Sample records for solid intermetallic phase

  1. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong


    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  2. Phase transformations in intermetallic phases in zirconium alloys

    Filippov, V. P., E-mail: [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Kirichenko, V. G. [Kharkiv National Karazin University (Ukraine); Salomasov, V. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Khasanov, A. M. [University of North Carolina – Asheville, Chemistry Department (United States)


    Phase change was analyzed in intermetallic compounds of zirconium alloys (Zr – 1.03 at.% Fe; Zr – 0.51 at.% Fe; Zr – 0.51 at.% Fe – M(M = Nb, Sn). Mössbauer spectroscopy on {sup 57}Fe nuclei in backscattering geometry with the registration of the internal conversion electrons and XRD were used. Four types of iron bearing intermetallic compounds with Nb were detected. A relationship was found between the growth process of intermetallic inclusions and segregation of these phases. The growth kinetics of inclusions possibly is not controlled by bulk diffusion, and a lower value of the iron atom’s activation energy of migration can be attributed to the existence of enhanced diffusion paths and interface boundaries.

  3. Magnetic phase transitions in layered intermetallic compounds

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.


    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  4. Zintl and intermetallic phases grown from calcium/lithium flux

    Blankenship, Trevor

    Metal flux synthes is a useful alternative method to high temperature solid state synthesis; it allows easy diffusion of reactants at lower temperatures, and presents favorable conditions for crystal growth. A mixed flux of calcium and lithium in a 1:1 ratio was explored in this work; this mixture melts at 300°C and is an excellent solvent for main group elements and CaH 2. Reactions of p-block elements in a 1:1 Ca/Li flux have produced several new intermetallic and Zintl phases. Electronegative elements from groups 14 and 15 are reduced to anions in this flux, yielding charge-balanced products. More electropositive metals from group 13 are not fully reduced; the resulting products are complex intermetallics. The reactions of tin or lead and carbon in Ca/Li flux produced the analogous phases Ca11Tt3C8 (Tt = Sn, Pb) in the monoclinic C21/c space group (a = 13.2117(8) A, b =10.7029(7) A, c = 14.2493(9) A, beta = 105.650(1)° for the Sn analog). These compounds are carbide Zintl phases that includes the rare combination of C3 4- and C22- units as well as Sn4- or Pb4- anions. Ca/Li flux reactions of CaH2 and arsenic have produced the Zintl phases LiCa3As 2H in orthorhombic Pnma (a = 11.4064(7), b = 4.2702(3), c = 11.8762(8) A), and Ca 13As6C0.46N1.155H6.045in tetragonal P4/mbm (a = 15.7493(15), c = 9.1062(9) A). The complex stoichiometry of the latter phase was caused by incorporation of light element contaminants and was studied by neutron diffraction, showing mixing of anionic sites to achieve charge balance. Ca/Li flux reactions with group 13 metals have resulted in several new intermetallic phases. Reactions of indium and CaH2 in the Ca/Li flux (with or without boron) formed Ca53In13B4-x H23+x(2.4 < x < 4.0) in cubic space group Im-3 (a = 16.3608(6) A) which features metallic indium atoms and ionic hydride sites. The electronic properties of this "subhydride" were confirmed by 1H and 115In NMR spectroscopy. Attempts to replace boron with carbon yielded Ca12InC13-x

  5. The role of intermetallic phases in the corrosion of magnesium-rare earth alloys

    Silva Campos, Maria del Rosario


    A new concept to develop a RE based Mg alloy with improved corrosion resistance was followed in the current work. Based on subsequent characterisation steps to eliminate less suitable RE elements the best microstructure for improved corrosion resistance was identified. At first, the corrosion properties of selected RE elements were determined. Based on these results RE elements that have a potential to enhance the corrosion resistance of Mg-RE alloys were selected. Two aspects of RE elements were important for the selection: the electrochemical properties and the solid solubility in Mg. If the solubility limit of RE elements in the Mg matrix is exceeded, they form intermetallic phases with Mg. By performing galvanic coupling measurements the compatibility between Mg matrix and intermetallic phases were estimated. At that point three binary Mg-RE alloys systems remained (Mg-Ce, Mg-La, and Mg-Gd). To evaluate the influence of composition (amount of intermetallic phases) on the corrosion behaviour, four concentrations were cast with 1, 5, 10 and 15 wt. % of RE. Ce and La have a lower solid solubility in Mg matrix generating higher volume fraction of the secondary phases, thus higher dissolution rates in the binary Mg-RE alloys. While Gd with higher solid solubility shows a different behaviour. Additions of up to 10 wt. % Gd resulted in similar behaviour compared to 1 wt. % Gd addition. The most promising results were obtained for the Mg-Gd system with 10 wt. % Gd. Thus, the microstructure of this alloy was further modified by heat treatments to understand the influence of microstructural changes on corrosion behaviour. A ternary element was used to attempt further optimisation of the corrosion performance. Additions of Al, Zn, Ga and Y did not show any improvement in the corrosion resistance of Mg10Gd. This is due to increasing volume fractions of critical more noble phases and the microstructure dominated by eutectic phase formation. Thus galvanic effects became much

  6. Formation of Nanoscale Intermetallic Phases in Ni Surface Layer at High Intensity Implantation of Al Ions

    I.A.Bozhko; S.V.Fortuna; I.A.Kurzina; I.B.Stepanov; E.V.Kozlov; Yu.P. Sharkeev


    The results of experimental study of nanoscale intermetallic formation in surface layer of a metal target at ion implantation are presented. To increase the thickness of the ion implanted surface layer the high intensive ion implantation is used. Compared with the ordinary ion implantation, the high intensive ion implantation allows a much thicker modified surface layer. Pure polycrystalline nickel was chosen as a target. Nickel samples were irradiated with Al ions on the vacuum-arc ion beam and plasma flow source "Raduga-5". It was shown that at the high intensity ion implantation the fine dispersed particles of Ni3Al, NiAl intermetallic compounds and solid solution Al in Ni are formed in the nickel surface layer of 200 nm and thicker. The formation of phases takes place in complete correspondence with the Ni-Al phase diagram.

  7. Intermetallic Compound Formation Mechanisms for Cu-Sn Solid-Liquid Interdiffusion Bonding

    Liu, H.; Wang, K.; Aasmundtveit, K. E.; Hoivik, N.


    Cu-Sn solid-liquid interdiffusion (SLID) bonding is an evolving technique for wafer-level packaging which features robust, fine pitch and high temperature tolerance. The mechanisms of Cu-Sn SLID bonding for wafer-level bonding and three-dimensional (3-D) packaging applications have been studied by analyzing the microstructure evolution of Cu-Sn intermetallic compounds (IMCs) at elevated temperature up to 400°C. The bonding time required to achieve a single IMC phase (Cu3Sn) in the final interconnects was estimated according to the parabolic growth law with consideration of defect-induced deviation. The effect of predominantly Cu metal grain size on the Cu-Sn interdiffusion rate is discussed. The temperature versus time profile (ramp rate) is critical to control the morphology of scallops in the IMC. A low temperature ramp rate before reaching the bonding temperature is believed to be favorable in a SLID wafer-level bonding process.

  8. Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound

    Ghosh, Krishanu; Mazumdar, Chandan; Ranganathan, R.; Mukherjee, S.


    The rare coexistence of a Griffiths phase (GP) and a geometrically frustrated antiferromagnetism in the non-stoichiometric intermetallic compound GdFe0.17Sn2 (the paramagnetic Weiss temperature θp ~ -59 K) is reported in this work. The compound forms in the Cmcm space group with large structural anisotropy (b/c ~ 4). Interestingly, all the atoms in the unit cell possess the same point group symmetry (Wycoff position 4c), which is rather rare. The frustration parameter, f = |θp|/TN has been established as 3.6, with the Néel temperature TN and Griffiths temperature TG being 16.5 and 32 K, respectively. The TG has been determined from the heat capacity measurement and also from the magnetocaloric effect (MCE). It is also shown that substantial difference in GP region may exist between zero field and field cooled measurements - a fact hitherto not emphasized so far.

  9. Electrochemical isolation of intermetallic and carbide phases from nickel-base alloys

    Shul' ga, A.V.; Nikishanov, V.V.; Ofitserov, A.V.


    Parameters of carbide phases were examined to find the optimum conditions for isolating intermetallic and carbide phases from complex nickel-base alloys. Conditions for an electrochemical isolation of the phases are chosen on the basis of polarization curves for the matrix and phases to be isolated. Electrochemical studies were performed with a potentiostat and data from x-ray analyses of the phases are tabulated. Two electrolytes were developed, the first for isolating carbide phases from nickel matrix and from nickel-base superalloys and the second electrolyte isolates intermetallic phases.

  10. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.


    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  11. Intermetallic Phase Formation in Explosively Welded Al/Cu Bimetals

    Amani, H.; Soltanieh, M.


    Diffusion couples of aluminum and copper were fabricated by explosive welding process. The interface evolution caused by annealing at different temperatures and time durations was investigated by means of optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, and x-ray diffraction. Annealing in the temperature range of 573 K to 773 K (300 °C to 500 °C) up to 408 hours showed that four types of intermetallic layers have been formed at the interface, namely Al2Cu, AlCu, Al3Cu4, and Al4Cu9. Moreover, it was observed that iron trace in aluminum caused the formation of Fe-bearing intermetallics in Al, which is near the interface of the Al-Cu intermetallic layers. Finally, the activation energies for the growth of Al2Cu, AlCu + Al3Cu4, Al4Cu9, and the total intermetallic layer were calculated to be about 83.3, 112.8, 121.6, and 109.4 kJ/mol, respectively. Considering common welding methods ( i.e., explosive welding, cold rolling, and friction welding), although there is a great difference in welding mechanism, it is found that the total activation energy is approximately the same.

  12. The preparation of the Ti-Al alloys based on intermetallic phases

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.


    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.


    Prabhu Paulraj


    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  14. Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy

    Li, Song-mei; Li, Ying-dong; Zhang, You; Liu, Jian-hua; Yu, Mei


    Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered intermetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaCl solution. The results show that the size of Al-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the anodic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time.

  15. Characteristic of intermetallic phases in cast dental CoCrMo alloy

    M. Podrez-Radziszewska


    Full Text Available Apart from chromium and molybdenum, casting alloys of cobalt usually contain also up to 0.35 % of carbon. With significant content ofcarbon, presence of carbide-forming alloying elements results in creating carbide phases. These alloys are characterised by dendriticstructure of solid solution of chromium and molybdenum in cobalt with interdendritically precipitated carbides. Because of high chromiumcontent, dominating are M23C6-type carbides, but chromium-rich carbides can be also of M7C3 and M3C2-types. The other elements inthe alloy result in creating M6C and MC-type carbides. In the case of low carbon content, creating carbides and forming intermetallicphases based on the alloying elements and cobalt become limited.The presented research was aimed at characterising structure of the cobalt-based dental alloy containing trace quantity of carbon.Characterised were intermetallic phases hardening the alloy. Microscopic examinations using light microscopy, SEM and TEM werecarried out. Chemical microanalysis of the precipitates using X-ray analyser EDS was performed, as well as phase analysis using selectedarea electron diffraction.

  16. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Hesham Ahmed


    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  17. Studies of intermetallic growth in Cu-solder systems and wettability at solid-liquid interfaces

    Martin, Raymond W.


    Approved for public release; distribution is unlimited The metallurgical bond formed between tin-lead solder and the copper substrate is characterized by the formation of an intermetallic compound layer. The growth of the intermetallic layer is the result of competing mechanisms, growth of the intermetallic at the intermetallic/copper interface and its dissolution at the intermetallic/liquid solder interface. These were studied by determining the dissolution rates of the copper and the i...

  18. Magnetoelastic phase transitions in ternary rare earth intermetallics

    Szytula, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail:; Duraj, M. [Institute of Physics, Technical University of Cracow, Podchorazych 1, 30-084 Cracow (Poland); Gondek, L. [Department of Physics, Cracow Agricultural University, Mickiewicza 21, 31-120 Cracow (Poland); Penc, B. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow (Poland); Wawrzynska, E. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Cracow (Poland)


    Magnetoelastic properties of some intermetallic compounds are investigated. In the first part of the work the results for the RMn{sub 2}Ge{sub 2} (R = Sm, Gd, Dy) and R {sub x}Sm{sub 1-x}Mn{sub 2}Ge{sub 2} compounds are presented. Then the data for Nd{sub 3}Mn{sub 4}Sn{sub 4} are reported. In the second part of the work the data for HoRhSi and HoPdSn are discussed. In all the investigated compounds the change of the magnetic structure is connected with an anomaly in the temperature dependence of the lattice parameters.

  19. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Bednarczyk I.


    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  20. Phase Stability of Intermetallic Compound Ce3Al in Mechanical Milling

    Zhang, Yan-ping; Takeya, Hiroyuki; Sakurai, Kenji


    For many years, cerium-aluminum systems have been extensively studied because of their unusual magnetic behavior. As the atomic radii of cerium and aluminum differ greatly from each other, a solid solution is not obtained because of the Hume-Rothery rule. Therefore, intermetallic compounds are usually studied, and structural stability is crucial for further discussion of their physical properties. The present article reports on high-energy ball milling of the intermetallic compound Ce3Al at room temperature. It has been found that non-equilibrium supersaturated Ce solid solution was formed during the milling. The solubility of aluminum was estimated as 5 to 13 at. pct from the peak shifts of the X-ray diffraction pattern. The structural changes in the initial stages of the milling were also studied.

  1. (Nano-)mechanical properties of intermetallic phases in the Fe-Mo system at elevated temperatures

    Schroeders, Sebastian; Korte-Kerzel, Sandra [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University (Germany)


    Topologically close packed (TCP) intermetallic phases which precipitate in nickel-base superalloys are suspected to cause a deterioration of the mechanical properties of the γ - γ* matrix. Although the existing intermetallics, namely Laves-, R-, sigma- and mue-phases are well understood in terms of their structure, their mechanical properties have still not been investigated in detail due to their size and pronounced brittleness. In order to investigate the plastic deformation behavior of these phases, but exclude the effect of complex phase composition in the first instance, the Fe-Mo system was chosen as a model system, where all phases are available as binary alloys. Using nanomechanical testing methods like nanoindentation and micropillar-compression, the experimental challenges of high brittleness and anisotropy encountered in conventional testing can be disregarded and plastic deformation can be achieved due to the confining pressure in nanoindentation and the reduction in specimen size in microcompression. This work aims to examine the mechanical properties such as elastic modulus, yield and flow stress of intermetallic Fe-Mo phases over a range of temperatures. To this end, tests were performed in vacuum. Based on this type of study it is envisaged to form a better understanding of the way hard TCP precipitates influence the performance of superalloys.

  2. Evolution of Intermetallic Phases in Soldering of the Die Casting of Aluminum Alloys

    Song, Jie; Wang, Xiaoming; DenOuden, Tony; Han, Qingyou


    Most die failures are resulted from chemical reactions of dies and molten aluminum in the die casting of aluminum. The formation of intermetallic phases between a steel die and molten aluminum is investigated by stationary immersion tests and compared to a real die casting process. Three intermetallic phases are identified in the stationary immersion tests: a composite layer and two compact layers. The composite layer is a mixture of α bcc, Al, and Si phases. The α bcc phase changes in morphology from rod-like to spherical shape, while the growth rate of the layer changes from parabolic to linear pattern with immersion time. The first compact layer forms rapidly after immersion and maintains a relatively constant thickness. The second compact layer forms after 4 hours of immersion and exhibits parabolic growth with immersion time. In comparison, only a composite layer and the first compact layer are observed in a real die casting process. The fresh molten aluminum of high growth rate washes away the second intermetallic layer easily.

  3. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)


    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  4. Solid phase transformations II

    Čermák, J


    This topical volume includes ten invited papers that cover selected areas of the field of solid phase transformations. The first two contributions represent a burgeoning branch; that of the computer simulation of physical phenomena. The following three articles deal with the thermodynamics of phase transformations as a basic theory for describing the phenomenology of phase changes in matter. The next paper describes the interconnections between structural stability and the electronic structure of phases. Two further articles are devoted to displacive transformations; a field where there are ma

  5. Intermetallic phase formation in the system aluminium-gold studied by EBSD

    Scheibe, Stefan; Maerz, Benjamin; Graff, Andreas; Petzold, Matthias [Fraunhofer Institut fuer Werkstoffmechanik Halle IWMH, Halle (Germany)


    In the system aluminium-gold 5 stable intermetallic phases (Al{sub 11}Au{sub 6}, AlAu, AlAu{sub 2}, Al{sub 3}Au{sub 8}, AlAu{sub 4}) exist. The combination of aluminium and gold is often used for wire bond interconnects in microelectronic devices. Intermetallic Al-Au phases are formed at the Al-Au bond interface of these interconnects and affect their reliability. To understand the possible failure mechanisms it is important to know which phases are involved and where they are located. In the study, two different sample types were used. To investigate phase formation in systems with excess of gold, Au wires were bonded on Al substrates. In contrast, Al wires were bonded on Au substrates to observe phase formation under excess of aluminium. After annealing at 150 C for different times, phase evolution was studied by EBSD. A metallographic preparation in combination with argon ion beam etching was developed to meet the requirements of the EBSD analysis. Pseudosymmetry, the similarity of diffraction patterns for different phases and the susceptibility to corrosion were specific challenges in this investigation. A precise phase differentiation with high spatial resolution was possible in most of the investigated cases. These results allow a better understanding of the Al-Au bonding mechanism as a function of the interface microstructure.

  6. Solid-phase microextraction

    Nilsson, Torben

    The objective of this study has been to develop new analytical methods using the rapid, simple and solvent-free extraction technique solid-phase microextraction (SPME) for the quantitative analysis of organic pollutants at trace level in drinking water and environmental samples. The dynamics...

  7. Solid phases of tenoxicam.

    Cantera, Rodrigo G; Leza, María G; Bachiller, Carmen M


    In this report we describe the preparation and characterization of four polymorphic forms of tenoxicam; they are, three 1:1 stoichiometric solvates with acetonitrile, dioxane, and N,N-dimethylformamide, and an amorphous phase obtained by recrystallization in various solvents. Polymorph IV and solvates with dioxane and N,N-dimethylformamide are reported for the first time in this paper. In addition, three solvates were crystallized in acetone, ethyl acetate, and isopropyl alcohol. These solid forms were characterized by X-ray powder diffraction, differential scanning calorimetry, infrared spectroscopy, thermogravimetry, optical microscopy, and elemental analysis. Solid-state properties, intrinsic dissolution rate, and dissolution kinetics from formulated tablets are also provided.

  8. Complex intermetallic phase in multicrystalline silicon doped withtransition metals

    Heuer, Matthias; Buonassisi, Tonio; Marcus, Matthew A.; Istratov,Andrei A.; Pickett, Matthew D.; Shibata, Tomohiro; Weber, Eicke R.


    We report the observation of an alloy phase with fluorite-type structure containing Ni, Fe, Cu, and Si, found as precipitates in multi-crystalline silicon. The analysis of extended x-ray absorption fine-structure microspectroscopy ({micro}-EXAFS) measurements on the K edges of the transition metals of the precipitates and a synthetic reference material with composition of Ni{sub 0.82}Fe{sub 0.21}Cu{sub 0.02}Si{sub 1.94} support a structure model similar to NiSi{sub 2} but with mixed occupancies of Fe on the Ni site and Cu on the Si site. This observation provides evidence that transition metals interact during precipitation within silicon and form complex silicides.

  9. Solid phase transformations

    Čermák, J


    This special-topic book, devoted to ""Solid Phase Transformations"" , covers a broad range of phenomena which are of importance in a number of technological processes. Most commercial alloys undergo thermal treatment after casting, with the aim of imparting desired compositions and/or optimal morphologies to the component phases. In spite of the fact that the topic has lain at the center of physical metallurgy for a long time, there are numerous aspects which are wide open to potential investigative breakthroughs. Materials with new structures also stimulate research in the field, as well as n

  10. Numerical simulations of interfacial debonding in ductile-phase reinforced intermetallic matrix composites

    Henshall, G.A.; Zywicz, E.; Strum, M.J.


    The fracture toughness of brittle intermetallic compounds can be improved by ductile-phase reinforcements. Effectiveness of the ductile phase in bridging cracks, and therefore increasing, the composite toughness, is known qualitatively to depend upon the extent of debonding, between the two phases. Numerical crack-growth simulations are used here to provide semi-quantitative predictions of the influence of interfacial debonding on the macroscopic stress-displacement behavior and, hence, the fracture toughness of an idealized Pb/glass composite. The interfacial toughness required to cause debonding, characterized by a constant critical energy release rate, is varied parametrically. As expected, higher interfacial toughness results in less interphase debonding, higher composite strength, and greater ductile-phase constraint. Consequently, the increase in ductile-phase triaxiality can potentially accelerate internal void formation and growth or facilitate cleavage fracture, either of which would likely decrease the toughness of the composite.

  11. Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics

    Jordan, A.; Uwakweh, O.N.C. [Univ. of Cincinnati, OH (United States); Maziasz, P.J. [Oak Ridge National Lab., TN (United States)


    The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect the structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.

  12. Evolution of intermetallic phases of Al-Zn-Mg-Cu alloy during heat treatment

    FAN Xi-gang; JIANG Da-ming; MENG Qing-chang; LI Nian-kui; SUN Zhao-xia


    Al-Zn-Mg-Cu alloy is a favorable choice for aerospace applications requiring good combination of strength and toughness,which is greatly influenced by the coarse intermetallic particles. The evolution of intermetallic particles in an Al-Zn-Mg-Cu alloy during heat treatment was studied by field emission gun scanning electron microscopy (FEG-SEM) and X-ray diffractometry(XRD).The results show that there are lamellar eutectic structure (α(Al)+Mg(Zn,Al,Cu)2) and Al7Cu2Fe particles in the solidified structure.The Al7Cu2Fe particles are embedded in the eutectic structure. The content of eutectic structure decreases with the increase of holding time and disappears after 24 h. The size and morphology of Al7Cu2Fe particles exhibit no change during the heat treatment. It is found that the Al2CuMg phase is formed during the treatment at 460 ℃. A transformation process from the primary eutectic phase Mg(Zn,Al,Cu)2 to Al2CuMg is observed, and the transformation mechanism and kinetics are analyzed. The Al2CuMg constituents form in the primary Mg(Zn,Al,Cu)2 phase, and grow along the eutectic microstructure.

  13. Solid-gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds

    Guiose, B.; Cuevas, F.; Decamps, B.; Percheron-Guegan, A. [Equipe de Chimie Metallurgique des Terres Rares, ICMPE, UMR7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France)


    Hydrogenation properties of pseudo-binary Ti{sub 1.02-x}Zr{sub x}Ni{sub 0.98} (0 {<=} x {<=} 0.48) intermetallic compounds have been investigated. The substitution of Zr for Ti in TiNi compound leads to a high increase of the storage capacity both in solid-gas reaction (1.4 hydrogen atoms per formula unit, H f.u.{sup -1} for TiNi and 2.6 H f.u.{sup -1} for the substituted compounds) and electrochemical reaction (150 mAhg{sup -1} for TiNi and {proportional_to}350 mAhg{sup -1} for the substituted compounds). The high capacity of the substituted compounds is closely linked to the martensitic transformation that occurs in TiNi-type intermetallic compounds. (author)

  14. Effect of solution treatment on intermetallic phases morphology in AlSi9Cu3 cast alloy

    M. Panušková


    Full Text Available In the present work was investigated the influence of solution treatment by 505°C, 515°C and 525°C±2°C with different holding times 2, 4, 8, 16 and 32 hours on microstructural elements of commercial AlSi9Cu3 cast alloy. During this heat treatment was observed the spheroidization of eutectic Si, gradual disintegration of iron rich intermetallic phases on base Al(FeMnMgSi, shortening and thinning of Al5FeSi iron needles and the dissolving of Al-Al2Cu-Si intermetallic phase by temperature 525°C.

  15. Anodic Stripping Determination of Pt (IV) Based on the Anodic Oxidation of Cu from the Intermetallic Phase of Cu[3]Pt

    Ustinova, Elvira Maratovna; Kolpakova, Nina Alexandrovna


    It is shown that platinum can be determined by anodic stripping voltammetry at the peak of selective electrooxidation of copper from intermetallic phase with platinum of Cu[3]Pt composition. The composition of intermetallic copper-platinum phase formed on the electrode during pre-electrolysis was calculated on the amount of potential displacement (delta Е) of copper electrooxidation.

  16. Influence of the Heterogeneous Nucleation Sites on the Kinetics of Intermetallic Phase Formation in Aged Duplex Stainless Steel

    Melo, Elis Almeida; Magnabosco, Rodrigo


    The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.

  17. Phase stability and elasticity of C15 transition-metal intermetallic compounds

    Chu, F.; Mitchell, T.E.; Chen, S.P. [Los Alamos National Lab., NM (United States); Sob, M.; Siegl, R.; Pope, D.P. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering


    First-principle quantum mechanical calculations based on the local-density-functional theory have been performed to study the electronic, physical and metallurgical properties of C15 intermetallics MV{sub 2} (M = Zr, Hf, or Ta). The elastic constants of C15 HfV{sub 2} + Nb were measured by the resonant ultrasound spectroscopy technique. The phase stability of C15 HfV{sub 2} + Nb was studied by specific heat measurements and by transmission electron microscopy in a low temperature specimen holder. The total energies and their lattice volume dependence were used to obtain the equilibrium lattice constants and bulk modulus. The band structures at the X-point near the Fermi level were employed to understand the anomalous temperature dependence of shear modulus of the C15 intermetallics. It was found that the double degeneracy with a linear dispersion relation of electronic levels at the X-point near the Fermi surface is mainly responsible for the C15 anomalous elasticity. The density of states at the Fermi level, N(E{sub F}), and the Fermi surface geometry were obtained to understand the low temperature phase instability of C15 HfV{sub 2} and ZrV{sub 2} and the stability of C15 TaV{sub 2}. It was proposed that the large N(E{sub F}) and Fermi surface nesting are the physical reasons for the structural instability of the C15 HfV{sub 2} and ZrV{sub 2} at low temperatures. The relation between anomalous elasticity and structural instability of C15 HfV{sub 2} and ZrV{sub 2} is also discussed.

  18. Morphologies of AlaSr Intermetallic Phase and Its Modification Property upon A356 Alloys

    Chengwei Liao; Jianchun Chun; Yang Li; Rui Tu; Chunxu Pan


    In general, the modification performance of AI-Sr master alloys is primarily dependent upon the morphologies and sizes of the AI4Sr intermetallic phase. In this paper, the crystal structure, morphologies, sizes, hardness and elastic modulus of AI4Sr in AI-Sr master alloys prepared from variant processes were studied by means of optical metallurgical microscope, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nanoindentation system. The results revealed that the microstructures and modification performance of the AI4Sr phase were related to the preparation processes. That is to say, when a "direct reaction-hot extrusion" process was used, the AI4Sr phase exhibited a homogeneous distribution in the AI matrix with small size and roundish shapes, which ensured the AI-Sr master alloy wire advantages involving high recovery, good reproducibility, no delitescence of modification, no corrosion on equipments, and good workability. However, in the case of the traditional "direct reaction" process, the AI4Sr phase was in large size with shapes of rectangular stripe and plates, which limited the Sr content increasing due to the brittleness of the AI-Sr alloy. It was also found that the morphology and size of the AI4Sr phases changed during heat treatment at high temperature up to 600℃.

  19. Analysis of electron structure of γ′α2 phase boundaries in ternary TiAl intermetallics

    KONG Fan-tao; CHEN Yu-yong


    The electron structure of γ/α2 phase boundaries in lamellar colonies in Ti-47Al-2M(M=Nb, Cr, V) (mole fraction, %) alloys was theoretically investigated by Empirical Electron Theory of Solid and Molecules (EET) and the bond-length-difference (BLD) method. Average-Atom-Model was employed to calculate valence electron structure of TiAl intermetallics containing site substitution elements. On this basis, the boundary condition of electron movement was employed in the improved Thomas-Fermi-Dirac (TFD) theory to decide the continuity of the electron density of the lamellar colonies interface and it is found that of γ/α2 interface is continuous(△ρ<10%). Furthermore, it is found that adding alloying elements (including Nb, Cr, and V) can improve the electron density (△ρ) of γ/α2 interfaces, and decrease the electron density difference(△ρ) of γ/α2 interfaces. Adding V element decreasing △ρ is more remarkable than other site substitution elements. According to electron structure study of γ/α2 interfaces in Ti-47Al-2M alloys, the added elements improve mechanical properties of the alloy in the following order: V>Cr>Nb.

  20. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.


    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  1. Magnetic properties and magnetic phase diagrams of intermetallic compound GdMn2Ge2

    Guo Guang-Hua(郭光华); Zhang Hai-Bei(张海贝); R.Z.Levitin


    A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn2Ge2.Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn2Ge2.Variations of external magnetic field and temperature give rise to the first-order or secondorder magnetic transitions from one phase to another.Based on this model,the magnetic curves of GdMn2Ge2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained.Based on the calculation,the H-T magnetic phase diagrams of GdMn2Ge2 are depicted.The Gd-Gd,Gd-Mn,intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated.It is shown that,in order to describe the magnetic properties of GdMn2Ge2,the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.

  2. Solid-Phase Random Glycosylation

    Agoston, K.; Kröger, Lars; Dekany, Gyula


    Two different approaches were employed to study solid phase random glycosylations to obtain oligosaccharide libraries. In approach I, Wang resin esters were attached to the acceptors structures. Following their glycosylation and resin cleavage, the peracetylated components of the oligosaccharide ...

  3. Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process

    Hsieh, Chih-Chun; Shi, Ming-Shou; Wu, Weite


    The purpose of this study is to discuss the effect of annealing temperatures on growth of intermetallic phases in Al/Cu composites during the accumulative roll bonding (ARB) process. Pure Al (AA1100) and pure Cu (C11000) were stacked into layered structures at 8 cycles as annealed at 300 °C and 400 °C using the ARB technique. Microstructural results indicate that the necking of layered structures occur after 300 °C annealing. Intermetallic phases grow and form a smashed morphology of Al and Cu when annealed at 400 °C. From the XRD and EDS analysis results, the intermetallic phases of Al2Cu (θ) and Al4Cu9 (γ2) formed over 6 cycles and the AlCu (η2) precipitated at 8 cycles after 300 °C annealing. Three phases (Al2Cu (θ), Al4Cu9 (γ2), and AlCu (η2)) were formed over 2 cycles after 400 °C annealing.

  4. Solid solution and amorphous phase in Ti–Nb–Ta–Mn systems synthesized by mechanical alloying

    Aguilar, C., E-mail: [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, P. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Parra, C. [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia C.P. 58000, Michoacán (Mexico); Medina, A. [Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58000, Michoacán (Mexico); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. España 485, Copiapó (Chile)


    This work discusses the formation of Ti–30Nb–13Ta–xMn (x: 2, 4 and 6 wt%) solid solution by mechanical alloying using a shaker mill. A solid solution was formed after 15 h of milling and an amorphous phase was formed after 30 h of milling, according to X-ray diffraction results. Disappearance of strongest X-ray diffraction peaks of Nb, Ta and Mn indicated the formation of solid solution, while, X-ray diffraction patterns of powders milled for 30 h showed an amorphous hump with crystalline peaks in the angular range of 35–45° in 2θ. TEM image analysis showed the presence of nanocrystalline intermetallic compounds embedded in an amorphous matrix. Mn{sub 2}Ti, MnTi and NbTi{sub 4} intermetallic compounds were detected and revealed crystallites with size ranging from 3 to 20 nm. The Gibbs free energy for the formation of solid solution and amorphous phase of three ternary systems (Ti–Nb–Ta, Ti–Nb–Mn and Ti–Ta–Mn) was calculated using extended Miedema's model. Experimental and thermodynamic data confirmed that solid solution was first formed in the alloy with 6wt% Mn followed by the formation of an amorphous phase as milling time increases. The presence of Mn promoted the formation of amorphous phase because the atomic radius difference between Mn with Ti, Nb and Ta. - Highlights: • Thermodynamics analysis of extension of solid solution of the Ti–Nb–Ta–Mn system. • Formation of amorphous phase and intermetallic compounds were observed. • Nanocrystalline intermetallic compounds were formed with the sizes between 3 and 20 nm.

  5. Data on a Laves phase intermetallic matrix composite in situ toughened by ductile precipitates.

    Knowles, Alexander J; Bhowmik, Ayan; Purkayastha, Surajit; Jones, Nicholas G; Giuliani, Finn; Clegg, William J; Dye, David; Stone, Howard J


    The data presented in this article are related to the research article entitled "Laves phase intermetallic matrix composite in situ toughened by ductile precipitates" (Knowles et al.) [1]. The composite comprised a Fe2(Mo, Ti) matrix with bcc (Mo, Ti) precipitated laths produced in situ by an aging heat treatment, which was shown to confer a toughening effect (Knowles et al.) [1]. Here, details are given on a focused ion beam (FIB) slice and view experiment performed on the composite so as to determine that the 3D morphology of the bcc (Mo, Ti) precipitates were laths rather than needles. Scanning transmission electron microscopy (S(TEM)) micrographs of the microstructure as well as energy dispersive X-ray spectroscopy (EDX) maps are presented that identify the elemental partitioning between the C14 Laves matrix and the bcc laths, with Mo rejected from the matrix into laths. A TEM selected area diffraction pattern (SADP) and key is provided that was used to validate the orientation relation between the matrix and laths identified in (Knowles et al.) [1] along with details of the transformation matrix determined.

  6. Effect of a direct magnetic field on the interfacial microstructure between molten aluminium and solid iron

    HAN Yi; BAN Chun-yan; BA Qi-xian; GUO Shi-jie; WANG Shu-han; CUI Jian-zhong


    Effect of a direct magnetic field on the interfacial microstructure between molten alurninium and solid iron was studied. The intermetallic phases formed in the intermetallic layers were investigated by means of electron probe microanalysis (EPMA) and X-ray diffraction (XRD). It was found that the DC magnetic field can reduce the average thickness of the intermetallic layer and the average aluminium content in the intermetallic layer. Moreover, the intermetallic phases formed in the intermetallic layers are identified as Al3Fe and Al5Fe2 in the absence of the DC magnetic field, while only Al5Fe2 phase present in the presence of the DC magnetic field.

  7. A sessile drop setup for the time-resolved synchrotron study of solid-liquid interactions: Application to intermetallic formation in 55%Al-Zn alloys

    Bernier, N., E-mail:; De Bruyn, D.; De Craene, M.; Scheers, J.; Claessens, S. [OCAS N.V., ArcelorMittal Global R and D Gent, Pres. J.F. Kennedylaan 3, 9060 Zelzate (Belgium); Vaughan, G. B. M.; Vitoux, H.; Gleyzolle, H.; Gorges, B. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex (France)


    We introduce a dedicated setup for measuring by synchrotron diffraction in-situ crystallographic and chemical information at the solid–liquid interface. This setup mostly consists of a double-heating furnace composed of a resistive heating for the solid surface and an inductive heating to produce a liquid droplet. The available high energy and high flux beams allow the rapid reaction kinetics to be investigated with very good time resolution down to 1 ms. An application of this setup is illustrated for the growth mechanisms of intermetallic phases during the hot-dipping of steel in a 55%Al-Zn bath. Results show that the three η-Al{sub 5}Fe{sub 2}, θ-Al{sub 13}Fe{sub 4}, and α-Al{sub 8}Fe{sub 2}Si phases grow at different times and rates during the dipping process, whereas the face-centered cubic AlFe{sub 3} phase is not formed.

  8. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Cha, Limei


    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  9. Solid-phase peptide synthesis

    Jensen, Knud Jørgen


    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective.......This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  10. Differential thermal analysis of Al[sub 8]FeMnSi[sub 2] intermetallic phase particles

    Flores-Valdes, A.; Pech-Canul, M.I.; Mendez-Nonell, M.; Sukiennik, M. (Unidad Saltillo (Mexico). Centro de Investigacion y de Estudios Avanzados del IPN)


    This paper is concerned with the use of differential thermal analysis to determine melting point, enthalpy and entropy of fusion of the Al[sub 8]FeMnSi[sub 2] intermetallic phase, currently present in Al-Si-Fe-Mn alloys as polyhedral precipitates. The procedure includes the evaluation of the enthalpy from measurements of the area under the peak of transformation on melting. The particular of this phase were obtained through preferential chemical dissolution of the matrix from several Al-Si-Fe-Mn alloys, as was discussed in a previous work.



    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin isreported. 2-Polystyrylsuifonamidoethanol resin 1 was reacted with acryloyl chloride to afford2-polystyrylsulfonylamidoethyl acrylate resin 2, which was further reacted with brominatedaldoximes by [3+2] cycioaddition to give isoxazoline resin 4. Resin 4 was treated with aqueous 6mol/L HCI solution to obtain isoxazolines in good yield and purity.

  12. Multiple solid-phase microextraction

    Koster, EHM; de Jong, GJ


    Theoretical aspects of multiple solid-phase microextraction are described and the principle is illustrated with the extraction of lidocaine from aqueous solutions. With multiple extraction under non-equilibrium conditions considerably less time is required in order to obtain an extraction yield that

  13. Nucleation of the diamond phase in aluminium-solid solutions

    Hornbogen, E.; Mukhopadhyay, A. K.; Starke, E. A., Jr.


