Sample records for solid phase welding

  1. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    Narayana, B [Ohio State University, The, Columbus; Mills, Michael J. [Ohio State University, The, Columbus; Specht, Eliot D [ORNL; Santella, Michael L [ORNL; Babu, Sudarsanam Suresh [Ohio State University, The, Columbus


    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  2. Prediction of the Residual Welding Stress in 2.25Cr-1Mo Steel by Taking into Account the Effect of the Solid-State Phase Transformations

    Dean DENG; Yangang TONG; Ninshu MA; Hidekazu MURAKAWA


    A computational approach based on the thermal elastic plastic finite element method was developed for predicting welding residual stress in low carbon alloyed steel welds by taking into account the effect of the solid-state phase transformations.The kinetics of phase transformations was described by Johnson Mehl Avrami Kolmogrov (JMAK) equation for bainitic transition and by Koistinen-Marburger (K-M) relationship for martensitic transition.Moreover,an additive rule depending on volumetric phase fraction was adopted to represent the material property changes during heating and cooling.Consequently,the residual welding stresses in a 2.25Cr1Mo steel TIG welded plate were computed.Early calculation results suggest that the bainitic and martensitic transformations took place in the weld the heat-affected zone drastically reduce the residual longitudinal tensile stress in the region.

  3. Welding of solid wood

    Ivica Župčić; Goran Mihulja; Andrija Bogner; Ivica Grbac; Ivica @up~i}, Goran Mihulja, Andrija Bogner, Ivica Grbac,; Božidar Hrovat


    This paper presents the up-to-date knowledge and results of the application of wood welding techniques at the Faculty of Forestry University of Zagreb. Wood welding technologies have been developed as a new way of bonding timber by using high temperature generatedby friction and pressure. Timber is assembled without any adhesives. During the process the surface layer of timber (lignin), which is in direct contact with its counterpart, melts due to high pressure and temperature, which is usual...

  4. Superplastic Solid-Phase Welding of 40 Cr-T10A Steel


    The microstructure of 40Cr and T10A steel sample and its surface to be welded is ultra-fined through salt-bath cyclic quenching and high frequency hardening, then the surface is cleaned. Under non-vacuum and no shielded gas, the welding parameter of isothermal superplastic solidphase welding and the effect of surface microstructure prior to pressure welding on the quality of joint are studied. At the temperature of 730~750°C and at initial strain rate of (2~4) × 10-4 s-1,the strength of the joint is up to or close to that of 40Cr base metal in 3~5 min pressure welding.

  5. Contamination and solid state welds.

    Mills, Bernice E.


    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  6. The Kinetics of Phase Transformation in Welds

    Elmer, J W; Wong, J; Palmer, T


    that existed in the HAZ during welding. The TRXRD technique uses an x-ray beam positioned at one location, where XRD patterns are collected as a stationary ''spot'' weld rapidly heats and cools the base metal. Data can be collected from either the HAZ to observe solid-state phase transformations or from the FZ to observe solidification and subsequent solid-state phase transformations. Higher heating and cooling rates are produced in the spot welds than in the moving welds, requiring time resolution in the milli-second regime for TRXRD to record the rapid microstructural changes that occur. Numerical weld modeling is being performed to: (1) extract the important phase transformation kinetic information from the experimental data, (2) investigate mechanisms of phase transformations under non-isothermal welding conditions, and (3) develop models for predicting weld microstructural evolution. The core of our numerical weld modeling program is a 3-dimensional coupled heat and fluid flow code developed by the Penn State University. Additional modeling is being performed at Oak Ridge National Laboratory where Thermocalc is being used to understand phase equilibria in complex alloy systems, and where a diffusion-based model considering paraequilibrium is being developed to predict phase transformations in steels.

  7. Phase transformations and microstructure development in low alloy steel welds

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others


    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  8. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...... was accomplished by micromilling and laser micromachining of mould inserts, allowing for design-to-production of chips within a day. The rapid overall fabrication cycle of a few minutes per chip allowed for conducting research in a single-use disposable fashion. Chip development has centred on manufacturing...

  9. Solid State Welding Development at Marshall Space Flight Center

    Ding, Robert J.; Walker, Bryant


    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  10. The Plunge Phase of Friction Stir Welding

    McClure, John C.


    The many advantages of Friction Stir Welding have led to a relatively rapid acceptance in the often conservative welding community. Because the process is so different from traditional fusion welding, with which most investigators are most familiar, there remain many aspects of FSW for which there is no clear consensus. For example, the well known onion rings seen in transverse sections have been variously interpreted as grain size variations, variation in density of second phase particles and parts of the carousel of material rotating with the pin that have been shed from the carousel. Using Orientation Imaging Microscopy, Schneider has recently noted that the onion rings have a different orientation (and hence etch differently) than the surrounding material, and this orientation is consistent with slip plane orientations at the edge of the carousel. Likewise, the forces and torque exerted by the FSW tool on the work piece largely remain unaccounted for. Although these forces are routinely measured by investigators with commercial instrumented welders, they are rarely reported or even qualitatively analyzed. This paper will introduce a model based on a carousel or disk of material that rotates with the tool to estimate the torque and plunge force required to plunge a tool into the work piece. A stationary tool is modeled rather than the moving tool because effects such as thermal transients and metallurgical changes in the sample (primarily aging in aluminum) can be more easily accounted for. It is believed, however, that with some modifications the model should be applicable to a moving tool also.

  11. Solid phase transformations II

    Čermák, J


    This topical volume includes ten invited papers that cover selected areas of the field of solid phase transformations. The first two contributions represent a burgeoning branch; that of the computer simulation of physical phenomena. The following three articles deal with the thermodynamics of phase transformations as a basic theory for describing the phenomenology of phase changes in matter. The next paper describes the interconnections between structural stability and the electronic structure of phases. Two further articles are devoted to displacive transformations; a field where there are ma

  12. Solid-phase microextraction

    Nilsson, Torben

    The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...

  13. Solid phases of tenoxicam.

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M


    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  14. Solid phase transformations

    Čermák, J


    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  15. Ultrasonic C-scanning imaging inspection of superplastic solid-state welded joint quality

    张柯柯; 陈怀东; 杨蕴林; 薛锦


    Based on a large amount of dissection at welded interface and quantitative microscopic examination of welded rate, the suitable limit grey scale value was determined, and the welded rate of superplastic solid-state welding interface of heterogeneous steel was systematically studied by means of self-made ultrasonic C-scanning imaging inspection system. The experimental results show: the welded state of superplastic solid-state welding interface of heterogeneous steel can be conducted to be more accurately, reliably and quickly inspected by means of this system, and the ultrasonic testing results are good consistent with actual examination results of the interface defective distribution. Within the extent of the suitble welded rate,the welded rate in 40Cr/T10A superplastic welding process tested by this system is linear with its tensile strength of joint.

  16. Influence of Filler Metals in Welding Wires on the Phase and Chemical Composition of Weld Metal

    Kozyrev, N. A.; Osetkovskiy, I. V.; Kozyreva, O. A.; Zernin, E. A.; Kartsev, D. S.


    The influence of filler metals used in welding wires on the phase and chemical composition of the metal, which is surfaced to mining equipment exposed to abrasive wear, has been investigated. Under a laboratory environment, samples of Mo-V-B and Cr-Mn-Mo-V wires were made. The performed experiments have revealed that fillers of the Cr-Mn-Mo-V system used in powder wire show better wear resistance of the weld metal than that of the Mn-Mo-V-B system; the absence of boron, which promotes grain refinement in the Mn-Mo-V-B system, significantly reduces wear resistance; the Mn-Mo-V-B weld metal has a finer structure than the Cr-Mn-Mo-V weld metal.

  17. Advanced Welding Concepts

    Ding, Robert J.


    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  18. Ultrasonic Nondestructive Testing of Superplastic Solid-State Welding Joint for Different Steels


    Based on quantitative microscopic examinations of welds and welding rate for different steels (40Cr and T10A) joint, which possess the ultra-fine microstructure after high frequency hardening (HFH) and salt-bath cyclic quenching (SCQ), the suitable defect grey scale threshold value was determined, and the welding rate of superplastic solid-state welding of different steels (40Cr and T10A steel) was systematically inspected and analyzed by means of self-made ultrasonic imaging inspection system. The experimental results showed that the superplastic solid-state weld of different steels can be inspected more accurately, reliably and quickly by this system, and the results were in good accordance with that of metallographic observation. The welding rate of superplastic welding is in linear relation with tensile strength of joint.

  19. Ultrasonic Phased Array Simulations of Welded Components at NASA

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.


    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array

  20. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, J.D.; Stein, B.A.


    This book presents recent advances in joining technologies for the 1990s-welding, brazing, soldering, mechanical fastening, explosive welding, solid-state bonding, and adhesive bonding. A major consideration in the fabrication of any commercial, military, or space product is attachment systems which are safe and reliable. The subject matter covered includes technology developed in current research programs relevant to welding, bonding, and fastening of structural materials, for fabricating structures and mechanical systems use in the aerospace, automotive, and related industries. Specific topics include equipment, hardware and materials used when welding, brazing, and soldering; mechanical fastening; explosive welding; use of unique selected joining techniques; adhesive bonding; and nondestructive evaluation. ''The Factory of the Future'' is presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  1. Nanostructured Polyphase Catalysts Based on the Solid Component of Welding Aerosol for Ozone Decomposition

    Rakitskaya, Tatyana; Truba, Alla; Ennan, Alim; Volkova, Vitaliya


    Samples of the solid component of welding aerosols (SCWAs) were obtained as a result of steel welding by ANO-4, TsL-11, and UONI13/55 electrodes of Ukrainian manufacture. The phase compositions of the samples, both freshly prepared (FP) and modified (M) by water treatment at 60 °C, were studied by X-ray phase analysis and IR spectroscopy. All samples contain magnetite demonstrating its reflex at 2 θ ~ 35° characteristic of cubic spinel as well as manganochromite and iron oxides. FP SCWA-TsL and FP SCWA-UONI contain such phases as CaF2, water-soluble fluorides, chromates, and carbonates of alkali metals. After modification of the SCWA samples, water-soluble phases in their composition are undetectable. The size of magnetite nanoparticles varies from 15 to 68 nm depending on the chemical composition of electrodes under study. IR spectral investigations confirm the polyphase composition of the SCWAs. As to IR spectra, the biggest differences are apparent in the regions of deformation vibrations of M-O-H bonds and stretching vibrations of M-O bonds (M-Fe, Cr). The catalytic activity of the SCWAs in the reaction of ozone decomposition decreases in the order SCWA-ANO > SCWA-UONI > SCWA-TsL corresponding to the decrease in the content of catalytically active phases in their compositions.

  2. Solid-Phase Random Glycosylation

    Agoston, K.; Kröger, Lars; Dekany, Gyula


    Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...

  3. Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.


    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.

  4. Matrix phased array (MPA) imaging technology for resistance spot welds

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)


    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  5. Direct Observation of Phase Transformations in Austenitic Stainless Steel Welds Using In-situ Spatially Resolved and Time-resolved X-ray Diffraction

    Elmer, J.; Wong, J.; Ressler, T.


    Spatially resolved x-ray diffraction (SRXRD) and time resolved x-ray diffraction (TRXRD) were used to investigate real time solid state phase transformations and solidification in AISI type 304 stainless steel gas tungsten arc (GTA) welds. These experiments were conducted at Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux beam line. Spatially resolved observations of {gamma} {leftrightarrow} {delta} solid state phase transformations were performed in the heat affected zone (HAZ) of moving welds and time-resolved observations of the solidification sequence were performed in the fusion zone (FZ) of stationary welds after the arc had been terminated. Results of the moving weld experiments showed that the kinetics of the {gamma}{yields}{delta} phase transformation on heating in the HAZ were sufficiently rapid to transform a narrow region surrounding the liquid weld pool to the {delta} ferrite phase. Results of the stationary weld experiments showed, for the first time, that solidification can occur directly to the {delta} ferrite phase, which persisted as a single phase for 0.5s. Upon solidification to {delta}, the {delta} {yields} {gamma} phase transformation followed and completed in 0.2s as the weld cooled further to room temperature.

  6. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Moore, T. J.


    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  7. Joining technologies for the 1990s: welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, J.D.; Stein, B.A.


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding. For individual titles see N86-11228 through N86-11255.

  8. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Buckley, John D. (Editor); Stein, Bland A. (Editor)


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  9. FEM based prediction of phase transformations during Friction Stir Welding of Ti6Al4V titanium alloy

    Buffa, Gianluca, E-mail:; Ducato, Antonino, E-mail:; Fratini, Livan, E-mail:


    Friction Stir Welding (FSW) is a solid state welding process patented in 1991 by TWI; initially adopted to weld aluminum alloys, it is now being successfully used also for high resistant materials. Welding of titanium alloys by traditional fusion welding techniques presents several difficulties due to high material reactivity with oxygen, hydrogen, and nitrogen with consequent embrittlement of the joint. In this way FSW represents a cost effective and high quality solution. The final mechanical properties of the joints are strictly connected to the microstructural evolutions, in terms of phase change, occurring during the process. In the paper a 3D FEM model of the FSW welding process, based on a thermo-mechanical fully coupled analysis, is presented. The model, tuned both for the thermo-mechanical analysis and the phase transformation through experimental data, is able to predict the phase volume fraction in the typical zones of the joints at the varying of the main process parameters. The obtained results permit to assess that the tuned FEM model of the FSW process can be utilized as an effective design tool.

  10. Solid-phase peptide synthesis

    Jensen, Knud Jørgen


    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  11. Inspection of pipeline girth welds with ultrasonic phased array technique


    A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased array derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.



    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin isreported. 2-Polystyrylsuifonamidoethanol resin 1 was reacted with acryloyl chloride to afford2-polystyrylsulfonylamidoethyl acrylate resin 2, which was further reacted with brominatedaldoximes by [3+2] cycioaddition to give isoxazoline resin 4. Resin 4 was treated with aqueous 6mol/L HCI solution to obtain isoxazolines in good yield and purity.

  13. Multiple solid-phase microextraction

    Koster, EHM; de Jong, GJ


    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  14. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Vivek, Anupam, E-mail: [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)


    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  15. Solid cartridge for a pulse weld forming electrode and method of joining tubular members

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas; Dawson, Scott Alwyn; deVries, James


    A cartridge assembly is disclosed for a pulse welding a first tube supported on a mandrel to a second tube. An outer tool is assembled over the second tube and a stored charge is discharged in the cartridge assembly. The cartridge comprises an annular conductor and a solid casing enveloping the conductor. The stored charge is electrically connected to the conductor and discharged through the conductor to compress the second tube and pulse weld the second tube to the first tube.

  16. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav


    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.


    SUNWeimin; LUOJuntao; 等


    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin is reported.2-Polystyrylsulfonamidoethanol resin 1 was reacted with acryloyl chloride to afford 2-polystyrylsulfonylamidoethyl acrylate resin 2,which was further reacted with brominated aldoximes by [3+2] cycloaddition to give isoxazoline resin 4.Resin 4 was treated with aqueous 6 mol/L HCl solution to obtain isoxazolines in good yield and purity.

  18. An application of ultrasonic phased array imaging in electron beam welding inspection

    周琦; 刘方军; 李志军; 李旭东; 齐铂金


    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  19. Effect of Some Overlay Welding Regime With Longitudinal Magnetic Field on Hardness, Phase Composition And Welded Layer Wear By Arc Method With Flux Metal Wire

    Nosov, D. G.; Peremitko, V. V.; Barashkin, M. H.


    The paper defines the range of overlay welding current, frequencies and induction of a longitudinal magnetic field that enhance the wear resistance of welded layer additing the flux. The conditions of their mutual influence on the process of structure formation are stated as well as the mathematical models linking the overlay welding current, frequency and induction of a longitudinal magnetic field with hardness, wear resistance and phase composition of the welded layer, the use of which will allow to determine the welding modes to provide the necessary properties of the weld metal.

  20. Field application of phased array ultrasonic testing for structural weld overlay on dissimilar welds of pressurizer nozzles

    Kim, Jin Hoi; Kim, Yong Sik [Korea Hydro and Nuclear Power Company Ltd., Central Research Institute, Daejeon (Korea, Republic of)


    Weld overlay was first used in power plants in the US in the early 1980s as an interim method of repairing the welds of flawed piping joints. Weld overlaid piping joints in nuclear power plants must be examined periodically using ultrasonic examination technology. Portable phased array ultrasonic technology has recently become available. Currently, the application of preemptive weld overlays as a mitigation technique and/as a method to improve the examination surface condition for more complex configurations is becoming more common. These complex geometries may require several focused conventional transducers for adequate inspection of the overlay, the original weld, and the base material. Alternatively, Phased array ultrasonic probes can be used to generate several inspection angles simultaneously at various focal depths to provide better and faster coverage than that possible by conventional methods. Thus, this technology can increase the speed of examinations, save costs, and reduce radiation exposure. In this paper, we explain the general sequence of the inspection of weld overlay and the results of signal analysis for some PAUT (phased array ultrasonic testing) signals detected in on-site inspections.

  1. Solid phase syntheses of oligoureas

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)


    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  2. Liquid-Phase-Impacting Diffusion Welding Mechanism and Microstructure of Welded Joint of Al Matrix Composite SiCp/101A

    Jitai NIU; Wei GUO; Qingchang MENG; Xinmei ZHANG; Xingqiu LIU; Guangtao ZHOU


    The liquid-phase-impacting (LPI) diffusion welding mechanism and microstructure of welded joint of aluminum matrixcomposite SiCp/101A have been studied. It shows that by LPl diffusion welding, the interface state between SiCparticle and matrix is prominen

  3. Solidification microstructures and phase transformations in Al-Ti-Si-Mn deoxidized steel weld metals

    Kluken, A. O.; Grong, Ø.; Rørvik, G.


    The present investigation is concerned with basic studies of solidification mechanisms in Al-Ti-Si-Mn deoxidized steel weld metals. Assessment of the weld metal solidification micro-structures was done on the basis of optical microscopy in combination with secondary ion mass spectrometry (SIMS), while both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for characterization of indigenous oxide inclusions. It is shown that nonmetallic inclusions play a critical role in the development of the weld metal columnar grain structure by acting as inert substrates for nucleation of delta ferrite ahead of the advancing interface. The nucleation potency of the oxides increases in the order SiO2-MnO, Al2O3-Ti2O3-SiO2-MnO, A12O3, reflecting a corresponding increase in the inclusion/liquid interfacial energy. Moreover, a shift in the peritectic reaction (which facilitates growth of the austenite grains across the phosphorus-rich boundaries of the primary delta ferrite phase) has been observed in the presence of A12O3 inclusions. Indications are that the resulting decrease in the local phosphorus concentrations at the austenite grain boundaries will strongly alter the kinetics of the subsequent solid-state transformation reactions by promoting growth of grain boundary ferrite sideplates at the expense of intragranularly nucleated acicular ferrite.

  4. An assessment of solid-wire film coatings for MAG welding

    Turyk, E.; Ruda, A.; Lomozik, M


    Solid electrode-wires, intended for MAG welding, are made of common and low-alloy constructional steels and are usually coated with a thin copper film whose role is to ensure good electrical contact in the contact tube (the current terminal), a low level of resistance to feed in the spiral of the MAG welding clamp, and a temporary anticorrosion protection. The present paper contains results of the investigations into the properties of film coatings on G3Sil-EN 440 solid wires. The assessment of the wire properties was based on the criteria established in the course of the experimentation. This was necessary because the available standards for the welding wires do not uniquely specify requirements regarding factors such as, for instance, film thickness, its uniformity and surface roughness which influence the quality of the coating.

  5. Modelling and Analysis of Phase Transformations and Stresses in Laser Welding Process / Modelowanie I Analiza Przemian Fazowych I Naprężeń W Procesie Spawania Laserowego

    Piekarska W.


    Full Text Available The work concerns the numerical modelling of structural composition and stress state in steel elements welded by a laser beam. The temperature field in butt welded joint is obtained from the solution of heat transfer equation with convective term. The heat source model is developed. Latent heat of solid-liquid and liquid-gas transformations as well as latent heats of phase transformations in solid state are taken into account in the algorithm of thermal phenomena. The kinetics of phase transformations in the solid state and volume fractions of formed structures are determined using classical formulas as well as Continuous-Heating-Transformation (CHT diagram and Continuous-Cooling-Transformation (CCT diagram during welding. Models of phase transformations take into account the influence of thermal cycle parameters on the kinetics of phase transformations during welding. Temporary and residual stress is obtained on the basis of the solution of mechanical equilibrium equations in a rate form. Plastic strain is determined using non-isothermal plastic flow with isotropic reinforcement, obeying Huber-Misses plasticity condition. In addition to thermal and plastic strains, the model takes into account structural strain and transformation plasticity. Changing with temperature and structural composition thermophysical parameters are included into constitutive relations. Results of the prediction of structural composition and stress state in laser butt weld joint are presented.

  6. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  7. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)


    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  8. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    Na, Jeong K.; Gleeson, Sean T.


    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  9. Synthetically Focused Imaging Techniques in Simulated Austenitic Steel Welds Using AN Ultrasonic Phased Array

    Connolly, G. D.; Lowe, M. J. S.; Rokhlin, S. I.; Temple, J. A. G.


    In austenitic steel welds employed in safety-critical applications, detection of defects that may propagate during service or may have occurred during welding is particularly important. In this study, synthetically focused imaging techniques are applied to the echoes received by phased arrays in order to reconstruct images of the interior of a simulated austenitic steel weld, with application to sizing and location of simplified defects. Using a ray-tracing approach through a previously developed weld model, we briefly describe and then apply three focusing techniques. Results generated via both ray-tracing theory and finite element simulations will be shown.

  10. A comparison of observables for solid-solid phase transitions

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory


    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  11. Phased array ultrasonic technology contribution to engineering critical assessment (ECA) of economizer piping welds

    Ciorau, P.; Gray, D.; Daks, W. [Ontario Power Generation, Pickering, Ontario (Canada)]. E-mail:


    This paper describes the application of phased array ultrasonic technology for engineering critical assessment of economizer piping welds. The objective is to detect and size fatigue cracks in the counter bore area of carbon steel boiler feedwater piping welds of a thermal station. A size accuracy of {+-} 1 mm for the outer ligament was required.

  12. Microstructure and Phase Constitution Near the Interface of Explosively Welded Aluminum/Copper Plates

    Paul, Henryk; Lityńska-Dobrzyńska, Lidia; Prażmowski, Mariusz


    The microstructure changes and the phase constitution within the layers close to the bonding interface strongly influence the properties of bimetallic strips. In this work, the layers near the interface of explosively welded aluminum and copper plates were investigated by means of microscopic observations, mostly with the use of transmission electron microscopy (TEM) equipped with energy dispersive spectrometry (EDX). The study was focused on the identification of the intermetallic phases, the possible interdiffusion between the copper and the aluminum, and the changes in the dislocation structure of the parent plates. In macro-/mesoscale, the interfaces were outlined by a characteristic sharp transition indicating that there was no mechanical mixing between the welded metals in the solid state. In micro-/nanoscale, the layers adhering to the interface show typical deformed microstructure features, i.e., structure refinement, elongated dislocation cells, slip bands, and microtwins (in copper plate). The internal microstructure of the intermetallic inclusion is composed mostly of dendrites. The electron diffractions and TEM/EDX chemical composition measurements revealed three crystalline equilibrium phases of the γ-Al4Cu9, η-AlCu, and Θ-Al2Cu type (the last one was dominant). However, most of the observed phases of the general Cu m Al n type (also crystalline) do not appear in the equilibrium Al-Cu phase diagram. Inside the intermetallic inclusions, no significant regularity in the phase distribution with respect to the parent sheets was observed. Therefore, it was concluded that the processes occurring in the melt determined their local chemical composition.

  13. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL


    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  14. Welding.

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  15. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance


    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72...

  16. Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)


    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  17. Solid-solid phase transitions via melting in metals

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.


    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  18. Numerical and Experimental Study of Phase Transformations in Welding Processes / Badania Numeryczne I Doświadczalne Przemian Fazowych W Procesach Spawania

    Piekarska W.


    Full Text Available The paper concerns the mathematical and numerical modeling of phase transformations in solid state occurring during welding. The analysis of the influence of heating rate, cooling rate and maximum temperatures of thermal cycles on the kinetics of phase transformations is presented. On the basis of literature data and experimental studies the evaluation of classic mathematical and numerical models of phase transformation is presented with respect to the advanced methods of welding by using a high speed and a high power heat source. The prediction of the structure composition in laser welded butt-joint made of S460 steel is performed, where phase transformations are calculated on the basis of modified numerical models. Temperature distributions are determined as well as the shape and size of fusion zone and heat affected zone (HAZ. Temperature field is obtained by the solution of transient heat transfer equation with convective term and external volumetric heat source taken into account. Latent heat of fusion, evaporation and heats generated during phase transformations in solid state are considered in the numerical algorithm due to the large temperature range present in analyzed process. Results of the numerical prediction of structure composition in HAZ are presented in this work. Obtained results of computer simulations are compared to experimental research performered on the laser welded joint.

