4 ] 2 [M = U (5), Ce (6)] were synthesized by treatment of 1 and 2 with 2 equiv or an excess of N n Bu 4 CN in acetonitrile; they were also prepared in a one-pot procedure by stepwise addition of 1 equiv of KCN and 2 equiv of N n Bu 4 CN to the parent iodides in acetonitrile. The bent metallocenes 5 and 6 are unique low-valent molecular poly-cyanide compounds of an f-element that have been structurally identified, while 5 is the first fully characterized actinide(III) cyanide. Comparison of the crystal structures of 5 and 6 shows that the M-C(C 5 Me 5 ) and M-C(CN) distances are 0.02-0.03 Angstroms shorter for M = U than for M Ce, while the ionic radius of uranium(III) is 0.02 Angstroms larger than that of cerium(III). (authors)

  7. Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models.

    Science.gov (United States)

    Bhandari, Raj K; Oda, Robert P; Petrikovics, Ilona; Thompson, David E; Brenner, Matthew; Mahon, Sari B; Bebarta, Vikhyat S; Rockwood, Gary A; Logue, Brian A

    2014-05-01

    Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.

  8. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  9. Optimization and Validation of a Surface Wipe Method to Determine Cyanide and Cyanate: Application to the Emergency Destruction System

    Science.gov (United States)

    2012-08-01

    NJ b WC-7 Grade 42, 55 mm filter paper Whatman, Piscataway, NJ b WC-8 Cellulose nitrate membrane filter, 47 mm Whatman, Piscataway, NJ b WC-9...density polypropylene plastic bottle. 2.5 Standards Sodium cyanide (NaCN, ≥97.0%, CAS no. 143-33-9) and potassium cyanate (KOCN, ≥97.0...Agilent Technologies model 3D CE system, with an ultraviolet (deuterium lamp) diode array detector, was used to determine the quantities of CN and OCN

  10. Potassium and Your CKD Diet

    Science.gov (United States)

    ... vegetable in your diet, leach them before using. Leaching is a process by which some potassium can be pulled out ... out of my favorite high-potassium vegetables? The process of leaching will help pull potassium out of some high- ...

  11. Synthesis, characterization, DFT calculations and antibacterial activity of palladium(II) cyanide complexes with thioamides

    Science.gov (United States)

    Ahmad, Saeed; Nadeem, Shafqat; Anwar, Aneela; Hameed, Abdul; Tirmizi, Syed Ahmed; Zierkiewicz, Wiktor; Abbas, Azhar; Isab, Anvarhusein A.; Alotaibi, Mshari A.

    2017-08-01

    Palladium(II) cyanide complexes of thioamides (or thiones) having the general formula PdL2(CN)2, where L = Thiourea (Tu), Methylthiourea (Metu), N,N‧-Dimethylthiourea (Dmtu), Tetramethylthiourea (Tmtu), 2-Mercaptopyridine (Mpy) and 2-Mercaptopyrimidine (Mpm) were prepared by reacting K2[PdCl4] with potassium cyanide and thioamides in the molar ratio of 1:2:2. The complexes were characterized by elemental analysis, thermal and spectroscopic methods (IR, 1H and 13C NMR). The structures of three of the complexes were predicted by DFT calculations. The appearance of a band around 2100 cm-1 in IR and resonances around 120-130 ppm in the 13C NMR spectra indicated the coordination of cyanide to palladium(II). More than one resonances were observed for CN- carbon atoms in 13C NMR indicating the existence of equilibrium between different species in solution. DFT calculations revealed that in the case of the palladium(II) complex of Tmtu, the ionic dinuclear [Pd(Tmtu)4][Pd(CN)4] form was more stable than the dimer of mononuclear complex [Pd(Tmtu)2(CN)2] by 0.91 kcal mol-1, while for the complexes of Tu or Mpy ligands, the nonionic [Pd(L)2(CN)2] forms were more stable than the corresponding [Pd(L)4][Pd(CN)4] complexes by 1.26 and 6.49 kcal mol-1 for L = Tu and Mpy, respectively. The complexes were screened for antibacterial effects and some of them showed significant activities against both gram positive as well as gram negative bacteria.

  12. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings

    International Nuclear Information System (INIS)

    Li Dengxin; Gao Guolong; Meng Fanling; Ji Chong

    2008-01-01

    On one hand, cyanided tailings are one kind of pollutants. On the other hand, they contain a lot of valuable elements. So utilization of them can bring social and environmental benefits. In this paper, cyanided tailings were used to prepare nano-iron oxide red pigment powders by an ammonia process with urea as precipitant. At first, cyanided tailings were oxidized by nitric acid. Then, the oxidizing mixture was separated into solid and liquid parts. The liquid mixture was reduced by scrap iron and the impurity of it was removed by use of NH 3 .H 2 O. Then, the seed crystal of γ-FeOOH was obtained, when the pure liquid reacted with ammonia liquid at the selected experimental conditions. At last, nano-iron oxide red pigment powders were prepared. The structure, morphology and size distribution of seed crystal and iron oxide red were characterized systematically by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and laser particle size analyzer (LPSA). The results revealed that typical iron oxide nanoparticles were α-Fe 2 O 3 with particle size of 50-70 nm. Furthermore, the factors that affected the hue and quality of the seed crystal and iron oxide red pigment were also discussed

  13. Histomorphometric studies on the effect of cyanide consumption of ...

    African Journals Online (AJOL)

    The density and size of the Purkinje cells were the same in both the control and experimental groups (P>0.05). Conclusion: Maternal consumption of 500 ppm cyanide in rats does not significantly affect light microscopic prenatal cerebellar development, but causes mild changes in the post-natal life. Maternal cyanide ...

  14. Simple picrate method for the determination of cyanide in cassava ...

    African Journals Online (AJOL)

    The red coloured complex on the strips was extracted with 50% ethanol solution and the absorbance of the extract was measured at 510nm using a spectrophotometer. The method was reproducible and cyanide as low as 1 microgram could be determined. Cyanide levels of all the cassava varieties tested were higher than ...

  15. Mechanism of the adsorption of gold cyanide on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Chemistry); Hancock, R.D. (Klipfontein Organic Products, Kempton Park (South Africa)); Wellington, O.L.; Nicol, M.J. (National Inst. for Metallurgy, Johannesburg (South Africa)); Copperthwaite, R.G. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Chemical Research Lab.)

    1981-12-01

    X-ray photoelectron spectroscopy showed that the adsorption of gold cyanide on carbon in the presence or absence of electrolytes and acids proceeds by the same mechanism. The first detailed investigation of the fundamentals of the adsorption and elution of gold and silver cyanide on carbon, theories to state the results and the experimental method are discussed.

  16. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  17. Hydroxocobalamin: improved public health readiness for cyanide disasters.

    Science.gov (United States)

    Sauer, S W; Keim, M E

    2001-06-01

    The United States is under the constant threat of a mass casualty cyanide disaster from industrial accidents, hazardous material transportation incidents, and deliberate terrorist attacks. The current readiness for cyanide disaster by the emergency medical system in the United States is abysmal. We, as a nation, are simply not prepared for a significant cyanide-related event. The standard of care for cyanide intoxication is the cyanide antidote kit, which is based on the use of nitrites to induce methemoglobinemia. This kit is both expensive and ill suited for out-of-hospital use. It also has its own inherent toxicity that prevents rapid administration. Furthermore, our hospitals frequently fail to stock this life-saving antidote or decline to stock more than one. Hydroxocobalamin is well recognized as an efficacious, safe, and easily administered cyanide antidote. Because of its extremely low adverse effect profile, it is ideal for out-of-hospital use in suspected cyanide intoxication. To effectively prepare for a cyanide disaster, the United States must investigate, adopt, manufacture, and stockpile hydroxocobalamin to prevent needless morbidity and mortality.

  18. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  19. Blood carboxyhaemoglobin and cyanide levels in fire survivors

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.J.; Campbell, D.; Reid, W.H.

    1981-06-20

    Blood carboxyhaemoglobin and cyanide concentrations were measured in 53 fire survivors, 36 of whom had clinical evidence of smoke inhalation. Carboxyhaemoglobin and cyanide levels were raised only in patients with smoke inhalation. Blood carboxyhaemoglobin measurement can be used to confirm the diagnosis of severe smoke inhalation in cases in which the clinical data are inconclusive, provided that the time of sampling after exposure is taken into account. A nomogram has been constructed for this purpose. There is no quick method of measuring blood cyanide levels, but the close relation between cyanide and carboxyhaemoglobin levels suggests that carboxyhaemoglobin concentrations, which can be rapidly and easily measured, could be used to identify those who might benefit from treatment with cyanide antidotes.

  20. HYDROGEN CYANIDE IN THE MURCHISON METEORITE

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2012-08-01

    Carbonaceous chondrites are meteorites that may contain abundant organic materials, including soluble compounds as diverse as amino acids and hydrocarbons. We report here the finding of hydrogen cyanide in the Murchison meteorite in amounts {<=} 10 ppm. HCN was never searched for in meteorites and its detection in sizeable amount is surprising in view of the extensive water phase that is recorded by the petrology of this type of meteorites and could have exhausted their HCN content through multiple reactions. The finding adds to the inventory of simple volatile molecules found in both comets and meteorites.

  1. Competing hydrostatic compression mechanisms in nickel cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Lucas, T.C. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Cairns, A.B.; Funnell, N.P. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Tucker, M.G. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Kleppe, A.K. [Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Hriljac, J.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Goodwin, A.L. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2015-12-15

    We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN){sub 2}. Whereas other layered molecular framework materials are known to exhibit negative area compressibility, we find that Ni(CN){sub 2} does not. We attribute this difference to the existence of low-energy in-plane tilt modes that provide a pressure-activated mechanism for layer contraction. The experimental bulk modulus we measure is about four times lower than that reported elsewhere on the basis of density functional theory methods [Phys. Rev. B 83 (2011) 024301].

  2. Effect of acute and delayed hyperbaric oxygen therapy on cyanide whole blood levels during acute cyanide intoxication

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Jansen, E C; Hilsted, Linda Maria

    2011-01-01

    and the subsequent formation of cyanocobalamin measured by a spectrophotometer. Results showed that whole-blood-cyanide concentration in Group 1 controls and acute HBO2 initially rose and then fell towards zero. In rats treated with delayed HBO2, the reduction in whole-blood-cyanide concentration was significantly...

  3. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Chmátal, Martin

    2016-01-01

    Roč. 102, October (2016), s. 90-95 ISSN 0043-1354 R&D Projects: GA TA ČR TA01021368; GA TA ČR(CZ) TA04021212; GA MŠk(CZ) LD12049 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Tyrosinase * Cyanide Subject RIV: CE - Biochemistry Impact factor: 6.942, year: 2016

  4. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.

    Science.gov (United States)

    Acera, Felipe; Carmona, María Isabel; Castillo, Francisco; Quesada, Alberto; Blasco, Rafael

    2017-05-01

    Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a sole nitrogen source. Under this growth condition, a 3-cyanoalanine nitrilase enzymatic activity was induced. This activity was encoded by nit4 , one of the four nitrilase genes detected in the genome of this bacterium, and its expression in Escherichia coli enabled the recombinant strain to fully assimilate 3-cyanoalanine. P. pseudoalcaligenes CECT 5344 showed a weak growth level with 3-cyanoalanine as the N source, unless KCN was also added. Moreover, a nit4 knockout mutant of P. pseudoalcaligenes CECT 5344 became severely impaired in its ability to grow with 3-cyanoalanine and cyanide as nitrogen sources. The native enzyme expressed in E. coli was purified up to electrophoretic homogeneity and biochemically characterized. Nit4 seems to be specific for 3-cyanoalanine, and the amount of ammonium derived from the enzymatic activity doubled in the presence of exogenously added asparaginase activity, which demonstrated that the Nit4 enzyme had both 3-cyanoalanine nitrilase and hydratase activities. The nit4 gene is located downstream of the cyanide resistance transcriptional unit containing cio1 genes, whose expression levels are under the positive control of cyanide. Real-time PCR experiments revealed that nit4 expression was also positively regulated by cyanide in both minimal and LB media. These results suggest that this gene cluster including cio1 and nit4 could be involved both in cyanide resistance and in its assimilation by P. pseudoalcaligenes CECT 5344. IMPORTANCE Cyanide is a highly toxic molecule present in some industrial wastes due to its application in several manufacturing processes, such as gold mining and the electroplating industry. The biodegradation of cyanide from contaminated wastes could be an attractive alternative to physicochemical treatment. P. pseudoalcaligenes CECT 5344 is a bacterial strain able to assimilate cyanide under alkaline conditions, thus

  5. Poisoning of vanadia based SCR catalysts by potassium:influence of catalyst composition and potassium mobility

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Jensen, Anker Degn

    2016-01-01

    exposure temperatures slowdown the deactivation. K2SO4 causes a lower rate of deactivation compared to KCl. This may be related to a faster transfer of potassium from the solid KCl matrix to the catalyst, however, it cannot be ruled out toalso be caused by a significantly larger particle size of the K2SO4...

  6. Determination of cyanide by an indirect spectrophotometric method using 5-Br-PADAP.

    Science.gov (United States)

    Fu-Sheng, W; Yu-Qin, L; Fang, Y; Nai-Kui, S

    1981-09-01

    Complexation of Ni(2+) with cyanide inhibits its colour reaction with 5-Br-PADAP and this reaction is used in the spectrophotometric determination of cyanide at the ug level. Cyanide in industrial waste waters is determined after an initial transfer as hydrogen cyanide from the sample into sodium hydroxide solution with a stream of air.

  7. DESIGN AND ANALYSIS OF AN EXPERIMENT FOR ASSESSING CYANIDE IN GOLD MINING WASTES

    Science.gov (United States)

    Gold mining wastes treated by heap leaching cyanidization typically contain several metallo-cyanide species. Accurate measurement of total cyanide by the most common methods in such a case may be hampered by the inadequate recoveries that occur for certain cyanide compounds (e.g....

  8. Potassium Blood Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Potassium, Serum; 426–27 p. Lab ...

  9. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  10. Low potassium level

    Science.gov (United States)

    ... treat and prevent low level of potassium. These foods include: Avocados Baked potato Bananas Bran Carrots Cooked lean beef Milk Oranges Peanut butter Peas and beans Salmon Seaweed Spinach Tomatoes Wheat germ

  11. Microbial degradation of cyanide from gold metallurgical plants utilizing P. fluorecens

    International Nuclear Information System (INIS)

    Restrepo, Oscar Jaime; Montoya, Carlos Arturo; Munoz, Nury Alexandra

    2005-01-01

    Sodium cyanide is traditionally used in chemical metallurgy to obtain precious metals (gold and silver). Cyanide produces damages because of its toxicity and breath cell inhibition. Here we try a biotechnological process to degrade cyanide with P. fluorescens obtained by cyanide heap leaching process in gold metallurgy in Segovia, Colombia. In Colombia cyanide heap-leaching process in gold metallurgy is not controlled and cyanide is used excessively. It means that great quantities of sodium cyanide are lost in sands and in wastewater. Toxicity tests made by D. pulex show less than 54 ppm of cyanide is enough to kill them. Traditional treatments to cyanide degradation are useful and normal but they are expensive. Microbiological process eliminates cyanide successfully and cheap

  12. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  13. Protection against cyanide-induced convulsions with alpha-ketoglutarate.

    Science.gov (United States)

    Yamamoto, H

    1990-04-30

    Protection against convulsions induced by cyanide was observed after treatment with alpha-ketoglutarate, either alone or in combination with sodium thiosulfate, a classical antagonist for cyanide intoxication. However, sodium thiosulfate alone did not protect against cyanide (30 mg/kg)-induced convulsions. gamma-Aminobutyric acid (GABA) levels in brain were decreased by 31% in KCN-treated mice exhibiting convulsions. The combined administration of alpha-ketoglutarate and sodium thiosulfate completely abolished the decrease of GABA levels induced by cyanide. Furthermore, sodium thiosulfate alone also completely abolished the decrease of GABA levels. These results suggest that the depletion of brain GABA levels may not directly contribute to the development of convulsions induced by cyanide. On the other hand, cyanide increased calcium levels by 32% in brain crude mitochondrial fractions in mice with convulsions. The increased calcium levels were completely abolished by the combined administration of alpha-ketoglutarate and sodium thiosulfate, but not affected by sodium thiosulfate alone. These findings support the hypothesis proposed by Johnson et al. (Toxicol. Appl. Pharmacol., 84 (1986) 464) and Robinson et al. (Toxicology, 35 (1985) 59) that calcium may play an important role in mediating cyanide neurotoxicity.

  14. Biogenic production of cyanide and its application to gold recovery.

    Science.gov (United States)

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  15. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  16. Investigation of alkaline-cyanide electrolytes of zinc plating

    International Nuclear Information System (INIS)

    Shaburova, V.P.; Kolotij, O.Yu.

    1993-01-01

    Current values in their maxima on anodic potential curves of Cd, Sn and Zn in galvanizing electrolytes with equilibrium concentrations of free cyanide and hydroxide ions were compared. Anode signal of Cd in the presence of Zn complexes intensifies due to their lability and, therefore, it reflects not only the presence of free cyanide, but zinc complex ions, as well, in the solution mentioned. This is one of the reasons for a high information content of the signal in case of multicomponent analysis of cyanide galvanizing electrolytes

  17. Removal of cadmium and cyanide from aqueous solutions through electrodialysis

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2003-01-01

    Full Text Available The discharge of galvanic industry wastewaters containing heavy metals and cyanide is one of the largest sources of water pollution. The use of the electrodialysis technique for the treatment of a synthetic wastewater containing approximately 0.0089 mol L-1 cadmium and 0.081 mol L-1 cyanide was studied using a five-compartment electrodialysis cell. The results demonstrate that the removal of cadmium and cyanide depends on the applied current density and it is limited by the precipitation of cadmium on the cation-exchange membrane in the diluate central cell compartment.

  18. A new PANI biosensor based on catalase for cyanide determination.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Aydin, Tuba

    2016-01-01

    Cyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.

  19. Physiologically available cyanide (PAC) in manufactured gas plant waste and soil samples

    International Nuclear Information System (INIS)

    Magee, B.; Taft, A.; Ratliff, W.; Kelley, J.; Sullivan, J.; Pancorbo, O.

    1995-01-01

    Iron-complexed cyanide compounds, such as ferri-ferrocyanide (Prussian Blue), are wastes associated with former manufactured gas plant (MGP) facilities. When tested for total cyanide, these wastes often show a high total cyanide content. Because simple cyanide salts are acutely toxic, cyanide compounds can be the subject of concern. However, Prussian Blue and related species are known to have a low order of human and animal toxicity. Toxicology data on complexed cyanides will be presented. Another issue regarding Prussian Blue and related species is that the total cyanide method does not accurately represent the amount of free cyanide released from these cyanide species. The method involves boiling the sample in an acidic solution under vacuum to force the formation of HCN gas. Thus, Prussian Blue, which is known to be low in toxicity, cannot be properly evaluated with current methods. The Massachusetts Natural Gas Council initiated a program with the Massachusetts Department of Environmental Protection to develop a method that would define the amount of cyanide that is able to be converted into hydrogen cyanide under the pH conditions of the stomach. It is demonstrated that less than 1% of the cyanide present in Prussian Blue samples and soils from MGP sites can be converted to HCN under the conditions of the human stomach. The physiologically available cyanide method has been designed to be executed at a higher temperature for one hour. It is shown that physiologically available cyanide in MGP samples is < 5--15% of total cyanide

  20. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  1. Hypersalinity reduces the risk of cyanide toxicosis to insectivorous bats interacting with wastewater impoundments at gold mines.

    Science.gov (United States)

    Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme

    2014-01-01

    Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.

  2. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    Science.gov (United States)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  3. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THE INDUSTRIAL TEST SYSTEM, INC. CYANIDE REAGENTSTRIP™ TEST KIT

    Science.gov (United States)

    Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...

  4. Determination of the Concentration of Total Cyanide in Waste Water ...

    African Journals Online (AJOL)

    Michael Horsfall

    Department of Chemical Sciences, Faculty of science, Olabisi Onabanjo University, Ago-Iwoye Nigeria. ABSTRACT: Cyanide has been listed as one of the toxic pollutants that is usually ... environment have been attributed to industrial.

  5. In Vivo Metabolism in Rats of Cyanide -Containing Compounds ...

    African Journals Online (AJOL)

    Iayer chromatography indicated the presence of novel cyanide-containing compounds, which were shown chemically to be cyanohydrin (Rf, 0.25) ands nitrile (Rf, 0.645). Administration of the eluates of those chromatographically identified CN- ...

  6. cyanide cassava genotypes in acid ultisols of south eastern Nigeria

    African Journals Online (AJOL)

    ENGR C.J

    2014-01-29

    Jan 29, 2014 ... Thirty-eight high and low cyanide cassava genotypes were evaluated for growth and .... sium (K) and sodium (Na) were determined by Flamephoto-metory .... outlined for randomized complete block design (Steel et al., 1997).

  7. Uptake, metabolism, accumulation and toxicity of cyanide in willow trees

    DEFF Research Database (Denmark)

    Larsen, Morten; Ucisik, Ahmed Süheyl; Trapp, Stefan

    2005-01-01

    Chemicals taken up into plants may be accumulated so leading to toxic effects. Uptake and phytotoxicity of free cyanide was determined with the willow-tree transpiration test. Willow sets were grown in sand and irrigated with varying levels of cyanide (CN). Toxicity was determined by measuring...... transpiration. At CN concentrations below 10 mg/L, no toxic effects were observed. At 20 mg/L, transpiration was reduced to approximately 50% after 96 h. With 30, 40 and 50 mg/L, the transpiration decreased with a similar rate to cyanide in plant...... tissue was observed at 40 and 50 mg/L. The kinetics of metabolism of cyanide by roots, stems and leaves of willows was determined by the closed-bottle metabolism test. The Michaelis−Menten parameters vmax and KM (maximal metabolic velocity and half-saturation constant, respectively) were determined...

  8. Cyanide Suicide After Deep Web Shopping: A Case Report.

    Science.gov (United States)

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Allorge, Delphine; Hédouin, Valéry; Tournel, Gilles

    2016-09-01

    Cyanide is a product that is known for its use in industrial or laboratory processes, as well as for intentional intoxication. The toxicity of cyanide is well described in humans with rapid inhibition of cellular aerobic metabolism after ingestion or inhalation, leading to severe clinical effects that are frequently lethal. We report the case of a young white man found dead in a hotel room after self-poisoning with cyanide ordered in the deep Web. This case shows a probable complex suicide kit use including cyanide, as a lethal tool, and dextromethorphan, as a sedative and anxiolytic substance. This case is an original example of the emerging deep Web shopping in illegal drug procurement.

  9. Is Hydrogen Cyanide a Marker of Burkholderia cepacia Complex?

    Czech Academy of Sciences Publication Activity Database

    Gilchrist, F. J.; Sims, H.; Alcock, A.; Jones, A.M.; Bright-Thomas, R. J.; Smith, D.; Španěl, Patrik; Webb, A. K.; Lenney, W.

    2013-01-01

    Roč. 51, č. 11 (2013), s. 3849-3851 ISSN 0095-1137 Institutional support: RVO:61388955 Keywords : acetone * alcohol * hydrogen cyanide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.232, year: 2013

  10. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  11. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  12. Effect of chemical pretreatment on the biodegradation of cyanides

    International Nuclear Information System (INIS)

    Aronstein, B.N.; Paterek, J.R.; Rice, L.E.; Srivastava, V.J.

    1995-01-01

    The application of Fenton's reagent (H 2 O 2 ; Fe 2+ ) as a chemical pretreatment for acceleration of biological degradation of cyanides in soil-containing systems has been studied. In slurries of topsoil freshly amended with radiolabeled free cyanide (K 14 CN) at pH 7.2, about 100% of the compound was removed from the system by the combination of chemical oxidation and biodegradation. In slurry of manufactured gas plant (MGP) soil, the extent of combined chemical-biological treatment was 50%. At the same time, approximately 15% of the cyanide was lost from the system by protonation and evolution of formed HCN. In slurries of both topsoil and MGP soil amended with radiolabeled K 4 [Fe(CN) 6 ], less than 20% was degraded. In soils previously equilibrated with free and complex cyanide, the highest extent of degradation resulted from chemical-biological treatment did not exceed 15%. To avoid massive evolution of HCN, the cyanide-amended topsoil was maintained at a pH of 10.0. At this pH, nearly 35% of the cyanides were removed from the system by combined chemical-biological treatment

  13. Intensification Behavior of Mercury Ions on Gold Cyanide Leaching

    Directory of Open Access Journals (Sweden)

    Qiang Zhong

    2018-01-01

    Full Text Available Cyanidation is the main method used to extract gold from gold raw materials; however, a serious problem with this method is the low leaching rate. In order to improve gold leaching, the intensification behavior of mercury ions on gold cyanide leaching, for two types of materials, sulphide gold concentrate and oxide gold ore, was investigated. The results showed that mercury ions, with only a 10−5 M dosage, could significantly intensify leaching and gold recovery. The dissolution behavior of gold plate was also intensified by 10−5 M mercury ions. Microstructure analysis showed that mercury ions intensified the cyanidation corrosion of the gold surface, resulting in a loose structure, where a large number of deep ravines and raised particles were evident across the whole gold surface. The loose structure added contact surface between the gold and cyanide, and accelerated gold dissolution. Moreover, mercury ions obstructed the formation of insoluble products, such as AuCN, Au(OHCN, and Au(OHx, that lead to a passivation membrane on the gold surface, reducing contact between the gold and cyanide. These effects, brought about by mercury ions, change the structure and product of the gold surface during gold cyanidation and promote gold leaching.