    Precipitation was studied from fcc solid solutions with silicon, germanium, copper and magnesium. Of all these elements only silicon and germanium form diamond cubic (DC) precipitates in fcc Al. Nucleation of the DC structure is enhanced if both types of atom are dissolved in the fcc lattice. This is interpreted as due to atomic size effects in the prenucleation stage. There are two modes of interference of fourth elements with nucleation of the DC phase in Al + Si, Ge. The formation of the DC phase is hardly affected if the atoms (for example, copper) are rejected from the (Si, Ge)-rich clusters. If additional types of atom are attracted by silicon and/or germanium, DC nuclei are replaced by intermetallic compounds (for example Mg2Si).

  14. Corrosion resistance of FeAl intermetallic phase based alloy in water solution of NaCl

    J. Cebulski


    Full Text Available Purpose: Recognizing of corrosion mechanisms in liquid mediums can lead to obtain corrosion-proof material e.g. by applying passivation phenomenon. In this paper attention was paid to determine the corrosion resistance of Fe40Al intermetallic phase based alloy in corrosive medium of liquid NaCl. Research of material susceptibility to surface activation in the pipeline of corrosion processes are conducted.Design/methodology/approach: In the corrosion research electrolyser, potentiostat „Solartron 1285” and computer with „CorrWare 2” software were used. Results of the research were worked out with „CorrView” software. The potentials values were determined in relation to normal hydrogen electrode (NEW. The recording of potential/density of current - time curve was conducted for 300 s. Polarization of samples were conducted in range of potential from 300 mV lower than stationary to Ecor + 1500 mV. Potential change rate amounted 10 mV/min every time.Findings: The results of research conducted in 3% NaCl solution, the best electrochemical corrosion resistance were showed by samples after annealing during 72 hours. It was confirmed by the lowest value of corrosion current density, low value of passive current density, pitting corrosion resistance much higher than in other samples.Practical implications: The last feature is the reason to conduct the research for this group of materials as corrosion resistance materials. Especially FeAl intermetallic phase based alloys are objects of research in Poland and all world during last years.Originality/value: The goal of this work was to determine the influence of passivation in water solutions of H2SO4 and HNO3 on corrosion resistance of Fe40Al intermetallic phase based alloy in 3% NaCl solutions.

  15. Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum

    Chen, Shuhai; Yang, Dongdong; Zhang, Mingxin; Huang, Jihua; Zhao, Xingke


    The interfacial reaction between solid steel and liquid aluminum has been widely investigated in past decades; however, some issues, such as the solid/liquid interfacial structure, formation mechanisms of FeAl3 and Fe2Al5, and interaction between the growth and dissolution of intermetallic compounds, are still not fully understood. In this study, a hot-dipping method is designed to investigate the interfacial reaction in the temperature range between 973 K and 1273 K (700 °C 1000 °C) for 10 to 60 seconds. The intensification of the dissolution leads to the transformation of FeAl3/liquid aluminum into Fe2Al5/liquid aluminum in the solid/liquid structure with increasing reaction temperature. The formation of FeAl3 adhered to the interface depends not only on the reaction mechanism but also on precipitation at relatively low temperatures. In contrast, precipitation is the only formation mechanism for FeAl3 at relatively high temperatures. Austenitizing results in the complete transformation of the tongue-like Fe2Al5/Fe interface to a flat shape. The growth of Fe2Al5 with respect to the maximum thickness is governed by the interfacial reaction process, whereas the growth of Fe2Al5 with respect to the average thickness is governed by the diffusion process in the range of 973 K to 1173 K (700 °C to 900 °C) for 10 to 60 seconds. The dissolution of the parent metal is due to the natural dissolution of FeAl3 at low temperatures and Fe2Al5 at high temperatures.


    SUNWeimin; LUOJuntao; 等


    The solid-phase synthesis of isoxazolines on 2-polystyrylsulfonamidoethanol resin is reported.2-Polystyrylsulfonamidoethanol resin 1 was reacted with acryloyl chloride to afford 2-polystyrylsulfonylamidoethyl acrylate resin 2,which was further reacted with brominated aldoximes by [3+2] cycloaddition to give isoxazoline resin 4.Resin 4 was treated with aqueous 6 mol/L HCl solution to obtain isoxazolines in good yield and purity.

  17. Intermetallic nanoparticles

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.


    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Intermetallic nanoparticles

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules


    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. Exploring phase stability, electronic and mechanical properties of Ce–Pb intermetallic compounds using first-principles calculations

    Tao, Xiaoma [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906 (Spain); Wang, Ziru; Lan, Chunxiang [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Xu, Guanglong [Computational Alloy Design Group, IMDEA Materials Institute, Getafe, Madrid 28906 (Spain); Ouyang, Yifang, E-mail: [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)


    The phase stability, electronic and mechanical properties of Ce–Pb intermetallics have been investigated by using first-principles calculations. Five stable and four metastable phases of Ce–Pb intermetallics were verified. Among them, CePb{sub 2} has been confirmed as HfGa{sub 2}-type structure. For Ce{sub 5}Pb{sub 3}, the high pressure phase transformation from D8{sub m} to D8{sub 8} with trivalent Ce has been predicted to occur at P=1.2 GPa and a high temperature phase transformation has been predicted from D8{sub m} to D8{sub 8} with tetravalent Ce at 531.5 K. The calculated lattice constants of the five stable phases are in good agreement with experimental values. The electronic density of states, charge density and electron localization function of Ce{sub 3}Pb have been calculated, which indicated that the Ce and Pb show ionic behavior. The polycrystalline bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also estimated from the calculated single crystalline elastic constants. All of the calculated elastic constants satisfy mechanical stability criteria. The microhardness and mechanical anisotropy are predicted. The anisotropic nature of the Ce–Pb intermetallic compounds are demonstrated by the three-dimensional orientation dependent surfaces of Young's moduli and linear compressibility are also demonstrated. The longitudinal, transverse and average sound velocities and the Debye temperatures are also obtained in this work. The Ce{sub 3}Pb has the largest Debye temperature of 192.6 K, which means the Ce{sub 3}Pb has a highest melting point and high thermal conductivity than other compounds. - Graphical abstract: The convex hull plots of the enthalpies of formation for Ce–Pb binary systems calculated at 0 K. - Highlights: • The five stable and four metastable phases in the Ce–Pb binary system were predicted. • The crystal structure of CePb{sub 2} has been confirmed as HfGa{sub 2}-type.

  20. Solid phase syntheses of oligoureas

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)


    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  1. Kinetics of the Formation of Intermetallic Phases in HP-Type Heat-Resistant Alloys at Long-Term High-Temperature Exposure

    Kondrat'ev, Sergey Yu.; Anastasiadi, Grigoriy P.; Petrov, Sergey N.; Ptashnik, Alina V.


    The kinetics of formation and morphology of the intermetallic phases in the structure of heat-resistant as-cast HP40NbTi alloys in the course of long high-temperature exposure have been studied with the help of light and electron microscopy, electron microprobe, and X-ray diffraction. During exposure of 2 to 1000 hours at 1423 K (1150 °C), intermetallic phase with conditional formula Cr7Ni5Si3N3FeNb is formed in the alloy. The analysis of the kinetics of intermetallic phase's growth for an impact assessment of certain metal substitutional elements (niobium, chromium, silicon) on the size of the formed particles was performed. Formation and growth of the intermetallic phases with high silicon content in the alloy structure on the boundaries between niobium and chromium carbides (NbC and M23C6) and matrix γ-phase provide a diffusion barrier for oxygen in oxidizing environment. This may create partial protection against oxidation of hardening carbide phases in the structure and promote increasing of the serviceability of the HP series alloys under operating conditions in the petrochemical industry.

  2. Directional Solidification of AlSi Alloys with Fe Intermetallic Phases

    Mikołajczak P.


    Full Text Available Directional solidification technique is an important research instrument to study solidification of metals and alloys. In the paper the model [6,7,8] of directional solidification in special Artemis-3 facility was presented. The current work aimed to propose the ease and efficient way in calibrating the facility. The introduced M coefficient allowed effective calibration and implementation of defined thermal conditions. The specimens of AlSi alloys with Fe-rich intermetallics and especially deleterious β-Al5FeSi were processed by controlled solidification velocity, temperature gradient and cooling rate.

  3. The solidification and structure of Al-17wt.%Si alloy modified with intermetallic phases containing Ti and Fe

    J. Piątkowski


    Full Text Available The article describes the process of casting and solidification of Al-17wt.%Si alloy that have been modified with composite powdercontaining the intermetallic phases of Ti and Fe. The chemical and phase composition of the applied modifier was described with thefollowingformula:FeAlx–TiAlx–Al2O3. Applying the method of thermal analysis ATD, the characteristic parameters of the solidificationprocess were determined, and exo-and endothermic effects of the modifying powder on the run of the silumin solidification curves wereobserved. By the methods of light, scanning, and X-ray microscopy, the structure of alloy and the chemical composition of the dispersionhardening precipitates were examined. A change in the morphology of Al-Si eutectic from the lamellar to fibrous type was reportedtogether with changes in the form of complex eutectics of an Al-Si-Ti and Al-Si-Fe type and size reduction of primary silicon crystals.

  4. A Moessbauer study of a new intermetallic phase Nd[sub 2](Fe,Ti)[sub 19] and its nitride

    Cadogan, J.M. (School of Physics, Univ. of New South Wales, Kensington, NSW (Australia)); Day, R.K. (CSIRO Div. of Applied Physics, Lindfield, NSW (Australia)); Dunlop, J.B. (CSIRO Div. of Applied Physics, Lindfield, NSW (Australia)); Margarian, A. (CSIRO Div. of Applied Physics, Lindfield, NSW (Australia))


    In this paper we present [sup 57]Fe Moessbauer spectra of a new ternary intermetallic phase Nd[sub 2](Fe, Ti)[sub 19] and its nitride. Our previous work suggests that the 2-19 phase is related to the hexagonal TbCu[sub 7] structure. The average [sup 57]Fe magnetic hyperfine field of Nd[sub 2](Fe, Ti)[sub 19] at 295 K is 20.8 T which corresponds to an average Fe atomic magnetic moment of 1.33[mu][sub B]. After nitrogenation, the average [sup 57]Fe hyperfine field at 295 K is 29.6 T, which corresponds to an average Fe atomic magnetic moment of 1.90[mu][sub B]. This enhancement in the Fe atomic magnetic moment (at 295 K) is attributed mainly to the N-induced increase in Curie temperature of about 200 K. (orig.)

  5. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)


    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  6. Structural, electronic and elastic properties of RERu2 (RE=Pr and Nd) Laves phase intermetallic compounds

    Shrivastava, Deepika; Sanyal, Sankar P.


    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu2 (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu2 type) structure and found to be ductile in nature.

  7. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Shrivastava, Deepika, E-mail:; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)


    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  8. Cerium intermetallics CeTX. Review III

    Poettgen, Rainer; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ., Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux


    The structure-property relationships of CeTX intermetallics with structures other than the ZrNiAl and TiNiSi type are systematically reviewed. These CeTX phases form with electron-poor and electron-rich transition metals (T) and X = Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, and Bi. The review focusses on the crystal chemistry, the chemical bonding peculiarities, and the magnetic and transport properties. Furthermore {sup 119}Sn Moessbauer spectroscopic data, high-pressure studies, hydrogenation reactions and the formation of solid solutions are reviewed. This paper is the third of a series of four reviews on equiatomic intermetallic cerium compound [Part I: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 289; Part II: R. Poettgen, B. Chevalier, Z. Naturforsch. 2015, 70b, 695].

  9. A comparison of observables for solid-solid phase transitions

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory


    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  10. Intermetallics structures, properties, and statistics

    Steurer, Walter


    The focus of this book is clearly on the statistics, topology, and geometry of crystal structures and crystal structure types. This allows one to uncover important structural relationships and to illustrate the relative simplicity of most of the general structural building principles. It also allows one to show that a large variety of actual structures can be related to a rather small number of aristotypes. It is important that this book is readable and beneficial in the one way or another for everyone interested in intermetallic phases, from graduate students to experts in solid-state chemistry/physics/materials science. For that purpose it avoids using an enigmatic abstract terminology for the classification of structures. The focus on the statistical analysis of structures and structure types should be seen as an attempt to draw the background of the big picture of intermetallics, and to point to the white spots in it, which could be worthwhile exploring. This book was not planned as a textbook; rather, it...

  11. Nanospheres of a New Intermetallic FeSn5 Phase: Synthesis, Magnetic Properties and Anode Performance in Li-ion

    Wang, X.L.; Feygenson, M.; Chen, H.; Lin, C.-H.; Ku, W.; Bai, J.; Aronson, M.C.; Tyson, T.A.; Han, W.-Q.


    We synthesized monodisperse nanospheres of an intermetallic FeSn{sub 5} phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe{sub 0.74}Sn{sub 5} of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn{sub 5}, which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T{sub B} = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m{sup -3}. The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe{sub 0.74}Sn{sub 5} to enhanced capacity as an anode in Li ion batteries.

  12. Microstructures and hydrogenation properties of (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} Laves phase intermetallic compounds

    Wu, Tiandong; Xue, Xiangyi; Zhang, Tiebang, E-mail:; Hu, Rui; Kou, Hongchao; Li, Jinshan


    Highlights: • Role of Al on the microstructure and hydrogenation properties is discussed. • A positive effect in hydrogen dissociation can be introduced by Al on the surface of alloys. • Kinetics and thermodynamic parameters of Zr–Ti–V–Al alloys are obtained. • Partial substitution of Al decreases hysteresis between absorption and desorption. - Abstract: In this work, the (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} (x = 0.02, 0.05, 0.10, 0.15, 0.25) Laves phase intermetallic compounds were prepared by the arc-melting method. The microstructure and phase compositions were examined by SEM and XRD. Hydrogen absorption pressure composition isotherms (P–C isotherms) were obtained by the pressure reduction method using a Sievert type apparatus at different temperatures. The thermodynamic and kinetic properties of the alloys were investigated in this work. The results show that the (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} alloys consist of a dominant C15 Laves phase with cubic structure and a V-based solid solution phase with BCC structure. With further increasing Al content, C15 cubic type Laves phase and C14 hexagonal type Laves phase coexist in the range x ⩾ 0.15 in this (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} alloys. The crystal lattice parameter of the C15 phase increases with the increase of Al content. The PCT curves give the evidence that the maximum hydrogen absorption capacity decreases with the increase of Al content, which results from the existence of ZrAl{sub 2} which hardly absorb hydrogen. There is no obvious hysteresis between absorption and desorption in the (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} alloys at 823 K. The (ZrTi)(V{sub 1−x}Al{sub x}){sub 2} alloys with x = 0.25 preserves higher temperature of phase transformation (β → α). The existence of C14 phase (including ZrV{sub 2} and ZrAl{sub 2}) decreases the stability of hydrides.

  13. Nanomechanical responses of intermetallic phase at the solder joint interface - Crystal orientation and metallurgical effects

    Song, Jenn-Ming, E-mail: [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Bo-Ron [Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974, Taiwan (China); Liu, Cheng-Yi [Department of Chemical and Materials Engineering, National Central University, Taoyuan 320, Taiwan (China); Lai, Yi-Shao; Chiu, Ying-Ta [Central Labs, Advanced Semiconductor Engineering, Inc., Kaohsiung 811, Taiwan (China); Huang, Tzu-Wen [Laboratory for High Performance Ceramics, EMPA, Swiss Federal Laboratories for Materials Science and Technology (Switzerland)


    Highlights: Black-Right-Pointing-Pointer Textural and alloying effects on mechanical behavior of Cu{sub 6}Sn{sub 5} are explored. Black-Right-Pointing-Pointer Orientation dependence on elastic behavior of Cu{sub 6}Sn{sub 5} is verified and explained. Black-Right-Pointing-Pointer Allotropic transition and plastic ability for Cu{sub 6}Sn{sub 5} are linked. Black-Right-Pointing-Pointer How alloying affects the hexagonal to monoclinic transition of Cu{sub 6}Sn{sub 5} is proposed. - Abstract: In this study, the relationships between crystal structures, metallurgical effects, and mechanical properties of the most common intermetallic compound formed at the interface of solder joints, Cu{sub 6}Sn{sub 5}, were investigated using nanoindentation. Experimental results show that the (112{sup Macron }0) oriented hexagonal Cu{sub 6}Sn{sub 5} exhibited anisotropic mechanical behavior compared to those with random growth directions. The closest atomic packing density of the (112{sup Macron }0) plane in hexagonal Cu{sub 6}Sn{sub 5} resulted in higher hardness and notably, greater stiffness. Subjected to long time aging at 150 Degree-Sign C, hexagonal Cu{sub 6}Sn{sub 5} was transformed into the equilibrium monoclinic structure, resulting in a reduced modulus and thus inferior ability for plasticity. Alloying of Ni, Mn and rare earth elements (La and Ce) had various contributions to the allotropic transition and thus nanoindentation responses. It was found that the differences in atomic radius between the solute elements and Cu affected the kinetics of the allotropic transformation and also the mechanical performance of Cu{sub 6}Sn{sub 5}. There exists a critical value for the modulus/hardness ratio (E/H) of about 17.3-17.5, below which the indent morphology showed a brittle characteristic.

  14. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys and intermetallic materials: Phase stability in NbCr{sub 2} Laves phase alloys

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States); Liu, C.T. [Oak Ridge National Lab., TN (United States)


    Phase stability in NbCr{sub 2}-based transition-metal Laves phases is studied in this paper, using data from binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor (e/a = the average number of electrons per atom outside the closed shells of the component atoms) is the determinate factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves phase structures were determined as follows: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88-7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure was stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of transition-metal A{sub 3}B intermetallic compounds and Mg-based Laves phases is also reviewed and compared with the present observations in transition-metal Laves phases.

  15. Solid-solid phase transitions via melting in metals

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.


    Observing solid-solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid-solid transition via the formation of a metastable liquid in a `real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory.

  16. Accelerated exploration of multi-principal element alloys with solid solution phases

    Senkov, O. N.; Miller, J. D.; Miracle, D. B.; Woodward, C.


    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.

  17. Accelerated exploration of multi-principal element alloys with solid solution phases.

    Senkov, O N; Miller, J D; Miracle, D B; Woodward, C


    Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge--how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs--that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction.

  18. Structure of the Intermetallic Compound Ni3Al Synthesized under Compression of the Powder Mixture of Pure Elements Part II: Influence of Alloying by Boron on the Phase Composition and the Microstructure of Grains of the Main Phase


    The Ni3B phase was formed when boron (0.5 at. pct B) was added to the intermetallic of stoichiometric and off-stoichiometric (Ni-24 at. pct Al) compounds. In the alloy of stoichiometric composition the particles of Ni3B phase has the size around 0.1μm and is located on the grain boundary of the main phase. The decreasing of concentrations of Al in the off-stoichiometric alloy leads to increase in the degree of the long-range order parameter, increasing the concentrations of boron in the solid solution and decreasing its localization on the grain boundary.Microalloying of boron leads to increasing in the fraction of grain monodomains with dislocations up to 0.7 in the alloy of the off-stoichiometric composition and up to 1 in the alloy of the stoichiometric composition. It was established the correlation between the degree of the concentration inhomogeneity, average density of the dislocations and the average long range-order parameter.

  19. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    O.Tegus; Bao Li-Hong; Song Lin


    Since the discovery of giant magnetocaloric effect in MnFeP1-xAsx compounds,much valuable work has been performed to develop and improve Fe2P-type transition-metal-based magnetic refrigerants.In this article,the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques,effects of atomic substitution on the magnetism and magnetocalorics of Fe2P-type intermetallic compounds MnFeX (X=P,As,Ge,Si) is reviewed.Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP1-xSi(Ge)x.These new materials show large magnetocaloric effects resembling MnFe(P,As) near room temperature.Some new physical phenomena,such as huge thermal hysteresis and 'virgin' effect,were found in new materials.On the basis of Landau theory,a theoretical model was developed for studying the mechanism of phase transition in these materials.Our studies reveal that MnFe(P,Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation.

  20. Phase Stability of Intermetallic Compound Ce_3Al in Mechanical Milling


    For many years, cerium-aluminum systems have been extensively studied because of their unusual magnetic behaviors. As atomic radii of cerium and aluminum differ greatly from each other, a solid solution is not obtained due to the Hume-Rothery rule.

  1. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Kim, Jae-Hwan, E-mail: [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)


    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  2. Fabrication and Investigation of Intermetallic Compound-Glassy Phase Composites having Tensile Ductility


    with Mg-Y-Cu BGA, MgY phase also has a cP2 B2 structure), Mg-Y-Ag (AgMg phase also has a cP2 B2 structure and is ductile) and Y-Cu-Zn and some other...result were obtained is connected with cP2 TiNi phase which demonstrates martensitic transformations. Choice of alloys and sample preparation...1. The tentative compositions at which bulk glassy phase formation and possible formation of cP2 crystal-glassy composites are Cu-Y (starting from

  3. Strategies for improving ductility of ordered intermetallics

    Z.B. Jiao; J.H.Luan; C.T.Liu


    Ordered intermetallics possess attractive high-temperature properties; however, low ductility and brittle fracture limit their use as engineering materials in many cases. This paper provides a comprehensive review on the recent progress in the development of ductile ordered intermetallics and summarizes the strategies used to improve the tensile ductility of ordered intermetallics, including control of ordered crystal structures, engineering grain-boundary structure and chemistry, eliminating environmental embrittlement, microstructure optimization, control of phase stability, and promoting transformation-/twining-induced plasticity. The basic ideas and related mechanisms underlying these ductilizing strategies are discussed. In addition, a brief mention of the current use of intermetallic alloys for structural and corrosion applications is made.

  4. Molecular Modeling of Solid Fluid Phase Behavior

    Peter A. Monson


    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  5. Hot-working behavior of an advanced intermetallic multi-phase γ-TiAl based alloy

    Schwaighofer, Emanuel, E-mail: [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria); Lindemann, Janny [Chair of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 17, D-03046 Cottbus (Germany); GfE Fremat GmbH, Lessingstr. 41, D-09599 Freiberg (Germany); Stark, Andreas [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Mayer, Svea [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Roseggerstr. 12, A-8700 Leoben (Austria)


    New high-performance engine concepts for aerospace and automotive application enforce the development of lightweight intermetallic γ-TiAl based alloys with increased high-temperature capability above 750 °C. Besides an increased creep resistance, the alloy system must exhibit sufficient hot-workability. However, the majority of current high-creep resistant γ-TiAl based alloys suffer from poor workability, whereby grain refinement and microstructure control during hot-working are key factors to ensure a final microstructure with sufficient ductility and tolerance against brittle failure below the brittle-to-ductile transition temperature. Therefore, a new and advanced β-solidifying γ-TiAl based alloy, a so-called TNM alloy with a composition of Ti–43Al–4Nb–1Mo–0.1B (at%) and minor additions of C and Si, is investigated by means of uniaxial compressive hot-deformation tests performed with a Gleeble 3500 simulator within a temperature range of 1150–1300 °C and a strain rate regime of 0.005–0.5 s{sup −1} up to a true deformation of 0.9. The occurring mechanisms during hot-working were decoded by ensuing constitutive modeling of the flow curves by a novel phase field region-specific surface fitting approach via a hyperbolic-sine law as well as by evaluation through processing maps combined with microstructural post-analysis to determine a safe hot-working window of the refined TNM alloy. Complementary, in situ high energy X-ray diffraction experiments in combination with an adapted quenching and deformation dilatometer were conducted for a deeper insight about the deformation behavior of the alloy, i.e. phase fractions and texture evolution as well as temperature uncertainties arising during isothermal and non-isothermal compression. It was found that the presence of β-phase and the contribution of particle stimulated nucleation of ζ-Ti{sub 5}Si{sub 3} silicides and h-type carbides Ti{sub 2}AlC enhance the dynamic recrystallization behavior during

  6. Binary Solid-Liquid Phase Equilibria

    Ellison, Herbert R.


    Indicates some of the information that may be obtained from a binary solid-liquid phase equilibria experiment and a method to write a computer program that will plot an ideal phase diagram to which the experimental results may be compared. (Author/CP)

  7. Intermetallic Compounds

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.


    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  8. Electronic structure and magnetic properties of selected lanthanide and actinide intermetallic Laves-phase alloys

    Eriksson, Olle; Johansson, Börje; Brooks, M. S. S.


    The electronic structure and magnetic properties of some yttrium and uranium Laves-phase pseudobinary alloys with 3d elements have been calculated. The calculations were done by simulating the electronic structure of the alloy by that of an ordered compound with the same stoichiometry. In general...... a good agreement between the experimental and theoretical magnetic moment was found, indicating that the spurious long-range order of the calculations is of minor importance. A comparison between the present supercell cluster approach and the virtual-crystal approximation for the electronic structure...

  9. Solid phase sequencing of biopolymers

    Cantor, Charles R.; Hubert, Koster


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Probes may be affixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  10. Solid phase sequencing of biopolymers

    Cantor, Charles (Del Mar, CA); Koster, Hubert (La Jolla, CA)


    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  11. Enthalpy of formation of quasicrystalline phase and ternary solid solutions in the Al-Fe-Cu system

    I.A. Tomilin; S.D. Kaloshkin; V. V. Tcherdyntsev


    Standard enthalpies of formation of quasicrystalline phase and the ternary solid solutions in the Al-Fe-Cu system and the intermetallic compound FeAl were determined by the means of solution calorimetry. The quasicrystalline phase was prepared using two different methods. The first method (Ⅰ) consisted of ball milling the mixture of powders of pure aluminum copper and iron in a planetary mill with subsequent compacting by hot pressing and annealing. The second method (Ⅱ) consisted of arc melting of the components in argon atmosphere followed by annealing. The latter method was used for preparing the compound FeAl and the solid solutions. The phases were identified using the XRD method. The enthalpy of the formation was determined for the quasicrystalline phase of the composition Al62Cu25.5Fe12.5 and the ternary BCC solid solutions Al35Cu14Fe51, Al40Cu17Fe43, and Al50.4Cu19.6Fe30. The measured enthalpy of formation of the intermetallic com pound FeAl is in good agreement with the earlier published data. The enthaipies of formation of the quasicrystalline phases prepared using two different methods are close to each other, namely, -22.7±3.4 (method Ⅰ) and -21.3±2.1 (method Ⅱ)k J/mol.

  12. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.


    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  13. Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure

    Hao-Wen Hsueh


    Full Text Available Three wires, Au, Cu, and Ag-Au-Pd, were bonded on an Al pad, inducing IMC growth by a 155 hr high temperature storage (HTS so that the electrical resistance was increased and critical fusing current density (CFCD decreased. Observations of the Ag-Au-Pd wire after HTS (0–1000 hr indicated that IMC between the Ag-Au-Pd wire and Al Pad was divided into three layers: Ag2Al layers above and below the bonding interface and a polycrystal thin layer above the total IMC. A high percentage of Pd and Au existed in this 200 nm thin layer, and could suppress Al diffusion into the Ag matrix to inhibit IMC growth. After PCT-1000 hr, a noncontinuous structure still remained between the IMC layer and interface, and the main phase of IMC was (Ag, Au, Pd2Al with a hexagonal structure.

  14. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Mariana Braic


    The deposited films exhibited only solid solution (fcc, bcc or hcp or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema׳s approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  15. Insight into structural, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system from first-principles calculations

    Liu, Shuai; Zhan, Yongzhong; Wu, Junyan; Wei, Xuanchen


    The structural, phase stabilities, mechanical, electronic and thermodynamic properties of intermetallic phases in Zr-Sn system are investigated by using first-principles method. The equilibrium lattice constants, enthalpy of formation (ΔHform) and elastic constants are obtained and compared with available experimental and theoretical data. The configuration of Zr4Sn is measured with reasonable precision. The ΔHform of five hypothetical structures are obtained in order to find possible metastable phase for Zr-Sn system. The mechanical properties, including bulk modulus, shear modulus, Young's modulus and Poisson's ratio, are calculated by Voigt-Reuss-Hill approximation and the Zr5Sn4 and Zr5Sn3 show excellent mechanical properties. The electronic density of states for Zr5Sn4, Zr5Sn3 and cP8-Zr3Sn are calculated to further investigate the stability of intermetallic compounds. Through the quasi-harmonic Debye model, the Debye temperature, heat capacity and thermal expansion coefficient under temperature of 0-300 K and pressure of 0-50 GPa for Zr5Sn3 and Zr5Sn4 are deeply investigated.

  16. Improving hot corrosion resistance of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with enamel coating

    Pambudi, Muhammad Jajar; Basuki, Eddy Agus; Prajitno, Djoko Hadi


    TiAl intermetallic alloys have attracted great interest among aerospace industry after successful utilization in low pressure turbine blades of aircraft engine which makes dramatic weight saving up to 40% weight saving. However, poor oxidation and corrosion resistance at temperatures above 800°C still become the drawbacks of this alloys, making the development of protective coatings to improve the resistance is important. This study investigates the hot corrosion behavior of two phases intermetallic alloy α2-Ti3Al/γ-TiAl with and without enamel coating using immersion test method in molten salt of 85%-wt Na2SO4 and 15%-wt NaCl at 850°C. The results show after 50 hours of hot corrosion test, bare alloy showed poor hot corrosion resistance due to the formation of non-protective Al2O3+TiO2 mixed scale at the surface of the alloy. Improvement of hot corrosion resistance was obtained in samples protected with enamel coating, indicated by significant decreasing in mass change (mg/cm2) by 98.20%. Enamel coating is expected to has the capability in suppressing the diffusion of oxygen and corrosive ions into the substrate layer, and consequently, it improves hot corrosion resistance of the alloy. The study showed that enamel coatings have strong adherent to the substrate and no spallation was observed after hot corrosion test. Nevertheless, the dissolution of oxides components of the enamel coating into the molten salts was observed that lead enamel coating degradation. This degradation is believed involving Cl- anion penetration into the substrate through voids in the coating that accelerates the corrosion of the two phases α2-Ti3Al/γ-TiAl alloy. Even though further observations are needed, it appears that enamel coating could be a promising protective coating to increase hot corrosion resistance of TiAl intermetallic alloys.

  17. Multiplexed Colorimetric Solid-Phase Extraction

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.


    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  18. The new cerium-rich intermetallic phase Ce{sub 13}Ru{sub 2}Sn{sub 5}: Crystal structure and physical properties

    Gribanova, V., E-mail: [Chemistry Department of Moscow Lomonosov State University, 119991 Moscow (Russian Federation); Sorokina, N. [Shubnikov Institute of Crystallography RAS, Leninsky pr., 59, Moscow 119333 (Russian Federation); Murashova, E. [Chemistry Department of Moscow Lomonosov State University, 119991 Moscow (Russian Federation); Slabon, A. [Department of Chemistry, University of California, Berkeley, Hildebrand Hall 315, CA 94720 (United States); Daou, R.; Maignan, A.; Lebedev, O. [CRISMAT, UMR 6508, CNRS-ENSICAEN-UCBN, 6 Bd Maréchal Juin, 14050 Caen (France); Gribanov, A. [Chemistry Department of Moscow Lomonosov State University, 119991 Moscow (Russian Federation)


    Highlights: • Intermetallic Ce{sub 13}Ru{sub 2}Sn{sub 5} with the high cerium content crystallizes with is a new type of structure. • The atomic order of the new stannide Ce{sub 13}Ru{sub 2}Sn{sub 5} is similar to the structure packing of the Ce{sub 9}Ru{sub 4}In{sub 11} intermetallic. • Three interatomic Ce-Ru distances in the Ce{sub 13}Ru{sub 2}Sn{sub 5} structure are less than the sum of the covalent Ce and Ru radii. • Two low temperature phases below 16 K and 6.5 K compatible with antiferro- and/or ferrimagnetic ordering were revealed. • The 6 K phase is very quickly suppressed by magnetic field, although the 16 K phase appears to be more robust. - Abstract: A new intermetallic compound with a high content of cerium, Ce{sub 13}Ru{sub 2}Sn{sub 5}, was found during the systematic investigation of the Ce-Ru-Sn ternary system. The crystal structure has been studied by a single crystal X-ray diffraction experiment and was found to be a new structure type of the intermetallic compounds: space group I4/mcm, the lattice parameters a = 22.8999(2) Å, c = 9.1668(1) Å, Z = 8. Ce{sub 13}Ru{sub 2}Sn{sub 5} structure is characterized by eight independent crystallographic Ce sites and some shortened Ce-Ru contacts: d{sub Ce1-Ru1} = 2.7693(3) Å, d{sub Ce2-Ru1} = 2.7925(12) Å and d{sub Ce3-Ru1} = 2.7612(12) Å. The low temperature measurements of electrical resistivity and magnetization of Ce{sub 13}Ru{sub 2}Sn{sub 5} reveal the complex behavior of the magnetoresistance occurring below 20 K but with an additional positive component below 7.5 K. This behavior is discussed in light of the magnetic measurements showing two transitions at ∼16 K and ∼6 K together with hysteretic loops in the M(H) below 20 K.

  19. Mechanochemical production of nanocomposites of metal/oxide and intermetallic/oxide systems

    Grigoryeva, T F; Barinova, A P; Ancharov, A I; Vorsina, I A; Lyakhov, N Z [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk (Russian Federation); Novakova, A A; Kiseleva, T Yu [M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Talako, T L [Institute of Powder Metallurgy, NAS of Belarus, Minsk (Belarus); Becker, K D; Sepelak, V [Institute of Physical and Theoretical Chemistry, Braunschweig University of Technology, Braunschweig (Germany); Tsybulya, S V; Bulavchenko, O A, E-mail: grig@solid.nsc.r [G.K. Boreskov Institute of Catalysts, SB RAS, Novosibirsk (Russian Federation)


    Addition of nanosized intermetallic or metallic phases into corundum considerably raises mechanical behavior of the material. In this work, the nanocomposites of alpha-Al{sup 2}O{sup 3}/intermetallic and alpha-Al{sup 2}O{sup 3}/metal systems were obtained by mechanochemical reduction of alpha-Fe{sup 2}O{sup 3} by Al (and by solid solution of Al in Fe). The mechanochemical reduction process of hematite by various amount of metal-reducer was studied by IR and Moessbauer spectroscopies, and by X-ray synchrotron radiation diffraction technique.

  20. Phase 2, Solid waste retrieval strategy

    Johnson, D.M.


    Solid TRU retrieval, Phase 1 is scheduled to commence operation in 1998 at 218W-4C-T01 and complete recovery of the waste containers in 2001. Phase 2 Retrieval will recover the remaining buried TRU waste to be retrieved and provide the preliminary characterization by non-destructive means to allow interim storage until processing for disposal. This document reports on researching the characterization documents to determine the types of wastes to be retrieved and where located, waste configurations, conditions, and required methods for retrieval. Also included are discussions of wastes encompassed by Phase 2 for which there are valid reasons to not retrieve.

  1. Phase Evolution and Mechanical Behavior of the Semi-Solid SIMA Processed 7075 Aluminum Alloy

    Behzad Binesh


    Full Text Available Microstructural and mechanical behaviors of semi-solid 7075 aluminum alloy were investigated during semi-solid processing. The strain induced melt activation (SIMA process consisted of applying uniaxial compression strain at ambient temperature and subsequent semi-solid treatment at 600–620 °C for 5–35 min. Microstructures were characterized by scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD. During the isothermal heating, intermetallic precipitates were gradually dissolved through the phase transformations of α-Al + η (MgZn2 → liquid phase (L and then α-Al + Al2CuMg (S + Mg2Si → liquid phase (L. However, Fe-rich precipitates appeared mainly as square particles at the grain boundaries at low heating temperatures. Cu and Si were enriched at the grain boundaries during the isothermal treatment while a significant depletion of Mg was also observed at the grain boundaries. The mechanical behavior of different SIMA processed samples in the semi-solid state were investigated by means of hot compression tests. The results indicated that the SIMA processed sample with near equiaxed microstructure exhibits the highest flow resistance during thixoforming which significantly decreases in the case of samples with globular microstructures. This was justified based on the governing deformation mechanisms for different thixoformed microstructures.

  2. Megabar pressure phases of solid hydrogen

    Chen, Nancy Hueling

    The behavior of solid Hsb2, Dsb2, and HD at low temperatures high pressures was investigated. The experimental data were obtained by combining high pressure diamond anvil cell apparatus with cryogenic and spectroscopic techniques. Megabar pressures (1 bar = 10sp5 Pa) and liquid helium temperatures were accessible. The observed phases and phase lines are discussed with respect to orientational order, crystal structure, and electronic properties. The orientational order-disorder phase transition in HD was studied by Raman spectroscopy. Due to the distinguishability of the nuclei in an HD molecule, the observed phase line exhibits surprising behavior relative to that expected for the homonuclear molecules Hsb2 and Dsb2. The megabar pressure phase diagram of solid Dsb2 was investigated by infrared and Raman spectroscopy. The broken symmetry phase (BSP) transition line and the D-A phase line were observed to meet at a triple point. The relative arrangement of phase lines in P-T space, combined with group theoretical analysis of observed infrared and Raman spectra within the phases, sets symmetry restrictions on the allowed crystal structures. The electronic properties of the high pressure H-A and D-A phases were examined, since these recently discovered phases were suspected of being metallic. Acquired broadband infrared absorption spectra extending to 10 mum were analyzed in terms of the Drude model for metals. No evidence indicating metallic behavior was found. Refinements in high pressure techniques were explored, in order to increase the maximum pressures attainable. A method of extending ruby fluorescence pressure measurements to multimegabar pressures was developed, which involved excitation of ruby fluorescence with red, rather than blue or green laser light.

  3. Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases

    A Lekhal; F Z Benkhelifa; S Méçabih; B Abbar; B Bouhafs


    The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crystallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FPLAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA). The calculated lattice parameters were in good agreement with experiment. Also, the structural and electronic properties of the non-magnetic half-Heusler YAuPb compound including the artificial YAuX (X = Ge and Si) calculated in cubic phase were determined. It was found that the half-Heusler YAuPb compound presented metallic character. The results showed that YAuGe in cubic phase is a semiconductor whereas the cubic YAuSi is an isolator.