  19. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    Govender, G


    Full Text Available and micro-Vickers hardness (MVH) properties of the welds were investigated. It was found that the laser welding processes yielded a finer dendritic fusion zone and a much smaller heat affected zone (HAZ) compared to the TIG welds. The HAZ for both the laser...

  20. Use of Metallographic Analysis and Strength Testing to Improve Ultrasonic Phased-Array Evaluation of Resistance SPOT Welds

    Hopkins, Deborah L.


    Results are summarized for a series of experiments in which one hundred spot welds were inspected using a high-frequency phased-array ultrasonic probe, and then sectioned, polished and etched to reveal the microstructure of the welds. The ultrasonic and metallographic results are analyzed in conjunction with the results of strength tests and the size of the weld buttons obtained from destructive tear-down of the welded samples.

  1. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)


    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  2. Microstructure-properties correlation in fiber laser welding of dual-phase and HSLA steels

    Saha, D.C., E-mail: [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Westerbaan, D.; Nayak, S.S. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada); Biro, E. [ArcelorMittal Global Research, 1390 Burlington Street East, Hamilton, ON, Canada L8N 3J5 (Canada); Gerlich, A.P.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1 (Canada)


    Similar and dissimilar welds of dual-phase (DP) and high strength low alloy (HSLA) steels were made by fiber laser welding (FLW). The welds were characterized with respect to microstructure, micro- and nano-hardness, and tensile properties. The fusion zone (FZ) in the DP welds consisted of fully martensitic structure; whereas HSLA and dissimilar weld FZ microstructure were mixture of martensite and bainite. Analytical transmission electron microscopy (TEM) confirmed bainite structures containing bainitic ferrite laths with intralath and interlath cementite. Precipitation of single variant carbides inside the bainitic ferrite laths were confirmed by measuring the interplanar spacing. The cooling rate in the FZ, estimated using Rosenthal equation, and continuous-cooling-transformation diagrams corroborated the microstructure formed. Nanoindentation was used to verify the hardness of these individual microconstituents, since a much lower nano-hardness for bainite (4.11 GPa) was observed compared to martensite (6.57 GPa) phase. Tensile failure occurred in the tempered area of the heat affected zone (HAZ) in the DP steel welded, which was confirmed by typical cup-like dimple fracture; likewise failure in the HSLA base metal, which occurred in dissimilar and HSLA welds, indicated distinctive dimple and shear dimple ductile morphology.

  3. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan


    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  4. Prediction of solidification and phase transformation in weld metals for welding of high performance stainless steels; Kotaishoku kotainetsu stainless koyo yosetsu kinzoku no gyoko hentai no yosoku gijutsu

    Koseki, T.; Inoue, H.; Morimoto, H.; Okita, S. [Nippon Steel Corp., Tokyo (Japan)


    Prediction technology is introduced on the solidification and transformation of weld metals used for high performance stainless steel. A model has been developed which uses Thermo Calc, a multiple balanced calculation program, as a means to analyze the solidification of multi-component alloys including the polyphase solidification such as eutectic and peritectic. Verification has been in progress concerning the adequacy of this model and the adaptability as a practical steel. The following are the prediction technologies for solidification and transformation which have been derived from experiments and applied to welding techniques: the effects of nitrogen on the solidification mode and residual {gamma}quantity of a welding metal that is required for controlling the welding/solidification of high nitrogen content {gamma}system stainless steel; the structural control of weld metal for high corrosion resistance high Mo stainless steel, in which high Ni and high Mo contents are indispensable for attaining the optimum structure; the structural control of weld metal for two-phase stainless steel containing Mo and N, in which it is essential to secure a high nitrogen content and a {delta}/{gamma}phase balance in a weld metal; and the precipitation prediction of intermetallic compound in a high alloy weld metal for a high alloy stainless steel, for which an explanation is there by Cieslak et al. based on the phase stability theory. 22 refs., 16 figs.

  5. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    No Kookil


    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  6. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    Rairigh, Ryan


    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  7. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T


    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  8. Molecular Modeling of Solid Fluid Phase Behavior

    Peter A. Monson


    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  9. Finite Element Analysis of Ultrasonic Phased Array Inspections on Anisotropic Welds

    Harvey, G.; Tweedie, A.; Carpentier, C.; Reynolds, P.


    This paper describes a theoretical investigation into the behaviour of anisotropic welds under phased array inspection procedures using a 128 element linear array. Two advanced inspection techniques are simulated, and their suitability compared. A finite element (FE) model, configured in PZFlex, is used to represent both the variations in crystal orientation found in a typical anisotropic weld, and also the linear array configuration. Firstly, through transmission spectra of the weld are used to determine the optimum operating frequency and configuration of the array in order to detect a 3 mm SDH in the weld. Next, the Full Matrix Capture (FMC) technique is simulated, and an image of the weld constructed using the Total Focussing Method (TFM). This is accomplished by transmitting on each element sequentially, while receiving on the remaining 127 elements. This approach provides spatial averaging over the weld area, reducing the distortion caused by the anisotropic media. Finally, Time Reversal Acoustic (TRA) methods were employed to coherently focus the array at the defect and compensate for the elemental timing variations caused by the complex medium. Results illustrate the potential for inspecting anisotropic welds when using correctly designed arrays and implementing novel inspection procedures.

  10. Phase Transformations During Solidification of a Laser-Beam-Welded TiAl Alloy—An In Situ Synchrotron Study

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai


    An in situ highly time-resolved, high-energy X-ray diffraction investigation was carried out to observe the phase transformations of a TiAl alloy during laser beam welding. The diffraction patterns are recorded every 0.1 seconds by a fast area two-dimensional detector and plotted according to time, yielding the solidification pathway, the solid phase volume fraction, and the lattice parameter variation of different phases during the solidification and cooling process. Moreover, it is the first study that can demonstrate that the α phase without any Burgers orientation relationship, the so-called non-Burgers α, precipitates appear earlier than the Burgers α. The non-Burgers α grains are found to nucleate on the primary borides.

  11. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    Amani, H.; Soltanieh, M.


    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  12. Binary Solid-Liquid Phase Equilibria

    Ellison, Herbert R.


    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  13. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    Elmer, J; Palmer, T


    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields} {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.

  14. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa


    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  15. Influence of deformation on structural-phase state of weld material in St3 steel

    Smirnov, Alexander, E-mail:; Ababkov, Nicolay, E-mail:; Ozhiganov, Yevgeniy, E-mail: [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail:; Koneva, Nina, E-mail: [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)


    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  16. Wavelet analysis of ultrasonic A-scan signal of solid-state welded joints


    In the ultrasonic nondestructive evaluation of the quality of solid-state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likely to emerge in the welding process. The ultrasonic echo on the screen of a commercial ultrasonic detector due to a micro defect is so weak that it is completely masked by noise, and impossible to be pointed out. In the present paper, wavelet analysis (WA) is utilized to process A-scan ultrasonic signals from weak-bonding defects in friction bonding joints and porosity in diffusion bonding joints. First, perception of WA for engineers is given, which demonstrates the physical mechanism of WA when applied to signal processing. From this point of view, WA can be understood easily and more thoroughly. Then the signals from welding joints are decomposed into a time-scale plane by means of WA. We notice that noise and the signal echo attributed to the micro defect occupy different scales, which make it possible to enhance the signal-to-noise ratio of the signals by proper selection and threshold processing of the time-scale components of the signals, followed by reconstruction of the processed components.

  17. Solid phase sequencing of biopolymers

    Cantor, Charles R.; Hubert, Koster


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  18. Solid phase sequencing of biopolymers

    Cantor, Charles (Del Mar, CA); Koster, Hubert (La Jolla, CA)


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  19. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.


    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  20. Research on CMT welding of nickel-based alloy with stainless steel


    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  1. Welding. Pre-Apprenticeship Phase 1 Training. Instructor's Guide.

    Lane Community Coll., Eugene, OR.

    This instructor's guide accompanies the self-paced student training modules on welding, three of which are available separately as CE 032 889-891. Introductory materials include a description of the components of the pre-apprenticeship project, a discussion of the teacher's role in conducting the course, and scope and contents of the four phases…

  2. Development of a pseudo phased array technique using EMATs for DM weld testing

    Cobb, Adam C., E-mail:; Fisher, Jay L., E-mail: [Southwest Research Institute, Sensor Systems and Nondestructive Technology Department, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States); Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu [IHI Corporation, Nuclear Power Operations, Yokohama Engineering Center, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan)


    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  3. Development of a pseudo phased array technique using EMATs for DM weld testing

    Cobb, Adam C.; Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu


    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  4. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    J. Matusiak


    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  5. Modeling of transverse welds formation during liquid–solid extrusion directly following vacuum infiltration of magnesium matrix composite

    Jian Liu


    Full Text Available Liquid–solid extrusion directly following vacuum infiltration (LSEVI is an infiltration–extrusion integrated forming technique, and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect, which can severely reduce the yield of composite products. To improve current understanding on the mechanism of transverse welding phenomenon, a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed. The formation of transverse weld during extrusion was visualized using finite element simulation method, and the formation mechanism was discussed from the aspect of velocity field using a point tracking technique. The simulation results were verified by the experimental results in term of weld shape.

  6. Temperature and phase transformations fields during surfacing by welding of CCS machine roll

    J. Winczek


    Full Text Available In work have been presented models of temperature fields and kinetics of phase transformations in continuous casting steel machine roll surfacing spiral welding sequence with swinging motion of welding head. The temperature field was determined by analytical solution for massive body heated by moving voluminal heat source. The progress of diffusional phase transformations was described basing on equation of kinetics JMA-K and Koistinen-Marburger’s for martensitic transfomation. Deliberations were illustrated by computational example of surfaced roll made from steel 13CrMo4. The temperature field and structural components fraction was calcualated in section of regenerated area of material decline (along the roll axis. Considering critical temperatures, heat-affected zones have been determined: A1 and A3 – austenitic transformation, and solidus - fusion line. Accepted technological parameters of rebuilding gave results that reproduce geometry of padding weld heat-affected zones confirmed experimentally.

  7. Multiplexed Colorimetric Solid-Phase Extraction

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.


    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  8. Phase 2, Solid waste retrieval strategy

    Johnson, D.M.


    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  9. Megabar pressure phases of solid hydrogen

    Chen, Nancy Hueling

    The behavior of solid Hsb2, Dsb2, and HD at low temperatures high pressures was investigated. The experimental data were obtained by combining high pressure diamond anvil cell apparatus with cryogenic and spectroscopic techniques. Megabar pressures (1 bar = 10sp5 Pa) and liquid helium temperatures were accessible. The observed phases and phase lines are discussed with respect to orientational order, crystal structure, and electronic properties. The orientational order-disorder phase transition in HD was studied by Raman spectroscopy. Due to the distinguishability of the nuclei in an HD molecule, the observed phase line exhibits surprising behavior relative to that expected for the homonuclear molecules Hsb2 and Dsb2. The megabar pressure phase diagram of solid Dsb2 was investigated by infrared and Raman spectroscopy. The broken symmetry phase (BSP) transition line and the D-A phase line were observed to meet at a triple point. The relative arrangement of phase lines in P-T space, combined with group theoretical analysis of observed infrared and Raman spectra within the phases, sets symmetry restrictions on the allowed crystal structures. The electronic properties of the high pressure H-A and D-A phases were examined, since these recently discovered phases were suspected of being metallic. Acquired broadband infrared absorption spectra extending to 10 mum were analyzed in terms of the Drude model for metals. No evidence indicating metallic behavior was found. Refinements in high pressure techniques were explored, in order to increase the maximum pressures attainable. A method of extending ruby fluorescence pressure measurements to multimegabar pressures was developed, which involved excitation of ruby fluorescence with red, rather than blue or green laser light.

  10. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.


    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  11. Solid phase synthesis of bifunctional antibodies.

    DeSilva, B S; Wilson, G S


    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  12. [Solid phase techniques in blood group serology].

    Uthemann, H; Sturmfels, L; Lenhard, V


    As alternatives to hemagglutination, solid-phase red blood cell adherence assays are of increasing importance. The adaptation of the new techniques to microplates offers several advantages over hemagglutination. Using microplates the assays may be processed semiautomatically, and the results can be read spectrophotometrically and interpreted by a personal computer. In this paper, different red blood cell adherence assays for AB0 grouping, Rh typing, Rh phenotyping, antibody screening and identification, as well as crossmatching will be described.

  13. Recent advances in solid phase peptide synthesis

    White, P.D.


    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  14. Development of headspace solid-phase microextraction method for ...

    ... solid-phase microextraction method for the analysis of pesticide residues in fruit and ... Journal of Applied Sciences and Environmental Management ... interface temperature) and solid phase microextraction parameters (fiber coating type, ...

  15. Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding

    Dong, Danyang, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Liu, Yang, E-mail: [Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); Yang, Yuling, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Li, Jinfeng, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Ma, Min, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China); Jiang, Tao, E-mail: [College of Science, Northeastern University, No. 11, Lane 3, WenHua Road, HePing District, Shenyang 110819 (China)


    Dual phase (DP) steels have been widely used in the automotive industry to reduce vehicle weight and improve car safety. In such applications welding and joining have to be involved, which would lead to a localized change of the microstructure and property, and create potential safety and reliable issues under dynamic loading. The aim of the present study is to examine the rate-dependent mechanical properties, deformation and fracture behavior of DP600 steel and its welded joint (WJ) produced by Nd:YAG laser welding over a wide range of strain rates (0.001–1133 s{sup −1}). Laser welding results in not only significant microhardness increase in the fusion zone (FZ) and inner heat-affected zone (HAZ), but also the formation of a softened zone in the outer HAZ. The yield strength (YS) of the DP600 steel increases and the ultimate tensile strength (UTS) remains almost unchanged, but the ductility decreases after welding. The DP600 base metal (BM) and WJ are of positive strain rate sensitivity and show similar stress–strain response at all studied strain rates. The enhanced ductility at strain rates ranging from 1 to 100 s{sup −1} is attributed to the retardation of the propagation of plastic strain localization due to the positive strain rate sensitivity and the thermal softening caused by deformation induced adiabatic temperature rise during dynamic tensile deformation. The tensile failure occurs in the inner HAZ of the joint and the distance of failure location from the weld centerline decreases with increasing strain rate. The mechanism for the changing failure location can be related to the different strain rate dependence of the plastic deformation behavior of the microstructures in various regions across the joint. The DP600 WJ absorbs more energy over the whole measured strain rates than that of the BM due to the higher strength at the same strain when the deformation only up to 10% is considered.

  16. Wax Precipitation Modeled with Many Mixed Solid Phases

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan


    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub...

  17. Effect of Heat Treatment on Mechanical Properties and Phase Composition of Magnesium-Aluminum Composite Prepared by Explosive Welding

    Arisova, V. N.; Trykov, Yu. P.; Slautin, O. V.; Ponomareva, I. A.; Kondakov, A. E.


    Results are given for a study of the effect of heat treatment regimes on the nature of change in micromechanical properties and phase composition of magnesium-aluminum composite material AD1-MA2-1 prepared by explosive welding.

  18. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang


    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  19. Friction Stir Welding

    Nunes, Arthur C., Jr.


    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  20. Inspection system for welded tubular joint based on ultrasonic phased array

    Hao Guangping; Deng Zongquan; Shan Baohua; Yu Weizhen; Li Lifang


    A manual inspection of large-diameter tubular joints is difficult. As a result a scanner with three degrees of freedom (DOFs) was developed based on the scanning principle of ultrasonic phased array. The weld tracing is realized by a 2D0F motion of scanner. The pose of ultrasonic probe is controlled by the third one. The control strategy is put forward based on a programmable multi-axis controller. Four kinds of scanning modes can be implemented simultaneously employing this ultrasonic inspection system. Experiments on reference blocks of tubular joints reveal that the automatic ultrasonic phased array inspection system has the same inspection accuracy as a manual ultrasonic inspection. This system is superior to the manual ultrasonic system in terms of reliability and repeatability. The artificial defects of weld at tubular joint can be detected accurately with the presented inspection system.

  1. Parallel solid-phase synthesis of diaryltriazoles

    Matthias Wrobel


    Full Text Available A series of substituted diaryltriazoles was prepared by a solid-phase-synthesis protocol using a modified Wang resin. The copper(I- or ruthenium(II-catalyzed 1,3-cycloaddition on the polymer bead allowed a rapid synthesis of the target compounds in a parallel fashion with in many cases good to excellent yields. Substituted diaryltriazoles resemble a molecular structure similar to established terphenyl-alpha-helix peptide mimics and have therefore the potential to act as selective inhibitors for protein–protein interactions.

  2. Narrow gap TIG and electron beam weld inspection in austenitic stainless steel using pulse echo, TOFD and phased array ultrasonics

    Quirk, K.P.; Turner, J.L. [Phoenix Inspection Systems Limited, Warrington (United Kingdom)


    'Full-text:' Narrow gap Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques are being considered for the splice joint welds on the austenitic stainless steel Vacuum Vessel in the next generation of experimental Fusion Power stations under the ITER programme. Under the programme there is a requirement to develop automated ultrasonic NDT techniques to inspect material up to 60 mm thick in both weld types. These narrow welds are difficult to inspect because of the steep fusion faces made more difficult in this project by the beam scattering effects of austenitic stainless steel welds and the very limited access from only one side of the vessel. The paper details the development of the combined Pulse Echo, TOFD and Phased Array techniques on behalf of ITER. The authors describe the philosophy behind the inspections, results and possible transfer of the technology to other sectors of industry. (author)

  3. A 3D numerical simulation of different phases of friction stir welding

    Guerdoux, S.; Fourment, L.


    An adaptive arbitrary Lagrangian-Eulerian formulation is developed to compute the material flow and the temperature evolution during the three phases of the friction stir welding (FSW) process. It follows a splitting approach: after the calculations of the velocity/pressure and temperature fields, the mesh velocity is derived from the domain boundary evolution and from an adaptive refinement criterion provided by error estimation, and finally state variables are remapped. In this way, the unilateral contact conditions between the plate and the tool are accurately taken into account, so allowing one to model various instabilities that may occur during the process, such as the role played by the plunge depth of the tool on the formations of flashes, the possible appearance of non-steady voids or tunnel holes and the influence of the threads on the material flow, the temperature field and the welding efforts. This formulation is implemented in the 3D Forge3 FE software with automatic remeshing. The non-steady phases of FSW can so be simulated, as well as the steady welding phase. The study of different process conditions shows that the main phenomena taking place during FSW can be simulated with the right sensitivities.

  4. Strength and microstructure of 2091 Al-Li alloy TIG welded joint


    The microstructure and tensile properties of TIG welding joints of 2091 Al-Li alloy were investigated both in as-welded and different postweld heat treatment condition. The results show that solution strengthening played an important role in the as-welded condition, though the precipitation strengthening δ' phase formed already in the as-welded weld metal, but its effect was not apparent due to the lower volume fraction of δ' phase. So the strength coefficient (φ) of the welded joint/base metal was 64%. After artificially aging heat treatment, the precipitation strengthening effect increased much due to the formation of more δ' phase and s' phase. Its φ value was increased up to 89%. The highest strength of the welded joints was obtained after solid solution and then artificially aged heat treatment. Due to the proper size of precipitation strengthening phases and their well distribution, the φ value was increased up to 98%.

  5. Density-functional theory for fluid-solid and solid-solid phase transitions

    Bharadwaj, Atul S.; Singh, Yashwant


    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  6. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    Heidarzadeh, Akbar; Saeid, Tohid


    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  7. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert


    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  8. Friction stir welding of AZ31 magnesium alloy

    林三宝; 张华; 吴林; 冯吉才; 戴鸿滨


    Friction stir welding (FSW) is an new solid-phase joining technology which has more advantages over fusion welding methods in welding of aluminum and other non-ferrous metals. The effects of welding parameters on mechanical properties and microstructure during friction stir welding of AZ31 magnesium alloy were studied in this paper. Microstructures and mechanical properties of the joints were investigated by means of optical microscopy, scanning electric microscopy (SEM), micro-hardness analysis, and tensile test. Experimental results show that the magnesium alloy can be successfully welded by FSW method, and the ultimate tensile strength (UTS) of FSW joint reaches up to 90 percent of base metal. The microstructures of welded joints exhibit the variation from dynamically recrystallized fine grains to greatly deformed grains. Hardness in nugget zone was found lower than the base metal but not too obvious.

  9. Ultrasonic Phased Array Inspection of Flaws on Weld Fusion Faces Using Full Matrix Capture

    Long, R.; Russell, J.; Cawley, P.; Habgood, N.


    Work is being conducted to develop phased array inspection of stainless steel welded pipes. Ideally this uses waves reflected and mode converted at the inner surface of the pipe, but most commercial phased array controllers do not currently provide for this. Our solution was to use Full Matrix Capture (FMC) and process the data ourselves. This paper explains the FMC principle, describes the signal processing algorithms along with introducing the Almost Total Focusing Method (ATFM) and illustrates how the processed data was presented. The inspections were also modeled using the CEA CIVA software and compared to experimental results.

  10. Explosive welding of undersea pipelines

    Stalker, A.W.


    The phenomenon of explosive welding has been known informally for many years. A number of investigations reported the occurerence of solid phase bonds as an incidental effect when using high explosives in association with adjacent metal surfaces and probably the earliest formal record was the observation by Carl in 1944 of a bond between two copper discs in contact with a detonator. In 1957 Philipchuk reported what is now recognized as an explosive weld between aluminium channel sections and a steel die when carrying out explosive forming trials. Since then a great deal of development work has resulted in explosive welding becoming a well established manufacturing technique, particularly in the fields of cladding and the joining of tube/tubeplates. In more recent years the process has been extended to the welding of large diameter line pipe materials.


    Tang, Wei [ORNL; Chen, Gaoqiang [ORNL; Chen, Jian [ORNL; Yu, Xinghua [ORNL; Frederick, David Alan [ORNL; Feng, Zhili [ORNL


    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  12. Solid phase microextraction device using aerogel

    Miller, Fred S.; Andresen, Brian D.


    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  13. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints

    Farabi, N. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)


    Research highlights: > Laser welding results in a significant hardness rise in the fusion zone, but the formation of a soft zone in the heat-affected zone. > A characteristic unsymmetrical hardness profile is observed across the dissimilar joint. > Yield point phenomenon with only stage III strain hardening occurs after welding. > Fatigue life at higher stress amplitudes is equivalent to that of DP600 steel despite slightly lower fatigue limit. - Abstract: The use of dual phase (DP) steels in the automobile industry unavoidably involves welding and dynamic loading. The aim of this investigation was to evaluate the microstructural change and mechanical properties of laser welded dissimilar DP600/DP980 steel joints. The dissimilar joints showed a significant microstructural change from nearly full martensite in the fusion zone (FZ) to the unchanged ferrite-martensite dual-phase microstructure in the base metal. The welding resulted in a significant hardness increase in the FZ but the formation of a soft zone in the heat-affected zone (HAZ). The dissimilar welded joints were observed to exhibit a distinctive unsymmetrical hardness profile, yield-point-like phenomenon, and single-stage work hardening characteristic, with yield strength and work hardening rate lying in-between those of DP600 and DP980 base metals, and ultimate tensile strength equivalent to that of DP600 base metal. Although the welded joints showed a lower fatigue limit than the base metals, the fatigue life of the welded joints at higher stress amplitudes was almost the same as that of the DP600 base metal. The welded joints failed in the soft zone at the DP600 side under tensile loading and fatigue loading at the higher stress amplitudes. Fatigue crack initiation occurred from the specimen surface and crack propagation was characterized by typical fatigue striation together with secondary cracks.

  14. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Gao, Xiangdong; You, Deyong; Katayama, Seiji


    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  15. Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

    Hun-Hee Kim


    Full Text Available Flaws at dissimilar metal welds (DMWs, such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM, Bottom Mounted Instrumentation (BMI etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

  16. Effect of temperature field on types and distribution of reinforcing phases in "in-situ" weld-alloying/PAW of SiCp/6061 Al

    Lei Yucheng; Zhu Fei; Chen Xizhang; Yuan Weijin; Cheng Xiaonong


    Based on theories of heat transfer, physical metallurgy and hydro-mechanical, in order to analyze the effect of welding parameters on species and distribution of reinforcing phases visually and legibly,finite element software ANSYS was used to simulate transient temperature field for SiCp/Al in " in-situ" weld-alloying/plasma arc welding. The results show that the calculated results approximately agreed with the experimental measured results. So the model is basically correct and credible. Based on the numerical solutions and experimental results, effect of temperature field in different welding process parameters( welding current, welding velocity) on species and distribution of reinforcing phases is analyzed. The results show that adjusting and optimizing temperature field appropriately is an effective method to obtain welded joint with better microstructure and property.