  14. Toxicity of carbon monoxide hydrogen cyanide gas mixtures : exposure concentration, time to incapacitation, carboxyhemoglobin and blood cyanide parameters.

    Science.gov (United States)

    1994-04-01

    During aircraft interior fires, carbon monoxide (CO) and hydrogen cyanide (HCN) are produced in sufficient amounts to cause incapacitation and death. Time-to-incapacitation (ti) is a practical parameter for estimating escape time in fire environments...

  15. A critical evaluation of methods applicable to the determination of cyanides

    International Nuclear Information System (INIS)

    Pohlandt, C.; Jones, E.A.; Lee, A.F.

    1983-01-01

    A literature survey of methods suitable for the determination of cyanides in process streams and effluents is presented. Of the large number of methods published, 92 are examined in detail, emphasis being placed on the selectivity of the methods, i.e. the extent to which they enable one to distinguish between ionic cyanide and metal-cyanide complexes. Methods designed for the determination of 'total cyanide' (i.e. ionic cyanide as well as coordinated cyanide) are evaluated critically. Other aspects of the methods are also considered, such as sensitivity, accuracy, speed, and freedom from interferences

  16. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso.

    Science.gov (United States)

    Razanamahandry, Lovasoa Christine; Andrianisa, Harinaivo Anderson; Karoui, Hela; Kouakou, Koffi Marcelin; Yacouba, Hamma

    2016-08-01

    Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 μg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cyanide binding to ferrous and ferric microperoxidase-11.

    Science.gov (United States)

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  19. Recovery of cyanide in gold leach waste solution by volatilization and absorption.

    Science.gov (United States)

    Gönen, N; Kabasakal, O S; Ozdil, G

    2004-09-10

    In this study, the effects of pH, time and temperature in regeneration of cyanide in the leaching waste solution of gold production from disseminated gold ore by cyanidation process were investigated and the optimum conditions, consumptions and cyanide recovery values were determined. The sample of waste solution containing 156 mg/l free CN- and 358 mg/l total CN-, that was obtained from Gümüşhane-Mastra/Turkey disseminated gold ores by cyanidation and carbon-in-pulp (CIP) process under laboratory conditions was used in the experiments. Acidification with H2SO4, volatilization of hydrogen cyanide (HCN) with air stripping and absorption of HCN in a basic solution stages were applied and under optimum conditions, 100% of free cyanide and 48% of complex cyanide and consequently 70% of the total cyanide in the liquid phase of gold leach effluent are recovered.

  20. Indirect spectrophotometric determination of trace cyanide with cationic porphyrins.

    Science.gov (United States)

    Ishii, H; Kohata, K

    1991-05-01

    Three highly sensitive methods for the determination of cyanide have been developed, based on the fact that the complexation of silver ions with three cationic porphyrins, 5,10,15,20-tetrakis-(1-methyl-2-pyridinio)porphine [T(2-MPy)P], 5,10,15,20-tetrakis(1-methyl-3-pyridinio)porphine [T(3-MPy)P] and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphine [T(4-MPy)P], in alkaline media is inhibited by cyanide and the decrease in absorbance of the silver(II) complex is proportional to the cyanide concentration. Sensitivities of the procedures developed are 0.133, 0.126 and 0.234 ng/cm(2), respectively for an absorbance of 0.001. Cadmium(II), copper(II), mercury(II), zinc(II), iodide and sulfide interfere with the cyanide determination. One of the proposed methods was applied to the determination of cyanide in waste-water samples, with satisfactory results.

  1. Effects of cyanide on selenium metabolism in rats

    International Nuclear Information System (INIS)

    Beilstein, M.A.; Whanger, P.D.

    1984-01-01

    Adult male rats were given drinking water containing either 0 or 150 ppm cyanide for 2 weeks. They were then injected with 5 microCi 75 Se-selenite, and excretion of radioactivity in urine and feces was determined. No difference in excretion of 75 Se occurred during the rapid phase, but the cyanide-treated rats (T1/2 28 days) excreted significantly more 75 Se in urine than control (T1/2 38 days) rats. Cyanide had no effect on excretion of 75 Se in feces or on the distribution of 75 Se in cytosolic proteins in liver, kidney, muscle or testes. In a second experiment weanling male rats were given water with either 0 or 150 ppm cyanide and were killed for glutathione peroxidase assay and selenium analysis in blood, kidney, liver, muscle and testes after 3, 6 or 9 weeks of treatment. Glutathione peroxidase activity and selenium concentrations were significantly reduced by cyanide in all tissues except testes

  2. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    Science.gov (United States)

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular

  3. Acute Cyanide Poisoning: Hydroxocobalamin and Sodium Thiosulfate Treatments with Two Outcomes following One Exposure Event.

    Science.gov (United States)

    Meillier, Andrew; Heller, Cara

    2015-01-01

    Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide's metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use of both antidotes separately used with differing outcomes.

  4. Transport and Fate of Cyanide in Soil : Case Study of Mooteh Valley

    OpenAIRE

    Amir Taebi; Ali Reza Zade Bafqi; Majid Sartaj

    2006-01-01

    Cyanide, a generic term referring to all compounds containing the cyanide group –CN, is a highly potent and fast-acting poison to humans and other living organisms when exposed to high levels. Cyanide is a widely and essential chemical used in mining and minerals processing industries and many other industries such as metal processing and production of organic chemicals. While some industrial cyanide-containing wastes are treated or recovered, there are cases such as certain gold extraction p...

  5. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-01-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg −1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092–2084 cm −1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg −1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot (<900 mg kg −1 ). This improved the sensitivity of the model by reducing the LOD to 154 mg kg −1 . Finally, the LOO-CV conducted on the samples with CN tot  > 900 mg kg −1 resulted in LOD equal to 3751 mg kg −1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg −1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. - Highlights: • A protocol for a quick and cheap quantitative cyanide analysis in soil using FTIR is proposed. • Splitting of the data, resulting in low and high CN set, reduced the LOD and increased the sensitivity of the model. • Regression coefficients indicate positive response of IR frequencies to

  6. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    International Nuclear Information System (INIS)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2016-01-01

    Graphical abstract: - Highlights: • Raman is used by first time for adsorption of cyanide on calcined LDHs. • Raman is an effective, accurate and expeditious method for monitoring this process. • Cyanide is adsorbed by a rehydration process based on the “memory effect”. • The metal ratio of the LDH has a crucial influence on the adsorption capacity. - Abstract: Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the “memory effect” of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  7. Use of Raman spectroscopy to assess the efficiency of MgAl mixed oxides in removing cyanide from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael, E-mail: qo1ruarj@uco.es

    2016-02-28

    Graphical abstract: - Highlights: • Raman is used by first time for adsorption of cyanide on calcined LDHs. • Raman is an effective, accurate and expeditious method for monitoring this process. • Cyanide is adsorbed by a rehydration process based on the “memory effect”. • The metal ratio of the LDH has a crucial influence on the adsorption capacity. - Abstract: Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the “memory effect” of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.

  8. Effect of GarriI processing effluents [waste water] on the cyanide ...

    African Journals Online (AJOL)

    Numerous studies have described environmental exposure of humans to cyanide in African populations. Little is known about exposure to cyanide toxins from processed or unprocessed root tubers commonly consumed in Africa; and data on the food concentration of cyanide which is a potential poison and systemic toxicant ...

  9. INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER

    Science.gov (United States)

    An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...

  10. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  11. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United States...

  12. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    Science.gov (United States)

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mineral-like clathrate of cadmium cyanide with benzene

    International Nuclear Information System (INIS)

    Kitazava, T.; Nishimura, A.

    1999-01-01

    A new mineral-like clathrate of cadmium cyanide with benzene Cd(CN) 2 ·C 6 H 6 is prepared. Data of x-ray diffraction analysis show that benzene molecule is incorporated in cadmium cyanide lattice and a new mineral-like lattice of Cd(CN) 2 belongs to structures of cristobalite type. Clathrate Cd(CN) 2 ·C 6 H 6 crystallizes in trigonal space group R3m, a=8.953(4), c=21929(6) A [ru

  14. Evaluation of non cyanide methods for hemoglobin estimation

    Directory of Open Access Journals (Sweden)

    Vinaya B Shah

    2011-01-01

    Full Text Available Background: The hemoglobincyanide method (HiCN method for measuring hemoglobin is used extensively worldwide; its advantages are the ready availability of a stable and internationally accepted reference standard calibrator. However, its use may create a problem, as the waste disposal of large volumes of reagent containing cyanide constitutes a potential toxic hazard. Aims and Objective: As an alternative to drabkin`s method of Hb estimation, we attempted to estimate hemoglobin by other non-cyanide methods: alkaline hematin detergent (AHD-575 using Triton X-100 as lyser and alkaline- borax method using quarternary ammonium detergents as lyser. Materials and Methods: The hemoglobin (Hb results on 200 samples of varying Hb concentrations obtained by these two cyanide free methods were compared with a cyanmethemoglobin method on a colorimeter which is light emitting diode (LED based. Hemoglobin was also estimated in one hundred blood donors and 25 blood samples of infants and compared by these methods. Statistical analysis used was Pearson`s correlation coefficient. Results: The response of the non cyanide method is linear for serially diluted blood samples over the Hb concentration range from 3gm/dl -20 gm/dl. The non cyanide methods has a precision of + 0.25g/dl (coefficient of variation= (2.34% and is suitable for use with fixed wavelength or with colorimeters at wavelength- 530 nm and 580 nm. Correlation of these two methods was excellent (r=0.98. The evaluation has shown it to be as reliable and reproducible as HiCN for measuring hemoglobin at all concentrations. The reagents used in non cyanide methods are non-biohazardous and did not affect the reliability of data determination and also the cost was less than HiCN method. Conclusions: Thus, non cyanide methods of Hb estimation offer possibility of safe and quality Hb estimation and should prove useful for routine laboratory use. Non cyanide methods is easily incorporated in hemobloginometers

  15. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

    Science.gov (United States)

    Nath, Anjali K.; Roberts, Lee D.; Liu, Yan; Mahon, Sari B.; Kim, Sonia; Ryu, Justine H.; Werdich, Andreas; Januzzi, James L.; Boss, Gerry R.; Rockwood, Gary A.; MacRae, Calum A.; Brenner, Matthew; Gerszten, Robert E.; Peterson, Randall T.

    2013-01-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. PMID:23345455

  17. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  18. Cyanide-limited complexation of molybdenum(III): synthesis of octahedral [Mo(CN)(6)](3-) and cyano-bridged [Mo(2)(CN)(11)](5-).

    Science.gov (United States)

    Beauvais, Laurance G; Long, Jeffrey R

    2002-03-13

    Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.

  19. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure.

    Science.gov (United States)

    Jackson, Randy; Oda, Robert P; Bhandari, Raj K; Mahon, Sari B; Brenner, Matthew; Rockwood, Gary A; Logue, Brian A

    2014-02-04

    Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.

  20. A direct and rapid method to determine cyanide in urine by capillary electrophoresis.

    Science.gov (United States)

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-10-02

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4min, and the separation was observed in 25s. The limit of detection (LOD) was 4.0nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification. Published by Elsevier B.V.

  1. 21 CFR 184.1619 - Potassium carbonate.

    Science.gov (United States)

    2010-04-01

    ... solution of potassium hydroxide with excess carbon dioxide to produce potassium carbonate; (3) By treating a solution of potassium hydroxide with carbon dioxide to produce potassium bicarbonate, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food...

  2. Potassium in milk and milk products

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Nuguid, Z.F.S.; Tangonan, M.C.

    1989-01-01

    The amount of potassium in imported processed milk was determined by gamma spectral analysis. The results show that the potassium content of diluted infant formula milk is closest to the reported mean concentration of potassium in human milk while other milk types have potassium values similar to the potassium content of cow milk. (Auth.). 2 figs., 5 refs

  3. Cyanide and Copper Recovery from Barren Solution of the Merrill Crowe Process

    Science.gov (United States)

    Parga, José R.; Valenzuela, Jesús L.; Díaz, J. A.

    This paper is a brief overview of the role of inducing the nucleated precipitation of copper and cyanide in a flashtube serpentine reactor, using sodium sulfide as the precipitate and sulfuric acid as pH control. The results showed that pH had a great effect on copper cyanide removal efficiency and the optimum pH was about 3 to 3.5. At this pH value copper cyanide removal efficiency could be achieved above 97 and 99 %, when influent copper concentration ions were 650 and 900 ppm respectively. In this process the cyanide associated with the copper, zinc, iron cyanide complexes are released as HCN gas under strong acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide.

  4. An enzymatic method for determination of azide and cyanide in aqueous phase.

    Science.gov (United States)

    Wan, Nan-Wei; Liu, Zhi-Qiang; Xue, Feng; Zheng, Yu-Guo

    2015-11-20

    A halohydrin dehalogenase (HHDH-PL) from Parvibaculum lavamentivorans DS-1 was characterized and applied to determine azide and cyanide in the water. In this methodology, HHDH-PL catalysed azide and cyanide to react with butylene oxide and form corresponding β-substituted alcohols 1-azidobutan-2-ol (ABO) and 3-hydroxypentanenitrile (HPN) that could be quantitatively detected by gas chromatograph. The detection calibration curves for azide (R(2)=0.997) and cyanide (R(2)=0.995) were linear and the lower limits of detection for azide and cyanide were 0.1 and 0.3mM, respectively. Several other nucleophiles were identified having no effect on the analysis of azide and cyanide, excepting nitrite which influenced the detection of cyanide. This was the first report of a biological method to determine the inorganic azide and cyanide by converting them to the measurable organics. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers.

    Science.gov (United States)

    Vinnakota, Chakravarthy V; Peetha, Naga S; Perrizo, Mitch G; Ferris, David G; Oda, Robert P; Rockwood, Gary A; Logue, Brian A

    2012-11-01

    Cyanide is highly toxic and is present in many foods, combustion products (e.g. cigarette smoke), industrial processes, and has been used as a terrorist weapon. In this study, cyanide and its major metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), were analyzed from various human biofluids of smokers (low-level chronic cyanide exposure group) and non-smokers to gain insight into the relationship of these biomarkers to cyanide exposure. The concentrations of each biomarker tested were elevated for smokers in each biofluid. Significant differences (p cyanide exposure, and other statistical methods were performed to better understand the relationship between cyanide and its metabolites. Of the markers studied, the results indicate plasma ATCA, in particular, showed excellent promise as a biomarker for chronic low-level cyanide exposure.

  6. Ferrocyanide Safety Program cyanide speciation studies. Final report

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Bryan, S.L.

    1995-07-01

    This report summarizes Pacific Northwest Laboratory's fiscal year (FY) 1995 progress toward developing and implementing methods to identify and quantify cyanide species in ferrocyanide tank waste. This work was conducted for Westinghouse Hanfbrd Company's (WHC's) Ferrocyanide Safety Program. Currently, there are 18 high-level waste storage tanks at the US Department of Energy's Hanford Site that are on a Ferrocyanide Tank Watchlist because they contain an estimated 1000 g-moles or more of precipitated ferrocyanide. In the presence of oxidizing material such as sodium nitrate or nitrite, ferrocyanide can be made to react exothermally by heating it to high temperatures or by applying an electrical spark of sufficient energy (Cady 1993). However, fuel, oxidizers, and temperature are all important parameters. If fuel, oxidizers, or high temperatures (initiators) are not present in sufficient amounts, then a runaway or propagating reaction cannot occur. To bound the safety concern, methods are needed to definitively measure and quantitate ferrocyanide concentration present within the actual waste. The target analyte concentration for cyanide in waste is approximately 0.1 to 15 wt % (as cyanide) in the original undiluted sample. After dissolution of the original sample and appropriate dilutions, the concentration range of interest in the analytical solutions can vary between 0.001 to 0.1 wt % (as cyanide). In FY 1992, 1993, and 1994, two solution (wet) methods were developed based on Fourier transform infrared (FTIR) spectroscopy and ion chromatography (IC); these methods were chosen for further development activities. The results of these activities are described

  7. Metallization of cyanide-modified Pt(111) electrodes with copper

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Wildi, Christopher; Mwanda, Jonathan A.

    2016-01-01

    -cyanide-copper sandwich configuration. STM also shows that the Cu deposit consists of isolated bidimensional nanoislands, which slowly grow through an Ostwald ripening mechanism if the potential is kept negative of the reduction peak. Metallization is not possible in perchloric acid solutions, which implies...

  8. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    Science.gov (United States)

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  9. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  10. Cyanide, gold and environment in the mining of antioqueno northeast

    International Nuclear Information System (INIS)

    Montoya Ochoa, Carlos Arturo

    2001-01-01

    For 50 years cyanide of sodium has been used in the process of extraction of gold associated to minerals exploited in the Municipality of Segovia, Department of Antioquia. The extraction of the gold is made by leaching percolation in 72 of the 76 plants, and for agitation in 4. The sands are discharged to the floor in urban areas or to the gulches directly, with contents of sodium cyanide (NaCN) that overcome up to one thousand (1.000) times the quantity settled down by law of one (I) part by million (ppm); without any previous treatment, this generates a problem of contamination of the floor and the gulches. In this article an analysis of the problem is made, the methods are presented to determine content of cyanide of sodium (NaCN) in the sands, differentiating the three cyanide forms that are presented, a summary of the toxicity study in aquatic species and a proposal of detoxification of the sands by chemical and biological methods, is presented and a summary of a biological application

  11. Detoxification of cyanides in cassava flour by linamarase of Bacillus ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... Full Length Research Paper. Detoxification of ... utilizing indigenous bacteria from cyanide rich cassava peel waste and exploited their potential for ... Figure 1. Enzyme catalyzed degradation of cyanogenic glycosides. pains ..... Linamarin - the toxic compound of cassava. J. Venom. Anim. Toxins. 2(1): 6-12.

  12. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  13. The aquatic toxicity and chemical forms of coke plant effluent cyanide -- Implications for discharge limits

    International Nuclear Information System (INIS)

    Garibay, R.; Rupnow, M.; Godwin-Saad, E.; Hall, S.

    1995-01-01

    Cyanide is present in treated cokemaking process waters at concentrations as high as 8.0 mg/L. In assessing options for managing the discharge of a treated effluent, the development and implementation of discharge limits for cyanide became a critical issue. A study was initiated to evaluate possible alternatives to cyanide permit limits at the US Steel Gary Works Facility. The objectives of the study were to: (1) evaluation the forms of cyanide present in coke plant effluent; (2) determine whether these forms of cyanide are toxic to selected aquatic organisms; (3) compare the aquatic toxicity of various chemical forms of cyanide; (4) identify if the receiving water modifies cyanide bioavailability; and (5) confirm, with respect to water quality-based effluent limits, an appropriate analytical method for monitoring cyanide in a coke plant effluent. The results of aquatic toxicity tests and corresponding analytical data are presented. Toxicity tests were conducted with various pure chemical forms of cyanide as well as whole coke plant effluent (generated from a pilot-scale treatment system). Test species included the fathead minnow (Pimephales promelas), rainbow trout (Oncorhynchus mykiss), Ceriodaphnia dubia (C. dubia) and Daphnia magna (D. magna). Analytical measurements for cyanide included total, weak acid dissociable, diffusible cyanide and selected metal species of cyanide. The findings presented by the paper are relevant with respect to the application of cyanide water quality criteria for a coke plant effluent discharge, the translation of these water quality-based effluent limits to permit limits, and methods for compliance monitoring for cyanide

  14. Regioselective Acylation of Diols and Triols: The Cyanide Effect.

    Science.gov (United States)

    Peng, Peng; Linseis, Michael; Winter, Rainer F; Schmidt, Richard R

    2016-05-11

    Central topics of carbohydrate chemistry embrace structural modifications of carbohydrates and oligosaccharide synthesis. Both require regioselectively protected building blocks that are mainly available via indirect multistep procedures. Hence, direct protection methods targeting a specific hydroxy group are demanded. Dual hydrogen bonding will eventually differentiate between differently positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide or acetyl cyanide as an acylating agent, and DMAP as a catalyst yield at -78 °C the thermodynamically unfavorable axial O-acylation product; acyl migration is not observed under these conditions. This phenomenon was substantiated with 3,4-O-unproteced galacto- and fucopyranosides and 2,3-O-unprotected mannopyranosides. Even for 3,4,6-O-unprotected galactopyranosides as triols, axial 4-O-acylation is appreciably faster than O-acylation of the primary 6-hydroxy group. The importance of hydrogen bonding for this unusual regioselectivity could be confirmed by NMR studies and DFT calculations, which indicate favorable hydrogen bonding of cyanide to the most acidic axial hydroxy group supported by hydrogen bonding of the equatorial hydroxy group to the axial oxygen. Thus, the "cyanide effect" is due to dual hydrogen bonding of the axial hydroxy group which enhances the nucleophilicity of the respective oxygen atom, permitting an even faster reaction for diols than for mono-ols. In contrast, fluoride as a counterion favors dual hydrogen bonding to both hydroxy groups leading to equatorial O-acylation.

  15. Dietary reference values for potassium

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for potassium. The Panel decides to set DRVs on the basis of the relationships between potassium intake and blood pressure and stroke...

  16. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  17. Cyanide hydratase from Aspergillus niger K10: Overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation

    Czech Academy of Sciences Publication Activity Database

    Rinágelová, Anna; Kaplan, Ondřej; Veselá, Alicja Barbara; Chmátal, Martin; Křenková, Alena; Plíhal, Ondřej; Pasquarelli, Fabrizia; Cantarella, M.; Martínková, Ludmila

    2014-01-01

    Roč. 49, č. 3 (2014), s. 445-450 ISSN 1359-5113 R&D Projects: GA ČR(CZ) GAP504/11/0394; GA TA ČR TA01021368 Institutional support: RVO:61388971 Keywords : Cyanide hydratase * Nitrilase * Aspergillus niger Subject RIV: CE - Biochemistry Impact factor: 2.516, year: 2014

  18. Effect of long-term cyanide exposure on cyanide-sensitive respiration and phosphate metabolism in the fungus Phycomyces blakesleeanus

    Directory of Open Access Journals (Sweden)

    Stanić Marina

    2014-01-01

    Full Text Available The effects of long-term exposure (5 h of Phycomyces blakesleeanus mycelium to 5 mM KCN on respiration and phosphate metabolites were tested. Exposure to cyanide, antimycin A and azide lead to a decrease in the activity of cyanide-sensitive respiration (CSR, and the ratio of core polyphosphates (PPc and inorganic phosphates (Pi, which is a good indicator of the metabolic state of a cell. After 5 h of incubation, the activity of CSR returned to control values. For this, the recovery of cytochrome c oxidase (COX was required. In addition, the PPc/Pi ratio started to recover shortly after initiation of COX recovery, but never reached control values. This led us to conclude that the regulation of polyphosphate (PPn levels in the cell is tightly coupled to respiratory chain functioning. In addition, acutely applied cyanide caused two different responses, observed by 31P NMR spectroscopy, that were probably mediated through the mechanism of glycolytic oscillations, triggered by the effect of cyanide on mitochondria. [Projekat Ministarstva nauke Republike Srbije, br. 173040

  19. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... of low potassium? Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, ... your urine. This can lead to low potassium levels in your blood (hypokalemia). Signs and symptoms of ...

  20. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    International Nuclear Information System (INIS)

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-01-01

    In the present work, K 2 Ti 2 O 5 , K 2 Ti 4 O 9 and K 2 Ti 6 O 13 are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO 2 . Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO 3 ) 2 precursor. It is found that the binding energy of K in K 2 Ti 2 O 5 is much higher than those in K 2 Ti 4 O 9 and K 2 Ti 6 O 13 , and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K 2 Ti 2 O 5 is much easier to be exchanged out.

  1. Potassium iodide stockpiling

    International Nuclear Information System (INIS)

    Krimm, R.W.

    1983-01-01

    After examination by the Federal Emergency Management Agency (FEMA) and other federal agencies of federal policy on the use and distribution of potassium iodide (KI) as a thyroid-blocking agent for use in off-site preparedness around commercial nuclear powerplants, FEMA believes the present shelf life of KI is too short, that the minimum ordering quantities are an obstacle to efficient procurement, and that the packaging format offered by the drug industry does not meet the wishes of state and local government officials. FEMA has asked assistance from the Food and Drug Administration in making it possible for those states wishing to satisfy appropriate requirements to do so at the minimum cost to the public. Given an appropriate packaging and drug form, there appears to be no reason for the federal government to have further involvement in the stockpiling of KI

  2. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  3. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  4. The post-depositional accumulation of metal-rich cyanide phases in submerged tailings deposits

    International Nuclear Information System (INIS)

    Jambor, J.L.; Martin, A.J.; Gerits, J.