  4. Cerium intermetallics with TiNiSi-type structure

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)


    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  5. Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging

    Su, Yu-Ping; Wu, Chun-Sen; Ouyang, Fan-Yi


    Three-dimensional integrated circuit technology has become a major trend in electronics packaging in the microelectronics industry. To effectively remove heat from stacked integrated circuitry, a temperature gradient must be established across the chips. Furthermore, because of the trend toward higher device current density, Joule heating is more serious and temperature gradients across soldered joints are expected to increase. In this study we used heat-sink and heat-source devices to establish a temperature gradient across SnAg microbumps to investigate the thermomigration behavior of Ag in SnAg solder. Compared with isothermal conditions, small Ag3Sn particles near the hot end were dissolved and redistributed toward the cold end under a temperature gradient. The results indicated that temperature gradient-induced movement of Ag atoms occurred from the hot side toward the cold side, and asymmetrical precipitation of Ag3Sn resulted. The mechanism of growth of the intermetallic compound (IMC) Ag3Sn, caused by thermomigration of Ag, is discussed. The rate of growth Ag3Sn IMC at the cold side was found to increase linearly with solid-aging time under a temperature gradient. To understand the force driving Ag diffusion under the temperature gradient, the molar heat of transport ( Q*) of Ag in Sn was calculated as +13.34 kJ/mole.

  6. Modification of surface hardness for dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound by using energetic ion beam and subsequent thermal treatment

    Yoshizaki, H., E-mail: [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Hashimoto, A.; Kaneno, Y. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Semboshi, S. [Kansai-Center, Institute for Materials Research, Tohoku University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Okamoto, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)


    Dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound with the ordered structure was irradiated with 16 MeV Au{sup 5+} ions at room temperature. The observation by a transmission electron microscope has revealed that the lattice structure of this intermetallic compound changes from the ordered structure to the disordered A1 (fcc) structure by the ion irradiation, which accompanies a remarkable decrease in the surface hardness. The annealing treatment at elevated temperatures for the irradiated specimen induces the recovery of surface hardness. The present experimental result shows that the combination of energetic ion irradiation and the thermal treatment could be a means of modification for the workability of dual two-phase Ni{sub 3}Al–Ni{sub 3}V intermetallic compound.

  7. Solid phase synthesis of bifunctional antibodies.

    DeSilva, B S; Wilson, G S


    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  8. [Solid phase techniques in blood group serology].

    Uthemann, H; Sturmfels, L; Lenhard, V


    As alternatives to hemagglutination, solid-phase red blood cell adherence assays are of increasing importance. The adaptation of the new techniques to microplates offers several advantages over hemagglutination. Using microplates the assays may be processed semiautomatically, and the results can be read spectrophotometrically and interpreted by a personal computer. In this paper, different red blood cell adherence assays for AB0 grouping, Rh typing, Rh phenotyping, antibody screening and identification, as well as crossmatching will be described.

  9. Recent advances in solid phase peptide synthesis

    White, P.D.


    Since its introduction by Merrifield half a century ago, solid phase peptide synthesis has evolved to become the enabling technology for the development of peptide therapeutics. Using modern methods, 100 - 1000s of peptides can be routinely synthesised in parallel for screening as leads for drug development and peptide APIs are produced in ton scale. In this talk I consider the state of art and report on recent advances to overcome remaining issues such as aspartimide formation, racemisation ...

  10. The role of zinc on the chemistry of complex intermetallic compounds

    Xie, Weiwei [Iowa State Univ., Ames, IA (United States)


    Combining experiments and electronic structure theory provides the framework to design and discover new families of complex intermetallic phases and to understand factors that stabilize both new and known phases. Using solid state synthesis and multiple structural determinations, ferromagnetic β-Mn type Co8+xZn12–x was analyzed for their crystal and electronic structures.

  11. Development of headspace solid-phase microextraction method for ...

    ... solid-phase microextraction method for the analysis of pesticide residues in fruit and ... Journal of Applied Sciences and Environmental Management ... interface temperature) and solid phase microextraction parameters (fiber coating type, ...

  12. Intermetallic solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3}: Synthesis, structure, NQR study and electronic band structure calculations

    Verchenko, V.Yu.; Likhanov, M.S.; Kirsanova, M.A. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Gippius, A.A; Tkachev, A.V.; Gervits, N.E. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, Moscow 119333 (Russian Federation); Galeeva, A.V. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Buettgen, N.; Kraetschmer, W. [Institut fuer Physik, University of Augsburg, Augsburg D-86135 (Germany); Lue, C.S. [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Okhotnikov, K.S. [Materials and Environmental Chemistry, Stockholm University, Stockholm (Sweden); Shevelkov, A.V., E-mail: [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)


    Unlimited solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3} was prepared from Ga flux. Its crystal structure was refined for Fe{sub 0.5}Co{sub 0.5}Ga{sub 3} (P4{sub 2}/mnm, a=6.2436(9), c=6.4654(13), Z=4) and showed no ordering of the metal atoms. A combination of the electronic band structure calculations within the density functional theory (DFT) approach and {sup 69,71}Ga nuclear quadrupole resonance (NQR) spectroscopy clearly shows that the Fe-Fe and Co-Co dumbbells are preferred to the Fe-Co dumbbells in the crystals structure. The band structure features a band gap of about 0.4 eV, with the Fermi level crossing peaks of a substantial density of electronic states above the gap for x>0. The solid solution is metallic for x>0.025. The study of the nuclear spin-lattice relaxation shows that the rate of the relaxation, 1/T{sub 1}, is very sensitive to the Co concentration and correlates well with the square of the density of states at the Fermi level, N{sup 2}(E{sub F}). - Graphical abstract: Rate of the nuclear spin-lattice relaxation, 1/T{sub 1}, observed in the {sup 69}Ga NQR experiments for the intermetallic solid solution Fe{sub 1-x}Co{sub x}Ga{sub 3} is the highest for x=0.25 with the highest calculated density of electronic states at the Fermi level, N(E{sub F}); in general, 1/T{sub 1} correlates with N{sup 2}(E{sub F}). Highlights: Black-Right-Pointing-Pointer Fe{sub 1-x}Co{sub x}Ga{sub 3} solid solution is prepared in single crystalline form from Ga flux. Black-Right-Pointing-Pointer In the crystal structure Fe-Fe and Co-Co dumbbells are preferred to Fe-Co dumbbells. Black-Right-Pointing-Pointer Metal-to-semiconductor transition occurs at 0

  13. Wax Precipitation Modeled with Many Mixed Solid Phases

    Heidemann, Robert A.; Madsen, Jesper; Stenby, Erling Halfdan


    The behavior of the Coutinho UNIQUAC model for solid wax phases has been examined. The model can produce as many mixed solid phases as the number of waxy components. In binary mixtures, the solid rich in the lighter component contains little of the heavier component but the second phase shows sub...

  14. Parallel solid-phase synthesis of diaryltriazoles

    Matthias Wrobel


    Full Text Available A series of substituted diaryltriazoles was prepared by a solid-phase-synthesis protocol using a modified Wang resin. The copper(I- or ruthenium(II-catalyzed 1,3-cycloaddition on the polymer bead allowed a rapid synthesis of the target compounds in a parallel fashion with in many cases good to excellent yields. Substituted diaryltriazoles resemble a molecular structure similar to established terphenyl-alpha-helix peptide mimics and have therefore the potential to act as selective inhibitors for protein–protein interactions.

  15. Density-functional theory for fluid-solid and solid-solid phase transitions

    Bharadwaj, Atul S.; Singh, Yashwant


    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  16. Magnetic phase transition and the corresponding magnetostriction of intermetallic compounds RMn2Ge2 (R=Sm, Gd)

    Guo Guang-Hua(郭光华); Wu Ye(吴烨); Zhang Hai-Bei(张海贝); D A Filippov; R Z Levitin; V V Snegirev


    The temperature dependence of lattice constants a and c of intermetallic compounds RMn2Ge2 (R=Sm, Gd) is measured in the temperature range 10-800K by using the x-ray diffraction method. The magnetoelastic anomalies of lattice constants are found at the different kinds of spontaneous magnetic transitions. The transversal and longitudinal magnetostrictions of polycrystalline samples are measured in the pulse magnetic field up to 25T. In the external magnetic field there occurs a first-order field-induced antiferromagnetism-ferromagnetism transition in the Mn sublattice, which gives rise to a large magnetostriction. The magnitude of magnetostrictions is as large as 10-3. The transversal and longitudinal magnetostrictions have the same sign and are almost equal. This indicates that the magnetostriction is isotropic and mainly caused by the interlayer Mn-Mn exchange interaction. The experimental results are explained in the framework of a two-sublattice ferrimagnet with the negative exchange interaction in one of the sublattices by taking into account the lattice constant dependence of interlayer Mn-Mn exchange interaction.

  17. Solid phase microextraction device using aerogel

    Miller, Fred S.; Andresen, Brian D.


    A sample collection substrate of aerogel and/or xerogel materials bound to a support structure is used as a solid phase microextraction (SPME) device. The xerogels and aerogels may be organic or inorganic and doped with metals or other compounds to target specific chemical analytes. The support structure is typically formed of a glass fiber or a metal wire (stainless steel or kovar). The devices are made by applying gel solution to the support structures and drying the solution to form aerogel or xerogel. Aerogel particles may be attached to the wet layer before drying to increase sample collection surface area. These devices are robust, stable in fields of high radiation, and highly effective at collecting gas and liquid samples while maintaining superior mechanical and thermal stability during routine use. Aerogel SPME devices are advantageous for use in GC/MS analyses due to their lack of interfering background and tolerance of GC thermal cycling.

  18. Nanospheres of a New Intermetalic FeSn5 Phase: Synthesis Magnetic Properties and Anode Performance in Li-ion Batteries

    X Wang; M Feygenson; H Chen; C Lin; W Ku; J Bai; M Aronson; T Tyson; W Han


    We synthesized monodisperse nanospheres of an intermetallic FeSn{sub 5} phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe{sub 0.74}Sn{sub 5} of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn{sub 5}, which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T{sub B} = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m{sup -3}. The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe{sub 0.74}Sn{sub 5} to enhanced capacity as an anode in Li ion batteries.

  19. Nanospheres of a new intermetallic FeSn5 phase: synthesis, magnetic properties and anode performance in Li-ion batteries.

    Wang, Xiao-Liang; Feygenson, Mikhail; Chen, Haiyan; Lin, Chia-Hui; Ku, Wei; Bai, Jianming; Aronson, Meigan C; Tyson, Trevor A; Han, Wei-Qiang


    We synthesized monodisperse nanospheres of an intermetallic FeSn(5) phase via a nanocrystal-conversion protocol using preformed Sn nanospheres as templates. This tetragonal phase in P4/mcc space group, along with the defect structure Fe(0.74)Sn(5) of our nanospheres, has been resolved by synchrotron X-ray diffraction and Rietveld refinement. Importantly, FeSn(5), which is not yet established in the Fe-Sn phase diagram, exhibits a quasi-one dimensional crystal structure along the c-axis, thus leading to interesting anisotropic thermal expansion and magnetic properties. Magnetization measurements indicate that nanospheres are superparamagnetic above the blocking temperature T(B) = 300 K, which is associated with the higher magnetocrystalline anisotropy constant K = 3.33 kJ m(-3). The combination of the magnetization measurements and first-principles density functional theory calculations reveals the canted antiferromagnetic nature with significant spin fluctuation in lattice a-b plane. The low Fe concentration also leads Fe(0.74)Sn(5) to enhanced capacity as an anode in Li ion batteries.

  20. Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes


    REPORT Solid Phase Synthesis of Polymacromer and Copolymacromer Brushes 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We report a novel solid phase...form poly-macromer brushes wherein macromonomers are linked via triazole groups. After each addition step, the terminal alkyne group can be deprotected...Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Solid Phase Synthesis , polymers and copolymers Hernán R. Rengifo, Cristian Grigoras, Benjamin I

  1. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong


    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  2. Preparing Fe5C2 Intermetallic Compound by Mechanical Alloying Method at Room Temperature and Normal Pressure

    何正明; 钟敏建; 沈伟星; 张正明


    Single phase Fe5C2 intermetallic compound was prepared by mechanical alloying method. The phase and crystal structure of sample were analyzed with X-ray differaction spectrum. The decomposing temperature of the Fe5C2 compound is 596.4℃ determined by the DSC curve. It is further shown that the size of nanometer crystal grain is an important condition for carrying out the solid state reaction at room temperature and normal pressure.

  3. Microstructure and Mechanical Properties of FeAl Intermetallics Prepared by Mechanical Alloying and Hot-Pressing

    SONG Haixia; WU Yunxin; TANG Chuan'an; YUAN Shuai; GONG Qianming; LIANG Ji


    FeAl intermetallics were prepared by mechanical alloying and vacuum hot-pressing. The Fe-48 at.% Al powder was ball-milled for 3-12 h, producing a solid solution structure of Fe (Al) with trace Al (Fe). Subsequent vacuum annealing or hot-pressing introduced phase transformations into the FeAl (B2) inter-metallics and Al2O3 inclusions. The hot-pressed FeAl intermetallics possess a high flexural strength of 831 Mpa and a fairly good strain at break of 3.2%. The results show that the addition of 0.5 at,% B reduces the peak temperature for hot-pressing from 1180℃ to 1100℃, and increases the density of the compacts from 95% to 96.3%, but results in no significant improvement in the mechanical properties.

  4. New roles for icosahedral clusters in intermetallic phases: micelle-like segregation of Ca-Cd and Cu-Cd interactions in Ca10Cd27Cu2.

    Hadler, Amelia B; Harris, Nicholas A; Fredrickson, Daniel C


    Despite significant progress in the structural characterization of the quasicrystalline state, the chemical origins of long- and short-range icosahedral order remain mysterious and a subject of debate. In this Article, we present the crystal structure of a new complex intermetallic phase, Ca10Cd27Cu2 (mC234.24), whose geometrical features offer clues to the driving forces underlying the icosahedral clusters that occur in Bergman-type quasicrystals. Ca10Cd27Cu2 adopts a C-centered monoclinic superstructure of the 1/1 Bergman approximant structure, in which [110] layers of Bergman clusters in the 1/1 structure are separated through the insertion of additional atoms (accompanied by substantial positional disorder). An examination of the coordination environments of Ca and Cu (in the ordered regions) reveals that the structure can be viewed as a combination of coordination polyhedra present in the nearest binary phases in the Ca-Cd-Cu compositional space. A notable feature is the separation of Ca-Cd and Cu-Cd interactions, with Bergman clusters emerging as Ca-Cd Friauf polyhedra (derived from the MgZn2-type CaCd2 phase) encapsulate a Cu-Cd icosahedron similar to those appearing in Cu2Cd5. DFT chemical pressure calculations on nearby binary phases point to the importance of this segregation of Ca-Cd and Cu-Cd interactions. The mismatch in atomic size between Cu and Cd leads to an inability to satisfy Ca-Cu and Ca-Cd interactions simultaneously in the Friauf polyhedra of the nearby Laves phase CaCd2. The relegation of the Cu atoms to icosahedra prevents this frustration while nucleating the formation of Bergman clusters.

  5. Wafer bonding using Cu-Sn intermetallic bonding layers

    Flötgen, C.; Pawlak, M.; Pabo, E.; Wiel, H.J. van de; Hayes, G.R.; Dragoi, V.


    Wafer-level Cu-Sn intermetallic bonding is an interesting process for advanced applications in the area of MEMS and 3D interconnects. The existence of two intermetallic phases for Cu-Sn system makes the wafer bonding process challenging. The impact of process parameters on final bonding layer

  6. Ab initio study of the structural, thermodynamic and electronic properties of the Cu{sub 10}In{sub 7} intermetallic phase

    Ramos de Debiaggi, S., E-mail: [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Cabeza, G.F. [CONICET (Argentina); Dpto. de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Toro, C. Deluque [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); Monti, A.M. [CNEA e Instituto Sabato (Univ. Nac. de San Martin/CNEA), Centro Atomico Constituyentes, Avda. General Paz 1499, B1650KNA, San Martin, Buenos Aires (Argentina); Sommadossi, S. [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, (8300) Neuquen (Argentina); CONICET (Argentina); Guillermet, A. Fernandez [CONICET (Argentina); Centro Atomico Bariloche e Instituto Balseiro, Avda. Bustillo 9500, (8400) Bariloche (Argentina)


    Research highlights: > Cu{sub 10}In{sub 7} and Cu{sub 11}In{sub 9} are thermodynamically stable with respect to elements at 0 K. > Cu{sub 10}In{sub 7} phase is more stable than the modelled Cu{sub 11}In{sub 9} compound by only 0.92 kJ/mol. > The present ab initio results reproduce very well the available structural data. > Similar DOS for both phases, the most prominent bonding band comes from Cu-d states. > Enhanced relative thermodynamic stability is predicted for phases with 40-45 at.% In. - Abstract: The physico-chemical properties of the intermetallic phases in the Cu-In system have been a matter of considerable theoretical and experimental interest in connection with, i.a., the application of In-Sn alloys as lead-free micro-soldering alloys. Recently, a new binary compound with the chemical formula Cu{sub 10}In{sub 7} has been detected in a study of the {eta}-phase field. The structure of the Cu{sub 10}In{sub 7} phase has been determined as closely related to that of the Cu{sub 11}In{sub 9} compound occurring in the phase diagram, but no experimental or theoretical information on its electronic structure, thermodynamic and equation-of-state properties has yet been reported. In the present work we report the lattice parameters, bulk modulus, energy of formation from the constituent elements and the electronic structure of the new phase, calculated by applying an ab initio density-functional-theory method. Our calculation technique uses the projector augmented wave potentials and the exchange-correlation functions of Perdew and Wang in the generalized gradient approximation. The present results for the Cu{sub 10}In{sub 7} phase are compared with the experimental data available, and with the trends in structural and thermodynamic properties emerging from ab initio calculations also performed in the present study for various structurally related and neighboring compounds in the Cu-In phase diagram, viz., the ideal B8{sub 2}-Cu{sub 2}In, B8{sub 1}-CuIn, B8{sub 2

  7. Stable solid-phase Rh antigen.

    Yared, M A; Moise, K J; Rodkey, L S


    Numerous investigators have attempted to isolate the Rh antigens in a stable, immunologically reactive form since the discovery of the Rh system over 56 years ago. We report here a successful and reproducible approach to solubilizing and adsorbing the human Rh antigen(s) to a solid-phase matrix in an antigenically active form. Similar results were obtained with rabbit A/D/F red blood cell antigens. The antigen preparation was made by dissolution of the red blood cell membrane lipid followed by fragmentation of the residual cytoskeleton in an EDTA solution at low ionic strength. The antigenic activity of the soluble preparations was labile in standard buffers but was stable in zwitterionic buffers for extended periods of time. Further studies showed that the antigenic activity of these preparations was enhanced, as was their affinity for plastic surfaces, in the presence of acidic zwitterionic buffers. Adherence to plastic surfaces at low pH maintained antigenic reactivity and specificity for antibody was retained. The data show that this approach yields a stable form of antigenically active human Rh D antigen that could be used in a red blood cell-free assay for quantitative analysis of Rh D antibody and for Rh D antibody immunoadsorption and purification.

  8. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.


    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  9. Investigation of binary solid phases by calorimetry and kinetic modelling

    Matovic, M.


    The traditional methods for the determination of liquid-solid phase diagrams are based on the assumption that the overall equilibrium is established between the phases. However, the result of the crystallization of a liquid mixture will typically be a non-equilibrium or metastable state of the solid

  10. A first-principles study on structural stability and mechanical properties of polar intermetallic phases CaZn2 and SrZn2

    Hu, Wen-Cheng; Liu, Yong; Li, De-Jiang; Li, Ke; Jin, Hua-Lan; Xu, Ying-Xuan; Xu, Chun-Shui; Zeng, Xiao-Qin


    Structural stability and electronic properties of polar intermetallic CaZn2 and SrZn2 in both CeCu2-type and MgZn2-type structures have been investigated using first-principles method. The calculated equilibrium lattice parameters agree closely with the available experimental and other theoretical results. In terms of formation enthalpy, it is discovered that the present compounds with CeCu2-type structure are energetically more stable than that with MgZn2-type. They are all mechanically stable according to the criteria of elastic stability. In particular, we have investigated the pressure effect on the compressive behaviour and structural stability of each compound. Subsequently, the bulk modulus, shear modulus, Young's modulus, theoretical hardness, Poisson's ratio and Debye temperature in the ground state can be estimated using Voigt-Reuss-Hill homogenization method. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young's modulus. Finally, the electronic structures are determined to reveal the bonding characteristics of considered phases.

  11. Solid solution or amorphous phase formation in TiZr-based ternary to quinternary multi-principal-element films

    Mariana Braic; Viorel Braic; Alina Vladescu; Catalin N. Zoita; Mihai Balaceanu


    TiZr-based multicomponent metallic films composed of 3-5 constituents with almost equal atomic concentrations were prepared by co-sputtering of pure metallic targets in an Ar atmosphere. X-ray diffraction was employed to determine phase composition, crystalline structure, lattice parameters, texture and crystallite size of the deposited films. The deposited films exhibited only solid solution (fcc, bcc or hcp) or amorphous phases, no intermetallic components being detected. It was found that the hcp structure was stabilized by the presence of Hf or Y, bcc by Nb or Al and fcc by Cu. For the investigated films, the atomic size difference, mixing enthalpy, mixing entropy, Gibbs free energy of mixing and the electronegativity difference for solid solution and amorphous phases were calculated based on Miedema's approach of the regular solution model. It was shown that the atomic size difference and the ratio between the Gibbs free energies of mixing of the solid solution and amorphous phases were the most significant parameters controlling the film crystallinity.

  12. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.

  13. Solid-solid phase transitions determined by differential scanning calorimetry.

    Murrill, E.; Whitehead, M. E.; Breed, L.


    Data are presented to show that tris(hydroxymethyl)acetic acid, monochloropentaerythritol, monofluoropentaerythritol, difluoropentaerythritol, monoaminopentaerythritol, and diaminopentaerythritol exhibit solid-state transitions to a plastic crystalline state. Transitional enthalpies in many of these substances are lower than might be expected by analogy with related structures, suggesting that some configurational contributions to their entropy increments have been inhibited.



    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  15. Analysis of solid-liquid phase change heat transfer enhancement

    张寅平; 王馨


    Solid-liquid phase change processes have two important features: the process is an approximately isothermal process and the heat of fusion of phase change material tends to be much greater than its specific heat. Therefore, if any phase change material adjacent to a hot or cold surface undergoes phase change, the heat transfer rate on the surface will be noticeably enhanced. This paper presents a novel insight into the mechanisms of heat transfer enhancement induced by solid-liquid phase change based on the analogy analysis for heat conduction with an internal heat source and solid-liquid phase change heat transfer. Three degrees of surface heat transfer enhancement for different conditions are explored, and corresponding formulae are written to describe them. The factors influencing the degrees of heat transfer enhancement are clarified and their effects quantitatively analyzed. Both the novel insight and the analysis contribute to effective application of phase change heat transfer enhancement technique.

  16. Synthesis and characterization of Fe-Ti-Sb intermetallic compounds: Discovery of a new Slater-Pauling phase

    Naghibolashrafi, N.; Keshavarz, S.; Hegde, Vinay I.; Gupta, A.; Butler, W. H.; Romero, J.; Munira, K.; LeClair, P.; Mazumdar, D.; Ma, J.; Ghosh, A. W.; Wolverton, C.


    Compounds of Fe, Ti, and Sb were prepared using arc melting and vacuum annealing. Fe2TiSb , expected to be a full Heusler compound crystallizing in the L 21 structure, was shown by XRD and SEM analyses to be composed of weakly magnetic grains of nominal composition Fe1.5TiSb with iron-rich precipitates in the grain boundaries. FeTiSb, a composition consistent with the formation of a half-Heusler compound, also decomposed into Fe1.5TiSb grains with Ti-Sb rich precipitates and was weakly magnetic. The dominant Fe1.5TiSb phase appears to crystallize in a defective L 21 -like structure with iron vacancies. Based on this finding, a first-principles DFT-based binary cluster expansion of Fe and vacancies on the Fe sublattice of the L 21 structure was performed. Using the cluster expansion, we computationally scanned >103 configurations and predict a novel, stable, nonmagnetic semiconductor phase to be the zero-temperature ground state. This new structure is an ordered arrangement of Fe and vacancies, belonging to the space group R 3 m , with composition Fe1.5TiSb , i.e., between the full- and half-Heusler compositions. This phase can be visualized as alternate layers of L 21 phase Fe2TiSb and C 1b phase FeTiSb, with layering along the [111] direction of the original cubic phases. Our experimental results on annealed samples support this predicted ground-state composition, but further work is required to confirm that the R 3 m structure is the ground state.

  17. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics

    Klaus-Dieter Liss


    Full Text Available Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings.

  18. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy


    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  19. Introduction of scandium, zirconium and hafnium into aluminum alloys. Dispersion hardening of intermetallic compounds with nanodimensional particles



    The state of intermetallic compounds Al 3Sc, Al 3Zr, Al 3Hf and slag shots introduced by high-temperature exchange reactions of corresponding fluoride-chloride salts with liquid aluminum has been studied. The particle size and segregation direction during centrifugation and fi ltration of melt have been examined by microscopy and local X-ray analysis methods. The dispersoids formed during decomposition of solid solution are strong phase reinforcers.

  20. Crystal-Structure Analysis with Moments of the Density-of-States: Application to Intermetallic Topologically Close-Packed Phases

    Thomas Hammerschmidt


    Full Text Available The moments of the electronic density-of-states provide a robust and transparent means for the characterization of crystal structures. Using d-valent canonical tight-binding, we compute the moments of the crystal structures of topologically close-packed (TCP phases as obtained from density-functional theory (DFT calculations. We apply the moments to establish a measure for the difference between two crystal structures and to characterize volume changes and internal relaxations. The second moment provides access to volume variations of the unit cell and of the atomic coordination polyhedra. Higher moments reveal changes in the longer-ranged coordination shells due to internal relaxations. Normalization of the higher moments leads to constant (A15,C15 or very similar (χ, C14, C36, μ, and σ higher moments of the DFT-relaxed TCP phases across the 4d and 5d transition-metal series. The identification and analysis of internal relaxations is demonstrated for atomic-size differences in the V-Ta system and for different magnetic orderings in the C14-Fe 2 Nb Laves phase.

  1. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)


    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  2. Automated solid-phase synthesis of oligosaccharides containing sialic acids

    Chian-Hui Lai


    Full Text Available A sialic acid glycosyl phosphate building block was designed and synthesized. This building block was used to prepare α-sialylated oligosaccharides by automated solid-phase synthesis selectively.


    B. S. Chandravanshi

    cation exchange-solid phase extraction (SCX-SPE) was investigated as an .... Stock solutions, with a concentration of 1.00 mg/mL were prepared ... Johannesburg, South Africa) connected to a vacuum pump (Vacuubrand, GMBH, Germany).

  4. Anisotropy in the paramagnetic phase of RAl/sub 2/ cubic intermetallic compounds (R = Tb, Dy, and Er)

    del Moral, A.; Ibarra, M.R.; Abell, J.S.; Montenegro, J.F.D.


    In this paper it is shown that the anisotropy in the paramagnetic phase is a useful characteristic when used to single out high-rank susceptibility tensor components in the paramagnetic regime of cubic crystals. Application of this technique to RAl/sub 2/ compounds (R = Tb,Dy,Er) allows the determination of longitudinal and transverse (in the form of linear combinations) fourth- and sixth-rank paramagnetic susceptibilities. The use of the fourth-rank longitudinal susceptibility allows quadrupolar pair interactions in these compounds to be probed.

  5. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  6. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    Nielsen, John; Lyngsø, Lars Ole


    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...... including MSNT-mediated esterification of both support-bound alcohols and carboxylic acids has been implemented successfully. Copyright (C) 1996 Elsevier Science Ltd....

  7. Influence of the volume-contact area ratio on the growth behavior of the Cu-Sn intermetallic phase

    Giddaluri, Venkatakamakshi Supraja

    Solder Joints play a very important role in electronic packaging industry by serving as mechanical support and provides integrity to the device. The increasing demand for high performance, environmental and economic feasibility and miniaturization led to the development of high density interconnects. With the reduction in the size/standoff height of the solder reliability issues in the surface mount assemblies and packaging structures under various rigorous environments are becoming significant. One of the most important impact factors that affect the solder joint reliability is the growth rate IMC formed between the solder and substrate with reduction in joint size. IMC formation is required to ensure good bonding and connectivity of the device in packaging. However excess IMC growth rate is detrimental to the device from mechanical aspects due to its brittle nature. Thus there is a need to study effect the IMC growth rate behavior with the solder joint size/standoff height. In this present study, two solder joints of different standoff heights and same composition (pure Sn solder) are used subjected to reflow process at 270°C for 1--7 min to study solid liquid interfacial reaction on joint size and the same experiment is repeated with SAC alloy of composition (96.5% Sn, 3.0% Ag, 0.5% Cu) to investigate the effect of joint size and initial copper concentration on IMC growth rate. The IMC thickness of the Sn 15microm solder joint at 1 min and 7 min is found to be 1.52microm and 2.86microm respectively while that of Sn 150microm solder joint is 1.31microm and 3.16 microm. The thickness is high in low standoff height sample at the early stage of reaction with decrease in IMC growth rate as the time of reflow increases. In case of 25microm SAC alloy solder joint the IMC thickness from 1 and 7 min is found to be 2.1microm and 3.5microm while that of 250microm SAC alloy solder joint its 1.43microm and3.235microm. Similar trend is observed but the IMC thickness is more

  8. Structural and Electronic Investigations of Complex Intermetallic Compounds

    Ko, Hyunjin [Iowa State Univ., Ames, IA (United States)


    structures of these and related materials. Such calculations allow us to examine various interactions at the atomic scale, interactions which include orbital overlap, two-electron interactions, and Madelung terms. Moreover, these electronic studies also provide links between the angstrom-scale atomic interactions and the macro-scale physical properties, such as magnetism. Over the past few decades, there have been many significant developments toward understanding structure-bonding-property relationships in extended solids in terms of variables including atomic size, valence electron concentration, and electronegativity. However, many simple approaches based on electron counting, e.g., the octet rule, the 18-electron rule, or Wade's rules for boranes, cannot be applied adequately or universally to many of the more complex intermetallic compounds. For intermetallic phases that include late transition metals and post transition main group elements as their constituents, one classification scheme has been developed and effectively applied by using their valence electron count per atom (vec). These compounds are known as Hume-Rothery electron phases, and they have a variety of structure types with vec < 2.0 as shown in Table 1.

  9. Niobium-Based Intermetallics for Affordable In-Space Propulsion Applications Project

    National Aeronautics and Space Administration — This SBIR Phase I effort proposes an innovative class of refractory metal intermetallic composites as alternatives to high temperature metallic materials presently...

  10. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....

  11. Magnetic Solid Phase Extraction Applied to Food Analysis

    Israel S. Ibarra


    Full Text Available Magnetic solid phase extraction has been used as pretreatment technique for the analysis of several compounds because of its advantages when it is compared with classic methods. This methodology is based on the use of magnetic solids as adsorbents for preconcentration of different analytes from complex matrices. Magnetic solid phase extraction minimizes the use of additional steps such as precipitation, centrifugation, and filtration which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique which were applied in food analysis.

  12. Fuel spill identification using solid-phase extraction and solid-phase microextraction. 1. Aviation turbine fuels.

    Lavine, B K; Brzozowski, D M; Ritter, J; Moores, A J; Mayfield, H T


    The water-soluble fraction of aviation jet fuels is examined using solid-phase extraction and solid-phase microextraction. Gas chromatographic profiles of solid-phase extracts and solid-phase microextracts of the water-soluble fraction of kerosene- and nonkerosene-based jet fuels reveal that each jet fuel possesses a unique profile. Pattern recognition analysis reveals fingerprint patterns within the data characteristic of fuel type. By using a novel genetic algorithm (GA) that emulates human pattern recognition through machine learning, it is possible to identify features characteristic of the chromatographic profile of each fuel class. The pattern recognition GA identifies a set of features that optimize the separation of the fuel classes in a plot of the two largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected features is primarily about the differences between the fuel classes.

  13. Formation of Intermetallic Compounds During Explosive Welding

    Greenberg, Bella A.; Ivanov, Mikhail A.; Pushkin, Mark S.; Inozemtsev, Alexei V.; Patselov, Alexander M.; Tankeyev, Anatoliy P.; Kuzmin, Sergey V.; Lysak, Vladimir I.


    Transition states between traditional, i.e., plain and wavy, shapes of the interface during explosive welding were studied. A sequence of the transition states was found for the studied copper-titanium and copper-tantalum joints. Some transition states are common for the joints under study, while others are only typical of the copper-titanium joints, due to sufficiently high solubility of original elements. A transition state has been found, during which cusps, even though they are solid phase, look like splashes on the water. The key role of these splashes is that they evidence the lower boundary of the `weldability window.' The study found certain self-organization processes of the cusps that cause them to turn into a quasi-wavy shape of the interface, and then, as the welding mode is intensified, into a wavy shape. The role of intermetallic compounds was analyzed, due to which a wave only consists of cusps in case mutual solubility of original metals is sufficiently high.

  14. Theoretical study of phase forming of NaZn sub 1 sub 3 -type rare-earth intermetallics

    Chang Hong; Liang Jing Kui; Rao Guang Hui


    By using the interatomic pair potential obtained with the lattice inversion method, the stability of RT sub 1 sub 3 sub - sub x M sub x (R = La, Ce, Pr and Nd; T=Co and Fe; M=Si, Al, Cr, V and Ti) of the NaZn sub 1 sub 3 type and its derivative structure are studied. The structural transition of LaT sub 1 sub 3 sub - sub x Si sub x (T=Co and Fe) between the cubic one with the space group Fm3c and the tetragonal one with I4/mcm is imitated from the viewpoint of energy. As for the function of the third elements, Al and Si are beneficial to the phase stability of RT sub 1 sub 3 sub - sub x M sub x , whereas Cr, Ti and V are unfavourable to the stability. In the calculation, the range of x, with which RT sub 1 sub 3 sub - sub x M sub x could crystallize in the cubic or tetragonal structures, agrees with the experiments very well. The calculated crystallographic parameters coincide with the experimental observation. In the cubic structure, Si and Al prefer the 96i site, and in the tetragonal structure Si first occ...

  15. Phase nucleation and evolution mechanisms in heterogeneous solids

    Udupa, Anirudh

    Phase nucleation and evolution is a problem of critical importance in many applications. As the length scales are reduced, it becomes increasingly important to consider interfacial and micro-structural effects that can be safely ignored at larger length scales owing to randomness. The theory of phase nucleation has been addressed usually by the classical nucleation theory, which was originally derived for single component fluid systems, after making an assumption of equilibrium. The criterion has not been rigorously derived for solids, which are far from equilibrium due to dissipation by multiple physical drivers. In this thesis, a thermodynamically sound nucleation criterion is derived for systems with multiple interacting physical phenomena and multiple dissipating mechanisms. This is done, using the tools of continuum mechanics, by determining the change in free energy upon the introduction of a new nucleus into the system. The developed theory is demonstrated to be a generalization of the classical nucleation theory (CNT). The developed theory is then applied to the problem of electromigration driven void nucleation, a serious reliability concern for the microelectronics industry. The void grows and eventually severs the line making the chip nonfunctional. There are two classes of theories at present in the electromigration literature to address the problem of void nucleation, the vacancy supersaturation theory and the entropic dissipation theory, both of which are empirical and based on intuition developed from experimental observations. When the developed theory was applied to the problem of electromigration, it was found to be consistent with the vacancy supersaturation theory, but provided the correct energetic quantity, the chemical potential, which has contribution from both the vacancy concentration as well as the hydrostatic stress. An experiment, consisting of electromigration tests on serpentine lines, was developed to validate the developed

  16. N-Acyliminium Intermediates in Solid-Phase Synthesis

    Quement, Sebastian Thordal le; Petersen, Rico; Meldal, M.


    N-Acyliminium ions are powerful intermediates in synthetic organic chemistry. Examples of their use are numerous in solution-phase synthesis, but there are unmerited few reports on these highly reactive electrophiles in solid-phase synthesis. The present review covers the literature to date and i...

  17. Solid phase extraction method for determination of mitragynine in ...

    mitragynine in urine and its application to mitragynine excretion ... Purpose: To develop a solid phase extraction (SPE) method that utilizes reverse-phase high performance .... solution of MG (1 mg/mL) which was further ... Facility, Prince of Songkla University and carried ..... d), which permit unrestricted use, distribution,.

  18. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    Topolov, Vitaly


    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  19. Anisotropic kinetics of solid phase transition from first principles: alpha-omega phase transformation of Zr.

    Guan, Shu-Hui; Liu, Zhi-Pan


    Structural inhomogeneity is ubiquitous in solid crystals and plays critical roles in phase nucleation and propagation. Here, we develop a heterogeneous solid-solid phase transition theory for predicting the prevailing heterophase junctions, the metastable states governing microstructure evolution in solids. Using this theory and first-principles pathway sampling simulation, we determine two types of heterophase junctions pertaining to metal α-ω phase transition at different pressures and predict the reversibility of transformation only at low pressures, i.e. below 7 GPa. The low-pressure transformation is dominated by displacive Martensitic mechanism, while the high-pressure one is controlled by the reconstructive mechanism. The mechanism of α-ω phase transition is thus highly pressure-sensitive, for which the traditional homogeneous model fails to explain the experimental observations. The results provide the first atomic-level evidence on the coexistence of two different solid phase transition mechanisms in one system.