  17. Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes


    REPORT Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report a novel solid phase...form poly-macromer brushes wherein macromonomers are linked via triazole groups. After each addition step, the terminal alkyne group can be deprotected...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Solid Phase Synthesis , polymers and copolymers Hernán R. Rengifo, Cristian Grigoras, Benjamin I

  18. A contribution to phased array ultrasonic inspection of welds: defect patterns and sizing capability

    Ciorau, P., E-mail: [Ontario Power Generation Inc., Inspection, Maintenance and Commercial Services, Tiverton, Ontario (Canada)


    The paper presents defect patterns for weld inspection detected with phased array ultrasonic technology (PAUT). The sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 70% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and comparable to time of flight diffraction (TOFD) ideal tolerances. (author)

  19. Phased array ultrasonic inspection of feeder welds - regulatory perspective

    Carroll, B.; Kirkhope, K.; Colligan, L.; Valpy, B.; Stevenson, J. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)


    The Canadian Nuclear Safety Commission has accepted the application of Phased Array Ultrasonic Testing (PAUT) in lieu of Radiographic Testing for feeder piping replacement at the Point Lepreau and Bruce A Units 1 and 2 refurbishment projects. Background information regarding the principles and elements of the CNSC regulatory approach for the acceptance of PAUT for feeder installation will be discussed, addressing quality management and regulatory oversight activities focused on inspection reliability and dose reduction. CNSC staff's views for future direction on the application of PAUT in lieu of RT in regulatory framework and codes and standards are also discussed. (author)

  20. Soldagem por ponto no estado sólido de ligas leves Solid state spot welding of lightweight alloys

    Leonardo Contri Campanelli


    Full Text Available A recente preocupação quanto às mudanças climáticas vem impulsionando pesquisas em eficiência energética dos meios de transportes no sentido de reduzir a emissão de gases. Uma das principais soluções consiste na redução do peso estrutural através da aplicação de novos materiais, como as ligas leves de alumínio e magnésio. Entretanto, novos usos ficam muitas vezes limitados pela dificuldade de união desses materiais. A técnica de soldagem por fricção e mistura (FSW é um processo de união no estado sólido que surge como uma alternativa viável para substituir ou complementar as tecnologias de união consagradas. Como uma junta contínua não é sempre a requisitada, duas tecnologias de união por ponto derivadas do FSW estão em desenvolvimento: soldagem por fricção e mistura por ponto (FSSW e soldagem por fricção por ponto (FSpW. Além de fornecerem juntas de elevada resistência e praticamente isentas de defeitos, estas técnicas apresentam alta eficiência energética, curto ciclo de soldagem, facilidade de automação e compatibilidade com o meio-ambiente, fazendo frente às técnicas convencionais de união por ponto, como a soldagem por resistência por ponto (RSW e a rebitagem.The recent concern about climate change has stimulated research into transport energy efficiency in order to reduce the emission of gases. One of the main solutions is to reduce the structural weight through the application of new materials, such as aluminum and magnesium lightweight alloys. However, new applications are often limited by the difficulty of joining these materials. Friction Stir Welding (FSW is a solid state joining technique that emerges as a viable alternative to replace or complement the established joining technologies. As a continuous weld is not always requested, two spot welding technologies derived from FSW are under development: Friction Stir Spot Welding (FSSW and Friction Spot Welding (FSpW. Besides providing

  1. Friction stir welding of dissimilar joint between semi-solid metal 356 and AA 6061-T651 by computerized numerical control machine

    Muhamad Tehyo


    Full Text Available The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM 356 and AA6061-T651 by a Computerized Numerical Control (CNC machine. The base materials of SSM 356 and AA 6061-T651 werelocated on the advancing side (AS and on the retreating side (RS, respectively. Friction Stir Welding (FSW parameterssuch as tool pin profile, tool rotation speed, welding speed, and tool axial force influenced the mechanical properties of theFS welded joints significantly. For this experiment, the FS welded materials were joined under two different tool rotationspeeds (1,750 and 2,000 rpm and six welding speeds (20, 50, 80, 120, 160, and 200 mm/min, which are the two prime joiningparameters in FSW. A cylindrical pin was adopted as the welding tip as its geometry had been proven to yield better weldstrengths. From the investigation, the higher tool rotation speed affected the weaker material’s (SSM maximum tensilestrength less than that under the lower rotation speed. As for welding speed associated with various tool rotation speeds, anincrease in the welding speed affected lesser the base material’s tensile strength up to an optimum value; after which its effectincreased. Tensile elongation was generally greater at greater tool rotation speed. An averaged maximum tensile strength of197.1 MPa was derived for a welded specimen produced at the tool rotation speed of 2,000 rpm associated with the weldingspeed of 80 mm/min. In the weld nugget, higher hardness was observed in the stir zone and the thermo-mechanically affectedzone than that in the heat affected zone. Away from the weld nugget, hardness levels increased back to the levels of the basematerials. The microstructures of the welding zone in the FS welded dissimilar joint can be characterized both by the recrystallizationof SSM 356 grains and

  2. An Evaluation of Signal Processing Tools for Improving Phased Array Ultrasonic Weld Inspection

    Ramuhalli, Pradeep; Cinson, Anthony D.; Crawford, Susan L.; Harris, Robert V.; Diaz, Aaron A.; Anderson, Michael T.


    Cast austenitic stainless steel (CASS) commonly used in U.S. nuclear power plants is a coarse-grained, elastically anisotropic material. The coarse-grained nature of CASS makes ultrasonic inspection of in-service components difficult. Recently, low-frequency phased array ultrasound has emerged as a candidate for the CASS piping weld inspection. However, issues such as low signal-to-noise ratio and difficulty in discriminating between flaw and non-flaw signals remain. This paper discusses the evaluation of a number of signal processing algorithms for improving flaw detection in CASS materials. The full paper provides details of the algorithms being evaluated, along with preliminary results.

  3. Microstructure modeling in weld metal

    David, S.A.; Babu, S.S.


    Since microstructure development in the weld metal region is controlled by various physical processes, there is a need for integrated predictive models based on fundamental principles to describe and predict the effect of these physical processes. These integrated models should be based on various tools available for modeling microstructure development in a wide variety of alloy systems and welding processes. In this paper, the principles, methodology, and future directions of modeling thermochemical reactions in liquid, solidification, and solid state transformations are discussed with some examples for low-alloy steel, stainless steel, and Ni-base superalloy. Thermochemical deoxidation reactions in liquid low-alloy steel lead to oxide inclusion formation. This inclusion formation has been modeled by combining principles of ladle metallurgy and overall transformation kinetics. The model`s comparison with the experimental data and the ongoing work on coupling this inclusion model with the numerical models of heat transfer and fluid flow are discussed. Also, recent advances in theoretical and physical modeling of the solidification process are reviewed with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. The effects of solid state phase transformations on microstructure development and various methods of modeling these transformations are reviewed. Successful models, based on diffusion-controlled growth and plate growth theories, on microstructure development in low-alloy steel and stainless steel weld metals are outlined. This paper also addresses the importance of advanced analytical techniques to understand the solid state transformation mechanisms in welds.

  4. Equipment for Solid State Stir Welding of High Temperature Materials Project

    National Aeronautics and Space Administration — Stir welding generates high-quality joints in fabricated structure and is the baseline joining process for most NASA aluminum alloy structures such as cryogenic...

  5. Stable solid-phase Rh antigen.

    Yared, M A; Moise, K J; Rodkey, L S


    Numerous investigators have attempted to isolate the Rh antigens in a stable, immunologically reactive form since the discovery of the Rh system over 56 years ago. We report here a successful and reproducible approach to solubilizing and adsorbing the human Rh antigen(s) to a solid-phase matrix in an antigenically active form. Similar results were obtained with rabbit A/D/F red blood cell antigens. The antigen preparation was made by dissolution of the red blood cell membrane lipid followed by fragmentation of the residual cytoskeleton in an EDTA solution at low ionic strength. The antigenic activity of the soluble preparations was labile in standard buffers but was stable in zwitterionic buffers for extended periods of time. Further studies showed that the antigenic activity of these preparations was enhanced, as was their affinity for plastic surfaces, in the presence of acidic zwitterionic buffers. Adherence to plastic surfaces at low pH maintained antigenic reactivity and specificity for antibody was retained. The data show that this approach yields a stable form of antigenically active human Rh D antigen that could be used in a red blood cell-free assay for quantitative analysis of Rh D antibody and for Rh D antibody immunoadsorption and purification.

  6. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Schneider, J. A.; Nunes, A. C., Jr.


    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  7. Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR

    Senkov, Oleg N.; Mahaffey, David W.; Semiatin, S. Lee; Woodward, Christopher


    The solid state inertia friction welding (IFW) process was used for the first time to join two dissimilar Ni-based superalloys, LSHR, a powder metallurgy alloy, and Mar-M247, a directionally solidified alloy. Extensive studies of the microstructure, phase composition, re-distribution of the alloying elements between the welded alloys, microhardness, and welding defects were conducted at different distances from the weld interface, and the results were correlated with the loading and friction conditions during IFW. Possible reasons leading to the formation of the welding defects were discussed and directions for the further improvement of the quality of the IFW of these two dissimilar alloys were outlined.

  8. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.


    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  9. Investigation of binary solid phases by calorimetry and kinetic modelling

    Matovic, M.


    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid

  10. The effects of solid state high frequency welding machine sensor manufacturing and installment for weld%固态高频感应器的制作与安装对焊接的影响



    the representative of equipment manufacture level is agree to depend on the maximum working frequency the equipment can adapt to ,and it also have closely relation to control technology、the main circuit component selection and the technological level and so on. for the welded pipe technology,the small diameter thin wall steel tube need higher welding frequency,otherwise due to the welding frequency is too low, on the one hand it result in hot melt welding seam area is too wide, the required welding power increase, and affect the welding efficiency and the beautiful sex of steel after welding; On the other hand, due to the welding transformer (tubular) efficiency are greatly influenced by the frequency, reduced the frequency of welding, welding transformer coupling efficiency is reduced, thus affect the whole efficiency of solid state high frequency welding machine. it will have a very big influence on the efficiency of the welding due to the production technology of the sensors、 installation location and the method.%固态高频焊管设备能够适应的最高工作频率代表设备制造水平,这与控制技术、主电路器件选择、工艺水平等密切相关。从焊管工艺来说,小口径、薄壁钢管需要较高的焊接频率,否则由于焊接频率过低,一方面造成焊缝热熔区过宽,所需的焊接功率增加,影响焊接效率和钢管焊接后的美观性;另一方面由于焊接变压器(空芯)效率受频率影响较大,焊接频率降低,焊接变压器耦合效率降低,从而影响整机效率。固态高频焊机的感应器的制作工艺与安装位置、方法对焊接效率的影响非常大。

  11. Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment

    Paddea, S., E-mail: [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Francis, J.A. [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Paradowska, A.M. [ISIS Facility, Rutherford-Appleton Laboratory, Didcot OX11 0QX, Oxon (United Kingdom); Bouchard, P.J. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Shibli, I.A. [European Technology Development Ltd., Leatherhead KT22 7RD, Surrey (United Kingdom)


    Highlights: Black-Right-Pointing-Pointer Residual stresses in a pipe girth weld in P91 steel have been measured in both the as-welded and PWHT conditions. Black-Right-Pointing-Pointer The highest tensile residual stresses coincided with the HAZ boundary and the microstructural region that is prone to type IV cracking. Black-Right-Pointing-Pointer Compressive residual stresses were measured in the weld metal, in a location corresponding to the final weld pass. Black-Right-Pointing-Pointer The location of the peak compressive stresses can be explained by the effect of solid-state phase transformation. - Abstract: In this study the residual stresses in a pipe girth weld in a ferritic-martensitic power plant steel were measured by neutron diffraction and compared with the corresponding metallurgical zones in the weld region. It was found that, in both the as-welded and post-weld heat treated condition, the highest tensile stresses resided near the outer boundary of the heat-affected zone (HAZ), and towards the weld root region. Substantial tensile direct and hydrostatic stresses existed across the HAZ, including the fine-grained and intercritically annealed regions, where premature type IV creep failures manifest in 9-12 Cr steel welds. Compressive stresses were found in the weld metal coinciding with the last weld bead to be deposited. Constrained cooling tests on test coupons illustrated that these compressive stresses can be explained in terms of the influence that solid-state phase transformations have on the accumulation of stress in welds.

  12. Influence of friction stir welding parameters on metallurgical and mechanical properties of dissimilar joint between semi-solid metal 356-T6 and aluminum alloys 6061-T651

    Muhamad Tehyo


    Full Text Available The objective of this research is to investigate the effect of welding parameters on the microstructure and mechanicalproperties of friction stir (FS welded butt joints of dissimilar aluminum alloy sheets between Semi-Solid Metal (SSM 356-T6and AA6061-T651 by a computerized numerical control (CNC machine. The base materials of SSM356-T6 and AA6061-T651were located on the advancing side (AS and on the retreating side (RS, respectively. For this experiment, the FS weldedmaterials were joined under two different tool rotation speeds (1,750 and 2,000 rpm and six welding speeds (20, 50, 80, 120, 160,and 200 mm/min, which are the two prime joining parameters in FSW. From the investigation, the higher tool rotation speedaffected the weaker material’s (SSM maximum tensile strength less than that under the lower rotation speed. As for weldingspeed associated with various tool rotation speeds, an increase in the welding speed affected lesser the base material’s tensilestrength up to an optimum value; after which its effect increased. Tensile elongation was generally greater at greater toolrotation speed. An averaged maximum tensile strength of 206.3 MPa was derived from a welded specimen produced at the toolrotation speed of 2,000 rpm associated with the welding speed of 80 mm/min. In the weld nugget, higher hardness was observedin the stir zone than that in the thermo-mechanically affected zone. Away from the weld nugget, hardness levels increased backto the levels of the base materials. The microstructures of the welding zone in the FS welded dissimilar joint can be characterizedboth by the recrystallization of SSM356-T6 grains and AA6061-T651 grain layers.

  13. Phase Transformation and Residual Stress in a Laser Beam Spot-Welded TiAl-Based Alloy

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai


    The microstructure, chemical composition, residual stress, and lattice parameter evolution of the welding zone (WZ) and heat-affected zone (HAZ) of a laser-beam-welded TiAl-based alloy were investigated. It was found that both α 2 and γ phases remain highly restrained in the WZ edge, and the stresses are relieved in the HAZ. A grain refinement mechanism is proposed, which works by heating the material to the β or α + β phase field for a short time. The lamellar colonies are refined by the Nb-enriched segregations.

  14. Study for the electric arc of alternative current at the single phase welding machine using the Matlab/Simulink environment

    Baciu, I.; Ghiormez, L.; Vasar, C.


    In this paper is presented a mathematical model of the electric arc for an alternative current welding machine of low power. The electric arc model is based on dividing the voltage-current characteristic of the electric arc in many functioning zones. For the model of the entire welding machine are used real parameters as the ones of the proper welding machine. The voltage and current harmonics spectrum that is obtained during the welding process is presented. Also, the waveforms for the current and voltage of the electric arc plotted against time and the voltage-current characteristic of the electric arc are illustrated. The electric arc is considered as being supplied by alternative voltage from the electrical power network using a single phase transformer which has the output voltage of 80 volts. The model of the welding machine is developed in Simulink and the variations of some parameters of the electric arc are obtained by modifying of them in a Matlab function. Also, in this paper is presented the total harmonic distortion for the voltage and current of the electric arc obtained during simulation of the welding machine.

  15. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  16. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  17. The eta phases and mechanical properties of TIG welded joints of WC-Co cemented carbide and steel

    赵秀娟; 杨德新; 王浩; 高泽幸治; 田头孝介; 山森英明


    The tungsten-inert-gas (TIG) arc welding experiments of cemented carbide YG30 and steel 45 were carried out using the Ni-Fe-C filling alloys. The eta phases and mechanical properties of welded joints were analyzed by means of scanning electronic microscope (SEM), transmission electronic microscope (TEM) coupled with selected diffraction, electronic probe microanalysis and bending strength methods. The experimental results show that the chemical composition of the filling alloys affects eta phase formation. When the carbon and nickel contents in filling alloys are 0.61 wt% and 55.29 wt%, respectively, no eta phases form. And the joint bending strength is the highest to 1.352GPa. But if they are 0.01wt% and 55.38wt%, the eta phases are formed at the boundaries of the cemented carbide and the weld, and the thickness of eta phase layer is about 110 micrometers. And the joint bending strength is low. Usually, these eta phases are anomalously granular, and easy to accumulate at the boundaries between cemented carbides and the weld. They are multiple M6C rich in tungsten and iron.



    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.


    H.Zhang; S.B.Lin; L.Wu; J.C.Feng


    Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magnesium alloy. The purpose in the paper is to study the microstructures of friction stir welded AZ3I magnesium alloy. Residual microstructures,including dynamic re-crystallization zone and nugget structures have been systematically investigated utilizing optical microscopy (OM), scanning electric microscopy (SEM),transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and micro-hardness. AZ31 magnesium alloy has been successfully friction stir welded and exhibits the variations of microstructure including dynamically recrystallized,equaxied grains in the weld nugget. Residual hardness in the nugget was found slightly lower than the parent but not too obvious.

  20. Study of Laser Welding of HCT600X Dual Phase Steels

    Švec Pavol


    Full Text Available The effects of beam power and welding speed on microstructure, microhardnes and tensile strength of HCT600X laser welded steel sheets were evaluated. The welding parameters influenced both the width and the microstructure of the fusion zone and heat affected zone. The welding process has no effect on tensile strength of joints which achieved the strength of base metal and all joints fractured in the base metal.

  1. Friction assisted solid state lap seam welding and additive manufacturing method

    Prasad Rao KALVALA; Javed AKRAM; Mano MISRA


    This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod (CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel, Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile-shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.

  2. Analysis of solid-liquid phase change heat transfer enhancement

    张寅平; 王馨


    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  3. Diffusion welding process and joint's microstructure behavior of SiCw/6061Al composite

    LIU Liming; DONG Changfu; GAO Zhenkun


    The rules such as process parameters affecting joint properties and the evolution principle of weld's microstructure have been researched by adopting diffusion welding process to connect SiCw/6061Al composite. Experimental results show that there exists a critical temperature region between solid and liquid phase line of SiCw/6061Al composite, and the region will shrink with the increasing of welding pressure. When diffusion welding occurred under the critical temperature region, welding joint exhibits bad property of bonding, and the matrix and the reinforcement can't bond effectively. When diffusion welding occurred in the critical temperature region, the strength of welding joint changes widely with the variation of welding temperature. When welding temperature varies in 10℃, the strength of welding joint will change obviously.Only when welding temperature is higher than the critical temperature region, stable joint properties can be obtained. Simultaneously the matrix and the reinforcement has better interfacial bonded in diffusion welding interface, and no obvious interface reaction occurred, and thus diffusion welding of SiCw/6061Al composite can be successfully realized.

  4. Handbook of Plastic Welding

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plasti...... as a knowledge handbook for laser welding of plastic components. This document should provide the information for all aspects of plastic laser welding and help the design engineers to take all critical issues into consideration from the very beginning of the design phase....

  5. Guidelines for Friction Stir Welding


    in a large void at the termination point of the weld, the effects the exit hole will have on structural integrity must be considered. The...3.6 Cavity. A void -type discontinuity within a solid-state weld. See Figure 3.4. 3.7 Complex weld joint. A continuous weld...except as affected by corner radii. 3.61 Underfill . A depression resulting when the weld face is below the adjacent parent material surface. See

  6. Automated solid-phase synthesis of oligosaccharides containing sialic acids

    Chian-Hui Lai


    Full Text Available A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.


    B. S. Chandravanshi

    cation exchange-solid phase extraction (SCX-SPE) was investigated as an .... Stock solutions, with a concentration of 1.00 mg/mL were prepared ... Johannesburg, South Africa) connected to a vacuum pump (Vacuubrand, GMBH, Germany).

  8. Microstructure Changes and Phase Growth Occurring at the Interface of the Al/Ti Explosively Welded and Annealed Joints

    Fronczek, D. M.; Chulist, R.; Litynska-Dobrzynska, L.; Szulc, Z.; Zieba, P.; Wojewoda-Budka, J.


    The manuscript presents a close examination of the titanium and aluminum platters manufactured by explosive welding method. In particular, the microstructure changes of the Al/Ti wavy shape interface after annealing at 773 and 903 K were studied. Three stable TiAl3, TiAl, and Ti3Al and a metastable TiAl2 intermetallic phases have been formed in the state directly after explosive welding. The orientation map and TEM images obtained after explosive welding process showed very fine grains of aluminum mixed with intermetallics in the interface region between the peninsulas or islands. After annealing for 100 h the TiAl3 continuous layer was obtained; however, the layer achieved at 903 K was much wider than that obtained at 773 K. An examination of the growth kinetics at 903 K revealed that incubation time was less than 5 min. After this period, the growth was solely governed by chemical reaction.

  9. Automated Flaw Detection Scheme For Cast Austenitic Stainless Steel Weld Specimens Using Hilbert Huang Transform Of Ultrasonic Phased Array Data

    Khan, T.; Majumdar, Shantanu; Udpa, L.; Ramuhalli, Pradeep; Crawford, Susan L.; Diaz, Aaron A.; Anderson, Michael T.


    The objective of this work is to develop processing algorithms to detect and localize the flaws using NDE ultrasonic data. Data was collected using cast austenitic stainless steel (CASS) weld specimens on-loan from the U.S. nuclear power industry’s Pressurized Water Reactor Owners Group (PWROG) specimen set. Each specimen consists of a centrifugally cast stainless steel (CCSS) pipe section welded to a statically cast (SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection signals in the weld and heat affected zone of the base materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  10. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.


    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  11. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Ms. Deepika Harwani


    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  12. Soldadura de aceros dual phase en chapa fina: GMAW, PAW y RSW Welding of dual phase steel sheet: GMAW, PAW and RSW

    Hernán Svoboda


    Full Text Available Los aceros Dual Phase (DP han encontrado recientemente una fuerte aplicación en elementos estructurales en la industria automotriz, debido a la necesidad de disminuir peso. La soldadura de estos materiales cobra particular importancia considerando su aplicación estructural y los procesos relacionados en su fabricación. En particular la soldadura de resistencia por punto (RSW y semiautomática con alambre macizo y protección gaseosa (GMAW son ampliamente utilizados en la industria automotriz. El proceso de soldadura por plasma (PAW se caracteriza, entre los procesos de soldadura por arco, por ser el de mayor densidad de energía, presentando particular interés en aplicaciones de la industria automotriz (tailor welded blanks. El objetivo del presente trabajo fue estudiar la evolución microestructural y las propiedades de aceros DP soldados mediante los procesos RSW, GMAW y PAW. A este fin, se soldaron cuatro grados de aceros DP con resistencias mecánicas de 550, 700 y 850 MPa en espesores de 1 y 1,3 mm mediante los mencionados procesos. Se caracterizaron las microestructuras y se determinaron las propiedades mecánicas de las uniones soldadas para cada caso. Para los tres procesos se obtuvieron uniones soldadas de calidad satisfactoria. Se observó para todas las soldaduras, que en la ZAC se produce una disminución de la dureza por debajo del valor del material base, relacionada a la descomposición de la fase martensítica. Las soladuras por arco fueron las más afectadas.Dual Phase steels (DP have been used recently as an interesting option for structural elements, specialy in automotive industry, due to weight reduce requirements. Welding of these materials becomes particularly important considering their application as structural elements and the related manufacturing methods. In particular resistance spot welding (RSW and gas metal arc welding (GMAW are widely used in the automotive manufacturing. The plasma arc welding (PAW has the

  13. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  14. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  15. Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina

    Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido


    Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.

  16. Instructional Guidelines. Welding.

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  17. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....

  18. Magnetic Solid Phase Extraction Applied to Food Analysis

    Israel S. Ibarra


    Full Text Available Magnetic solid phase extraction has been used as pretreatment technique for the analysis of several compounds because of its advantages when it is compared with classic methods. This methodology is based on the use of magnetic solids as adsorbents for preconcentration of different analytes from complex matrices. Magnetic solid phase extraction minimizes the use of additional steps such as precipitation, centrifugation, and filtration which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique which were applied in food analysis.

  19. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T


    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  20. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  1. N-Acyliminium Intermediates in Solid-Phase Synthesis

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.


    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  2. Solid phase extraction method for determination of mitragynine in ...

    mitragynine in urine and its application to mitragynine excretion ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high performance .... solution of MG (1 mg/mL) which was further ... Facility, Prince of Songkla University and carried ..... d), which permit unrestricted use, distribution,.

  3. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    Rajan, S. Pandia; Kumaraswamidhas, L. A. [Indian Institute of Technology, Jharkhand (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamil Nadu (India); Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)


    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm.

  4. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    Topolov, Vitaly


    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  5. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    Guan, Shu-Hui; Liu, Zhi-Pan


    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  6. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...

  7. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Xiaoyan Lu


    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  8. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field.

    Ohtsuka, Hideyuki


    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed.

  9. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.


    Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent an actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and J grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s).