    2009-01-01

    The characterization and accumulation pathway of metal-rich cyanide phases in mine-contaminated Balmer Lake (Ontario, Canada) were assessed through detailed examination of sediment mineralogy and porewater composition. The near-surface deposits in the lake consist of fine-grained calcareous tailings intermixed with natural organic-rich lake sediments. The tailings contain blue to greenish Fe-dominant cyanide that has formed in situ within the tailings. X-ray diffraction confirmed the presence of a mixed ferri/ferrocyanide [Fe 4 III (Fe II (CN) 6 ) 3 ], commonly referred to as 'Prussian Blue' but it is likely other metal-cyanide complexes are present as evidenced by the distinct colour variations. The cyanide phases occur in up to 1 wt.% as discrete particles and as bedded layers, where the cyanide phases act to cement other siliceous tailings components into a heterogeneous blend. Energy Dispersion X-ray Spectroscopy (EDS) analyses indicate that the authigenic cyanide precipitates contain variable amounts of Ni, Cu and Zn. Quantitatively, the cyanide compounds represent the dominant repository for Cu in Balmer Lake sediments. For Ni and Zn, cyanide associations are secondary in importance to Fe oxyhydroxides. High-resolution porewater profiles and solubility considerations suggest that the formation of the cyanide complexes is a feature of historical (pre-1990) conditions when aqueous cyanide concentrations were higher in the lake.

  5. The post-depositional accumulation of metal-rich cyanide phases in submerged tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jambor, J.L. [Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, BC, V4M 3L9 (Canada); Martin, A.J., E-mail: ajm@lorax.ca [Lorax Environmental Services, 2289 Burrard St., Vancouver, BC, V6J 3H9 (Canada); Gerits, J. [Lorax Environmental Services, 2289 Burrard St., Vancouver, BC, V6J 3H9 (Canada)

    2009-12-15

    The characterization and accumulation pathway of metal-rich cyanide phases in mine-contaminated Balmer Lake (Ontario, Canada) were assessed through detailed examination of sediment mineralogy and porewater composition. The near-surface deposits in the lake consist of fine-grained calcareous tailings intermixed with natural organic-rich lake sediments. The tailings contain blue to greenish Fe-dominant cyanide that has formed in situ within the tailings. X-ray diffraction confirmed the presence of a mixed ferri/ferrocyanide [Fe{sub 4}{sup III}(Fe{sup II}(CN){sub 6}){sub 3}], commonly referred to as 'Prussian Blue' but it is likely other metal-cyanide complexes are present as evidenced by the distinct colour variations. The cyanide phases occur in up to 1 wt.% as discrete particles and as bedded layers, where the cyanide phases act to cement other siliceous tailings components into a heterogeneous blend. Energy Dispersion X-ray Spectroscopy (EDS) analyses indicate that the authigenic cyanide precipitates contain variable amounts of Ni, Cu and Zn. Quantitatively, the cyanide compounds represent the dominant repository for Cu in Balmer Lake sediments. For Ni and Zn, cyanide associations are secondary in importance to Fe oxyhydroxides. High-resolution porewater profiles and solubility considerations suggest that the formation of the cyanide complexes is a feature of historical (pre-1990) conditions when aqueous cyanide concentrations were higher in the lake.

  6. The Combination of Cobinamide and Sulfanegen Is Highly Effective in Mouse Models of Cyanide Poisoning

    Science.gov (United States)

    Chan, Adriano; Crankshaw, Daune L.; Monteil, Alexandre; Patterson, Steven E.; Nagasawa, Herbert T.; Briggs, Jackie E.; Kozocas, Joseph A.; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Bigby, Timothy D.; Boss, Gerry R.

    2013-01-01

    SUMMARY Context Cyanide poisoning is a major contributor to death in smoke inhalation victims and accidental exposure to cyanide occurs in a variety of industries. Moreover, cyanide has the potential to be used by terrorists, particularly in a closed space such as an airport or train station. Current therapies for cyanide poisoning must be given by intravenous administration, limiting their use in treating mass casualties. Objective We are developing two new cyanide antidotes—cobinamide, a vitamin B12 analog, and sulfanegen, a 3-mercaptopyruvate prodrug. Both drugs can be given by intramuscular administration, and therefore could be used to treat a large number of people quickly. We now asked if the two drugs would have an augmented effect when combined. Materials and Methods We used a non-lethal and two different lethal models of cyanide poisoning in mice. The non-lethal model assesses neurologic recovery by quantitatively evaluating the innate righting reflex time of a mouse. The two lethal models are a cyanide injection and a cyanide inhalation model. Results We found that the two drugs are at least additive when used together in both the non-lethal and lethal models: at doses where all animals died with either drug alone, the combination yielded 80 and 40% survival in the injection and inhalation models, respectively. Similarly, drug doses that yielded 40% survival with either drug alone yielded 80 and 100% survival in the injection and inhalatiion models, respectively. As part of the inhalation model, we developed a new paradigm in which animals are exposed to cyanide gas, injected intramuscularly with antidote, and then re-exposed to cyanide gas. This simulates cyanide exposure of a large number of people in a closed space, because people would remain exposed to cyanide, even after receiving an antidote. Conclusion The combination of cobinamide and sulfanegen shows great promise as a new approach to treating cyanide poisoning. PMID:21740135

  7. Monitoring of river water for free cyanide pollution from mining activity in Papua New Guinea and attenuation of cyanide by biochar.

    Science.gov (United States)

    Sawaraba, Ian; Rao, B K Rajashekhar

    2015-01-01

    Cyanide (CN) pollution was reported in the downstream areas of Watut and Markham Rivers due to effluent discharges from gold mining and processing activities of Hidden Valley mines in Morobe province of Papua New Guinea. We monitored free cyanide levels in Watut and Markham River waters randomly three times in years for 2 years (2012 and 2013). Besides, a short-term static laboratory study was conducted to evaluate the potential of river sediment to attenuate externally added cyanide, with and without the presence of biochar material. Results indicated that the free cyanide content ranged between 0.17 and 1.32 μg L(-1) in the river waters. The free cyanide content were found to be significantly (p cyanide levels in all four monitoring sites across three sampling intervals were lower than 0.20 mg L(-1) which is the maximum contaminant level (MCL) permitted according to US Environmental Protection Agency. Under laboratory conditions, the biochar-impregnated sediment showed ∼3 times more attenuation capacity for cyanide than non-amended sediment, thus indicating possibility of using biochar to cleanse cyanide from spills or other sources of pollution.

  8. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    Science.gov (United States)

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Relative Propensities of Cytochrome c Oxidase and Cobalt Corrins for Reaction with Cyanide and Oxygen: Implications for Amelioration of Cyanide Toxicity.

    Science.gov (United States)

    Yuan, Quan; Pearce, Linda L; Peterson, Jim

    2017-12-18

    In aqueous media at neutral pH, the binding of two cyanide molecules per cobinamide can be described by two formation constants, K f1 = 1.1 (±0.6) × 10 5 M -1 and K f2 = 8.5 (±0.1) × 10 4 M -1 , or an overall cyanide binding constant of ∼1 × 10 10 M -2 . In comparison, the cyanide binding constants for cobalamin and a fully oxidized form of cytochrome c oxidase, each binding a single cyanide anion, were found to be 7.9 (±0.5) × 10 4 M -1 and 1.6 (±0.2) × 10 7 M -1 , respectively. An examination of the cyanide-binding properties of cobinamide at neutral pH by stopped-flow spectrophotometry revealed two kinetic phases, rapid and slow, with apparent second-order rate constants of 3.2 (±0.5) × 10 3 M -1 s -1 and 45 (±1) M -1 s -1 , respectively. Under the same conditions, cobalamin exhibited a single slow cyanide-binding kinetic phase with a second-order rate constant of 35 (±1) M -1 s -1 . All three of these processes are significantly slower than the rate at which cyanide is bound by complex IV during enzyme turnover (>10 6 M -1 s -1 ). Overall, it can be understood from these findings why cobinamide is a measurably better cyanide scavenger than cobalamin, but it is unclear how either cobalt corrin can be antidotal toward cyanide intoxication as neither compound, by itself, appears able to out-compete cytochrome c oxidase for available cyanide. Furthermore, it has also been possible to unequivocally show in head-to-head comparison assays that the enzyme does indeed have greater affinity for cyanide than both cobalamin and cobinamide. A plausible resolution of the paradox that both cobalamin and cobinamide clearly are antidotal toward cyanide intoxication, involving the endogenous auxiliary agent nitric oxide, is suggested. Additionally, the catalytic consumption of oxygen by the cobalt corrins is demonstrated and, in the case of cobinamide, the involvement of cytochrome c when present. Particularly in the case of cobinamide, these oxygen

  10. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  11. Oral potassium supplementation in surgical patients.

    Science.gov (United States)

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  12. Determination of free cyanide and total cyanide concentrations in surface and underground waters in Bogoso and its surrounding areas in Ghana

    Directory of Open Access Journals (Sweden)

    S. Obiri

    2007-08-01

    Full Text Available Concentrations of free cyanide and total cyanide in water samples in Bogoso and its surrounding areas in Ghana have been measured in this study. Concentrations of free cyanide and total cyanide were found to be above the maximum permissible discharge limit of effluent from mining companies into natural waters set by Environmental Protection Agency, Ghana (GEPA. A comparison of the results obtained in this study with permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that surface waters in the study areas are highly polluted with cyanide and it's not safe for human consumptions. This means that, the resident in and around Bogoso are at risk.

  13. Eliminating Cyanide, Reducing Heavy Metals, and Harvesting Gold from Mining Waste with Plants

    DEFF Research Database (Denmark)

    2001-01-01

    : All plants (as far as known) have an enzyme to detoxify cyanide by binding it to an amino acid. Cyanide in the appropriate dose can be used by plants as nitrogen source. Compared to other organisms, plants can tolerate high doses of free and complexed cyanidess. Using plants for detoxifying mining......Large amounts of cyanides are used in gold mining. The application is open and generates environmental problems. Regulators therefore insist on detoxifying cyanide-contaminated wastewater. There are existing technologies to remove cyanides, but none uses plants. Here, a new technology is introduced...... wastewater combines several benefits: cyanide is removed, plants are irrigated and fertilised. Heavy metals (including gold) are extracted by plants. Plants can be harvested and used, e.g., for energy production by burning. The ash of the plants is probaly rich in gold and a resource for further gold...

  14. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    Science.gov (United States)

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  15. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  16. Acute cyanide poisoning in prehospital care: new challenges, new tools for intervention.

    Science.gov (United States)

    Guidotti, Tee

    2006-01-01

    Effective management of cyanide poisoning from chemical terrorism, inhalation of fire smoke, and other causes constitutes a critical challenge for the prehospital care provider. The ability to meet the challenge of managing cyanide poisoning in the prehospital setting may be enhanced by the availability of the cyanide antidote hydroxocobalamin, currently under development for potential introduction in the United States. This paper discusses the causes, recognition, and management of acute cyanide poisoning in the prehospital setting with emphasis on the emerging profile of hydroxocobalamin, an antidote that may have a risk:benefit ratio suitable for empiric, out-of-hospital treatment of the range of causes of cyanide poisoning. If introduced in the U.S., hydroxocobalamin may enhance the role of the U.S. prehospital responder in providing emergency care in a cyanide incident.

  17. Determination of boron, silica, fluoride, MBAS, phenols, cyanide and sulphide

    International Nuclear Information System (INIS)

    Smith, R.

    1982-01-01

    This study forms part of the NIWR's series of interlaboratory comparison studies involving southern African laboratories engaged in water and wastewater analysis, and is concerned with the analysis of synthetic water samples by 31 laboratories for boron, silica, fluoride, methylene blue active substances (MBAS), phenols, cyanide and sulphide. The results obtained are evaluated and discussed. Recognised standard methods, or modifications of these methods, were used for most of the determinations. Results from the boron, silica and fluoride determinations showed, in general, acceptable accuracy and precision. Results from the MBAS, phenols, cyanide and sulphide determinations were, however, somewhat widespread, and illustrated the difficulty in obtaining reliable results from the measurement of relatively low levels of these determinands

  18. Recovery of Copper from Cyanidation Tailing by Flotation

    Science.gov (United States)

    Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli

    2016-02-01

    In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

  19. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  20. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds

    International Nuclear Information System (INIS)

    Fuku, Xolile; Iftikar, Faiza; Hess, Euodia; Iwuoha, Emmanuel; Baker, Priscilla

    2012-01-01

    Highlights: ► Cytochrome c biosensor for detection of KCN, As 2 O 3 and Fe 2 K (CN) was constructed. ► Detection limits in the range of 4.3–9.1 μM for the analytes were obtained using CV, SWV and EIS. ► The detection limits for the biosensor were significantly lower than current EPA and WHO guidelines. - Abstract: An electrochemical method based on a cytochrome c biosensor was developed, for the detection of selected arsenic and cyanide compounds. Boron doped diamond (BDD) electrode was used as a transducer, onto which cytochrome c was immobilised and used for direct determination of Prussian blue, potassium cyanide and arsenic trioxide. The sensitivity as calculated from cyclic voltammetry (CV) and square wave voltammetry (SWV), for each analyte in phosphate buffer (pH = 7) was found to be in the range of (1.1–4.5) × 10 −8 A μM −1 and the detection limits ranged from 4.3 to 9.1 μM. The biosensor is therefore able to measure significantly lower than current Environmental Protection Agency (EPA) and World Health Organisation (WHO) guidelines, for these types of analytes. The protein binding was monitored as a decrease in biosensor peak currents by SWV and as an increase in biosensor charge transfer resistance by electrochemical impedance spectroscopy (EIS). EIS provided evidence that the electrocatalytic advantage of BDD electrode was not lost upon immobilisation of cytochrome c. The interfacial kinetics of the biosensor was modelled as equivalent electrical circuit based on electrochemical impedance spectroscopy data. UV–vis spectroscopy was used to confirm the binding of the protein in solution by monitoring the intensity of the soret bands and the Q bands. FTIR was used to characterise the protein in the immobilised state and to confirm that the protein was not denatured upon binding to the pre-treated bare BDD electrode. SNFTIR of cyt c immobilised at platinum electrode, was used to study the effect of oxidation state on the surface bond

  1. Quick detection and quantification of iron-cyanide complexes using fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sut-Lohmann, Magdalena; Raab, Thomas

    2017-08-01

    The continuous release of persistent iron-cyanide (Fe-CN) complexes from various industrial sources poses a high hazard to the environment and indicates the necessity to analyze a considerable amount of samples. Conventional flow injection analysis (FIA) is a time and cost consuming method for cyanide (CN) determination. Thus, a rapid and economic alternative needs to be developed to quantify the Fe-CN complexes. 52 soil samples were collected at a former Manufactured Gas Plant (MGP) site in order to determine the feasibility of diffuse reflectance infrared Fourier spectroscopy (DRIFTS). Soil analysis revealed CN concentrations in a range from 8 to 14.809 mg kg -1 , where 97% was in the solid form (Fe 4 [Fe(CN) 6 ] 3 ), which is characterized by a single symmetrical CN band in the range 2092-2084 cm -1 . The partial least squares (PLS) calibration-validation model revealed IR response to CN tot which exceeds 2306 mg kg -1 (limit of detection, LOD). Leave-one-out cross-validation (LOO-CV) was performed on soil samples, which contained low CN tot ( 900 mg kg -1 resulted in LOD equal to 3751 mg kg -1 . It was found that FTIR spectroscopy provides the information concerning different CN species in the soil samples. Additionally, it is suitable for quantifying Fe-CN species in matrixes with CN tot  > 154 mg kg -1 . Thus, FTIR spectroscopy, in combination with the statistical approach applied here seems to be a feasible and quick method for screening of contaminated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A rectangular Ni-Fe cluster with unusual cyanide bridges.

    Science.gov (United States)

    Krüger, Christoph; Sato, Hiroki; Matsumoto, Takuto; Shiga, Takuya; Newton, Graham N; Renz, Franz; Oshio, Hiroki

    2012-10-07

    An asymmetric polycyanide iron complex, K(2)[Fe(III)(L1)(CN)(4)](MeOH) (HL1 = 2,2'-(1H-pyrazole-3,5-diyl)bis-pyridine), was synthesized and its complexation compatibility with nickel ions was examined. Two kinds of enantiomeric nickel-iron squares were obtained in the presence of a chiral bidentate capping ligand. The compounds display unusual cyanide bridge geometry and have ferromagnetic interactions between nickel and iron ions.

  3. Syntheses and characterizations of the cyanide-bridged ...

    African Journals Online (AJOL)

    The spectral features of the complexes suggest that the Ni(II) ion is four coordinate with four cyanide-carbon atoms in a square planar geometry, whereas the Cu(II) and the Zn(II) ions of the Cu–Ni–etim and the Zn–Ni–etim complexes are completed by nitrogen atoms of two cyano groups of [Ni(CN)4]2- coordinated to the ...

  4. Determination of nitrate, nitrite, N- nitrosamines, cyanide and ...

    African Journals Online (AJOL)

    The nitrate, nitrite, N- nitrosamines and ascorbic acid content as well as the levels of cyanide in eight brands of fruit juices and twelve brands of sachet water commonly marketed and consumed in Nigeria were estimated. The mean values of nitrate ranged from 2.29±0.05 to 16.50±1.21 mg/L for the juices and 0.64±0.21 to ...

  5. Using mineralogy to optimize gold recovery by direct cyanidation

    Science.gov (United States)

    Venter, D.; Chryssoulis, S. L.; Mulpeter, T.

    2004-08-01

    The complete and accurate gold deportments of direct cyanide leach residues provide a clear picture of the occurrence of unrecovered gold and identify causes for poor extraction. Based on the independent measurement of each form and carrier of unleached gold, opportunities for recovery optimization can be assessed more accurately by providing meaningful targets and can help identify the means to achieve such targets. In ten of 14 leach plants surveyed, 23% of the unrecovered gold could be extracted without finer grinding.

  6. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca)

    OpenAIRE

    He Huang; Shangmian Yie; Yuliang Liu; Chengdong Wang; Zhigang Cai; Wenping Zhang; Jingchao Lan; Xiangming Huang; Li Luo; Kailai Cai; Rong Hou; Zhihe Zhang

    2016-01-01

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda?s feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and...

  7. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  8. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  9. Acute Cyanide Poisoning: Hydroxocobalamin and Sodium Thiosulfate Treatments with Two Outcomes following One Exposure Event

    OpenAIRE

    Meillier, Andrew; Heller, Cara

    2015-01-01

    Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide’s metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use...

  10. Isotopic studies on ligand exchange between complex and simple cyanides in aqueous medium and in liquid hydrogen cyanide. Part 1. Rate law and temperature dependence study of the radiocyanide exchange between hydrogen cyanide and octacyanotungstate(4) in aque us medium

    International Nuclear Information System (INIS)

    Zielinski, M.

    1978-01-01

    Dark radiocyanide ligand exchange in the closed system consisting of K 4 W(CN) 8 , hydrogen cyanide and water have been investigated. It has been found that the reaction is first order in respect to the complex cyanide and zero order in respect to the free hydrogen cyanide. Arrhenius activation energy within the temperature interval of 20-100 0 C equals to 32.373 kcal/mole. Enthalpy and entropy of activation are correspondingly ΔH not equal to Λ31.716kcal/mole and ΔS not equal to =5.45 e.u. A preliminary discussion of the above findings is presented. (author)

  11. Coumarin benzothiazole derivatives as chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-01

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  12. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    Science.gov (United States)

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  13. Smoke Inhalation and Cyanide Poisoning: 20 Years of Paris Experience

    International Nuclear Information System (INIS)

    Baud, F. J.

    2007-01-01

    Hydroxocobalamin has been used as a cyanide poisoning antidote for many years in France. It has recently been approved by the US FDA. In Paris, hydroxocobalamin is carried by the Brigade de Sapeurs Pompiers (Paris Fire Brigade) in mobile intensive care vehicles and has been administered empirically to victims of enclosed-space fire smoke inhalation who meet the criteria of having soot in the nose, mouth, or throat, any alteration in mental status or disturbance in consciousness, and especially if any degree of hypotension is present (BP less than or equal to 100 mmHg systolic). The administration of hydroxocobalamin at the scene was shown to be safe. Hydroxocobalamin has also been efficacious and safe in 'pure' cyanide poisoning, as long as brain death has not already occurred. A 'toxidrome' of cyanide poisoning has been developed in our institution in Paris, and its application can assist in making the diagnosis of this life-threatening poisoning which cannot be emergent diagnosed by currently-available laboratory methods.(author)

  14. Hydriding of steel in cyanide electrolytes of cadmium plating

    International Nuclear Information System (INIS)

    Sokol'skaya, N.B.; Maksimchuk, V.P.

    1977-01-01

    Hydrogenation of steel in cyanide electrolytes for cadmium deposition has been studied in a wide range of compositions. Also investigated have been the scattering capacity and polarization parameters of these electrolytes. The basic components are Cd 2+ and CH - ; besides that, Na 2 SO 4 x10H 2 O, NaOH and NiSO 4 x7H 2 O have been added to the electrolytes. Hydrogenation upon cadmium electrolytic deposition has been determined by the rate of hydrogen penetration through a steel membrane 0.5 mm thick. At the NaCN/Cd(CN) 2 ratio more than 2 the increase in sodium cyanide concentration in the electrolyte appreciably increases neither its hydrogenating and scattering capacity, nor cathodic polarization. The greatest scattering capacity and the highest hydrogenation is exhibited by diluted cadmium deposition elecctrolytes (CdO concentration 9-12 g/1), which prove particularly effective for deposition of regular coatings on complex shape articles. Cadmium deposition on high strength steels, however, should rather involve cyanide electrolytes with high cadmium concentration (50-60 g/1) in order to reduce hydrogenation

  15. Mechanistic study on exchange between labeled cyanide and nitriles

    International Nuclear Information System (INIS)

    Hussain, Munir; Chaney, J.E.; Digenis, G.A.; Layton, W.J.

    1985-01-01

    The potential of a clean, rapid exchange between the nitrile function of mandelonitrile and cyanide was examined for the preparation of labeled mandelonitrile which could be subsequently rapidly reduced with borane to labeled phenylethanolamine (PEOH). The mandelonitrile exchange (CN-CN) was studied using [ 13 C]-NaCN with crown ethers in THF, monitoring the results with 13 C-NMR. A large increase in the intensity of the signal due to [ 13 C]-nitrile was observed. The exchange was also carried out using [ 14 C]-NaCN, and the exchanged nitrile was reduced to [ 14 C]-PEOH. The chemical yield for the reduction of [ 14 C]-mandelonitrile to [ 14 C]-PEOH was 60% and the overall radio-chemical yield of the cyanide-exchange and borane reduction (based on [ 14 C]-NaCN used) was 20%. Mechanisms are proposed which were found to be consistent with results of cyanide exchange of appropriately selected nitriles. (author)

  16. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  17. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  18. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  19. Potassium distribution in sugar cane

    International Nuclear Information System (INIS)

    Medina, N.H.

    2014-01-01

    In this work the distribution of potassium in sugarcane has been studied during its growth in two different conditions. In the first one the sugarcane soil was prepared with natural fertilizers, using sugarcane bagasse and, in another plantation the soil was prepared with commercial fertilizer NPK with a proportion of 10-10-10. For the measurement of potassium concentration in each part of the plant, gamma ray spectrometry techniques have been used to measure gamma-rays emitted from the radioisotope 40 K present in the sugarcane samples. The concentration of potassium in roots, stems and leaves were measured periodically. The results for sugarcane cultivated in soil with natural fertilizer show a higher concentration of potassium at the beginning of plant development and over time there is an oscillatory behavior in this concentration in each part of the plant, reaching a lower concentration in the adult plant. The results for the plant grown in soil with NPK fertilizer, indicate that the potassium concentration is higher in the stem at the beginning of cultivation and remained practically constant over time in various parts of the plant, with higher values in the leaves and stem than at the root. On the other hand, the results obtained using fertilizer NPK shows a lower potassium concentration, since the fertilizer provoked a much higher growth rate. (author)

  20. Quantitative measurement of cyanide complexes in simulated and actual Hanford ferrocyanide wastes

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Sell, R.L.; Bryan, S.L.

    1994-01-01

    Cyanide-containing radioactive waste from radiocesium scavenging processes conducted during the 1950's at Hanford is currently stored in 24 single shell tanks. As part of ongoing tank characterization efforts, the quantity and chemical form of cyanide in these tanks need to be determined. This report summarizes the results of studies conducted at Pacific Northwest Laboratory (PNL) under contract to Westinghouse Hanford Company (WHC) to develop methods for the quantification of total cyanide and identification of major cyanide-containing species in Ferrocyanide Tank Waste. Results from the application of FTIR, IC, and microdistillation procedures to simulated and actual Hanford waste are presented and compared where applicable

  1. Complexation of intracellular cyanide by hydroxocobalamin using a human cellular model.

    Science.gov (United States)

    Astier, A; Baud, F J

    1996-01-01

    1. The rational for administering hydroxocobalamin (OHCbl) as an antidote to cyanide poisoning is based on the high affinity of CN ion for cobalt compounds. However, only few data are available on the influence of OHCbl on the intracellular cyanide pool. 2. In human fibroblasts incubated for 10 min with 500 microM of [14C] cyanide, the accumulation ratio was 25 at 37 degrees C (10.45 +/- 1.51 mM) and 11.9 at 4 degrees C. 3. Using the monoblastic U-937 cell line, a rapid uptake of radioactive cyanide was observed with a maximum accumulation ratio of 1.97 at 5 min. 4. A linear relationship between cyanide uptake by U-937 cells and cyanide concentration in incubation medium (10-500 microM; 5 min) was found suggesting a first order process (k = 0.25 min-1). 5. After incubation of fibroblasts with 500 microM of OHCbl, a 75% decrease of intracellular cyanide was observed, with concomittant formation of intracellular cyanocobalamin CNCbl (intracellular/extracellular ratio: 158). 6. These findings suggest that OHCbl is able to penetrate into heavily cyanide loaded cells and to complex cyanide to the non-toxic CNCbl form.