  20. The Structural Phase Transition in Solid DCN

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.


    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...

  1. Synthesis and characterization of electric and magnetic properties of intermetallic materials

    Wu, Biao.


    A series of solid intermetallic compounds have been prepared and a variety of chemical and physical properties have been studied. The synthetic protocol consists of the preparation of Zintl phases at high temperature followed by an examination of their chemical reactivity with metals and metal ions in solution phases at room temperature to produce intermetallic solids. The Zintl phase materials exhibit a wide range of solid structure from discrete units such as K[sub 3]SbTe[sub 3] to one-dimensional polymeric anionic substructure of K[sub 4]Ga[sub 2]Sb[sub 4], as well as various chemical and electrical properties. The K[sub 4]Ga[sub 2]Sb[sub 4] has been shown to be an intrinsic semiconductor with the band gap of 0.05 eV and K[sub 3]SbTe[sub 3] has been found to be soluble in polar solvents. The soluble Zintl anions are reactive and can undergo the metathesis reaction with transition metal salts to form new intermetallic materials such as M[sub 5](InTe[sub 4])[sub 2] (M = Cr, Mn, Fe, Co, and Ni), CO[sub 3](SbTe[sub 3])[sub 2], Fe[sub 3](GaTe[sub 3])[sub 2], and FeTe[sub 2]. These intermetallic materials are of amorphous nature. All of these new materials except M[sub 5](InTe[sub 4])[sub 2] (M = Cr, Mn, and Ni) exhibit magnetic properties characterized as spin glass behavior. Electrical properties from metallic conductor to semiconductor in the series of M[sub 5](InTe[sub 4])[sub 2] have been discussed, along with the variable-range hopping mechanism proposed to interpret the amorphous semiconductors. Photomagnetic effects are also observed in some spin glass materials of Co[sub 3](SbTe[sub 3])[sub 2] and Fe[sub 3](GaTe[sub 3])[sub 2]. These materials exhibit the ability to accommodate magnetic bubbles or holes. These intermetallics are usually metastable and heat treatment has been specifically studied on the amorphous material FeTe[sub 2]. This material has been shown to exhibit different crystal morphology and magnetic properties.

  2. Ab initio comparative study of the Cu-In and Cu-Sn intermetallic phases in Cu-In-Sn alloys

    Ramos de Debiaggi, S., E-mail: [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); CONICET (Argentina); Deluque Toro, C. [Facultad de Ingenieria, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquen (Argentina); Cabeza, G.F. [CONICET (Argentina); Dpto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina); Fernandez Guillermet, A. [CONICET (Argentina); Centro Atomico Bariloche e Instituto Balseiro, Avda. Bustillo 9500, 8400 Bariloche (Argentina)


    Highlights: Black-Right-Pointing-Pointer A DFT study of Cu-In and Cu-Sn compounds in Cu-In-Sn soldering alloys is reported. Black-Right-Pointing-Pointer Structural, cohesive, electronic and thermodynamic trends are established. Black-Right-Pointing-Pointer Phase-stabilities at low T are well reproduced by the 0 K thermodynamic values. Black-Right-Pointing-Pointer Available structural and equation-of-state data are satisfactorily accounted for. Black-Right-Pointing-Pointer Experimental and CALPHAD-based relative-stability properties are well reproduced. - Abstract: The present paper reports a comparative account of the structural, cohesive and thermodynamic stability properties of the binary intermetallic phases (IPs) occurring in the Cu-In and the Cu-Sn phase diagrams, both at low and at high temperatures, based upon systematic density-functional-theory (DFT) calculations. Using the projector augmented wave method and the exchange and correlation functions of Perdew and Wang in the generalized gradient approximation (GGA), as well as the local-density-approximation (LDA) with the Ceperley and Alder exchange and correlation potentials, we determine the lattice-parameters, molar volume, bulk modulus and its pressure derivative, the electronic density of states (DOS) and the energy of formation (EOF) from the elements of the {delta}-Cu{sub 7}In{sub 3} (aP40), {gamma}-Cu{sub 9}In{sub 4} (cP52) and CuIn{sub 2} (tI12) compounds of the Cu-In system. Moreover, DFT-GGA calculations were performed for the compounds: {gamma}-Cu{sub 4}Sn (cF16), {xi}-Cu{sub 10}Sn{sub 3} (hP26), {epsilon}-Cu{sub 3}Sn both in the (oP8) structure and the (oP80) superstructure, {eta} Prime -Cu{sub 6}Sn{sub 5} (mC44) and {eta}-Cu{sub 5}Sn{sub 4} both in the {eta}{sub 1} (mP36) and {eta}{sub 2} (mC54) structural forms. In addition, the hypothetical structures obtained by replacing In (or Sn) by Sn (or In) are studied, because of their relevance in the CALPHAD modeling of the Cu-In-Sn phase diagram

  3. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Xiaoyan Lu


    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  4. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field.

    Ohtsuka, Hideyuki


    A magnetic field has a remarkable influence on solid/solid phase transformations and it can be used to control the structure and function of materials during phase transformations. The effects of magnetic fields on diffusional solid/solid phase transformations, mainly from austenite to ferrite, in Fe-based alloys are reviewed. The effects of magnetic fields on the transformation temperature and phase diagram are explained thermodynamically, and the transformation behavior and transformed structures in magnetic fields are discussed.

  5. Effect of Stress-Induced Phase Transformation on the Fracture Toughness of Fe3Al Intermetallic Reinforced with Yttria-Partially Stabilized Zirconia Particles

    Amiri Talischi, Lima; Samadi, Ahad


    In this study, fracture toughness and microhardness of Fe3Al intermetallic reinforced with yttria-partially stabilized zirconia (Y-PSZ) particles were investigated. Fe3Al/Y-PSZ composites containing up to 20 wt pct of Y-PSZ were fabricated by hot pressing of powder mixtures. It is found that the microhardness and fracture toughness of Fe3Al intermetallic increase by adding Y-PSZ particles. The maximal levels of fracture toughness and microhardness correspond to Fe3Al-10 wt pct Y-PSZ composite with the fracture toughness of 23.1 MPa√m and the microhardness of 645 HV. The improvement in fracture toughness could be related to the stress-induced structural transformation of zirconia particles from tetragonal to monoclinic which causes crack deflection and prevents crack propagation.

  6. Solid-phase techniques in blood transfusion serology.

    Beck, M L; Plapp, F V; Sinor, L T; Rachel, J M


    For nearly a century, erythrocyte agglutination has persisted as the most widely used method for the demonstration of antigen-antibody reaction in immunohematology. So far, no other system has been developed which can match its simplicity, versatility, and general reliability. The major disadvantage of agglutination reactions is the lack of an objective endpoint, which has severely hindered attempts to automate routine pretransfusion tests. To overcome this problem, we have designed a series of solid-phase assays for ABO and Rh grouping, antibody screening, compatibility, and hepatitis tests. Each of these solid-phase assays shares a common endpoint of red cell adherence, which is easily interpreted visually or spectrophotometrically. Computer interface permits the automatic interpretation and recording of results. We believe this solid-phase system should finally bring the blood bank laboratory into the age of automation.


    Yu-ying Li; Jia-song He


    Solid phase transition of the a form crystals to the β form crystals in syndiotactic polystyrene (sPS) samples has occurred in supercritical CO2. This transformation is different from those detected under other conditions. The effects of some factors (e.g. time, temperature, and pressure) on the solid phase transformation of sPS in supercritical CO2 were analyzed in detail. Experimental results show that longer time, higher temperature or higher pressure favors the transformation of the α form crystals to the β form crystals.

  8. Intermetallic Reactions during the Solid-Liquid Interdiffusion Bonding of Bi2Te2.55Se0.45 Thermoelectric Material with Cu Electrodes Using a Sn Interlayer

    Chien-Hsun Chuang


    Full Text Available The intermetallic compounds formed during the diffusion soldering of a Bi2Te2.55Se0.45 thermoelectric material with a Cu electrode are investigated. For this bonding process, Bi2Te2.55Se0.45 was pre-coated with a 1 μm Sn thin film on the thermoelectric element and pre-heated at 250 °C for 3 min before being electroplated with a Ni barrier layer and a Ag reaction layer. The pre-treated thermoelectric element was bonded with a Ag-coated Cu electrode using a 4 μm Sn interlayer at temperatures between 250 and 325 °C. The results indicated that a multi-layer of Bi–Te–Se/Sn–Te–Se–Bi/Ni3Sn4 phases formed at the Bi2Te2.55Se0.45/Ni interface, ensuring sound cohesion between the Bi2Te2.55Se0.45 thermoelectric material and Ni barrier. The molten Sn interlayer reacted rapidly with both Ag reaction layers to form an Ag3Sn intermetallic layer until it was completely exhausted and the Ag/Sn/Ag sandwich transformed into a Ag/Ag3Sn/Ag joint. Satisfactory shear strengths ranging from 19.3 and 21.8 MPa were achieved in Bi2Te2.55Se0.45/Cu joints bonded at 250 to 300 °C for 5 to 30 min, dropping to values of about 11 MPa for 60 min, bonding at 275 and 300 °C. In addition, poor strengths of about 7 MPa resulted from bonding at a higher temperature of 325 °C for 5 to 60 min.

  9. Microstructural Evolution and Compressive Properties of Two-Phase Nb-Fe Alloys Containing the C14 Laves Phase NbFe2 Intermetallic Compound

    Li, K. W.; Wang, X. B.; Wang, W. X.; Li, S. M.; Gong, D. Q.; Fu, H. Z.


    Microstructural evolution and compressive properties of two-phase Nb-Fe binary alloys based on the C14 Laves phase NbFe2 were characterized at both the hypo- and hypereutectic compositions. The experimental results indicated that the microstructures of the two alloys consisted of fully eutectics containing Fe and NbFe2 phases at the bottom of the ingots corresponding to the largest solidification rates. With the decrease of solidification rate, the microstructures developed into primary Fe (NbFe2) dendrites plus eutectics in the middle and top parts of the ingots. The microstructural evolutions along the axis of the ingots were analyzed by considering the competitive growth between the primary phase and eutectic as well as using microstructure selection models based on the maximum interface temperature criterion. Furthermore, the compressive properties of the two alloys were measured and the enhancements were explained in terms of the second Fe phase and halo toughening mechanisms.

  10. Laser-induced solid-solid phase transition in As under pressure: a theoretical prediction

    Zijlstra, Eeuwe S; Huntemann, Nils; Garcia, Martin E [Theoretische Physik, Universitaet Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel (Germany)], E-mail:


    In arsenic, a pressure-induced solid-solid phase transition from the A7 into the simple cubic structure has been experimentally demonstrated (Beister et al 1990 Phys. Rev. B 41 5535). In this paper, we present calculations, which predict that this phase transition can also be induced by an ultrashort laser pulse in As under pressure. In addition, calculations for the pressure-induced phase transition are presented. Using density functional theory in the generalized gradient approximation, we found that the pressure-induced phase transition takes place at 26.3 GPa and is accompanied by a volume change {delta}V=0.5 a{sub 0}{sup 3} atom{sup -1}. The laser-induced phase transition is predicted for an applied pressure of 23.8 GPa and an absorbed laser energy of 2.8 mRy atom{sup -1}.

  11. All solid-state SBS phase conjugate mirror

    Dane, C.B.; Hackel, L.A.


    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  12. Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases

    Tolborg, Jakob Fjord; Petersen, Lars; Jensen, Knud Jørgen;


    Enzymatic approaches for the preparation of oligosaccharides are interesting alternatives to traditional chemical synthesis, the main advantage being the regio- and stereoselectivity offered without the need for protecting groups. The use of solid-phase techniques offers easy workup procedures an...

  13. Solid and solution phase combinatorial synthesis of ureas

    Nieuwenhuijzen, JW; Conti, PGM; Ottenheijm, HCJ; Linders, JTM


    An efficient parallel synthesis of ureas based on amino acids is described, both in solution and on solid phase. 1,1'-Carbonylbisbenzotriazole 2 is used as the coupling reagent. The ureas 5 and 10 were obtained in high yield (80-100%) and purity (71-97%). (C) 1998 Elsevier Science Ltd. All rights re

  14. Solid Phase Synthesis of Ethyl β-Substituted Indolepropionates

    刘占祥; 阮秀秀; 黄宪


    A facile solid phase synthesis of ethyl β-substituted indolepropionates is reported. Condensation between indole, polymer-supported cyclic malonic acid ester and aldehyde yielded the trimolecular adducts, which was cleaved by pyridine/EtOH to release the final products in good yield with high purity.

  15. Recent Approaches Toward Solid Phase Synthesis of β-Lactams

    Mandal, Bablee; Ghosh, Pranab; Basu, Basudeb

    Since the discovery of penicillin in 1929, β-lactam antibiotics have been recognized as potentially chemotherapeutic drugs of incomparable effectiveness, conjugating a broad spectrum of activity with very low toxicity. The primary motif azetidin-2-one ring (β-lactam) has been considered as specific pharmacophores and scaffolds. With the advent of combinatorial chemistry and automated parallel synthesis coupled with ample interests from the pharmaceutical industries, recent trends have been driven mostly by adopting solid phase techniques and polymer-supported synthesis of β-lactams. The present survey will present an overview of the developments on the polymer-supported and solid phase techniques for the preparation of β-lactam ring or β-lactam containing antibiotics published over the last decade. Both unsubstituted and substitutions with different functional groups at various positions of β-lactams have been synthesized using solid phase technology. However, Wang resin and application of Staudinger [2+2] cycloaddition reaction have remained hitherto the major choice. It may be expected that other solid phase approaches involving different resins would be developed in the coming years.

  16. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  17. Solid-phase synthesis of 3-amino-2-pyrazolines

    Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  18. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  19. Solid-phase synthesis of 3-amino-2-pyrazolines

    Lyngsø, Lars O.; Nielsen, John


    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  20. Solid-phase synthesis of complex and pharmacologically interesting heterocycles

    Nielsen, Thomas Eiland


    Efficient routes for the creation of heterocycles continue to be one of the primary goals for solid-phase synthesis. Recent advances in this field rely most notably on transition-metal-catalysis and N-acyliminium chemistry to mediate a range of cyclization processes for the generation of compounds...

  1. Solid-phase microextraction for the analysis of biological samples

    Theodoridis, G; Koster, EHM; de Jong, GJ


    Solid-phase microextraction (SPME) has been introduced for the extraction of organic compounds from environmental samples. This relatively new extraction technique has now also gained a lot of interest in a broad field of analysis including food, biological and pharmaceutical samples. SPME has a num

  2. Solid Phase Characterization of Tank 241-C-105 Grab Samples

    Ely, T. M. [Washington River Protection Solutions LLC, Richland, WA (United States); LaMothe, M. E. [Washington River Protection Solutions LLC, Richland, WA (United States); Lachut, J. S. [Washington River Protection Solutions LLC, Richland, WA (United States)


    The solid phase characterization (SPC) of three grab samples from single-shell Tank 241-C-105 (C-105) that were received at the laboratory the week of October 26, 2015, has been completed. The three samples were received and broken down in the 11A hot cells.

  3. Sensitive and fast mutation detection by solid phase chemical cleavage

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A


    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...

  4. Intermetallics: past, present and future

    Morris, D. G.


    Full Text Available Intermetallics have seen extensive world-wide attention over the past decades. For the most part these studies have examined multi-phase aluminide based alloys, because of their high stiffness, combined with reasonable strength and ductility, good structural stability and oxidation resistance, and attempted to improve current Ni-base superalloys, Ti-base alloys, or Fe-base stainless steels for structural aerospace applications. The current status of development and application of such materials is briefly reviewed. Future developments are taking intermetallics from the realm of "improved high-temperature but low-ductility metallic alloys" into the realm of "improved aggressive-environment, high-toughness ceramic-like alloys". Such evolution will be outlined.

    Durante los últimos décadas ha habido un desarrollo de los intermetálicos, sobre todo por aplicaciones estructurales a alta temperatura en aplicaciones aeroespaciales, donde, por su rigidez alta, en combinación con una resistencia mecánica y ductilidad razonable, su buena estabilidad estructural y resistencia a la oxidación, han sido vistos como versiones avanzadas y mejoradas de las aleaciones metálicas como, por ejemplo, las superaleaciones a base de nitrógeno y las aleaciones de titanio. Se discute el desarrollo importante durante las últimas décadas, y también los nuevos desarrollos probables durante los próximos años. Se podrían ver los intermetálicos como versiones mejoradas de los cerámicos.

  5. Intermetallic semiconducting films

    Wieder, H H


    Intermetallic Semiconducting Films introduces the physics and technology of AшВv compound films. This material is a type of a polycrystalline semiconductor that is used for galvanomagnetic device applications. Such material has a high electron mobility that is ideal for generators and magnetoresistors. The book discusses the available references on the preparation and identification of the material. An assessment of its device applications and other possible use is also enumerated. The book describes the structures and physical parts of different films. A section of the book covers the three t

  6. Phase field modeling of flexoelectricity in solid dielectrics

    Chen, H. T.; Zhang, S. D.; Soh, A. K.; Yin, W. Y.


    A phase field model is developed to study the flexoelectricity in nanoscale solid dielectrics, which exhibit both structural and elastic inhomogeneity. The model is established for an elastic homogeneous system by taking into consideration all the important non-local interactions, such as electrostatic, elastic, polarization gradient, as well as flexoelectric terms. The model is then extended to simulate a two-phase system with strong elastic inhomogeneity. Both the microscopic domain structures and the macroscopic effective piezoelectricity are thoroughly studied using the proposed model. The results obtained show that the largest flexoelectric induced polarization exists at the interface between the matrix and the inclusion. The effective piezoelectricity is greatly influenced by the inclusion size, volume fraction, elastic stiffness, and the applied stress. The established model in the present study can provide a fundamental framework for computational study of flexoelectricity in nanoscale solid dielectrics, since various boundary conditions can be easily incorporated into the phase field model.

  7. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.


    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement

  8. Solid-phase synthesis of molecularly imprinted nanoparticles.

    Canfarotta, Francesco; Poma, Alessandro; Guerreiro, Antonio; Piletsky, Sergey


    Molecularly imprinted polymers (MIPs) are synthetic materials, generally based on acrylic or methacrylic monomers, that are polymerized in the presence of a specific target molecule called the 'template' and capable of rebinding selectively to this target molecule. They have the potential to be low-cost and robust alternatives to biomolecules such as antibodies and receptors. When prepared by traditional synthetic methods (i.e., with free template in solution), their usefulness has been limited by high binding site heterogeneity, the presence of residual template and the fact that the production methods are complex and difficult to standardize. To overcome some of these limitations, we developed a method for the synthesis of MIP nanoparticles (nanoMIPs) using an innovative solid-phase approach, which relies on the covalent immobilization of the template molecules onto the surface of a solid support (glass beads). The obtained nanoMIPs are virtually free of template and demonstrate high affinity for the target molecule (e.g., melamine and trypsin in our published work). Because of an affinity separation step performed on the solid phase after polymerization, poor binders and unproductive polymer are removed, so the final product has more uniform binding characteristics. The overall protocol, starting from the immobilization of the template onto the solid phase and including the purification and characterization of the nanoparticles, takes up to 1 week.

  9. Perceiving molecular themes in the structures and bonding of intermetallic phases: the role of Hückel theory in an ab initio era.

    Stacey, Timothy E; Fredrickson, Daniel C


    Qualitative molecular orbital theory is central to our understanding of the bonding and reactivity of molecules and materials across chemistry. Advances in computational technology and methodology, however, have made ab initio or density functional theory calculations a simpler alternative, offering reliable results on increasingly large systems in a reasonable time-scale without the need for concerns about the approximations and parameterization of semi-empirical one-electron based methods. In this perspective, we illustrate how the availability of higher-level computational results can augment, rather than supplant, the insights provided by approaches such as the simple and extended Hückel methods. We begin by describing a way to parameterize Hückel-type Hamiltonians against DFT results for intermetallic systems. The potential for chemical understanding embodied by such orbital-based models is then demonstrated with two schemes of bonding analysis that originated in them (but can be extended to DFT results): the μ(3)-acid/base model and the μ(2)-Hückel chemical pressure analysis, which translate the molecular concepts of acidity and electronic/steric competition, respectively, into the context of intermetallic chemistry.

  10. Studies in Solid Phase Peptide Synthesis: A Personal Perspective

    Mitchell, A R


    By the early 1970s it had became apparent that the solid phase synthesis of ribonuclease A could not be generalized. Consequently, virtually every aspect of solid phase peptide synthesis (SPPS) was reexamined and improved during the decade of the 1970s. The sensitive detection and elimination of possible side reactions (amino acid insertion, N{sup {alpha}}-trifluoroacetylation, N{sup {alpha}{var_epsilon}}-alkylation) was examined. The quantitation of coupling efficiency in SPPS as a function of chain length was studied. A new and improved support for SPPS, the 'PAM-resin', was prepared and evaluated. These and many other studies from the Merrifield laboratory and elsewhere increased the general acceptance of SPPS leading to the 1984 Nobel Prize in Chemistry for Bruce Merrifield.

  11. Entransy dissipation minimization for liquid-solid phase change processes


    The liquid-solid phase change process of a simple one-dimensional slab is studied in this paper.By taking entransy dissipation minimization as optimization objective,the optimal external reservoir temperature profiles are derived by using optimal control theory under the condition of a fixed freezing or melting time.The entransy dissipation corresponding to the optimal heat exchange strategies of minimum entransy dissipation is 8/9 of that corresponding to constant reservoir temperature operations,which is independent of all system parameters.The obtained results for entransy dissipation minimization are also compared with those obtained for the optimal heat exchange strategies of minimum entropy generation and constant reservoir temperature operations by numerical examples.The obtained results can provide some theoretical guidelines for the choice of optimal cooling or heating strategy in practical liquid-solid phase change processes.

  12. Semi-automated microwave assisted solid-phase peptide synthesis

    Pedersen, Søren Ljungberg

    with microwaves for SPPS has gained in popularity as it for many syntheses has provided significant improvement in terms of speed, purity, and yields, maybe especially in the synthesis of long and "difficult" peptides. Thus, precise microwave heating has emerged as one new parameter for SPPS, in addition...... to coupling reagents, resins, solvents etc. We have previously reported on microwave heating to promote a range of solid-phase reactions in SPPS. Here we present a new, flexible semi-automated instrument for the application of precise microwave heating in solid-phase synthesis. It combines a slightly modified...... Biotage Initiator microwave instrument, which is available in many laboratories, with a modified semi-automated peptide synthesizer from MultiSynTech. A custom-made reaction vessel is placed permanently in the microwave oven, thus the reactor does not have to be moved between steps. Mixing is achieved...

  13. Indigenous microbial capability in solid manure residues to start-up solid-phase anaerobic digesters.

    Yap, S D; Astals, S; Jensen, P D; Batstone, D J; Tait, S


    Batch solid-phase anaerobic digestion is a technology for sustainable on-farm treatment of solid residues, but is an emerging technology that is yet to be optimised with respect to start-up and inoculation. In the present study, spent bedding from two piggeries (site A and B) were batch digested at total solids (TS) concentration of 5, 10 and 20% at mesophilic (37°C) and thermophilic (55°C) temperatures, without adding an external inoculum. The results showed that the indigenous microbial community present in spent bedding was able to recover the full methane potential of the bedding (140±5 and 227±6L CH4 kgVSfed(-1) for site A and B, respectively), but longer treatment times were required than for digestion with an added external inoculum. Nonetheless, at high solid loadings (i.e. TS level>10%), the digestion performance was affected by chemical inhibition due to ammonia and/or humic acid. Thermophilic temperatures did not influence digestion performance but did increase start-up failure risk. Further, inoculation of residues from the batch digestion to subsequent batch enhanced start-up and achieved full methane potential recovery of the bedding. Inoculation with liquid residue (leachate) was preferred over a solid residue, to preserve treatment capacity for fresh substrate. Overall, the study highlighted that indigenous microbial community in the solid manure residue was capable of recovering full methane potential and that solid-phase digestion was ultimately limited by chemical inhibition rather than lack of suitable microbial community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy

    Zhou, Shengqiang; Liu, Fang; Prucnal, S.; Gao, Kun; Khalid, M.; Baehtz, C.; Posselt, M.; Skorupa, W.; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping o...

  15. Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.

    Tóth, Blanka; Horvai, George


    Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.

  16. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  17. Simulating confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r=50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.

  18. Oscillatory burning of solid propellants including gas phase time lag.

    T'Ien, J. S.


    An analysis has been performed for oscillatory burning of solid propellants including gas phase time lag. The gaseous flame is assumed to be premixed and laminar with a one-step overall chemical reaction. The propellant is assumed to decompose according to the Arrenhius Law, with no condensed phase reaction. With this model, strong gas phase resonance has been found in certain cases at the characteristic gas-phase frequencies, but the peaking of the acoustic admittance is in the direction favoring the damping of pressure waves. At still higher frequencies, moderate wave-amplifying ability was found. The limit of low frequency response obtained previously by Denison and Baum was recovered, and the limitations of the quasi-steady theory were investigated.

  19. Advanced ordered intermetallic alloy deployment

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)


    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  20. Toughening and creep in multiphase intermetallics through microstructural control

    A K Gogia; R G Baligidad; D Banerjee


    The lack of engineering ductility in intermetallics has limited their structural applications, in spite of their attractive specific properties at high temperatures. Over the last decade, research in intermetallics has been stimulated by the discovery of remarkable ductilisation mechanisms in these materials. It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects. The Ti2AlNb based intermetallics in the Ti–Al–Nb system can be ductilised by stabilising the bcc phase of titanium into the structure. The principles of microstructural and compositional optimization developed to achieve adequate plasticity, while retaining creep properties of these alloys, are described. An entirely different approach has been successful in imparting plasticity to intermetallics based on Fe3Al. The addition of carbon to form the Fe3AlC0.5 phase imparts ductility, while enhancing both tensile and creep strength.

  1. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    Jagannadham, K., E-mail: [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)


    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  2. Two phase continuous digestion of solid manure on-farm

    Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)


    Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the

  3. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)


    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  4. Phase field modeling and simulation of three-phase flow on solid surfaces

    Zhang, Qian; Wang, Xiao-Ping


    Phase field models are widely used to describe the two-phase system. The evolution of the phase field variables is usually driven by the gradient flow of a total free energy functional. The generalization of the approach to an N phase (N ≥ 3) system requires some extra consistency conditions on the free energy functional in order for the model to give physically relevant results. A projection approach is proposed for the derivation of a consistent free energy functional for the three-phase Cahn-Hilliard equations. The system is then coupled with the Navier-Stokes equations to describe the three-phase flow on solid surfaces with moving contact line. An energy stable scheme is developed for the three-phase flow system. The discrete energy law of the numerical scheme is proved which ensures the stability of the scheme. We also show some numerical results for the dynamics of triple junctions and four phase contact lines.

  5. Studies on solid-solid phase transitions of polyols by infrared spectroscopy

    Feng, H.; Liu, X.; He, S.; Wu, K.; Zhang, J. [Department of Chemistry, Hebei Normal University, Shijiazhuang (China)


    This paper chiefly deals with the properties of polyols - a kind of energy storage material, by IR spectra. A series of infrared spectra at various temperatures were obtained for pentaerythritol (PE), pentaglycerine (PG), neopentylglycol (NPG) and their mixture NPG/PG. The experimental results (the shifts of -OH absorption band in IR spectra) support the solid-solid phase transition mechanism, which involves the reversible breaking of nearest-neighbor hydrogen bonds in the molecular crystals at transformation temperature. The correlation between the wave number shifts and the temperatures of phase transition is proposed in this paper. Finally, by means of infrared spectroscopy experiments, it is shown that aging has a great influence on the thermal properties of polyol mixtures.

  6. Solid-Phase Preparation and Characterization of Chitosan

    GaoLe-ping; DuYu-min; ZhangDao-bin; ShiXiao-wen; ZhanHuai-yu; SongWen-hua


    Chitosan was prepared with stressing method by blending chitin and solid alkali in a single-screw extruder at given temperature and characterized by potentiometric titration, gel permeation chromatography (GPC), infrared spectrum (IR) and carborr13 magnetic resonance sperctroscopy (13C NMR). Chitosan with a deacetylation degree (DD) of 76. 1% was obtained at a mass ratio 0.2 : 1 : 1 for H20/chitin/NaOH at 160℃ for 12 mirL Compared to conventional solution method(usually 1 : 10 for chitin/NaOH), the alkali assumption greatly decreased. Molecular weight of chitosan obtained by solid-phase method(S3,M. 1.54 X 10s ) was lower than that obtained by suspension method(Y2,Mw3. 34×105). During deacetylation, molecular weight decreased with high reaction temperature and long reaction time but remained same at different initial ratios of NaOH/chitirL It might be concluded that degradation of chitosan was caused by breakout of the main chain of the oxidized chitosan catalyzed by alkali during the deactylation. IR and 13C NMR showed that structures of chitosans prepared by solid-phase method were not changed.

  7. Thermodynamic phase behavior of API/polymer solid dispersions.

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele


    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  8. Electrochemical preparation of NiAl intermetallic compound from solid oxides in molten CaCl{sub 2} and its corrosion behaviors in NaCl aqueous solution

    Yin Huayi; Yu Tang; Tang Diyong; Ruan Xuefeng; Zhu Hua [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang Dihua, E-mail: [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)


    Highlights: Black-Right-Pointing-Pointer Stoichiometric NiAl powder was prepared by one-step electrolysis of solid NiO-NiAl{sub 2}O{sub 4} in molten CaCl{sub 2}. Black-Right-Pointing-Pointer The energy consumption was as low as 6.1 kWh (kg-NiAl){sup -1}. Black-Right-Pointing-Pointer Uniform distribution and co-reduction of Ni and Al oxide played key role for Al retaining. Black-Right-Pointing-Pointer Electrolytic NiAl powder was made into dense NiAl rod by spark plasma sintering (SPS). Black-Right-Pointing-Pointer Obtained NiAl rod was self-passivated in NaCl solution and show very high corrosion resistance. - Abstract: Nickel aluminide powders were prepared by direct electrochemical reduction of solid mixture of NiO-NiAl{sub 2}O{sub 4} (Ni:Al = 1:1 in mol) precursor in molten CaCl{sub 2} at 850 Degree-Sign C. The reduction process of the solid oxide cathode was investigated by analyzing the intermediate products using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It reveals that nickel is preferentially reduced and it benefits to prevent aluminum leaving from the cathode. The products obtained at the constant cell voltage electrolysis of 3.0 V for more than 4 h were stoichiometric NiAl. The energy consumption could be as low as 6.1 kWh (kg-NiAl){sup -1} based on the applied cell voltage and the consumed electrolysis charge. Furthermore, the NiAl powders were made into a dense rod by spark plasma sintering (SPS) technique. The corrosion behaviors of the NiAl rod in 0.5 mol L{sup -1} NaCl aqueous solution at room temperature were investigated by polarization curve and ac impedance measurements. It was found that the NiAl rod had satisfactory anti-corrosion ability in the solution.

  9. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Wojda Marta


    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  10. Thermodynamic analysis of Ti–Al–C intermetallics formation by mechanical alloying

    Sadeghi, E., E-mail:; Karimzadeh, F.; Abbasi, M.H.


    Highlights: •Titanium carbide and γ-TiAl take place during mechanical alloying of Ti–Al–C system. •Intermetallic compound formation in Ti–Al, Ti–C and Al–C systems has the lowest free energy. •There is thermodynamic driving force to form Ti{sub 3}AlC{sub 2}, Ti{sub 2}AlC MAX phase. -- Abstract: In the present study the behavior of Ti–Al–C ternary system is investigated during mechanical alloying. The mixture of Ti, Al and C powders was used with initial stoichiometric composition of Ti{sub 3}AlC{sub 2}. X-ray diffraction (XRD) was used to characterize the milled powders and a thermodynamic analysis of the process was then carried out using Miedema model. This thermodynamic analysis showed that for all binary Ti–C, Al–C, Ti–Al systems and ternary Ti–Al–C systems, among all compositions, the thermodynamic driving force for intermetallic phase formation is much greater when compared with the formation of solid solutions or amorphous phases. Finally the reactions that are feasible to occur during mechanical alloying (MA) of Ti–Al–C system were investigated thermodynamically.

  11. Solid Phase Peptide Synthesis of Fusukang for AIDS

    甘一如; 戴琦; 张雪竹; 高晨昊


    A 36-residue peptide is designed to cure acquired immunodeficiency syndrome(AIDS), and is synthesized by the manual solid phase peptide synthesis technique. Different reaction conditions of the synthesis process were discussed. Stirring efficiency of mechanics and nitrogen was compared. The mechanical method displays a predominant performance. Although the coupling efficiencies of diisopropylcarbodiimide(DIC) and dicyclohexylcarbodiimide(DCC) are virtually identical, DIC offers several advantages over DCC in practice due to different physical characters. Wash conditions after deprotection and coupling were investigated to monitor washing efficiency. 0.369 2 g crude peptide was obtained.

  12. Solid-phase colorimetric method for the quantification of fucoidan.

    Lee, Jung Min; Shin, Z-U; Mavlonov, Gafurjon T; Abdurakhmonov, Ibrokhim Y; Yi, Tae-Hoo


    We described the simple, selective, and rapid method for determination of fucoidans using methylene blue staining of sulfated polysaccharides, immobilized into filter paper and consequent optic density (at A (663) nm) measurement of the eluted dye from filter paper. This solid-phase method allows selective determination of 1-20 μg fucoidan in presence of potentially interfering compounds (alginic acid, DNA, salts, proteins, and detergents). Further, we demonstrated the alternative way of using image processing software for fucoidan quantification without extraction of methylene blue dye from stained spots of fucoidan-dye complex.


    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He


    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.


    Ning Yang; Wei Wang; Wei Ge; Jinghai Li


    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  15. Environmental embrittlement of intermetallics


    The effect of alloying elements on the environmental embrittlement of L12 type intermetallics is sum marized. The results show that the ductilizing effect of boron doping in Ni3A1 is mainly to suppress the moisture-induced environmental embrittlement. The mechanism of this suppression effect is proved to lie in the fact that it severely reduces the hydrogen diffusivity along the grain boundaries. However, the boron doping in Co3Ti alloys does not have the same effect of suppressing the environmental embrittlement. The different behavior of boron doping in Ni3A1 and Co3Ti may be attributed to its different segregation behavior on the grain boundaries. Boron in Co3Ti does not segregate on the grain boundaries and cannot effectively reduce the hydrogen diffusivity along the grain boundaries. The moisture-induced envi ronmental embrittlement of Co3Ti alloy can be completely suppressed by the addition of Fe. As proved by Auger, this suppression effect is due to its obvious reduction of the surface kinetic reaction with water vapor.

  16. Ultrasonic investigations in intermetallics

    Devraj Singh; D K Pandey


    Ultrasonic attenuation for the longitudinal and shear waves due to phonon–phonon interaction and thermoelastic mechanism have been evaluated in B2 structured in-termetallic compounds AgMg, CuZr, AuMg, AuTi, AuMn, AuZn and AuCd along $\\langle 1 0 0 \\rangle, \\langle 1 1 1 \\rangle and \\langle 1 1 0 \\rangle crystallographic directions at room temperature. For the same evaluations, second- and third-order elastic constants, ultrasonic velocities, Grüneisen parameters, non-linearity parameter, Debye temperature and thermal relaxation time are also computed. Although the molecular weight of these materials increases from AgMg to AuCd, the obtained results are affected with the deviation number. Attenuation of ultrasonic waves due to phonon–phonon interaction is predominant over thermoelastic loss. Results are compared with available theoretical and experimental results. The results with other well-known physical properties are useful for industrial purposes.

  17. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  18. Powder metallurgy: Solid and liquid phase sintering of copper

    Sheldon, Rex; Weiser, Martin W.


    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  19. New intermetallic phases in the Cu-Li-Sn system. The lithium-rich phases Li{sub 3}CuSn and Li{sub 6}Cu{sub 2}Sn{sub 3}

    Fuertauer, Siegfried; Flandorfer, Hans [Wien Univ. (Austria). Inst. fuer Anorganische Chemie (Materialchemie); Effenberger, Herta S. [Wien Univ. (Austria). Inst. fuer Mineralogie und Kristallographie


    The Li-rich ternary intermetallic compounds with the idealized end-member compositions Li{sub 3}CuSn (CSD-427099) and Li{sub 6}Cu{sub 2}Sn{sub 3} (CSD-427100) were synthesized from the pure elements by induction melting in Ta crucibles and annealing at 400 {sup circle} C. Both powder and single-crystal XRD investigations were performed. Li{sub 3}CuSn crystallizes in space group P6/mmm [a=4.5769(2), c=8.461(2) Aa; wR{sub 2}=0.073 for 180 unique F{sup 2}-values and 25 free variables]. All atoms are located along [00z], [1/3 2/3 z] and [2/3 1/3 z]; individual sites are arranged in layers parallel to (00.1). One site is fully, one partially occupied by Sn atoms. Fully but mixed occupation with Cu and Li atoms was found for one site. The remaining electron-density distribution resulting from the strong anisotropic displacement parallel to the c axis is considered in four further sites, which are mixed occupied with (Li, Cu, □), but modelled solely by Li atoms. The crystal structure exhibits analogies with that of Li{sub 2}CuSn (F anti 43m); comparable layers occur parallel to {111} but the stacking sequence and packing density differs adopting cubic symmetry. In Li{sub 6}Cu{sub 2}Sn{sub 3} [space group R anti 32/m, a=4.5900(2), c=30.910(6) Aa; wR{sub 2}=0.039 for 253 unique F{sup 2}-values for 25 free variables] all atoms are arranged again at (00z), (1/3 2/3 z) and (2/3 1/3 z). Three sites are fully occupied (two by Sn atoms, a further one by Li atoms). Three additional positions are mixed occupied by Cu and Li atoms. The crystal structure is closely related to that of the binary phases Li{sub 13}Sn{sub 5} and Li{sub 5}Sn{sub 2}; the substitution of Li by Cu atoms and vice versa is evident. The structural relationship to Li{sub 13}Ag{sub 5}Si{sub 6}, which is permeable for Li ions, makes the title compound interesting as anode material in Li-ion batteries.