  10. Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics

    Hu, Haoyue; Eberhard, Peter


    Process simulations of conduction mode laser welding are performed using the meshless Lagrangian smoothed particle hydrodynamics (SPH) method. The solid phase is modeled based on the governing equations in thermoelasticity. For the liquid phase, surface tension effects are taken into account to simulate the melt flow in the weld pool, including the Marangoni force caused by a temperature-dependent surface tension gradient. A non-isothermal solid-liquid phase transition with the release or absorption of additional energy known as the latent heat of fusion is considered. The major heat transfer through conduction is modeled, whereas heat convection and radiation are neglected. The energy input from the laser beam is modeled as a Gaussian heat source acting on the initial material surface. The developed model is implemented in Pasimodo. Numerical results obtained with the model are presented for laser spot welding and seam welding of aluminum and iron. The change of process parameters like welding speed and laser power, and their effects on weld dimensions are investigated. Furthermore, simulations may be useful to obtain the threshold for deep penetration welding and to assess the overall welding quality. A scalability and performance analysis of the implemented SPH algorithm in Pasimodo is run in a shared memory environment. The analysis reveals the potential of large welding simulations on multi-core machines.

  11. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.


    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  12. Solid-phase techniques in blood transfusion serology.

    Beck, M L; Plapp, F V; Sinor, L T; Rachel, J M


    For nearly a century, erythrocyte agglutination has persisted as the most widely used method for the demonstration of antigen-antibody reaction in immunohematology. So far, no other system has been developed which can match its simplicity, versatility, and general reliability. The major disadvantage of agglutination reactions is the lack of an objective endpoint, which has severely hindered attempts to automate routine pretransfusion tests. To overcome this problem, we have designed a series of solid-phase assays for ABO and Rh grouping, antibody screening, compatibility, and hepatitis tests. Each of these solid-phase assays shares a common endpoint of red cell adherence, which is easily interpreted visually or spectrophotometrically. Computer interface permits the automatic interpretation and recording of results. We believe this solid-phase system should finally bring the blood bank laboratory into the age of automation.

  13. Bonding mechanisms in spot welded three layer combinations

    Moghadam, Marcel; Tiedje, Niels Skat; Seyyedian Choobi, Mahsa;


    this interface. It has been shown previously that such a joint can reach relatively high strength resulting in plug failure in tensileshear testing. Additional strength due to these bonding mechanisms is also obtained in common spot welds in the so-called corona band around the weld nugget.......The strength of a spot weld generally stems from fusion bonding of the metal layers, but other solid state bonding mechanisms also contribute to the overall strength. Metallographic analyses are presented to identify the phases formed near and across the weld interfaces and to identify...... the occurring bonding mechanisms. When welding a combination of three galvanized steel layers where one outer layer is a thin low-carbon steel it is a common challenge to obtain nugget penetration into the thin low-carbon steel. It therefore happens in real production that no nugget is formed across...

  14. Effect Of Dynamic Characteristics of Power Supplies on Aerosol Composition While Welding With Coated Electrodes

    Il'yaschenko, D. P.; Chinakhov, D. A.; Sadikov, I. D.


    In the context of a significant increase in production output and use of welding technologies in the manufacturing of engineering products the problem of hygienic characteristics of working conditions in arc fusion welding is becoming increasingly important. The work represents how the dynamic characteristics of a power supply affect the transfer of alloying elements from a coated electrode into a base metal, a slag phase and a solid component of welding fumes. Short-circuit current limiting in inverters reduces overheating of electrode metal drops by 15%; welding fumes quantitative component - to 38%; manganese - to 30%; thermal radiation intensity - by 37%.


    Yu-ying Li; Jia-song He


    Solid phase transition of the a form crystals to the β form crystals in syndiotactic polystyrene (sPS) samples has occurred in supercritical CO2. This transformation is different from those detected under other conditions. The effects of some factors (e.g. time, temperature, and pressure) on the solid phase transformation of sPS in supercritical CO2 were analyzed in detail. Experimental results show that longer time, higher temperature or higher pressure favors the transformation of the α form crystals to the β form crystals.

  16. Influence of Laser Welding Speed on the Morphology and Phases Occurring in Spray-Compacted Hypereutectic Al-Si-Alloys

    Thomas Gietzelt


    Full Text Available Normally, the weldability of aluminum alloys is ruled by the temperature range of solidification of an alloy according to its composition by the formation of hot cracks due to thermal shrinkage. However, for materials at nonequilibrium conditions, advantage can be taken by multiple phase formation, leading to an annihilation of temperature stress at the microscopic scale, preventing hot cracks even for alloys with extreme melting range. In this paper, several spray-compacted hypereutectic aluminum alloys were laser welded. Besides different silicon contents, additional alloying elements like copper, iron and nickel were present in some alloys, affecting the microstructure. The microstructure was investigated at the delivery state of spray-compacted material as well as for a wide range of welding speeds ranging from 0.5 to 10 m/min, respectively. The impact of speed on phase composition and morphology was studied at different disequilibrium solidification conditions. At high welding velocity, a close-meshed network of eutectic Al-Si-composition was observed, whereas the matrix is filled with nearly pure aluminum, helping to diminish the thermal stress during accelerated solidification. Primary solidified silicon was found, however, containing considerable amounts of aluminum, which was not expected from phase diagrams obtained at the thermodynamic equilibrium.

  17. Development of phased array ultrasonic testing in lieu of radiography for testing complete joint penetration (CJP) welds

    Haldipur, P.; Boone, Shane D.


    The past decade has seen new, emerging innovation of Ultrasonic Testing (UT). Specifically, multiple manufacturers have produced Phased Array Ultrasonic Testing (PAUT) systems. The PAUT systems embed a matrix of multiple (some up to 128) single transducers into one probe used for scanning elastic materials. Simultaneously exciting multiple transducers offers distinct advantages; depending on the sequencing of transducer excitation, the ultrasonic beam could be steered within the material and multiple beams help develop extra dimensional data to assist with visualization of possible flaws including the discontinuity size, shape and location. Unfortunately, there has not been broad acceptance of PAUT in the bridge fabrication industry because it is currently not a recognized inspection technology in AWS D1.5. One situation in which the technology would excel would be inspection of Complete Joint Penetration (CJP) butt welds. Currently, AWS D1.5 required CJP welds subjected to tensile or reversal stresses only be inspected by Radiographic Testing (RT). However, discontinuities normally seen by RT can also be seen with PAUT. Until specification language is adopted into D1.5, there will continue to be hesitancy to use PAUT for the inspection of CJP butt welds. Developmental work must first be performed to develop the acceptance criteria and the specification language. The developmental work from the inspections carried out on butt-weld specimens and transition butt-weld specimens are presented in this paper. Specific scan plans were developed using the ES-Beam simulation software for each of the test specimens. In depth analysis of PAUT data obtained to determine exact location and sizing information of the defects was performed. The results also present the comparison of results from PAUT to those obtained using conventional UT and radiography.

  18. Impact welding of foils by water jets

    Turgutlu, A.; Akyurt, M. [King Abdulaziz Univ., Jeddah (Saudi Arabia). Mechanical Engineering Dept.; Al-Hassani, S.T.S. [UMIST, Manchester (United Kingdom)


    Impact welding is a practical and economically feasible process for the solid-phase welding of similar and dissimilar metals. The versatile process is applicable to combinations of materials usually considered incompatible using more conventional joining methods. Thus, unlike with other spot welding methods, it is possible to use impact spot welding to join two metals of widely different melting points. Considerable research is needed to gain a thorough understanding of this process, its potential and possible new applications. Impact spot welding is similar to the familiar explosive welding process. Impact spot welding can be brought about by the action of a high-velocity object, such as projectile, on the material comprising the impacting object-target interface. The projectile impinging onto the top surface of a flyer plate at the target provides the energy of collision. Subsequently, the flyer plate moves with the projectile toward the base plate. A second impact occurs between the center of the bulge of the flyer plate and the base plate. The central collision of impact spreads radially out with an angle of collision. This oblique collision is an important feature of this process. The manner in which the flyer plate deforms due to the impact of a high-speed object is significant in defining spot welding geometry. The deformation is produced by a combination of elastic, plastic and hydrodynamic wave propagation involving normal, bending and shear stresses. Metallic materials are forcibly driven together by the use of an impactor in such a way that a strong metallurgical bond is formed. Therefore, the use of either explosives or impactors, which may be water jets or solid projectiles, is incidental. Bonding results, in general, only from the impact of the two or more materials. In this sense the resulting bonding may be called impact bonding instead of explosive bonding.

  19. Morphology and constitution of the phases in as-welded microstructure of austempered ductile iron

    Li, D.Y.; Zhou, Z.F.; Sun, D.Q.


    It was found by optical and electron microscopic examination of the microstructure of as-weld austempered ductile iron that the weld matrix is composed of austenite and bainite, the volume fractions of which were determined. In addition, the carbon content of austenite was measured and therefore the average carbon content of the matrix was calculated. In the matrix of the weld metal two types of bainite, bainite ferrite and lower bainite, were found. According to the morphology and distribution of the bainite plates, the nucleation and growth modes of bainite was inferred. (author)

  20. Fatigue of weld ends under combined in- and out-of-phase multiaxial loading

    E. Shams


    Full Text Available Weld start and end points are fatigue failure sensitive locations. Their fatigue behaviour especially in thin sheet structures under multiaxial load conditions is not sufficiently explored so far. Therefore, a research project was initiated to increase the knowledge concerning this topic, which is of special interest in the automotive industry. In the present study, fatigue tests on welded joints were conducted. In the numerical part of the study, notch stresses were calculated with an idealised weld end model. A numerical method which combines the geometrical and statistical size effect to an integrated approach was used, in order to consider the size effects

  1. Laser-induced solid-solid phase transition in As under pressure: a theoretical prediction

    Zijlstra, Eeuwe S; Huntemann, Nils; Garcia, Martin E [Theoretische Physik, Universitaet Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel (Germany)], E-mail:


    In arsenic, a pressure-induced solid-solid phase transition from the A7 into the simple cubic structure has been experimentally demonstrated (Beister et al 1990 Phys. Rev. B 41 5535). In this paper, we present calculations, which predict that this phase transition can also be induced by an ultrashort laser pulse in As under pressure. In addition, calculations for the pressure-induced phase transition are presented. Using density functional theory in the generalized gradient approximation, we found that the pressure-induced phase transition takes place at 26.3 GPa and is accompanied by a volume change {delta}V=0.5 a{sub 0}{sup 3} atom{sup -1}. The laser-induced phase transition is predicted for an applied pressure of 23.8 GPa and an absorbed laser energy of 2.8 mRy atom{sup -1}.

  2. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Recep Çakır


    Full Text Available Friction Stir Welding (FSW is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min with four different pin position (0-1-1.5-2 mm and three different weld speeds (20-30-50 mm/min by friction stir welding. The influence of welding parameters on microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine of mechanical properties. Nugget zone microstructures were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in energy-dispersive X-ray spectroscopy (EDX. Depending on the XRD analysis results intermetallic phase was observed to form in the interfacial region. In the tensile test results, 83.55% weld performance was obtained in the friction stir welding merge of Al-Cu.

  3. Phased Array - the path to future weld inspection?; Phased Array - der Weg zur zukuenftigen Schweissnahtpruefung?

    Koeppke, Gerd [HORA Holter Regelarmaturen GmbH und Co. KG, Schloss Holte-Stukenbrock (Germany)


    Although much has already been written and reported concerning phased-array inspection systems, practical implementation still remains in its infancy. A number of factors, such as customer-acceptance, for example, complicate the application of this modified ultrasonic inspection method. The following technical article examines the advantages and quality of this inspection procedure on the basis of a comparative test performed at Holter Regelarmaturen GmbH. (orig.)

  4. All solid-state SBS phase conjugate mirror

    Dane, C.B.; Hackel, L.A.


    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  5. Friction Stir Welding of Aluminum Alloys

    FU Zhi-hong; HE Di-qiu; WANG Hong


    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  6. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases

    Tolborg, Jakob Fjord; Petersen, Lars; Jensen, Knud Jørgen;


    Enzymatic approaches for the preparation of oligosaccharides are interesting alternatives to traditional chemical synthesis, the main advantage being the regio- and stereoselectivity offered without the need for protecting groups. The use of solid-phase techniques offers easy workup procedures an...

  7. Solid and solution phase combinatorial synthesis of ureas

    Nieuwenhuijzen, JW; Conti, PGM; Ottenheijm, HCJ; Linders, JTM


    An efficient parallel synthesis of ureas based on amino acids is described, both in solution and on solid phase. 1,1'-Carbonylbisbenzotriazole 2 is used as the coupling reagent. The ureas 5 and 10 were obtained in high yield (80-100%) and purity (71-97%). (C) 1998 Elsevier Science Ltd. All rights re

  8. Solid Phase Synthesis of Ethyl β-Substituted Indolepropionates

    刘占祥; 阮秀秀; 黄宪


    A facile solid phase synthesis of ethyl β-substituted indolepropionates is reported. Condensation between indole, polymer-supported cyclic malonic acid ester and aldehyde yielded the trimolecular adducts, which was cleaved by pyridine/EtOH to release the final products in good yield with high purity.

  9. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  10. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  11. Solid-phase synthesis of 3-amino-2-pyrazolines

    Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  12. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  13. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  14. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  15. Solid-phase microextraction for the analysis of biological samples

    Theodoridis, G; Koster, EHM; de Jong, GJ


    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a num

  16. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    Ely, T. M. [Washington River Protection Solutions LLC, Richland, WA (United States); LaMothe, M. E. [Washington River Protection Solutions LLC, Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC, Richland, WA (United States)


    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  17. Sensitive and fast mutation detection by solid phase chemical cleavage

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A


    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...

  18. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.


    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  19. Progress in High Brightness Solid-state Laser Welding%高亮度固体激光焊接研究进展

    肖荣诗; 邹江林; 吴世凯


    高亮度固体激光,特别是光纤激光以其光束质量高、加工柔性好、运行成本低等综合优势,吸引了国内外研究人员的广泛关注. 结合作者的研究工作,概括了高亮度固体激光焊接模式转变过程、羽辉特性、飞溅特性、深熔小孔壁形貌及孔内能量耦合等焊接物理过程方面的最新研究进展. 阐述了大厚板材超窄间隙激光焊、异种金属熔钎焊、激光电弧复合焊等焊接方法的最新研究.%High brightness solid-state lasers, especially the fiber laser, have received extensive attention all over the world owing to their favorable comprehensive advantages, such as high beam quality, high processing flexibility, and low operating cost. In this paper, some aspects on high brightness solid laser welding physical processes, such as the transition of welding mode, laser-induced plume, spatters, the micro-morphology of the keyhole wall and the energy coupling in the keyhole are reviewed. Additionally, some new welding methods, including ultra-narrow gap laser welding of heavy section, laser penetration brazing of dissimilar alloys, and laser-arc hybrid welding, are also reviewed.

  20. Phase field modeling of flexoelectricity in solid dielectrics

    Chen, H. T.; Zhang, S. D.; Soh, A. K.; Yin, W. Y.


    A phase field model is developed to study the flexoelectricity in nanoscale solid dielectrics, which exhibit both structural and elastic inhomogeneity. The model is established for an elastic homogeneous system by taking into consideration all the important non-local interactions, such as electrostatic, elastic, polarization gradient, as well as flexoelectric terms. The model is then extended to simulate a two-phase system with strong elastic inhomogeneity. Both the microscopic domain structures and the macroscopic effective piezoelectricity are thoroughly studied using the proposed model. The results obtained show that the largest flexoelectric induced polarization exists at the interface between the matrix and the inclusion. The effective piezoelectricity is greatly influenced by the inclusion size, volume fraction, elastic stiffness, and the applied stress. The established model in the present study can provide a fundamental framework for computational study of flexoelectricity in nanoscale solid dielectrics, since various boundary conditions can be easily incorporated into the phase field model.

  1. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.


    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  2. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey


    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  3. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Kistrup, Kasper, E-mail: [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)


    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  4. Ultrasonic Stir Welding

    Nabors, Sammy


    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. Thermo-Mechanical Processing in Friction Stir Welds

    Schneider, Judy


    Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.

  6. Method for laser spot welding monitoring

    Manassero, Giorgio


    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  7. Wave path calculation for phased array imaging to evaluate weld zone of elbow pipes (Conference Presentation)

    Park, Choon-Su; Park, Jin Kyu; Choi, Wonjae; Cho, Seunghyun; Kim, Dong-Yeol; Han, Ki Hyung


    It has long been non-destructively evaluated on weld joints of various pipes which are indispensable to most of industrial structures. Ultrasound evaluation has been used to detect flaws in welding joints, but some technical deficiencies still remain. Especially, ultrasound imaging on weld of elbow pipes has many challenging issues due to varying surface along circumferential direction. Conventional ultrasound imaging has particularly focused on ultrasonic wave propagation based on ray theory. This confines the incident angle and the position of an array transducer as well. Total focusing method (TFM), however, can provide not only high resolution images but also flexibility that enables to use ultrasonic waves to every direction that they can reach. This leads us to develop a method to get images of weld zone from an elbow part that curves. It is inevitable of each ultrasonic wave from the array transducer to transmit through different media and to be reflected from the boundary with angles along the curved surface. To form a correct PA image, careful calculation is made to ensure that time delay of receive-after-transmit is correctly shifted and summed even under non-planar boundary condition. Here, a method to calculate wave paths for the zone of interest at weld joint of an elbow pipe is presented. Numerical simulations of wave propagation on an elbow pipe are made to verify the proposed method. It is also experimentally demonstrated that the proposed method is well applied to various actual pipes that contains artificial flaws with a flexible wedge.

  8. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    Mitchell, A R


    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  9. Entransy dissipation minimization for liquid-solid phase change processes


    The liquid-solid phase change process of a simple one-dimensional slab is studied in this paper.By taking entransy dissipation minimization as optimization objective,the optimal external reservoir temperature profiles are derived by using optimal control theory under the condition of a fixed freezing or melting time.The entransy dissipation corresponding to the optimal heat exchange strategies of minimum entransy dissipation is 8/9 of that corresponding to constant reservoir temperature operations,which is independent of all system parameters.The obtained results for entransy dissipation minimization are also compared with those obtained for the optimal heat exchange strategies of minimum entropy generation and constant reservoir temperature operations by numerical examples.The obtained results can provide some theoretical guidelines for the choice of optimal cooling or heating strategy in practical liquid-solid phase change processes.

  10. Semi-automated microwave assisted solid-phase peptide synthesis

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  11. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S


    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed(-1) for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping o...

  13. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Tóth, Blanka; Horvai, George


    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  14. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  15. Simulating confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  16. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  17. Qualification of final closure for disposal container II - applicability of TOFD and phased array technique for overpack welding

    Asano, H.; Kawahara, K. [Radioactive Waste Management Funding and Research Center (RWMC) (Japan); Arakawa, T. [Ishikawajima-Harima Heavy Industries Co. Ltd. (Japan); Kurokawa, M. [Mitsubishi Heavy Industries Ltd. (Japan)


    With a focus on carbon steel, which is one of the candidate materials for the disposal container used in the geological disposal of high-level radioactive waste in Japan, the defect detection capabilities were examined regarding engineering defects of the TOFD technique, an ultrasonic testing method, and the phased array TOFD technique as non-destructive test techniques for the inspection of the weld of a carbon steel overpack. Regarding the TOFD technique, a measurement was conducted concerning the influence of the crossing angle of the ultrasonic beams on the capability of detect flaws, for examining the detection characteristics of the technique in relation to the lid structure of an overpack, and it was pointed out that it is appropriate to consider the lower tip of slit as the reference flaw. Based on the measurements and calculations regarding sound pressure distribution, projections about the scope covered by one test session were made and the optimum testing conditions were examined. Regarding the phased array TOFP technique, the detectability and quantification characteristics were investigated, and comparisons with those of the TOFD technique and the phased array UT technique were made. From the viewpoint of securing long-term corrosion resistance for an overpack, the ways of thinking for ensuring the quality and long-term integrity of the final sealing area of a disposal container were examined. This study stresses that identifying and defining the defects that are harmful to corrosion allowance is important as well as achieving improvements in the welding and testing techniques, and that the question to solve in particular from now on is how to establish effective means to detect defects on the weld surface and the near surface and how to approach the level of tolerance concerning the defects on and near the surface. (orig.)

  18. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail:


    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  19. Two phase continuous digestion of solid manure on-farm

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)


    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  20. Phase field modeling and simulation of three-phase flow on solid surfaces

    Zhang, Qian; Wang, Xiao-Ping


    Phase field models are widely used to describe the two-phase system. The evolution of the phase field variables is usually driven by the gradient flow of a total free energy functional. The generalization of the approach to an N phase (N ≥ 3) system requires some extra consistency conditions on the free energy functional in order for the model to give physically relevant results. A projection approach is proposed for the derivation of a consistent free energy functional for the three-phase Cahn-Hilliard equations. The system is then coupled with the Navier-Stokes equations to describe the three-phase flow on solid surfaces with moving contact line. An energy stable scheme is developed for the three-phase flow system. The discrete energy law of the numerical scheme is proved which ensures the stability of the scheme. We also show some numerical results for the dynamics of triple junctions and four phase contact lines.

  1. Finite element analysis of metallurgical phase transformations in AA 6056-T4 and their effects upon the residual stress and distortion states of a laser welded T-joint

    Zain-ul-abdein, Muhammad [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Nelias, Daniel, E-mail: daniel.nelias@insa-lyon.f [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Jullien, Jean-Francois [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621 (France); Boitout, Frederic; Dischert, Luc; Noe, Xavier [ESI Group Le Recamier 70, rue Robert 69458 Lyon Cedex 06 (France)


    Aircraft industry makes extensive use of aluminium alloy AA 6056-T4 in the fabrication of fuselage panels using laser beam welding technique. Since high temperatures are involved in the manufacturing process, the precipitation/dissolution occurrences are expected as solid state phase transformations. These transformations are likely to affect the residual distortion and stress states of the component. The present work investigates the effect of metallurgical phase transformations upon the residual stresses and distortions induced by laser beam welding in a T-joint configuration using the finite element method. Two separate models were studied using different finite element codes, where the first one describes a thermo-mechanical analysis using Abaqus; while the second one discusses a thermo-metallo-mechanical analysis using Sysweld. A comparative analysis of experimentally validated finite element models has been performed and the residual stress states with and without the metallurgical phase transformations are predicted. The results show that the inclusion of phase transformations has a negligible effect on predicted distortions, which are in agreement with the experimental data, but an effect on predicted residual stresses, although the experimentally measured residual stresses are not available to support the analyses.

  2. Studies on solid-solid phase transitions of polyols by infrared spectroscopy

    Feng, H.; Liu, X.; He, S.; Wu, K.; Zhang, J. [Department of Chemistry, Hebei Normal University, Shijiazhuang (China)


    This paper chiefly deals with the properties of polyols - a kind of energy storage material, by IR spectra. A series of infrared spectra at various temperatures were obtained for pentaerythritol (PE), pentaglycerine (PG), neopentylglycol (NPG) and their mixture NPG/PG. The experimental results (the shifts of -OH absorption band in IR spectra) support the solid-solid phase transition mechanism, which involves the reversible breaking of nearest-neighbor hydrogen bonds in the molecular crystals at transformation temperature. The correlation between the wave number shifts and the temperatures of phase transition is proposed in this paper. Finally, by means of infrared spectroscopy experiments, it is shown that aging has a great influence on the thermal properties of polyol mixtures.

  3. Solid-Phase Preparation and Characterization of Chitosan

    GaoLe-ping; DuYu-min; ZhangDao-bin; ShiXiao-wen; ZhanHuai-yu; SongWen-hua


    Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carborr13 magnetic resonance sperctroscopy (13C NMR). Chitosan with a deacetylation degree (DD) of 76. 1% was obtained at a mass ratio 0.2 : 1 : 1 for H20/chitin/NaOH at 160℃ for 12 mirL Compared to conventional solution method(usually 1 : 10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M. 1.54 X 10s ) was lower than that obtained by suspension method(Y2,Mw3. 34×105). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitirL It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13C NMR showed that structures of chitosans prepared by solid-phase method were not changed.

  4. Thermodynamic phase behavior of API/polymer solid dispersions.

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele


    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  5. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure Properties of the Al-Cu Butt Joint

    Sare Celik


    Full Text Available Friction Stir Welding (FSW is a solid-state welding process used for welding similar and dissimilar materials. FSW is especially suitable to join sheet Al alloys, and this technique allows different material couples to be welded continuously. In this study, 1050 Al alloys and commercially pure Cu were produced at three different tool rotation speeds (630, 1330, 2440 rpm and three different tool traverse speeds (20, 30, 50 mm/min with four different tool position (0, 1, 1.5, 2 mm by friction stir welding. The influence of the welding parameters on the microstructure and mechanical properties of the joints was investigated. Tensile and bending tests and microhardness measurements were used to determine the mechanical properties. The microstructures of the weld zone were investigated by optical microscope and scanning electron microscope (SEM and were analyzed in an energy dispersed spectrometer (EDS. Intermetallic phases were detected based on the X-ray diffraction (XRD analysis results that evaluated the formation of phases in the weld zone. When the welding performance of the friction stir welded butt joints was evaluated, the maximum value obtained was 89.55% with a 1330 rpm tool rotational speed, 20 mm/min traverse speed and a 1 mm tool position configuration. The higher tensile strength is attributed to the dispersion strengthening of the fine Cu particles distributed over the Al material in the stir zone region.