  2. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Nakles, D.V.

    1999-01-01

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  3. A radiochemical study of gold electrodeposition kinetics in alkaline cyanide solutions

    International Nuclear Information System (INIS)

    Poshkus, D.; Agafonovas, G.; Zhebrauskas, A.

    1995-01-01

    Kinetics of gold electrodeposition from alkaline cyanide solutions was investigated by the use of labelled gold 195 atoms. The absorption of cyanide containing species from alkaline cyanide and dicyanoaurate solutions on a gold electrode by the use of labelled carbon atoms was investigated. Polarization curves of anodic dissolution and cathodic deposition of gold in alkaline cyanide solutions were obtained. The values of standard potential, exchange current density, transfer coefficient and standard polarization rate were determined from polarization curves. The errors in current density caused by the nuclear disintegration statistics were evaluated. 28 refs., 1 tab., 4 figs

  4. Packed bed reactor for degradation of simulated cyanide-containing wastewater

    OpenAIRE

    Kumar, Virender; Kumar, Vijay; Bhalla, Tek Chand

    2014-01-01

    The discharge of cyanide-containing effluents into the environment contaminates water bodies and soil. Effective methods of treatment which can detoxify cyanide are the need of the hour. The aim of the present study is to develop a bioreactor for complete degradation of cyanide using immobilized cells of Serratia marcescens RL2b. Alginate-entrapped cells of S. marcescens RL2b were used for complete degradation of cyanide in a packed bed reactor (PBR). Cells grown in minimal salt medium (pH 6....

  5. The Effect of Storage Longtime on Cyanide Production in Postmortem Stored Tissues

    Directory of Open Access Journals (Sweden)

    Saeeid Gholamzadeh

    2017-02-01

    Full Text Available Background & Objective: Acute cyanide poisoning happens intentionally as suicide attempt or in accidental use. Interpretation of cyanide analysis results in postmortem samples is important in forensic medicine. Material & Methods: In this case-control study, the liver and the lung of 100 autopsy cases were collected during six months in Shiraz Forensic Medicine Department. Samples were divided into three parts and were examined as follow: one part of the liver and the lung was analyzed qualitatively to detect cyanide with Prussian blue test at first day of admission, the second and the third parts of the samples were stored at 0-4°C for one and two months, respectively. Then, liver and lung samples were analyzed to measure the amount of cyanide. Results: Cyanide was detected in only six cases in all three parts of the liver samples. Screening results for cyanide were negative for the remaining 94 liver samples. Conclusion: Endogenous cyanide production was not detected in liver and lung samples in this study. Therefore, cyanide detection was not affected by the time of the storage of the samples. The cyanide level changes in mentioned tissues were not significant. More importantly, our results would be more advantageous if we studied quantitatively on more samples to pave the way for future studies.

  6. ''In sutu'' radiation cleaning of underground water contaminated with cyanides - six years of experience

    International Nuclear Information System (INIS)

    Pastuszek, F.; Vacek, K.; Vondruska, V.

    1993-01-01

    Underground water, contaminated with cyanides, has been successfully cleaned using the hydraulic barrier method (assembly of pumped wells) since 1986. The average cyanide concentrations in the outflow exceeded 35 mg per litre. Contamination had to be eliminated before the discharge into the sewer system. The radiation approach ''in situ'' i.e. decomposition of cyanides by barrier, was applied and is still being used today. The cyanide concentration was lowered more than one order of magnitude. This process was approved by the Czechoslovak radiation security authorities and further applications of ''in situ'' regeneration of underground water contamination is anticipated. (author)

  7. Cyanide Degradation by Pseudomonas pseudoalcaligenes Strain W_2 Isolated from Mining Effluent

    International Nuclear Information System (INIS)

    Belinda Tiong; Zaratulnur Mohd Bahari; Nor Sahslin Irwan Shah Lee; Jafariah Jaafar; Zaharah Ibrahim; Shafinaz Shahir

    2015-01-01

    Cyanide is highly toxic to the living organisms as it inhibits respiration system in the cell mitochondria. Cyanide is commonly used in gold extraction process and its discharge into the environment not only causes pollution but it also brings harm to the surrounding population. Chemical treatment is expensive and the use of hazardous compound can exacerbate the problem. Biodegradation offers cheap and safe alternative as it overcomes the problems faced by chemical treatment. In this study, indigenous bacteria from mining wastewater were isolated. Cyanide degradation was done via shake flask method. A bacterium, designated W2 was found able to grow in the mining wastewater. 16S rRNA analysis identified the strain as Pseudomonas pseudoalcaligenes which could tolerate up to 39 mg/L cyanide concentration and growth was depleted at 52 mg/L. 60 % cyanide degradation was achieved in wastewater containing medium. End-product analysis from high performance liquid chromatography (HPLC) detected formamide implicating the role of cyanide hydratase in cyanide degradation. It can be concluded that P. pseudoalcaligenes is capable of biodegrading cyanide and its potential in wastewater treatment containing cyanide is feasible. (author)

  8. Potassium supplements for oral diarrhoea regimens.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  9. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide.

    Science.gov (United States)

    Shea, Colleen; Alexoff, David L; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J; Fowler, Joanna S; Qu, Wenchao

    2015-08-01

    In this research, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([(11)C]CN¯) produced by our in-house built automated [(11)C]HCN production system and to identify the major sources of (12)C-cyanide ((12)CN¯). The [(11)C]CN¯ is produced from [(11)C]CO2, which is generated by the (14)N(p,α)(11)C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [(11)C]HCN production system were isolated in order to determine their relative contributions to (12)CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33µA for 1 and 10min) did not contribute significantly to the mass. Additionally, we compared the SA of our [(11)C]HCN precursor determined using the ISE to the SA of our current [(11)C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... acid with potassium hydroxide or potassium carbonate. It occurs as transparent crystals or a white... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS...

  11. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  12. Stable carbon (12/13C) and nitrogen (14/15N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils-A method development

    International Nuclear Information System (INIS)

    Weihmann, Jenny; Mansfeldt, Tim; Schulte, Ulrike

    2007-01-01

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios 13 C/ 12 C and 15 N/ 14 N of the complexed cyanide-ion (CN - ). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu 2 [Fe(China) 6 ].7H 2 O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1 M NaOH and (ii) a distillate digestion. The [Fe(China) 6 ] 4- of the alkaline extraction was precipitated after adding Cu 2+ . The CN - of the distillate digestion was at first complexed with Fe 2+ under inert conditions and then precipitated after adding Cu 2+ . The δ 13 C-values obtained by the two methods differed slightly up to 1-3 per mille for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per mille ), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the δ 13 C-values of BFS are in the range of -30 to -24 per mille and of -17 to -5 per mille for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the δ 15 N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer

  13. A Neat Trick Using Oxalic Acid Dihydrate and Potassium Permanganate and Other Experiments with Small Organic Amine or Oxygenated Compounds

    Science.gov (United States)

    Kelland, Malcolm A.

    2011-01-01

    Solid potassium permanganate (KMnO[subscript 4]) is shown to react in a variety of ways with small organic amines or oxygenated compounds depending on whether they are liquids or solids and whether water is present. In particular, its reaction with solid oxalic acid dihydrate can be initiated by the moisture in one's breath, making an intriguing…

  14. Room temperature phosphorimetric determination of cyanide based on triplet state energy transfer

    International Nuclear Information System (INIS)

    Fernandez-Argueelles, Maria Teresa; Costa-Fernandez, Jose M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2003-01-01

    The determination of cyanide ions in water samples by room temperature phosphorescence (RTP) detection is described. The method is based on the measurement of the RTP emission of α-bromonaphthalene (BrN). The principle of the RTP cyanide determination involves the energy transfer (ET) from the BrN phosphor molecule insensitive to the presence of cyanide (acting as a donor) to a cyanide-sensitive dye (acceptor). The RTP emission spectrum of BrN overlaps significantly with the absorption spectrum of the complex formed between copper and Cadion 2B, giving rise to a non-radiative ET from the phosphor molecules to the metal complex. The sensing of cyanide ions is based on the displacement by cyanide of the copper ions from its complex with Cadion 2B (the free chelating molecule presents a low absorbance in the region of maximum emission of the BrN phosphor). An increase in the concentration of cyanide causes a decrease on the concentration of the Cadion 2B-copper complex (acceptor) with the subsequent decrease of the absorbance in the overlapping region with the RTP spectra, resulting in higher RTP emission signals measured. Both, RTP intensities and triplet lifetimes of the BrN increased with the increase of the cyanide concentration. The calibration graphs were linear up to a concentration of 500 mg l -1 cyanide and a precision of ±2 and ±0.5% for five replicates of 50 μg l -1 of cyanide has been obtained when measuring intensities and triplet lifetimes values, respectively. A detection limit of 3 μg l -1 of cyanide was achieved under optimal reaction conditions and pH 11. The use of phosphorescence measurements (low background noise signals) resulted in an important improvement on the sensitivity of the cyanide detection higher than eight times as compared to the molecular absorption spectrophotometric method for cyanide detection based on the use of Cadion 2B-copper as cyanide-indicator. Interference studies were performed with cations and anions present in

  15. Potassium Capture by Kaolin, Part 1: KOH

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    -capture level. The effect of reaction temperature,K-concentration in the flue gas, and, thereby, molar ratio of K/(Al+Si) in reactants, gas residence time, and solid particle size on K-capture reaction was systematically investigated. Corresponding equilibrium calculations were conducted with FactSage 7.......0. The experimental results showed that kaolin reached almost full conversion to K-aluminosilicates under suspension-fired conditions at 1100–1450 °C for a residence time of 1.2 s and a particle size of D50 = 5.47 μm. The amount of potassium captured by kaolin generally followed the equilibrium at temperatures above...

  16. Sulfanegen sodium treatment in a rabbit model of sub-lethal cyanide toxicity

    International Nuclear Information System (INIS)

    Brenner, Matthew; Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Lemor, Daniel; Ahdout, Rebecca; Boss, Gerry R.; Blackledge, William; Jann, Lauren; Nagasawa, Herbert T.; Patterson, Steven E.

    2010-01-01

    The aim of this study is to investigate the ability of intramuscular and intravenous sulfanegen sodium treatment to reverse cyanide effects in a rabbit model as a potential treatment for mass casualty resulting from cyanide exposure. Cyanide poisoning is a serious chemical threat from accidental or intentional exposures. Current cyanide exposure treatments, including direct binding agents, methemoglobin donors, and sulfur donors, have several limitations. Non-rhodanese mediated sulfur transferase pathways, including 3-mercaptopyruvate sulfurtransferase (3-MPST) catalyze the transfer of sulfur from 3-MP to cyanide, forming pyruvate and less toxic thiocyanate. We developed a water-soluble 3-MP prodrug, 3-mercaptopyruvatedithiane (sulfanegen sodium), with the potential to provide a continuous supply of substrate for CN detoxification. In addition to developing a mass casualty cyanide reversal agent, methods are needed to rapidly and reliably diagnose and monitor cyanide poisoning and reversal. We use non-invasive technology, diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS) to monitor physiologic changes associated with cyanide exposure and reversal. A total of 35 animals were studied. Sulfanegen sodium was shown to reverse the effects of cyanide exposure on oxyhemoglobin and deoxyhemoglobin rapidly, significantly faster than control animals when administered by intravenous or intramuscular routes. RBC cyanide levels also returned to normal faster following both intramuscular and intravenous sulfanegen sodium treatment than controls. These studies demonstrate the clinical potential for the novel approach of supplying substrate for non-rhodanese mediated sulfur transferase pathways for cyanide detoxification. DOS and CWNIRS demonstrated their usefulness in optimizing the dose of sulfanegen sodium treatment.

  17. The determination of cyanide in hydrometallurgical process solutions and effluents by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1984-01-01

    Three methods are described for the determination of cyanide species in hydrometallurgical process solutions and in effluents. The determination of excess cyanide in the presence of weak metal cyanide complexes was achieved by the use of a flow-injection system with 0,05mM sodium chloride as the carrier stream. The procedure was found to be fast, precise (S(sub r)0,0142), and reasonably accurate. Free cyanide and cyanide derived from weak metal cyanide complexes were determined by ion chromatography. This method is free from interferences and precise (s(sub r)0,0112), and has a limit of determination of 10μg0l. The 'total' cyanide content of solutions was determined by ion chromatography after the strong metal cyanide complexes had been dissociated in hypophosphorous acid by ultraviolet irradiation. The procedure (of 10 minutes duration) is faster than conventional distillation methods, and is accurate and precise (S(sub r)0,027)

  18. Selective determination of cyanide complexes of copper, zinc and cadmium in electrolytes by spectrophotometric titration

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Korchagina, O.A.; Samorukova, O.L.

    1986-01-01

    Selective, sensitive and rapid method for determining Cd, Zn, Cu and their mixtures in cyanide electrolytes of galvanic bathes has been developed. Analysis is performed by means of indicator spectrophotometric titration with barium and strontium salts of cadmium cyanide complexes in organic-aqueous solvents

  19. Analysis of Cyanide in Blood by Headspace-Isotope-Dilution-GC-MS

    DEFF Research Database (Denmark)

    Løbger, Lise Lotte; Petersen, Henning Willads; Andersen, Jens Enevold Thaulov

    2008-01-01

    An uncomplicated, rapid, automated procedure for the analysis of low cyanide concentrations in whole blood is reported. The analysis was performed by headspace gas chromatography and mass spectrometry in the (1H12C14N) and m/z 29 (1H13C15N). Carryover from cyanide adsorption onto the surface...

  20. High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water

    NARCIS (Netherlands)

    Gao, Y.; Broersen, R.; Hageman, W.; Yan, N.; Mittelmeijer-Hazeleger, M.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We investigate and discuss the proton conductivity properties of the cyanide-bridged metal–organic framework (MOF) [Nd(mpca)2Nd(H2O)6Mo(CN)8]·nH2O (where mpca is 5-methyl-2-pyrazinecarboxylate). This MOF is one of an exciting class of cyanide-bridged materials that can combine porosity with

  1. Predicting Cyanide Consumption in Gold Leaching: A Kinetic and Thermodynamic Modeling Approach

    Directory of Open Access Journals (Sweden)

    Yaser Kianinia

    2018-03-01

    Full Text Available The consumption of cyanide during processing operations is a major economic cost in the extraction of gold from its ores, while the discharge of cyanide wastes may result in significant environmental pollution. Many factors influence the levels of consumption and discharge of cyanide, including ore mineralogy and lixiviant solution chemistry. This paper proposes a robust methodology to estimate leaching cyanide consumption due to oxidation and reactions with gold, chalcopyrite and pyrite minerals forming various cyanide complexes, cyanate, thiocyanate and hydroxide precipitates of copper and iron. The method involves concurrent modelling of both the oxidation and leaching kinetics of minerals and the chemical speciation of the lixiviant solutions. The model was calibrated by conducting cyanide leaching experiments on pyrite, chalcopyrite, pyrite + chalcopyrite, pyrite + chalcopyrite + gold and pyrite + chalcopyrite + gold + quartz systems and determining the total Cu, Fe, Au and CN− concentrations in solution. We show that this model can successfully estimate the formation of cyanide complexes and, hence, the consumption of cyanide.

  2. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning.

    Science.gov (United States)

    Tshala-Katumbay, Desire D; Ngombe, Nadege N; Okitundu, Daniel; David, Larry; Westaway, Shawn K; Boivin, Michael J; Mumba, Ngoyi D; Banea, Jean-Pierre

    2016-08-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. © 2016 New York Academy of Sciences.

  3. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  4. In Vitro Absorption of Atmospheric Carbon Monoxide and Hydrogen Cyanide in Undisturbed Pooled Blood

    Science.gov (United States)

    2012-09-01

    are analyzed for carboxyhemoglobin (COHb) and cyanide ion (CN¯) in blood. Such victims quite often suffer large open wounds near the autopsy blood...could.lead.investigators.to.erroneously.conclude.that.the. presence.of. carboxyhemoglobin . (COHb).and.cyanide. ion.(CN

  5. Hydroxocobalamin as a Cyanide Antidote: Empirical use , Safety, Efficacy, and Considerations for Stockpiling

    International Nuclear Information System (INIS)

    Hall, A. H.

    2007-01-01

    Cyanide is a well-known toxic terrorism agent and is a major cause of mortality and morbidity in smoke inhalation victims. Terrorist attacks could start enclosed-space fires with cyanide-poisoned victims, even if cyanide itself was not utilized. Cyanide poisoning cannot be emergent confirmed by laboratory analysis and treatment with safe and efficacious antidotes must be administered empirically. Hydroxocobalamin has been recently approved by the US FDA and is a safe and efficacious antidote. Its efficacy is comparable to that of other, more toxic, cyanide antidotes. Its mechanism of action involves both direct cyanide chelation (forming non-toxic cyanocobalamin which is excreted in the urine) and nitric oxide scavenging. Adverse effects are usually limited to transient dark red-brown discoloration of urine, skin, sclera, and mucous membranes. Antidotal doses have not caused allergic reactions in cyanide-poisoned patients and only minor and easily-treated allergic reactions occurred in 2 of 136 normal volunteers. Transient, asymptomatic hypertension and reflex bradycardia have occurred in some normal volunteers, but not in seriously ill smoke inhalation victims not having significant cyanide poisoning. Hydroxocobalamin is a safe and efficacious antidote and can be empirically administered in pre-hospital or emergency department settings. It is therefore suitable for inclusion in national or multinational medication stockpiles and is already included in some national programs in the European Union.(author)

  6. Investigation of Cyanide Removal from Aqueous Solution Using Precipitation Process (FeCl3

    Directory of Open Access Journals (Sweden)

    A. Jonidi Jafari

    2013-02-01

    Full Text Available Background and Objectives: Cyanide is a toxic pollutant that is can be discharged from different industries such as iron and steel industry, coal mining and metal plating. Presence of this toxin in water and wastewater is a serious hazard and lead to undesirable effects on both the environment and human. Thus, its concentration control is essential for human health. The aim of this study was investigation of Cyanide Removal from aqueous solution using precipitation process (FeCl3. Material and Methods: This study is an experimental study in lab scale that was carried out in a batch system by jartest. Variations of this study including pH, FeCl3 concentration, reaction time and desired concentration of cyanide were investigated. Data were analyzed using Excel (version 2007 software. Results: The results of this research were showed that Cyanide with initial concentration of 10 mg/l in precipitation process was removed by 40% (conditions pH=90, FeCl3=0.4 g/l and the time 60 minutes. Also, the precipitation process efficiency to cyanide removal decreased of 40 to 23%, by increasing of the initial cyanide concentration of 10 to 15 mg/l. Conclusion: Precipitation process can be considered as a suitable alternative for recovery of cyanide to be re-used. Although, this process has limitations for treat total cyanide to environmental standards level. So, it is better be used in combination with other processes of these contaminants removal.

  7. Cyanide intoxication as part of smoke inhalation--a review on diagnosis and treatment from the emergency perspective

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hyldegaard, Ole

    2011-01-01

    This paper reviews the current literature on smoke inhalation injuries with special attention to the effects of hydrogen cyanide. It is assumed that cyanide poisoning is still an overlooked diagnosis in fire victims. Treatment against cyanide poisoning in the emergency setting should be given based...

  8. Bepaling van vrij- en totaal-cyanide in grond en water met een doorstroomanalysesysteem: evaluatie van ontwerp NEN-6655

    NARCIS (Netherlands)

    Staden JJ van; Moayeri-Mirck MWG; Cleven RFMJ; Wiel HJ van de; LAC; LBA

    1994-01-01

    De ontwerp-methode voor de fotometrische bepaling van het totale gehalte aan cyanide (totaal-cyanide) en het gehalte aan vrij-cyanide in water en bodem met een doorstroomanalysesysteem (Ontwerp NEN 6655) is onderzocht en zonodig gewijzigd. De ontwerp-methode is gemodificeerd om de

  9. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods.

    Science.gov (United States)

    Picq, Christian; Asplanato, Marion; Bernillon, Noémie; Fabre, Claudie; Roubeix, Mathilde; Ricort, Jean-Marc

    2014-09-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food" and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate®) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate and potato, 26% for apple, 37% for tomato and 41% for banana) or boiling in a large amount of water (73% for potato). Although Kayexalate® efficiently dose-dependently removed potassium from drinks (by 48% to 73%), resin addition during soaking or boiling did not eliminate more potassium from solid foods. Our results therefore provide useful information for dietitians who elaborate menus for people on potassium-restricted diets and would give an interesting alternative to the systematic elimination of all potassium-rich foods from their diet.

  11. Spectroscopic detection and mapping of vinyl cyanide on Titan

    Science.gov (United States)

    Cordiner, Martin; Yukiko Palmer, Maureen; Lai, James; Nixon, Conor A.; Teanby, Nicholas; Charnley, Steven B.; Vuitton, Veronique; Kisiel, Zbigniew; Irwin, Patrick; Molter, Ned; Mumma, Michael J.

    2017-10-01

    The first spectroscopic detection of vinyl cyanide (otherwise known as acrylonitrile; C2H3CN) on Titan was obtained by Palmer et al. (2017), based on three rotational emission lines observed with ALMA at millimeter wavelengths (in receiver band 6). The astrobiological significance of this detection was highlighted due to the theorized ability of C2H3CN molecules to combine into cell membrane-like structures under the cold conditions found in Titan's hydrocarbon lakes. Here we report the detection of three additional C2H3CN transitions at higher frequencies (from ALMA band 7 flux calibration data). We present the first emission maps for this gas on Titan, and compare the molecular distribution with that of other nitriles observed with ALMA including HC3N, CH3CN, C2H5CN and HNC. The molecular abundance patterns are interpreted based on our understanding of Titan's high-altitude photochemistry and time-variable global circulation. Similar to the short-lived HC3N molecule, vinyl cyanide is found to be most abundant in the vicinity of the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. The vertical abundance profile of C2H3CN (from radiative transfer modeling), as well as its latitudinal distribution, are consistent with a short photochemical lifetime for this species. Complementary results from our more recent (2017) nitrile mapping studies at higher spatial resolution will also be discussed.REFERENCES:Palmer, M. Y., Cordiner, M. A., Nixon, C. A. et al. "ALMA detection and astrobiological potential of vinyl cyanide on Titan", Sci. Adv. 2017, 3, e1700022

  12. Behaviour of Au(I,III) cyanides on anion exchangers in the presence of Pd compounds

    International Nuclear Information System (INIS)

    Knothe, M.

    1985-01-01

    The behaviour of low concentrations of [Au(I)(CN) 2 ] - and [Au(III)(CN) 4 ] - in the presence of [Pd(NH 3 ) 4 ](NO 3 ) 2 when adsorbed by anionites has been studied with the aid of labelled Au compounds. The adsorption rate of Au decreased with increasing ageing of the feed solution, which was due to the conversion of gold cyanides into species not capable of being adsorbed. This conversion proceeded at a considerably lower rate when the cyanides of gold had been fixed on the ionite. Au(I) cyanides were always converted at a higher rate than Au(III) cyanides. Thus, an effective separation of Au cyanides by anionites is possible only in the Au(III) system. (author)

  13. Silica nanoparticles doped with an iridium(III) complex for rapid and fluorometric detection of cyanide

    International Nuclear Information System (INIS)

    Mu, Juanjuan; Feng, Qingyue; Chen, Xiudan; Li, Jing; Wang, Huili; Li, Mei-Jin

    2015-01-01

    We describe a nanosensor for sensitive and selective detection of cyanide anions. The Ir(III) chlorine bridge complex [Ir(C N ) 2 -m-Cl] 2 (Irpq, where pq is C N = 2-phenyl quinoline) was doped into silica nanoparticles (SiNPs) with a typical size of about 30 nm. The intensity of the yellow emission of the doped SiNPs (under 410 nm exCitation) was strongly enhanced on addition of cyanide ions due to the replacement of chloride by cyanide. The method can detect cyanide ions in the 12.5 to 113 μM concentration range, and the limit of detection is 1.66 μM (at an S/N ratio of 3). The method is simple, sensitive and fast, and this makes it a candidate probe for the fast optical determination of cyanide. (author)

  14. Gold-copper ores processing-Case study: optimization of flotation residue cyanidation

    International Nuclear Information System (INIS)

    McMullen, J.; Pelletier, P.; Breau, Y.; Pelletier, D.