  20. Solid Phase Characterization of Tank 241-C-108 Residual Waste Solids Samples

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.


    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted the SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.


    Professor Monica Sorescu


    This six-month work is focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}2, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T=Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe(80-20 wt%) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x=0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co(80-20 wt%) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which are currently being considered for publication in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Journal of Materials Science. The contributions reveal for the first time in literature the effect of

  2. Hyperdoping silicon with selenium: solid vs. liquid phase epitaxy.

    Zhou, Shengqiang; Liu, Fang; Prucnal, S; Gao, Kun; Khalid, M; Baehtz, C; Posselt, M; Skorupa, W; Helm, M


    Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases. The high energy density deposited on the silicon surface leads to a liquid phase and the fast recrystallization velocity allows trapping of chalcogen into the silicon matrix. However, this method encounters the problem of surface segregation. In this paper, we propose a solid phase processing by flash-lamp annealing in the millisecond range, which is in between the conventional rapid thermal annealing and pulsed laser annealing. Flash lamp annealed selenium-implanted silicon shows a substitutional fraction of ~ 70% with an implanted concentration up to 2.3%. The resistivity is lower and the carrier mobility is higher than those of nanosecond pulsed laser annealed samples. Our results show that flash-lamp annealing is superior to laser annealing in preventing surface segregation and in allowing scalability.

  3. Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieslak, Jacek; Beaucage, Serge L


    Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.

  4. The role of solid-solid phase transitions in mantle convection

    Faccenda, Manuele; Dal Zilio, Luca


    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  5. Studies of phase transitions in the aripiprazole solid dosage form.

    Łaszcz, Marta; Witkowska, Anna


    Studies of the phase transitions in an active substance contained in a solid dosage form are very complicated but essential, especially if an active substance is classified as a BCS Class IV drug. The purpose of this work was the development of sensitive methods for the detection of the phase transitions in the aripiprazole tablets containing initially its form III. Aripiprazole exhibits polymorphism and pseudopolymorphism. Powder diffraction, Raman spectroscopy and differential scanning calorimetry methods were developed for the detection of the polymorphic transition between forms III and I as well as the phase transition of form III into aripiprazole monohydrate in tablets. The study involved the initial 10 mg and 30 mg tablets, as well as those stored in Al/Al blisters, a triplex blister pack and HDPE bottles (with and without desiccant) under accelerated and long term conditions. The polymorphic transition was not observed in the initial and stored tablets but it was visible on the DSC curve of the Abilify(®) 10 mg reference tablets. The formation of the monohydrate was observed in the diffractograms and Raman spectra in the tablets stored under accelerated conditions. The monohydrate phase was not detected in the tablets stored in the Al/Al blisters under long term conditions. The results showed that the Al/Al blisters can be recommended as the packaging of the aripiprazole tablets containing form III.

  6. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    Barsky, Eugene


    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  7. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.


    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  8. Density functional theory study of phase IV of solid hydrogen

    Pickard, Chris J.; Martinez-Canales, Miguel; Needs, Richard J.


    We have studied solid hydrogen up to pressures of 300 GPa and temperatures of 350 K using density functional theory methods and have found “mixed structures” that are more stable than those predicted earlier. Mixed structures consist of alternate layers of strongly bonded molecules and weakly bonded graphene-like sheets. Quasiharmonic vibrational calculations show that mixed structures are the most stable at room temperature over the pressure range 250-295 GPa. These structures are stabilized with respect to strongly bonded molecular phases at room temperature by the presence of lower frequency vibrational modes arising from the graphene-like sheets. Our results for the mixed structures are consistent with the experimental Raman data [M. I. Eremets and I. A. Troyan, Nat. Mater.1476-112210.1038/nmat3175 10, 927 (2011) and R. T. Howie , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.125501 108, 125501 (2012)]. We find that mixed phases are reasonable structural models for phase IV of hydrogen.

  9. Vapour phase synthesis of salol over solid acids via transesterification

    S Z Mohamed Shamshuddin; N Nagaraju


    The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flowrate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200°C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO$^{2-}_{4}$ or Mo(VI) ions. The effect of poisoning of acid sites of SO$^{2-}_{4}$ or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

  10. Solid phase epitaxial regrowth of (001) anatase titanium dioxide

    Barlaz, David Eitan; Seebauer, Edmund G., E-mail: [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S Mathews Ave., Urbana, Illinois 61801 (United States)


    The growing interest in metal oxide based semiconductor technologies has driven the need to produce high quality epitaxial films of one metal oxide upon another. Largely unrecognized in synthetic efforts is that some metal oxides offer strongly polar surfaces and interfaces that require electrostatic stabilization to avoid a physically implausible divergence in the potential. The present work examines these issues for epitaxial growth of anatase TiO{sub 2} on strontium titanate (001). Solid phase epitaxial regrowth yields only the (001) facet, while direct crystalline growth by atomic layer deposition yields both the (112) and (001). The presence of amorphous TiO{sub 2} during regrowth may provide preferential stabilization for formation of the (001) facet.

  11. Nanoscale doping of compound semiconductors by solid phase dopant diffusion

    Ahn, Jaehyun, E-mail:; Koh, Donghyi; Roy, Anupam; Banerjee, Sanjay K., E-mail: [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Chou, Harry [Materials Science and Engineering Program, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Taegon [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Semiconductor R& D Center, Samsung Electronics Corporation, 1 Samsungjeonja-ro, Hwasung, Kyounggi 445-330 (Korea, Republic of); Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Cheongryang, P.O. Box 131, Seoul 130-650 (Korea, Republic of)


    Achieving damage-free, uniform, abrupt, ultra-shallow junctions while simultaneously controlling the doping concentration on the nanoscale is an ongoing challenge to the scaling down of electronic device dimensions. Here, we demonstrate a simple method of effectively doping ΙΙΙ-V compound semiconductors, specifically InGaAs, by a solid phase doping source. This method is based on the in-diffusion of oxygen and/or silicon from a deposited non-stoichiometric silicon dioxide (SiO{sub x}) film on InGaAs, which then acts as donors upon activation by annealing. The dopant profile and concentration can be controlled by the deposited film thickness and thermal annealing parameters, giving active carrier concentration of 1.4 × 10{sup 18 }cm{sup −3}. Our results also indicate that conventional silicon based processes must be carefully reviewed for compound semiconductor device fabrication to prevent unintended doping.

  12. A rapid easy—to—perform solid phase digoxin radioimmunoassay

    LiBin; ZhouMei-Ying; 等


    A solid-phase-radioimmunoassay(SPRIA) for the monitoring of blood digoxin level has been developed,in which a secondary antibody-coated polystyrene tubes are used.This noval method seems to be simple to use and only takes about an half hour.The standard curve is linear from 0.25to 4μg/L.The sensitivity of the detection is 0.1μg/L.Reproducibility studies with 3 control sera of 0.5-2.5μg/L give intraassay CV<5% and interassay CV<10%.The specimens are measured and compared with those of the conventional radioimmunoassay and the values are well correlated(r=0.96,Y=1.022X+0.04μg/L)。

  13. Solid-phase synthesis of siRNA oligonucleotides.

    Beaucage, Serge L


    Since the discovery of RNA interference (RNAi) as a means to silence the expression of specific genes, small interfering RNA (siRNA) oligonucleotides have been recognized as powerful tools for targeting therapeutically important mRNAs and eliciting their destruction. This discovery has created a high demand for synthetic oligoribonucleotides as potential therapeutics and has spurred a renaissance in the development of rapid, efficient methods for solid-phase RNA synthesis. The design and implementation of 2'-hydroxyl protecting groups that provide ribonucleoside phosphoramidites with coupling kinetics and coupling efficiencies comparable to those of deoxyribonucleoside phosphoramidites are key to the production of RNA oligonucleotides in sufficient quantity and purity for pharmaceutical applications. In this context, various siRNAs were chemically modified to identify the biophysical and biochemical parameters necessary for effective and stable RNAi-mediated gene-silencing activities.

  14. New methods and materials for solid phase extraction and high performance liquid chromatography

    Dumont, Philip John [Iowa State Univ., Ames, IA (United States)


    This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

  15. Comparative solution and solid-phase glycosylations toward a disaccharide library

    Agoston, K.; Kröger, Lars; Agoston, Agnes


    A comparative study on solution-phase and solid-phase oligosaccharide synthesis was performed. A 16-member library containing all regioisomers of Glc-Glc, Glc-Gal, Gal-Glc, and Gal-Gal disaccharides was synthesized both in solution and on solid phase. The various reaction conditions for different...

  16. Steady-state diffusion regime in solid-phase micro extraction kinetics

    Benhabib, K.; Laak, ter T.L.; Leeuwen, van H.P.


    The temporal evolution of diffusion-controlled analyte accumulation in solid-phase microextraction (SPME) is critically discussed in terms of the various aspects of steady-state diffusion in the two phases under conditions of fast exchange of the analyte at the solid phase film/water interface. For

  17. Solid-Phase Organic Chemistry: Synthesis of 2β-(HeterocyclylthiomethylPenam Derivatives on Solid Support

    Ernesto G. Mata


    Full Text Available The synthesis of 2β-(heterocyclylthiomethylpenam derivatives on solid support has been developed. Compounds are obtained in good to high yields (based on loading of the original resin. The key step is the solid-phase double rearrangement of the corresponding penicillin sulfoxide.

  18. Development of novel solid-phase protein formulations

    Montalvo Ortiz, Brenda Liz

    Proteins are the next-generation drugs for the treatment of several diseases. However, the number of protein drugs is still limited due to the physical or chemical instability of proteins during processing, formulation, storage, and delivery. The formulation of proteins at the solid state has advantages over liquid state, such as improved stability during long-term storage and delivery and decreases transportation costs. In this dissertation, we developed new solid-phase protein formulations in which the integrity of the protein was not compromised. The long term goal of this research was to use these protein formulations to improve protein stability in drug delivery devices, such as poly(lactic-co-glycolic) acid (PLGA). The first solid-phase protein formulation developed in this investigation was named "glassification". We proposed glassification as an alternative protein dehydration technique to the common used one, lyophilization, because this last method involves a series of steps which are detrimental to protein structure and stability. The glassification method consisted on protein dehydration by the use of organic solvents. As a result of the glassification process a small (micrometer size range) protein solid bead was obtained. The proteins used to study the glassification process were lysozyme (LYS), alpha-chymotrypsin (CHYMO) and horseradish peroxidase (HRP). These studies revealed that the glassification process itself did not alter protein structure and the activity was preserved. Ethyl acetate was the most effective organic solvent for protein glassification because it led to the highest protein residual activity, no insoluble aggregate formation and is a relatively non-toxic solvent, which allow the incorporation of these protein microparticles in PLGA microspheres. The incorporation of spherical HRP microparticles into PLGA microspheres resulted in superior properties when compared with encapsulated lyophilized HRP powder, such as improved release

  19. Phase diagrams and kinetics of solid-liquid phase transitions in crystalline polymer blends

    Matkar, Rushikesh A.

    A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the chi values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectic, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results

  20. Solid Phase Formylation of N-Terminus Peptides

    Anna Lucia Tornesello


    Full Text Available Formylation of amino groups is a critical reaction involved in several biological processes including post-translational modification of histones. The addition of a formyl group (CHO to the N-terminal end of a peptide chain generates biologically active molecules. N-formyl-peptides can be produced by different methods. We performed the N-formylation of two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6, carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with N,N-dicyclohexylcarbodiimmide (DCC in liquid phase. The overnight incubation at 4 °C resulted in a significant increase in production yields of formylated peptides compared to the reaction performed at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide chains or amino groups of lysine side-chains in solid phase.

  1. Ni/Al Intermetallics Plasma Transferred Arc Processing

    VeronicaA.B.Almeida; AnaSofiaC.M.D'Oliveira


    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  2. Ni/Al Intermetallics Plasma Transferred Arc Processing

    Ver(o)nica A. B. Almeida; Ana Sofia C. M. D'Oliveira


    In-situ alloy development during surface processing allows for a limitless materials selection to protect components exposed to severe service conditions. In fact surface alloying offers the possibility to strengthen surface components with alloys that would not be possible to process otherwise. This work used Plasma transferred arc (PTA) hardfacing for surface alloying. Different amounts of aluminium powder, 5-25%, were added to a Ni based superalloy, from Hastealloy C family, in the atomized form. The mixture was homogeneized in a ball mill and PTA deposited on carbon steel substrate. The influence of different processing parameters on the final surface alloy was evaluated as current intensity and depositing velocity were varied. Coatings were characterized by optical and scanning electronic microscopy, X-ray diffraction and Vickers microhardness profiles, under a 500g load. Results showed that PTA hardfacing is an adequate surface alloying. For the conditions tested increasing hardness was obtained by solid solution for the lower amounts of Al added and due to the new intermetallic phases for the richer Al mixture.

  3. Immunochemical cross-reactivity between albumin and solid-phase adsorbed histamine

    Poulsen, L K; Nolte, H; Søndergaard, I


    For production of an antibody against histamine, this was coupled to human serum albumin (HSA) and used for immunization of rabbits. To test the antiserum, an immunoradiometric assay was developed comprising solid-phase bound histamine, antisera and radiolabelled protein A. Titration and inhibition...... experiments revealed that histamine adsorbed onto a solid-phase could bind the antiserum. However, neither free histamine nor histamine coupled to unrelated carriers could inhibit the binding of antiserum to the solid-phase histamine. Cross-reactivity was demonstrated between HSA and solid-phase bound...

  4. Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide

    Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul


    Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

  5. 在室温和常压下用机械合金化方法制备Fe5C2金属间化合物%Preparing Fe5C2 Intermetallic Compound by Mechanical Alloying Method at Room Temperature and Normal Pressure

    何正明; 钟敏建; 沈伟星; 张正明


    Single phase Fe5C2 intermetallic compound was prepared by mechanical alloying method. The phase and crystal structure of sample were analyzed with X-ray differaction spectrum. The decomposing temperature of the Fe5C2 compound is 596.4℃ determined by the DSC curve. It is further shown that the size of nanometer crystal grain is an important condition for carrying out the solid state reaction at room temperature and normal pressure.

  6. Reaction diffusion and solid state chemical kinetics handbook

    Dybkov, V I


    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  7. Thermodynamic Aspects of Nanostructured CoAl Intermetallic Compound during Mechanical Alloying

    S.N. Hosseini; T. Mousavi; F. Karimzadeh; M.H. Enayati


    The nanostructured CoAl intermetallic compound was produced by mechanical alloying (MA) of the Co50Al50 elemental powder mixture in a planetary high energy ball mill. The ordered B2-CoAl structure with the grain size of about 6 nm was formed via a gradual reaction after 10 h of MA. A thermodynamic analysis of the process was also done. The results showed that the intermetallic compound of CoAl had the minimum Gibbs free energy compared to solid solution and amorphous states indicating the initial MA product was the most stable phase in the Co-Al system which was changed to a partially disordered structure with a steady long-range order of 0.82 at further milling. This amount of disordering caused the enthalpy of final product to show an increase of about 5.1 kJ·mol-1. Calculation of enthalpy related to the triple defect formation revealed that the enthalpy required for Al anti-sites formation was about 3 times greater than that for Co anti-sites formation.

  8. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples.

    Yiantzi, Evangelia; Kalogerakis, Nicolas; Psillakis, Elefteria


    For the first time, Vacuum Assisted Headspace Solid Phase Microextraction (Vac-HSSPME) is used for the recovery of polycyclic aromatic hydrocarbons (PAHs) from solid matrices. The procedure was investigated both theoretically and experimentally. According to the theory, reducing the total pressure increases the vapor flux of chemicals at the soil surface, and hence improves HSSPME extraction kinetics. Vac-HSSPME sampling could be further enhanced by adding water as a modifier and creating a slurry mixture. For these soil-water mixtures, reduced pressure conditions may increase the volatilization rates of compounds with a low K(H) present in the aqueous phase of the slurry mixture and result in a faster HSSPME extraction process. Nevertheless, analyte desorption from soil to water may become a rate-limiting step when significant depletion of the aqueous analyte concentration takes place during Vac-HSSPME. Sand samples spiked with PAHs were used as simple solid matrices and the effect of different experimental parameters was investigated (extraction temperature, modifiers and extraction time). Vac-HSSPME sampling of dry spiked sand samples provided the first experimental evidence of the positive combined effect of reduced pressure and temperature on HSSPME. Although adding 2 mL of water as a modifier improved Vac-HSSPME, humidity decreased the amount of naphthalene extracted at equilibrium as well as impaired extraction of all analytes at elevated sampling temperatures. Within short HSSPME sampling times and under mild sampling temperatures, Vac-HSSPME yielded linear calibration curves in the range of 1-400 ng g(-1) and, with the exception of fluorene, regression coefficients were found higher than 0.99. The limits of detection for spiked sand samples ranged from 0.003 to 0.233 ng g(-1) and repeatability from 4.3 to 10 %. Finally, the amount of PAHs extracted from spiked soil samples was smaller compared to spiked sand samples, confirming that soil could bind target

  9. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Nicolai, A.L.; Miguel-Junior, E.; Silva, R.I.V. da; Angelo, A.C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise


    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  10. Modeling the solid-liquid phase transition in saturated triglycerides

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick


    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  11. Preparation of Pt/C Catalyst with Solid Phase Reaction Method


    The Pt/C catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time. Its performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of Pt/C catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.

  12. Ceramic bonding and joint's strengthening through forming intermetallic compounds in situ

    邹贵生; 吴爱萍; 任家烈; 杨俊; 赵文庆


    The transient liquid phase diffusion bonding of Si3 N4 ceramics with Ti/Ni/Ti and Al/Ti/Al multiple interlayers was performed. The formation of intermetallic compounds in situ and their effects on the joints' strengths were investigated. The Ti/Ni/Ti interlayers produce NiTi and Ni3 Ti layers with considerable room temperature ductility and high elevated temperature strength to strengthen the bonding zone metals and the joints. The joints with 142 MPa shear strength at room temperature and 88 MPa shear strength at 800 ℃ are achieved under appropriate parameters, respectively. Al/Ti/Al interlayers transform into a special bonding zone metal with a large amount of Al3Ti particles and a small amount of Al-based solid solution, and in this case, the joints are strengthened significantly. Their strengths at room temperature and 600 ℃ reach 90 MPa and 30 MPa, respectively.

  13. Molecularly imprinted solid phase extraction of fluconazole from pharmaceutical formulations.

    Manzoor, S; Buffon, R; Rossi, A V


    This work encompasses a direct and coherent strategy to synthesise a molecularly imprinted polymer (MIP) capable of extracting fluconazole from its sample. The MIP was successfully prepared from methacrylic acid (functional monomer), ethyleneglycoldimethacrylate (crosslinker) and acetonitrile (porogenic solvent) in the presence of fluconazole as the template molecule through a non-covalent approach. The non-imprinted polymer (NIP) was prepared following the same synthetic scheme, but in the absence of the template. The data obtained from scanning electronic microscopy, infrared spectroscopy, thermogravimetric and nitrogen Brunauer-Emmett-Teller plot helped to elucidate the structural as well as the morphological characteristics of the MIP and NIP. The application of MIP as a sorbent was demonstrated by packing it in solid phase extraction cartridges to extract fluconazole from commercial capsule samples through an offline analytical procedure. The quantification of fluconazole was accomplished through UPLC-MS, which resulted in LOD≤1.63×10(-10) mM. Furthermore, a high percentage recovery of 91±10% (n=9) was obtained. The ability of the MIP for selective recognition of fluconazole was evaluated by comparison with the structural analogues, miconazole, tioconazole and secnidazole, resulting in percentage recoveries of 51, 35 and 32%, respectively.

  14. Automated Solid-Phase Radiofluorination Using Polymer-Supported Phosphazenes

    Bente Mathiessen


    Full Text Available The polymer supported phosphazene bases PS-P2tBu and the novel PS-P2PEG allowed for efficient extraction of [18F]F− from proton irradiated [18O]H2O and subsequent radiofluorination of a broad range of substrates directly on the resin. The highest radiochemical yields were obtained with aliphatic sulfonates (69% and bromides (42%; the total radiosynthesis time was 35–45 min. The multivariate analysis showed that the radiochemical yields and purities were controlled by the resin load, reaction temperature, and column packing effects. The resins could be reused several times with the same or different substrates. The fully automated on-column radiofluorination methodology was applied to the radiosynthesis of the important PET radiotracers [18F]FLT and [18F]FDG. The latter was produced with 40% yield on a 120 GBq scale and passed GMP-regulated quality control required for commercial production of [18F]FDG. The combination of compact form factor, simplicity of [18F]F− recovery and processing, and column reusability can make solid phase radiofluorination an attractive radiochemistry platform for the emerging dose-on-demand instruments for bedside production of PET radiotracers.

  15. Binding of properdin to solid-phase immune complexes

    Junker, A; Baatrup, G; Svehag, S E


    The capacity of serum to support deposition of C3, properdin and factor B was studied by enzyme-linked immunosorbent assay using solid-phase immune complexes (IC) for activation of complement. Deposition of C3 and properdin occurred in fairly dilute normal human serum (NHS), but factor B uptake...... was hardly detectable. Alternative pathway-mediated deposition of C3 with slow kinetics was demonstrated in C2-deficient serum and in NHS depleted of C1q, factor D and properdin (C1qDP-depleted serum) after reconstitution with factor D and properdin. Efficient uptake of properdin required a functional...... classical pathway, in the presence of which C3 and properdin were rapidly deposited onto the IC. Judging from findings in C3-deficient serum, factor I-deficient serum, and C1qDPB-depleted serum, the uptake of properdin was strictly C3-dependent, and did not require the presence of factors B and D. Thus, C3b...

  16. Microwave heating in solid-phase peptide synthesis.

    Pedersen, Søren L; Tofteng, A Pernille; Malik, Leila; Jensen, Knud J


    The highly refined organic chemistry in solid-phase synthesis has made it the method of choice not only to assemble peptides but also small proteins - mainly on a laboratory scale but increasingly also on an industrial scale. While conductive heating occasionally has been applied to peptide synthesis, precise microwave irradiation to heat the reaction mixture during coupling and N(α)-deprotection has become increasingly popular. It has often provided dramatic reductions in synthesis times, accompanied by an increase in the crude peptide purity. Microwave heating has been proven especially relevant for sequences which might form β-sheet type structures and for sterically difficult couplings. The beneficial effect of microwave heating appears so far to be due to the precise nature of this type of heating, rather than a peptide-specific microwave effect. However, microwave heating as such is not a panacea for all difficulties in peptide syntheses and the conditions may need to be adjusted for the incorporation of Cys, His and Asp in peptides, and for the synthesis of, for example, phosphopeptides, glycopeptides, and N-methylated peptides. Here we provide a comprehensive overview of the advances in microwave heating for peptide synthesis, with a focus on systematic studies and general protocols, as well as important applications. The assembly of β-peptides, peptoids and pseudopeptides are also evaluated in this critical review (254 references).

  17. Ionic liquids in solid-phase microextraction: a review.

    Ho, Tien D; Canestraro, Anthony J; Anderson, Jared L


    Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.

  18. Solid-phase microextraction and the human fecal VOC metabolome.

    Emma Dixon

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  19. Phase I studies of porfiromycin (NSC--56410) in solid tumors.

    Grage, T B; Weiss, A J; Wilson, W; Reynolds, V


    Porfiromycin was given to a group of patients with a variety of solid tumors. Of 114 patients admitted to the study, 103 yielded evaluable data. The following dosage schedules were used to determine the toxicity of porfiromycin when given in multiple doses by intravenous injection: 0.2 mg/kg x 5 days, 0.3 mg/kg x 5 days, 0.35 mg/kg x 5 days, 0.4 mg/kg x 5 days, 0.24 mg/kg x 10 days and 0.6 mg/kg weekly. Toxic effects noted were mainly leukopenia, thrombocytopenia, and, when injected paravenously, local tissue necrosis. Biological effects were noted at all dosage levels and were more severe at the higher dosages. The data suggest that profiromycin administered intravenously at a dose of 0.35 mg/kg daily for 5 days results in moderate hermatological toxicity and clinical evaluation in a Phase II study at this dosage level is indicated.

  20. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Veronika Mäde


    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  1. Headspace solid-phase microextraction for wine volatile analysis.

    Azzi-Achkouty, Samar; Estephan, Nathalie; Ouaini, Naïm; Rutledge, Douglas N


    The most commonly used technique to prepare samples for the analysis of wine volatile is the headspace solid-phase microextraction (HS-SPME). This method has gained popularity in last few years, as it is a unique solventless preparation technique. In this paper, a summary of recently published studies using HS-SPME for the analysis of wine aromas, with special emphasis on the method developed, has been compiled. Several papers are discussed in detail, mainly with respect to the SPME conditions used. A brief summary of the reviews related to HS-SPME analysis is given and discussed. Several parameters affecting the HS-SPME, such as the salt concentration and the agitation conditions, are used in the same way as used in several papers. The HS-SPME extraction proved to be sufficiently sensitive to satisfy legislative requirements related to low detection and quantification limits as well as method accuracy and precision requirements. However, in order to achieve the best performance and precision, the protocol needs to be optimized for each case. The effect of different parameters must be well characterized to ensure correct extraction and desorption to ensure the transfer of extracted compounds into the analytical system. The operating parameters, such as time, temperature, and agitation, must then be kept constant for all the samples.

  2. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.


    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  3. An acid-stable tert-butyldiarylsilyl (TBDAS) linker for solid-phase organic synthesis.

    Diblasi, Christine M; Macks, Daniel E; Tan, Derek S


    [reaction: see text] A new, robust tert-butyldiarylsilyl (TBDAS) linker has been developed for solid-phase organic synthesis. This linker is stable to both protic and Lewis acidic reaction conditions, overcoming a significant limitation of previously reported silyl linkers. Solid-phase acetal deprotection, olefination, asymmetric allylation, and silyl protecting group deblocking reactions have been demonstrated with TBDAS-linked substrates.

  4. 40 CFR 227.32 - Liquid, suspended particulate, and solid phases of a material.


    ... MATERIALS Definitions § 227.32 Liquid, suspended particulate, and solid phases of a material. (a) For the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Liquid, suspended particulate, and solid phases of a material. 227.32 Section 227.32 Protection of Environment ENVIRONMENTAL...


    A. R. Koohpaei ، S. J. Shahtaheri ، M. R. Ganjali ، A. Rahimi Forushani


    Full Text Available Solid phase extraction is one of the major applications of molecularly imprinted polymers fields for clean-up of environmental and biological samples namely molecularly imprinted solid-phase extraction. In this study, solid phase extraction using the imprinted polymer has been optimized with the experimental design approach for a triazine herbicide, named atrazine with regard to the critical factors which influence the molecular imprinted solid phase extraction efficiency such as sample pH, concentration, flow-rate, volume, elution solvent, washing solvent and sorbent mass. Optimization methods that involve changing one factor at a time can be laborious. A novel approach for the optimization of imprinted solid-phase extraction using chemometrics is described. The factors were evaluated statistically and also validated with spiked water samples and showed a good reproducibility over six consecutive days as well as six within-day experiments. Also, in order to the evaluate efficiency of the optimized molecularly imprinted solid-phase extraction protocols, enrichment capacity, reusability and cross-reactivity of cartridges have been also evaluated. Finally, selective molecularly imprinted solid-phase extraction of atrazine was successfully demonstrated with a recovery above 90% for spiked drinking water samples. It was concluded that the chemometrics is frequently employed for analytical method optimization and based on the obtained results, it is believed that the central composite design could prove beneficial for aiding the molecularly imprinted polymer and molecularly imprinted solid-phase extraction development.

  6. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.;


    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formation...

  7. The Iron-Iron Carbide Phase Diagram: A Practical Guide to Some Descriptive Solid State Chemistry.

    Long, Gary J.; Leighly, H. P., Jr.


    Discusses the solid state chemistry of iron and steel in terms of the iron-iron carbide phase diagram. Suggests that this is an excellent way of introducing the phase diagram (equilibrium diagram) to undergraduate students while at the same time introducing the descriptive solid state chemistry of iron and steel. (Author/JN)

  8. Complement fixation by solid phase immune complexes. Reduced capacity in SLE sera

    Baatrup, G; Jonsson, H; Sjöholm, A


    We describe an ELISA for assessment of complement function based on the capacity of serum to support fixation of complement components to solid phase immune complexes (IC). Microplates were coated with aggregated bovine serum albumin (BSA) followed by rabbit anti-BSA IgG. The solid phase IC were ...

  9. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    Schroeder, K. G.; Petroff, I. K.


    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  10. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu; Susmita Paul


    Solid-phase organic synthesis (SPOS) and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i) al...

  11. Local Gas Phase Flow Characteristics of a Gas—Liquid—Solid Three—Phase Reversed Flow Jet Loop Reactor

    WENJianping; ChenYunlin; 等


    The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.

  12. Inhibition of a solid phase reaction among excipients that accelerates drug release from a solid dispersion with aging.

    Mizuno, Masayasu; Hirakura, Yutaka; Yamane, Ikuro; Miyanishi, Hideo; Yokota, Shoji; Hattori, Munetaka; Kajiyama, Atsushi


    Hydrophobic drug substances can be formulated as a solid dispersion or solution using macromolecular matrices with high glass transition temperatures to attain satisfactory dissolution. However, very few marketed products have previously relied on solid dispersion technology due to physical and chemical instability problems, and processing difficulties. In the present study, a modified release product of a therapeutic drug for hypertension, Barnidipine hydrochloride, was developed. The drug product consisted of solid dispersion based on a matrix of carboxymethylethylcellulose (CMEC), which was produced using the spray-coating method. An enteric coat layer was sprayed on the surface of the solid dispersion to control drug release. Interestingly, the release rate accelerated as the drug product aged, while there were no indications of deceleration of the release rate which was due to crystallization of the drug substance. To prevent changes in the dissolution kinetics during storage periods, a variety of processing conditions were tried. It was found that not only use of non-aqueous solvents but also a reduction in coating temperatures consistently resulted in stable solid dispersions. The molecular bases of dissolution of the drug substance from those matrices were investigated. The molecular weight of CMEC was found to be a dominant factor that determined dissolution kinetics, which followed zero-order release, suggesting an involvement of an osmotic pumping mechanism. While dissolution was faster using a higher molecular weight CMEC, the molecular weight of CMEC in the drug product slowly increased with aging (solid phase reaction) depending on the processing conditions, causing the time-induced elevation of dissolution. While no crystalline components were found in the solid dispersion, the amorphous structure maintained a degree of non-equilibrium by nature. Plasticization by water in the coating solution relaxed the amorphous system and facilitated phase

  13. Novel materials and methods for solid-phase extraction and liquid chromatography

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)


    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  14. Intermetallic-based high-temperature materials

    Sikka, V.K.


    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminides are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  15. Intermetallic-Based High-Temperature Materials

    Sikka, V.K.


    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  16. Enthalpies of formation of Cd–Pr intermetallic compounds and thermodynamic assessment of the Cd–Pr system

    Reichmann, Thomas L.; Richter, Klaus W.; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert


    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be −46.0, −38.8, −35.2 and −24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd–Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann–Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented. PMID:25540475

  17. Enthalpies of formation of Cd-Pr intermetallic compounds and thermodynamic assessment of the Cd-Pr system.

    Reichmann, Thomas L; Richter, Klaus W; Delsante, Simona; Borzone, Gabriella; Ipser, Herbert


    In the present study standard enthalpies of formation were measured by reaction and solution calorimetry at stoichiometric compositions of Cd2Pr, Cd3Pr, Cd58Pr13 and Cd6Pr. The corresponding values were determined to be -46.0, -38.8, -35.2 and -24.7 kJ/mol(at), respectively. These data together with thermodynamic data and phase diagram information from literature served as input data for a CALPHAD-type optimization of the Cd-Pr phase diagram. The complete composition range could be described precisely with the present models, both with respect to phase equilibria as well as to thermodynamic input data. The thermodynamic parameters of all intermetallic compounds were modelled following Neumann-Kopp rule. Temperature dependent contributions to the individual Gibbs energies were used for all compounds. Extended solid solubilities are well described for the low- and high-temperature modifications of Pr and also for the intermetallic compound CdPr. A quite good agreement with all viable data available from literature was found and is presented.


    王永强; 韩军; 杨滨; 武焕春; 王西涛


    研究了压水堆核电站一回路主管道用Z3CN20.09M铸造奥氏体不锈钢中金属间相的析出行为.利用Image-pro Plus 6.0软件统计了时效处理后不锈钢中析出金属间相的数量,获得了金属间相的时间-温度-转变(TTT)曲线.结果显示,Z3CN20.09M中析出的金属间相为M23C6和σ相,析出温度范围分别为600-900℃和600-840℃,其中750℃时析出最快.研究表明,M23C6首先在α/γ相界析出,然后σ相在铁素体相内形成.M2aC6和σ相在Z3CN20.09M中固溶化的温度分别为900和850℃.850℃时,M23C6相的析出量随时间延长先增多后减少.%The precipitation behavior of the intermetallic phases in a Z3CN20.09M cast austenite stainless steel (CASS) which has been widely used in primary coolant pipes of nuclear power plants has been investigated. The content of the intermetallic phases precipitated in the CASS was calculated by using Image-pro Plus 6.0 software. And then a time-temperature-transformation (TTT) diagram for the intermetallic phases was got. The results showed that the M23C6 and σ phases were precipitated in the steel during 600—900℃ and 600-840 ℃ respectively. The fastest precipitation velocity for the intermetallic phases occurs at 750 ℃. Moreover, the M23C6 was found to precipitate first at ferrite/austenite phase boundaries, and then a phase formed in ferrite. The solutionizing temperatures for the M23C6 and σ phases are 900 and 850 ℃, respectively. The volume fraction of the M23C6 in the specimen aged at 850 ℃. increases with the increase of aging time first and then decreases.

  19. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process

    WANG Hai-Yan; CHEN Yan; LIU Yu-Wen; LI Fei; LIU Jian-Hua; PENG Gui-Rong; WANG Wen-Kui


    Effects of high pressure (6 GPa) on the solid state phase transformation kinetic parameters of aluminum bronze during the cooling process are investigated, based on the measurement and calculation of its solid state phase transformation temperature, duration and activation energy and the observation of its microstructures. The results show that high pressure treatment can reduce the solid phase transformation temperature and activation energy in the cooling process and can shorten the phase transformation duration, which is favorable when forming fine-grained aluminum bronze.

  20. The importance of screening solid-state phases of a racemic modification of a chiral drug: thermodynamic and structural characterization of solid-state phases of etiracetam.

    Herman, Christelle; Vermylen, Valérie; Norberg, Bernadette; Wouters, Johan; Leyssens, Tom


    In this contribution different solid-state forms of the racemic compound (RS)-2-(2-oxo-pyrrolidin-1yl)-butyramide are studied from a structural and thermal point of view. Three different solid-state phases were identified, including two polymorphs and one hydrate phase. Comparison is made with the structure of the (S)-enantiomer, for which only one solid-state phase is known. The basic structural motif found in both polymorphs of the racemic compound is similar, but the basic motif observed for the hydrate differs. These synthons could in principle be used in future polymorph prediction studies to screen for possible alternative forms of the enantiopure compound. Based on the structure of the hydrate, further efforts should therefore be made in order to identify a hydrate structure of the enantiopure compound. Studying the different phases of a racemic compound can therefore help to guide polymorphic screening of an enantiopure compound.

  1. Solid and liquid phase equilibria and solid-hydrate formation in binary mixtures of water with amines

    车冠全; 彭文烈; 黄良恩; 古喜兰; 车飙


    Solid and liquid phase diagrams have been constructed for {water+triethylamine,or+N,N-dimethylformamide(DMF) or+N,N-dimethlacetamide (DMA)} Solid-hydrates form with the empirical formulae N(C2H5)3 3H2O,DMF 3H2O,DMF 2H2O,DMA 3H2O and (DMA)2 3H2O.All are congruently melting except the first which melts incongruently.The solid-hydrate formation is attributed to hydrogen bond.The results are compared with the references

  2. Solid phase epitaxial regrowth of (100)GaAs

    Almonte, Marlene Isabel [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering


    This thesis showed that low temperature (250°C) SPE of stoichiometrically balanced ion implanted GaAs layers can yield good epitaxial recovery for doses near the amorphization threshold. For 250°C anneals, most of the regrowth occurred in the first 10 min. HRTEM revealed much lower stacking fault density in the co-implanted sample than in the As-only and Ga-only samples with comparable doses. After low temp annealing, the nonstoichiometric samples had a large number of residual defects. For higher dose implants, very high temperatures (700°C) were needed to remove residual defects for all samples. The stoichiometrically balanced layer did not regrow better than the Ga-only and As-only samples. The co-implanted sample exhibited a thinner amorphous layer and a room temperature (RT) annealing effect. The amorphous layer regrew about 5 nm, suggesting that stoichiometrically balanced amorphous layers can regrow even at RT. Mechanisms for solid phase crystallization in (100)GasAs is discussed: nucleation and growth of randomly oriented crystallites and SPE. These two mechanisms compete in compound semiconductors at much lower temperatures than in Si. For the low dose As-only and Ga-only samples with low-temp anneals, both mechanisms are active. For this amorphization threshold dose, crystallites remain in the amorphous layer for all as-implants. 250°C annealing showed recrystallization from the surface and bulk for these samples; for the co-implant, the mechanism is not evident.