  6. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.


    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  7. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Wojda Marta


    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.



  9. Friction Stir Welding of ODS and RAFM Steels

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.


    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  10. The Behavior of Temperature Decreasing and Fraction Solid Increasing in Solid-Liquid Coexisting Zone in Solidification Process of Aluminum Alloy Weld Metal

    Shozaburo, Ohta; Kimioku, Asai; Musashi Institute of Technology


    It is the ultimate purpose of this investigation to elucidate the fundamental phenomena in cooling and solidification process and to establish reasonably the methos of estimating hot cracking sensitivity and preventing aluminum alloy weld from hot cracking. In this raport, temperature measurement was carried out by CA thermocouple in cooling and solidification process on TIG arc spot welds of commercial aluminum alloys 2024 and 5083 and various analyses were performed. On the basis of the mea...

  11. Solid Phase Peptide Synthesis of Fusukang for AIDS

    甘一如; 戴琦; 张雪竹; 高晨昊


    A 36-residue peptide is designed to cure acquired immunodeficiency syndrome(AIDS), and is synthesized by the manual solid phase peptide synthesis technique. Different reaction conditions of the synthesis process were discussed. Stirring efficiency of mechanics and nitrogen was compared. The mechanical method displays a predominant performance. Although the coupling efficiencies of diisopropylcarbodiimide(DIC) and dicyclohexylcarbodiimide(DCC) are virtually identical, DIC offers several advantages over DCC in practice due to different physical characters. Wash conditions after deprotection and coupling were investigated to monitor washing efficiency. 0.369 2 g crude peptide was obtained.

  12. Solid-phase colorimetric method for the quantification of fucoidan.

    Lee, Jung Min; Shin, Z-U; Mavlonov, Gafurjon T; Abdurakhmonov, Ibrokhim Y; Yi, Tae-Hoo


    We described the simple, selective, and rapid method for determination of fucoidans using methylene blue staining of sulfated polysaccharides, immobilized into filter paper and consequent optic density (at A (663) nm) measurement of the eluted dye from filter paper. This solid-phase method allows selective determination of 1-20 μg fucoidan in presence of potentially interfering compounds (alginic acid, DNA, salts, proteins, and detergents). Further, we demonstrated the alternative way of using image processing software for fucoidan quantification without extraction of methylene blue dye from stained spots of fucoidan-dye complex.


    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He


    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.


    Ning Yang; Wei Wang; Wei Ge; Jinghai Li


    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  15. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  16. Nucleation of the diamond phase in aluminium-solid solutions

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.


    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  17. Powder metallurgy: Solid and liquid phase sintering of copper

    Sheldon, Rex; Weiser, Martin W.


    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  18. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    Al-Sarraf, Z.; Lucas, M.


    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  19. A Brief Introduction to the Theory of Friction Stir Welding

    Nunes, Arthur C., Jr.


    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  20. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.


    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.

  1. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  2. Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L


    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  3. The role of solid-solid phase transitions in mantle convection

    Faccenda, Manuele; Dal Zilio, Luca


    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  4. Studies of phase transitions in the aripiprazole solid dosage form.

    Łaszcz, Marta; Witkowska, Anna


    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.

  5. Laser Impact Welding

    Daehn, Glenn S.; Lippold, John; Liu, Deijan; Taber, Geoff; Wang, Huimin


    Laser impact welding is a solid-state, collision-based welding process. In this process, laser-generated optical energy is converted to kinetic energy through the ablation at the surface and confinement of the gas generated between a flyer and backing plate. The launch of the flyer can be affected by many factors, for example, backing material, ablative layer, and flyer thickness. In this paper, the effect of three backing materials: glass, polycarbonate and cellophane tape, we...

  6. Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy

    Chen Guoqing; Zhang Binggang; He Jingshan; Feng Jicai


    The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti-43Al-9V-0.3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ+α2 two-phase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and cross-layered characteristic.

  7. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    Barsky, Eugene


    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  8. Temperature Histories of Structural Steel Welds Calculated Using Solidification-Boundary Constraints

    Lambrakos, S. G.


    Temperature histories of structural steel deep-penetration welds are presented, which are calculated using numerical-analytical basis functions and solidification-boundary constraints. These weld temperature histories can be adopted as input data to various types of computational procedures, which include numerical models for prediction of solid-state phase transformations and mechanical response. In addition, these temperature histories can be used parametrically for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes. The present study applies an inverse thermal analysis procedure that uses three-dimensional constraint conditions whose two-dimensional projections are mapped within transverse cross sections of experimentally measured solidification boundaries. In addition, the present study uses experimentally measured estimates of the heat effect zone edge to examine the consistency of calculated temperature histories for steel welds.

  9. Structural State of a Weld Formed in Aluminum Alloy by Friction Stir Welding and Treated by Ultrasound

    Klimenov, V. A.; Abzaev, Yu. A.; Potekaev, A. I.; Vlasov, V. A.; Klopotov, A. A.; Zaitsev, K. V.; Chumaevskii, A. V.; Porobova, S. A.; Grinkevich, L. S.; Tazin, I. D.; Tazin, D. I.


    The experimental data on structural state of an aluminum alloy, AlMg6, in the weld zone formed by friction stir welding are analyzed in order to evaluate the effect of its subsequent ultrasonic treatment. It is found that the crystal lattice transits into a low-stability state as a result of combined heat-induced and severe shear deformation. This transition is accompanied by considerable structural-phase changes that are manifested as an increased lattice parameter of the solid solution. This increase is caused by both high values of internal stresses and increased concentration of Mg atoms in the solid solution due to essential dissolution of the β-Al2Mg3 particles with the content of manganese higher than that in the matrix. This is accompanied by high-intensity diffusion and relaxation processes due to the low-stability state of crystal lattice (inhomogeneous stresses) in the weld zone.

  10. Prediction of Welding Residual Stress in 2. 25Cr-1Mo Steel Pipe


    A numerical analysis method was proposed to predict the welding residual stress in 2.25Cr-1Mo steel pipe considering solid-state phase transformations. A thermal elastic plastic finite element (FE) model considering effects of martensite transformation was developed based on commercial ABAQUS software. Continuous cooling transformation (CCT) diagrams were employed to simulate the fraction of martensite in fusion zone, coarsegrained heat affected zone and fine-grained heat affected zone. The Koistinen-Marburger relationship was used to trace the formation of martensite. The effects of both volume change and yield strength change due to phase transformation on welding residual stress were considered using the proposed FE model. The result shows that the phase transformation has significant effects on the welding residual stress in multi-pass butt weld of pipe. The predicted simulation results by the proposed numerical method are generally in good agreement with experimental results.

  11. Density functional theory study of phase IV of solid hydrogen

    Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.


    We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.

  12. Vapour phase synthesis of salol over solid acids via transesterification

    S Z Mohamed Shamshuddin; N Nagaraju


    The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flowrate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200°C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO$^{2-}_{4}$ or Mo(VI) ions. The effect of poisoning of acid sites of SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

  13. Welding Curriculum.

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  14. A contribution to phased array ultrasonic inspection of welds, part 3: sizing capability

    Ciorau, P. [Ontario Power Generation Inc., Inspection and Maintenance Services, Pickering, Ontario (Canada)], E-mail:


    Part 3 of the series presents the sizing capability for length, height, outer and inner ligament for specific implanted weld defects in training samples and mock-ups with thickness between 6.4-52 mm. It is discussed the influence of beam angle on sizing the lack of fusion defect. More than 50 implanted weld defects with 50% crack population were sized using high-frequency (5-10 MHz) linear array probes. The correlation between the design/manufacturer flaw size and PAUT data for length, height and ligament is graphically presented. It was concluded the length is oversized by 2-6 mm, height and inner ligament are undersized by 0.2 to 0.5 mm, and outer ligament is oversized by 0.5 mm. The sizing results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME Xl tolerances for performance demonstration and comparable to TOFD ideal tolerances. (author)

  15. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  16. Solid phase epitaxial regrowth of (001) anatase titanium dioxide

    Barlaz, David Eitan; Seebauer, Edmund G., E-mail: [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S Mathews Ave., Urbana, Illinois 61801 (United States)


    The growing interest in metal oxide based semiconductor technologies has driven the need to produce high quality epitaxial films of one metal oxide upon another. Largely unrecognized in synthetic efforts is that some metal oxides offer strongly polar surfaces and interfaces that require electrostatic stabilization to avoid a physically implausible divergence in the potential. The present work examines these issues for epitaxial growth of anatase TiO{sub 2} on strontium titanate (001). Solid phase epitaxial regrowth yields only the (001) facet, while direct crystalline growth by atomic layer deposition yields both the (112) and (001). The presence of amorphous TiO{sub 2} during regrowth may provide preferential stabilization for formation of the (001) facet.

  17. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    Ahn, Jaehyun, E-mail:; Koh, Donghyi; Roy, Anupam; Banerjee, Sanjay K., E-mail: [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Chou, Harry [Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Taegon [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Semiconductor R& D Center, Samsung Electronics Corporation, 1 Samsungjeonja-ro, Hwasung, Kyounggi 445-330 (Korea, Republic of); Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul 130-650 (Korea, Republic of)


    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  18. A rapid easy—to—perform solid phase digoxin radioimmunoassay

    LiBin; ZhouMei-Ying; 等


    A solid-phase-radioimmunoassay(SPRIA) for the monitoring of blood digoxin level has been developed,in which a secondary antibody-coated polystyrene tubes are used.This noval method seems to be simple to use and only takes about an half hour.The standard curve is linear from 0.25to 4μg/L.The sensitivity of the detection is 0.1μg/L.Reproducibility studies with 3 control sera of 0.5-2.5μg/L give intraassay CV<5% and interassay CV<10%.The specimens are measured and compared with those of the conventional radioimmunoassay and the values are well correlated(r=0.96,Y=1.022X+0.04μg/L)。

  19. Solid-phase synthesis of siRNA oligonucleotides.

    Beaucage, Serge L


    Since the discovery of RNA interference (RNAi) as a means to silence the expression of specific genes, small interfering RNA (siRNA) oligonucleotides have been recognized as powerful tools for targeting therapeutically important mRNAs and eliciting their destruction. This discovery has created a high demand for synthetic oligoribonucleotides as potential therapeutics and has spurred a renaissance in the development of rapid, efficient methods for solid-phase RNA synthesis. The design and implementation of 2'-hydroxyl protecting groups that provide ribonucleoside phosphoramidites with coupling kinetics and coupling efficiencies comparable to those of deoxyribonucleoside phosphoramidites are key to the production of RNA oligonucleotides in sufficient quantity and purity for pharmaceutical applications. In this context, various siRNAs were chemically modified to identify the biophysical and biochemical parameters necessary for effective and stable RNAi-mediated gene-silencing activities.

  20. New methods and materials for solid phase extraction and high performance liquid chromatography

    Dumont, Philip John [Iowa State Univ., Ames, IA (United States)


    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  1. Comparative solution and solid-phase glycosylations toward a disaccharide library

    Agoston, K.; Kröger, Lars; Agoston, Agnes


    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  2. Steady-state diffusion regime in solid-phase micro extraction kinetics

    Benhabib, K.; Laak, ter T.L.; Leeuwen, van H.P.


    The temporal evolution of diffusion-controlled analyte accumulation in solid-phase microextraction (SPME) is critically discussed in terms of the various aspects of steady-state diffusion in the two phases under conditions of fast exchange of the analyte at the solid phase film/water interface. For

  3. Solid-Phase Organic Chemistry: Synthesis of 2β-(HeterocyclylthiomethylPenam Derivatives on Solid Support

    Ernesto G. Mata


    Full Text Available The synthesis of 2β-(heterocyclylthiomethylpenam derivatives on solid support has been developed. Compounds are obtained in good to high yields (based on loading of the original resin. The key step is the solid-phase double rearrangement of the corresponding penicillin sulfoxide.

  4. Forming of aluminium alloy friction stir welds

    Bruni, Carlo


    The present paper aims at investigating, through analytical models, numerical models and experiments, the effect of the warm deformation phase, realised with an in temperature upsetting, on the weld previously performed by friction stir lap welding on aluminium alloy blanks. The investigation allows to show the deformation zones after upsetting that determine the homogenisation of the weld section. The analytical model allows to relate the friction factor with the upsetting load. The presence on the weld of not elevated friction factor values determines the deformation and localisation levels very useful for the weld. Such methodology allows to improve the weld itself with the forming phase.

  5. Development of novel solid-phase protein formulations

    Montalvo Ortiz, Brenda Liz

    Proteins are the next-generation drugs for the treatment of several diseases. However, the number of protein drugs is still limited due to the physical or chemical instability of proteins during processing, formulation, storage, and delivery. The formulation of proteins at the solid state has advantages over liquid state, such as improved stability during long-term storage and delivery and decreases transportation costs. In this dissertation, we developed new solid-phase protein formulations in which the integrity of the protein was not compromised. The long term goal of this research was to use these protein formulations to improve protein stability in drug delivery devices, such as poly(lactic-co-glycolic) acid (PLGA). The first solid-phase protein formulation developed in this investigation was named "glassification". We proposed glassification as an alternative protein dehydration technique to the common used one, lyophilization, because this last method involves a series of steps which are detrimental to protein structure and stability. The glassification method consisted on protein dehydration by the use of organic solvents. As a result of the glassification process a small (micrometer size range) protein solid bead was obtained. The proteins used to study the glassification process were lysozyme (LYS), alpha-chymotrypsin (CHYMO) and horseradish peroxidase (HRP). These studies revealed that the glassification process itself did not alter protein structure and the activity was preserved. Ethyl acetate was the most effective organic solvent for protein glassification because it led to the highest protein residual activity, no insoluble aggregate formation and is a relatively non-toxic solvent, which allow the incorporation of these protein microparticles in PLGA microspheres. The incorporation of spherical HRP microparticles into PLGA microspheres resulted in superior properties when compared with encapsulated lyophilized HRP powder, such as improved release

  6. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  7. Solid Phase Formylation of N-Terminus Peptides

    Anna Lucia Tornesello


    Full Text Available Formylation of amino groups is a critical reaction involved in several biological processes including post-translational modification of histones. The addition of a formyl group (CHO to the N-terminal end of a peptide chain generates biologically active molecules. N-formyl-peptides can be produced by different methods. We performed the N-formylation of two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6, carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with N,N-dicyclohexylcarbodiimmide (DCC in liquid phase. The overnight incubation at 4 °C resulted in a significant increase in production yields of formylated peptides compared to the reaction performed at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide chains or amino groups of lysine side-chains in solid phase.

  8. Immunochemical cross-reactivity between albumin and solid-phase adsorbed histamine

    Poulsen, L K; Nolte, H; Søndergaard, I


    For production of an antibody against histamine, this was coupled to human serum albumin (HSA) and used for immunization of rabbits. To test the antiserum, an immunoradiometric assay was developed comprising solid-phase bound histamine, antisera and radiolabelled protein A. Titration and inhibition...... experiments revealed that histamine adsorbed onto a solid-phase could bind the antiserum. However, neither free histamine nor histamine coupled to unrelated carriers could inhibit the binding of antiserum to the solid-phase histamine. Cross-reactivity was demonstrated between HSA and solid-phase bound...

  9. Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide

    Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul


    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

  10. The Effect of Tool Position for Aluminum and Copper at High Rotational Friction Stir Welding

    Recep Çakır; Sare Çelik


    Friction Stir Welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. This welding technique allows welding of Aluminum alloys which present difficulties in fusion joining and allows different material couples to be welded continuously. In this study, 1050 aluminum alloy and commercially pure copper to increase heat input were produced at high rotation rate (2440 rev/min) with four different pin position (0-1-1.5-2 mm) and three different weld speeds ...

  11. Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy

    陈俐; 巩水利; 姚伟; 胡伦骥


    The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to "X" shape, and weld of CO2 laser welding is "nail-head" shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO2 laser weld is a little finer than YAG laser weld. According the research CO2 laser is better than YAG laser for welding of BT20 titanium alloy.

  12. Experimental determination of the weld penetration evolution in keyhole plasma arc welding

    Hu Qingxian; Wu Chuansong; Zhang Yuming


    Keyhole plasma arc welding experiments are conducted to measure the weld geometry and penetration at different moments during the initial phase from igniting arc to quasi-steady state. Indirect information on keyhole formation and evolution in plasma arc welding can be extracted based on the weld macrophotograph at cross section. It has laid foundation to verify the mathematical models of keyhole plasma arc welding.

  13. Welding and Production Metallurgy Facility

    Federal Laboratory Consortium — This 6000 square foot facility represents the only welding laboratory of its kind within DA. It is capable of conducting investigations associated with solid state...

  14. Welding, Bonding and Fastening, 1984

    Buckley, J. D. (Editor); Stein, B. A. (Editor)


    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  15. The Investigation of Structure Heterogeneous Joint Welds in Pipelines

    Lyubimova Lyudmila


    Full Text Available Welding joints of dissimilar steels don’t withstand design life. One of the important causes of premature destructions can be the acceleration of steel structural degradation due to cyclic mechanical and thermal gradients. Two zones of tube from steel 12H18N9T, exhibiting the structural instability at early stages of the decomposition of a supersaturated solid austenite solution, were subjected to investigation. Methods of x-ray spectral and structure analysis, micro hardnessmetry were applied for the research. Made the following conclusions, inside and outside tube wall surfaces of hazardous zones in welding joint have different technological and resource characteristics. The microhardness very sensitive to changes of metal structure and can be regarded as integral characteristic of strength and ductility. The welding processes are responsible for the further fibering of tube wall structure, they impact to the characteristics of hot-resistance and long-term strength due to development of ring cracks in the welding joint of pipeline. The monitoring of microhardness and structural phase conversions can be used for control by changes of mechanical properties in result of post welding and reductive heat treatment of welding joints.

  16. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples.

    Yiantzi, Evangelia; Kalogerakis, Nicolas; Psillakis, Elefteria


    For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low K(H) present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1-400 ng g(-1) and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g(-1) and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target

  17. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders;


    -binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis......We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible...... phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis...

  18. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Torres López, Edwar A.; Ramirez, Antonio J


    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized u...

  19. Modeling the solid-liquid phase transition in saturated triglycerides

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick


    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  20. Preparation of Pt/C Catalyst with Solid Phase Reaction Method


    The Pt/C catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time. Its performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of Pt/C catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.

  1. An Evaluation of Global and Local Tensile Properties of Friction-Stir Welded DP980 Dual-Phase Steel Joints Using a Digital Image Correlation Method

    Hyoungwook Lee


    Full Text Available The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW dual-phase (DP steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ, but the presence of a soft zone in the heat-affected zone (HAZ was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM. The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.

  2. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    Manzoor, S; Buffon, R; Rossi, A V


    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively.

  3. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    Bente Mathiessen


    Full Text Available The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic sulfonates (69% and bromides (42%; the total radiosynthesis time was 35–45 min. The multivariate analysis showed that the radiochemical yields and purities were controlled by the resin load, reaction temperature, and column packing effects. The resins could be reused several times with the same or different substrates. The fully automated on-column radiofluorination methodology was applied to the radiosynthesis of the important PET radiotracers [18F]FLT and [18F]FDG. The latter was produced with 40% yield on a 120 GBq scale and passed GMP-regulated quality control required for commercial production of [18F]FDG. The combination of compact form factor, simplicity of [18F]F− recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.

  4. Binding of properdin to solid-phase immune complexes

    Junker, A; Baatrup, G; Svehag, S E


    The capacity of serum to support deposition of C3, properdin and factor B was studied by enzyme-linked immunosorbent assay using solid-phase immune complexes (IC) for activation of complement. Deposition of C3 and properdin occurred in fairly dilute normal human serum (NHS), but factor B uptake...... was hardly detectable. Alternative pathway-mediated deposition of C3 with slow kinetics was demonstrated in C2-deficient serum and in NHS depleted of C1q, factor D and properdin (C1qDP-depleted serum) after reconstitution with factor D and properdin. Efficient uptake of properdin required a functional...... classical pathway, in the presence of which C3 and properdin were rapidly deposited onto the IC. Judging from findings in C3-deficient serum, factor I-deficient serum, and C1qDPB-depleted serum, the uptake of properdin was strictly C3-dependent, and did not require the presence of factors B and D. Thus, C3b...

  5. Microwave heating in solid-phase peptide synthesis.

    Pedersen, Søren L; Tofteng, A Pernille; Malik, Leila; Jensen, Knud J


    The highly refined organic chemistry in solid-phase synthesis has made it the method of choice not only to assemble peptides but also small proteins - mainly on a laboratory scale but increasingly also on an industrial scale. While conductive heating occasionally has been applied to peptide synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(α)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially relevant for sequences which might form β-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating as such is not a panacea for all difficulties in peptide syntheses and the conditions may need to be adjusted for the incorporation of Cys, His and Asp in peptides, and for the synthesis of, for example, phosphopeptides, glycopeptides, and N-methylated peptides. Here we provide a comprehensive overview of the advances in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of β-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references).

  6. Ionic liquids in solid-phase microextraction: a review.

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L


    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  7. Solid-phase microextraction and the human fecal VOC metabolome.

    Emma Dixon

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  8. Phase I studies of porfiromycin (NSC--56410) in solid tumors.

    Grage, T B; Weiss, A J; Wilson, W; Reynolds, V


    Porfiromycin was given to a group of patients with a variety of solid tumors. Of 114 patients admitted to the study, 103 yielded evaluable data. The following dosage schedules were used to determine the toxicity of porfiromycin when given in multiple doses by intravenous injection: 0.2 mg/kg x 5 days, 0.3 mg/kg x 5 days, 0.35 mg/kg x 5 days, 0.4 mg/kg x 5 days, 0.24 mg/kg x 10 days and 0.6 mg/kg weekly. Toxic effects noted were mainly leukopenia, thrombocytopenia, and, when injected paravenously, local tissue necrosis. Biological effects were noted at all dosage levels and were more severe at the higher dosages. The data suggest that profiromycin administered intravenously at a dose of 0.35 mg/kg daily for 5 days results in moderate hermatological toxicity and clinical evaluation in a Phase II study at this dosage level is indicated.

  9. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Veronika Mäde


    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  10. Headspace solid-phase microextraction for wine volatile analysis.

    Azzi-Achkouty, Samar; Estephan, Nathalie; Ouaini, Naïm; Rutledge, Douglas N


    The most commonly used technique to prepare samples for the analysis of wine volatile is the headspace solid-phase microextraction (HS-SPME). This method has gained popularity in last few years, as it is a unique solventless preparation technique. In this paper, a summary of recently published studies using HS-SPME for the analysis of wine aromas, with special emphasis on the method developed, has been compiled. Several papers are discussed in detail, mainly with respect to the SPME conditions used. A brief summary of the reviews related to HS-SPME analysis is given and discussed. Several parameters affecting the HS-SPME, such as the salt concentration and the agitation conditions, are used in the same way as used in several papers. The HS-SPME extraction proved to be sufficiently sensitive to satisfy legislative requirements related to low detection and quantification limits as well as method accuracy and precision requirements. However, in order to achieve the best performance and precision, the protocol needs to be optimized for each case. The effect of different parameters must be well characterized to ensure correct extraction and desorption to ensure the transfer of extracted compounds into the analytical system. The operating parameters, such as time, temperature, and agitation, must then be kept constant for all the samples.

  11. Influence of heat treatments for laser welded semi solid metal cast A356 alloy on the fracture mode of tensile specimens

    Kunene, G


    Full Text Available . Sample Si Fe Cu Mn Mg Zn Ti Cr Sr Al A356 Literature Spec10 6.5 - 7.5 0.2 max. 0.20 max. 0.10 max. 0.25 - 0.45 0.10 max. 0.20 max. - - 0.30 max Bal. Virgin material 7.33 0.13 0.01 0.01 0... for Laser Welded Semi Solid Metal Cast A356 Alloy on the Fracture Mode of Tensile Specimens G. Kunene1, a, G. Govender1,b, L. Ivanchev1,c, R. Knutsen2,d and H. Burger3,e 1CSIR: Materials Science and Manufacturing, P.O. Box 395, Pretoria, 0001 South...

  12. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Sabina Luisa Campanelli; Giuseppe Casalino; Caterina Casavola; Vincenzo Moramarco


    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the we...

  13. 承插焊接接头超声相控阵检测技术%Ultrasonic Phased Array Inspection Technology of Socket Welded Joint

    罗宏建; 周重回; 张杰


    In order to inspect the imerior default of the socket welded joint, ultrasonic phased array was applied based on developing the artificial defect block. The advantage and the prospect of ultrasonic phased array inspecting in socket welded joint were discussesed.%针对承插焊接接头内部缺陷无法检测的难题,研制了人工模拟裂纹试块,制定了相控阵检测工艺,并分析了相控阵的检测结果,评述了相控阵检测该类结构的优势及其应用前景.