    1999-01-01

    Typically, economic optimization of Gold-Copper ore processing presents challenges. Barrick's Bousquet II ore is a good example where many processing units such as gravity, flotation and cyanidation are required to efficiently recover the metals from the ore. Flowsheet criterion, operating strategy selections, cyanidation process optimization and its inter-dependence with flotation are discussed in detail. Real-time conservation integration of the cyanide control strategy has allowed a reduction of cyanide consumption of over 40% since 1994, while maintaining or improving metals recovery. A detailed analysis of the cyanidation control strategy such as key process sensor reliability and accuracy, process monitoring and fault detection is presented. This robust and efficient control strategy is a key building block that enhances the overall economic return of the process plant. (author)

  15. Role of algae and higher aquatic plants in decontamination of cyanide-containing waters

    International Nuclear Information System (INIS)

    Timofeeva, S.S.; Kraeva, V.Z.; Men'shikova, O.A.

    1986-01-01

    Cyanide compounds and especially free cyanides stand out among components of wastewaters of hydrometallurgy, electroforming, and other such enterprises with respect to toxicity and danger for man and fauna of water bodies. In this article data on a study of the regularities of decontamination of cyanide-containing wastewaters by hydrophytes are given, the mechanisms of this process are examined, and the results of testing the hydrobotanical method of treating wastewaters of a goldrecovery plant are examined. The experiments were carried out with hydrophytes from the Angara River, Lake Baikal, and small lakes and ponds in the vicinity of Irkutsk and Tashkent. The series of experiments established that algae and higher aquatic plants are resistant to cyanides. A table shows the kinetic parameters of the removal of cyanide by algae and higher aquatic plants collected in Baikal. Of the multitude of species investigated for detoxifying ability, the most resistant were detected in the experimental basins and the most suitable were charophytes

  16. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  17. Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection

    Science.gov (United States)

    Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Boss, Gerry R.

    2015-01-01

    Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure. PMID:25650735

  18. Ferrycyanide Safety Program cyanide speciation studies FY 1994 annual report

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Bryan, S.L.; Sell, R.L.; Thomas, L.M.P.; Lerner, B.D.

    1994-09-01

    This report summarizes Pacific Northwest Laboratories FY 1994 progress toward developing and implementing methods to identify and quantify cyanide species in ferrocyanide tank waste. Currently, there are 24 high-level waste storage tanks at the the US DOE's Hanford Site that have been placed on a Ferrocyanide Tank Watch list because they contain an estimated 1000 g-moles or more of precipitated ferrocyanide. This amount of ferrocyanide is of concern because the consequences of a potential explosion may exceed those reported previously

  19. A rectangular Ni-Fe cluster with unusual cyanide bridges

    OpenAIRE

    Krüger, Christoph; Sato, Hiroki; Matsumoto, Takuto; Shiga, Takuya; Newton, Graham N.; Renz, Franz; Oshio, Hiroki

    2012-01-01

    An asymmetric polycyanide iron complex, K2[Fe III(L1)(CN)4](MeOH) (HL1 = 2,2′-(1H-pyrazole-3,5- diyl)bis-pyridine), was synthesized and its complexation compatibility with nickel ions was examined. Two kinds of enantiomeric nickel-iron squares were obtained in the presence of a chiral bidentate capping ligand. The compounds display unusual cyanide bridge geometry and have ferromagnetic interactions between nickel and iron ions. © 2013 The Royal Society of Chemistry.

  20. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  1. Cyanide removal by combined adsorption and biodegradation process

    Directory of Open Access Journals (Sweden)

    R. Roshan Dash, Ch. Balomajumder, A. Kumar

    2006-04-01

    Full Text Available Investigation of the effectiveness of simultaneous adsorption and biodegradation (SAB process over individual processes by using microbes Rhizopus oryzae and Stemphylium loti with granular activated carbon (GAC as adsorbent was carried out. The maximum removal efficiency of cyanide had been achieved by biodegradation alone was 83% by R. oryzae, while it was 90% by S. loti at initial pH of 5.6 and 7.2 respectively and at initial CN- concentration of 150 mg/L. In the combined process efficiency of R. oryzae closer to S. loti (95.3% and 98.6% respectively

  2. Cyanide poisoning of a Cooper’s hawk (Accipiter cooperii)

    Science.gov (United States)

    Franson, J. Christian

    2017-01-01

    A Cooper’s hawk (Accipiter cooperii) was found dead in a ditch leading from a heap leach pad at a gold mine in Nevada. Observations at autopsy included an absence of external lesions, traces of subcutaneous and coronary fat, no food in the upper gastrointestinal tract, and no lesions in the viscera. Cyanide concentrations (µg/g ww) were 5.04 in blood, 3.88 in liver, and 1.79 in brain. No bacteria or viruses were isolated from tissues, and brain cholinesterase activity was within the normal range for a Cooper’s hawk.

  3. Syntheses with isotopically labelled carbon. Methyl iodide, formaldehyde and cyanide

    International Nuclear Information System (INIS)

    Finn, R.D.; Boothe, T.E.; Vora, M.M.; Hildner, J.C.; Emran, A.M.; Kothari, P.J.

    1984-01-01

    Many of the uniquely labelled synthetic precursors currently employed in the design of sophisticated radiolabelled compounds have their origins in the field of hot atom chemistry. Particularly, the development during the past few years of automated, on-line synthetic procedures which combine the nuclear reaction, hot atom and classical chemistry, and rapid purification methods has allowed the incorporation of useful radionuclides into suitable compounds of chemical and biochemical interest. The application of isotopically labelled methyl iodide, formaldehyde, and cyanide anion as synthetic intermediates in research involving human physiology and nuclear medicine, as well as their contributions to other scientific methodology, is reviewed. (author)

  4. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    OpenAIRE

    Akinpelu, Enoch A.; Adetunji, Adewole T.; Ntwampe, Seteno K.O.; Nchu, Felix; Mekuto, Lukhanyo

    2017-01-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NC...

  5. Cyanide and Amygdalin as Indicators of the Presence of Bitter Almonds in Imported Raw Almonds: CYANIDE AND AMYGDALIN AS INDICATORS OF BITTER ALMONDS

    OpenAIRE

    Toomey, Valerie M.; Nickum, Elisa A.; Flurer, Cheryl L.

    2012-01-01

    Consumer complaints received by the U.S. Food and Drug Administration in August 2010 about raw organic almonds tasting "bitter" opened an investigation into the presence of bitter almonds in the imported product. Bitter almonds (Prunus amygdalus) contain the cyanogenic glucoside amygdalin, which hydrolyzes to produce cyanide. Ultraviolet–visible spectrophotometry was used to detect and quantitate cyanide, and liquid chromatography‐mass spectrometry was utilized to detect amygdalin in the subm...

  6. Effect of ryegrass (Lolium perenne L.) roots inoculation using different arbuscular mycorrhizal fungi (AMF) species on sorption of iron-cyanide (Fe-CN) complexes

    Science.gov (United States)

    Sut, Magdalena; Boldt-Burisch, Katja; Raab, Thomas

    2016-04-01

    Soils and groundwater on sites of the former Manufactured Gas Plants (MGPs) are contaminated with various complex iron-cyanides (Fe-CN). Phytoremediation is a promising tool in stabilization and remediation of Fe-CN affected soils, however, it can be a challenging task due to extreme adverse and toxic conditions. Phytoremediation may be enhanced via rhizosphere microbial activity, which can cooperate on the degradation, transformation and uptake of the contaminants. Recently, increasing number of scientist reports improved plants performance in the removal of toxic compounds with the support of arbuscular mycorrhizae fungi (AMF). Series of batch experiments using potassium hexacyanoferrate (II) solutions, in varying concentrations, were used to study the effect of ryegrass roots (Lolium perenne L.) inoculation with Rhizophagus irregularis and a mixture of Rhizophagus irregularis, Funneliformis mosseae, Rhizophagus aggregatus, and Claroideoglomus etunicatum on Fe-CN sorption. Results indicated significantly higher colonization of R. irregularis than for the mixture of AMF species on ryegrass roots. Sorption experiments revealed significantly higher reduction of total CN and free CN content in the mycorrhizal roots, indicating greater cyanide decrease in the treatment inoculated with R. irregularis. Our study indicates contribution of AM fungi in phytoremediation of Fe-CN contaminated soil.

  7. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  8. Packed bed reactor for degradation of simulated cyanide-containing wastewater.

    Science.gov (United States)

    Kumar, Virender; Kumar, Vijay; Bhalla, Tek Chand

    2015-10-01

    The discharge of cyanide-containing effluents into the environment contaminates water bodies and soil. Effective methods of treatment which can detoxify cyanide are the need of the hour. The aim of the present study is to develop a bioreactor for complete degradation of cyanide using immobilized cells of Serratia marcescens RL2b. Alginate-entrapped cells of S. marcescens RL2b were used for complete degradation of cyanide in a packed bed reactor (PBR). Cells grown in minimal salt medium (pH 6.0) were harvested after 20 h and exhibited 0.4 U mg -1  dcw activity and 99 % cyanide degradation in 10 h. These resting cells were entrapped using 3 % alginate beads and packed in a column reactor (20 × 1.7 cm). Simulated cyanide (12 mmol l -1 )-containing wastewater was loaded and fractions were collected after different time intervals at various flow rates. Complete degradation of 12 m mmol l -1 (780 mg l -1 ) cyanide in 10 h was observed at a flow rate of 1.5 ml h -1 . The degradation of cyanide in PBR showed direct dependence on retention time. The retention time of cyanide in the reactor was 9.27 h. The PBR can degrade 1.2 g of cyanide completely in 1 day.

  9. Transport and Fate of Cyanide in Soil : Case Study of Mooteh Valley

    Directory of Open Access Journals (Sweden)

    Amir Taebi

    2006-01-01

    Full Text Available Cyanide, a generic term referring to all compounds containing the cyanide group –CN, is a highly potent and fast-acting poison to humans and other living organisms when exposed to high levels. Cyanide is a widely and essential chemical used in mining and minerals processing industries and many other industries such as metal processing and production of organic chemicals. While some industrial cyanide-containing wastes are treated or recovered, there are cases such as certain gold extraction plants where wastes are released in the environment. The objective of this research is to study the transport and fate of cyanide in soil in vicinity of a specific pollution source. For the purpose of this study, Mooteh valley, in the vicinity of Mooteh gold mine and factory, in the north of Isfahan province, Iran, was investigated. In Mooteh's Plant, the cyanide-containing waste (slurry tailings is discharged to tailings ponds and there is potential for cyanide to migrate from them. Eight boreholes with 6 m depth were dug and from every 0.5 m a soil sample was taken. Statistical analysis of the results show that soil cyanide concentration decreases with distance from the tailings ponds (as a pollution source and increases with depth. A regression model consisting of a power term for distance and an exponential term for soil depth can appropriately predict the soil cyanide concentration in the vicinity of a pollution source. As soil depth decreases, the rate of natural cyanide fate processes considerably increases. So, soil turn over practices is recommended to improve remediation of polluted sites

  10. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  11. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  12. Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages.

    Science.gov (United States)

    Guo, Jia; Lua, Aik Chong

    2002-10-15

    Preparation and characterization of activated carbon from palm shell, a carbonaceous agricultural solid waste, by potassium hydroxide treatment at different stages were studied. The effects of activation temperature and chemical to sample ratio on the characteristics of the activated carbon were investigated. Fixed-bed adsorption of sulfur dioxide (SO(2)) gas was carried out to evaluate the adsorptive capacity of the samples. Desorption tests were conducted to verify the occurrence of chemisorption due to some surface functional groups or of chemical reaction between SO(2) and KOH. It was found that pre-impregnation of raw palm shell was involved in replacement of some hydrogen ions with potassium ions to form cross-linked complexes, which retarded the tar formation during carbonization, resulting in a relatively high yield. Moreover, these potassium ions accelerated the reaction as catalysts during gasification of chars by carbon dioxide. For chars with mid-impregnation, potassium hydroxide acted in two ways: (i) formation of metallic potassium by dehydration and (ii) conversion into potassium carbonate. Metallic potassium intercalated to the carbon matrix accounted for pore development and potassium carbonate layer prevented the sample from over burn-off. Post-impregnation of final products modified the textural characteristics of the sample as some pore entrances were blocked by chemicals. However, potassium hydroxide enhanced the amount of SO(2) uptaken via formation of potassium sulfite.

  13. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  14. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  15. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  16. Status of potassium permanganate - 2008

    Science.gov (United States)

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  17. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  18. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  19. Ferrocyanide safety program cyanide speciation studies FY 1993 annual report

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Bryan, S.L.; Sell, R.L.; Thomas, L.M.P.

    1993-09-01

    This report summarizes Pacific Northwest Laboratory's (PNL) FY 1993 progress toward developing and implementing methods to identify and quantify cyanide species in ferrocyanide tank waste. Currently, there are 24 high-level waste storage tanks at the US Department of Energy's (DOE) Hanford Site that have been placed on a Ferrocyanide Tank Watchlist because they contain an estimated 1000 g-moles or more of precipitated ferrocyanide. This amount of ferrocyanide is of concern because the consequences of a potential explosion may exceed those reported previously in safety analyses. To bound the safety concern, methods are needed to definitively measure and quantitate the amount of ferrocyanides present within actual waste tanks to a lower limit of at least 0.1 wt % up to approximately 15 wt %. The target analyte concentration for cyanide in waste is approximately 0.1 to 15 wt % (as CN) in the original undiluted sample. After dissolution of the original sample and appropriate dilutions, the concentration range of interest in the analytical solutions can vary between 0.001 to 0.1 wt % (as CN)

  20. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  1. Application of AOPs for Removal of Stable Cyanide Compounds

    Science.gov (United States)

    Tsybikova, B.

    2017-11-01

    The main kinetic regularities of the photochemical oxidation of stable cyanide compounds (exemplified by hexacyanoferrates) by combined treatments involving direct photolysis and persulfate (oxidative system UV/S2O8 2-) and direct photolysis and hydrogen peroxide (oxidative system UV/H2O2) were studied. The possibility to perform oxidation processes within a wide pH range was shown. Based on to the energy efficiency, the rate of reaction and duration of the treatment, the considered oxidative systems can be arranged in the following order: {UV/S2O8 2-}>{UV/H2O2}>{UV}. The enhanced efficiency of hexacyanoferrates’ degradation by the combined system {UV/S2O8 2-} is due to the high oxidative capacity of sulfate anion radicals SO4 -· formed as a result of persulfate photolysis and its further disproportionation by Fe3+ and Fe2+ released through the decomposition of [Fe(CN)6]3-. Furthermore, the formation of ·OH radicals as a result of SO4 -· reacting with water also contributes to the enhanced oxidation efficiency. The combined method of {UV/S2O8 2-} treatment could be applied for the treatment of cyanide-containing wastewater and recycled water of different industries.

  2. Potassium permanganate for mercury vapor environmental control

    Science.gov (United States)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  3. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  4. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  5. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  6. Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Yuan; Liu, Yongdi; Chen, Xiurong

    2014-02-01

    Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.

  7. Technical activities of the Project Surata River for the handling of mercury and cyanide

    International Nuclear Information System (INIS)

    Pinzon, Juan Manuel; Ruiz, Jorge Nelson; Jaimes, Cristian Libardo

    2004-01-01

    The technical works executed by the project have been framed in the philosophy of reducing the contamination for mercury and cyanide in the operations of auriferous benefit, without causing detriment in the economic revenues of the miners, on the contrary, trying to carry out a better use of the auriferous mineral. In this sense, the project has toasted from simple solutions that allow to reduce the use of the pollutants mentioned a little until solutions more complex than they require introduction of gravimetric teams in pro of reducing the quantity of minerals amalgamated y/o cyanidates. This way an action plan was developed that contemplates a diagnosis stage, followed by a stage of executions in which has been worked in the modification of the systems of gravimetric concentration, process of amalgamation and in the cyanidation process. Particular emphasis has noticed to the cyanidation process for percolation, given its importance in the benefit and its degree of environmental affectation. Through a revision of the method used by the miners, it was possible to modify the technique and to reduce in 40% the global consumption of cyanide in the companies of the District Mining Vetas - California. Metallurgic studies in the advised companies allowed to verify that strengthening the gravimetric concentration is possible to gather 80% of the gold (heavy minerals) in 15% of the processed global material. Under these conditions the introduction of the cyanidation is facilitated by agitation, allowing to reduce the contamination for cyanide and to make a bigger use of the auriferous mineral

  8. TIE for cyanides in groundwater at a former coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    McLeay, M.; Cameron, M. [Hemmeram, Vancouver, BC (Canada); Elphick, J. [Nautilus Environmental Co., Burnaby, BC (Canada)

    2010-07-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  9. Cyanide and sulfide interact with nitrogenous compounds to influence the relaxation of various smooth muscles

    Energy Technology Data Exchange (ETDEWEB)

    Kruszyna, H.; Kruszyna, R.; Smith, R.P.

    1985-05-01

    Sodium nitroprusside relaxed guinea pig ileum after the segment had been submaximally contracted by either histamine or acetylcholine, intact isolated rabbit gall bladder after submaximal contraction by either acetylcholine or cholecystokinin octapeptide, and rat pulmonary artery helical strips after submaximal contraction with norepinephrine. In each of these cases the relaxation produced by nitroprusside was at least partially reversed by the subsequent addition of excess sodium cyanide. Cyanide, however, in nontoxic concentrations did not reverse the spasmolytic effects of hydroxylamine hydrochloride, sodium azide, nitroglycerin, sodium nitrite, or nitric oxide hemoglobin on guinea pig ileum, nor did cyanide alone in the same concentrations have any effect. The similar interaction between nitroprusside and cyanide on rabbit aortic strips is not dependent on the presence of an intact endothelia cell layer. Also, on rabbit aortic strips and like cyanide, sodium sulfide reversed the spasmolytic effects of azide and hydroxylamine, but it had little or no effect on the relaxation induced by papaverine. Unlike cyanide, however, sulfide augmented the relaxation induced by nitroprusside, and it reversed the effects of nitric oxide hemoglobin, nitroglycerin, and nitrite. A direct chemical reaction between sulfide and nitroprusside may account for the difference between it and cyanide. Although evidence was obtained also for a direct chemical reaction between sulfide and norepinephrine, that reaction does not seem to have played a role in these results.

  10. Aposematism in Archips cerasivoranus not linked to the sequestration of host-derived cyanide.

    Science.gov (United States)

    Fitzgerald, T D; Stevens, M A; Miller, S; Jeffers, P

    2008-10-01

    This study addressed the question of how caterpillars of Archips cerasivoranus feeding upon Prunus virginiana cope with the cyanogenic compounds of their food. Analysis by ion chromatography showed that young and aged leaves of P. virginiana consumed by the caterpillars during spring have hydrogen cyanide potentials (HCN-ps) of 2,473 +/- 130 ppm and 1,058 +/- 98 ppm, respectively. Although less than 3% of the cyanide released as the caterpillars feed escapes into the atmosphere, the larva's bright-yellow aposematic coloration and conspicuous activity can not be attributed to the sequestration of cyanide. Only six of 25 samples of the caterpillars' defensive regurgitants collected from 12 field colonies contained cyanide (17.6 +/- 6.54 ppm), less than 5% of the quantity previously reported to occur in the regurgitant of the tent caterpillar M. americanum. Only seven of 13 caterpillars assayed had detectable quantities of cyanide in their bodies (3.9 +/- 0.9 ppm). The fecal pellets that encase the cocoon contained no cyanide, nor did the frass that litters the leaf shelters. The small quantities of cyanide that occur in the caterpillar compared to the HCN-p of ingested plant material appear attributable to paced bouts of feeding and the maintenance of a highly alkaline foregut that inhibits cyanogenesis.

  11. Effect of Organic Matter on Cyanide Removal by Illuminated Titanium Dioxide or Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Shirzad-Siboni

    2013-08-01

    Full Text Available Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide.

  12. Paper Strip-based Fluorometric Determination of Cyanide with an Internal Reference

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Nam; Hong, Jong-In [Seoul National University, Seoul (Korea, Republic of); Seo, Hyejin; Shin, Ik-Soo [Soongsil University, Seoul (Korea, Republic of)

    2016-08-15

    The rapid, selective, and sensitive determination of cyanide anion (CN{sup -}) using a simple paper strip is highly attractive because cyanide is acutely lethal to living organisms via all routes of administration, including alcohol consumption and inhaling cigarette smoke. Here, a synthetic probe (1) was designed for the selective determination of cyanide. The probe displays rapid and large blue spectral change (Δλ{sub abs}=148 nm, Δλ{sub em}= 165 nm) with respect to target recognition. Probe 1 exhibits a strong push-pull electronic effect and comprises a dimethylaminoaryl group as a donor and malononitrile as an acceptor; the π-conjugation system can be destroyed by the Michael-type addition of cyanide at the electrophilic β-positions of the nitrile groups, resulting in the marked emergence of a peak at λ{sub em}= 515 nm. The developed probe was successfully applied to a paper test strip because of its noticeable optical changes upon reaction with cyanide. The fabricated dumbbell-shaped paper strip with an internal reference allowed the cyanide detection, which is indispensable for quantitative analysis in point-of-care testing. The paper strip test showed selective response to cyanide, with a linear correlation in the range of 0-25 mM in a simple and cost-effective manner.

  13. Paper Strip-based Fluorometric Determination of Cyanide with an Internal Reference

    International Nuclear Information System (INIS)

    Lee, Dong-Nam; Hong, Jong-In; Seo, Hyejin; Shin, Ik-Soo

    2016-01-01

    The rapid, selective, and sensitive determination of cyanide anion (CN"-) using a simple paper strip is highly attractive because cyanide is acutely lethal to living organisms via all routes of administration, including alcohol consumption and inhaling cigarette smoke. Here, a synthetic probe (1) was designed for the selective determination of cyanide. The probe displays rapid and large blue spectral change (Δλ_a_b_s=148 nm, Δλ_e_m= 165 nm) with respect to target recognition. Probe 1 exhibits a strong push-pull electronic effect and comprises a dimethylaminoaryl group as a donor and malononitrile as an acceptor; the π-conjugation system can be destroyed by the Michael-type addition of cyanide at the electrophilic β-positions of the nitrile groups, resulting in the marked emergence of a peak at λ_e_m= 515 nm. The developed probe was successfully applied to a paper test strip because of its noticeable optical changes upon reaction with cyanide. The fabricated dumbbell-shaped paper strip with an internal reference allowed the cyanide detection, which is indispensable for quantitative analysis in point-of-care testing. The paper strip test showed selective response to cyanide, with a linear correlation in the range of 0-25 mM in a simple and cost-effective manner.

  14. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  15. Biodegradation of cyanide in groundwater and soils from gasworks sites in south-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, S.M.E.; Weaver, T.R.; Lawrence, C.R. [University of Melbourne, Parkvills, Vic. (Australia). School of Earth Sciences

    1999-07-01

    Groundwater from a gasworks site in south-eastern Australia has been found to contain high concentrations of cyanide (total), sulphate, and ammonia (1400 mg L{sup -1}, 6500 mg L{sup -1}, and 580 mg L{sup -1} respectively). Soil from another gasworks site has been found to contain 587 mg kg{sup -1} of cyanide (total), with concentrations of cyanide in the groundwater at this site being relatively low ({lt} 21 mgL{sup -1} CN(Total)). Experiments were conducted to determine the biodegradation rates of cyanide in groundwater and soils using samples from both sites. Column experiments and bioreactors were constructed to produce both aerobic and anaerobic conditions for the groundwater containing high concentrations of cyanide. Samples of water were taken periodically to analyse the pH, redox potential, temperature, and concentrations of cyanide (free and total), sulphate, ammonia, nitrate and dissolved organic carbon (DOC). Initial results indicate that concentrations of cyanide are declining in both aerobic and anaerobic conditions, with biodegradation one process producing degradation. 9 refs., 4 figs., 2 tabs.

  16. TIE for cyanides in groundwater at a former coal gasification plant

    International Nuclear Information System (INIS)

    McLeay, M.; Cameron, M.; Elphick, J.

    2010-01-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  17. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  18. Cyanide Removal Efficiency of Photocatalytic Nanoparticles Stabilized on Glass Microbeads Under Sun Irradiation

    Directory of Open Access Journals (Sweden)

    Neda Masoudipour

    2017-01-01

    Full Text Available This paper investigates cyanide photodestruction (at pH 9 using the S, N-TiO2 photocatalyst synthesized by the sol-gel method and stabilized on glass microbeads. The main raw materials were thiourea, as a source of N and S, and tetra butyl ortho titanate. The effects of S and N doses, visible light (a 400W light, sunlight, irradiation time, and different initial cyanide concentrations (50, 100, 200, and 300 ppm were studied on cyanide photodestruction. Cyanide concentration was measured by the titration method and the photocatalyst film was characterized by X-ray diffraction (XRD, UV-Vis diffuse reflection spectroscopy (DRS, Scanning Electron Microscopy (SEM, and Energy dispersive X-ray (EDX analysis. XRD patterns and SEM images were used to determine the nanoparticle size of the photocatalyst on glass microbeads. EDX and DRS analyses confirmed the presence of S and N as well as the activity of the photocatalyst in the visible region, respectively. The S, N-TiO2 film with 0.25 g Thiuourea proved to be the best cyanide photodestruction agent in the visible light. Based on the results obtained, S, N-TiO2/ glass microbead was capable of destroying cyanide (50 ppm by up to 94% in the visible light and by approximately 100% in the sunlight. The results also indicated that S, N-Tio2/scoria stone was capable of destroying cyanide by 85% in the visible light and by 94% in the sunlight within 4 h.  The reaction kinetic for all cyanide concentrations and two photocatalyst substrates were described by a first order equation. Finally, it was concluded that the S, N-TiO2 stabilized on glass microbeads could be effectively used as a new method for treating wastewater containing free cyanide under the sunlight.