  3. Application of solid phase microextraction on dental composite resin analysis.

    Wang, Ven-Shing; Chang, Ta-Yuan; Lai, Chien-Chen; Chen, San-Yue; Huang, Long-Chen; Chao, Keh-Ping


    A direct immersion solid phase microextraction (DI-SPME) method was developed for the analysis of dentin monomers in saliva. Dentine monomers, such as triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA) and 2,2-bis-[4-(2-hydroxy-3-methacryloyloxypropoxy) phenyl]-propane (Bis-GMA), have a high molecular weight and a low vapor pressure. The polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber with a medium polarity was employed for DI-SPME, and 215 nm of detection wavelength was found to be optimum in the chromatogram of HPLC measurement. The calibration range for DI-SPME was 0.30-300 μg/mL with correlation coefficients (r) greater than 0.998 for each analyte. The DI-SPME method achieved good accuracy (recovery 96.1-101.2%) and precision (2.30-8.15% CV) for both intra- and inter-day assays of quality control samples for three target compounds. Method validation was performed on standards dissolved in blank saliva, and there was no significant difference (p>0.2) between the DI-SPME method and the liquid injection method. However, the detection limit of DI-SPME was as low as 0.03, 0.27 and 0.06 μg/mL for TEGDMA, UDMA and Bis-GMA, respectively. Real sample analyses were performed on commercial dentin products after curing for the leaching measurement. In summary, DI-SPME is a more sensitive method that requires less sample pretreatment procedures to measure the resin materials leached in saliva.

  4. Ultrarapid mutation detection by multiplex, solid-phase chemical cleavage

    Rowley, G.; Saad, S.; Giannelli, F.; Green, P.M. [Guy`s & St. Thomas`s Hospitals, London (United Kingdom)


    The chemical cleavage of mismatches in heteroduplexes formed by probe and test DNA detects and locates any sequence change in long DNA segments ({approximately}1.8 kb), and its efficiency has been well tested in the analysis of both average (e.g., coagulation factor IX) and large, complex genes (e.g., coagulation factor VIII and dystrophin). In the latter application RT/PCR products allow the examination of all essential sequences of the gene in a minimum number of reactions. We use two specific chemical reactants (hydroxylamine and osmium tetroxide) and piperidine cleavage of the above procedure to develop a very fast mutation screening method. This is based on: (1) 5{prime} or internal fluorescent labeling to allow concurrent screening of three to four DNA fragments and (2) solid-phase chemistry to use a microliter format and reduce the time required for the procedure, from amplification of sequence to gel loading inclusive, to one person-working-day. We test the two variations of the method, one entailing 5{prime} labeling of probe DNA and the other uniform labeling of both probe and target DNA, by detecting 114 known hemophilia B (coagulation factor IX) mutations and by analyzing 129 new patients. Uniform labeling of both probe and target DNA prior to formation of the heteroduplexes leads to almost twofold redundancy in the ability to detect mutations. Alternatively, the latter procedure may offer very efficient though less than 100% screening for sequence changes with only hydroxylamine. The full method with two chemical reactions (hydroxylamine and osmium tetroxide) should allow one person to screen with virtually 100% accuracy more than 300 kb of sequence in three ABI 373 gels in 1 day. 26 refs., 7 figs., 1 tab.

  5. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R


    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  6. Solid rocket motor fire tests: Phases 1 and 2

    Chang, Yale; Hunter, Lawrence W.; Han, David K.; Thomas, Michael E.; Cain, Russell P.; Lennon, Andrew M.


    JHU/APL conducted a series of open-air burns of small blocks (3 to 10 kg) of solid rocket motor (SRM) propellant at the Thiokol Elkton MD facility to elucidate the thermal environment under burning propellant. The propellant was TP-H-3340A for the STAR 48 motor, with a weight ratio of 71/18/11 for the ammonium perchlorate, aluminum, and HTPB binder. Combustion inhibitor applied on the blocks allowed burning on the bottom and/or sides only. Burns were conducted on sand and concrete to simulate near-launch pad surfaces, and on graphite to simulate a low-recession surface. Unique test fixturing allowed propellant self-levitation while constraining lateral motion. Optics instrumentation consisted of a longwave infrared imaging pyrometer, a midwave spectroradiometer, and a UV/visible spectroradiometer. In-situ instrumentation consisted of rod calorimeters, Gardon gauges, elevated thermocouples, flush thermocouples, a two-color pyrometer, and Knudsen cells. Witness materials consisted of yttria, ceria, alumina, tungsten, iridium, and platinum/rhodium. Objectives of the tests were to determine propellant burn characteristics such as burn rate and self-levitation, to determine heat fluxes and temperatures, and to carry out materials analyses. A summary of qualitative results: alumina coated almost all surfaces, the concrete spalled, sand moisture content matters, the propellant self-levitated, the test fixtures worked as designed, and bottom-burning propellant does not self-extinguish. A summary of quantitative results: burn rate averaged 1.15 mm/s, thermocouples peaked at 2070 C, pyrometer readings matched MWIR data at about 2400 C, the volume-averaged plume temperatures were 2300-2400 C with peaks of 2400-2600 C, and the heat fluxes peaked at 125 W/cm2. These results are higher than other researchers' measurements of top-burning propellant in chimneys, and will be used, along with Phase 3 test results, to analyze hardware response to these environments, including General

  7. Observation of Solid-Solid Phase Transitions in Ramp-Compressed Aluminum

    Polsin, D. N.; Boehly, T. R.; Delettrez, J. A.; Gregor, M. C.; McCoy, C. A.; Henderson, B.; Fratanduono, D. E.; Smith, R.; Kraus, R.; Eggert, J. H.; Collins, R.; Coppari, F.; Celliers, P. M.


    We present results of experiments using x-ray diffraction to study the crystalline structure of solid aluminum compressed up to 500 GPa. Aluminum is of interest because it is frequently used as a standard material in high-pressure compression experiments. At ambient pressure and temperature, Al is a face-centered cubic close-packed crystal and has been observed to transform to hexagonal close-packed (hcp) when compressed to 200GPa in a diamond anvil cell. It is predicted to transform from hcp to body-centered cubic when compressed to 315GPa. Laser-driven ramp waves will be used to compress Al to various constant-pressure states. The goal is to investigate the Al phase diagram along its isentrope, i.e., at temperatures 1000K and pressures ranging from 200 to 500 GPa. X-ray diffraction will be used to measure the crystalline structure of the compressed Al and observe the transformations that occur at various pressures. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.

    Huang, Rao; Shao, Gui-Fang; Zhang, Yang; Wen, Yu-Hua


    Pt-Co bimetallic nanoparticles are promising candidates for Pt-based nanocatalysts and magnetic-storage materials. By using molecular dynamics simulations, we here present a detailed examination on the thermal stabilities of Pt-Co bimetallic nanoparticles with three configurations including chemically disordered alloy, ordered intermetallics, and core-shell structures. It has been revealed that ordered intermetallic nanoparticles possess better structural and thermal stability than disordered alloyed ones for both Pt3Co and PtCo systems, and Pt3Co-Pt core-shell nanoparticles exhibit the highest melting points and the best thermal stability among Pt-Co bimetallic nanoparticles, although their meltings all initiate at the surface and evolve inward with increasing temperatures. In contrast, Co-Pt core-shell nanoparticles display the worst thermal stability compared with the aforementioned nanoparticles. Furthermore, their melting initiates in the core and extends outward surface, showing a typical two-stage melting mode. The solid-solid phase transition is discovered in Co core before its melting. This work demonstrates the importance of composition distribution to tuning the properties of binary nanoparticles.

  9. Regularities of Formation of Ternary Intermetallic Compound between Transition Elements

    Lixiu YAO; Jie YANG; Chenzhou YE; Nianyi CHEN


    Four parameters, φ (electronegativity), nws1/3 (valence electron density in Wagner-Seitz cell),R (Pauling's metallic radius) and Z (number of valence electrons in atom), and the pattern recognition methods were used to investigate the regularities of formation of ternary intermetallic compounds between three transition elements. The obtained mathematical model expressed by some inequalities can be used as a criterion of ternary compound formation in "unknown" phase diagrams of alloy systems.

  10. Zn13(CrxAl1-x)27 (x = 0.34-0.37): a new intermetallic phase containing icosahedra as building units

    Thimmaiah, Srinivasa; Han, Mi-Kyung; Miller, Gordon J.


    The title compounds Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} (x = 0.34-0.37) were obtained by melting the pure elements at 923 K, and followed by a heat treatment at 723 K in a tantalum container. According to single crystal structural analysis, the title compounds crystallize in the rhombohedral system, adopting a new structure type (R-3m, a = 7.5971(8), c = 36.816(6), for crystal I). Single crystal X-ray structural analysis reveals a statistical mixing of Cr/Al in their crystallographic positions. Single crystal and powder X-ray diffraction as well as energy dispersive X-ray analyses suggested the title phase to have a narrow homogeneity range. The substructure of Zn{sub 13}(Cr{sub x}Al{sub 1-x}){sub 27} shows close resemblance with the Mn{sub 3}Al{sub 10} structure type. A bonding analysis, through crystal orbital Hamiltonian populations (COHPs), of 'Cr{sub 9}Al{sub 18}Zn{sub 13}' as a representative composition indicated that both homo- and heteronuclear interactions are important for the stability of this new phase.

  11. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement.

    Yeo, Seul-Ki; Park, Jun-Boum; Ahn, Joo-Sung; Han, Young-Soo


    In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

  12. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W


    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes.

  13. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid-liquid phase change

    Huang, Rongzong; Wu, Huiying


    In this paper, phase interface effects, including the differences in thermophysical properties between solid and liquid phases and the numerical diffusion across phase interface, are investigated for the recently developed total enthalpy-based lattice Boltzmann model for solid-liquid phase change, which has high computational efficiency by avoiding iteration procedure and linear equation system solving. For the differences in thermophysical properties (thermal conductivity and specific heat) between solid and liquid phases, a novel reference specific heat is introduced to improve the total enthalpy-based lattice Boltzmann model, which makes the thermal conductivity and specific heat decoupled. Therefore, the differences in thermal conductivity and specific heat can be handled by the dimensionless relaxation time and equilibrium distribution function, respectively. As for the numerical diffusion across phase interface, it is revealed for the first time and found to be induced by solid-liquid phase change. To reduce such numerical diffusion, multiple-relaxation-time collision scheme is exploited, and a special value (one fourth) for the so-called "magic" parameter, a combination of two relaxation parameters, is found. Numerical tests show that the differences in thermophysical properties can be correctly handled and the numerical diffusion across phase interface can be dramatically reduced. Finally, theoretical analyses are carried out to offer insights into the roles of the reference specific heat and "magic" parameter in the treatments of phase interface effects.

  14. Solid phase extraction and determination of carbamate pesticides in water samples by reverse-phase HPLC

    Moreno-Tovar, J.; Santos-Delgado, M.J. [Departamento de Quimica Analitica, Facultad de ciencias Quimicas, Universidad Complutense de Madrid (Spain)


    Solid phase extraction. SPE. using C{sub 1}8 bonded silica cartridges for trace amounts determination of carbaryl, propoxur, thiram, propham and methiocarb in water samples was studied and the breakthrough volume of the cartridges was established. The high enrichment factor and large injection volume admissible in the isocratic reverse-phase HPLC system allows pesticides determination with UV detection at 22o nm even at a concentration lower than 0.05 mug/L. Purified tap natural and underground water samples were spiked with carbamate pesticides in the concentration range 0.16-16.0 mug/L. Large volumes of samples (up to 2L) were passed through available C{sub 1}8, cartridges and eluted with acetonitrile. The preconcentrated samples were analyzed by HPLC using a Spherisorb ODS column with a 42.58 acetonitrile-water mobile phase. From replicate samples, recovery for the pesticides ranged from 79.0 to 103.7% except for thiran which is not retained. Tehe relative standard deviation (n=4 at 0.16 to 1.61 mug/L concetration level) range from 1.1 to 6.8%. (Author) 14 refs.

  15. Laser processing issues of nanosized intermetallic Fe-Sn and metallic Sn particles

    Alexandrescu, R.; Morjan, I.; Dumitrache, F.; Birjega, R.; Fleaca, C.; Morjan, Iuliana; Scarisoreanu, M.; Luculescu, C. R.; Dutu, E.; Kuncser, V.; Filoti, G.; Vasile, E.; Ciupina, V.


    Intermetallic Fe-Sn and nanocrystalline metallic Sn nanoparticles have been successfully synthesized from organic precursors using the laser pyrolysis technique with ethylene as sensitizer. Nano-structured Sn (single phase) was prepared by the pyrolysis of Sn(CH3)4 (TMT) vapors. Controlled Fe/Sn atomic ratios, ranging from 0.69 to 1.64 were obtained for the prepared Fe-Sn nanopowders by the control of Fe(CO)5 and TMT flows, respectively. XRD studies evidence three main phases: the tetragonal metallic Sn phase and the intermetallic FeSn2 phase and, to a much lesser extent, the cubic ternary carbide Fe3SnC. Complex core-shell structural characteristics were found by HRTEM analysis. More complete information about the Fe phase distributions in the new intermetallic Fe-Sn nanomaterial is provided by temperature dependent 57Fe Mössbauer spectroscopy.

  16. Phase Transformation in Cast Superaustenitic Stainless Steels

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)


    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  17. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    Zimmermann, Claudia; Schaaf, Wolfgang


    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  18. The growth and tensile deformation behavior of the silver solid solution phase with zinc

    Wu, Jiaqi, E-mail: [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States); Lee, Chin C. [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-2660 (United States); Materials and Manufacturing Technology, University of California, Irvine, CA 92697-2660 (United States)


    The growth of homogeneous silver solid solution phase with zinc are conducted at two different compositions. X-ray diffraction (XRD) and Scanning electron microscope/Energy dispersive X-ray spectroscopy (SEM/EDX) are carried out for phase identification and chemical composition verification. The mechanical properties of silver solid solution phase with zinc are evaluated by tensile test. The engineering and true stress vs. strain curves are presented and analyzed, with those of pure silver in comparison. According to the experimental results, silver solid solution phase with zinc at both compositions show tempered yield strength, high tensile strength and large uniform strain compared to those of pure silver. Fractography further confirmed the superior ductility of silver solid solution phase with zinc at both compositions. Our preliminary but encouraging results may pave the way for the silver based alloys to be applied in industries such as electronic packaging and structure engineering.

  19. Cu和Al箔扩散结合界面相生长行为研究%Growth Behavior of Intermetallic Phase at Diffusion Bonded Interface between Copper and Aluminium Foil

    郭亚杰; 刘桂武; 金海云; 史忠旗; 乔冠军


    The formation process and growth kinetics of the intermetallic (IMC) layers at the solid-state diffusion-bonded interface between the Cu and Al foils conducted by plasma activated sintering processing were investigated in the temperature range of 673-773 K. The results show that the formation process of the IMCs involves four stages, physical contact, IMCs nucleation, IMCs connection along the interface and continuous thickening of the IMC layers. The interfacial region is composed of Al4C119, AlCu and Al2Cu layers. The relationships between each layer thickness and the reaction time follow the approximate parabolic law, indicating the diffusion-controlled growth kinetic of the IMCs. The growth rate constants of the IMC layers conform to the Arrhenius relation with temperature, and the calculated activation energies for the growth of total IMCs, AL4Cu9, AlCu and Al2Cu layers are 80.78, 89.79, 84.63 and 71.12 kJ/mol, respectively.%采用等离子活化烧结方法实现了Cu箔和Al箔的固相扩散结合,考察了673~773K温度范围内界面金属间化合物(IMCs)层的生成过程和生长动力学.结果表明:界面IMCs生成过程主要包括物理接触、IMCs形核、IMCs沿界面相连和IMCs层连续增厚4个阶段;界面主要由Al4Cu9、AlCu和Al2Cu层构成;各层厚度与反应时间的关系均符合抛物线规律,表明IMCs生长动力学由体扩散所控制:各层生长速率常数与反应温度之间满足Arrhenius关系,且整个IMCs界面层以及Al4Cu9、AlCu和Al2Cu各单层的生长激活能分别为80.78、89.79、84.63和71.12 kJ/mol.

  20. Thermomechanical processing of plasma sprayed intermetallic sheets

    Hajaligol, Mohammad R. (Midlothian, VA); Scorey, Clive (Cheshire, CT); Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); Lilly, Jr., A. Clifton (Chesterfield, VA); German, Randall M. (State College, PA)


    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  1. Solid phase precipitates in (Zr,Th)-OH-(oxalate, malonate) ternary aqueous system

    Kobayashi, T.; Sasaki, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering


    The solubility-limiting solid phases in the ternary aqueous systems of Zr(IV)/OH/oxalate, Zr(IV)/OH/malonate, Th(IV)/OH/oxalate and Th(IV)/OH/malonate were characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis and differential thermal analysis. The ternary solid phase of M(IV)/OH/carboxylate was observed to form, even under acidic conditions, depending on the pH and the concentration of carboxylate ligand. In the presence of a large excess of carboxylic acid, however; the binary M(IV)-carboxylate solid phase formed. (orig.)

  2. Design and Synthesis of a Dual Linker for Solid Phase Synthesis of Oleanolic Acid Derivatives

    Shaorong Wang


    Full Text Available A hydrophilic amino-terminated poly(ethylene glycol-type dual linker for solid phase synthesis of oleanolic acid derivatives using trityl chloride resin was designed and synthesized for the first time. Model reactions in both liquid and solid phase were performed to show the feasibility of its selective cleavage at two different sites. The biological assay results indicated that the long and flexible alkyl ether functionality in the linker is less likely to be critical for the binding event. Following the successful solid-phase synthesis of model compounds, the potential of this dual linker in reaction monitoring and target identification is deemed worthy of further study.

  3. The effect of microstructures on mechanical behaviors of Ti2AlNb intermetallic compounds

    Wang, Liming; Yao, Mei; Zou, Dunxu; Zhu, Dong; Cai, Qigong (Harbin Institute of Technology, (China) Central Iron and Steel Research Institute, Beijing, (China))


    Ti2AlNb intermetallics are presently heat-treated and subjected to compressive loading at various temperatures, in order to ascertain microstructure-mechanical behavior relationships. Heat-treated and oil-quenched samples exhibit beta phase; the 'O' phase transformation was restrained by quenching. The O phase increased with rising heat-treatment temperature. 10 refs.

  4. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    Cao, M; Monson, P A


    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  5. Liquid phase sintering, II: Computer study of skeletal settling and solid phase extrication in a microgravity environment

    Nikolić Z.S.


    Full Text Available A two-dimensional numerical method based on the Brownian motion model and on the Densification model for simulation of liquid phase sintering in microgravity environment will be developed. Both models will be based on domain topology (two-dimensional particle representation and control volume methodology and on three submodels for domain translation, solid skeleton formation and domain extrication. This method will be tested in order to conduct a study of diffusion phenomena and microgravitational effects on microstructural evolution influenced by skeletal settling combined with solid-phase extrication during liquid phase sintering of porous W-Ni system.

  6. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Sato, Masashi


    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  7. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Kumar, K. S.; Whittenberger, J. D.


    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  8. Silica supported Fe(3)O(4) magnetic nanoparticles for magnetic solid-phase extraction and magnetic in-tube solid-phase microextraction: application to organophosphorous compounds.

    Moliner-Martinez, Y; Vitta, Yosmery; Prima-Garcia, Helena; González-Fuenzalida, R A; Ribera, Antonio; Campíns-Falcó, P; Coronado, Eugenio


    This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.

  9. Electrochemical properties of the passive film on bulk Zr-Fe-Cr intermetallic fabricated by spark plasma sintering

    Bai, Yakui; Ling, Yunhan; Lai, Wensheng; Xing, Shupei; Ma, Wen


    Although Zr-based second phase particles (SPPs) are important factors influencing corrosion resistance of zircaloy cladding materials, the corrosion behavior of SPPs has not been investigated by means of electrochemical method so far. In order to clarify the role of SPPs commonly existed in zircaloy, bulk Zr-based intermetallics were firstly fabricated by spark plasma sintering (SPS) at temperatures 1373 K and an applied pressure of 60 MPa in this work. Both the natural passive film on surface and oxidation behavior of intermetallic has been investigated in this work. X-ray diffraction (XRD) pattern showed that as-prepared intermetallic of crystal structure belongs to Laves phase with AB2 type. Electrochemical measurement of passive film on surface of bulk Zr-based intermetallic exhibited significant difference with that of zirconium. Potentiodynamic measurements results revealed that intermetallic exhibited higher corrosion potential and lower corrosion current density than that of pure zirconium, implying that Zr-based second phase will act as cathode when they are included in zirconium matrix. Meanwhile, significant improvement of Zr-Fe-Cr intermetallic on the water chemistry corrosion resistance was demonstrated comparing with Zr-Fe and Zr-Cr binary intermetallics.

  10. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;


    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  11. Study on New Sensitive Method of Determination of Phosphorus by Solid Phase Spectrophotometry


    The use of solid phase spectrophotometry for the determination of trace phosphorus in the system of phosphomolybdate-fructose is described. The adsorption of the system on anion-exchange resin is reported.

  12. Recent Application of Solid Phase Based Techniques for Extraction and Preconcentration of Cyanotoxins in Environmental Matrices.

    Mashile, Geaneth Pertunia; Nomngongo, Philiswa N


    Cyanotoxins are toxic and are found in eutrophic, municipal, and residential water supplies. For this reason, their occurrence in drinking water systems has become a global concern. Therefore, monitoring, control, risk assessment, and prevention of these contaminants in the environmental bodies are important subjects associated with public health. Thus, rapid, sensitive, selective, simple, and accurate analytical methods for the identification and determination of cyanotoxins are required. In this paper, the sampling methodologies and applications of solid phase-based sample preparation methods for the determination of cyanotoxins in environmental matrices are reviewed. The sample preparation techniques mainly include solid phase micro-extraction (SPME), solid phase extraction (SPE), and solid phase adsorption toxin tracking technology (SPATT). In addition, advantages and disadvantages and future prospects of these methods have been discussed.

  13. Design and Solid-Phase Synthesis of Multiple Muramyl Dipeptide (MMD)


    As a non-specific modulator of macrophage, multiplied muramyl dipeptide (MMD) is solid-phase synthesized by application of standard Fmoc chemistry strategy. Tam's multiple antigen system (MAS) is used as our four branched-linker on Lysine.

  14. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  15. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    Zielinska, K.


    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid phas

  16. Solid-phase micro-extraction in bioanalysis, exemplified by lidocaine determination

    de Jong, GJ; Koster, EHM


    Solid-phase micro-extraction (SPME) is a never sample preparation technique that can be used for gaseous, liquid or solid samples in conjunction with GC, HPLC or CE (e.g. [1]). The use of SPME for the analysis of drugs in biofluids is also becoming popular (e.g. [2]). The principle is that a fused s

  17. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio


    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  18. Solid Phase Equilibria in the Pi-Ga-As and Pt-Ga-Sb Systems


    OFFICE OF NAVAL RESEARCH Research Contract N00014-87-K-0014 R&T Code 413E026---01 AD-A 198 654 TECHNICAL REPORT No. 9 SOLID PHASE EQUILIBRIA IN THE...Classtcation) UNCLASSLFIED: Tech.Rept.#9 SOLID PHASE EQUILIBRIA IN T11: Pt-Ga-As AND Pt-Ga-Sb SYST’IS 12 PERSONAL AuTiOR(S) C.T. Tsai and R.S. Williats 13a TYPE

  19. Molecularly imprinted polymers: New molecular recognition materials for selective solid-phase extraction of organic compounds

    Martín Esteban, A.


    During the last few years molecularly imprinted polymers have appeared as new selective sorbents for solid-phase extraction of organic compounds in different samples. Molecular imprinting technology involves the preparation of a polymer with specific recognition sites for certain molecules. Once the polymer has been obtained, it can be used in solid-phase extraction protocols, where a careful selection of the most appropriate solvents to be used in the different steps (sample loading, washing...

  20. Expedient protocol for solid-phase synthesis of secondary and tertiary amines

    Olsen, Christian A; Witt, Matthias; Jaroszewski, Jerzy W


    [reaction: see text] An expedient solid-phase synthetic approach to secondary and tertiary amines was developed. The protocol employs conversion of resin-bound amino alcohols to the corresponding iodides, followed by iodide displacement with primary or secondary amines or with unprotected amino...... alcohols. This two-step procedure, affording products in good to excellent yields, is suitable for solid-phase synthesis of polyamines....

  1. Isotope effects in dense solid hydrogen - Phase transition in deuterium at 190 + or - 20 GPa

    Hemley, R. J.; Mao, H. K.


    Raman measurements of solid normal deuterium compressed in a diamond-anvil cell indicate that the material undergoes a structural phase transformation at 190 + or - 20 GPa and 77 K. Spectroscopically, the transition appears analogous to that observed in hydrogen at 145 + or - 5 GPa. The large isotope effect on the transition pressure suggests there is a significant vibrational contribution to the relative stability of the solid phases of hydrogen at very high densities.

  2. Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian


    regression approach that enables the simultaneous determination of up to four solid state fractions: crystalline naproxen, γ-indomethacin, α-indomethacin as well as co-amorphous naproxen-indomethacin. For this purpose, a calibration set that covers the whole range of possible combinations of the four...... four solid state phases, involving one co-amorphous phase, can be quantified with this XRPD data-based approach....

  3. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao


    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solid-Phase Synthesis of PEGylated Lipopeptides Using Click Chemistry

    Jølck, Rasmus Irming; Berg, Rolf Henrik; Andresen, Thomas Lars


    A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC “Click” conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides...

  5. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    Wiezorek, Jorg [Univ. of Pittsburgh, PA (United States)


    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  6. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Varberg, Thomas D.; Skakuj, Kacper


    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  7. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Varberg, Thomas D.; Skakuj, Kacper


    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  8. Direct MD simulation of liquid-solid phase equilibria for two-component plasmas

    Schneider, A S; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 55296 ion simulations and compare to earlier 27648 ion results. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. We find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite size and non-equilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known.

  9. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow


    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  10. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon


    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  11. Evaporation induced orientational order in soft solid phases of clays

    Lindbo Hansen, Elisabeth; Hemmen, Henrik; Dommersnes, Paul; Fossum, Jon Otto


    We demonstrate experimentally the possibility for promoting uniaxial orientational order in initially isotropic, soft solid dispersions of the synthetic clays Na-fluorohectorite and Laponite RD. We observe that strong orientational order can emerge from initially isotropic states when the samples are subjected to a slow concentration increase through evaporation of the dispersion water. During evaporation, there is a gradient in the order which, if evaporation is halted, slowly relaxes towards a uniform order throughout the samples. It is evident that the development of orientational order is not counterindicated by the viscoelastic nature of the samples, and that although the translational and likely also rotational diffusion of the particles is restricted in the soft solid state, the orientational degree of freedom can undergo a transition from a collectively random to an ordered state.

  12. Investigation of Intermetallic Compound Formed from Rapid Solidification of Al-Ti-RE Alloy

    杨明珊; 王振飞


    Al-Ti alloy containing rare earth elements can produce fine,uniform dispersion intermetallic phase through rapid solidification(RS)technology.RS Al-Ti-RE alloy can be designed for applications at elevated-temperature since the intermetallic compound has good thermal stability.A transmission electron microscopy investigation shows the intermetallic phase has a diamond cubic structure(a=1.47736 nm),with space group Fd3m.The chemical stoichiometry is Al20Ti2La.The particle is formed from the melting directly,prior to other phases,and the nucleus is formed from icosahedrons composed with twenty tetrahedrons.Twin crystal structure plays an important role in the nucleation stage.

  13. New insights in Microbial Fuel Cells: novel solid phase anolyte

    Tommasi, Tonia; Salvador, Gian Paolo; Quaglio, Marzia


    For the development of long lasting portable microbial fuel cells (MFCs) new strategies are necessary to overcome critical issues such as hydraulic pump system and the biochemical substrate retrieval overtime to sustain bacteria metabolism. The present work proposes the use of a synthetic solid anolyte (SSA), constituted by agar, carbonaceous and nitrogen sources dissolved into diluted seawater. Results of a month-test showed the potential of the new SSA-MFC as a long lasting low energy consuming system.

  14. Solid-liquid phase diagram of disubstituted benzene systems

    黑恩成; 刘国杰


    The cooling curves of different compositions of the systems of ortho-chlorotoluene/para-chlorotoluene and ortho-nitrochlorobenzene/para-nitrochlorobenzene are carefully determined by the thermal analysis method. The crystals obtained are also tested. The conclusion that both systems are of simple eutectic diagram but not the solid solution diagram with a minimum melting point is confirmed. The characteristics of the diagram are explained according to the physical and thermodynarmc properties of the components.

  15. Phase transition of solid bismuth under high pressure

    Chen, Hai-Yan; Xiang, Shi-Kai; Yan, Xiao-Zhen; Zheng, Li-Rong; Zhang, Yi; Liu, Sheng-Gang; Bi, Yan


    As a widely used pressure calibrator, the structural phase transitions of bismuth from phase I, to phase II, to phase III, and then to phase V with increasing pressure at 300 K have been widely confirmed. However, there are different structural versions for phase III, most of which are determined by x-ray diffraction (XRD) technology. Using x-ray absorption fine structure (XAFS) measurements combined with ab initio calculations, we show that the proposed incommensurate composite structure of bismuth of the three configurations is the best option. An abnormal continuous increase of the nearest-neighbor distance of phase III with elevated pressure is also observed. The electronic structure transformation from semimetal to metal is responsible for the complex behavior of structure transformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904133, 11304294, 11274281, 11404006, and U1230201), the Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0101004, 2013B0401062, and 2012A0101001), the Research Foundation of the Laboratory of Shock Wave and Detonation, China (Grant No. 9140C670201140C67282).

  16. Effect of shear stress in ferroelectric solid solutions with coexisting phases

    Lu, Xiaoyan; Zhang, Hangbo; Zheng, Limei; Cao, Wenwu


    One common feature of ferroelectric solid solutions with large piezoelectricity is the coexistence of two or more phases. Due to the strain mismatch among coexisting phases, adaptive structures near the interfaces or domain walls develop to maintain the atomic coherency. Shear stresses commonly exist, especially when the domain size is small. The effect of shear stresses on phase morphology in Pb(Zr1-xTix)O3 solid solutions with compositions within the morphotropic phase boundary region was studied within the framework of Landau phenomenological theory. Our results show that the coexisting rhombohedral (R) and tetragonal (T) phases can be modified to form stable or metastable R-like and/or T-like monoclinic phases under shear stresses. Large stresses may also induce first order or second order phase transitions.

  17. Temperature and phase dependence of positron lifetimes in solid cyclohexane

    Eldrup, Morten Mostgaard


    The temperature dependence of position lifetimes in both the brittle and plastic phases of cyclohaxane has been examined. Long-lived components in both phases are associated with the formation of positronium (Ps). Two long lifetimes attributable to ortho-Ps are resolvable in the plastic phase....... The longer of these (≈ 2.5 ns), which is temperature dependent, is ascribed to ortho-Ps trapped at vacancies. The shorter lifetime (≈ 0.9 ns), shows little temperature dependence. In contrast to most other plastic crystals, no sigmoidal behaviour of the average ortho-Ps lifetime is observed. A possibility...

  18. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Jean-Marc Joubert


    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  19. Solid-liquid phase equilibria of the Gaussian core model fluid.

    Mausbach, Peter; Ahmed, Alauddin; Sadus, Richard J


    The solid-liquid phase equilibria of the Gaussian core model are determined using the GWTS [J. Ge, G.-W. Wu, B. D. Todd, and R. J. Sadus, J. Chem. Phys. 119, 11017 (2003)] algorithm, which combines equilibrium and nonequilibrium molecular dynamics simulations. This is the first reported use of the GWTS algorithm for a fluid system displaying a reentrant melting scenario. Using the GWTS algorithm, the phase envelope of the Gaussian core model can be calculated more precisely than previously possible. The results for the low-density and the high-density (reentrant melting) sides of the solid state are in good agreement with those obtained by Monte Carlo simulations in conjunction with calculations of the solid free energies. The common point on the Gaussian core envelope, where equal-density solid and liquid phases are in coexistence, could be determined with high precision.

  20. Atomistic simulation of defect structure in ternary intermetallics

    Jones, C.C.; Ternes, J.K.; Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering


    Interatomic potentials of the Embedded Atom type were used to study defect structure in ternary intermetallics. Interatomic potentials with appropriate inner consistency were developed for the modeling of ternary systems. Alloys were considered in the Nb-Al-Ti and in the Ni-Al-Ti systems. The stability of ternary phases in these systems was studied, particularly the B2 phase in Nb rich alloys of the Nb-Al-Ti system. The effects of increasing Ti additions in these alloys were studied, as well as the APB energies in these ternary alloys.

  1. Production of nanograined intermetallics using high-pressure torsion

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)


    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  2. Production of nanograined intermetallics using high-pressure torsion

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji, E-mail: [Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka (Japan)


    Formation of intermetallics is generally feasible at high temperatures when the lattice diffusion is fast enough to form the ordered phases. This study shows that nanograined intermetallics are formed at a low temperature as 573 K in Al- 25 mol% Ni, Al- 50 mol.% Ni and Al- 50 mol% Ti powder mixtures through powder consolidation using high-pressure torsion (HPT). For the three compositions, the hardness gradually increases with straining but saturates to the levels as high as 550-920 Hv. In addition to the high hardness, the TiAl material exhibits high yield strength as {approx}3 GPa with good ductility as {approx}23%, when they are examined by micropillar compression tests. X-ray diffraction analysis and high-resolution transmission electron microscopy reveal that the significant increase in hardness and strength is due to the formation of nanograined intermetallics such as Al{sub 3}Ni, Al{sub 3}Ni{sub 2}, TiAl{sub 3}, TiAl{sub 2} and TiAl with average grain sizes of 20-40 nm (author)

  3. Hydrogen interaction with intermetallic compounds and alloys at high pressure

    Mitrokhin, S., E-mail:; Zotov, T.; Movlaev, E.; Verbetsky, V.


    Highlights: •New hydrides of alloys previously considered as nonhydride-forming were obtained. •New phase transitions of hydrides at high pressure were found. •New materials for metal-hydride compressors were identified. -- Abstract: The paper presents a review of the recent work done in MSU on intermetallic hydrides with high dissociation pressure. Hydrogen sorption properties of a large variety of AB{sub 5}, AB{sub 2} and BCC intermetallic compounds and alloys were studied at pressures up to 3000 atm. Several new intermetallic hydrides with potential application in high-capacity hydrogen storage devices have been identified for the first time and fully characterised using a gas-volumetric analytical technique in a unique high-pressure apparatus. Basing on the experimental and literature results the relationships between hydrogen absorption capacity, thermodynamic parameters of interaction and composition of alloys were established. Obtained results provide a good perspective for practical application of the studied hydrides especially in metal-hydride compressors.

  4. Study of solid solution strengthening of alloying element with phase structure factors


    Using the empirical electron theory of solids and molecules (EET), the phase structure factors, nA and nB, of the carbon-containing structural units with mass fraction of carbon (wC) below 0.8% and the mono-alloy structural units with wC at 0.2% in austenite and martensite are calculated. The solid solution strengthening brought by C-containing interstitial solid solution and alloy-substitutional solid solution in γ-Fe and α-Fe is discussed at electron structural level. The coefficient (s) of solid solution strengthening is advanced according to the bonding force between atoms. The study shows that when the criterion is applied to the carbonaceous or alloying element-containing solid solution the results of calculation will coincide with the experimental result very well.

  5. Determination of Roxarsone in feeds using solid phase extraction and liquid chromatography with ultraviolet detection.

    Sapp, R E; Davidson, S


    A method is presented for detection and quantitation of Roxarsone in poultry feed by liquid chromatography. The drug is extracted by phosphate buffer and determined by solid phase extraction and reversed-phase liquid chromatography. Recoveries of the sample spikes and fortified field samples agree closely with those obtained by the standard spectrophotometric method.


    TANG Xuelin; QIAN Zhongdong; WU Yulin


    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  7. Traveling waves for models of phase transitions of solids driven by configurational forces

    Kawashima, Shuichi


    This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transformations of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models are recently proposed by Alber and Zhu. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transformations in elastic solids.

  8. Density-functional theory of a lattice-gas model with vapour, liquid, and solid phases

    Prestipino, S.; Giaquinta, P. V.


    We use the classical version of the density-functional theory in the weighted-density approximation to build up the entire phase diagram and the interface structure of a two-dimensional lattice-gas model which is known, from previous studies, to possess three stable phases -- solid, liquid, and vapour. Following the common practice, the attractive part of the potential is treated in a mean-field-like fashion, although with different prescriptions for the solid and the fluid phases. It turns o...

  9. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)


    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  10. Detecting Lesch-Nyhan syndrome by solid phase primer extension

    Shumaker, J.M.; Caskey, C.T. [Baylor College of Medicine, Houston, TX (United States); Metspalu, A.