  14. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.


    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  15. An acid-stable tert-butyldiarylsilyl (TBDAS) linker for solid-phase organic synthesis.

    Diblasi, Christine M; Macks, Daniel E; Tan, Derek S


    [reaction: see text] A new, robust tert-butyldiarylsilyl (TBDAS) linker has been developed for solid-phase organic synthesis. This linker is stable to both protic and Lewis acidic reaction conditions, overcoming a significant limitation of previously reported silyl linkers. Solid-phase acetal deprotection, olefination, asymmetric allylation, and silyl protecting group deblocking reactions have been demonstrated with TBDAS-linked substrates.

  16. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...


    A. R. Koohpaei ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani


    Full Text Available Solid phase extraction is one of the major applications of molecularly imprinted polymers fields for clean-up of environmental and biological samples namely molecularly imprinted solid-phase extraction. In this study, solid phase extraction using the imprinted polymer has been optimized with the experimental design approach for a triazine herbicide, named atrazine with regard to the critical factors which influence the molecular imprinted solid phase extraction efficiency such as sample pH, concentration, flow-rate, volume, elution solvent, washing solvent and sorbent mass. Optimization methods that involve changing one factor at a time can be laborious. A novel approach for the optimization of imprinted solid-phase extraction using chemometrics is described. The factors were evaluated statistically and also validated with spiked water samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Also, in order to the evaluate efficiency of the optimized molecularly imprinted solid-phase extraction protocols, enrichment capacity, reusability and cross-reactivity of cartridges have been also evaluated. Finally, selective molecularly imprinted solid-phase extraction of atrazine was successfully demonstrated with a recovery above 90% for spiked drinking water samples. It was concluded that the chemometrics is frequently employed for analytical method optimization and based on the obtained results, it is believed that the central composite design could prove beneficial for aiding the molecularly imprinted polymer and molecularly imprinted solid-phase extraction development.

  18. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.;


    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formation...

  19. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    Long, Gary J.; Leighly, H. P., Jr.


    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  20. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    Baatrup, G; Jonsson, H; Sjöholm, A


    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were ...

  1. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    Schroeder, K. G.; Petroff, I. K.


    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  2. Weldability of AISI 304 to copper by friction welding

    Kirik, Ihsan [Batman Univ. (Turkey); Balalan, Zulkuf [Firat Univ., Elazig (Turkey)


    Friction welding is a solid-state welding method, which can join different materials smoothly and is excessively used in manufacturing industry. Friction welding method is commonly used in welding applications of especially cylindrical components, pipes and materials with different properties, for which other welding methods remain incapable. AISI 304 stainless steel and a copper alloy of 99.6 % purity were used in this study. This couple was welded in the friction welding machine. After the welding process, samples were analyzed macroscopically and microscopically, and their microhardness was measured. Tensile test was used to determine the bond strength of materials that were joined using the friction welding method. At the end of the study, it was observed that AISI 304 stainless steel and copper could be welded smoothly using the friction welding method and the bond strength is close to the tensile strength of copper. (orig.)

  3. Microstructure and properties of liquid film solution-diffusion welding interface for ZCuBe2.5 Alloy

    徐锦锋; 翟秋亚; 钱翰城


    The microstructures and properties of liquid film solution-diffusion welding interface for ZCuBe2.5 alloy have been studied using Cu-base powder. It reveals that the welding joint has high tensile strength up to 278 MPa,rational distribution of hardness and better matches with base materials in properties. Weld metal consists of the uniform and fine α-Cu equiaxed grain and intergranular Cu5.6 Sn phase. The weld is well combined with base materials. The transition solid solution combination interface with a thickness of 150 μm has been formed. In the processof stable welding, the thickness of interface appears to have an increase linearly with bonding time. In the cases of same bonding time, the thickness of interface increases with an increase of temperature gradient, which will become even more apparent with the increase of bonding time.

  4. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu; Susmita Paul


    Solid-phase organic synthesis (SPOS) and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i) al...

  5. Local Gas Phase Flow Characteristics of a Gas—Liquid—Solid Three—Phase Reversed Flow Jet Loop Reactor

    WENJianping; ChenYunlin; 等


    The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.

  6. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi


    Hydrophobic drug substances can be formulated as a solid dispersion or solution using macromolecular matrices with high glass transition temperatures to attain satisfactory dissolution. However, very few marketed products have previously relied on solid dispersion technology due to physical and chemical instability problems, and processing difficulties. In the present study, a modified release product of a therapeutic drug for hypertension, Barnidipine hydrochloride, was developed. The drug product consisted of solid dispersion based on a matrix of carboxymethylethylcellulose (CMEC), which was produced using the spray-coating method. An enteric coat layer was sprayed on the surface of the solid dispersion to control drug release. Interestingly, the release rate accelerated as the drug product aged, while there were no indications of deceleration of the release rate which was due to crystallization of the drug substance. To prevent changes in the dissolution kinetics during storage periods, a variety of processing conditions were tried. It was found that not only use of non-aqueous solvents but also a reduction in coating temperatures consistently resulted in stable solid dispersions. The molecular bases of dissolution of the drug substance from those matrices were investigated. The molecular weight of CMEC was found to be a dominant factor that determined dissolution kinetics, which followed zero-order release, suggesting an involvement of an osmotic pumping mechanism. While dissolution was faster using a higher molecular weight CMEC, the molecular weight of CMEC in the drug product slowly increased with aging (solid phase reaction) depending on the processing conditions, causing the time-induced elevation of dissolution. While no crystalline components were found in the solid dispersion, the amorphous structure maintained a degree of non-equilibrium by nature. Plasticization by water in the coating solution relaxed the amorphous system and facilitated phase

  7. Novel materials and methods for solid-phase extraction and liquid chromatography

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)


    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  8. Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents

    S.; Jack; HU


    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis-tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  9. Magnetohydrodynamic behaviors in a resistance spot weld nugget Under different welding currents

    LI YongBing; LIN ZhongQin; S. Jack HU; CHEN GuanLong


    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis- tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  10. Inverse Thermal Analysis of Alloy 690 Laser and Hybrid Laser-GMA Welds Using Solidification-Boundary Constraints

    Lambrakos, S. G.


    An inverse thermal analysis of Alloy 690 laser and hybrid laser-GMA welds is presented that uses numerical-analytical basis functions and boundary constraints based on measured solidification cross sections. In particular, the inverse analysis procedure uses three-dimensional constraint conditions such that two-dimensional projections of calculated solidification boundaries are constrained to map within experimentally measured solidification cross sections. Temperature histories calculated by this analysis are input data for computational procedures that predict solid-state phase transformations and mechanical response. These temperature histories can be used for inverse thermal analysis of welds corresponding to other welding processes whose process conditions are within similar regimes.

  11. Welding Technician

    Smith, Ken


    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  12. Repair welding process of friction stir welding groove defect

    LIU Hui-jie; ZHANG Hui-jie


    The groove defect formed in the friction stir welding dramatically deteriorates weld appearances and mechanical properties of the joints owing to its larger size and penetration. Therefore, the friction stir repair welding was utilized to remove such a groove defect, and the focus was placed on the mechanical properties and microstructural characteristics of the repair joints so as to obtain an optimum repair welding process. The experimental results indicate that the groove defect can be removed by friction stir repair welding, and the offset repair welding process is superior to the symmetrical repair welding process. In the symmetrical repair welding process, a large number of fine cavity defects and an obvious aggregation of hard-brittle phase Al2Cu occur, accordingly the mechanical properties of the repair joint are weakened, and the fracture feature of repair joint is partially brittle and partially plastic. A good-quality repair joint can be obtained by the offset repair welding process, and the repair joint is fractured near the interface between the weld nugget zone and thermal-mechanically affected zone.

  13. Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support

    Bachmann, Marcel; Avilov, Vjaceslav; Gumenyuk, Andrey; Rethmeier, Michael


    A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid-liquid phase transition were taken into account in this model. Solidification was modelled by the Carman-Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations.

  14. 实体单元焊点模型在前纵梁碰撞仿真中的应用%Application of spot weld model using solid element in simulation of front longitudinal beam crash

    杨济匡; 叶映台; 彭倩; 吴沈荣; 郭杰


    为了提高碰撞仿真中汽车前纵梁焊点的模拟精度,应用LS-DYNA软件,建立了壳单元模拟母材、单个实体单元模拟焊核和热影响区的焊点模型。母材材料特性及焊点失效参数分别通过板材拉伸试验及焊点杯形拉伸试验获得。采用数值KSⅡ试验对该焊点模型在母材网格不同偏置情况下的内力进行了研究。基于经验证的纵梁有限元模型对前纵梁碰撞进行了仿真,其有限元模型中分别应用了实体单元和梁单元。仿真结果与滑车试验结果就焊点的失效情况、纵梁的变形和滑车加速度等进行了比较。研究表明,用实体单元的焊点模型优于梁单元模型,结果可靠,精度高。%In order to improve the simulation accuracy of the weld spot of the front longitudinal beam in the vehicle crash simulation,a spot weld model using the shell element to simulate the parent material and the single solid element to simulate the weld nugget and its heat affected zone was built by means of the software LS-DYNA.The properties of the parent material and the failure parameters of the weld spot were acquired by tensile tests of the sheet and the weld spot cup respectively.The internal force of the spot weld model was investigated by the numerical KSII tests in various parent material mesh configurations.The simulations of the front longitudinal beam crash were performed by a validated finite element model of the longitudinal beam using spot weld models with sodid element and beam element respectively.The simulation results were compared with the sled test results in terms of the failure behavior of the spot weld,the deformation of the longitudinal beam and the acceleration of the sled.The study indicated that the spot weld model with solid element is better than that with beam element for better reliability and higher accuracy.

  15. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    WANG Hai-Yan; CHEN Yan; LIU Yu-Wen; LI Fei; LIU Jian-Hua; PENG Gui-Rong; WANG Wen-Kui


    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze.

  16. The importance of screening solid-state phases of a racemic modification of a chiral drug: thermodynamic and structural characterization of solid-state phases of etiracetam.

    Herman, Christelle; Vermylen, Valérie; Norberg, Bernadette; Wouters, Johan; Leyssens, Tom


    In this contribution different solid-state forms of the racemic compound (RS)-2-(2-oxo-pyrrolidin-1yl)-butyramide are studied from a structural and thermal point of view. Three different solid-state phases were identified, including two polymorphs and one hydrate phase. Comparison is made with the structure of the (S)-enantiomer, for which only one solid-state phase is known. The basic structural motif found in both polymorphs of the racemic compound is similar, but the basic motif observed for the hydrate differs. These synthons could in principle be used in future polymorph prediction studies to screen for possible alternative forms of the enantiopure compound. Based on the structure of the hydrate, further efforts should therefore be made in order to identify a hydrate structure of the enantiopure compound. Studying the different phases of a racemic compound can therefore help to guide polymorphic screening of an enantiopure compound.

  17. Solid and liquid phase equilibria and solid-hydrate formation in binary mixtures of water with amines

    车冠全; 彭文烈; 黄良恩; 古喜兰; 车飙


    Solid and liquid phase diagrams have been constructed for {water+triethylamine,or+N,N-dimethylformamide(DMF) or+N,N-dimethlacetamide (DMA)} Solid-hydrates form with the empirical formulae N(C2H5)3 3H2O,DMF 3H2O,DMF 2H2O,DMA 3H2O and (DMA)2 3H2O.All are congruently melting except the first which melts incongruently.The solid-hydrate formation is attributed to hydrogen bond.The results are compared with the references

  18. Solid phase epitaxial regrowth of (100)GaAs

    Almonte, Marlene Isabel [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering


    This thesis showed that low temperature (250°C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250°C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700°C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250°C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.

  19. Application of solid phase microextraction on dental composite resin analysis.

    Wang, Ven-Shing; Chang, Ta-Yuan; Lai, Chien-Chen; Chen, San-Yue; Huang, Long-Chen; Chao, Keh-Ping


    A direct immersion solid phase microextraction (DI-SPME) method was developed for the analysis of dentin monomers in saliva. Dentine monomers, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) and 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]-propane (Bis-GMA), have a high molecular weight and a low vapor pressure. The polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber with a medium polarity was employed for DI-SPME, and 215 nm of detection wavelength was found to be optimum in the chromatogram of HPLC measurement. The calibration range for DI-SPME was 0.30-300 μg/mL with correlation coefficients (r) greater than 0.998 for each analyte. The DI-SPME method achieved good accuracy (recovery 96.1-101.2%) and precision (2.30-8.15% CV) for both intra- and inter-day assays of quality control samples for three target compounds. Method validation was performed on standards dissolved in blank saliva, and there was no significant difference (p>0.2) between the DI-SPME method and the liquid injection method. However, the detection limit of DI-SPME was as low as 0.03, 0.27 and 0.06 μg/mL for TEGDMA, UDMA and Bis-GMA, respectively. Real sample analyses were performed on commercial dentin products after curing for the leaching measurement. In summary, DI-SPME is a more sensitive method that requires less sample pretreatment procedures to measure the resin materials leached in saliva.

  20. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)


    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  1. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.


    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  2. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R


    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  3. Solid rocket motor fire tests: Phases 1 and 2

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.


    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General

  4. Observation of Solid-Solid Phase Transitions in Ramp-Compressed Aluminum

    Polsin, D. N.; Boehly, T. R.; Delettrez, J. A.; Gregor, M. C.; McCoy, C. A.; Henderson, B.; Fratanduono, D. E.; Smith, R.; Kraus, R.; Eggert, J. H.; Collins, R.; Coppari, F.; Celliers, P. M.


    We present results of experiments using x-ray diffraction to study the crystalline structure of solid aluminum compressed up to 500 GPa. Aluminum is of interest because it is frequently used as a standard material in high-pressure compression experiments. At ambient pressure and temperature, Al is a face-centered cubic close-packed crystal and has been observed to transform to hexagonal close-packed (hcp) when compressed to 200GPa in a diamond anvil cell. It is predicted to transform from hcp to body-centered cubic when compressed to 315GPa. Laser-driven ramp waves will be used to compress Al to various constant-pressure states. The goal is to investigate the Al phase diagram along its isentrope, i.e., at temperatures 1000K and pressures ranging from 200 to 500 GPa. X-ray diffraction will be used to measure the crystalline structure of the compressed Al and observe the transformations that occur at various pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Laves phase in alloy 718 fusion zone — microscopic and calorimetric studies

    Manikandan, S.G.K., E-mail: [Indian Space Research Organization, India, (India); Sivakumar, D., E-mail: [Indian Space Research Organization, India, (India); Prasad Rao, K., E-mail: [University of Utah, Salt Lake City, UT (United States); Kamaraj, M., E-mail: [Indian Institute of Technology Madras (India)


    Microstructural characterization of alloy 718 fusion zone welded with both solid solution and age hardenable filler metal has been done. The microsegregation and the aging response were studied by employing three levels of weld cooling rate. Gas Tungsten Arc welding process was used. The fusion zone of solid solution filler metal has been responding to the aging treatment due to the weld process conditions and weld metal chemistry. However the weld metal composition was modified due to the higher molybdenum (Mo) content in solid solution filler metal. The effect of this modification on the phase reaction temperatures was studied and the same was compared with the conventional filler metal. - Graphical abstract: Display Omitted - Highlights: • Interdendritic segregation has been controlled by weld cooling rate. • Laves phase formation has been studied with cooling rate and weld metal chemistry. • Aging response with solid solution filler metal has been demonstrated. • Reduction in Laves phase and alloying element segregation has been confirmed. • Reaction temperatures were found modified because of Mo addition.

  6. Precipitation examination of δ, σ, and γ phases using modified Cr/Ni equivalent ratios during the multipass welding of stainless steels

    Lin, Dong-Yih; Hsieh, Chih-Chun


    The purpose of this study is to discuss the precipitation tendencies of δ, σ, and γ phases using a modified Cr/Ni equivalent ratio with 309L filler after welding dissimilar steels (SUS 304L and AISI 1017) while adding various Si contents of 0.25 wt.%, 0.45 wt.%, and 0.65 wt.% and hot rolling in AISI 309LSi stainless steels at 1200 °C for 2 h. The elemental compositions of δ, σ, and γ phases were performed by EDS in as-hot-rolled AISI 309LSi as well as dissimilar welded samples, and the Creq/Nieq ratios were calculated by Hammer & Svensson's equation. In this research, the Creq/Nieq of phase and matrix were presented as [Creq/Nieq]phase and [Creq/Nieq]matrix, respectively. The modified equation ([Creq/Nieq]modified) was equal to [Creq/Nieq]phase/[Creq/Nieq]matrix, and it was used to examine the effect of materials and processes in the δ, σ, and γ phases. The results indicated the Creq/Nieq ratios of the δ, σ, and γ phases were 2.557˜1.304, over 3.143, and 1.229, respectively.

  7. Resistance welding

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.


    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  8. Resistance welding

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.


    this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling......Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  9. Laser welding of advanced high strength steels

    Ahmed, Essam Ahmed Ali


    This research work focuses on characterization of CO2 laser beam welding (LBW) of dual phase (DP) and transformation induced plasticity (TRIP) steel sheets based on experimental, numerical simulation and statistical modeling approaches. The experimental work aimed to investigate the welding induced-microstructures, hardness, tensile properties and formability limit of laser welding butt joints of DP/DP, TRIP/TRIP and DP/TRIP steel sheets under different welding speeds. The effects of shieldin...

  10. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement.

    Yeo, Seul-Ki; Park, Jun-Boum; Ahn, Joo-Sung; Han, Young-Soo


    In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

  11. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W


    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  12. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change

    Huang, Rongzong; Wu, Huiying


    In this paper, phase interface effects, including the differences in thermophysical properties between solid and liquid phases and the numerical diffusion across phase interface, are investigated for the recently developed total enthalpy-based lattice Boltzmann model for solid-liquid phase change, which has high computational efficiency by avoiding iteration procedure and linear equation system solving. For the differences in thermophysical properties (thermal conductivity and specific heat) between solid and liquid phases, a novel reference specific heat is introduced to improve the total enthalpy-based lattice Boltzmann model, which makes the thermal conductivity and specific heat decoupled. Therefore, the differences in thermal conductivity and specific heat can be handled by the dimensionless relaxation time and equilibrium distribution function, respectively. As for the numerical diffusion across phase interface, it is revealed for the first time and found to be induced by solid-liquid phase change. To reduce such numerical diffusion, multiple-relaxation-time collision scheme is exploited, and a special value (one fourth) for the so-called "magic" parameter, a combination of two relaxation parameters, is found. Numerical tests show that the differences in thermophysical properties can be correctly handled and the numerical diffusion across phase interface can be dramatically reduced. Finally, theoretical analyses are carried out to offer insights into the roles of the reference specific heat and "magic" parameter in the treatments of phase interface effects.

  13. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    Mirihanage, W. U.; Di Michiel, M.; Mathiesen, R. H.


    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.

  14. [New welding processes and health effects of welding].

    La Vecchia, G Marina; Maestrelli, Piero


    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  15. Solid phase extraction and determination of carbamate pesticides in water samples by reverse-phase HPLC

    Moreno-Tovar, J.; Santos-Delgado, M.J. [Departamento de Quimica Analitica, Facultad de ciencias Quimicas, Universidad Complutense de Madrid (Spain)


    Solid phase extraction. SPE. using C{sub 1}8 bonded silica cartridges for trace amounts determination of carbaryl, propoxur, thiram, propham and methiocarb in water samples was studied and the breakthrough volume of the cartridges was established. The high enrichment factor and large injection volume admissible in the isocratic reverse-phase HPLC system allows pesticides determination with UV detection at 22o nm even at a concentration lower than 0.05 mug/L. Purified tap natural and underground water samples were spiked with carbamate pesticides in the concentration range 0.16-16.0 mug/L. Large volumes of samples (up to 2L) were passed through available C{sub 1}8, cartridges and eluted with acetonitrile. The preconcentrated samples were analyzed by HPLC using a Spherisorb ODS column with a 42.58 acetonitrile-water mobile phase. From replicate samples, recovery for the pesticides ranged from 79.0 to 103.7% except for thiran which is not retained. Tehe relative standard deviation (n=4 at 0.16 to 1.61 mug/L concetration level) range from 1.1 to 6.8%. (Author) 14 refs.

  16. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    Zimmermann, Claudia; Schaaf, Wolfgang


    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  17. Finite Element Modeling of the Inertia Friction Welding of Dissimilar High-Strength Steels

    Bennett, C. J.; Attallah, M. M.; Preuss, M.; Shipway, P. H.; Hyde, T. H.; Bray, S.


    Finite element (FE) process modeling of inertia friction welding between dissimilar high-strength steels, AerMet® 100 and SCMV, has been carried out using the DEFORM™-2D (v10.0) software. This model was validated against experimental data collected for a test weld performed between the materials; this included process data such as upset and rotational velocities as well as thermal data collected during the process using embedded thermocouples. The as-welded hoop residual stress from the FE model was also compared with experimental measurements taken on the welded component using synchrotron X-ray and neutron diffraction techniques. The modeling work considered the solid-state phase transformations which occur in the steels, and the trends in the residual stress data were well replicated by the model.

  18. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    Wu, Jiaqi, E-mail: [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States); Lee, Chin C. [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States)


    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  19. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    Cao, Guoping [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States)


    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-metallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved: 1. To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug; 2 Investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys; 3. Simulate the irradiation effects on the PWM weldments using ion irradiation.

  20. Solid phase precipitates in (Zr,Th)-OH-(oxalate, malonate) ternary aqueous system

    Kobayashi, T.; Sasaki, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering


    The solubility-limiting solid phases in the ternary aqueous systems of Zr(IV)/OH/oxalate, Zr(IV)/OH/malonate, Th(IV)/OH/oxalate and Th(IV)/OH/malonate were characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis and differential thermal analysis. The ternary solid phase of M(IV)/OH/carboxylate was observed to form, even under acidic conditions, depending on the pH and the concentration of carboxylate ligand. In the presence of a large excess of carboxylic acid, however; the binary M(IV)-carboxylate solid phase formed. (orig.)

  1. Design and Synthesis of a Dual Linker for Solid Phase Synthesis of Oleanolic Acid Derivatives

    Shaorong Wang


    Full Text Available A hydrophilic amino-terminated poly(ethylene glycol-type dual linker for solid phase synthesis of oleanolic acid derivatives using trityl chloride resin was designed and synthesized for the first time. Model reactions in both liquid and solid phase were performed to show the feasibility of its selective cleavage at two different sites. The biological assay results indicated that the long and flexible alkyl ether functionality in the linker is less likely to be critical for the binding event. Following the successful solid-phase synthesis of model compounds, the potential of this dual linker in reaction monitoring and target identification is deemed worthy of further study.

  2. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    Cao, M; Monson, P A


    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  3. Liquid phase sintering, II: Computer study of skeletal settling and solid phase extrication in a microgravity environment

    Nikolić Z.S.


    Full Text Available A two-dimensional numerical method based on the Brownian motion model and on the Densification model for simulation of liquid phase sintering in microgravity environment will be developed. Both models will be based on domain topology (two-dimensional particle representation and control volume methodology and on three submodels for domain translation, solid skeleton formation and domain extrication. This method will be tested in order to conduct a study of diffusion phenomena and microgravitational effects on microstructural evolution influenced by skeletal settling combined with solid-phase extrication during liquid phase sintering of porous W-Ni system.

  4. Soldadura (Welding). Spanish Translations for Welding.

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  5. Some Studies of Optimal Process Parameters For Solid Wire Gas Metal Arc Welding Using Neural Network Technique And Simulation Using Ansys

    Saritprava Sahoo


    Full Text Available GMAW (Gas Metal Arc Welding is an arc welding process which is widely used in industry to join the metals. In this present work we have investigated the effect of varying welding parameters on the weld bead quality of Mild Steel flat having 12mm thickness. The chosen input parameters for the study are Welding Voltage, Welding Current and the travel speed of welding torch. The output parameters chosen are Weld Bead Width, Weld Bead Height, Depth of Penetration and Depth of Heat Affected Zone (HAZ. The four levels of experimental set-ups for each of the input parameters are considered and other process parameters are kept constant for the study. Hence the total numbers of experimental set-ups are 64 and the corresponding values of output parameters are found. As this is a Multi-Response Problem, it is being optimized to Single-Response Problem using Weighted Principal Components (WPC Method. Artificial Neural Networks (sANN, Error Back Propagation Procedure is being used for the prediction of optimal process parameters for GMAW process in this present work. The finite element analysis of residual stresses in butt welding of two similar plates is performed with the ANSYS software.