  19. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  20. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  1. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  4. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Olsen, N.V.; Toft, P

    2013-01-01

    and immediate enzymatic analysis. Mitochondrial function was blocked by unilateral infusion of NaCN/KCN (0.5 mol/L) through the microdialysis catheter (N = 5). As a reference, NaCl (0.5 mol/L) was infused by intracerebral microdialysis in one group of animals (N = 3). RESULTS: PbtO2 increased during cyanide...... infusion and returned to baseline afterwards. The lactate/pyruvate (LP) ratio increased significantly following cyanide infusion because of a marked increase in lactate level while pyruvate remained within normal limits. Glutamate and glycerol increased after cyanide infusion indicating insufficient energy...

  5. Acute Cyanide Poisoning: Hydroxocobalamin and Sodium Thiosulfate Treatments with Two Outcomes following One Exposure Event

    Directory of Open Access Journals (Sweden)

    Andrew Meillier

    2015-01-01

    Full Text Available Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide’s metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use of both antidotes separately used with differing outcomes.

  6. Corrosion phenomena in sodium-potassium coolant resulting from solute interaction in multicomponent solution

    Science.gov (United States)

    Krasin, V. P.; Soyustova, S. I.

    2018-03-01

    The solubility of Fe, Cr, Ni, V, Mn and Mo in sodium-potassium melt has been calculated using the mathematical framework of pseudo-regular solution model. The calculation results are compared with available published experimental data on mass transfer of components of austenitic stainless steel in sodium-potassium loop under non-isothermal conditions. It is shown that the parameters of pair interaction of oxygen with transition metal can be used to predict the corrosion behavior of structural materials in sodium-potassium melt in the presence of oxygen impurity. The results of calculation of threshold concentration of oxygen of ternary oxide formation of sodium with transitional metals (Fe, Cr, Ni, V, Mn, Mo) are given in conditions when pure solid metal comes in contact with sodium-potassium melt.

  7. Dissolution rate effect upon lyolumenescence of irradiated potassium chloride

    International Nuclear Information System (INIS)

    Leshchinskij, B.L.; Dzelme, Yu.R.; Tiliks, Yu.E.; Bugaenko, L.T.

    1985-01-01

    The paper is aimed at studying dissolution rate effect and concentration of electron acceptor upon lyoluminescence (LL) that occurs during dissolution of solids with radiation defects. For investigation gamma-irradiated potassium chloride monocrystalline disks were used. As a solvent 3x10sup(-6) M solution of C(RH) hodamine in 2.7 KCl aqueous solution is used. It is shown that LL occurs as a result of recombination of radiation defects with the solution and between themselves in two different regions of subsurface layer of the solid. Investigated dependences of LL intensty on dissolution rate are the efficient method of studying the structure of solids-aqueous solution interface and LL mechanism

  8. Metabolism of allylnitrile to cyanide: in vitro studies.

    Science.gov (United States)

    Farooqui, M Y; Ybarra, B; Piper, J

    1993-09-01

    In liver fractions from male Sprague-Dawley rats, the metabolism of allylnitrile (ALN) to cyanide (CN-) was localized in the microsomal fraction and required NADPH and oxygen for maximal activity. The biotransformation of ALN to CN- was characterized with respect to time, microsomal protein concentration, pH and temperature. Metabolism of ALN was increased in microsomes obtained from phenobarbital-treated rats (160% of control) and decreased with cobaltous chloride and beta-diethyl aminoethyl-2,2-diphenyl pentanoate (SKF 525-A) treatments (48% of control). Addition of SKF 525-A to the incubation mixtures inhibited ALN metabolism to CN-. Addition of the epoxide hydrolase inhibitor, 1,1,1-trichloropropane 2,3-oxide, decreased the formation of CN- from ALN. Addition of glutathione, cysteine, D-penicillamine, and 2-mercaptoethanol enhanced the release of CN- from ALN. These findings indicate that ALN is metabolized to CN- via a cytochrome P-450-dependent mixed-function oxidase system.

  9. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities

    Directory of Open Access Journals (Sweden)

    Lukhanyo Mekuto

    2017-08-01

    Full Text Available The data presented in this article contains the bacterial community structure of the free cyanide (CN- and thiocyanate (SCN- degrading organisms that were isolated from electroplating wastewater and synthetic SCN- containing wastewater. PCR amplification of the 16S rRNA V1-V3 regions was undertaken using the 27F and 518R oligonucleotide primers following the metacommunity DNA extraction procedure. The PCR amplicons were processed using the illumina® reaction kits as per manufacturer׳s instruction and sequenced using the illumina® MiSeq-2000, using the MiSeq V3 kit. The data was processed using bioinformatics tools such as QIIME and the raw sequence files are available via NCBI׳s Sequence Read Archive (SRA database.

  10. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    International Nuclear Information System (INIS)

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A → X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A → X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A → X SEP spectra of acetylene (HCCH) near E VIB = 7,000 cm -1 display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the '2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules

  11. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    Science.gov (United States)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.

  12. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Low energy and low dose electron irradiation of potassium-lime-silicate glass investigated by XPS. I. Surface composition

    Czech Academy of Sciences Publication Activity Database

    Gedeon, O.; Zemek, Josef

    2003-01-01

    Roč. 320, - (2003), s. 177-186 ISSN 0022-3093 R&D Projects: GA ČR GA104/99/1407 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray photoelectron spectroscopy * potassium-lime-silicate glass * electron -solid interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.563, year: 2003

  14. Trace analysis of cyanide by ion-selective electrode indicator technique

    International Nuclear Information System (INIS)

    Tom, R.L.; Kapauan, P.A.

    1977-01-01

    Due to the toxicity of cyanide, its analysis in water is important. The use of ion-selective electrodes for its determination was studied. The known addition method using a silver sulfide membrane electrode was studied. This involved using a silver indicator solution to determine the cyanide content of a sample. Known amounts of a standard cyanide solution were added and the potentials noted. The results were plotted and the original concentration of cyanide extrapolated. The results of the experiment indicated the method to be practical for analysis of industrial waste waters, even in the presence of metal ions. The metal ions were masked using an EDTA solution while possible sulfides were precipitated out using a Pb (N0 3 ) 2 solution. The method was tested on four actual samples and the results indicated the applicability of the method

  15. Determination of total cyanide in Hanford Site high-level wastes

    International Nuclear Information System (INIS)

    Winters, W.I.; Pool, K.H.

    1994-05-01

    Nickel ferrocyanide compounds (Na 2-x Cs x NiFe (CN) 6 ) were produced in a scavenging process to remove 137 Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described

  16. Determination of total cyanide in Hanford Site high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States); Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States)

    1994-05-01

    Nickel ferrocyanide compounds (Na{sub 2-x}Cs{sub x}NiFe (CN){sub 6}) were produced in a scavenging process to remove {sup 137}Cs from Hanford Site single-shell tank waste supernates. Methods for determining total cyanide in Hanford Site high-level wastes are needed for the evaluation of potential exothermic reactions between cyanide and oxidizers such as nitrate and for safe storage, processing, and management of the wastes in compliance with regulatory requirements. Hanford Site laboratory experience in determining cyanide in high-level wastes is summarized. Modifications were made to standard cyanide methods to permit improved handling of high-level waste samples and to eliminate interferences found in Hanford Site waste matrices. Interferences and associated procedure modifications caused by high nitrates/nitrite concentrations, insoluble nickel ferrocyanides, and organic complexants are described.

  17. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  18. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  19. Computer Simulation Lends New Insights Into Cyanide-Caused Cardiac Toxicity

    National Research Council Canada - National Science Library

    Zoltani, C. K; Platoff, G. E; Baskin, S. I

    2004-01-01

    The development of antidotes against cyanide (CN) poisoning for the protection of the warfighter is still hampered by a lack of detailed understanding of the modulation of CN-affected cellular processes...

  20. The effective removal method of copper and cyanide in waste water of metal plating factories

    International Nuclear Information System (INIS)

    Jae, Won Mok; Hong, Zong Doo; Kim, Myun Sup

    1988-01-01

    To investigate the effective removal method of cooper and cyanide compounds in metal plating waste water, removal ratio of cooper and cyanide compounds in solution are measured with varying pH, concentration and contact time. As results of the present experiment, cyanide compounds in the solution are removed to 0.03mg/l or less with 5% NaOCl solution. The present result is satisfied to environmental disposal standards. The removal ratio against pH values show 99% over pH8. As results of neutral precipitation method, copper including solution are removed to 99% at pH8 in short time. The removal ratios of cyanide mixed copper solution against pH values show high efficiency(over 95%) at pH8 and 11 and removal ratios are decreased at pH10.(Author)

  1. Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment

    International Nuclear Information System (INIS)

    Ishizuka, S.; Kato, S.; Okamoto, Y.; Sakurai, T.; Akimoto, K.; Fujiwara, N.; Kobayashi, H.

    2003-01-01

    The effects of the passivation of defects in polycrystalline nitrogen-doped cuprous oxide (Cu 2 O) thin films with hydrogen or cyanide treatment were studied. In the photoluminescence (PL) measurements, although the emission was not observed before treatment, luminescence of Cu 2 O at around 680 nm was observed after each treatment. This improvement in the luminescence property may be due to the passivation of non-radiative recombination centers by H or CN. The hole carrier concentration increased from the order of 10 16 to 10 17 cm -3 with hydrogen or cyanide treatment. From these results, both the hydrogen and cyanide treatments were found to be very effective to passivate defects and improve the optical and electrical properties of polycrystalline Cu 2 O thin films. The thermal stability of the passivation effects by the cyanide treatment is, however, superior to that by the hydrogen treatment

  2. In Vitro Absorption of Atmospheric Carbon Monoxide and Hydrogen Cyanide in Undisturbed Pooled Blood

    Science.gov (United States)

    2012-09-01

    Biological samples from victims of aircraft accidents are analyzed for carboxyhemoglobin (COHb) and cyanide ion : (CN) in blood. Such victims quite often suffer large open wounds near the autopsy blood collection sites. Many : aircraft crashes resu...

  3. Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide.

    Science.gov (United States)

    Sayed, Sameh El; Licchelli, Maurizio; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-10-18

    The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy) 3 ] 2+ , functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  5. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  6. Computer Simulation Lends New Insights Into Cyanide-Caused Cardiac Toxicity

    Science.gov (United States)

    2004-12-01

    current, ICl,sw is needed to terminate VF. There are several drugs that block ICl,sw. 5. DISCUSSION Exposure to CN has immediate consequences ...the search on the requirements on the means of pharmacological intervention to counter the effect of cyanide-caused cardiac toxicity . Of special...COMPUTER SIMULATION LENDS NEW INSIGHTS INTO CYANIDE-CAUSED CARDIAC TOXICITY C.K. Zoltani* U.S. Army Research Laboratory Computational and

  7. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Olusegun Olusoji SOREMEKUN; Olakunle Wasiu SUBAIR; Atinuke OLADOYE

    2008-01-01

    The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5) were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel i...

  8. Solids Modelling and Capture Simulation of Piperazine in Potassium Solvents

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Maribo-Mogensen, Bjørn; Thomsen, Kaj

    2012-01-01

    be a benefit to the capture process, but it could also result in unforeseen situations of potential hazardous operation, clogging, equipment failure etc.Security of the PZ process needs to be in focus. Flow assurance requires additional attention, especially due to the precipitation phenomenon. This entails...

  9. Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions

    Directory of Open Access Journals (Sweden)

    Bo Zheng

    2016-01-01

    Full Text Available The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.

  10. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier.

    Science.gov (United States)

    Li, Guoping; Xue, Juanqin; Liu, Nina; Yu, Lihua

    2016-01-01

    The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.

  11. Effect of germination and autoclaving of sprouted finger millet and kidney beans on cyanide content.

    Science.gov (United States)

    Chove, Bernard E; Mamiro, Peter R S

    2010-10-01

    Cyanide contents of locally purchased brown finger millet (Eleusine corocana L. Gaertner) and brown speckled kidney bean seeds (Phaseolus vulgaries var. Rose Coco) were determined using raw, germinated and autoclaved samples. The aim was to establish the extent of cyanide content increase resulting from the germination process and the effectiveness of the autoclaving process on the reduction of cyanide levels in the samples, for safety considerations. Autoclaving was carried out at 121degree C for 20 minutes. It was found that germination increased the cyanide content by 2.11 to 2.14 fold in finger millet for laboratory processed samples. In the case of kidney beans the increment was 1.76 to 1.77 fold for laboratory samples. The increments for field processed samples were in the same range as those for laboratory samples. Autoclaving reduced the cyanide content to between 61.8 and 65.9 % of the original raw contents for finger millet and between 56.6 to 57.8% in the case of kidney beans. The corresponding reductions for field samples were also found to be within the same ranges as the laboratory processed samples. It was concluded that autoclaving significantly reduced the cyanide levels in germinated finger millet and kidney beans.

  12. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  13. Novel colorimetric sensors for cyanide based on azo-hydrazone tautomeric skeletons.

    Science.gov (United States)

    Adegoke, Olajire A; Adesuji, Temitope E; Thomas, Olusegun E

    2014-07-15

    The monoazo dyes, 4-carboxyl-2, 6-dinitrophenylazohydroxynaphthalenes dyes (AZ-01, AZ-03 and AZ-04), were evaluated as a highly selective colorimetric chemosensor for cyanide ion. The recognition of cyanide ion gave an obvious colour change from light yellow to brownish red and upon dilution with acetone produced a purple to lilac colour. Optimum conditions for the reaction between the azo dyes and cyanide ion were established at 30°C for 5 min, and different variables affecting the reaction were carefully studied and optimised. Under the optimum conditions, linear relationships between the CN(-) concentrations and light absorption were established. Using these azo-hydrazone molecular switch entities, excellent selectivity towards the detection of CN(-) in aqueous solution over miscellaneous competitive anions was observed. Such selectivity mainly results from the possibility of nucleophilic attack on the azo-hydrazone chemosensors by cyanide anions in aqueous system, which is not afforded by other competing anions. The cyanide chemosensor method described here should have potential application as a new family probes for detecting cyanide in aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Study of cyanide removal from contaminated water using zinc peroxide nanomaterial.

    Science.gov (United States)

    Uppal, Himani; Tripathy, S Swarupa; Chawla, Sneha; Sharma, Bharti; Dalai, M K; Singh, S P; Singh, Sukhvir; Singh, Nahar

    2017-05-01

    The present study highlights the potential application of zinc peroxide (ZnO 2 ) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO 2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO 2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO 2 nanomaterial (PVP-ZnO 2 ) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO 2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO 2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics. Copyright © 2016. Published by Elsevier B.V.

  15. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil

    Directory of Open Access Journals (Sweden)

    Enoch A. Akinpelu

    2017-10-01

    Full Text Available Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  16. Biochemical characteristics of a free cyanide and total nitrogen assimilating Fusarium oxysporum EKT01/02 isolate from cyanide contaminated soil.

    Science.gov (United States)

    Akinpelu, Enoch A; Adetunji, Adewole T; Ntwampe, Seteno K O; Nchu, Felix; Mekuto, Lukhanyo

    2017-10-01

    Sustainability of nutrient requirements for microbial proliferation on a large scale is a challenge in bioremediation processes. This article presents data on biochemical properties of a free cyanide resistant and total nitrogen assimilating fungal isolate from the rhizosphere of Zea mays (maize) growing in soil contaminated with a cyanide-based pesticide. DNA extracted from this isolate were PCR amplified using universal primers; TEF1-α and ITS. The raw sequence files are available on the NCBI database. Characterisation using biochemical data was obtained using colorimetric reagents analysed with VITEK ® 2 software version 7.01. The data will be informative in selection of biocatalyst for environmental engineering application.

  17. Potassium

    Science.gov (United States)

    ... confusion listlessness tingling, prickling, burning, tight, or pulling sensation of arms, hands, legs, or feet heaviness or weakness of legs cold, pale, gray skin stomach pain unusual stomach bulging ...

  18. Investigation on treatment of cyanide in waste water of coke-oven plant with radiation-technique

    International Nuclear Information System (INIS)

    Qi Shengchu; He Yongke; Wu Jilan

    1992-01-01

    The treatment of cyanide in waste water of coke-oven plant with radiation-technique was investigated. The investigation indicated that toxic products under γ-ray irradiation were changed into less-toxic or non-toxic products. Organic pollutants will compete with cyanide for scavenging active intermediates of water (H, e aq - and OH radical). Therefore, it will inhibit cyanide radiolysis. The pretreatment with active carbon increases the radiolytic decomposition rate of cyanide and damage rate of organism in waste water. H 2 O 2 and N 2 O convert e aq - into OH radical. however they improve the efficiency decomposition of cyanide. OH radical plays an important role in reducing cyanide content and COD value

  19. Operating experience with potassium systems

    International Nuclear Information System (INIS)

    Schwarz, N.F.

    1984-04-01

    In an international cooperation R and D work for the realization of potassium topping cycles to increase the conversion efficiency of thermal power stations is going on. Feasibility studies show that the realization of such a process can be achieved under economic considerations with existing materials and today's technology. Nevertheless, it has to be shown that the assumptions with respect to material behaviour and component reliability are based on sound technical premises. Therefore, in continuation of design studies, a hardware programme has been initiated in the Austrian Research Centre Seibersdorf. First results with respect to component and material behaviour are described. (Author) [de

  20. 13C-TRIPLY Labeled Ethyl Cyanide Submillimeterwave Study with Lille's Fast Scan Dds-Based Spectrometer

    Science.gov (United States)

    Pienkina, A.; Motiyenko, R. A.; Margulès, L.; Müller, Holger S. P.; Guillemin, J.-C.

    2016-06-01

    This study of the 13C-triply labeled species of ethyl cyanide (CH_3CH_2CN) follows our recent work on the three 13C-doubly-labeled that allowed their detection in the line survey recently obtained with ALMA (EMoCA). The detection of isotopologues could improve the knowledge of the astrochemistry. The other goal is to clean the surveys from the lines of known molecules in order to detect new ones, this is especially important for the abundant complex organic molecules like ethyl cyanide. As in the case of the doubly substitued species, no spectroscopic studies exist up to now for 13CH_313CH_213CN, the first predictions were thus obtained from scaled ab initio calculations. The spectra were recorded and analyzed up to 1 THz. More than 5500 lines were fitted with quantum numbers J and K_a up to 95 and 25 respectively. The spectra were obtained with the new version of the Lille's solid state spectrometers. This new version used Direct Digital Synthesizer in order to speed up acquisition time. We constructed a spectrometer covering a decade, from 150 to 1500 GHz, it scans the full range in 24 hours with high sensitivity and accuracy. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS Margules, L.; et al. 2015, 69th International Symposium on Molecular Spectroscopy, RI06 Belloche, A.; et al. 2014, Science, 345, 1584

  1. First Spectroscopic Studies and Detection in SgrB2 of 13C-DOUBLY Substitued Ethyl Cyanide

    Science.gov (United States)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Müller, Holger S. P.; Belloche, Arnaud

    2015-06-01

    Ethyl cyanide (CH_3CH_2CN) is one of the most abundant complex organic molecules in the interstellar medium firstly detected in OMC-1 and Sgr B2 in 1977. The vibrationally excited states are enough populated under ISM conditions and could be detected. Apart from the deuterated ones, all mono-substituted isotopologues of ethyl cyanide (13C and 15N have been detected in the ISM. The detection of isotopologues in the ISM is important: it can give information about the formation process of complex organic molecules, and it is essential to clean the ISM spectra from the lines of known molecules in order to detect new ones. The 12C/13C ratio found in SgrB2: 20-30 suggests that the doubly 13C could be present in the spectral line survey recently obtained with ALMA (EMoCA), but no spectroscopic studies exist up to now. We measured and analyzed the spectra of the 13C-doubly-substitued species up to 1 THz with the Lille solid-state based spectrometer. The spectroscopic results and and the detection of the doubly 13C species in SgrB2 will be presented. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS. Support by the Deutsche Forschungsgemeinschaft via SFB 956, project B3 is acknowledged D.~R.~Johnson, et al., Astrophys.~J. 1977, 218, L370 A.~Belloche, et al., A&A 2013, 559, A47 A.M.~Daly, et al., Astrophys.~J. 2013, 768, 81 K.~Demyk, et al. A&A 2007 466, 255 Margulès, et al. A&A 2009, 493, 565 Belloche et al. 2014, Science, 345, 1584

  2. Cyanide binding to human plasma heme–hemopexin: A comparative study

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Leboffe, Loris; Polticelli, Fabio

    2012-01-01

    Highlights: ► Cyanide binding to ferric HHPX–heme–Fe. ► Cyanide binding to ferrous HHPX–heme–Fe. ► Dithionite-mediated reduction of ferric HHPX–heme–Fe–cyanide. ► Cyanide binding to HHPX–heme–Fe is limited by ligand deprotonation. ► Cyanide dissociation from HHPX–heme–Fe–cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme–Fe–hemopexin (HPX–heme–Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX–heme–Fe (HHPX–heme–Fe(III) and HHPX–heme–Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX–heme–Fe(III)–cyanide complex, at pH 7.4 and 20.0 °C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX–heme–Fe(III) and HHPX–heme–Fe(II) are K = (4.1 ± 0.4) × 10 −6 M, k on = (6.9 ± 0.5) × 10 1 M −1 s −1 , and k off = 2.8 × 10 −4 s −1 ; and H = (6 ± 1) × 10 −1 M, h on = 1.2 × 10 −1 M −1 s −1 , and h off = (7.1 ± 0.8) × 10 −2 s −1 , respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX–heme–Fe(III)–cyanide complex is l = 8.9 ± 0.8 M −1/2 s −1 . HHPX–heme–Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  3. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  4. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater

    NARCIS (Netherlands)

    Griffioen, J.

    2001-01-01

    Fertilization of agricultural land in groundwater infiltration areas often causes deterioration of groundwater quality. In addition to nitrogen and phosphorous, potassium deserves attention. The fate of potassium in the subsurface is controlled mainly by cation-exchange. Use of the Potassium

  5. Electron-deficient tripodal amide based receptor: An exclusive turn-on fluorescent and colorimetric chemo sensor for cyanide ion

    Science.gov (United States)

    Murugesan, Kumaresan; Jeyasingh, Vanthana; Lakshminarayanan, Sudha; Govindaraj, Tamil Selvan; Paulraj, Mosae Selvakumar; Narayanan, Selvapalam; Piramuthu, Lakshminarayanan

    2018-06-01

    Here in, we have designed, synthesized and isolated sensor L, as an exclusive selective turn-on fluorescent chemo sensor for cyanide ion. The acetonitrile solution contains L with tetrabutyl ammonium cyanide, results sudden color change from colorless to yellowish-brown. Chemosensor L produced a strong fluorescence response with an enhancement of very high fluorescence intensity while addition of CN- ion and the strength of the chemosensor L towards cyanide binding is found to be 3.9813 × 104 M-1. In order to use this sensor in practical application, we also prepared a cassette which is fabricated with sensor L and we succeeded to sense cyanide ion.

  6. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    Science.gov (United States)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)–induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8±7.1 min compared to 75.4±25.1 and 76.4±42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (pcyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS. PMID:20210475

  7. Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide.

    Science.gov (United States)

    Cervino, J M; Hayes, R L; Honovich, M; Goreau, T J; Jones, S; Rubec, P J

    2003-05-01

    Sodium cyanide (NaCN) is widely used for the capture of reef fish throughout Southeast Asia and causes extensive fish mortality, but the effect of NaCN on reef corals remains debated. To document the impact of cyanide exposure on corals, the species Acropora millepora, Goniopora sp., Favites abdita, Trachyphyllia geoffrio, Plerogyra sp., Heliofungia actinformis, Euphyllia divisa, and Scarophyton sp., and the sea anemone Aiptasia pallida were exposed to varying concentrations of cyanide for varying time periods. Corals were exposed to 50, 100, 300, and 600 mg/l of cyanide ion (CN(-)) for 1-2 min (in seawater, the CN(-) forms hydrocyanic acid). These concentrations are much lower than those reportedly used by fish collectors. Exposed corals and anemones immediately retracted their tentacles and mesenterial filaments, and discharged copious amounts of mucus containing zooxanthellae. Gel electrophoreses techniques found changes in protein expression in both zooxanthellae and host tissue. Corals and anemones exposed to cyanide showed an immediate increase in mitotic cell division of their zooxenthellae, and a decrease in zooxanthellae density. In contrast, zooxanthellae cell division and density remained constant in controls. Histopathological changes included gastrodermal disruption, mesogleal degradation, and increased mucus in coral tissues. Zooxanthellae showed pigment loss, swelling, and deformation. Mortality occurred at all exposure levels. Exposed specimens experienced an increase in the ratio of gram-negative to gram-positive bacteria on the coral surface. The results demonstrate that exposure cyanide causes mortality to corals and anemones, even when applied at lower levels than that used by fish collectors. Even brief exposure to cyanide caused slow-acting and long-term damage to corals and their zooxanthellae.