    A mutation detection method based upon the wild type human HPRT sequence is presented for identification of Lesch Nyhan syndrome. The technique consists of performing a biotinlyated PCR amplification of the region of interest, followed by isolation and purification of single stranded template using magnetic separation. Allele-specific primers are annealed adjacent to the potential mutation site on the template. A terminal fluorescent deoxynucleotide addition is performed with a DNA template-dependent polymerase to distinguish between the mutant and wild-type sequence. The products are purified from unincorporated ddNTPs, eluted and finally analyzed on an ABI 373 to identify the mutation. The length of an extension primer is used as a position signature for mutations. The fidelity of nucleotide incorporation provides an excellent signal-to-noise ratio for the detection of nine HPRT mutations within eight cell lines. This method should detect all types of mutations except for repeated sequences that are longer than the primers. Moreover, the method is being extended to a solid support assay, whereby the extension primers are attached to a two-dimensional glass surface. Following extension, the solid support is analyzed for radioactive incorporation. We have shown the sequence determination of a five base region of a wild-type sequence and two different HPRT mutations. As more dense oligonucleotide arrays are produced, this method could be extended to sequence the complete coding region of HPRT.

  11. Pentaerythrityltetramine scaffolds for solid-phase combinatorial chemistry.

    Virta, Pasi; Leppänen, Marika; Lönnberg, Harri


    Straightforward synthesis for two pentaerythrityltetramine precursors, 2,2-bis(azidomethyl)propane-1,3-diamine (1) and 2-[N-(allyloxycarbonyl)aminomethyl]-2-azidomethylpropane-1,3-diamine (2), has been described. Both propane-1,3-diamines have been attached by reductive amination to a solid-supported backbone amide linker derived from 4-(4-formyl-3,5-dimethoxyphenoxy)butyric acid. The presence of the two methoxy substituents on the linker is essential to avoid cross-linking between two linkers. The remaining free primary amino group of the propane-1,3-diamine moiety may then be selectively acylated with an appropriately protected amino acid using conventional N,N-dicyclohexylcarbodiimide/1-hydroxybenzotriazole (DCC/HOBt) activation without any interference by the secondary amino function. The latter group may be subsequently acylated by an anhydride method. Sequential reduction of the azido group and removal of the allyloxycarbonyl protection from 2 allow further coupling of two different amino acids, and hence, this handle may be utilized in construction of branched structures containing four different amino acids or peptides. Solid-supported 1 may, in turn, be used for the synthesis of similar constructs containing two identical branches. It is worth noting that no acid-labile protecting groups are required in this approach, and hence, this dimension may be saved for the cleavage of the linker. The applicability of the scaffolds to library synthesis has been demonstrated by preparation of 11 pentaerythrityl-branched tetra- and octapeptides.

  12. Stability of phases in (Ba, Gd)MnO3 solid solution system

    Migaku Kobayashi; Hidenori Tamura; Hiromi Nakano; Hirohisa Satoh; Naoki Kamegashira


    The existing phases in BaxGd1-xMnO3 solid solution system (0≦x≦1) were studied by analyzing the detailed crystal structure of each composition from the results of the Rietveld method using powder X-ray diffraction data. For a small substitution of Ba for Gd (0≦x<0.1), the orthorhombic phase with a perovskite type structure (Pnma space group) was stably formed and this fact was supported by the electron diffraction data. There existed an intermediate phase of Ba0.33Gd0.67MnO3, which was characterized as the tetragonal phase with perovskite structure. The composition range of this phase was narrow and almost line compound. Between the regions of these phases, there existed two-phase region. There was also a two-phase region between the intermediate tetragonal phase and BaMnO3. Measurement of electrical conductivities of these orthorhombic solid solutions and tetragonal phases showed semiconducting behaviors for both phases and the existence of the phase transition at high temperature for the orthorhombic phase. The transition temperature decreased as the Ba content increased.

  13. Crystalline-to-plastic phase transitions in molecularly thin n-dotriacontane films adsorbed on solid surfaces

    Cisternas, Edgardo; Corrales, T. P.; del Campo, V.;


    Crystalline-to-rotator phase transitions have been widely studied in bulk hydrocarbons, in particular in normal alkanes. But few studies of these transitions deal with molecularly thin films of pure n-alkanes on solid substrates. In this work, we were able to grow dotriacontane (n-C32H66) films...... identify with a solid-solid phase transition. At higher coverages, we observed additional steps in the ellipsometric signal that we identify with a solid-solid phase transition in multilayer islands (similar to 333 K) and with the transition to the rotator phase in bulk crystallites (similar to 337 K...

  14. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids


    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  15. Two-phase anaerobic digestion of vegetable market waste fraction of municipal solid waste and development of improved technology for phase separation in two-phase reactor.

    Majhi, Bijoy Kumar; Jash, Tushar


    Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.

  16. A review on solid phase extraction of actinides and lanthanides with amide based extractants.

    Ansari, Seraj A; Mohapatra, Prasanta K


    Solid phase extraction is gaining attention from separation scientists due to its high chromatographic utility. Though both grafted and impregnated forms of solid phase extraction resins are popular, the later is easy to make by impregnating a given organic extractant on to an inert solid support. Solid phase extraction on an impregnated support, also known as extraction chromatography, combines the advantages of liquid-liquid extraction and the ion exchange chromatography methods. On the flip side, the impregnated extraction chromatographic resins are less stable against leaching out of the organic extractant from the pores of the support material. Grafted resins, on the other hand, have a higher stability, which allows their prolong use. The goal of this article is a brief literature review on reported actinide and lanthanide separation methods based on solid phase extractants of both the types, i.e., (i) ligand impregnation on the solid support or (ii) ligand functionalized polymers (chemically bonded resins). Though the literature survey reveals an enormous volume of studies on the extraction chromatographic separation of actinides and lanthanides using several extractants, the focus of the present article is limited to the work carried out with amide based ligands, viz. monoamides, diamides and diglycolamides. The emphasis will be on reported applied experimental results rather than on data pertaining fundamental metal complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. AA6082 to DX56-Steel Laser Brazing: Process Parameter-Intermetallic Formation Correlation

    Narsimhachary, D.; Pal, S.; Shariff, S. M.; Padmanabham, G.; Basu, A.


    In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.

  18. Positronium in solid phases of n-alkane binary mixtures

    Zgardzińska, B.; Goworek, T.


    Highlights: • Rotator phase in even alkanes C{sub n}H{sub 2n+2} with n ⩽ 20 appears in mixed samples only. • Interlamellar gap width is the same for shorter chain alkane concentration x and 1 − x. • Excess electron trapping diminishes with broadening of alkane chain distribution Δn. - Abstract: Binary mixtures of even-numbered normal alkanes C{sub n}H{sub 2n+2} and C{sub n+2}H{sub 2n+6} with n ⩽ 18 were investigated by positron annihilation spectroscopy. Formation of the rotator phase was observed in mixed structures, while no such a phase in neat alkanes in this range of n was found. Phase diagrams for n = 18 and n = 16 are very similar to the diagrams for binary mixtures of odd-numbered alkanes. The effect of positronium formation with trapped excess electrons weakens with decreasing n, at low n values the time constant of Ps rise contains the component much shorter than 1 h.

  19. All rights reserved Development of Headspace Solid-Phase ...


    Pesticide Residues in Fruit and Vegetable Samples using OFAT Design. *. 1,2. LUKMAN BOLA ... phase microextraction parameters (fiber coating type, extraction temperature and time, pH, salt addition ... production of food (Bakırcı, et al. 2014 ...

  20. SANS study of phase separation in solid {sup 3}He-{sup 4}He

    Koster, J.P.; Nagler, S.E.; Adams, E.D. [Florida Univ., Gainesville, FL (United States). Dept. of Physics; Wignall, G.D. [Oak Ridge National Lab., TN (United States). Solid State Div.


    Small angle neutron scattering has been used to study phase separation in a quantum alloy, solid {sup 3}He{sub x}-{sup 4}He{sub 1{minus}x}. The onset of phase separation is marked by a dramatic increase in the measured scattering. A simple interpretation of the results suggests that the late-stage phase separation kinetics are dominated by an increase in the concentration of {sup 3}He atoms in preexisting precipitate regions.

  1. Dilatometric technique for evaluation of the kinetics of solid-state transformation of maraging steel

    Viswanathan, U. K.; Kutty, T. R. G.; Ganguly, C.


    Solid-state transformation kinetics of a 350 grade commercial maraging steel were investigated using a nonisothermal dilatometric technique. Two solid-state reactions—namely, precipitation of intermetallic phases from supersaturated martensite and reversion of martensite to austenite—were identified. Determination was made of the temperatures at which the rates of these reactions reached a maximum at different heating rates. The kinetics of the individual reactions in terms of activation energy were analyzed by simplified procedures based on the Kissinger equation. An estimated activation energy of 145 ± 4 kJ/mol for the precipitation of intermetallic phases was in good agreement with reported results based on the isothermal hardness measurement technique. Martensite to austenite reversion was associated with an activation energy of 224 ± 4 kJ/mol, which is very close to the activation energy for diffusion of substitutional elements in ferrite. Results were supplemented with microstructural analysis.

  2. Thermoelastic properties of solid phases: C++ object oriented library “SolidEOS”

    Churakov, Sergey V.


    A new object-oriented C++ library (SolidEOS) for calculating the thermoelastic properties of solids is presented. The implementation is based on the Mie-Grüneisen-Debye equation of state (EOS) augmented by lowest order correction for anharmonicity. Several commonly used static EOS like Birch-Murnaghan and Vinet models are available. Although some widely used approximation for the Debye-Grüneisen parameter and static EOS are implemented, the final behaviour of the EOS can be easily modified by overloading predefined virtual functions. The article provides a basic physical background of the modern theory of high-pressure EOS. The detailed documentation of the class hierarchy is summarized in the appendix, which accompanies the source. Several examples of practical use are given in the appendix as well. The library is appropriate for applications in geophysics, petrology, material science or any other field where thermodynamic and elastic properties of solids are relevant. The source code is available from the Computers & Geoscience software archive.

  3. Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point

    Lu, Xiaoyan, E-mail:, E-mail:; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)


    Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.

  4. Optimizing the solid-phase immunofiltration assay. A rapid alternative to immunoassays.

    IJsselmuiden, O E; Herbrink, P; Meddens, M J; Tank, B; Stolz, E; Van Eijk, R V


    The technical variables of the solid-phase immunofiltration assay (SPIA) for the detection of antibodies bound to antigens on a solid-phase filter have been investigated. The binding to solid-phase filters of 125I-labelled axial filament proteins derived from Treponema phagedenis and the optimal conditions for blocking non-specific protein binding were analysed. Axial filament was applied to nitrocellulose, Hybond Nylon and Zeta Probe. After extensive rinsing, the highest amount (68%) of axial filament was observed bound to Zeta Probe. However, blocking non-specific protein binding by pre-wetting the filter with rinsing buffer containing 0.5% Tween 20, prevented the binding of protein to the filter only when nitrocellulose was used as solid phase. Tween 20 (0.5%) in the rinsing and incubation solutions was found to be necessary for the reduction of non-specific binding of contaminants in turbid sera. However, the use of such solutions resulted in a substantial leakage of antigen (47%) during rinsing procedures. Binding of antigen-specific antibody was analysed using 125I-labelled protein A. The maximal possible binding of the antibody occurred within 5 min when the antibody solution was filtered. For optimal binding of 125I-labelled protein A an incubation time of 1 h was needed. It is suggested that solid-phase immunofiltration may provide a rapid alternative for radioimmunoassays or enzyme immunoassays for the detection of specific antibodies.

  5. Determination of melamine in aquaculture feed samples based on molecularly imprinted solid-phase extraction.

    Lian, Ziru; Liang, Zhenlin; Wang, Jiangtao


    This research highlights the application of highly efficient molecularly imprinted solid-phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine-imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross-linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid-phase extraction sorbents for the selective cleanup of melamine. An off-line molecularly imprinted solid-phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high-performance liquid chromatography analysis. Optimum molecularly imprinted solid-phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6-96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid-phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre-treatment of melamine in aquaculture feed samples.

  6. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences.

    Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L


    An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  7. The synthesis and properties of the phases obtained by solid-solid reactions

    Blonska-Tabero A.


    Full Text Available The presented work encompasses the subject of the studies and the results obtained over the last years by the research workers of the Department of Inorganic Chemistry. They include mainly the studies on the reactivity of metal oxides, searching for new phases in binary and ternary systems of metal oxides as well as describing phase relations establishing in such systems. They also encompass works on the extensive characteristics of physico-chemical properties of the newly obtained compounds.

  8. Al-MoSi2 Composite Materials: Analysis of Microstructure, Sliding Wear, Solid Particle Erosion, and Aqueous Corrosion

    Gousia, V.; Tsioukis, A.; Lekatou, A.; Karantzalis, A. E.


    In this effort, AMCs reinforced with new intermetallic phases, were produced through casting and compared as far as their microstructure, sliding wear, solid particle erosion, and aqueous corrosion response. Casting was selected as a production method based on the concept: (a) ease-to-handle and low cost production route and (b) optimum homogeneity of the reinforcing phase distribution. The MoSi2 phase was produced through vacuum arc melting and the resulting drops were milled for 30 h to produce fine powder, the characteristics of which were ascertained through SEM-EDS and XRD analysis. MoSi2 was used as precursor source for the final reinforcing phase. The powder material was incorporated in molten Al1050 alloy to additions of 2, 5 and 10 vol.% respectively. Extensive reactivity between the molten Al and the MoSi2 particles was observed, leading to the formation of new reinforcing phases mainly of the Al-Mo system. In all cases, a uniform particle distribution was observed, mainly characterized by isolated intermetallic phases and few intermetallic phase clusters. Sliding wear showed a beneficial action of the reinforcing phase on the wear of the composites. Surface oxidation, plastic deformation, crack formation, and debris abrasive action were the main degradation features. The results of solid particle erosion showed that the mechanism is different as the impact angle and the vol.% change. Regarding the corrosion, the analysis revealed localized corrosion effects. The composite behavior was not altered significantly compared to that of the monolithic matrix.

  9. Laser processing issues of nanosized intermetallic Fe-Sn and metallic Sn particles

    Alexandrescu, R., E-mail: [National Institute for Lasers, Plasma and Radiation Physics Bucharest, POB MG-36, 077125 (Romania); Morjan, I.; Dumitrache, F.; Birjega, R.; Fleaca, C.; Morjan, Iuliana; Scarisoreanu, M.; Luculescu, C.R.; Dutu, E. [National Institute for Lasers, Plasma and Radiation Physics Bucharest, POB MG-36, 077125 (Romania); Kuncser, V.; Filoti, G. [National Institute of Materials Physics, POB MG-7, 077125 Bucharest-Magurele (Romania); Vasile, E. [Metav R and D, Rosetti 31, Bucharest (Romania); Ciupina, V. [Ovidius University of Constanta, Bd. Mamaia 124, Constanta (Romania)


    Highlights: Black-Right-Pointing-Pointer Intermetallic Fe-Sn and metallic Sn nanoparticles synthesized by laser pyrolysis. Black-Right-Pointing-Pointer Fe(CO){sub 5} and Sn(CH{sub 3}){sub 4} were used as precursors. Black-Right-Pointing-Pointer FeSn{sub 2}, Sn and Fe{sub 3}SnC phases were identified by XRD. Black-Right-Pointing-Pointer Complex core-shell structural characteristics were found by HRTEM analysis. Black-Right-Pointing-Pointer Higher magnetization was found in samples with increased Fe/Sn atomic ratio. - Abstract: Intermetallic Fe-Sn and nanocrystalline metallic Sn nanoparticles have been successfully synthesized from organic precursors using the laser pyrolysis technique with ethylene as sensitizer. Nano-structured Sn (single phase) was prepared by the pyrolysis of Sn(CH{sub 3}){sub 4} (TMT) vapors. Controlled Fe/Sn atomic ratios, ranging from 0.69 to 1.64 were obtained for the prepared Fe-Sn nanopowders by the control of Fe(CO){sub 5} and TMT flows, respectively. XRD studies evidence three main phases: the tetragonal metallic Sn phase and the intermetallic FeSn{sub 2} phase and, to a much lesser extent, the cubic ternary carbide Fe{sub 3}SnC. Complex core-shell structural characteristics were found by HRTEM analysis. More complete information about the Fe phase distributions in the new intermetallic Fe-Sn nanomaterial is provided by temperature dependent {sup 57}Fe Moessbauer spectroscopy.

  10. Studies on solid phase synthesis,characterization and fluorescent property of the new rare earth complexes

    Shi, Jianwei; Xiaoxu TENG; Wang, Linling; Long, Rong


    Rare earth-β-diketone ligand complex luminescent material has stable chemical properties and excellent luminous property. Using europium oxide and (γ-NTA) as raw materials, novel rare earth-β-dione complexes are synthesized by solid state coordination chemistry. The synthesis temperature and milling time are discussed for optimization. Experimental results show that the suitable reaction situation is at 50 ℃ and 20 h for solid-phase synthesis. The compositions and structures of the complexes...

  11. Solid solution, phase separation, and cathodoluminescence of GaP-ZnS nanostructures.

    Liu, Baodan; Bando, Yoshio; Dierre, Benjamin; Sekiguchi, Takashi; Golberg, Dmitri; Jiang, Xin


    Quaternary solid-solution nanowires made of GaP and ZnS have been synthesized through well-designed synthetic routines. The as-synthesized GaP-ZnS solid-solution nanowires exhibit decent crystallinity with the GaP phase as the host, while a large amount of twin structural defects are observed in ZnS-rich nanowires. Cathodoluminescence studies showed that GaP-rich solid-solution nanowires have a strong visible emission centered at 600 nm and the ZnS-rich solid-solution nanowires exhibited a weak emission peak in the UV range and a broad band in the range 400-600 nm. The formation mechanism, processes, and optical emissions of GaP-ZnS solid-solution nanowires were discussed in detail.

  12. The solid-liquid phase diagrams of binary mixtures of consecutive, even saturated fatty acids.

    Costa, Mariana C; Sardo, Mariana; Rolemberg, Marlus P; Coutinho, João A P; Meirelles, Antonio J A; Ribeiro-Claro, Paulo; Krähenbühl, M A


    For the first time, the solid-liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C(8:0))+capric acid (C(10:0)), capric acid (C(10:0))+lauric acid (C(12:0)), lauric acid (C(12:0))+myristic acid (C(14:0)), myristic acid (C(14:0))+palmitic acid (C(16:0)) and palmitic acid (C(16:0))+stearic acid (C(18:0)). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT-Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.

  13. Characterization of rhamnolipids by liquid chromatography/mass spectrometry after solid-phase extraction.

    Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko


    Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.

  14. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    唐学林; 徐宇; 吴玉林


    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  15. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J


    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  16. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.


    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  17. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  18. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen


    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  19. Extraction of Pb2+ using Silica from Rice Husks Ash (RHA – Chitosan as Solid Phase

    Hanandayu Widwiastuti


    Full Text Available The existence of lead (Pb compounds in waters can be caused of waste pollution from industrial activities such as dye and battery industries. Lead has toxic characteristic and is able to causing deseases. The levels of Cr(VI can be decreased by methods such as electroplating, oxidation, reduction, and membrane separation. But this methods require high cost and produce a lot of waste. Furthermore, those methods cannot determine the small concentration of Pb2+. Therefore, solid phase extraction is used because it’s a simple method and can be used to preconcentrate Pb2+ ion. The aim of this study is to create solid phase from nature material as an alternative method to determine Pb2+ in water samples. The solid phase is silica from rice husks ash (RHA that was modified using chitosan. To achieve that aim, the optimization of silica : chitosan composition was done. The influence of Pb2+ concentration and citric acid concentration was studied to obtain optimum recovery of Pb2+. Interaction between Pb2+ ion and solid phase silica – chitosan could be estimated based on the result. The result showed the optimum composition of silica : chitosan is 65% silica : 35% chitosan with Cation Exchange Capacity (CEC 0.00455 mek/g. Mass Adsorbed Pb2+for 1 g silica : chitosan 65% is 9.715 mg/g. Optimum recovery of Pb2+ on solid phase extraction is reached at concentration of Pb2+ 10 ppm and citric acid concentration 0.05 M (88.25 % and 81.18 %. This result showed that solid phase extraction using silica – chitosan can be used as an alternative method to determine Pb2+ in water.

  20. A photolabile linker for the solid-phase synthesis of peptide hydrazides and heterocycles.

    Qvortrup, Katrine; Komnatnyy, Vitaly V; Nielsen, Thomas E


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino acids, including those with side-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis.

  1. Development of orthogonally protected hypusine for solid-phase peptide synthesis.

    Song, Aimin; Tom, Jeffrey; Yu, Zhiyong; Pham, Victoria; Tan, Dajin; Zhang, Dengxiong; Fang, Guoyong; Yu, Tao; Deshayes, Kurt


    An orthogonally protected hypusine reagent was developed for solid-phase synthesis of hypusinated peptides using the Fmoc/t-Bu protection strategy. The reagent was synthesized in an overall yield of 27% after seven steps from Cbz-Lys-OBzl and (R)-3-hydroxypyrrolidin-2-one. The side-chain protecting groups (Boc and t-Bu) are fully compatible with standard Fmoc chemistry and can be readily removed during the peptide cleavage step. The utility of the reagent was demonstrated by solid-phase synthesis of hypusinated peptides.

  2. Synthesis of indium tin oxide powder by solid-phase reaction with microwave heating

    Fukui, Kunihiro; Kanayama, Keiji; Katoh, Manabu; Yamamoto, Tetsuya; Yoshida, Hideto


    Indium tin oxide (ITO) powder was synthesized from indium oxide and tin oxide powders by a solid-phase method using microwave heating and conventional heating methods. Microwave heating could reduce the treatment time necessary for the completion of the solid-phase reaction by 1/30. This decrease was attributed to an increase in the diffusion rate of Sn at the local heat spot in the indium oxide formed by microwave irradiation. However, microwave heating also decreased the amount of ITO produ...

  3. Detection of ibuprofen and ciprofloxacin by solid-phase extraction and UV/Vis spectroscopy

    Zhou, Zhengwei; Jiang, Jia Qian


    A simple and economic solid-phase extraction coupled with UV/Vis spectrophotometric method is described for the analysis of ibuprofen and ciprofloxacin. Following solid-phase extraction from model wastewater samples containing standard ibuprofen or ciprofloxacin, elutes were analyzed by a UV/Vis spectrophotometer at 225 nm for ibuprofen and 280 nm for ciprofloxacin. The assay was linear for both compounds with good coefficients of correlation. This method shows good recoveries for both compounds with 101.0 ± 9.8% for ibuprofen and 99.4 ± 11.8% ciprofloxacin.

  4. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side-cha......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  5. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando


    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  6. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  7. Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction of herbicides in peanuts.

    Li, Na; Wang, Zhibing; Zhang, Liyuan; Nian, Li; Lei, Lei; Yang, Xiao; Zhang, Hanqi; Yu, Aimin


    Liquid-phase extraction coupled with metal-organic frameworks-based dispersive solid phase extraction was developed and applied to the extraction of pesticides in high fatty matrices. The herbicides were ultrasonically extracted from peanut using ethyl acetate as extraction solvent. The separation of the analytes from a large amount of co-extractive fat was achieved by dispersive solid-phase extraction using MIL-101(Cr) as sorbent. In this step, the analytes were adsorbed on MIL-101(Cr) and the fat remained in bulk. The herbicides were separated and determined by high-performance liquid chromatography. The experimental parameters, including type and volume of extraction solvent, ultrasonication time, volume of hexane and eluting solvent, amount of MIL-101(Cr) and dispersive solid phase extraction time, were optimized. The limits of detection for herbicides range from 0.98 to 1.9 μg/kg. The recoveries of the herbicides are in the range of 89.5-102.7% and relative standard deviations are equal or lower than 7.0%. The proposed method is simple, effective and suitable for treatment of the samples containing high content of fat.

  8. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek


    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees.

  9. Ab Initio Investigation on Structural, Elastic and Electronic Properties of η-Phase Cu4.5Ni1Au0.5Sn5 and Cu5Ni1Sn4.5In0.5 Intermetallic Compounds

    Li, Xuezheng; Ma, Yong; Zhou, Wei; Wu, Ping


    The structural, elastic and electronic properties of quaternary intermetallic compounds η-Cu4.5Ni1Au0.5Sn5 and η-Cu5Ni1Sn4.5In0.5 are investigated by an ab initio method. The calculated heat of formation determines preferential occupancy sites for Ni, Au and In atoms which lead to thermodynamically stable compounds. Variation of lattice constants reveals that the change of atomic bonding has a directional discrepancy in η-Cu4.5Ni1Au0.5Sn5; the polycrystalline moduli obtained from single-crystal elastic stiffness show an increase after both Ni/Au and Ni/In additions. Also, the anisotropy of Young's modulus and shear modulus is significantly weakened in η-Cu4.5Ni1Au0.5Sn5. The density of states and maps of charge density distribution suggest that the atomic bonding in the quaternary intermetallic compounds is strengthened by the addition of Ni and Au but weakened by the addition of In.

  10. Optical manipulation of Berry phase in a solid-state spin qubit

    Yale, Christopher G; Zhou, Brian B; Auer, Adrian; Burkard, Guido; Awschalom, David D


    The phase relation between quantum states represents an essential resource for the storage and processing of quantum information. While quantum phases are commonly controlled dynamically by tuning energetic interactions, utilizing geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase control in solid-state systems rely on microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method based on stimulated Raman adiabatic passage to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy (NV) center in diamond. Using diffraction-limited laser light, we guide the NV center's spin along loops on the Bloch sphere to enclose arbitrary Berry phase and characterize these trajectories through time-resolved state tomography. We investigate the limits of this control due to loss of adiabiaticity and decoherence, as well as its robustness to noise intentionally introduced into t...

  11. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J


    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  12. Electric Current Enhanced Point Defect Mobility in Ni3Ti Intermetallic

    Anselmi-Tamburini, U; Asoka-Kumar, P; Garay, J E; Munir, Z A; Glade, S C


    The effect of the application of a DC current on the annealing of point defects in Ni{sub 3}Ti was investigated by positron annihilation spectroscopy (PAS). An increased rate of point defect annealing is observed under the influence of a current and is attributed to a 24% decrease in the mobility activation energy. The results are interpreted in terms of the electron wind effect and the complex nature of diffusion in ordered intermetallic phases. This work represents the first direct evidence of the role of the current on the mobility of point defects in intermetallic systems.

  13. Modeling of Intermetallic Compounds Growth Between Dissimilar Metals

    Wang, Li; Wang, Yin; Prangnell, Philip; Robson, Joseph


    A model has been developed to predict growth kinetics of the intermetallic phases (IMCs) formed in a reactive diffusion couple between two metals for the case where multiple IMC phases are observed. The model explicitly accounts for the effect of grain boundary diffusion through the IMC layer, and can thus be used to explore the effect of IMC grain size on the thickening of the reaction layer. The model has been applied to the industrially important case of aluminum to magnesium alloy diffusion couples in which several different IMC phases are possible. It is demonstrated that there is a transition from grain boundary-dominated diffusion to lattice-dominated diffusion at a critical grain size, which is different for each IMC phase. The varying contribution of grain boundary diffusion to the overall thickening kinetics with changing grain size helps explain the large scatter in thickening kinetics reported for diffusion couples produced under different conditions.

  14. Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys

    Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)


    Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.

  15. Numerical investigation of confined swirling gas-solid two phase jet


    This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.

  16. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa


    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  17. Numerical investigation of confined swirling gas-solid two phase jet

    金晗辉; 夏钧; 樊建人; 岑可法


    This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.


    S. Manna


    Full Text Available High performance liquid chromatographic determination of organophosphorous compound has been done by reverse phase chromatography in goats. The goats were dying showing the symptoms of organophosphorous poisoning. The viscera and stomach contents sample were received from Project Co-Ordinator, Animal Disease Research Institute, Phulnakhara, Cuttack, Orissa. The analysis of samples by HPLC with UV detector after cleaning up in Solid Phase Extraction (SPE revealed presence of malathion that was later quantified.

  19. The 2D Alternative Binary L-J System: Solid-Liquid Phase Diagram

    ZHANG Zhi; CHEN Li-Rong


    The Lennard-Jones potential is introduced into the Collins model and is generalized to the two-dimensionalalternative binary system. The Gibbs free energy of the binary system is calculated. According to the thermodynamicconditions of solid-liquid equilibrium, the "cigar-type" phase diagram and the phase diagram with a minimum areobtained. The results are quite analogous to the behavior of three-dimensional substances.

  20. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma.

    Hughto, J; Horowitz, C J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K


    The neutron-rich isotope ²²Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of ²²Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semianalytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two-component carbon and oxygen systems. This suggests that small amounts of ²²Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Γ) in our MD simulations compared to the semianalytic model. This difference seems to grow with impurity parameter Q_{imp} and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semianalytic model.

  1. The Solid Phase Curing Time Effect of Asbuton with Texapon Emulsifier at the Optimum Bitumen Content

    Sarwono, D.; Surya D, R.; Setyawan, A.; Djumari


    Buton asphalt (asbuton) could not be utilized optimally in Indonesia. Asbuton utilization rate was still low because the processed product of asbuton still have impracticable form in the term of use and also requiring high processing costs. This research aimed to obtain asphalt products from asbuton practical for be used through the extraction process and not requiring expensive processing cost. This research was done with experimental method in laboratory. The composition of emulsify asbuton were 5/20 grain, premium, texapon, HCl, and aquades. Solid phase was the mixture asbuton 5/20 grain and premium with 3 minutes mixing time. Liquid phase consisted texapon, HCl and aquades. The aging process was done after solid phase mixing process in order to reaction and tie of solid phase mixed become more optimal for high solubility level of asphalt production. Aging variable time were 30, 60, 90, 120, and 150 minutes. Solid and liquid phase was mixed for emulsify asbuton production, then extracted for 25 minutes. Solubility level of asphalt, water level, and asphalt characteristic was tested at extraction result of emulsify asbuton with most optimum ashphal level. The result of analysis tested data asphalt solubility level at extract asbuton resulted 94.77% on 120 minutes aging variable time. Water level test resulted water content reduction on emulsify asbuton more long time on occurring of aging solid phase. Examination of asphalt characteristic at extraction result of emulsify asbuton with optimum asphalt solubility level, obtain specimen that have rigid and strong texture in order that examination result have not sufficient ductility and penetration value.

  2. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K


    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  3. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol

    Sharafutdinov, Irek; Elkjær, Christian Fink; de Carvalho, Hudson Wallace Pereira


    In this work, we present a detailed study of the formation of supported intermetallic Ni–Ga catalysts for CO2 hydrogenation to methanol. The bimetallic phase is formed during a temperature-programmed reduction of the metal nitrates. By utilizing a combination of characterization techniques...... on particle size, which suggests that the reaction is structure sensitive....

  4. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang


    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  5. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Boyuan Huang


    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  6. The Effects of Solid Phase Additives on Sintering Properties of Alumina Bioceramic

    WANG Xin-yu; LI Shi-pu; HE Jian-hua; JIANG Xin; LI Jian-hua


    In order to reduce the sintering temperature and improve the preparing conditions of alumina bioceramics,the Mg-Zr-Y composite solid phase additives were added into high purity Al2O3 micro-powder by chemical coprecipitation method.The powder was shaped under 200MPa cold isostatic pressure,and then the biscuits were sintered at 1600℃ under normal pressure.The sintered alumina materials were tested and the sintering mechanism was discussed.The results show that physical properties of the material were improved comparatively.The Mg-Zr-Y composite solid additives could promote the sintering of alumina bioceramics and the mechanism is solid phase sintering.

  7. Solid-Phase Organic Synthesis and Catalysis: Some Recent Strategies Using Alumina, Silica, and Polyionic Resins

    Basudeb Basu


    Full Text Available Solid-phase organic synthesis (SPOS and catalysis have gained impetus after the seminal discovery of Merrifield’s solid-phase peptide synthesis and also because of wide applicability in combinatorial and high throughput chemistry. A large number of organic, inorganic, or organic-inorganic hybrid materials have been employed as polymeric solid supports to promote or catalyze various organic reactions. This review article provides a concise account on our approaches involving the use of (i alumina or silica, either having doped with metal salts or directly, and (ii polyionic resins to either promote various organic reactions or to immobilize reagents/metal catalysts for subsequent use in hydrogenation and cross-coupling reactions. The reaction parameters, scopes, and limitations, particularly in the context of green chemistry, have been highlighted with pertinent approaches by other groups.

  8. Advances in automatic, manual and microwave-assisted solid-phase peptide synthesis.

    Sabatino, Giuseppina; Papini, Anna M


    Solid-phase strategies speed up the production of both short- and long-sequence peptides compared with solution methodologies. Therefore, solid-phase peptide synthesis (SPPS), proposed by Merrifield in the early 1960s, contributed to the 'Peptide Revolution' in the fields of diagnostics, and drug and vaccine development. Since then, peptide chemistry research has aimed to optimize these synthetic procedures, focusing on areas such as amide bond formation (the coupling step), solid supports and automation. Particular attention was devoted to the environmental impact of SPPS: the requirement for large amounts of organic solvents meant high costs for industrial peptide manufacturing that needed to be reduced. SPPS, alone or in hybrid technologies, has become strategic for the production of peptides as active pharmaceutical ingredients on a commercial scale.

  9. The synthesis and chemical durability of Nd-doped single-phase zirconolite solid solutions

    Cai, Xin; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Huang, Yi


    Nd-doped single-phase zirconolite solid solutions was synthesized by solid-state reaction and following two steps of acid treatment. The phase composition, microstructure, and chemical durability of the zirconolite solid solutions were investigated. About 15 at% Nd was successfully stabilized into the zirconolite. The element mapping images of Ca, Zr, Nd and Ti show that all the elements are almost distributed homogeneously in the zirconolite waste forms. Product Consistency Test (PCT) was conducted under different pH values (pH = 5, 7 and 9) to evaluate the chemical durability of the Nd-doped zirconolite waste forms. The normalized element release rate of Ca (LRCa) in pH = 5 medium is higher than that of pH = 7 and 9, while the LRNd value remains almost unchanged under different pH values. The LRNd value is as low as 10-5 g m-2 d-1 after 42 days.

  10. Soxhlet-assisted matrix solid phase dispersion to extract flavonoids from rape (Brassica campestris) bee pollen.

    Ma, Shuangqin; Tu, Xijuan; Dong, Jiangtao; Long, Peng; Yang, Wenchao; Miao, Xiaoqing; Chen, Wenbin; Wu, Zhenhong


    Soxhlet-assisted matrix solid phase dispersion (SA-MSPD) method was developed to extract flavonoids from rape (Brassica campestris) bee pollen. Extraction parameters including the extraction solvent, the extraction time, and the solid support conditions were investigated and optimized. The best extraction yields were obtained using ethanol as the extraction solvent, silica gel as the solid support with 1:2 samples to solid support ratio, and the extraction time of one hour. Comparing with the conventional solvent extraction and Soxhlet method, our results show that SA-MSPD method is a more effective technique with clean-up ability. In the test of six different samples of rape bee pollen, the extracted content of flavonoids was close to 10mg/g. The present work provided a simple and effective method for extracting flavonoids from rape bee pollen, and it could be applied in the studies of other kinds of bee pollen.

  11. Understanding processing-induced phase transformations in erythromycin-PEG 6000 solid dispersions

    Mirza, Sabiruddin; Heinämäki, Jyrki; Miroshnyk, Inna


    Since the quality and performance of a pharmaceutical solid formulation depend on solid state of the drug and excipients, a thorough investigation of potential processing-induced transformations (PITs) of the ingredients is required. In this study, the physical phenomena taking place during...... formulation of erythromycin (EM) dihydrate solid dispersions with polyethylene glycol (PEG) 6000 by melting were investigated. PITs were monitored in situ using variable temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), and hot-stage microscopy (HSM). Possible...... intermolecular interactions between the drug and polymer in the solid state were further studied by Fourier transform infrared (FTIR) spectroscopy. While in the absence of PEG the dehydration was the only transformation observed, hot-melt processing with the polymer caused the drug to undergo multiple phase...

  12. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo


    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  13. Indirect solid-phase immunosorbent assay for detection of arenavirus antigens and antibodies

    Ivanov, A.P.; Rezapkin, G.V.; Dzagurova, T.K.; Tkachenko, E.A. (Institute of Poliomyelitis anU Viral Encephalities of the U.S.S.R. Academy of Medical Sciences, Moscow)


    Indirect enzyme-linked immunosorbent assay (ELISA) and solid phase radioimmunoassay (SPRIA) using either enti-human or anti-mouse IgG labelled with horseradish peroxidase and /sup 125/I, respectively, were developed for the detection of Junin, Machupo, Tacaribe, Amapari, Tamiami, Lassa and LCM arenaviruses. Both methods allow high sensitivity detection of arenavirus antigens and antibodies.

  14. Solid-phase synthesis of an apoptosis-inducing tetrapeptide mimicking the Smac protein

    Le Quement, Sebastian Thordal; Ishøy, Mette; Petersen, Mette Terp;


    An approach for the solid-phase synthesis of apoptosis-inducing Smac peptidomimetics is presented. Using a Rink linker strategy, tetrapeptides mimicking the N-4-terminal residue of the Smac protein [(N-Me)AVPF sequence] were synthesized on PEGA resin in excellent purities and yields. Following tw...

  15. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))


    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  16. New method for the preparation of solid-phase bound isocyanocarboxylic acids and Ugi reactions therewith

    Henkel, Bernd; Sax, Michael; Dömling, Alexander


    A novel method of synthesizing solid-phase bound isocyanocarboxylic acids is reported. The potassium salts of four different isocyanocarboxylic acids are coupled onto a brominated resin in DMF in good yields. 32 Ugi reactions were performed using these resins and 24 products were obtained in good to

  17. A Discovery-Oriented Approach to Solid-Phase Peptide Synthesis

    Bockman, Matthew R.; Miedema, Christopher J.; Brennan, Brian B.