  6. Different types of cracking of P91 steel weld joints after long-term creep tests

    Jandova, D.; Kasl, J.; Chvostova, E. (SKODA VYZKUM s.r.o., Plzen (Czech Republic))


    This paper deals with creep testing and microstructural investigation of trial weld joints prepared of wrought and cast 9Cr-1Mo-V steels using GTAW & SMAW method. Creep testing was carried out at temperature range from 525 degC to 625 degC, the longest time to rupture of 45 811 hrs was achieved. The creep strengths of weld joints for 100 000 hrs were calculated. Different types of cracking were observed in dependency on conditions of creep test and the type of weld joint. Type 1 and Type 2 fractures occurred at high applied stress at relatively low temperatures in the tube weld joint and also in two speciments of the cast plate weld joint after creep test at the lowest temperature and the highest temperature. All other fractures were of the Type 4. Causes of different fracture location in tested weld joints were elucidated on the base of substructure evolution in individual zones - the weld metal, the heat affected zone and the base material. Two processes occur simultaneously, which result in the creep damage: (i) softening of solid solution as a result of Laves phase precipitation and (ii) formation and coalescence of cavities in the soft fine grained parts of heat affected zone. (orig.)

  7. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu


    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  8. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy

    Koumoulos, E.P. [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Charitidis, C.A., E-mail: [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Daniolos, N.M.; Pantelis, D.I. [National Technical University of Athens, Department of Naval Architecture and Marine Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece)


    Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.

  9. Microstructural and Phase Composition Differences Across the Interfaces in Al/Ti/Al Explosively Welded Clads

    Fronczek, Dagmara Malgorzata; Chulist, Robert; Litynska-Dobrzynska, Lidia; Lopez, Gabriel Alejandro; Wierzbicka-Miernik, Anna; Schell, Norbert; Szulc, Zygmunt; Wojewoda-Budka, Joanna


    The microstructure and phase composition of Al/Ti/Al interfaces with respect to their localization were investigated. An aluminum-flyer plate exhibited finer grains located close to the upper interface than those present within the aluminum-base plate. The same tendency, but with a higher number of twins, was observed for titanium. Good quality bonding with a wavy shape and four intermetallic phases, namely, TiAl3, TiAl, TiAl2, and Ti3Al, was only obtained at the interface closer to the explosive material. The other interface was planar with three intermetallic compounds, excluding the metastable TiAl2 phase. As a result of a 100-hour annealing at 903 K (630 °C), an Al/TiAl3/Ti/TiAl3/Al sandwich was manufactured, formed with single crystalline Al layers. A substantial difference between the intermetallic layer thicknesses was measured, with 235.3 and 167.4 µm obtained for the layers corresponding to the upper and lower interfaces, respectively. An examination by transmission electron microscopy of a thin foil taken from the interface area after a 1-hour annealing at 825 K (552 °C) showed a mixture of randomly located TiAl3 grains within the aluminum. Finally, the hardness results were correlated with the microstructural changes across the samples.

  10. Silica supported Fe(3)O(4) magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds.

    Moliner-Martinez, Y; Vitta, Yosmery; Prima-Garcia, Helena; González-Fuenzalida, R A; Ribera, Antonio; Campíns-Falcó, P; Coronado, Eugenio


    This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.

  11. Phase nucleation and evolution mechanisms in heterogeneous solids

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed


    Correy, T.B.


    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  13. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;


    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  14. Study on New Sensitive Method of Determination of Phosphorus by Solid Phase Spectrophotometry


    The use of solid phase spectrophotometry for the determination of trace phosphorus in the system of phosphomolybdate-fructose is described. The adsorption of the system on anion-exchange resin is reported.

  15. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N


    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  16. Design and Solid-Phase Synthesis of Multiple Muramyl Dipeptide (MMD)


    As a non-specific modulator of macrophage, multiplied muramyl dipeptide (MMD) is solid-phase synthesized by application of standard Fmoc chemistry strategy. Tam's multiple antigen system (MAS) is used as our four branched-linker on Lysine.

  17. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  18. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid phas

  19. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    de Jong, GJ; Koster, EHM


    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused s

  20. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio


    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  1. Solid Phase Equilibria in the Pi-Ga-As and Pt-Ga-Sb Systems


    OFFICE OF NAVAL RESEARCH Research Contract N00014-87-K-0014 R&T Code 413E026---01 AD-A 198 654 TECHNICAL REPORT No. 9 SOLID PHASE EQUILIBRIA IN THE...Classtcation) UNCLASSLFIED: Tech.Rept.#9 SOLID PHASE EQUILIBRIA IN T11: Pt-Ga-As AND Pt-Ga-Sb SYST’IS 12 PERSONAL AuTiOR(S) C.T. Tsai and R.S. Williats 13a TYPE

  2. Molecularly imprinted polymers: New molecular recognition materials for selective solid-phase extraction of organic compounds

    Martín Esteban, A.


    During the last few years molecularly imprinted polymers have appeared as new selective sorbents for solid-phase extraction of organic compounds in different samples. Molecular imprinting technology involves the preparation of a polymer with specific recognition sites for certain molecules. Once the polymer has been obtained, it can be used in solid-phase extraction protocols, where a careful selection of the most appropriate solvents to be used in the different steps (sample loading, washing...

  3. Expedient protocol for solid-phase synthesis of secondary and tertiary amines

    Olsen, Christian A; Witt, Matthias; Jaroszewski, Jerzy W


    [reaction: see text] An expedient solid-phase synthetic approach to secondary and tertiary amines was developed. The protocol employs conversion of resin-bound amino alcohols to the corresponding iodides, followed by iodide displacement with primary or secondary amines or with unprotected amino...... alcohols. This two-step procedure, affording products in good to excellent yields, is suitable for solid-phase synthesis of polyamines....

  4. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    Hemley, R. J.; Mao, H. K.


    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  5. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian


    regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four...... four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach....

  6. Damage Tolerance Assessment of Friction Pull Plug Welds

    McGill, Preston; Burkholder, Jonathan


    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  7. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao


    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of Specific Features of Twin Arc Welding on Properties of Weld Joints

    Sholokhov, M. A.; Melnikov, A. U.; Fiveyskiy, A. M.


    The present article covers the influence of standard and narrow gap twin arc welding on properties of weld joints from high-strength steels. While analyzing microsections we established that distribution of micro structure and phase terms, as well the distribution of micro-hardness, were more homogeneous under narrow gap twin arc welding.

  9. Solid-Phase Synthesis of PEGylated Lipopeptides Using Click Chemistry

    Jølck, Rasmus Irming; Berg, Rolf Henrik; Andresen, Thomas Lars


    A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC “Click” conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides...

  10. Micro-mechanical properties of 2219 welded joints with twin wire welding

    Xu Wenli; Li Qingfen; Meng Qingguo; Fang Hongyuan; Gao Na


    Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure.Experimental results show that in weld zone, micro-mechanical properties are seriously uneven.Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus.The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone.As far as the whole welded joint is concerned,metal in weld possesses the lowest hardness.For welded specimens without reinforcement, fracture position is the weld when tensioning.While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%.So, it is necessary to strengthen the poor positions-weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.

  11. The advantages of using activated flux-cored wire compared to solid wire in the MAG welding process from the aspect of metallurgical characteristics

    N. Bajić


    Full Text Available This paper analyzes, from the metallurgical aspect, the quality of the new flux-cored wire intended for the MAG welding process in function of changes in shielding gas composition and changes in welding parameters. The results of comparative analysis of the microstructure of the weld metal and Heat Affected Zone (HAZ allow drawing conclusions about the feasibility of introducing a new quality flux-cored wire in industrial applications.

  12. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.


    In this investigation, non-destructive and destructive testing were used to evaluate potential boric acid leakage paths around an Alloy 600 CRDM penetration (Nozzle 63) from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2003. For this investigation, Nozzle 63 was examined using phased array ultrasonic testing. Prior to examining Nozzle 63, a CRDM penetration mockup with known notches and boric acid deposits was used to assess probe sensitivity, resolution and calibration. Following the non-destructive testing of Nozzle 63, the nozzle was destructively examined to visually assess the leak paths. These destructive and nondestructive results are compared and results are presented. The results of this investigation may be used by NRC to evaluate licensees’ volumetric leak path assessment methodologies and to support regulatory inspection requirements.

  13. Direct MD simulation of liquid-solid phase equilibria for two-component plasmas

    Schneider, A S; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 55296 ion simulations and compare to earlier 27648 ion results. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. We find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite size and non-equilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known.

  14. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow


    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  15. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon


    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  16. Evaporation induced orientational order in soft solid phases of clays

    Lindbo Hansen, Elisabeth; Hemmen, Henrik; Dommersnes, Paul; Fossum, Jon Otto


    We demonstrate experimentally the possibility for promoting uniaxial orientational order in initially isotropic, soft solid dispersions of the synthetic clays Na-fluorohectorite and Laponite RD. We observe that strong orientational order can emerge from initially isotropic states when the samples are subjected to a slow concentration increase through evaporation of the dispersion water. During evaporation, there is a gradient in the order which, if evaporation is halted, slowly relaxes towards a uniform order throughout the samples. It is evident that the development of orientational order is not counterindicated by the viscoelastic nature of the samples, and that although the translational and likely also rotational diffusion of the particles is restricted in the soft solid state, the orientational degree of freedom can undergo a transition from a collectively random to an ordered state.

  17. 转轮焊缝相控阵超声检测工艺研究%Study on Ultrasonic Testing Technology for Runner Weld Phased Array

    肖凯; 李晓红; 马庆增


    针对常规超声检测方法在进行三维多变断面转轮焊缝检测时存在的局限性,介绍了相控阵超声检测技术的特点。根据转轮焊缝容易出现的缺陷类型制作了模拟试块,设计超声相控阵检测工艺并进行检测,对检出缺陷进行常规超声检测验证。结果表明,超声相控阵技术可明显提高检测效率及检出能力,但对位向不好的层间未熔合,仍需配合直探头在焊缝弧面进行补充检测。%Aiming at existing boundedness of conventional ultrasonic testing method in testing 3D changeable cross-section runner weld,this paper introduces features of phased array ultrasonic testing technology.According to defect types easy to appear of runner weld,it makes simulation samples and designs ultrasonic phased array testing technology to test detected de-fects and proceed conventional ultrasonic testing verification.The result indicates that ultrasonic phased array technology is obviously able to improve testing effectiveness and detecting ability but it is not able to finish fuse of interlamination of bad exposure.Thus,it is necessary to carry out supplementary testing on the weld cambered surface by coordinating with normal probe.

  18. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Mijajlović Miroslav M.


    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  19. New insights in Microbial Fuel Cells: novel solid phase anolyte

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia


    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  20. Solid-liquid phase diagram of disubstituted benzene systems

    黑恩成; 刘国杰


    The cooling curves of different compositions of the systems of ortho-chlorotoluene/para-chlorotoluene and ortho-nitrochlorobenzene/para-nitrochlorobenzene are carefully determined by the thermal analysis method. The crystals obtained are also tested. The conclusion that both systems are of simple eutectic diagram but not the solid solution diagram with a minimum melting point is confirmed. The characteristics of the diagram are explained according to the physical and thermodynarmc properties of the components.

  1. Phase transition of solid bismuth under high pressure

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan


    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  2. Effect of shear stress in ferroelectric solid solutions with coexisting phases

    Lu, Xiaoyan; Zhang, Hangbo; Zheng, Limei; Cao, Wenwu


    One common feature of ferroelectric solid solutions with large piezoelectricity is the coexistence of two or more phases. Due to the strain mismatch among coexisting phases, adaptive structures near the interfaces or domain walls develop to maintain the atomic coherency. Shear stresses commonly exist, especially when the domain size is small. The effect of shear stresses on phase morphology in Pb(Zr1-xTix)O3 solid solutions with compositions within the morphotropic phase boundary region was studied within the framework of Landau phenomenological theory. Our results show that the coexisting rhombohedral (R) and tetragonal (T) phases can be modified to form stable or metastable R-like and/or T-like monoclinic phases under shear stresses. Large stresses may also induce first order or second order phase transitions.

  3. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    Eldrup, Morten Mostgaard


    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  4. Solid-liquid phase equilibria of the Gaussian core model fluid.

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J


    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  5. Study of solid solution strengthening of alloying element with phase structure factors


    Using the empirical electron theory of solids and molecules (EET), the phase structure factors, nA and nB, of the carbon-containing structural units with mass fraction of carbon (wC) below 0.8% and the mono-alloy structural units with wC at 0.2% in austenite and martensite are calculated. The solid solution strengthening brought by C-containing interstitial solid solution and alloy-substitutional solid solution in γ-Fe and α-Fe is discussed at electron structural level. The coefficient (s) of solid solution strengthening is advanced according to the bonding force between atoms. The study shows that when the criterion is applied to the carbonaceous or alloying element-containing solid solution the results of calculation will coincide with the experimental result very well.

  6. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Pan, Yi; Lados, Diana A.


    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  7. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    Pan, Yi; Lados, Diana A.


    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.

  8. Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Xiao, Jianzhong; Jiang, Ping


    The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model of thermoelectric phenomena in the fiber laser welding of austenite stainless steel and used it to observe the time-dependent evolutions of TECs for the first time. Our model includes the complex physical effects of thermal, electromagnetic, fluid and phase transformation dynamics occurring at the millimeter laser ablated zone, which allowed us to simulate the TEC, self-induced magnetic field, Lorentz force, keyhole and weld pool behaviors varying with the welding time for different parameters. We found that TECs are truly three-dimensional, time-dependent, and uneven with a maximum current density of around 107 A/m2 located at the liquid-solid (L/S) interface near the front or bottom part of the keyhole at a laser power of 1.5 kW and a welding speed of 3 m/min. The TEC formed three-dimensional circulations moving from the melting front to solidification front in the solid part of workpiece, after which the contrary direction was followed in the liquid part. High frequency oscillation characteristics (2.2-8.5 kHz) were demonstrated in the TEC, which coincides with that of the keyhole instability (2.0-5.0 kHz). The magnitude of the self-induced magnetic field and Lorentz force can reach 0.1 mT and 1 kN/m3, respectively, which are both consistent with literature data. The predicted results of the weld dimensions by the proposed model agree well with the experimental results. Our findings could enhance the fundamental understanding of thermoelectric phenomena in laser welding.

  9. Determination of Roxarsone in feeds using solid phase extraction and liquid chromatography with ultraviolet detection.

    Sapp, R E; Davidson, S


    A method is presented for detection and quantitation of Roxarsone in poultry feed by liquid chromatography. The drug is extracted by phosphate buffer and determined by solid phase extraction and reversed-phase liquid chromatography. Recoveries of the sample spikes and fortified field samples agree closely with those obtained by the standard spectrophotometric method.


    TANG Xuelin; QIAN Zhongdong; WU Yulin


    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  11. Traveling waves for models of phase transitions of solids driven by configurational forces

    Kawashima, Shuichi


    This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transformations of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models are recently proposed by Alber and Zhu. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transformations in elastic solids.

  12. Density-functional theory of a lattice-gas model with vapour, liquid, and solid phases

    Prestipino, S.; Giaquinta, P. V.


    We use the classical version of the density-functional theory in the weighted-density approximation to build up the entire phase diagram and the interface structure of a two-dimensional lattice-gas model which is known, from previous studies, to possess three stable phases -- solid, liquid, and vapour. Following the common practice, the attractive part of the potential is treated in a mean-field-like fashion, although with different prescriptions for the solid and the fluid phases. It turns o...

  13. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Russell, Sam; Nettles, Mindy


    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  14. Effect of friction stir welding parameters on defect formation

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.


    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  15. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)


    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  16. Detecting Lesch-Nyhan syndrome by solid phase primer extension

    Shumaker, J.M.; Caskey, C.T. [Baylor College of Medicine, Houston, TX (United States); Metspalu, A.


    A mutation detection method based upon the wild type human HPRT sequence is presented for identification of Lesch Nyhan syndrome. The technique consists of performing a biotinlyated PCR amplification of the region of interest, followed by isolation and purification of single stranded template using magnetic separation. Allele-specific primers are annealed adjacent to the potential mutation site on the template. A terminal fluorescent deoxynucleotide addition is performed with a DNA template-dependent polymerase to distinguish between the mutant and wild-type sequence. The products are purified from unincorporated ddNTPs, eluted and finally analyzed on an ABI 373 to identify the mutation. The length of an extension primer is used as a position signature for mutations. The fidelity of nucleotide incorporation provides an excellent signal-to-noise ratio for the detection of nine HPRT mutations within eight cell lines. This method should detect all types of mutations except for repeated sequences that are longer than the primers. Moreover, the method is being extended to a solid support assay, whereby the extension primers are attached to a two-dimensional glass surface. Following extension, the solid support is analyzed for radioactive incorporation. We have shown the sequence determination of a five base region of a wild-type sequence and two different HPRT mutations. As more dense oligonucleotide arrays are produced, this method could be extended to sequence the complete coding region of HPRT.

  17. Pentaerythrityltetramine scaffolds for solid-phase combinatorial chemistry.

    Virta, Pasi; Leppänen, Marika; Lönnberg, Harri


    Straightforward synthesis for two pentaerythrityltetramine precursors, 2,2-bis(azidomethyl)propane-1,3-diamine (1) and 2-[N-(allyloxycarbonyl)aminomethyl]-2-azidomethylpropane-1,3-diamine (2), has been described. Both propane-1,3-diamines have been attached by reductive amination to a solid-supported backbone amide linker derived from 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid. The presence of the two methoxy substituents on the linker is essential to avoid cross-linking between two linkers. The remaining free primary amino group of the propane-1,3-diamine moiety may then be selectively acylated with an appropriately protected amino acid using conventional N,N-dicyclohexylcarbodiimide/1-hydroxybenzotriazole (DCC/HOBt) activation without any interference by the secondary amino function. The latter group may be subsequently acylated by an anhydride method. Sequential reduction of the azido group and removal of the allyloxycarbonyl protection from 2 allow further coupling of two different amino acids, and hence, this handle may be utilized in construction of branched structures containing four different amino acids or peptides. Solid-supported 1 may, in turn, be used for the synthesis of similar constructs containing two identical branches. It is worth noting that no acid-labile protecting groups are required in this approach, and hence, this dimension may be saved for the cleavage of the linker. The applicability of the scaffolds to library synthesis has been demonstrated by preparation of 11 pentaerythrityl-branched tetra- and octapeptides.

  18. Ultrasonic Phased Array Testing of Austenitic Stainless Steel Welds%奥氏体不锈钢焊缝的相控阵超声检测

    胡栋; 王强; 肖琨; 刘富君


    The ultrasonic testing(UT) of austenitic stainless steel welds defects is always difficult because its coarse-grained material and anisotropic structure which lead to aberration and scattering of the ultrasonic waves. In this paper, ultrasonic testing properties of austenitic welds were analyzed. Ultrasonic test and ultrasonic phased array test were performed in an austenitic stainless steel welds test block. The results reveal that 14 dB signal-to-noise ratio (SNR) is obtained by ultrasonic phased array test while by ultrasonic test only 6 dB SNR is obtained to the defects in 10 mm depth. But both of these two tests cannot detect the defects in 30 mm depth.%由于奥氏体不锈钢焊缝晶粒组织粗大以及结构的各向异性导致超声声束的散射和畸变,其超声检测比较困难.本文分析了奥氏体不锈钢焊缝超声检测特性,在奥氏体不锈钢焊缝试块上进行了常规超声和相控阵超声检测试验.研究结果表明:对于10 mm深焊缝缺陷,相控阵超声检测信噪比可达14 dB,而常规超声技术仅获得6 dB的信噪比,对于30 mm深内部缺陷,均未取得较好的效果.

  19. Stability of phases in (Ba, Gd)MnO3 solid solution system

    Migaku Kobayashi; Hidenori Tamura; Hiromi Nakano; Hirohisa Satoh; Naoki Kamegashira


    The existing phases in BaxGd1-xMnO3 solid solution system (0≦x≦1) were studied by analyzing the detailed crystal structure of each composition from the results of the Rietveld method using powder X-ray diffraction data. For a small substitution of Ba for Gd (0≦x<0.1), the orthorhombic phase with a perovskite type structure (Pnma space group) was stably formed and this fact was supported by the electron diffraction data. There existed an intermediate phase of Ba0.33Gd0.67MnO3, which was characterized as the tetragonal phase with perovskite structure. The composition range of this phase was narrow and almost line compound. Between the regions of these phases, there existed two-phase region. There was also a two-phase region between the intermediate tetragonal phase and BaMnO3. Measurement of electrical conductivities of these orthorhombic solid solutions and tetragonal phases showed semiconducting behaviors for both phases and the existence of the phase transition at high temperature for the orthorhombic phase. The transition temperature decreased as the Ba content increased.

  20. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;


    Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films...... identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K...

  1. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids


    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  2. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    Majhi, Bijoy Kumar; Jash, Tushar


    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  3. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    Ansari, Seraj A; Mohapatra, Prasanta K


    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of welding speed and electrode extension on the approximate entropy of welding current in short-circuiting GMAW


    Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and analyzed at different welding speeds and different electrode extensions respectively. The experimental and calculated results show that at a certain arc voltage, wire feeding rate and gas flow rate, welding speed and electrode extension have significant effects not only on the approximate entropy of welding current, but also on the stability of welding process. Further analysis proves that when the welding speed and electrode extension are in an appropriate range respectively, the welding current approximate entropy attains maximum and its standard deviation minimum. Just under such circumstances, the welding process is in the most stable state.

  5. Positronium in solid phases of n-alkane binary mixtures

    Zgardzińska, B.; Goworek, T.


    Highlights: • Rotator phase in even alkanes C{sub n}H{sub 2n+2} with n ⩽ 20 appears in mixed samples only. • Interlamellar gap width is the same for shorter chain alkane concentration x and 1 − x. • Excess electron trapping diminishes with broadening of alkane chain distribution Δn. - Abstract: Binary mixtures of even-numbered normal alkanes C{sub n}H{sub 2n+2} and C{sub n+2}H{sub 2n+6} with n ⩽ 18 were investigated by positron annihilation spectroscopy. Formation of the rotator phase was observed in mixed structures, while no such a phase in neat alkanes in this range of n was found. Phase diagrams for n = 18 and n = 16 are very similar to the diagrams for binary mixtures of odd-numbered alkanes. The effect of positronium formation with trapped excess electrons weakens with decreasing n, at low n values the time constant of Ps rise contains the component much shorter than 1 h.

  6. All rights reserved Development of Headspace Solid-Phase ...


    Pesticide Residues in Fruit and Vegetable Samples using OFAT Design. *. 1,2. LUKMAN BOLA ... phase microextraction parameters (fiber coating type, extraction temperature and time, pH, salt addition ... production of food (Bakırcı, et al. 2014 ...

  7. SANS study of phase separation in solid {sup 3}He-{sup 4}He

    Koster, J.P.; Nagler, S.E.; Adams, E.D. [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Wignall, G.D. [Oak Ridge National Lab., TN (United States). Solid State Div.


    Small angle neutron scattering has been used to study phase separation in a quantum alloy, solid {sup 3}He{sub x}-{sup 4}He{sub 1{minus}x}. The onset of phase separation is marked by a dramatic increase in the measured scattering. A simple interpretation of the results suggests that the late-stage phase separation kinetics are dominated by an increase in the concentration of {sup 3}He atoms in preexisting precipitate regions.

  8. Friction Buttering: A New Technique for Dissimilar Welding

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar


    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  9. Thermoelastic properties of solid phases: C++ object oriented library “SolidEOS”

    Churakov, Sergey V.


    A new object-oriented C++ library (SolidEOS) for calculating the thermoelastic properties of solids is presented. The implementation is based on the Mie-Grüneisen-Debye equation of state (EOS) augmented by lowest order correction for anharmonicity. Several commonly used static EOS like Birch-Murnaghan and Vinet models are available. Although some widely used approximation for the Debye-Grüneisen parameter and static EOS are implemented, the final behaviour of the EOS can be easily modified by overloading predefined virtual functions. The article provides a basic physical background of the modern theory of high-pressure EOS. The detailed documentation of the class hierarchy is summarized in the appendix, which accompanies the source. Several examples of practical use are given in the appendix as well. The library is appropriate for applications in geophysics, petrology, material science or any other field where thermodynamic and elastic properties of solids are relevant. The source code is available from the Computers & Geoscience software archive.

  10. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Lu, Xiaoyan, E-mail:, E-mail:; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)


    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  11. Optimizing the solid-phase immunofiltration assay. A rapid alternative to immunoassays.

    IJsselmuiden, O E; Herbrink, P; Meddens, M J; Tank, B; Stolz, E; Van Eijk, R V


    The technical variables of the solid-phase immunofiltration assay (SPIA) for the detection of antibodies bound to antigens on a solid-phase filter have been investigated. The binding to solid-phase filters of 125I-labelled axial filament proteins derived from Treponema phagedenis and the optimal conditions for blocking non-specific protein binding were analysed. Axial filament was applied to nitrocellulose, Hybond Nylon and Zeta Probe. After extensive rinsing, the highest amount (68%) of axial filament was observed bound to Zeta Probe. However, blocking non-specific protein binding by pre-wetting the filter with rinsing buffer containing 0.5% Tween 20, prevented the binding of protein to the filter only when nitrocellulose was used as solid phase. Tween 20 (0.5%) in the rinsing and incubation solutions was found to be necessary for the reduction of non-specific binding of contaminants in turbid sera. However, the use of such solutions resulted in a substantial leakage of antigen (47%) during rinsing procedures. Binding of antigen-specific antibody was analysed using 125I-labelled protein A. The maximal possible binding of the antibody occurred within 5 min when the antibody solution was filtered. For optimal binding of 125I-labelled protein A an incubation time of 1 h was needed. It is suggested that solid-phase immunofiltration may provide a rapid alternative for radioimmunoassays or enzyme immunoassays for the detection of specific antibodies.