  8. Metalloporphyrin Co(III)TMPyP ameliorates acute, sublethal cyanide toxicity in mice.

    Science.gov (United States)

    Benz, Oscar S; Yuan, Quan; Amoscato, Andrew A; Pearce, Linda L; Peterson, Jim

    2012-12-17

    The formation of Co(III)TMPyP(CN)(2) at pH 7.4 has been shown to be completely cooperative (α(H) = 2) with an association constant of 2.1 (±0.2) × 10(11). The kinetics were investigated by stopped-flow spectrophotometry and revealed a complicated net reaction exhibiting 4 phases at pH 7.4 under conditions where cyanide was in excess. The data suggest molecular HCN (rather than CN(-)) to be the attacking nucleophile around neutrality. The two slower phases do not seem to be present when cyanide is not in excess, and the other two phases have rates comparable to that observed for cobalamin, a known effective cyanide scavenger. Addition of bovine serum albumin (BSA) did not affect the cooperativity of cyanide binding to Co(III)TMPyP, only lowered the equilibrium constant slightly to 1.2 (±0.2) × 10(11) and had an insignificant effect on the observed rate. A sublethal mouse model was used to assess the effectiveness of Co(III)TMPyP as a potential cyanide antidote. The administration of Co(III)TMPyP to sodium cyanide intoxicated mice resulted in the time required for the surviving mice to right themselves from a supine position being significantly decreased (9 ± 2 min) compared to that of the controls (33 ± 2 min). All observations were consistent with the demonstrated antidotal activity of Co(III)TMPyP operating through a cyanide-binding (i.e., scavenging) mechanism.

  9. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    Energy Technology Data Exchange (ETDEWEB)

    Harish, S. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Joseph, James, E-mail: jameskavlam@yahoo.com [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India); Phani, K.L.N. [Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamilnadu (India)

    2011-06-30

    Highlights: > In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. > Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. > Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. > We are proposing the formation of a compound with general formula 'KFe{sub x}[Au(CN){sub 2}]{sub y}' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au

  10. Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)-Does it lead to gold analogue of Prussian blue?

    International Nuclear Information System (INIS)

    Harish, S.; Joseph, James; Phani, K.L.N.

    2011-01-01

    Highlights: → In group IB, Cu and Ag form Prussian blue analogues but similar formation of gold hexacyanoferrate was not found in the literature and non-existence of gold hexacyanoferrate remains a mystery. → Potential cycling of gold chloride and potassium ferro/ferri cyanide was resulted in the formation of Au-PB nano-composite. → Redox reaction between gold chloride and potassium ferrocyanide ion is spontaneous but no reaction occurs when gold chloride and potassium ferricyanide is mixed. → We are proposing the formation of a compound with general formula 'KFe x [Au(CN) 2 ] y ' and discussing the formation of gold hexacyanoferrate is not feasible by simple chemical or electrochemical reaction in contrast to other PB analogues. - Abstract: Prussian blue analogues are a class of compounds formed by the reaction between metal salt and potassium hexacyanoferrate (II/III). In our earlier report, the formation of Au-Prussian blue nano-composite was noticed on potential cycling the glassy carbon electrode in a medium containing gold (III) chloride and potassium hexacyanoferrate (III). Hence in this work, the formation of gold hexacyanoferrate was attempted by a simple chemical reaction. The reaction of gold (III) chloride with potassium hexacyanoferrate (II/III) was examined by UV-Vis spectroscopy and found that there is no redox reaction between gold (III) chloride and potassium hexacyanoferrate (III). However, the redox reaction occurs between gold (III) chloride and potassium hexacyanoferrate (II) leading to the formation of charge transfer band and the conversion of hexacyanoferrate (II) to hexacyanoferrate (III) was evidenced by the emergence of new absorption peaks in UV-Vis spectra. The oxidation state of gold in Au-Fe complex was found to be +1 from X-ray photoelectron spectroscopy. The stability of the Au-Fe complex was also studied by cyclic voltammetry. Cyclic voltammetric results indicated the presence of high spin iron in Au-Fe complex. Hence 'as

  11. Fabrication and performance of porous lithium sodium potassium niobate ceramic

    Science.gov (United States)

    Chen, Caifeng; Zhu, Yuan; Ji, Jun; Cai, Feixiang; Zhang, Youming; Zhang, Ningyi; Wang, Andong

    2018-02-01

    Porous lithium sodium potassium niobate (LNK) ceramic has excellent piezoelectric properties, chemical stability and great chemical compatibility. It has a good application potential in the field of biological bone substitute. In the paper, porous LNK ceramic was fabricated with egg albumen foaming agent by foaming method. Effects of preparation process of the porous LNK ceramic on density, phase structure, hole size and piezoelectric properties were researched and characterized. The results show that the influence factors of LNK solid content and foaming agent addition are closely relevant to properties of the porous LNK ceramic. When solid content is 65% and foaming agent addition is 30%, the porous LNK ceramic has uniform holes and the best piezoelectric properties.

  12. 21 CFR 582.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1613 Potassium bicarbonate. (a)...

  13. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  14. 75 FR 23298 - Potassium Permanganate From China

    Science.gov (United States)

    2010-05-03

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China. SUMMARY: The... on potassium permanganate from China would be likely to lead to continuation or recurrence of...

  15. 75 FR 51112 - Potassium Permanganate From China

    Science.gov (United States)

    2010-08-18

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate from China... of the antidumping duty order on potassium permanganate from China would be likely to lead to...

  16. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  17. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  18. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections and...) of this chapter 0.25 Do. All other food categories 0.01 Do. (d) Prior sanctions for potassium... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food...

  19. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  20. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    Science.gov (United States)

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  1. High levels of activity of bats at gold mining water bodies: implications for compliance with the International Cyanide Management Code.

    Science.gov (United States)

    Griffiths, Stephen R; Donato, David B; Coulson, Graeme; Lumsden, Linda F

    2014-06-01

    Wildlife and livestock are known to visit and interact with tailings dam and other wastewater impoundments at gold mines. When cyanide concentrations within these water bodies exceed a critical toxicity threshold, significant cyanide-related mortality events can occur in wildlife. Highly mobile taxa such as birds are particularly susceptible to cyanide toxicosis. Nocturnally active bats have similar access to uncovered wastewater impoundments as birds; however, cyanide toxicosis risks to bats remain ambiguous. This study investigated activity of bats in the airspace above two water bodies at an Australian gold mine, to assess the extent to which bats use these water bodies and hence are at potential risk of exposure to cyanide. Bat activity was present on most nights sampled during the 16-month survey period, although it was highly variable across nights and months. Therefore, despite the artificial nature of wastewater impoundments at gold mines, these structures present attractive habitats to bats. As tailings slurry and supernatant pooling within the tailings dam were consistently well below the industry protective concentration limit of 50 mg/L weak acid dissociable (WAD) cyanide, wastewater solutions stored within the tailings dam posed a minimal risk of cyanide toxicosis for wildlife, including bats. This study showed that passively recorded bat echolocation call data provides evidence of the presence and relative activity of bats above water bodies at mine sites. Furthermore, echolocation buzz calls recorded in the airspace directly above water provide indirect evidence of foraging and/or drinking. Both echolocation monitoring and systematic sampling of cyanide concentration in open wastewater impoundments can be incorporated into a gold mine risk-assessment model in order to evaluate the risk of bat exposure to cyanide. In relation to risk minimisation management practices, the most effective mechanism for preventing cyanide toxicosis to wildlife

  2. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    Science.gov (United States)

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.

  3. Cyanide Toxidrome. A Cluster of Nonspecific Signs May Be a Clue

    International Nuclear Information System (INIS)

    Baud, F. J.; Megarbane, B.

    2007-01-01

    Introduction: One of the major concerns regarding a mass disaster is to clarify the involved class of toxicant. Hydrocyanic acid and its derivatives are considered a likelihood threat. However, cyanide-induced signs and symptoms are described as nonspecific, precluding any characterization at the scene. Chemical disaster may result in the exposure, at the same time, of a large number of casualties. In such a condition, not only the nature of signs and symptoms (qualitative knowledge), but also their frequency and magnitude of occurrence (quantitative knowledge) would be of value for a presumptive diagnosis. Therefore, we attempted at quantifying signs and symptoms of cyanide poisoning at the time of presentation in order to improve its recognition and, therefore, the rapidity of antidote supply. Methods: cases of pure cyanide poisoning published in the medical literature and on which the authors consulted were reviewed. Smoke inhalations were excluded. Clinical data were collected before any antidotal treatment except for oxygen. Results are expressed as percentage or median [extremes] Results: Data on 149 acute pure cyanide poisonings described since 1950 were extracted and summarized. Cyanide poisonings primarily resulted from suicide attempts by ingestion. Median time between exposure and onset of symptoms was 30 minutes (1-1140). An abnormal odour was looked for in only 24 out of the 149 cases and was reported in 16 cases (67%). Acute cyanide poisoning was characterized by abnormal neurological status (82%) including coma (66%), dilated pupils (78%), and abnormal respiratory pattern (93%) including hyperpnoea, polypnea, and bradypnea. Muscular tone was nonspecific. Seizures were witnessed in only 26% of poisonings, premature ventricular contractions in 16%, and pulmonary edema in 5%. Median heart rate was 95 bpm [0-176], and median systolic blood pressure was 90 mmHg [0-168]. Arterial pH was 7.20 [6.40-7.60], PaCO2 was 25.2 mmHg [9-53.6], and plasma lactate was

  4. Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.

    Science.gov (United States)

    Aresta, M; Boscolo, M; Franco, D W

    2001-06-01

    The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.

  5. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing.

    Science.gov (United States)

    Badugu, Ramachandram; Lakowicz, Joseph R; Geddes, Chris D

    2004-04-01

    We characterize three new fluorescent probes that show both spectral shifts and intensity changes in the presence of aqueous cyanide, allowing for both excitation and fluorescence emission wavelength ratiometric and colorimetric sensing. The relatively high binding constants of the probes for cyanide enables a distinct colorimetric change to be visually observed with as little as 10 microM cyanide. The response of the new probes is based on the ability of the boronic acid group to interact with the CN(-) anion, changing from the neutral form of the boronic acid group R-B(OH)(2) to the anionic R-B(-)(OH)3 form, which is an electron-donating group. The presence of an electron-deficient quaternary heterocyclic nitrogen center and a strong electron-donating amino group in the 6 position on the quinolinium backbone provides for the spectral changes observed upon CN(-) complexation. We have determined the binding constants for the ortho-, meta-, and para-boronic acid probes to be 0.12, 0.17, and 0.14 microM(-3). In addition we have synthesized a control compound that does not contain the boronic acid moiety, allowing for structural comparisons and a rationale for the sensing mechanism to be made. Finally we show that the affinity for monosaccharides, such as glucose or fructose, is relatively low as compared to that for cyanide, enabling the potential detection of cyanide in physiologies up to lethal levels.

  6. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    Science.gov (United States)

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p memory errors (WME) (F(2, 19) = 5.09, p RAM navigation time (F(2, 19) = 3.91, p memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p memory errors (F(2, 19) = 9.35 p memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.

  7. The enhanced radiation response of an in vitro tumour model by cyanide released from hydrolysed amygdalin

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Durand, R.E.

    1978-01-01

    Any inhibition of oxygen consumption by respiring cells should result in indirect radiosensitization of the more centrally located hypoxic cells of a tumour. Amygdalin (D-mandelonitrile-β-D-glucosido-6-β-D-glucoside) when hydrolysed by the enzyme β-D-glucoside glycohydrolase (β-glucosidase) releases the respiratory inhibitor cyanide. A study has been made of the conditions for enhancing the gamma radiation response of multi-cell spheroids of V79 cells by cyanide or by cyanide released by enzymatic hydrolysis of amygdalin. Amygdalin hydrolysis was monitored by the increase in absorbancy at 250nm (production of benzaldehyde). Oxygen utilization was recorded by an oxygen electrode. The respiratory effects produced by the additon of amygdalin to cell suspensions containing β-glucosidase were immediate and essentially the same as those obtained by adding the equivalent amounts of KCN to the cell suspensions. The radio-resistant 'tail' of the survival curve of multi-cell spheroids was reduced in the presence of cyanide (added directly or secondarily released). The radiation response of the spheroids in the presence of cyanide was slightly greater than that for reoxygenation alone. (U.K.)

  8. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Junsheng; Chu, Tian-Shu

    2016-01-01

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F − , AcO − . Thus, the chemosensor M1 has a high selectivity for cyanide.

  9. Kinetics of Natural Detoxification of Hydrogen Cyanide Contained In Retted Cassava Roots

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available This work presents the kinetics of natural detoxification of hydrogen cyanide contained in retted cassava roots. Retting is traditional fermentation of cassava, performed to soften the roots. During retting, cyanide diffuses into water used for the retting. The fresh cassava roots (bitter and sweet varieties used for this experiment were separately retted at ambient 0 temperature of 30 C. The cyanide content and pH were monitored daily. From the analysis of the experimental results, a first order consecutive rate equation is an adequate tool for explaining the mechanism of HCN reduction (or decay in retted cassava roots. The detoxification constants for the bound cyanide in the bitter and sweet cassava roots were 0.378/day and 0.438/day respectively, while that of the free hydrogen cyanide were 0.63/day and 0.74/day for the bitter and sweet varieties respectively. Cassava tubers from different species cannot be fermented with the same retting condition unless they have same or close functional properties.

  10. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Junsheng [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tian-Shu, E-mail: tschu@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber, Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2016-11-15

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F{sup −}, AcO{sup −}. Thus, the chemosensor M1 has a high selectivity for cyanide.

  11. On the Hydrogen Cyanide Removal from Air using Metal loaded Polyacrylonitrile Composite Nanofibers

    Directory of Open Access Journals (Sweden)

    Bozorgmehr Maddah

    2017-12-01

    Full Text Available The present study highlights the potential application of electrospun polyacrylonitrile/metal salts (CrO3, CuCO3 nanofibrous filter media impregnated with TEDA (PAN-M-TEDA as an efficient adsorbent for hydrogen cyanide removal from air. The PAN-M-TEDA nanofiber before and after adsorption of hydrogen cyanide was characterized with Fourier transform infrared microscopy (FTIR. The concentration of hydrogen cyanide passes through the samples was determined by measuring the absorption of hydrogen cyanide in the solution containing indicator via UV-Vis spectroscopy. The results showed that introducing metal salts to PAN nanofiber along with their impregnation with TEDA, significantly increases the adsorption capacity of nanofibrous filter media. The adsorption of hydrogen cyanide over PAN-M-TEDA nanofiber was also studied as a function of thickness, PAN concentration and TEDA concentration by response surface methodology (RSM based on central composite design. It is found that the highest adsorption capacity can be achieved at thickness 28.42 mm, PAN concentration 16.19 w/v % and TEDA concentration 14.80 w/v %.

  12. Stable carbon ({sup 12/13}C) and nitrogen ({sup 14/15}N) isotopes as a tool for identifying the sources of cyanide in wastes and contaminated soils-A method development

    Energy Technology Data Exchange (ETDEWEB)

    Weihmann, Jenny [Arbeitsgruppe Bodengeographie/Bodenkunde, Geographisches Institut, Universitaet zu Koeln, D-50923 Cologne (Germany); Mansfeldt, Tim [Arbeitsgruppe Bodengeographie/Bodenkunde, Geographisches Institut, Universitaet zu Koeln, D-50923 Cologne (Germany)]. E-mail: tim.mansfeldt@uni-koeln.de; Schulte, Ulrike [Lehrstuhl fuer Sediment- und Isotopengeologie, Institut fuer Geologie, Mineralogie und Geophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2007-01-23

    The occurrence of iron-cyanide complexes in the environment is of concern, since they are potentially hazardous. In order to determine the source of iron-cyanide complexes in contaminated soils and wastes, we developed a method based on the stable isotope ratios {sup 13}C/{sup 12}C and {sup 15}N/{sup 14}N of the complexed cyanide-ion (CN{sup -}). The method was tested on three pure chemicals and two industrials wastes: blast-furnace sludge (BFS) and gas-purifier waste (GPW). The iron-cyanide complexes were converted into the solid cupric ferrocyanide, Cu{sub 2}[Fe(China){sub 6}].7H{sub 2}O, followed by combustion and determination of the isotope-ratios by continuous flow isotope ratio mass spectrometry. Cupric ferrocyanide was obtained from the materials by (i) an alkaline extraction with 1 M NaOH and (ii) a distillate digestion. The [Fe(China){sub 6}]{sup 4-} of the alkaline extraction was precipitated after adding Cu{sup 2+}. The CN{sup -} of the distillate digestion was at first complexed with Fe{sup 2+} under inert conditions and then precipitated after adding Cu{sup 2+}. The {delta} {sup 13}C-values obtained by the two methods differed slightly up to 1-3 per mille for standards and BFS. The difference was larger for alkaline-extracted GPW (4-7 per mille ), since non-cyanide C was co-extracted and co-precipitated. Therefore the distillate digestion technique is recommended when determining the C isotope ratios in samples rich in organic carbon. Since the {delta} {sup 13}C-values of BFS are in the range of -30 to -24 per mille and of -17 to -5 per mille for GPW, carbon seems to be a suitable tracer for identifying the source of cyanide in both wastes. However, the {delta} {sup 15}N-values overlapped for BFS and GPW, making nitrogen unsuitable as a tracer.

  13. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    Science.gov (United States)

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299

  14. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    Science.gov (United States)

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  15. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    Science.gov (United States)

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems. Copyright © 2011 John Wiley & Sons, Ltd.

  16. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin.

    Science.gov (United States)

    Van Doorslaer, Sabine; Trandafir, Florin; Harmer, Jeffrey R; Moens, Luc; Dewilde, Sylvia

    2014-06-01

    Electron paramagnetic resonance (EPR) data reveal large differences between the ferric ((13)C-)cyanide complexes of wild-type human neuroglobin (NGB) and its H64Q and F28L point mutants and the cyanide complexes of mammalian myo- and haemoglobin. The point mutations, which involve residues comprising the distal haem pocket in NGB, induce smaller, but still significant changes, related to changes in the stabilization of the cyanide ligand. Furthermore, for the first time, the full (13)C hyperfine tensor of the cyanide carbon of cyanide-ligated horse heart myoglobin (hhMb) was determined using Davies ENDOR (electron nuclear double resonance). Disagreement of these experimental data with earlier predictions based on (13)C NMR data and a theoretical model reveal significant flaws in the model assumptions. The same ENDOR procedure allowed also partial determination of the corresponding (13)C hyperfine tensor of cyanide-ligated NGB and H64QNGB. These (13)C parameters differ significantly from those of cyanide-ligated hhMb and challenge our current theoretical understanding of how the haem environment influences the magnetic parameters obtained by EPR and NMR in cyanide-ligated haem proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  18. Determination of blood cyanide by HPLC-MS.

    Science.gov (United States)

    Tracqui, A; Raul, J S; Géraut, A; Berthelon, L; Ludes, B

    2002-04-01

    An original high-performance liquid chromatographic-mass spectrometric (HPLC-MS) procedure was developed for the determination of cyanide (CN) in whole blood. After the addition of K13C15N as internal standard, blood was placed in a microdiffusion device, the inner well of which was filled with a mixture of taurine (50mM in water)/naphthalene-2,3-dicarboxaldehyde (NDA, 10mM in methanol)/methanol/ concentrated (approximately 20%) ammonia solution (25:25:45:5, v/v). Concentrated H2SO4 was added to the blood sample, and the microdiffusion chamber was sealed. After 30 min of gentle agitation, 2 microL of the contents of the inner vial were pipetted and directly injected onto a NovaPak C18 HPLC column. Separation was performed by a gradient of acetonitrile in 2mM NH4COOH, pH 3.0 buffer (35-80% in 10 min). Detection was done with a Perkin-Elmer Sciex API-100 mass analyzer with an ionspray interface, operated in the negative ionization mode. MS data were collected as either TIC or SIM at m/z (299 + 191) and (301 + 193) for the derivatives formed with CN and 13C15N, respectively. Inspired by previous works dealing with the complexation of CN by NDA + taurine to form a 1-cyano [f] benzoisoindole derivative analyzed by HPLC-fluorimetry, this method appears simple, rapid, and extremely specific. Limits of detection and quantitation for blood CN are 5 and 15 ng/mL, respectively. The use of 13C15N as internal standard allows the quantitation of CN with elegance and accuracy in comparison with previously reported methods.

  19. ETHYL CYANIDE ON TITAN: SPECTROSCOPIC DETECTION AND MAPPING USING ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A.; Palmer, M. Y.; Nixon, C. A.; Charnley, S. B.; Mumma, M. J.; Serigano, J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ (United Kingdom); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikøw 32/46, 02-668 Warszawa (Poland); Kuan, Y.-J.; Chuang, Y.-L. [National Taiwan Normal University, Taipei 116, Taiwan (China); Wang, K.-S., E-mail: martin.cordiner@nasa.gov [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China)

    2015-02-10

    We report the first spectroscopic detection of ethyl cyanide (C{sub 2}H{sub 5}CN) in Titan’s atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter Array (ALMA). The presence of C{sub 2}H{sub 5}CN in Titan’s ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C{sub 2}H{sub 5}CNH{sup +}. Here we report the detection of 27 rotational lines from C{sub 2}H{sub 5}CN (in 19 separate emission features detected at >3σ confidence) in the frequency range 222–241 GHz. Simultaneous detections of multiple emission lines from HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH were also obtained. In contrast to HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH, which peak in Titan’s northern (spring) hemisphere, the emission from C{sub 2}H{sub 5}CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C{sub 2}H{sub 5}CN. Radiative transfer models show that C{sub 2}H{sub 5}CN is most concentrated at altitudes ≳200 km, suggesting production predominantly in the stratosphere and above. Vertical column densities are found to be in the range (1–5) × 10{sup 14} cm{sup −2}.

  20. Lithium cyanide supported by O- and N-donors

    Energy Technology Data Exchange (ETDEWEB)

    Budanow, Alexandra; Franz, Klaus-Dieter; Vitze, Hannes; Fink, Lothar; Alig, Edith; Bolte, Michael; Wagner, Matthias; Lerner, Hans-Wolfram [Institut fuer Anorganische Chemie, Goethe-Universitaet Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt (Germany)

    2017-02-15

    A series of adducts of LiCN, namely [Li(Me{sub 2}CO{sub 3})CN], [Li(Et{sub 2}CO{sub 3})CN], and [Li(NMP)CN] (NMP = N-methyl-2-pyrrolidone) were prepared by treatment of solvent-free LiCN with the appropriate donor. The starting material for these approaches, donor-free LiCN, was quantitatively prepared from Me{sub 3}SiCN and Li[Me] in diethyl ether at 0 C. Alternatively, [Li(NMP)CN] was synthesized by metathesis reaction of LiCl with NaCN in the presence of stoichiometric amounts of NMP. Although [Li(Me{sub 2}CO{sub 3})CN] and [Li(Et{sub 2}CO{sub 3})CN] are water-sensitive compounds and decompose at the exposure to air, [Li(NMP)CN] is stable in air, even at elevated temperatures. The thermal stability of [Li(NMP)CN] was proven by differential thermal analysis (DTA). [Li(NMP)CN] shows thermal stability up to temperatures of about 132 C. To evaluate the cyanation ability the reactions of 1-bromooctane and 3-bromocyclohexene with unsupported LiCN, [Li(NMP)CN], and a mixture of NaCN/LiCl/NMP were investigated. We found that [Li(NMP)CN] as well as LiCl/NaCN/NMP are efficient cyanation reagents comparable to the expensive and air-sensitive, donor-free LiCN. A product of the chloride-cyanide-bromide exchange could be isolated and structurally characterized by X-ray diffraction. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire

    Science.gov (United States)

    Tseng, Yi-Wei; Hung, Fei-Yi; Lui, Truan-Sheng

    2016-01-01

    Traditional bath-plated gold contains a cyanide complex, which is an environmental hazard. In response, our study used a green plating process to produce cyanide-free gold-coated silver (cyanide-free ACA) bonding wire that has been proven to be a feasible alternative to gold bonding wire in semiconductor packaging. In this work, ACA wire annealed at 550°C was found to have stable microstructure and superior mechanical properties. Intermetallic compounds Ag2Al and AuAl2 grew from Ag-Au balls and Al pads after aging at 175°C for 500 h. After current testing, ACA wire was found to have improved electrical properties due to equiaxed grain growth. The gold nanolayer on the Ag surface increased the oxidation resistance. These results provide insights regarding the reliability of ACA wire in advanced bonding processes.

  2. EPA (Environmental Protection Agency) Method Study 12, cyanide in water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.; Britton, P.; Kroner, R.

    1984-05-01

    EPA Method Study 12, Cyanide in Water reports the results of a study by EMSL-Cincinnati for the parameters, Total Cyanide and Cyanides Amendable to Chlorination, present in water at microgram per liter levels. Four methods: pyridine-pyrazolone, pyridine-barbituric acid, electrode and Roberts-Jackson were used by 112 laboratories in Federal and State agencies, municipalities, universities, and the private/industrial sector. Sample concentrates were prepared in pairs with similar concentrations at each of three levels. Analysts diluted samples to volume with distilled and natural waters and analyzed them. Precision, accuracy, bias and the natural water interference were evaluated for each analytical method and comparisons were made between the four methods.

  3. Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mousavi

    2013-01-01

    Full Text Available Background: The chemical contamination of water is a major concern for the environmental and health authorities globally. Some anions present in the water are required for human health, but some of them are harmful. Free cyanide and nitrate are amongst the toxic agents in the aquatic environment. Cyanide is highly toxic for human beings. Industrial plants could be attributed to a major source of these toxic agents. Therefore, cyanide and nitrate concentrations in the drinking and irrigation water wells in the high industrial plants were evaluated. Materials and Methods: The samples (57 were taken from drinking and irrigation water wells as well as from a wastewater refinery in north of Mashhad in three stages - March 2009, June 2010, and July 2010. Determination of cyanide and nitrate were performed by a spectrophotometer using commercially available kits according to the manufacturer′s protocols. Results: Cyanide and nitrate concentrations in the drinking water samples of the three stages were 0.0050 ± 0.0007, 0.0070 ± 0.0018, 0.0008 ± 0.0014 mg/L and 6.50 ± 2.80, 7.20 ± 1.80, 7.50 ± 1.90 mg/L, respectively. Cyanide mean concentration during March, June, and July was significant (P = 0.001, whereas nitrate mean concentration was not (P = 0.5. Cyanide and nitrate concentrations in the irrigation water samples of the three stages were 0.0140 ± 0.0130, 0.0077 ± 0.0025, 0.0087 ± 0.0047 mg/L and 12.37 ± 8.12, 8.04 ± 3.99, 8.40 ± 2.60 mg/L, respectively. Cyanide (P = 0.754 and nitrate (P = 0.705 concentrations were not significant during three occasions. Cyanide and nitrate concentrations in the wastewaters of the three stages were 0.1020 ± 0.033, 0.1180 ± 0.033, 0.1200 ± 0.035 mg/L and 1633.80 ± 40.74, 279.00 ± 152.17, 298.40 ± 304.74 mg/L, respectively. Cyanide (P = 0.731 and nitrate (P = 0.187 concentration in wastewaters were not significant during different months. Conclusion: Although nitrate and cyanide concentrations in

  4. Cyanide removal from industrial wastewater by cross-flow nanofiltration: transport modeling and economic evaluation.

    Science.gov (United States)

    Pal, Parimal; Bhakta, Pamela; Kumar, Ramesh

    2014-08-01

    A modeling and simulation study, along with an economic analysis, was carried out for the separation of cyanide from industrial wastewater using a flat sheet cross-flow nanofiltration membrane module. With the addition of a pre-microfiltration step, nanofiltration was carried out using real coke wastewater under different operating conditions. Under the optimum operating pressure of 13 bars and a pH of 10.0, a rate of more than 95% separation of cyanide was achieved. That model predictions agreed very well with the experimental findings, as is evident in the Willmott d-index value (> 0.95) and relative error (economic analysis was also done, considering the capacity of a running coking plant. The findings are likely to be very useful in the scale-up and design of industrial plants for the treatment of cyanide-bearing wastewater.

  5. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  6. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jin Young; Hwang, In Hong; Kim, Hyun; Song, Eun Joo; Kim, Kyung Beom; Kim, Cheal [Seoul National Univ., Seoul (Korea, Republic of)

    2013-07-15

    A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward CN{sup -} ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of CN{sup -} to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 μM) is below the 1.9 μM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of CN. concentrations in aqueous samples.

  7. Effect of Sodium Cyanide on Wheat (Triticum durum cv. Altar and T. aestivum cv. Cumhuriyet)

    DEFF Research Database (Denmark)

    Gemici, Meliha; Karshenass, A.M.; Tan, Kit

    2008-01-01

    The effect of sodium cyanide on the morphology of stem, leaves and grain yields of Triticum durum cv. Altar and Triticum aestivum cv. Cumhuriyet grown under glass was studied. Seeds were planted in six different sets of pots containing ordinary garden soil. After formation of the first leaves......, the first set was used as the control and watered using ordinary bottled water sold commercially. The other five sets with T. durum cv. Altar and T. aestivum cv. Cumhuriyet seedlings were additionally watered with various concentrations of sodium cyanide, the test-quantity used being 10-50 mg/L. Growth...... of individual plants was monitored until grain production. It was found that the sodium cyanide concentrations in the feed solutions affected plant stature, with the plants becoming progressively dwarfed with increasing dosage. Anomalies in the morphological and anatomical structure of the plant were also noted...

  8. Ozonation and sol-gel method to obtain Cu/Cu O nanoparticles from cyanidation wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Soria A, M. J.; Puente S, D. M.; Carrillo P, F. R. [Universidad Autonoma de Coahuila, Facultad de Metalurgia, Carretera 57 Km 4.5, 25710 Monclova, Coahuila (Mexico); Garcia C, L. A. [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna No. 140, Col. Los Pinos, 25253 Saltillo, Coahuila (Mexico); Velazquez S, J., E-mail: frrcarrillo@yahoo.com.mx [University of Texas at San Antonio, Department of Physics and Astronomy, San Antonio TX 78249 (United States)

    2015-07-01

    The extraction process of gold and silver by cyanidation generates large amounts of effluent which also contain contaminants such as cyanide and significant metal values such as copper. This paper presents the results of the removal and recovery of copper from ozonation treatment of a residual aqueous cyanide. The residual solution was treated by ozonation-precipitation to obtain a precipitate of copper. From this, copper nano composites obtained by Pechini modified sol-gel method were obtained. The compounds obtained were characterized by X-ray diffraction, showing a dependence of the type of compounds formed over time of ozonation and heat treatment of the gel. The particle size was measured by scanning electron microscopy and calculated by the Scherrer equation, being between 50 and 120 nm. (Author)

  9. Construction of a Nano Biosensor for Cyanide Anion Detection and Its Application in Environmental and Biological Systems.

    Science.gov (United States)

    Dong, Zhen-Zhen; Yang, Chao; Vellaisamy, Kasipandi; Li, Guodong; Leung, Chung-Hang; Ma, Dik-Lung

    2017-10-27

    We have developed a Ag@Au core-shell nanoparticle (NP)/iridium(III) complex-based sensing platform for the sensitive luminescence "turn-on" sensing of cyanide ions, an acutely toxic pollutant. The assay is based on the quenching effect of Ag@Au NPs on the emission of complex 1, but luminescence is restored after the addition of cyanide anions due to their ability to dissolve the Au shell. Our sensing platform exhibited a high sensitivity toward cyanide anions with a detection limit of 0.036 μM, and also showed high selectivity for cyanide over 10-fold excess amounts of other anions. The sensing platform was also successfully applied to monitor cyanide anions in drinking water and in living cells.

  10. On the fusibility of potassium heptafluorotantalate

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Bessonova, V.A.

    1983-01-01

    Phase transformations of potassium heptafluorotantalate near the liquidus temperature have been studied. Thermograms and polytherm of the electric condUctivity of potassium heptafluorotantalate, thermogram of the mechanical mixture 0.5 K 2 TaF 7 +0.5 KF and thermogram of K 3 TaF 8 crystallization are plotted. The phase diagram of the K 2 TaF 7 -KF system is presented. In the temperature range 746 to 778 deg, i.e. above K 2 TaF 7 melting point, the melt is shown to remain heterogeneous. A portion of the phase diagram rich in potassium heptafluorotantalate is qualified as an ordinary eutectics

  11. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  12. Ammonium boranes for the selective complexation of cyanide or fluoride ions in water.

    Science.gov (United States)

    Hudnall, Todd W; Gabbaï, François P

    2007-10-03

    With the recognition of aqueous fluoride and cyanide ions as an objective, we have investigated the anion binding properties of two isomeric ammonium boranes, namely [p-(Mes2B)C6H4(NMe3)]+ ([1]+) and [o-(Mes2B)C6H4(NMe3)]+ ([2]+). These cationic boranes, which could be obtained by reaction of the known 4- and 2-dimesitylboryl-N,N-dimethylaniline with MeOTf, have been investigated both experimentally and computationally. They both react with fluoride and cyanide ions in organic solvents to afford the corresponding fluoroborate/ or cyanoborate/ammonium zwitterions 1F, 1CN, 2F, and 2CN. In aqueous solution, however, these cationic boranes behave as remarkably selective receptors. Indeed, [1]+ only complexes cyanide ions while [2]+ only complexes fluoride ions. In H2O/DMSO 60:40 vol (HEPES 6 mM, pH 7), the cyanide binding constant of [1]+ and the fluoride binding constant of [2]+ are respectively equal to 3.9 (+/-0.1) x 108 and 910 (+/-50) M-1. Structural and computational studies indicate that both steric and electronic effects contribute to the unusual selectivity displayed by these cationic boranes. Owing to favorable Coulombic effects, the para-derivative [1]+ has a very high affinity for cyanide; yet these effects are not sufficiently intense to allow complexation of the more efficiently hydrated and less basic fluoride anion. In the case of the ortho-derivative [2]+, the proximity of the ammonium moiety leads to an increase in the Lewis acidity of the boron center thus making fluoride binding possible. However, steric effects prevent cyanide coordination to the boron center of [2]+. Finally, cation [1]+ and [2]+ bind their dedicated anions reversibly and show a negligible response in the presence of other common anions including Cl-, Br-, I-, NO3-, OAc-, H2PO4-, and HSO4-.

  13. Effects of respiratory acidosis and alkalosis on the distribution of cyanide into the rat brain.

    Science.gov (United States)

    Djerad, A; Monier, C; Houzé, P; Borron, S W; Lefauconnier, J M; Baud, F J

    2001-06-01

    The aim of this study was to determine whether respiratory acidosis favors the cerebral distribution of cyanide, and conversely, if respiratory alkalosis limits its distribution. The pharmacokinetics of a nontoxic dose of cyanide were first studied in a group of 7 rats in order to determine the distribution phase. The pharmacokinetics were found to best fit a 3-compartment model with very rapid distribution (whole blood T(1/2)alpha = 21.6 +/- 3.3 s). Then the effects of the modulation of arterial pH on the distribution of a nontoxic dose of intravenously administered cyanide into the brains of rats were studied by means of the determination of the permeability-area product (PA). The modulation of arterial blood pH was performed by variation of arterial carbon dioxide tension (PaCO2) in 3 groups of 8 anesthetized mechanically ventilated rats. The mean arterial pH measured 20 min after the start of mechanical ventilation in the acidotic, physiologic, and alkalotic groups were 7.07 +/- 0.03, 7.41 +/- 0.01, and 7.58 +/- 0.01, respectively. The mean PAs in the acidotic, physiologic, and alkalotic groups, determined 30 s after the intravenous administration of cyanide, were 0.015 +/- 0.002, 0.011 +/- 0.001, and 0.008 +/- 0.001 s(-1), respectively (one-way ANOVA; p < 0.0087). At alkalotic pH the mean permeability-area product was 43% of that measured at acidotic pH. This effect of pH on the rapidity of cyanide distribution does not appear to be limited to specific areas of the brain. We conclude that modulation of arterial pH by altering PaCO2 may induce significant effects on the brain uptake of cyanide.

  14. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  15. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  16. Cyanide and Aflatoxin Loads of Processed Cassava (Manihot esculenta) Tubers (Garri) in Njaba, Imo State, Nigeria

    Science.gov (United States)

    Chikezie, Paul Chidoka; Ojiako, Okey A.

    2013-01-01

    Objectives: The present study sought to investigate the role of palm oil, in conjunction with the duration of fermentation, on cyanide and aflatoxin (AFT) loads of processed cassava tubers (Garri). Materials and Methods: Matured cassava (Manihot esculenta Crantz) tubers were harvested from three different locations (Akunna, Mkporo-Oji and Durungwu) in Njaba Local Government Area, Imo State, Nigeria. The cassava tubers were processed into Garri according to standard schemes with required modifications and measured for cyanide content using titrimetric methods. Samples of Garri for determination of AFT levels were stored for 30 days before the commencement of spectrophotometric analysis. Results: Cyanide content of peeled cassava tubers was within the range of 4.07 ± 0.16-5.20 ± 0.19 mg hydrocyanic acid (HCN) equivalent/100 g wet weight, whereas the various processed cassava tubers was within the range of 1.44 ± 0.34-3.95 ± 0.23 mg HCN equivalents/100 g. For the 48 h fermentation scheme, Garri treated with palm oil exhibited marginal reduction in cyanide contents by 0.96%, 3.52% and 3.69%, whereas 4 h fermentation scheme is in concurrence with palm oil treatment caused 4.42%, 7.47% and 5.15% elimination of cyanide contents compared with corresponding untreated Garri samples (P > 0.05). Levels of AFT of the various Garri samples ranged between 0.26 ± 0.07 and 0.55 ± 0.04 ppb/100 g. There was no significant difference (P > 0.05) in AFT levels among the various samples in relation to their corresponding sources. Conclusion: The present study showed that the 48 h fermentation scheme for Garri production caused significant (P < 0.05) reduction, but did not obliterate the cyanide content of cassava tubers. Conversely, the 48 h fermentation scheme promoted the elevation of AFT levels, but was relatively reduced in Garri samples treated with palm oil. PMID:24403736

  17. Reaction of tantalum-alkyne complexes with isocyanates or acyl cyanides

    International Nuclear Information System (INIS)

    Kataoka, Yasutaka; Oguchi, Yoshiyuki; Yoshizumi, Kazuyuki; Miwatashi, Seiji; Takai, Kazuhiko; Utimoto, Kiitiro

    1992-01-01

    Treatment of alkynes with low-valent tantalum derived from TiCl 5 and zinc produces tantalum-alkyne complexes (not isolated), which react in situ with phenyl isocyanate (or butyl isocyanate) to give (E)-α, β-unsaturated amides stereoselectively. The tantalum-alkyne complexes also react with acyl cyanides in the presence of BF 3 ·OEt 2 to give α-cyanohydrins. In both reactions, filtration of the reaction mixture containing the tantalum-alkyne complexes before addition of isocyanates (or acyl cyanides) is indispensable to obtain good yields. (author)

  18. γ-radiolysis of aqueous and aqueous-ethanol solutions of cobalt(3) cyanide complexes

    International Nuclear Information System (INIS)

    Kutsaev, V.G.; Potapov, I.A.; Rozenkevich, M.B.; Sakharovskij, Yu.A.; Bulgakova, G.P.; Zagorets, P.A.

    1984-01-01

    The method of stationary γ-radiolysis has been used to investigate Na 3 [Co 3 (CN) 6 ] and K 2 [Co 3 (CN) 5 H 2 O] reduction in aqueous solutions in the presence of NaCN, KCN, KCl and C 2 H 5 OH additions. [Co 2 (CN) 5 ] 3- ion is shown to be the product of reduction. Radiation-chemical yield increases in the presence of alkali metal cyanides and large quantities (10-20 vol.%) of C 2 H 5 OH. Energy consumption for radiation-chemical reduction of Co 3 cyanide complexes is 50 times lower than for photochemical one

  19. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  20. Balance model of masses for mercury and cyanide in the Surata River

    International Nuclear Information System (INIS)

    Amaya S, Cesar Jovane

    2004-01-01

    The pattern of masses balance consists of a comparison through the time of pollutants quantity (mercury and cyanide) poured in the mining region of Vetas and California, with the values of these same pollutants detected in the Bosconia plant of the metropolitan aqueduct of Bucaramanga. The mercury and the cyanide are used in the mining region for the gold benefit and they already arrive as residuals to the air sources and to the water that arrives to Surata River, one of the sources of supply of drinkable water of the aqueduct. In the gold benefit in the region, two different groups work:; the mining companies and the barrileros. The barrileros is particular people that work mainly the amalgamation of the mineral in barrels, and they discard their residuals to the environment, the same as the mining companies. The mining companies of California pour their residuals in the gulch La Baja, above of the monitoring point LB-01 (Round Hill) of the CDMB; as long as the mining companies of Vetas, pour them above of the monitoring point RV-05 (Borrero) also of the CDMB, to the River Vetas. Few data exist on the used of mercury and cyanide quantities through the time for the mining companies and the barrileros. In the monitored points of the CDMB, RV-02 and LB-01 (Round Hill), it is had temporary registrations of so much of concentrations of mercury and total cyanide in the water, as well as of flows. In the plant Bosconia registers concentrations of mercury and cyanide in the water of the Surata River every two hours daily, as long as the data of flows are measured in the point MA-01 (Majadas) By means of the flow multiplication and concentration they can register the masses of mercury and cyanide that happen at one time determined by the sampling points. A very simple balance of masses is obtained measuring in the different sampling points the masses of mercury and cyanide poured in the mining region. In the ideal case all the data required should exist in with a high

  1. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  2. THE CYANIDE LEACH TECHNOLOGY IN GOLD AND SILVER MINING HARMFUL EFFECTS AND SUGGESTIONS FOR REMEDYING

    OpenAIRE

    Judit PETRES

    2013-01-01

    The region named Roşia Montană became famous due to its rich mineral resources. The most precious treasure which has been found is the gold. A state-run gold mine functioned for many years and the continuous pollution due to the gold extraction became very dangerous. All these cyanide-containing waste are hazardous to wildlife, natural resources and human health if not properly managed. The consequences of cyanide hazards may be devastating, sometimes killing everything for several miles down...

  3. THE CYANIDE LEACH TECHNOLOGY IN GOLD AND SILVER MINING HARMFUL EFFECTS AND SUGGESTIONS FOR REMEDYING

    Directory of Open Access Journals (Sweden)

    Judit PETRES

    2013-11-01

    Full Text Available The region named Roşia Montană became famous due to its rich mineral resources. The most precious treasure which has been found is the gold. A state-run gold mine functioned for many years and the continuous pollution due to the gold extraction became very dangerous. All these cyanide-containing waste are hazardous to wildlife, natural resources and human health if not properly managed. The consequences of cyanide hazards may be devastating, sometimes killing everything for several miles downstream. It has not yet been found a way of both taking advantages of the economic benefits of gold and maintaining a liveable habitat.

  4. Cyanide Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery

    Science.gov (United States)

    2015-12-01

    animal model for studying cyanide poisoning. Mil Med. 2000;165: 967-972. 16. Broderick KE, Potluri P, Zhuang S, et al. Cyanide detoxification by the...cobalamin precursor cobinamide. Exp Biol Med (Maywood). 2006;231: 641-649. 17. Broderick KE, Balasubramanian M, Chan A, et al. The cobalamin precursor...vitamin B12. Methods Enzymol. 1971, 18c, 82−86. (45) Broderick , K. E.; Singh, V.; Zhuang, S.; Kambo, A.; Chen, J. C.; Sharma, V. S.; Pilz, R. B.; Boss

  5. Effectiveness and Mechanisms of Antagonism of Toxic Effects of Cyanide by Alpha-Keto Acids.

    Science.gov (United States)

    1986-12-31

    until the miss-w near death. Lethal blood levels of cyanide in alpha-KG treated animl. as levels of 5-7 mcg cyani0e, which so 5-7 times the expected...lethal levels . rwm these studies, alpha-KC is effettive in antagonising administered dos of CH of five time the lethal dose before the toxic effects are...parameters in the dog .................. 26 Table 6 The effects of cyanide on 2,3 diphosphoglyceric acid .......... 28 Table 7 Stability of solution of ci

  6. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  7. Cyanide Scavenging by a Cobalt Schiff-Base Macrocycle: A Cost-Effective Alternative to Corrinoids.

    Science.gov (United States)

    Lopez-Manzano, Elisenda; Cronican, Andrea A; Frawley, Kristin L; Peterson, Jim; Pearce, Linda L

    2016-06-20

    The complex of cobalt(II) with the ligand 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]heptadeca-1(17)2,11,13,15-pentaene (CoN4[11.3.1]) has been shown to bind two molecules of cyanide in a cooperative fashion with an association constant of 2.7 (±0.2) × 10(5). In vivo, irrespective of whether it is initially administered as the Co(II) or Co(III) cation, EPR spectroscopic measurements on blood samples show that at physiological levels of reductant (principally ascorbate) CoN4[11.3.1] becomes quantitatively reduced to the Co(II) form. However, following addition of sodium cyanide, a dicyano Co(III) species is formed, both in blood and in buffered aqueous solution at neutral pH. In keeping with other cobalt-containing cyanide-scavenging macrocycles like cobinamide and cobalt(III) meso-tetra(4-N-methylpyridyl)porphine, we found that CoN4[11.3.1] exhibits rapid oxygen turnover in the presence of the physiological reductant ascorbate. This behavior could potentially render CoN4[11.3.1] cytotoxic and/or interfere with evaluations of the antidotal capability of the complex toward cyanide through respirometric measurements, particularly since cyanide rapidly inhibits this process, adding further complexity. A sublethal mouse model was used to assess the effectiveness of CoN4[11.3.1] as a potential cyanide antidote. The administration of CoN4[11.3.1] prophylactically to sodium cyanide-intoxicated mice resulted in the time required for the surviving animals to recover from "knockdown" (unconsciousness) being significantly decreased (3 ± 2 min) compared to that of the controls (22 ± 5 min). All observations are consistent with the demonstrated antidotal activity of CoN4[11.3.1] operating through a cyanide-scavenging mechanism, which is associated with a Co(II) → Co(III) oxidation of the cation. To test for postintoxication neuromuscular sequelae, the ability of mice to remain in position on a rotating cylinder (RotaRod test) was assessed during and after recovery

  8. Leaching of cyanogenic glucosides and cyanide from white clover green manure

    DEFF Research Database (Denmark)

    Bjarnholt, Nanna; Lægdsmand, Mette; Hansen, Hans Chr. Bruun

    2008-01-01

    Use of crops for green manure as a substitute for chemical fertilizers and pesticides is an important approach towards more sustainable agricultural practices. Green manure from white clover is rich in nitrogen but white clover also produces the cyanogenic glucosides (CGs) linamarin...... and lotaustralin; CGs release toxic hydrogen cyanide (HCN) upon hydrolysis which may be utilized for pest control. We demonstrate that applying CGs in the form of a liquid extract of white clover to large columns of intact agricultural soils can result in leaching of toxic cyanide species to a depth of at least 1...

  9. The Use of Sonochemical Technology for Cyanide Removal from Aqueous Solutions in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Reza Shokoohi

    2011-10-01

    Full Text Available Cyanide is a highly toxic species that found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Discharge of it into the enviroment causes very health impact. Purpose of this study was, determination of sonochemical technology for cyanide removal from aqueous solutions in the presence of hydrogen peroxide. In this study, a productive set of 500w power ultresoun waves with two frequencies 35 kHz and 130 kHz were used. Experiments were performed using different initial ratio CN-/H2O2 1/1, 1/3 and 1/5 and at initial cyanide concentrations varying from 2.5 to 75 mg/L. The effects of parameters such as pH, time and initial cyanide concentration on the sonochemical degradation have been studied. The results of the study showed that the maximom removal efficiency of cyanide was achieved 85% by sonochemical technology at frequency of 130 kHz, during of 90 min, at pH of 11, at initial cyanide concentration of  2.5 mg/l and with initial ratio of CN-/H2O2 1/5. it was also found the rates of cyanide degradation under different conditions were quite low, and also the rate of cyanide degradation was high at first but later substantially reduced. The efficiency of cyanide removal had direct relationship with pH, frequency, hydrogen peroxide concentration and time ,and it had reverse relationship with cyanide concentration.

  10. Effect of potassium on micromorphological and chemical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... study the effect of potassium on yield and internal leaf tissues composition of cotton ... Nitrogen (N) and phosphorus (P) were applied at 150 mg N/kg soil and 75 mg ..... Copper enzymes in isolated chloroplasts: Polyphenol.

  11. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  12. Thanatochemistry: Study of vitreous humor potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-02-18

    Feb 18, 2014 ... particularly vitreous potassium has received most attention. It is known that ... respect to different age and sex at different death intervals. The details regarding the ... Analyser by the Ion selective method. The reagents used ...

  13. Photoconductivity and dielectric studies of potassium pentaborate

    Indian Academy of Sciences (India)

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth ... equipped with the Gunn Oscillator guided with rectangular wave-guide. ... its dielectric behaviour with the change of frequency has also been investigated.

  14. TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

    2003-03-31

    The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption

  15. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    OpenAIRE

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ...

  16. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  17. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  18. Transverse thermal magnetoresistance of potassium

    International Nuclear Information System (INIS)

    Newrock, R.S.; Maxfield, B.W.

    1976-01-01

    Results are presented of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 0 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. A number of relationships are observed between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T,H) is given reasonably well by W(T,H)T = W(T,0)T + AH + BH 2 , where both A and B are temperature-dependent coefficients. Results show that A = A 0 + A 1 T 3 , while B(T) cannot be expressed as any simple power law. A 0 is dependent on the RRR, while A 1 is independent of the RRR. Two relationships are found between corresponding coefficients in the electrical and thermal magnetoresistance: (i) the Wiedmann--Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron--phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. It is concluded that at least a portion of the anomalous electrical and thermal magnetoresistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects

  19. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    Science.gov (United States)

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  20. A highly selective and turn-on fluorescence sensor for detection of cyanide.

    Science.gov (United States)

    Jhong, Yi; Hsieh, Wei Hsun; Chir, Jiun-Ly; Wu, An-Tai

    2014-11-01

    2-Hydroxy-1-naphthaldehyde (receptor 1) serves as a selective chemosensor for cyanide anion (CN(-)). In the presence of CN(-), an enhanced fluorescent intensity and red shift were observed. The observed complexation between receptor 1 and CN(-) may cause from a formation of phenoxide anion by nucleophilic addition of the CN(-) to carbonyl group.