    In this discovery-oriented laboratory experiment, students use solid-phase synthesis techniques to construct a dipeptide containing an unknown amino acid. Following synthesis and cleavage from the polymeric support, electrospray ionization-mass spectrometry is employed to identify the unknown amino acid that was used in the peptide coupling. This…

  18. Solid Phase Extraction: Applications to the Chromatographic Analysis of Vegetable Oils and Fats

    Panagiotopoulout, P. M.; Tsimidou, M.


    Applications of solid-phase extraction for the isolation of certain lipid classes prior to chromatographic analysis are given. More information was found for sterols and related compounds, polar phenols and contaminants such as polycyclic aromatic hydrocarbons. Detailed analytical protocols are presented and discussed in many cases. (Author) 120 refs.

  19. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)


    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  20. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik


    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  1. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H


    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications.

  2. Solid-phase oligosaccharide synthesis with tris(alkoxy)benzyl amine (BAL) safety-catch anchoring

    Tolborg, Jakob Fjord; Jensen, Knud Jørgen


    A tris(alkoxy)benzylamine (BAL) handle strategy was developed for safety-catch anchoring of D-glucosamine derivatives in solid-phase synthesis of oligosaccharides; the linkage between the BAL handle and the amine proved stable to conc. TFA and Lewis acids, but after N-acylation the amide could...

  3. A Long Chain Alcohol as Support in Solid Phase Organic Synthesis

    Nurlela, Yeni; Minnaard, Adrian J.; Achmad, Sadijah; Wahyuningrum, Deana


    The solid phase synthesis is a method by which organic compound synthesis are performed on a support. With this method, the purification can be carried out easily by simple filtration and washing procedures. Long-chain alcohol (C-100 alcohol) can be used as a support because of its insolubility in o

  4. A Solid Phase Synthesis of Chalcones by Claisen-Schmidt Condensations


    In order to accelerate the development of relatively inexpensive antimalarials that are effective against chloroquine-resistant strains of Plasmodium falclparum, a methodology for the solid phase synthesis of chalcone (l, 3-diphenyl-2-propen-l-one) analogues in reasonably high yields has been developed.

  5. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  6. Microwave-assisted solid-phase Ugi four-component condensations

    Nielsen, John


    An 18-member library was constructed from 2 isocyanides, 3 aldehydes and 3 carboxylic acids via microwave-assisted solid-phase Ugi reactions on TentaGel S RAM. Products of high purity were obtained in moderate to excellent yields after reaction times of 5 minutes or less (irradiation at 60W). (C...

  7. Determination of lidocaine in plasma by direct solid-phase microextraction combined with gas chromatography

    Koster, EHM; Wemes, C; Morsink, JB; de Jong, GJ


    Direct-immersion solid-phase microextraction (SPME) has been used to extract the local anesthetic lidocaine from human plasma. A simplified model shows the relationship between the total amount of drug in plasma and the amount of drug extracted. The model takes into account that the drug participate

  8. Side-chain-anchored N(alpha)-Fmoc-Tyr-OPfp for bidirectional solid-phase synthesis

    Olsen, Christian A; Jørgensen, Malene; Hansen, Steen H;


    [reaction: see text] A mild resin-immobilization strategy employing a readily prepared trityl bromide resin for anchoring building blocks via a phenol group has been developed. With N(alpha)-Fmoc-Tyr-OPfp as a starter building block, it was possible to prepare asymmetrically substituted hybrids o...... of spider- and wasp-type polyamine toxins using solid-phase peptide synthesis conditions....

  9. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction

    Zielinska, K.; Leeuwen, van H.P.; Thibault, S.; Town, R.M.


    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the protonate

  10. Solid-phase synthesis of succinylhydroxamate peptides : Functionalized matrix metalloproteinase inhibitors

    Leeuwenburgh, MA; Geurink, PP; Klein, T; Kauffman, HF; van der Marel, GA; Bischoff, R; Overkleeft, HS


    A novel solid-phase synthesis strategy toward succinylhydroxamate peptides, using an appropriately protected hydroxamate building block, is described. Rapid and efficient access is gained to amine-functionalized peptides, which can be decorated with, for instance, a fluorescent label. In addition, w

  11. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins

    Nandurkar, Nitin Subhash; Petersen, Rico; Qvortrup, Katrine


    An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method comprises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA-s...

  12. A Rapid Solid-phase Synthesis to Soluble Oligothiophene Molecular Wires


    A novel method for the preparation of oligothiophene molecular wires is described via a bi-directional solid-phase synthesis. Using an alternating sequence of bromination and Stille coupling reactions, oligomers were obtained up to the heptamer in excellent yield and purity.

  13. Linkers, resins, and general procedures for solid-phase peptide synthesis

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen


    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  14. Total synthesis of human urotension-Ⅱ by microwave-assisted solid phase method


    Human urotension-Ⅱ was synthesized efficiently on Wang resin under microwave irradiation using Fmoc/tBu orthogonal protection strategy. Disulphide bridge was formed on solid phase with the irradiation of microwave, then the whole peptide was cleaved from the resin. The purity of crude peptide cyclized under microwave irradiation was higher than that under room temperature.

  15. Electrocatalytic phenomena in gas phase reactions in solid electrolyte electrochemical cells

    Gellings, P.J.; Koopmans, H.J.A.; Burggraaf, A.J.


    The recent literature on electrocatalysis and electrocatalytic phenomena occurring in gas phase reactions on solid, oxygen conducting electrolytes is reviewed. In this field there are a number of different subjects which are treated separately. These are: the use of electrochemical methods to study

  16. Solid-phase Synthesis of a Novel Kind of Hydroxylated Heterocyclic Ketene Aminals

    Tao PENG; Chu Yi YU; Zhi Tang HUANG


    An efficient solid-phase synthesis method for novel heterocyclic ketene aminals containing a hydroxyl group has been developed. The loading of the substrate on the resin through the hydroxyl group and the protection of the amine by the Schiff base were the key steps in the synthesis.

  17. Fibers coated with molecularly imprinted polymers for solid-phase microextraction

    Koster, E.H M; Crescenzi, C; den Hoedt, W; Ensing, K; de Jong, G.J.


    The simplicity and flexibility of solid-phase microextraction have been combined with the selectivity of molecularly imprinted polymers (MIPs), Silica fibers were coated reproducible with a 75-mum layer of methacrylate polymer either nonimprinted or imprinted with clenbuterol to compare their extrac

  18. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

    Benhabib, K.; Town, R.M.; Leeuwen, van H.P.


    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the

  19. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep


    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  20. Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines

    Le Quement, Sebastian T.; Ishoey, Mette; Petersen, Mette T.;


    -Me)AVPF sequence, peptides incorporating triazoloprolines and biarylalanines were synthesized by means of Cu(I)-catalyzed azide–alkyne cycloaddition and Pd-catalyzed Suzuki cross-coupling reactions. Solid-phase procedures were optimized to high efficiency, thus accessing all products in excellent crude purities...

  1. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders


    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  2. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John


    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  3. Determination of aflatoxins in rice samples by ultrasound-assisted matrix solid-phase dispersion.

    Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Safaei, Mahdi


    This work describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and sample preparation approach for aflatoxins (B1, B2, G1 and G2) and subsequent determination of them by high-performance liquid chromatography-fluorescence detection. A Box-Behnken design in combination with response surface methodology was used to determine the affecting parameters on the extraction procedure. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent was investigated in the optimization study. C18, primary-secondary amine (PSA) and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The obtained optimized values were sample-to-dispersing phase ratio of 1 : 1, 60 mg of PSA, 11 min ultrasonication time, 30°C ultrasonication temperature and 4 mL acetonitrile. Under the optimal conditions, the limits of detection were ranged from 0.09 to 0.14 ng g(-1) and the precisions [relative standard deviation (RSD%)] were <8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 78 to 83% with RSD <10% in all cases. Finally, this method was successfully applied to the extraction of trace amounts of aflatoxins in rice samples. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  4. Experimental Study of the Al-Mg-Sr Phase Diagram at 400°C

    D. Kevorkov


    Full Text Available The Al-Mg-Sr system is experimentally studied at 400°C using EPMA and XRD techniques. It was determined that the intermetallic phases in the Al-Mg-Sr system have a tendency to form extended substitutional solid solutions. Two ternary phases were found in this system. Solubility limits of binary and ternary phases were determined and the phase equilibria among phases were established. The isothermal section of the Al-Mg-Sr system at 400°C has been constructed using results of the phase analysis and experimental literature data.

  5. Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo; Gonzalez, Adonai


    In this work we review and combine two techniques that have been recently published for three-dimensional (3D) fringe projection profilometry and phase unwrapping, namely: co-phased profilometry and 2-steps temporal phase-unwrapping. By combining these two methods we get a more accurate, higher signal-to-noise 3D profilometer for discontinuous industrial objects. In single-camera single-projector (standard) profilometry, the camera and the projector must form an angle between them. The phase-sensitivity of the profilometer depends on this angle, so it cannot be avoided. This angle produces regions with self-occluding shadows and glare from the solid as viewed from the camera's perspective, making impossible the demodulation of the fringe-pattern there. In other words, the phase data is undefined at those shadow regions. As published recently, this limitation can be solved by using several co-phased fringe-projectors and a single camera. These co-phased projectors are positioned at different directions towards the object, and as a consequence most shadows are compensated. In addition to this, most industrial objects are highly discontinuous, which precludes the use of spatial phase-unwrappers. One way to avoid spatial unwrapping is to decrease the phase-sensitivity to a point where the demodulated phase is bounded to one lambda, so the need for phase-unwrapping disappears. By doing this, however, the recovered non-wrapped phase contains too much harmonic distortion and noise. Using our recently proposed two-step temporal phase-unwrapping technique, the high-sensitivity phase is unwrapped using the low-frequency one as initial gross estimation. This two-step unwrapping technique solves the 3D object discontinuities while keeping the accuracy of the high-frequency profilometry data. In scientific research, new art are derived as logical and consistent result of previous efforts in the same direction. Here we present a new 3D-profilometer combining these two recently



    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  7. Phase separation kinetics in amorphous solid dispersions upon exposure to water.

    Purohit, Hitesh S; Taylor, Lynne S


    The purpose of this study was to develop a novel fluorescence technique employing environment-sensitive fluorescent probes to study phase separation kinetics in hydrated matrices of amorphous solid dispersions (ASDs) following storage at high humidity and during dissolution. The initial miscibility of the ASDs was confirmed using infrared (IR) spectroscopy and differential scanning calorimetry (DSC). Fluorescence spectroscopy, as an independent primary technique, was used together with conventional confirmatory techniques including DSC, X-ray diffraction (XRD), fluorescence microscopy, and IR spectroscopy to study phase separation phenomena. By monitoring the emission characteristics of the environment-sensitive fluorescent probes, it was possible to successfully monitor amorphous-amorphous phase separation (AAPS) as a function of time in probucol-poly(vinylpyrrolidone) (PVP) and ritonavir-PVP ASDs after exposure to water. In contrast, a ritonavir-hydroxypropylmethylcellulose acetate succinate (HPMCAS) ASD, did not show AAPS and was used as a control to demonstrate the capability of the newly developed fluorescence method to differentiate systems that showed no phase separation following exposure to water versus those that did. The results from the fluorescence studies were in good agreement with results obtained using various other complementary techniques. Thus, fluorescence spectroscopy can be utilized as a fast and efficient tool to detect and monitor the kinetics of phase transformations in amorphous solid dispersions during hydration and will help provide mechanistic insight into the stability and dissolution behavior of amorphous solid dispersions.

  8. Cluster-based composition rule for Laves phase-related BCC solid solution hydrogen storage alloys

    WANG Qing; CHEN Feng; WU Jiang; QIANG Jianbing; DONG Chuang; ZHANG Yao; XU Fen; SUN Lixian


    A new cluster line approach for the composition rule of Laves phase-related BCC solid solution hydrogen-storage alloys was presented. The cluster line in a ternary phase diagram refers to a straight composition line linking a specific binary cluster to the third element. In the Laves phase-related BCC solid solution alloy system such as Ti-Cr-V, Ti-Cr tends to form binary Cr2Ti Laves phase while Ti-V and Cr-V to form solid solutions. This Laves phase is characterized by a close-packing icosahedral cluster Cr7Ti6. A cluster line Cr7Ti6-V is then constructed in this system. Alloy rods with a diameter of 3 mm of compositions along this line were prepared by copper-mould suction method. The alloy structure is found to vary with the V contents. Furthermore, the P-C-T measurements indicate that the cluster-line (Cr7Ti6)1-xVx alloys have large hydrogen storage capacities.

  9. Chemical effect on diffusion in intermetallic compounds

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  10. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    Momeni, Kasra; Levitas, Valery I


    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs.

  11. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    Shao, Sihong


    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  12. Optical manipulation of the Berry phase in a solid-state spin qubit

    Yale, Christopher G.; Heremans, F. Joseph; Zhou, Brian B.; Auer, Adrian; Burkard, Guido; Awschalom, David D.


    Phase relations between quantum states represent a resource for storing and processing quantum information. Although quantum phases are commonly controlled dynamically by tuning energetic interactions, the use of geometric phases that accumulate during cyclic evolution may offer superior robustness to noise. To date, demonstrations of geometric phase in solid-state systems employ microwave fields that have limited spatial resolution. Here, we demonstrate an all-optical method to accumulate a geometric phase, the Berry phase, in an individual nitrogen-vacancy centre in diamond. Using stimulated Raman adiabatic passage controlled by diffraction-limited laser light, we loop the nitrogen-vacancy centre's spin around the Bloch sphere to enclose an arbitrary Berry phase. We investigate the limits of this control due to the loss of adiabaticity and decoherence, as well as its robustness to noise introduced into the experimental control parameters. These techniques set the foundation for optical geometric manipulation in photonic networks of solid-state qubits linked and controlled by light.

  13. A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong


    This paper describes a lab-on-a-chip device for fast AIV screening by integrating DNA microarray-based solid-phase PCR on a microfluidic chip.......This paper describes a lab-on-a-chip device for fast AIV screening by integrating DNA microarray-based solid-phase PCR on a microfluidic chip....

  14. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    Qvortrup, Katrine; Nielsen, Thomas Eiland


    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4-subs...

  15. Direct MD simulation of liquid-solid phase equilibria for three-component plasma

    Hughto, J; Schneider, A S; Medin, Zach; Cumming, Andrew; Berry, D K


    The neutron rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semi analytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Gamma) in our MD simulations compared to the semi analytic ...

  16. Development of intermetallic coatings for fusion power applications

    Park, J.H.; Domenico, T.; Dragel, G.; Clark, R.


    In the design of liquid-metal cooling systems, corrosion resistance of structural materials and magnetohydrodynamic (MHD) force and its subsequent influence on thermal hydraulics and corrosion are major concerns. The objective of this study is to develop stable corrosion-resistant electrical insulator coatings at the liquid-metal/structural-material interface, with emphasis on electrically insulating coatings that prevent adverse MHD-generated currents from passing through the structural walls. Vanadium and V-base alloys are potential materials for structural applications in a fusion reactor. Insulator coatings inside the tubing are required when the system is cooled by liquid metals. Various intermetallic films were produced on V, V-t, and V-20 Ti, V-5Cr-t and V-15Cr-t, and Ti, and Types 304 and 316 stainless steel. The intermetallic layers were developed by exposure of the materials to liquid lithium of 3--5 at.% and containing dissolved metallic solutes at temperatures of 416--880{degrees}C. Subsequently, electrical insulator coatings were produced by reaction of the reactive layers with dissolved nitrogen in liquid lithium or by air oxidation under controlled conditions at 600--1000{degrees}C. These reactions converted the intermetallic layers to electrically insulating oxide/nitride or oxy-nitride layers. This coating method could be applied to a commercial product. The liquid metal can be used over and over because only the solutes are consumed within the liquid metal. The technique can be applied to various shapes because the coating is formed by liquid-phase reaction. This paper will discuss initial results on the nature of the coatings and their in-situ electrical resistivity characteristics in liquid lithium at high temperatures.

  17. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    NI Jie; LI Zhengcao; ZHANG Zhengjun


    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  18. Exploring solid-phase approaches for the preparation of new beta-lactams from amino acids.

    Gerona-Navarro, Guillermo; Royo, Miriam; García-López, Ma Teresa; Albericio, Fernando; González-Muñiz, Rosario


    Two solid-phase approaches, involving the base-assisted intramolecular alkylation of N-chloroacetyl-Phe derivatives anchored to appropriate solid supports, were investigated for the preparation of novel beta-lactams. When a BAL-type strategy was used, the resin-bound azetidinones were easily formed, as established by MAS-NMR, but final compounds could not be removed from the resin, unless a suitable two linkers system was used. In the second approach, in which the Phe residue is anchored to a Wang-type resin through the carboxylate group, the corresponding 1,4,4-trisubstituted 2-azetidinone was obtained in moderate to good yield and high purity.

  19. Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste.

    Battistoni, P; Pavan, P; Mata-Alvarez, J; Prisciandaro, M; Cecchi, F


    In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes. In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.

  20. The isolation of soyasaponins by fractional precipitation, solid phase extraction, and low pressure liquid chromatography.

    Gurfinkel, D M; Reynolds, W F; Rao, A V


    Bioactive soyasaponins are present in soybean (Glycine max). In this study, the isolation of soyasaponins in relatively pure form (>80%) using precipitation, solid phase extraction and reverse phase low pressure liquid chromatography (RP-LPLC) is described. Soy flour soyasaponins were separated from non-saponins by methanol extraction and precipitation with ammonium sulphate. Acetylated group A soyasaponins were isolated first by solid phase extraction followed by RP-LPLC (solvent: ethanol-water). Soyasaponins, from a commercial preparation, were saponified and fractionated into deacetylated group A and group B soyasaponins by solid phase extraction (methanol-water). Partial hydrolysis of group B soyasaponins produced a mixture of soyasaponin III and soyasapogenol B monoglucuronide. RP-LPLC of deacetylated group A soyasaponins separated soyasaponin A1 and A2 (38% methanol); of group B soyasaponins isolated soyasaponin I (50% ethanol); and of the partial hydrolysate separated soyasaponin III from soyasapogenol B monoglucuronide (50% ethanol). This methodology provides soyasaponin fractions that are suitable for biological evaluation.

  1. The μ3 model of acids and bases: extending the Lewis theory to intermetallics.

    Stacey, Timothy E; Fredrickson, Daniel C


    A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.

  2. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.


    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  3. Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke

    Li Guomei; Wang Yueshe; He Renyang; Cao Xuewen; Lin Changzhi; Meng Tao


    Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semi-empirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).

  4. Determination of multi-class herbicides in soil by liquid-solid extraction coupled with headspace solid phase microextraction method

    Đurović-Pejčev Rada


    Full Text Available A method is described for simultaneous determination of five herbicides (metribuzin, acetochlor, clomazone, oxyfluorfen and dimethenamid belonging to different pesticides groups in soil samples. Developed headspace solid phase microextraction method (HS-SPME in combination with liquid-solid sample preparation (LS was optimized and applied in the analysis of some agricultural samples. Optimization of microextraction conditions, such as temperature, extraction time and sodium chloride (NaCl content was perfor-med using 100 μm polydimethyl-siloxane (PDMS fiber. The extraction effi-ciencies of methanol, methanol:acetone=1:1 and methanol:acetone:hexane= =2:2:1 and the optimum number of extraction steps during the sample prepa-ration, were tested, as well. Gas chromatography-mass spectrometry (GC-MS was used for detection and quantification, obtaining relative standard deviation (RSD below 13%, and recovery values higher than 83% for multiple analyses of soil samples fortified at 30 μg kg-1 of each herbicide. Limits of detection (LOD were less than 1.2 μg kg-1 for all the studied herbicides. [Projekat Ministarstva nauke Republike Srbije, br. TR31043 i br. III43005

  5. Deformability of adsorbents during adsorption and principles of the thermodynamics of solid-phase systems

    Tovbin, Yu. K.


    A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert (including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilibrium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be determined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2) two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.

  6. Surfaces of Intermetallics: Quasicrystals and Beyond

    Yuen, Chad [Iowa State Univ., Ames, IA (United States)


    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  7. Crystal structure analysis of intermetallic compounds

    Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.


    Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

  8. Computational model and simulations of gas-liquid-solid three-phase interactions

    Zhang, Lucy; Wang, Chu


    A computational technique to model three-phase (gas-liquid-solid) interactions is proposed in this study. This numerical algorithm couples a connectivity-free front-tracking method that treats gas-liquid multi-fluid interface to the immersed finite element method that treats fully-coupled fluid-solid interactions. The numerical framework is based on a non-boundary-fitted meshing technique where the background grid is fixed where no mesh-updating or re-meshing is required. An indicator function is used to identify the gas from the liquid, and the fluid (gas or liquid) from the solid. Several 2-D and 3-D validation cases are demonstrated to show the accuracy and the robustness of the method. Funding from NRC and CCNI computational facility at Rensselaer Polytechnic Institute are greatly acknowledged.

  9. Influence of intermetallic growth on the mechanical properties of Zn–Sn–Cu–Bi/Cu solder joints

    Xing, Fei; Yao, Jia; Liang, Jingwei; Qiu, Xiaoming, E-mail:


    The formation of intermetallic reaction layers and their influence on shear strength and fractography was investigated between the Zn–Sn–Cu–Bi (ZSCB) and Cu substrate during the liquid state reaction at 450 °C after 10–90 s. Results showed that reliable solder joints could be obtained at 450 °C after 15–30 s of wetting, accompanied by the creation of scallop ε-CuZn{sub 5}, flat γ-Cu{sub 5}Zn{sub 8} and β-CuZn intermetallic layers in ZSCB/Cu interface. However, with excess increase of soldering time, a transient intermetallic ε-CuZn{sub 4} phase was nuclear and grew at ε-CuZn{sub 5}/γ-Cu{sub 5}Zn{sub 8} interface, which apparently deteriorated the shear strength of solder joints from 76.5 MPa to 51.6 MPa. The sensitivity of the fracture proportion was gradually transformed from monotonic ε-CuZn{sub 5} to the mixture of ε-CuZn{sub 4} and ε-CuZn{sub 5} intermetallic cleavage. Furthermore, the growth mechanism of ε-CuZn{sub 4} intermetallic phase at the ZSCB/Cu interface was discussed. - Highlights: • There are four interfacial intermetallic layers formed at the Zn–Sn–Cu–Bi/Cu interface. • The growth mechanism of ε-CuZn{sub 4} intermetallic phase was discussed. • The wetting time of Zn–Sn–Cu–Bi solder in contact with Cu substrate is a key parameter.

  10. Evolution of Intermetallic Compounds between Sn-0.3Ag-0.7Cu Low-silver Lead-free Solder and Cu Substrate during Thermal Aging

    Niwat Mookam; Kannachai Kanlayasiri


    The growth, transformation, and lattice structure of intermetallic compounds formed between Sn-0.3Ag-0.7Cu lead-free solder and copper substrate were investigated. Dip soldering was used to initiate the reaction between the solder and substrate. An r/-Cu6Sn5 intermetallic phase possessing a hexagonal lattice structure was found at the as-soldered interface. Thermal aging at a number of conditions resulted in the formation of a CuaSn intermetallic phase between the Cu6Sn5 layer and the copper substrate, e-Cu3Sn with an orthorhombic lattice structure was found together with hexagonal CusSn. Subsequently, the activation energies of the intermetallic phases were calculated and compared to results obtained from the literature. The comparison showed that good agreement existed between the findings from this study and literature data within a similar temperature range.

  11. Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis.

    Jana, Subhra


    Based on the bottom-up chemistry techniques, the size, shape, and composition controlled synthesis of nanoparticles can now be achieved uniformly, which is of great importance to the nanoscience community as well as in modern catalysis research. The low-temperature solution-phase synthesis approach represents one of the most attractive strategies and has been utilized to synthesize nanoscale metals, alloys and intermetallics, including a number of new metastable phases. This perspective will highlight the solution-based nanoparticle synthesis techniques, a low-temperature platform, for the synthesis of size and shape-tunable nanoscale transition metals, alloys, and intermetallics from the literature, keeping a focus on the utility of these nanomaterials in understanding the catalysis. For each solution-based nanoparticle synthesis technique, a comprehensive overview has been given for the reported nanoscale metals, alloys, and intermetallics, followed by critical comments. Finally, their enhanced catalytic activity and durability as novel catalysts have been discussed towards several hydrogenation/dehydrogenation reactions and also for different inorganic to organic reactions. Hence, the captivating advantages of this controllable low-temperature solution chemistry approach have several important implications and together with them this approach provides a promising route to the development of next-generation nanostructured metals, alloys, and intermetallics since they possess fascinating properties as well as outstanding catalytic activity.

  12. Numerical modeling of two-phase high speed jet with non-equilibrium solid phase crystallization

    Molchanov, A. M.; Yanyshev, D. S.; Bykov, L. V.


    The main purpose of the paper is to demonstrate that the Euler approach is fully applicable to the multiphase flows with discrete phase undergoing phase transitions. It is carried out using the example of a jet flow with aluminium oxide particles non-equilibrium crystallization. The jet is strongly underexpanded. The non-equilibrium molecular effects are being taken into account. The obtained results of the simulations are in good agreement with the works of the other authors. The developed Euler approach proved itself to be the most robust in flows with complex flow geometry.

  13. Supersaturated solid solution obtained by mechanical alloying of 75% Fe, 20% Ge and 5% Nb mixture at different milling intensities

    Blazquez, J.S.; Ipus, J.J.; Millan, M.; Franco, V. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain); Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Apartado 1065, 41080 Sevilla (Spain)], E-mail:; Oleszak, D.; Kulik, T. [Faculty of Materials Science and Engineering, Warsaw University of Technology, ul. Woloska 141, 02-507 Warsaw (Poland)


    Mechanical alloying process of Fe{sub 75}Ge{sub 20}Nb{sub 5} composition has been studied at different milling frequencies from initial pure powder mixture to the development of a single bcc phase (supersaturated solid solution). As an intermediate state, an intermetallic phase is formed, which disappears after further milling or after thermal treatment (ascribed to an endothermic process at 700-800 K). A preferential partition of Nb and Ge to the boundaries between nanocrystals of bcc Fe-Ge-Nb supersaturated solid solution is observed from X-ray diffraction (XRD) and Moessbauer results.

  14. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    Houen, G.; Olsen, D.T.; Hansen, P.R.;


    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  15. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Hosanagara N. Harishkumar


    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  16. Silica-Based Solid Phase Extraction of DNA on a Microchip

    陈晓芳; 沈科跃; 刘鹏; 郭旻; 程京; 周玉祥


    Micro total analysis systems for chemical and biological analysis have attracted much attention.However,microchips for sample preparation and especially DNA purification are still underdeveloped.This work describes a solid phase extraction chip for purifying DNA from biological samples based on the adsorption of DNA on bare silica beads prepacked in a microchannel.The chip was fabricated with poly-dimethylsiloxane.The silica beads were packed in the channel on the chip with a tapered microchannel to form the packed bed.Fluorescence detection was used to evaluate the DNA adsorbing efficiency of the solid phase.The polymerase chain reaction was used to evaluate the quality of the purified DNA for further use.The extraction efficiency for the DNA extraction chip is approximately 50% with a 150-nL extraction volume.Successful amplification of DNA extracted from human whole blood indicates that this method is compatible with the polymerase chain reaction.

  17. Solid phase epitaxy amorphous silicon re-growth: some insight from empirical molecular dynamics simulation

    Krzeminski, Christophe; 10.1140/epjb/e2011-10958-7


    The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms governing the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reor...

  18. Experimental setup for investigating silicon solid phase crystallization at high temperatures.

    Schmidt, Thomas; Gawlik, Annett; Schneidewind, Henrik; Ihring, Andreas; Andrä, Gudrun; Falk, Fritz


    An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800 °C. Molybdenum-SiO(2)-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

  19. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Woo, Y; Mitchell, A R; Camarero, J A


    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  20. 西仑吉肽的固相合成%Solid phase synthesis of cilengitide

    张波; 王卫国; 康武; 智小霞; 姚忠; 徐红岩


    Fully-protected linear peptide was synthesized by Fmoc solid phase peptide synthesis methods. The solid phase carrier was 2-chlorotrityl chloride resin. HATU/HOBt and HBTU/HOBt were used as the coupling reagents. The synthesis of fully-protected cyclic peptide used THF/DCM ( at a ratio of 1: 1 by volume) as the solvent and HATU/HOBt as the coupling reagents. Finally cilengitide could be obtained by deprotection reaction.%采用Fmoc固相合成法,选用2-氯三苯甲基氯树脂作为固相载,HBTU/HOBt和HATU/HOBt为缩合剂,合成全保护线性肽.以V(DCM)∶V(THF)= 1∶1为溶剂,HATU/HOBt为缩合剂,合成全保护环肽.最后脱除保护基得终产物西仑吉肽.

  1. Dense Pellicular Agarose-Glass Beads for Expanded Bed Application: Flow Hydrodynamics and Solid Phase Classifications

    周鑫; 史清洪; 白姝; 孙彦


    Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.

  2. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples

    Helena Prosen


    Full Text Available Solvent extraction remains one of the fundamental sample preparation techniques in the analysis of environmental solid samples, but organic solvents are toxic and environmentally harmful, therefore one of the possible greening directions is its miniaturization. The present review covers the relevant research from the field of application of microextraction to the sample preparation of environmental solid samples (soil, sediments, sewage sludge, dust etc. published in the last decade. Several innovative liquid-phase microextraction (LPME techniques that have emerged recently have also been applied as an aid in sample preparation of these samples: single-drop microextraction (SDME, hollow fiber-liquid phase microextraction (HF-LPME, dispersive liquid-liquid microextraction (DLLME. Besides the common organic solvents, surfactants and ionic liquids are also used. However, these techniques have to be combined with another technique to release the analytes from the solid sample into an aqueous solution. In the present review, the published methods were categorized into three groups: LPME in combination with a conventional solvent extraction; LPME in combination with an environmentally friendly extraction; LPME without previous extraction. The applicability of these approaches to the sample preparation for the determination of pollutants in solid environmental samples is discussed, with emphasis on their strengths, weak points and environmental impact.

  3. Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.

    Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A


    Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.

  4. Molecular simulation of homogeneous crystal nucleation of AB2 solid phase from a binary hard sphere mixture

    Bommineni, Praveen Kumar; Punnathanam, Sudeep N.


    Co-crystal formation from fluid-mixtures is quite common in a large number of systems. The simplest systems that show co-crystal (also called substitutionally ordered solids) formation are binary hard sphere mixtures. In this work, we study the nucleation of AB2 type solid compounds using Monte Carlo molecular simulations in binary hard sphere mixtures with the size ratio of 0.55. The conditions chosen for the study lie in the region where nucleation of an AB2 type solid competes with that of a pure A solid with a face-centered-cubic structure. The fluid phase composition is kept equal to that of the AB2 type solid. The nucleation free-energy barriers are computed using the seeding technique of Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]. Our simulation results show that the nucleation of the AB2 type solid is favored even under conditions where the pure A solid is more stable. This is primarily due to the similarity in the composition of the fluid phase and the AB2 type solid which in turn leads to much lower interfacial tension between the crystal nucleus and the fluid phase. This system is an example of how the fluid phase composition affects the structure of the nucleating solid phase during crystallization and has relevance to crystal polymorphism during crystallization processes.

  5. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob


    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  6. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Yulin Liu


    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  7. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    Changsui Zhao; Liu Shen; Pan Xu; Xiaoping Chen; Daoyin Liu; Cai Liang; Guiling Xu


    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0...

  8. Isothermal section (500  ℃) of phase diagram of Nd-Al-Si ternary system

    龙志林; 周益春; 庄应烘; 陈荣贞; 刘敬旗


    The isothermal section of the phase diagram of the ternary system Nd-Al-Si at 500  ℃ (Nd≤50%, mole fraction) has been constructed on the basis of the data obtained by X-ray diffraction analysis, differential thermal analysis, metallographic examination, chemical analysis and electron micro-probe analysis. The obtained diagram consists of 11 single-phase regions, 21 two-phase regions and 11 three-phase regions. There exist two limit solid solutions. The intermetallic compound NdAl1.5Si0.5 has not been found in this section. No evidence of new phase has been observed in this work.

  9. Design of indirect solid-phase immunosorbent methods for detecting arenavirus antigens and antibodies

    Ivanov, A.P.; Rezapkin, G.V.; Dzagurova, T.K.; Tkachenko, E.A.


    Specifications have been elaborated for formulating indirect solid-phase enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (SPRIA) methods that employ anti-human and anti-mice G class immunoglobulin (IgG), conjugated with horseradish peroxidase and /sup 125/I for detecting the arenaviruses Junin, Machupo, Tacaribe, Amalpari, Tamiami, Lassa, and LCM (lymphocytic choriomeningitis). These methods make it possible to identify with a high degree of sensitivity arenavirus antigens and antibodies in various kinds of material.

  10. Phase I Study of Continuous Weekly Dosing of Dimethylamino Benzoylphenylurea (BPU) in Patients with Solid Tumours

    Messersmith, Wells A.; Rudek, Michelle A.; Baker, Sharyn D.; Zhao, Ming; Collins, Connie; Colevas, A. Dimitrios; Donehower, Ross C.; Carducci, Michael A.; Wolff, Antonio C.


    A phase I study of Dimethylamino Benzoylphenylurea (BPU), a tubulin inhibitor, was performed using a weekly continuous schedule. Patients with refractory solid tumours received oral BPU once weekly without interruption at doses ranging from 5 to 320mg using an accelerated titration design. Nineteen subjects received 54 cycles of BPU. Early pharmacokinetic findings of decreased clearance with increasing dose and plasma accumulation led to the expansion of the 320mg dose level. Two subjects the...

  11. Determination of zinc in environmental samples by solid phase spectrophotometry: optimization and validation study

    Molina, Mar??a Francisca; Nechar, Mounir; Bosque-Sendra, Juan M.


    A simple and specific solid-phase spectrophotometric (SPS) determination of zinc in ??g dm-3 level has been developed based on the reaction of Zn(II) with 4-(2-pyridylazo)resorcinol (PAR) in the presence of potassium iodide; the product was then fixed on an anionic exchanger. The absorbance of the gel, packed in a 1 mm cell, is measured directly. PAR and KI concentrations were optimized simultaneously using response surface methodology (RSM) from sequential experimental Doehlert designs. The ...

  12. Zirconyl chloride promoted highly efficient solid phase synthesis of amide derivatives


    An efficient solid phase route for the synthesis of amide derivatives by the reaction of carboxylic acids with urea in the presence of catalytic amount of zirconyl chloride under microwave irradiation conditions was described. In this way, a range of interesting amide derivatives was obtained in good to excellent yields. The catalyst was recycled with fresh reactants and it gave almost similar results without significant loss of activity up to the third run.

  13. R. Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment

    Mitchell, A R


    Bruce Merrifield, trained as a biochemist, had to address three major challenges related to the development and acceptance of solid-phase peptide synthesis (SPPS). The challenges were (1) to reduce the concept of peptide synthesis on a insoluble support to practice, (2) overcome the resistance of synthetic chemists to this novel approach, and (3) establish that a biochemist had the scientific credentials to effect the proposed revolutionary change in chemical synthesis. How these challenges were met is discussed in this article.

  14. Numerical study of light-induced phase behavior of smectic solids

    Chung, Hayoung; Park, Jaesung; Cho, Maenghyo


    By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC) phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling. In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the various phases of LC are considered as well as their relation to polymeric conformation defined by the strain energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling, the use of the proposed finite element framework offers an insight into the design of light-responsive actuating systems made of smectic solids.

  15. A New Molecularly Imprinted Polymer for Solid-phase Extraction of Cotinine from Human Urine

    Jun YANG; Xiao Lan ZHU; Ji Bao CAI; Qing De SU; Yun GAO; Liang ZHANG


    A molecularly imprinted polymer (MIP), prepared around a cotinine template, has been synthesized. The feasibility of using the polymer for solid-phase extraction (SPE) of cotinine from biological samples has been investigated. The results show that cotinine can be quantitatively retained and eluted from the polymer. Experiments with human urine samples indicate that clean target analyte is obtained for HPLC with UV detection using the protocol.

  16. Kinetics of solid state phase transformations: Measurement and modelling of some basic issues

    S Raju; E Mohandas


    A brief review of the issues involved in modelling of the solid state transformation kinetics is presented. The fact that apart from the standard thermodynamic parameters, certain path variables like heating or cooling rate can also exert a crucial influence on the kinetic outcome is stressed. The kinetic specialties that are intrinsic to phase changes proceeding under varying thermal history are enumerated. A simple and general modelling methodology for understanding the kinetics of non-isothermal transformations is outlined.

  17. Selective fiber used for headspace solid-phase microextraction of abused drugs in human urine

    Sunanta Wangkarn


    A sensitive and selective fiber for simultaneous analysis of three drugs of abuse (amphetamine, methamphetamine and ephedrine) in urine samples was explored using headspace solid phase microextraction and gas chromatography with flame ionization detection. Several parameters affecting extraction such as extraction time, extraction temperature, pH of solution and salt concentrations were investigated. Among five commercially available fibers, divinylbenzene/carboxen/ polydimethylsiloxane is th...

  18. Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry


    International audience; In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/ SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zoo-plankto...

  19. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa


    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We...... at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations....

  20. Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters

    Brask, Jesper; Albericio, F.; Jensen, Knud Jørgen


    Total chemical synthesis of proteins by chemoselective ligation relies on C-terminal peptide thioesters as building blocks. Their preparation by standard Fmoc solid-phase peptide synthesis is made difficult by the lability of thioesters to aminolysis by the secondary amines used for removal of th...... of the Fmoc group. Here we present a novel backbone amide linker (BAL) strategy for their synthesis in which the thioester functionality is masked as a trithioortho ester throughout the synthesis....