  12. Determination of melamine in aquaculture feed samples based on molecularly imprinted solid-phase extraction.

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao


    This research highlights the application of highly efficient molecularly imprinted solid-phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine-imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid-phase extraction sorbents for the selective cleanup of melamine. An off-line molecularly imprinted solid-phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high-performance liquid chromatography analysis. Optimum molecularly imprinted solid-phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6-96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid-phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre-treatment of melamine in aquaculture feed samples.

  13. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L


    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. 一种相控阵雷达用耐气压冷板的焊接工艺方法研究%Research on Welding Processes of A Pressure-resistant Cooling Plate for Phased Array Radar

    王志鹏; 冉振旺; 杨文静; 肖爱群; 许明珠


    某相控阵雷达冷板对焊缝提出了气密性要求,为实现装配,还要求焊接后平面度公差不超过0.1mm。使用真空钎焊、激光焊、电子束焊方法分别对耐气压冷板进行焊接试验,对焊接变形及密封性检测的情况进行了分析,确定了满足冷板使用要求的焊接工艺方法,通过对焊接方法的改进,使形位公差、气密性指标均得到很好的保证,解决了该冷板焊接的技术难题。%A new sort of cooling plate, pressure-resistant cooling plate, is proposed in the phased array radar. For its new filler in the plate, a higher requirement of air tightness is necessary. What’s more, its flatness tolerance after welding should be no more than 0.1mm so that a very thin PCB assembles onto the plate. In order to meet the requirement, three welding methods of vacuum brazing, laser welding and electron beam welding were carried out. By testing the welding deformation and air tightness, the advantages and disadvantages of the welding methods were compared. As a result, an optimized welding process was formed to solve the cooling plate welding technical problems.

  15. The synthesis and properties of the phases obtained by solid-solid reactions

    Blonska-Tabero A.


    Full Text Available The presented work encompasses the subject of the studies and the results obtained over the last years by the research workers of the Department of Inorganic Chemistry. They include mainly the studies on the reactivity of metal oxides, searching for new phases in binary and ternary systems of metal oxides as well as describing phase relations establishing in such systems. They also encompass works on the extensive characteristics of physico-chemical properties of the newly obtained compounds.

  16. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    Shi, Jianwei; Xiaoxu TENG; Wang, Linling; Long, Rong


    Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA) as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes...

  17. Solid solution, phase separation, and cathodoluminescence of GaP-ZnS nanostructures.

    Liu, Baodan; Bando, Yoshio; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri; Jiang, Xin


    Quaternary solid-solution nanowires made of GaP and ZnS have been synthesized through well-designed synthetic routines. The as-synthesized GaP-ZnS solid-solution nanowires exhibit decent crystallinity with the GaP phase as the host, while a large amount of twin structural defects are observed in ZnS-rich nanowires. Cathodoluminescence studies showed that GaP-rich solid-solution nanowires have a strong visible emission centered at 600 nm and the ZnS-rich solid-solution nanowires exhibited a weak emission peak in the UV range and a broad band in the range 400-600 nm. The formation mechanism, processes, and optical emissions of GaP-ZnS solid-solution nanowires were discussed in detail.

  18. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A


    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  19. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko


    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.



  1. Syllabus in Trade Welding.

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  2. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    唐学林; 徐宇; 吴玉林


    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  3. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J


    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  4. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.


    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  5. Welding and Joining of Titanium Aluminides

    Jian Cao


    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  6. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  7. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  8. Simulation of time-dependent pool shape during laser spot welding: Transient effects

    Ehlen, Georg; Ludwig, Andreas; Sahm, Peter R.


    The shape and depth of the area molten during a welding process is of immense technical importance. This study investigates how the melt pool shape during laser welding is influenced by Marangoni convection and tries to establish general qualitative rules of melt pool dynamics. A parameter study shows how different welding powers lead to extremely different pool shapes. Special attention is paid to transient effects that occur during the melting process as well as after switching off the laser source. It is shown that the final pool shape can depend strongly on the welding duration. The authors use an axisymmetric two-dimensional (2-D) control-volume-method (CVM) code based on the volume-averaged two-phase model of alloy solidification by Ni and Beckermann[1] and the SIMPLER algorithm by Patankar.[2] They calculate the transient distribution of temperatures, phase fractions, flow velocities, pressures, and concentrations of alloying elements in the melt and two solid phases (peritectic solidification) for a stationary laser welding process. Marangoni flow is described using a semiempirical model for the temperature-dependent surface tension gradient. The software was parallelized using the shared memory standard OpenMP.

  9. Extraction of Pb2+ using Silica from Rice Husks Ash (RHA – Chitosan as Solid Phase

    Hanandayu Widwiastuti


    Full Text Available The existence of lead (Pb compounds in waters can be caused of waste pollution from industrial activities such as dye and battery industries. Lead has toxic characteristic and is able to causing deseases. The levels of Cr(VI can be decreased by methods such as electroplating, oxidation, reduction, and membrane separation. But this methods require high cost and produce a lot of waste. Furthermore, those methods cannot determine the small concentration of Pb2+. Therefore, solid phase extraction is used because it’s a simple method and can be used to preconcentrate Pb2+ ion. The aim of this study is to create solid phase from nature material as an alternative method to determine Pb2+ in water samples. The solid phase is silica from rice husks ash (RHA that was modified using chitosan. To achieve that aim, the optimization of silica : chitosan composition was done. The influence of Pb2+ concentration and citric acid concentration was studied to obtain optimum recovery of Pb2+. Interaction between Pb2+ ion and solid phase silica – chitosan could be estimated based on the result. The result showed the optimum composition of silica : chitosan is 65% silica : 35% chitosan with Cation Exchange Capacity (CEC 0.00455 mek/g. Mass Adsorbed Pb2+for 1 g silica : chitosan 65% is 9.715 mg/g. Optimum recovery of Pb2+ on solid phase extraction is reached at concentration of Pb2+ 10 ppm and citric acid concentration 0.05 M (88.25 % and 81.18 %. This result showed that solid phase extraction using silica – chitosan can be used as an alternative method to determine Pb2+ in water.

  10. TIG welding power supply with improved efficiency

    Сергій Володимирович Гулаков


    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  11. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  12. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

    Wagner, Dustin C.; Chai, Xiao; Tang, Xin; Kou, Sindo


    As compared to Al alloys, which are known to be susceptible to liquation ( i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

  13. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.


    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  14. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    Johnston, P. H.


    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  15. Two-stage Strain Recovery of Explosively Welded NiTi/NiTi Shape Memory Alloys Prestrained in Martensitic Phase

    Yan Zhu; Cui Lishan; Zheng Yanjun


    The present work aimed to investigate the transformation behavior and strain recovery characteristics of Ni50.2Ti/Ni51Ti shape memory alloys (SMAs) prepared by explosive welding. The differential scanning calorimetry (DSC) results showed that the reverse transformation temperatures and the temperature range of NiTi-NiTi alloys increased with increasing prestrain level. Meanwhile, a two-stage strain recovery over a wide temperature range was obtained.

  16. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles.

    Qvortrup, Katrine; Komnatnyy, Vitaly V; Nielsen, Thomas E


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino acids, including those with side-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis.

  17. Development of orthogonally protected hypusine for solid-phase peptide synthesis.

    Song, Aimin; Tom, Jeffrey; Yu, Zhiyong; Pham, Victoria; Tan, Dajin; Zhang, Dengxiong; Fang, Guoyong; Yu, Tao; Deshayes, Kurt


    An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.

  18. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating

    Fukui, Kunihiro; Kanayama, Keiji; Katoh, Manabu; Yamamoto, Tetsuya; Yoshida, Hideto


    Indium tin oxide (ITO) powder was synthesized from indium oxide and tin oxide powders by a solid-phase method using microwave heating and conventional heating methods. Microwave heating could reduce the treatment time necessary for the completion of the solid-phase reaction by 1/30. This decrease was attributed to an increase in the diffusion rate of Sn at the local heat spot in the indium oxide formed by microwave irradiation. However, microwave heating also decreased the amount of ITO produ...

  19. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    Zhou, Zhengwei; Jiang, Jia Qian


    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  20. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side-cha......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  1. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando


    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  2. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi


    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  3. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  4. Femtosecond fiber laser welding of dissimilar metals.

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian


    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  5. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin


    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat.

  6. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek


    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  7. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Aguilar, C., E-mail: [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)


    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  8. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    J Nóbrega


    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  9. Optical manipulation of Berry phase in a solid-state spin qubit

    Yale, Christopher G; Zhou, Brian B; Auer, Adrian; Burkard, Guido; Awschalom, David D


    The phase relation between quantum states represents an essential resource for the storage and processing of quantum information. While quantum phases are commonly controlled dynamically by tuning energetic interactions, utilizing geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase control in solid-state systems rely on microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method based on stimulated Raman adiabatic passage to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy (NV) center in diamond. Using diffraction-limited laser light, we guide the NV center's spin along loops on the Bloch sphere to enclose arbitrary Berry phase and characterize these trajectories through time-resolved state tomography. We investigate the limits of this control due to loss of adiabiaticity and decoherence, as well as its robustness to noise intentionally introduced into t...

  10. Threshold Corrosion Fatigue of Welded Shipbuilding Steels.


    of a deposit composition equivalent to the. L-TEC 95 solid electrode produced welds of similar tensile properties but of lower weld metal impact...toughness for welds produced with the powder-cored electrode of a deposit composition equivalent to the L-TEC 95 solid electrode was improved...consisting of a 5N H2SO 4 acid with 0.25 mg/i of arsenite (As2O3 ). Shims were placed in the electrospark discharge machined face-grooves and the

  11. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J


    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  12. Welded Kimberlite?

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.


    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  13. Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)


    Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.

  14. Numerical investigation of confined swirling gas-solid two phase jet


    This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.

  15. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa


    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  16. Numerical investigation of confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.


    S. Manna


    Full Text Available High performance liquid chromatographic determination of organophosphorous compound has been done by reverse phase chromatography in goats. The goats were dying showing the symptoms of organophosphorous poisoning. The viscera and stomach contents sample were received from Project Co-Ordinator, Animal Disease Research Institute, Phulnakhara, Cuttack, Orissa. The analysis of samples by HPLC with UV detector after cleaning up in Solid Phase Extraction (SPE revealed presence of malathion that was later quantified.

  18. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    ZHANG Zhi; CHEN Li-Rong


    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  19. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K


    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  20. Phased Array Ultrasonic Testing Procedure for Cracks in Fillets Weld%角焊缝裂纹类缺陷相控阵超声检测工艺

    左延田; 方雨; 刘晴岩; 薛利杰


    角焊缝是工程中较为常见的焊缝形式,与对接焊缝相比,其特殊的结构和焊缝形式增加了超声检测的难度和工艺的复杂性。在分析角焊缝常规检测工艺的基础上,提出了应用超声相控阵检测工艺的方案,并以Y型焊缝为例制定了相控阵超声检测方案并进行了检测试验。检测结果验证了方案的可行性,为相控阵超声技术在角焊缝检测中的推广应用提供了经验。%Fillet weld is a common form of welding in engineering.However,comparison to butt weld,its special structure and welding type increase the difficulty and complexity of its testing.Based on the analysis of traditional ultrasonic testing,this paper comes up with phased array ultrasonic testing for fillets,and takes T and Y weld joint as example to throw light on the procedure to make testing plan for fillet.The results of the phased array ultrasonic testing of cracks in T and Y weld joints are also displayed to verify the testing plan.This research would provide experience to the application of phased array ultrasonic testing for fillet.

  1. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari


    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  2. Thermal Stir Welding Development at Marshall Space Flight Center

    Ding, Robert J.


    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  3. Experimental Determination of the Primary Solidification Phase dependency on the solidification velocity for 17 different austenitic stainless steel compositions

    Laursen, Birthe Nørgaard; Olsen, Flemming Ove; Yardy, John


    When studying laser welding of austenitic stainless steel, hot cracking is frequently observed. To prevent hot cracking in laser welded stainless steel it is advantageous to obtain primary solidification of the ferrite phase that subsequently, on cooling, transforms in the solid state...... to the austenite phase.Most stainless steels are weldable by conventional welding techniques. However, during laser weldng the solidification velocities can be very much higher than by conventional welding techniques. By increasing the solidification velocity to a critical value known as the transition velocity......, the primary solidification phase is found to change from ferrite to austenite.A novel laser remelting technique has been modified to enable the transition velocity for laser welded austenitic stainless steels to be deermined experimentally and on the basis of results from 17 different alloy compositions...

  4. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  5. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua


    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  6. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu


    Full Text Available Solid-phase organic synthesis (SPOS and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i alumina or silica, either having doped with metal salts or directly, and (ii polyionic resins to either promote various organic reactions or to immobilize reagents/metal catalysts for subsequent use in hydrogenation and cross-coupling reactions. The reaction parameters, scopes, and limitations, particularly in the context of green chemistry, have been highlighted with pertinent approaches by other groups.

  7. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    Sabatino, Giuseppina; Papini, Anna M


    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  8. The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions

    Cai, Xin; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Huang, Yi


    Nd-doped single-phase zirconolite solid solutions was synthesized by solid-state reaction and following two steps of acid treatment. The phase composition, microstructure, and chemical durability of the zirconolite solid solutions were investigated. About 15 at% Nd was successfully stabilized into the zirconolite. The element mapping images of Ca, Zr, Nd and Ti show that all the elements are almost distributed homogeneously in the zirconolite waste forms. Product Consistency Test (PCT) was conducted under different pH values (pH = 5, 7 and 9) to evaluate the chemical durability of the Nd-doped zirconolite waste forms. The normalized element release rate of Ca (LRCa) in pH = 5 medium is higher than that of pH = 7 and 9, while the LRNd value remains almost unchanged under different pH values. The LRNd value is as low as 10-5 g m-2 d-1 after 42 days.

  9. Microstructural evolutions of friction stir welded F82H steel for fusion applications

    Noh, Sang Hoon; Shim, Jae Won; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tani Gawa, Hiro Yasu [JAEA, Rokasho (Japan); Fujii, Hideto Shi [Osaka Univ., Osaka (Japan); Kim Ura, Aki Hiko [Kyoto Univ., Kyoto (Japan)


    A blanket is the most important component functionalized as plasma confining, tritium breeding, heat exchanging, and irradiation shielding from severe thermo neutron loads in a fusion reactor. Its structure consists of first walls, side walls, a back board, and coolant channels mainly made of reduced activation ferritic/martensitic (RAFM) steel, which is the most promising candidate as a structural material for fusion reactors. To fabricate this blanket structure, some welding and joining methods have being carefully applied. However, when fusion welding, such as tungsten inert gas (TIG) welding, electron beam, and laser welding was performed between F82H and itself, the strength of welds significantly deteriorated due to the development of {delta} ferrite and precipitate dissolution. Post welding heat treatment (PWHT) should be followed to restore the initial microstructure. Nevertheless, microstructural discontinuity inevitably occurs between the weld metal, heat affected zone and base metal and this seriously degrades the entire structural stability under pulsed operation at high temperature in test blanket module (TBM). A phase transformation can also be an issue to be solved, which leads to a difficult replacement of the blanket module. Therefore, a reliable and field applicable joining technique should be developed not to accompany with PWHT after the joining process. Friction stir welding (FSW) is one of the solid state processes that does not create a molten zone at the joining area, so the degradation of the featured microstructures may be avoided or minimized. In this study, FSW was employed to join F82H steels to develop a potential joining technique for RAFM steel. The microstructural features on the joint region were investigated to evaluate the applicability of the FSW.

  10. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong


    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.

  11. Understanding processing-induced phase transformations in erythromycin-PEG 6000 solid dispersions

    Mirza, Sabiruddin; Heinämäki, Jyrki; Miroshnyk, Inna


    Since the quality and performance of a pharmaceutical solid formulation depend on solid state of the drug and excipients, a thorough investigation of potential processing-induced transformations (PITs) of the ingredients is required. In this study, the physical phenomena taking place during...... formulation of erythromycin (EM) dihydrate solid dispersions with polyethylene glycol (PEG) 6000 by melting were investigated. PITs were monitored in situ using variable temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), and hot-stage microscopy (HSM). Possible...... intermolecular interactions between the drug and polymer in the solid state were further studied by Fourier transform infrared (FTIR) spectroscopy. While in the absence of PEG the dehydration was the only transformation observed, hot-melt processing with the polymer caused the drug to undergo multiple phase...

  12. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo


    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  13. Indirect solid-phase immunosorbent assay for detection of arenavirus antigens and antibodies

    Ivanov, A.P.; Rezapkin, G.V.; Dzagurova, T.K.; Tkachenko, E.A. (Institute of Poliomyelitis anU Viral Encephalities of the U.S.S.R. Academy of Medical Sciences, Moscow)


    Indirect enzyme-linked immunosorbent assay (ELISA) and solid phase radioimmunoassay (SPRIA) using either enti-human or anti-mouse IgG labelled with horseradish peroxidase and /sup 125/I, respectively, were developed for the detection of Junin, Machupo, Tacaribe, Amapari, Tamiami, Lassa and LCM arenaviruses. Both methods allow high sensitivity detection of arenavirus antigens and antibodies.

  14. Solid-phase synthesis of an apoptosis-inducing tetrapeptide mimicking the Smac protein

    Le Quement, Sebastian Thordal; Ishøy, Mette; Petersen, Mette Terp;


    An approach for the solid-phase synthesis of apoptosis-inducing Smac peptidomimetics is presented. Using a Rink linker strategy, tetrapeptides mimicking the N-4-terminal residue of the Smac protein [(N-Me)AVPF sequence] were synthesized on PEGA resin in excellent purities and yields. Following tw...

  15. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))


    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  16. New method for the preparation of solid-phase bound isocyanocarboxylic acids and Ugi reactions therewith

    Henkel, Bernd; Sax, Michael; Dömling, Alexander


    A novel method of synthesizing solid-phase bound isocyanocarboxylic acids is reported. The potassium salts of four different isocyanocarboxylic acids are coupled onto a brominated resin in DMF in good yields. 32 Ugi reactions were performed using these resins and 24 products were obtained in good to

  17. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.


    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  18. Solid Phase Extraction: Applications to the Chromatographic Analysis of Vegetable Oils and Fats

    Panagiotopoulout, P. M.; Tsimidou, M.


    Applications of solid-phase extraction for the isolation of certain lipid classes prior to chromatographic analysis are given. More information was found for sterols and related compounds, polar phenols and contaminants such as polycyclic aromatic hydrocarbons. Detailed analytical protocols are presented and discussed in many cases. (Author) 120 refs.

  19. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)


    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  20. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik


    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  1. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H


    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications.

  2. Solid-phase oligosaccharide synthesis with tris(alkoxy)benzyl amine (BAL) safety-catch anchoring

    Tolborg, Jakob Fjord; Jensen, Knud Jørgen


    A tris(alkoxy)benzylamine (BAL) handle strategy was developed for safety-catch anchoring of D-glucosamine derivatives in solid-phase synthesis of oligosaccharides; the linkage between the BAL handle and the amine proved stable to conc. TFA and Lewis acids, but after N-acylation the amide could...

  3. A Long Chain Alcohol as Support in Solid Phase Organic Synthesis

    Nurlela, Yeni; Minnaard, Adrian J.; Achmad, Sadijah; Wahyuningrum, Deana


    The solid phase synthesis is a method by which organic compound synthesis are performed on a support. With this method, the purification can be carried out easily by simple filtration and washing procedures. Long-chain alcohol (C-100 alcohol) can be used as a support because of its insolubility in o

  4. A Solid Phase Synthesis of Chalcones by Claisen-Schmidt Condensations


    In order to accelerate the development of relatively inexpensive antimalarials that are effective against chloroquine-resistant strains of Plasmodium falclparum, a methodology for the solid phase synthesis of chalcone (l, 3-diphenyl-2-propen-l-one) analogues in reasonably high yields has been developed.

  5. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  6. Microwave-assisted solid-phase Ugi four-component condensations

    Nielsen, John


    An 18-member library was constructed from 2 isocyanides, 3 aldehydes and 3 carboxylic acids via microwave-assisted solid-phase Ugi reactions on TentaGel S RAM. Products of high purity were obtained in moderate to excellent yields after reaction times of 5 minutes or less (irradiation at 60W). (C...

  7. Determination of lidocaine in plasma by direct solid-phase microextraction combined with gas chromatography

    Koster, EHM; Wemes, C; Morsink, JB; de Jong, GJ


    Direct-immersion solid-phase microextraction (SPME) has been used to extract the local anesthetic lidocaine from human plasma. A simplified model shows the relationship between the total amount of drug in plasma and the amount of drug extracted. The model takes into account that the drug participate

  8. Side-chain-anchored N(alpha)-Fmoc-Tyr-OPfp for bidirectional solid-phase synthesis

    Olsen, Christian A; Jørgensen, Malene; Hansen, Steen H;


    [reaction: see text] A mild resin-immobilization strategy employing a readily prepared trityl bromide resin for anchoring building blocks via a phenol group has been developed. With N(alpha)-Fmoc-Tyr-OPfp as a starter building block, it was possible to prepare asymmetrically substituted hybrids o...... of spider- and wasp-type polyamine toxins using solid-phase peptide synthesis conditions....

  9. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction

    Zielinska, K.; Leeuwen, van H.P.; Thibault, S.; Town, R.M.


    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the protonate

  10. Solid-phase synthesis of succinylhydroxamate peptides : Functionalized matrix metalloproteinase inhibitors

    Leeuwenburgh, MA; Geurink, PP; Klein, T; Kauffman, HF; van der Marel, GA; Bischoff, R; Overkleeft, HS


    A novel solid-phase synthesis strategy toward succinylhydroxamate peptides, using an appropriately protected hydroxamate building block, is described. Rapid and efficient access is gained to amine-functionalized peptides, which can be decorated with, for instance, a fluorescent label. In addition, w

  11. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins

    Nandurkar, Nitin Subhash; Petersen, Rico; Qvortrup, Katrine


    An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method comprises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA-s...

  12. A Rapid Solid-phase Synthesis to Soluble Oligothiophene Molecular Wires


    A novel method for the preparation of oligothiophene molecular wires is described via a bi-directional solid-phase synthesis. Using an alternating sequence of bromination and Stille coupling reactions, oligomers were obtained up to the heptamer in excellent yield and purity.

  13. Linkers, resins, and general procedures for solid-phase peptide synthesis

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen


    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  14. Total synthesis of human urotension-Ⅱ by microwave-assisted solid phase method


    Human urotension-Ⅱ was synthesized efficiently on Wang resin under microwave irradiation using Fmoc/tBu orthogonal protection strategy. Disulphide bridge was formed on solid phase with the irradiation of microwave, then the whole peptide was cleaved from the resin. The purity of crude peptide cyclized under microwave irradiation was higher than that under room temperature.

  15. Electrocatalytic phenomena in gas phase reactions in solid electrolyte electrochemical cells

    Gellings, P.J.; Koopmans, H.J.A.; Burggraaf, A.J.


    The recent literature on electrocatalysis and electrocatalytic phenomena occurring in gas phase reactions on solid, oxygen conducting electrolytes is reviewed. In this field there are a number of different subjects which are treated separately. These are: the use of electrochemical methods to study

  16. Solid-phase Synthesis of a Novel Kind of Hydroxylated Heterocyclic Ketene Aminals

    Tao PENG; Chu Yi YU; Zhi Tang HUANG


    An efficient solid-phase synthesis method for novel heterocyclic ketene aminals containing a hydroxyl group has been developed. The loading of the substrate on the resin through the hydroxyl group and the protection of the amine by the Schiff base were the key steps in the synthesis.

  17. Fibers coated with molecularly imprinted polymers for solid-phase microextraction

    Koster, E.H M; Crescenzi, C; den Hoedt, W; Ensing, K; de Jong, G.J.


    The simplicity and flexibility of solid-phase microextraction have been combined with the selectivity of molecularly imprinted polymers (MIPs), Silica fibers were coated reproducible with a 75-mum layer of methacrylate polymer either nonimprinted or imprinted with clenbuterol to compare their extrac

  18. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

    Benhabib, K.; Town, R.M.; Leeuwen, van H.P.


    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the

  19. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep


    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  20. Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines

    Le Quement, Sebastian T.; Ishoey, Mette; Petersen, Mette T.;


    -Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide–alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities...